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Abstract. – We describe simulations of isolated ideal polymer chains consisting of N
monomers. The solvent is simulated using a dissipative ideal gas maintained at a set tem-
perature by a Lowe-Andersen thermostat. By choosing a particular ratio of the Kuhn length
to the monomer hydrodynamic radius, long-polymer scaling of the diffusion coefficient holds
even for chains composed of a few beads. However, this requires that the model capture the
hydrodynamics correctly on length scales equivalent to a typical solvent particle separation. It
does. The decay of the centre-of-mass velocity autocorrelation function, C(t), for short chains
scales rapidly to a function independent of N , so we can determine the long-polymer limit of
the function. At long times it decays with an algebraic long-time tail of the form C(t) ∼ t−3/2.
This is consistent with the predictions of theories that take into account the time dependence
of the intra-polymer hydrodynamic interactions. We argue that the scaling of the decay implies
that the intra-polymer hydrodynamic interactions propagate on a surprisingly rapid time scale.

Introduction. – Classic theories of polymer centre-of-mass motion [1] make the assump-
tion that inertia is irrelevant. Hydrodynamic interactions between bits of the polymer are
assumed to propagate instantaneously. In reality, this is not the case. In this letter we exam-
ine the effects of the finite propagation time on polymer centre-of-mass dynamics. To do so,
we use a model for which time-dependent hydrodynamics is included by the use of an explicit
simple model solvent.

Because polymers are very large molecules, their dynamics are slow. Thus, a computational
approach which resolves atomistic detail is impractical. A long polymer must be drastically
simplified (“renormalized”) so that it can be simulated on long time scales. However, we need
to be able to argue that in some meaningful sense we capture the dynamics of the real polymer.
There are practical difficulties in doing this. First, the dynamics of a polymer (in dilute
solution) are largely determined by the hydrodynamic interactions between the monomers
making up the solvent [1], so this effect must be included. Second, even if hydrodynamics
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is included, the dynamics of a long polymer chain are not necessarily the same as those of a
short one. Third, the time scales for the dynamic processes governing the behaviour of the
polymer will similarly differ between short and long polymer systems. Within the context
of the polymer velocity autocorrelation function, we address the first two and partially the
third of the problems we outlined above. The idea of including an explicit model solvent has
been applied elsewhere. Spenley [2] used dissipative particle dynamics to study short model
excluded-volume chains and found reasonable agreement with theory in a parameter regime
where the hydrodynamics is relatively unimportant. Malevanets and Yeomans [3] modelled
the solvent using direct simulation Monte Carlo and found good agreement with theory for
the centre-of-mass dynamics if they allowed for compressibility. The solvent was modelled
using a lattice Boltzmann equation by Ahlrichs and Dünweg [4] who compared the dynamics
of a chain of monomers interacting through a Lennard-Jones potential using both an explicit
and model solvent. The results were in good agreement.

The system we consider is a single ideal chain. That is, the polymer is modelled as a
set of connected particles with a root-mean-square separation between adjacent beads b (the
Kuhn length). This model is a minimal representation of a real (flexible) polymer but predicts
reasonably well the dynamic properties of dilute polymer solutions [5]. For our purposes here
it is useful because renormalizing the static properties is straightforward, the full N -particle
distribution function being known. Nonetheless, the dynamics of the model, with which we
are concerned here, are not trivial. We will begin by considering the time scales involved and
the hydrodynamics of polymer diffusion.

There are three time scales with which we need to concern ourselves. First, we have a sonic
time τs (as with all particle model solvents, the solvent is compressible). This is the time it
takes sound to travel a characteristic distance l, i.e. τs = l/cs, where cs is the speed of sound.
Second, we have a viscous time τν = l2/ν, where ν is the kinematic viscosity of the solvent.
This is the time it takes transverse momentum to diffuse a distance l. Finally, we have a
diffusive time τD = l2/D, where D is the polymer diffusion coefficient. This is the time it takes
a particle to diffuse a distance l. For a long polymer we have τs < τν � τD. The diffusive time
is the longest and this defines the “long” time scale. Although for a smaller polymer we can
have τs ∼ τν , it always remains true that the sonic and viscous times are very much less than
the diffusive time and these define the “short” time scale. There is reason to think that the
first condition τs < τν is of lesser importance because, at least in a colloidal suspension, sound
propagation plays a minor role [6]. Furthermore, it does not influence transport coefficients.
This makes it surprising that Malevanets and Yeomans [3] had to allow for it.

Polymer dynamics. – The centre-of-mass diffusion coefficient, D, for a chain of N beads
in a solvent with shear viscosity η at temperature T can be written as [7]

D
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〉
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where D0 is the diffusion coefficient a bead would have were it a single particle in the same sol-
vent, and a (= kT/(6πηD0)) defines a bead “hydrodynamic radius”. The first term represents
the diffusion coefficient of N connected beads in the absence of hydrodynamic interactions
(“Rouse” diffusion). The second is the collective hydrodynamic contribution due to the hy-
drodynamic interactions of particles with all their neighbours. For a long polymer (N → ∞)
this term is proportional to 1/

√
N , so it dominates (Zimm scaling). It can be evaluated
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Fig. 1 – Theoretical value for the polymer diffusion coefficient Dth as a function of the number
of monomers N . The data correspond to the magic value of a/b (top) and twice the magic ratio
(bottom). The solid lines are the corresponding asymptotic (N → ∞) value.

Fig. 2 – The velocity correlation function C(t) plotted in dimensionless form for chains composed of
2, 4, 8, 16 and 32 beads. The solid line is the prediction of Zimm theory.

analytically and yields
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However, for finite N there are significant corrections to the asymptotic result (eq. (2)).
Dünweg et al. [7] have calculated the lowest-order correction to be

D
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N

)
. (3)

From this we see that in long polymers the hydrodynamic interactions between beads dominate
the dynamics (eq. (2)). Furthermore, a short chain will not generally display the same scaling
as a long one. Notably, only in the scaling limit is the ratio a/b irrelevant. This is a genuine
effect that does influence the dynamics of short chains [7]. The problem is, it is only practical
to simulate the long-time dynamics of polymers with short model polymers. If one is interested
in the long-polymer scaling limit, deviations from scaling will be overemphasized.

How long a model polymer need be to reach this limit depends on the ratio a/b (eq. (1)).
Equation (3) does suggest a value for a/b that might minimize this problem. Note that, for a
“magic” value of the ratio of the Kuhn length to the hydrodynamic radius, b = 4.04a, the finite-
N correction to the hydrodynamic contribution will cancel the non-hydrodynamic contribution
and yield the scaling D/D0 ∝ 1/

√
N for all N . That is, long-polymer scaling should hold, to

a good approximation, even for short model polymers. In terms of polymer theory [8], this
would correspond to the dynamic scaling limit being reached even with short polymers. The
scaling will not hold exactly because there are higher-order corrections neglected in eq. (3).
Using Monte Carlo methods, we have solved eq. (1) numerically and see that it does hold to a
very good approximation (see fig. 1). For illustrative purposes, we have also plotted the result
for b = 8.08a. It approaches asymptotic scaling only slowly. The result for N = 64 is still far
from asymptotic.
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Description of the model. – What we now want to do is find a way of modelling the effects
of the solvent such that the hydrodynamic interactions between beads and thermal fluctuations
are included. Furthermore, we want to be able to use the magic value of a/b so that we should
have long-polymer scaling even with short model polymers. We also want to satisfy, as best
as we can, the conditions on the relative magnitudes of the time scales we outlined above.

The approach we choose is to use a simple particle model for the solvent —a dissipative
ideal gas. There are no static interactions between solvent particles so the solvent has an
ideal-gas equation of state. The method has been used widely as a test case for dynamic
particle models [9, 10], but little used as a practical tool. The model polymer consists of
beads, with adjacent beads connected by a harmonic potential of the form

U = kBT

N−1∑
i=1

3
2b 2

(ri − ri+1)2. (4)

This allows us to specify the Kuhn length. As the solvent is ideal, it will not influence the static
properties of the chain. It remains exactly what we specify —an ideal chain. The solvent’s
role here is simply to mediate the hydrodynamic interactions between polymer beads.

The ideal-gas solvent is dissipative because total energy is not conserved. It is maintained
at a constant temperature by a Lowe-Andersen thermostat [9]. Dynamically, the thermostat
makes a contribution to the viscosity so it is possible to satisfy the condition for liquid-like
(Ds � ν) rather than gas-like (Ds ∼ ν) dynamics. Here Ds is the solvent diffusion coeffi-
cient. The Lowe-Andersen thermostat conserves momentum and is Galilean invariant. These
are important pre-requisites for reproducing the correct hydrodynamics. In this respect, it
is similar to dissipative particle dynamics (DPD) [2]. It has the advantage that a simple
algorithm suffices to update the equations of motion and still satisfies detailed balance. In
practice, this means that static properties of the system (temperature, Kuhn length, etc.) will
be correct (so long as a time step short enough to adequately integrate the non-dissipative
equations of motion is used [11]). The procedure simply consists of using a velocity Verlet
algorithm to integrate the normal (conservative) equations of motion over a time-step ∆t.
Pairs of particles within a distance rc (an interaction radius for the thermostat) of each other
are identified. With a probability Γ∆t, the particles undergo “bath” collisions, in that their
relative velocity along the line of centres is re-drawn from a Maxwellian. The individual
particle velocities are then updated such that momentum is conserved. The bath collisions
take on the role of the dissipative force in DPD. While simpler and more efficient than DPD
when viewed purely as a thermostat, this method may seem a little cruder in that it does
not involve a distance-dependent weight function for this dissipative interaction. However,
in DPD this function is somewhat arbitrary and, as we will see, this does not seem to be a
problem. The beads making up the model polymer have exactly the same dissipative inter-
action with surrounding solvent but do not interact with each other (the dynamic interaction
between beads comes only through the springs and solvent). This means that we can, without
ambiguity, identify the monomer diffusion coefficient as being the diffusion coefficient of the
solvent particles (Ds = D0).

Model parameters. – Despite its simplicity, the model still has a number of parameters
we need to specify. Here we discuss the values we assign to them with a brief explanation as to
why. The dissipative ideal gas itself is characterized by just two parameters. Firstly, a typical
interparticle separation λ = (1/ρ)1/3, where ρ is the number density. Secondly, a parameter
Λ =

√
kBT/(Γ2rc

2m), where m is the solvent particle mass, characterizing the ratio of the
time it takes particles to displace rc to the mean bath collision time. With the polymer present
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we have an additional parameter a/b. Considering rc, it must be greater than λ, otherwise
particles will rarely interact and will undergo prolonged ballistic motion. Large values of rc

are computationally inconvenient. A trade-off is required and we compromise on a value rc
3 =

6/(πρ) (each solvent particle interacts, on average, with eight others). Decreasing Λ decreases
the ratio τν/τD, but also increases the ratio ν/(λcs). That is, the sonic time starts to become
significantly longer than the viscous time. This is inconsistent with what we ideally require.
The value we have used is Λ = 0.03 which gives ν/Ds = 60, so for the polymer τD/τν > 60,
and, based on a characteristic length of a particle separation, τν/τs = 0.26. Therefore, on a
solvent length scale, the system is somewhat too compressible. The final parameter we need
to specify is the Kuhn length. For small values of Λ, we find that the hydrodynamic radius
of the solvent particles (based on their diffusion coefficient) is a = 0.21λ, independent of Λ.
This means that the magic ratio corresponds to b ≈ 4a = 0.84λ. That is, a typical polymer
bead separation must be of the order of, or less than, a typical solvent particle separation.

Results. – The simulations were carried out using 104 solvent particles and chains con-
sisting of N = 2, 4, 8, 16 and 32 beads. The Lowe-Anderson thermostat has a maximum
time-step (Γ∆t = 1) and we used half this value. The polymer temperature and Kuhn length
calculated from the simulations were, to the accuracy we calculated them (> 0.1%), the same
as the set values. From the data, we calculated the centre-of-mass velocity autocorrelation
function (VCF),

C(t) =
1

3N2

〈(
N∑

i=1

vi(0)

)
·
(

N∑
i=1

vi(t)

)〉
, (5)

from which we in turn derived the centre-of-mass diffusion coefficient

D(t) =
∫ ∞

0

C(t)dt. (6)

The first thing we want to look for is any spurious consequence of the solvent being too
compressible. In fig. 2 we have plotted the function C(t) in dimensionless form (C(t)m/(kT ),
where m is the mass of the polymer), as a function of dimensionless time tkT/(mD). The
time is thus measured relative to the polymer inertial time (the time scale on which centre-
of-mass velocity correlations would decay, according to a simple Langevin equation). Taking
the radius of gyration of the polymer rg as the characteristic length scale l = rg =

√
Nb2/6,

by varying N we are varying both the ratio τs/(τν) and τν/τD (because τs ∝
√

N , τν ∝ N and
τD ∝ N3/2). However, the results rapidly become indistinguishable for N > 4. That is, the
fact that these ratios do not take the correct values is inconsequential. Where the results fall
onto one curve this is the true curve for any ideal chain because it is independent of N . It is
not so obvious that the excessive compressibility of our solvent should not perturb the results
on short time scales. Indeed, Malevanets and Yeomans [3] developed a theory to describe the
deviations from exponential decay that they observed by taking into account compressibility.

Theories that do not take into account the time dependence of the hydrodynamic interac-
tions predict that the decay of the VCF is exponential (see fig. 2). Examining the functional
form of the decay we find that it is not exponential, at either short or long times. We believe
this reflects the fact that the model does include the time dependence of the hydrodynamic
interactions. The VCF is plotted in ln-ln form in fig. 3. Also shown is the asymptotic decay
C(t) ∼ t−3/2 recently predicted by a theory that takes this time dependence into account [12].
This is an algebraic “long-time tail” of exactly the same form one observes in the VCF for
solid particles [6]. The scaling we observe, however, implies somewhat different behaviour of
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Fig. 3 – Ln-ln plot of the normalized velocity autocorrelation function at long times for chains with
different number of beads N . The solid line shows t−3/2 decay.

Fig. 4 – Polymer diffusion coefficient D and the hydrodynamic contribution to the diffusion coefficient
DH calculated using chains of 2, 4, 8, 16 and 32 beads. The upper (dotted) line is the theoretical
asymptotic (N → ∞) result for D. The lower dashed line is the theoretical result for DH as a
function of N .

the characteristic time for the asymptotic decay in the case of a polymer. For a solid parti-
cle the normalized VCF decays as a unique function of the dimensionless time τc = ρ∗a2/ν,
where a is the particle radius and ρ∗ the ratio of the density of the solid particle to the den-
sity of the fluid. For colloidal particles this is always close to unity. Here, by contrast, we
find a characteristic time τc = kBT/(Dm). If we suppose the polymer occupies a spherical
volume of radius rg and introduce a polymer density ρp = m/r3

g, this characteristic time is
τc = ρprg

2/(ρν). That is, the scaling of the decay for a polymer is of the same form as that
for a solid particle if we allow for the fact that a polymer is less dense than the equivalent
volume of solvent. The difference between the two cases increases with increasing N because
ρp/ρ scales as 1/

√
N . Thus, the long-time tail for a polymer is a relatively weaker affair when

compared to the long-time tail of a solid particle of equivalent dimension.
Turning to the actual values of the diffusion coefficient, in fig. 4 we have plotted

√
ND/Ds

as a function of N . In contrast to other workers (probably because we are in a different parame-
ter regime), we do not need to apply any finite-size corrections because D asymptotes on a time
scale that is still short compared to the time it takes hydrodynamic interactions to propagate
between periodic images. Note that, to within the errors,

√
ND/Ds is a constant. As we know,

this is also the asymptotic result (shown in the figure) we can conclude that long-polymer scal-
ing D ∝ 1/

√
N holds to an excellent approximation for model polymers even as small as N = 2.

We remarked that for values of the Kuhn length similar to a solvent interparticle separation, it
would be surprising if the model adequately resolved the hydrodynamics. The most sensitive
test of this is to look at the hydrodynamic contribution to the diffusion coefficient DH (almost
any model will get the Rouse-like contribution in eq. (1) right by construction). That is

DH

D0
=

D

D0
− 1

N
. (7)

The values we calculated are also shown in fig. 4. As the figure shows, we find no statistically
significant difference between the numerical values and the theoretical value. We should point
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out though that, allowing for the errors, for N =2 this means that the maximum possible dis-
crepancy would be 15%. However, for N =4 this is 6% and by N =8 it is 4%. The model clearly
does a remarkably good job of resolving the hydrodynamics even on very short length scales.

Discussion. – We have considered the dynamics of a single model polymer for which,
theoretically, we know the values for the diffusion coefficient. In this sense it is a test case. For
many polymer systems or flows in complex geometries there is of course no analytic solution
and a numerical model is required. Once validated, this would be the point of such a model.

We have shown that by choosing a particular magic value of the ratio of the Kuhn length
to the monomer hydrodynamic radius a model polymer displays long-polymer scaling of the
diffusion coefficient for all numbers of monomers. In this sense one imposes dynamic scaling,
to a good approximation, even for short polymers. Using a very simple model solvent we
reproduced this scaling numerically. This is because the model gives an excellent description
of the hydrodynamics even on length scales comparable to a typical solvent particle separation.
Examining the time scales associated with the polymer solvent model we showed that in order
to separate the diffusive and viscous times the solvent must be more compressible than a real
system. However, we also showed that this does not influence the dynamics so cannot be
considered problematic.

Using the model it was possible to show that the centre-of-mass dynamics of a long ideal
chain could be calculated using short chains. The function does not decay exponentially but
with an algebraic long-time tail of the form predicted by theories that take into account the
time dependence of the hydrodynamic interactions. If allowance is made for the fact that the
polymer is much less dense than the solvent, the characteristic time for this decay is analogous
to that of a solid particle of equivalent size. This actually implies something quite interest-
ing. One would normally expect that hydrodynamic interactions propagate by momentum
diffusion. It would take times of the order τHI ∼ r2

g/ν for them to fully propagate between all
the monomers. This time scales as τHI ∼ N . However, the characteristic time for the decay
of the VCF scales as τc ∼ √

N . The time-dependent diffusion coefficient asymptotes on this
time scale and its value reflects the effect of all the intra-monomer hydrodynamic interactions
(eq. (1)). Consequently, these interactions must have propagated between all beads in the
polymer on this time scale. But, for a long polymer, the above analysis gives τc � τHI, which
cannot be the case. The intra-chain hydrodynamic interactions must propagate on a more
rapid time scale than we surmized. The origin of this effect is a subject for further research.
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