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Abstract
We report positive muon spin measurements of the spin–lattice relaxation rate,
λZ , for the weakly helimagnetic metal MnSi performed at ambient pressure
and covering the temperature range from 2 to 280 K. The self-consistent
renormalization theory is unable to explain the temperature dependence of λZ ,
in particular far below the ordering temperature and in the critical paramagnetic
regime. A temperature independent length scale is required to account for these
data.

(Some figures in this article are in colour only in the electronic version)

The weakly helimagnetic metal MnSi is becoming the model system for the investigation
of anomalous metallic properties. Thanks to recent developments of physical measurements
under high pressure, anomalous properties have been detected over a wide region of its phase
diagram near the pressure-induced first-order magnetic–non-magnetic transition [1]. More
surprisingly, even at ambient pressure the expected metallic behaviour is not observed with
the optical conductivity [2].

Here we report an investigation of the spin dynamics by the muon spin relaxation (µSR)
technique; for references to this technique see e.g. [3–5]. It confirms that at ambient pressure the
physical properties of MnSi are still not understood: we find the predictions of the conventional
theory for a weakly magnetic metal, i.e., the self-consistent renormalization (SCR) theory [6],
at variance with the experimental results in a large temperature range. These results are
explained if a new length scale is introduced.

MnSi is a metallic compound which undergo a second order magnetic phase transition at
∼29.5 K into a helical magnetic structure characterized by a small wavevector Q0 = 0.035 Å−1
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parallel to [111] or equivalent crystal directions [7]. The magnetic moments lie in planes
perpendicular to Q0 and their magnitude, extrapolated to T = 0 K, is MQ0 = 0.4 µB. The
uniform magnetic susceptibility χ0 follows a Curie–Weiss law up to 400 K [8]. MnSi is
particularly attractive experimentally because of the possibility to produce large high quality
crystals. With its three-dimensional cubic crystal structure (B20 lattice type with space group
P213), the electronic and magnetic properties of MnSi can be assumed to be isotropic.

We first review the predictions of the SCR theory or the equivalent Ginzburg–Landau
expansion [9]. As usually done, we shall first neglect the long-range modulation and therefore
assume MnSi to be a weak ferromagnet. The static wavevector dependent susceptibility in the
paramagnetic state is of the Ornstein–Zernike form in the whole Brillouin zone, i.e. χ0(q) ∝
(q2 + κ2)−1. q is referred relative to the zone centre. κ is the inverse of the correlation length
of the magnetic modes which follows the power law κ(T ) = κ0[(T − Tc)/Tc]ν . The exponent
ν is expected to be mean-field-like, that is ν = νMF = 1/2. Tc is the critical temperature. The
relaxation rate of a spontaneous spin-fluctuation takes the form �0(q) ∝ qχ−1

0 (q) ∝ q(κ2+q2).
The linear decay at small q is known as Landau damping. The spin–lattice relaxation rate,
denoted 1/T1 in nuclear magnetic resonance and λZ in µSR, can be expressed as a sum over
the Brillouin zone; see e.g. [5]. Assuming that there is no applied magnetic field on the sample,

λZ (T ) ∝ T
∫ qu

q�

χ0(q)

�0(q)
q2 dq. (1)

qu and q� are cut-off wavevectors. λZ is then found to be proportional to Tχ0 when qu/κ �
1 [10]. Since χ0 follows the Curie–Weiss law, in the paramagnetic phase λZ (T ) ∝ T/(T −Tc).
λZ is therefore expected to diverge at Tc and to level off for T � Tc. Deep in the ordered
state, the perpendicular (to the easy axis) spin fluctuations are expected to be stronger than the
parallel ones and therefore we need only to consider χ⊥

0 (q) and �⊥
0 (q) [6]. Because of the

Goldstone mode, χ⊥
0 (q) ∝ q−2, and therefore λZ (T ) ∝ T/q2

� . Since q� = k↑
F − k↓

F , where
k↑

F and k↓
F are the Fermi wavevectors for the majority (↑) and minority (↓) spin electron bands

respectively [9], q� ∝ M0. Therefore λZ (T ) ∝ T/M2
0 , as given in [10].

The forms for χ0(q) and �0(q) in the paramagnetic phase are extensively supported by
the results of neutron scattering experiments [11]. However, inspection of these data shows
that the measurements were only performed down to q = 0.1 Å−1.

Using the same methodology, it is found that λZ (T ) ∝ T/(T − TN)1/2 and λZ (T ) ∝
T/MQ0 for an antiferromagnet in the paramagnetic and ordered phases respectively [10].
Hence, λZ (T ) ∝ T 1/2 in the high-temperature limit, i.e. λZ should never level off at high
temperature.

Measurements of λZ (T, Bext) have already been published [12–14]. The available data for
the paramagnetic phase at low field are consistent with Moriya’s predictions assuming MnSi
to be a ferromagnet. However, at least one data point in [13] suggests a saturation occurs when
approaching the critical point. In addition, from the same reference we note that the theory
may not reproduce λZ at high temperature. The measurements reported here were designed
to further investigate λZ (T ) at low field.

Referring to the work of Kadono et al [13], we chose to apply a longitudinal field Bext of
either 5 or 20 mT. Bext is sufficiently weak to neglect its effect on λZ [14], outside the field
range where a resonance with the 55Mn nuclear magnetic moments occurs, and strong enough
to quench the depolarization arising from these moments.

The measurements were performed using the EMU spectrometer of the ISIS facility (UK).
The data were recorded between 2 and 280 K in the so-called ‘fly-past’ mode. Basically, in
this mode the muons which miss the sample do not contribute to the measured spectrum.
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Figure 1. A µSR spectrum recorded in the paramagnetic phase of a single crystal of MnSi.
A longitudinal field of 5 mT was applied along the [111] crystal axis. The dashed (full)
line is a fit with the one- (two-) component model. These models consist either of a simple
exponential (PZ (t) = exp(−λZ t)) or of the weighted sum of two exponential functions (PZ (t) =
p1 exp(−λZ ,1t) + p2 exp(−λZ ,2t), with p1 + p2 = 1). The latter model accounts for the two
magnetically inequivalent muon sites (with a population ratio p2/p1 = 0.77 (9)) which are known
to exist [16]. The predictions from the two models are slightly different for t > 2 µs. χ2 = 1.2
and 1.9 for the two- and one-component fits, respectively.

A MnSi single crystal was grown from a polycrystalline ingot using the Czochralski
method. The residual resistivity ratio is 40 for similarly prepared samples [15]. Crystals with
ratios up to 200 have been reported in the literature. However, it has been argued that once the
compound has a sufficiently high ratio, as in our case, the magnetic properties are no longer
sample dependent [15, 1].

The µSR technique used here gives access to the so-called asymmetry a0 Pexp
Z (t) where

a0 is the initial muon asymmetry and Pexp
Z (t) the muon polarization function measured along

the direction of the initial muon beam polarization, Z. All the spectra were analyzed assuming
a0 Pexp

Z (t) = as PZ (t) + abg. The first term on the right-hand side describes the µSR signal
from the sample and the second accounts for the few muons stopped in the background, i.e.,
the cryostat walls or windows. A typical spectrum recorded close to the critical temperature
is presented in figure 1. Since we are here mostly interested in the spin dynamics, the spectra
recorded in the ordered phase were analysed with a large binning, so that wiggles arising from
the spontaneous field at the two muon sites [16] become invisible and therefore do not have to
be modelled. However, close to the critical point the wiggles from the smallest spontaneous
field were easily observed. They served to determine the critical temperature through a fit
of the temperature dependence of the spontaneous field to a power law using as exponent
β = 0.367 valid for an isotropic magnet. We obtained Tc = 29.460(25) K.

The muons probe two magnetically inequivalent interstitial sites [16]. These are resolved
near the critical point as shown in the example of figure 1. The analysis of such spectra yields
λZ as explained in the caption of figure 2. The comparison of the measured λZ with the
prediction of the SCR theory shows that this theory breaks down in the whole temperature
range. λZ was found to be approximately temperature independent above 80 K, whereas a
decrease was expected for the ferromagnetic model; see figure 2. The failure of the SCR theory
is pronounced in the critical paramagnetic region. Interestingly, while our measurements are
more precise than previous ones [13], they are entirely consistent, notably in the critical regime.
In figure 3 we display λZ(T ) for the magnetically ordered state. Experimentally,λZ (T ) ∝ T up
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Figure 2. (a) Spin–lattice relaxation rate λZ versus the reduced temperature τ ≡ (T − Tc)/Tc with
Tc = 29.460 K. A longitudinal field of either 5 or 20 mT was applied along the [111] crystal axis to
quench the nuclear fields arising from the 55Mn nuclei [13]. The horizontal and vertical error bars
are smaller than the size of the data point except for the point at the lowest temperatures. The dashed
line shows the prediction of the SCR theory for the ferromagnetic case with the scale parameters
chosen to best fit data satisfying 0.01 < τ < 1. The SCR theory for an antiferromagnet would
give a worse fit with half the slope for τ � 0.1 and an increase of λZ for τ > 1 (λZ ∝ T 1/2 in the
high-temperature limit). The solid line results from a fit of the data recorded near the critical point
using the critical paramagnetic model described in the main text. We find that it is valid at least for
τ � 0.4. (b) Comparison in the region close to Tc between the relaxation rates deduced from the
two models used for PZ (t) (see caption of figure 1). The weighted mean (with relative weights p1
and p2) of the two decay rates is plotted in the case of the two-component fit. When the relaxation
rate is smaller than 0.5 µs−1 the two models yield indistinguishable values. (c) Temperature
dependence of the two relaxation rates λZ ,1 and λZ ,2 and of their weighted average close to Tc. A
saturation near the critical point is apparent for each of them. λZ plotted in (a) corresponds to the
one-component fit for λZ � 0.5 µs−1 and to the weighted average of λZ ,1 and λZ ,2 for the other
points.

to ∼22.5 K. As shown in the figure, the SCR theory also breaks down deep in the magnetically
ordered state.

First we discuss the saturation of λZ in the critical paramagnetic regime. It has already
been detected for a number of ferromagnets: Ni [18], Gd [19, 20] and GdNi5 [21]. The
saturation is the definitive signature of the influence of the dipole interaction on the critical
spin dynamics. Recently λZ measured for the ferromagnetic heavy fermion compound UGe2

has also been found to saturate close to Tc [22]. Interestingly, in this case λZ was interpreted
as arising from the itinerant electrons and an analogy was drawn between the spectral density
of the fluctuations of these electrons and those of weakly ferromagnetic metals.

No saturation of λZ is observed for conventional antiferromagnets, see e.g. [23]. Using
the value κ0 = 0.18 Å−1 [11] and ν = 1/2 one deduces that the inverse correlation length
of the fluctuations in MnSi already reaches the value of the magnetic structure propagation
wavevector for a reduced temperature τ ≡ (T − Tc)/Tc � 0.04. At the temperatures for
which λZ saturates (τ � 0.015), MnSi cannot be therefore considered as a ferromagnet. The
saturation observed in the λZ critical behaviour of a ferromagnet essentially arises from the
presence of a length scale 1/qD which, as recalled below, precludes the divergence of the
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Figure 3. Spin–lattice relaxation rateλZ versus temperature measured in the ordered phase of MnSi.
A longitudinal field of 5 mT was applied along the [111] crystal axis. The solid line is the result of
a linear fit with a slope of 14.9 (1) ms−1 K−1. The SCR prediction for the antiferromagnetic case is
also shown: λZ ∝ T/MQ0 . The two fits are done for T � 22.5 K and result in χ2 = 1.05 and 6.75,
respectively. The SCR curve has been computed using MQ0 obtained from neutron scattering [17].
The misfit for the ferromagnetic SCR model is obviously expected to be even worse than for the
antiferromagnetic case. That the linear fit breaks down at 25 K and above is not surprising since
we are entering the temperature region where the critical spin fluctuations should drive the muon
spin relaxation.

longitudinal fluctuation modes. λZ (T ) in MnSi close to Tc suggests therefore the existence of
a temperature independent length scale. The physical origin for this length scale in MnSi is not
necessarily the same as in ferromagnets for which it follows from the dipolar interaction. In
the following part we briefly describe the theory for the critical behaviour of λZ in the presence
of a temperature independent length scale as in dipolar Heisenberg ferromagnets.

The key point for understanding the saturation of λZ for a ferromagnet close to Tc is
to notice that only long wavelength fluctuations contribute to the critical dynamics. Hence,
in addition to the isotropic exchange interaction, the dipole interaction has to be included
due to its long range nature [24]. The wavevector dependent susceptibility is then a tensor,
rather than a scalar as assumed in the conventional SCR theory, with elements χαβ(q) =
χL(q)Pαβ

L (q) + χT(q)Pαβ

T (q). PL(q) (PT(q)) is the longitudinal (transverse) projection
operator with respect to wavevector q. For the longitudinal and transverse susceptibilities,
χL(q) and χT(q), the Ornstein–Zernike form is used:

χL(q) = q2
D

q2 + q2
D + κ2

and χT(q) = q2
D

q2 + κ2
. (2)

qD is the dipole wavevector which is a measure of the strength of the exchange interaction
relative to the dipole energy [24]. As for the susceptibility, the longitudinal and transverse
fluctuation rates have to be distinguished: �L,T(q) ∝ qz�̂L,T (κ/q, qD/q) with the critical
dynamical exponent z = 5/2. �̂L,T are scaling functions which depend on two scaling
variables. κ(T ) still follows a power law but now with an exponent ν = νcri �
0.70. Because we need to distinguish the longitudinal and transverse susceptibilities and
fluctuation decay rates, λZ is derived to be the sum of two components [25]: λZ (T ) =
W [

aL I L(T ) + aT(T )I T(T )
]
. I L,T are scaling functions obtained from mode–mode coupling

theory. As the critical temperature is approached from above, I T diverges whereas I L becomes
approximately temperature independent for κ/qD < 1 [24]. W is a scale parameter and aL,T

are parameters which only depend on the muon site and hyperfine coupling. aT has always
been found to be small relative to aL. As noticed from figure 2, a good fit of λZ (T ) in the
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paramagnetic critical regime is obtained with the model we have just sketched. The parameters
are WaL = 8.50(26) µs−1 and qD/κ0 = 0.022 (1), setting aT = 0. From the literature one
finds qD = 6.9 × 10−3 Å−1 [9] and κ0 = 0.18 Å−1 [11], therefore qD/κ0 = 0.038 not far from
our value.

The saturation of λZ near Tc arises from the presence, in addition to the correlation length
1/κ , of a temperature independent second length scale, 1/qD. qD suppresses fluctuations close
to Tc near the zone centre. This is clearly seen from the expression of χL(q); see equation (2).
Referring to [26], when λZ is temperature independent close to Tc, the relaxation stems from
modes for which q � 10 qD � 0.07 Å−1.

In fact, MnSi is characterized by a long-range chiral modulation which is expected to
influence the wavevector dependent susceptibility. Since it diverges at Tc [27, 28], it cannot
explain λZ (T ). Note that λZ is diverging at the critical point for conventionalantiferromagnets,
see e.g. [23]. The absence of divergence of λZ in the critical paramagnetic regime strongly
suggests a cut-off wavevector such as qD to be at play. A definitive answer requires a theoretical
study which has to account for the modulated nature of MnSi.

The linear thermal behaviour of λZ for T 	 Tc follows from equation (1) if q� is assumed
to be temperature independent. This means that q� is not determined by the Fermi wavevectors
for the majority and minority spin electron bands, but by a smaller temperature independent
wavevector, as already required for understanding the critical spin dynamics.

An effective non-analytical long-range interaction between spin-fluctuation modes has
been proposed for MnSi; see [29] and references therein and [30]. This interaction may
renormalize the susceptibility. A theoretical investigation of its effect on the spin dynamics is
certainly worthwhile.

In conclusion, the SCR theory fails to account for the temperature dependence of the
spin–lattice relaxation rate measured by µSR on MnSi. According to our results, at criticality
the neutron quasi-elastic linewidth should not follow the q3 dependence predicted by the SCR
theory, but scale as qz with z close to 2.5 according to mode–mode coupling theory [24]. This
behaviour has already been suggested for the weak ferromagnet Ni3Al [31]. Our present µSR
study shows definitively a second temperature independent length scale to be required for the
description of the spin dynamics of weak ferromagnets, both in the critical regime and far
below the critical temperature.

We are grateful to G Knebel for a discussion on the resistivity measurements, B Fåk for
communication of values of MQ0 measured by neutron diffraction prior to publication and
M E Zhitomirsky for conversations.
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[26] Dalmas de Réotier P, Yaouanc A and Frey E 1994 Phys. Rev. B 50 3033
[27] Bak P and Jensen M H 1980 J. Phys. C: Solid State Phys. 13 L881
[28] Nakanishi O, Yanase A, Hasegawa A and Kataoka M 1980 Solid State Commun. 35 995
[29] Vojta T and Sknepnek R 2001 Phys. Rev. B 64 052404
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