
D 4 : D I S T R I B U T E D D I R E C T D I G I TA L D E M O C R A C Y - A R E M O T E
E L E C T R O N I C V O T I N G P R O T O C O L

rasmus välling

to obtain a Master of Science in Computer Science
Software Technology

with a Cyber Security specialization
to be defended publicly on October 4, 2018

Delft University of Technology
Faculty of Electrical Engineering, Mathematics & Computer Science

Intelligent Systems, Cyber Security Group

[September 26, 2018 at 22:56 – classicthesis version 0.1]

Rasmus Välling: D4: Distributed Direct Digital Democracy - a remote
electronic voting protocol, © September 2018

student number :
4561058

thesis committee:
Prof. Dr. P. Hartel
Assist. Prof. Dr. Z. Erkin
Assist. Prof. Dr. M. Aniche
MSc. O. Ersoy

supervisors:
Assist. Prof. Dr. Z. Erkin
MSc. O. Ersoy

[September 26, 2018 at 22:56 – classicthesis version 0.1]

A B S T R A C T

Recently we have been witnesses to a string of controversial elections:
the 2016 US Presidential election, the 2016 Brexit referendum, the
2018 Russian presidential election, the 2018 Zimbabwe elections. The
controversies surrounding elections are seemingly endless.

Why are these examples relevant? In the 21st century, we are still
conducting most of our voting with paper and pencil. Electronic vot-
ing methods could resolve much of the controversies and difficulties
regarding conventional elections. It would eliminate the uncertainty
of counting and be directly verifiable by anyone, not just by a limited
number of officials. Electronic voting also has the benefit of being eas-
ier to set up and run periodically, which could be implemented to
increase the participation of the population further.

This work focuses on how to utilise blockchain in an electronic vot-
ing scheme. The blockchain is perfect for voting application for two
crucial aspects. First and foremost, due to its inherent public nature,
everyone can verify the facts on the blockchain. Verifiability should
be a critical requirement for any modern voting system. Secondly, the
consensus mechanism allows anyone to participate in the validation
and recording of the election process. Furthermore, being distributed,
no single entity has full control over the infrastructure.

In the context of voting, verifiability is as valuable as privacy. If the
body of literature indicates that verifiability is an inherent property of
the blockchain, this is not true for privacy. We propose a scheme that
satisfies the strong privacy requirement of receipt-freeness. Validation
has shown that the scheme is suitable for large-scale elections and
that it performs well on consumer grade hardware.

iii

[September 26, 2018 at 22:56 – classicthesis version 0.1]

[September 26, 2018 at 22:56 – classicthesis version 0.1]

Driving is the only thing I love about F1.

— Kimi-Matias Räikkönen

A C K N O W L E D G M E N T S

Anyone who knows me knows I am not a man of many words. There-
fore this will be brief. First, I would like to thank my supervisors Zeki
and Oğuzhan for pushing me. Second, I would like to thank Feddy
and Hari for all the support. Finally, I would like to thank anyone
else who made this thesis possible.

v

[September 26, 2018 at 22:56 – classicthesis version 0.1]

[September 26, 2018 at 22:56 – classicthesis version 0.1]

C O N T E N T S

i distributed direct digital democracy 1

1 introduction 3

1.1 Issues with Paper-Based Voting 4

1.2 Cryptography to the Rescue 5

1.3 Privacy and Verifiability Concerns 7

1.4 Direct Democracy in Global Communities 7

1.5 Research Question . 8

1.6 Distributed Electronic Voting 9

1.7 Thesis Outline . 9

2 preliminaries 11

2.1 What is electronic voting? 11

2.2 Security requirements 12

2.2.1 Privacy . 13

2.2.2 Verifiability . 14

2.3 Cryptographic primitives 15

2.3.1 Mix network . 15

2.3.2 Onion Routing 17

2.3.3 Blind Signatures 17

2.3.4 Masking . 18

2.3.5 Commitment Scheme 19

2.3.6 Secret Sharing . 19

2.3.7 Zero-Knowledge Proofs 22

2.3.8 ElGamal Cryptosystem 23

2.3.9 Chaum-Pedersen Discrete Logarithm Equality
Proof . 25

2.3.10 Andrew Neff’s Shuffles of ElGamal Pairs 25

2.3.11 Digital Signature Algorithm 26

2.3.12 Designated Verifier Signature and Proofs 27

2.3.13 Fiat-Shamir Heuristic 29

2.3.14 Schnorr Proof of Knowledge of a Discrete Log-
arithm . 30

2.3.15 Stealth Address 30

2.4 Public Bulletin Board . 32

2.4.1 Blockchain . 33

3 prior art 37

3.1 Blockchain Based Voting in the Real World 37

3.2 Blockchain Based Electronic Voting Schemes 39

3.2.1 Masking Based 40

3.2.2 Blind Signature Based 41

3.2.3 Privacy-Preserving Cryptocurrency Based . . . 44

3.2.4 Ring Signature Based 44

vii

[September 26, 2018 at 22:56 – classicthesis version 0.1]

viii contents

3.2.5 Homomorphic Encryption Based 46

3.3 Open Research Questions 47

3.3.1 Privacy on Blockchain 48

3.3.2 Public Supervision and Active Participation . . 48

3.3.3 Honest Unintentional Mistakes Without Loss of
Privacy . 48

3.3.4 Minimizing User Effort 49

4 setting the scene 51

4.1 Modelling . 51

4.1.1 Actors . 51

4.1.2 Algorithms . 52

4.2 Threat model and assumptions 53

4.2.1 Adversary . 53

4.2.2 Authorities . 54

4.2.3 Voters . 54

4.3 Properties . 55

4.3.1 Privacy . 55

4.3.2 Correctness and Verifiability 56

4.3.3 Functional properties 57

4.4 Public Bulletin Board . 57

4.4.1 Assumption . 58

4.4.2 Actors . 58

4.4.3 Transaction and Block 58

4.4.4 Consensus . 59

4.4.5 Incentives . 59

5 d4 : distributed direct digital democracy 61

5.1 Overview . 61

5.2 Election Setup . 62

5.3 Ballot Preparation & Recording 64

5.3.1 Ballot Preparation 64

5.3.2 Recording . 65

5.4 Vote Verification & Publishing of Eligible Votes 67

5.4.1 Collection, Verification & Weeding 67

5.5 Anonymizing by Mixing 69

5.6 Decryption of Votes, Aggregation and Results 70

6 analysis 75

6.1 Security . 75

6.1.1 Privacy . 75

6.1.2 Verifiability . 78

6.2 Complexity . 81

6.2.1 Computation . 81

6.2.2 Communication 82

7 validation 85

7.1 Implementation . 85

7.2 Instantiation . 86

7.3 Experiments . 87

[September 26, 2018 at 22:56 – classicthesis version 0.1]

contents ix

7.4 Results . 89

7.4.1 Time Performance 89

7.4.2 Storage Performance 92

7.5 Discussion . 94

7.5.1 Comparison to existing schemes 95

7.5.2 Improvements . 96

8 discussion and future work 99

8.1 Discussion . 101

8.2 Future work . 102

8.3 Concluding remarks . 103

bibliography 105

[September 26, 2018 at 22:56 – classicthesis version 0.1]

L I S T O F F I G U R E S

Figure 1 Mixnet diagram 16

Figure 2 Blind signature with RSA 18

Figure 3 Pedersen Commitment Scheme 20

Figure 4 Secret Sharing: 2 points and 3 sample polyno-
mials they are part of 21

Figure 5 Chaum-Pedersen Discrete Logarithm Equality
Proof . 26

Figure 6 Schnorr Proof of Knowledge of a Discrete Log-
arithm . 31

Figure 7 Protocol of Liu and Wang, 2017 [58] 42

Figure 8 Public Bulletin Board Transaction Structure . . 58

Figure 9 D4: Protocol Phases and Involved Actors . . . 62

Figure 10 D4: Mixnet Setup Message 63

Figure 11 D4: Election Encryption Key Message 64

Figure 12 D4: Voter Ballot Casting Transaction 65

Figure 13 D4: Sending Proof of Re-encryption to Voter
Through Unlinkable Channel 68

Figure 14 D4: Re-encrypted Vote Publishing Transaction 69

Figure 15 D4: Publishing Shuffled Votes and Proof 70

Figure 16 D4: Decryption Share Publishing 71

Figure 17 D4: Decrypted Vote Transaction 71

Figure 18 D4: Results Transaction 71

Figure 19 D4: System Schematic 72

Figure 20 D4: Data Recorded on the Blockchain 73

Figure 21 D4: Operation Times 90

Figure 22 D4: Experiment Times of Anonymizing Ballots 91

Figure 23 D4: Experiment Times of Verification of Shuffle 92

Figure 24 D4: Comparison of Proof Generation and Ver-
ification . 92

Figure 25 D4: Data Size Relative to the Number of Voters 93

L I S T O F TA B L E S

Table 1 Government Interest in Blockchain Based Voting 38

Table 2 Complete List of Companies Offering Block-
chain Based Voting Solutions 39

Table 3 Blockchain Based Electronic Voting Schemes . 47

Table 4 D4: Complexity Analysis Symbols 81

x

[September 26, 2018 at 22:56 – classicthesis version 0.1]

List of Tables xi

Table 5 D4: Computational complexity 83

Table 6 D4: Communication complexity 84

Table 7 Group 15 - 3072-bit MODP Group 87

Table 8 Elliptic Curve secp256k1 87

Table 9 Experiment hardware 88

Table 10 D4: Proof-of-Concept Implementation Run-time
per Voter/Ballot 89

Table 11 D4: Storage Requirements of Blockchain 93

Table 12 D4: Estimated Scalability of the Design 95

[September 26, 2018 at 22:56 – classicthesis version 0.1]

[September 26, 2018 at 22:56 – classicthesis version 0.1]

Part I

D I S T R I B U T E D D I R E C T D I G I TA L D E M O C R A C Y

[September 26, 2018 at 22:56 – classicthesis version 0.1]

[September 26, 2018 at 22:56 – classicthesis version 0.1]

1
I N T R O D U C T I O N

Voting is a method to make a collective decision. It is an essential tool
to democracy. The origins of democracy can be traced back to the 5th
century BCE ancient Greece. Democracy originates from Greek and
means "the rule of the people". Currently representative democracy
is prevalent in the free countries [36, 37]. In the representative democ-
racy, constituents elect representatives through periodic elections. It
is the primary way for the majority to participate in the democratic
process. Therefore it forms the basis of a modern democracy.

Communities, small and large, need to make decisions on a daily
basis to function. It is impractical to organise and conduct ballots on
numerous decisions. Therefore representative democracy delegates
this obligation to the elected representatives. The representatives hope-
fully reflect the will of the majority in their actions.

Since the beginning of democracy, society has looked for ways to
enhance voting in several aspects: efficiency, freeness and fairness.
It was first realised that secrecy was necessary for preventing coer-
cion. Then it was found that individuals should be able to verify their
vote was counted correctly. Followed by that everyone should be con-
vinced of the correctness of the whole process. Machines, mechanical
first and electronic after, have long been used to automate the process
of counting and make elections more efficient.

In order to consider elections to be democratic, they need to be free
and fair. Numerous international agreements, such as United Nations,
1984 Universal declaration of human rights [3] or Inter-Parliamentary
Union’s, 1994 Declaration on criteria for free and fair elections [75], dictate
that elections must be free and fair.

Definitions of freeness and fairness differ per agreement or author.
However, we summarise them as follows:

• Free. The right for any eligible citizen to vote and participate as
a candidate in the election.

• Fair. All equals will be treated equally during the election pro-
cess.

Bishop et al. [9] further clarify the freeness to be judged based on
the rules of the election and the events leading up to the election.
Freeness thus means the right to vote and participate in the election.
The fairness is judged based on the process during the election. Fair-
ness, thus means that equals need to be treated equally. Declaration
on Criteria for Free and Fair Elections [75] additionally states that demo-

3

[September 26, 2018 at 22:56 – classicthesis version 0.1]

4 introduction

cratic elections need to be secret. In order to achieve fair elections, the
secret ballot is necessary by definition.

1.1 issues with paper-based voting

The secret ballot is a method of voting where the voter’s choice re-
mains anonymous. Anonymity or in the context political privacy is
necessary to counter voter coercion and discrimination. Coercion in
the voting sense can include any activity to change the way a voter is
voting whether they are cooperative or forced.

Typically secret ballot is achieved through the voting booth. For ex-
ample, voter arrives at the voting station. They provide identification
to the authority and receive a blank ballot and an envelope. Voting
takes place in the privacy of the voting booth. The voter fills in the
ballot, puts it in the envelope, and seals it. They exit the voting booth
and enter the envelope with the ballot into a box with other ballots.
It is expected that the order of the votes in the box cannot be deter-
mined thus completing the anonymisation of voting.

This system of voting provides reasonable privacy. However, the
prevalence of technology nowadays is eroding the security in the tra-
ditional model. The traditional method can be attacked in any step of
the process by any actor in the system. For example, blank ballots can
be watermarked by the authority giving them out, leaving no visible
indicators to the voter. Furthermore, the voter may watermark the bal-
lots themselves. Later the adversary can correlate voters and ballots
breaking the security. A voter can take a smartphone into the voting
booth to create a receipt for coercer. Asking the voters to enter vot-
ing booth without anything can perhaps prevent malicious activities
shortly. However, bionic technology augmenting human capabilities
will surpass this measure. To summarise, the voting procedure is al-
ready exposed to technology in every step of the process, whether or
not it is done on paper.

Furthermore, some types of coercion are inherent to traditional vot-
ing. Specifically, coercion taking place at the voting stations. Such as
violence by national police in the voting stations may intimidate peo-
ple from voting [13]. On the other hand, the presence of military may
intimidate people to vote in a certain way [78]. These forms of coer-
cion can effectively be mitigated by remote voting. However, then the
question of verifiability and correctness is raised.

Critics believe that secret ballot elections enable fraud. It is argued
that secret ballots can easily be replaced, altered or destroyed [55].
The secret ballot as a measure against coercion has been further weak-
ened by the presence of smartphones. With a smartphone, a voter can
record their vote and provide proof to coercer. These examples show
that the traditional secret ballot voting does not inherently guarantee
the freeness or fairness of the elections.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

1.2 cryptography to the rescue 5

Modern elections are often characterised by low voter turnout. Hooghe
[76] posits that trust stimulates voter turnout and that low trust is
associated with populist voting. The study also found that electoral
dealignment has led to lower levels of voter turnout and popularity of
populist parties. As an example, close results have been demonstrated
in recent prominent elections such as the United States presidential
elections of 2016 or the referendum of prospective withdrawal of the
United Kingdom from the European Union of 2016. Relatively low
participation rates also characterised these elections.

According to "A Theory of the Calculus of Voting" [68] the voter will
vote if the motivation is higher than the cost of voting. Raising the
motivation is beyond our scope. Therefore, we focus on lowering the
time, effort, and financial cost associated with voting.

1.2 cryptography to the rescue

As explained, the current form of paper-based secret ballot election
suffers from several issues regarding privacy, verifiability, and trust.
These issues can be remedied with the implementation of crypto-
graphic methods and electronic means. Cryptographic methods can
provide mathematical guarantees on the privacy and verifiability. For
sufficient security, it is infeasible to do the calculations manually.
Thus, electronic means are necessary. Also, it is often pointed out
that electronic voting can involve a significant chunk of voters who
otherwise can or will not vote, such as people with physical disability
or people overseas [46, 48, 50].

why electronic voting? Electronic voting offers higher trans-
parency and verifiability than traditional voting. Traditional voting
handles a wide array of exceptions, which results in extensive rules
for it. This, in turn, decreases the transparency of the process as a
whole [33]. Electronic voting is pragmatic. It costs less to run and
to participate; it has a lower carbon footprint, higher efficiency and
security, as well as improved accuracy of the tally [50]. There is a
significant erosion of security in paper-based voting due to the om-
nipresence of digital devices in everyday lives [67]. Electronic voting
is widely expected to increase the turnout see for example [50, 67].
The reasoning is that due to the convenience people are statistically
more likely to participate in voting [68]. Furthermore, it mobilises
those groups of people who otherwise will not or cannot vote [50].
Higher turnout reflects the will of the people more accurately thereby
increasing the legitimacy of the outcome.

Cryptographic methods for voting can be traced back to mix nets
by Chaum 1981 [16] and blind signatures by Chaum 1983 [18]. Nu-
merous electronic voting schemes have been proposed from then on.
Electronic and cryptographic means offer several advantages over tra-

[September 26, 2018 at 22:56 – classicthesis version 0.1]

6 introduction

ditional paper-based elections such as increased accessibility, crypto-
graphic guarantees, immediate feedback on the casted vote, trans-
parency, coercion evidence [28], and reduced effort necessary to run
the elections. However, in nearly four decades since they have not
seen wider adoption. Lack of adoption can be attributed to distrust
and security concerns.

Cryptographic voting thus needs to be completely open while pre-
serving the privacy of the participants. Similar issues were faced in
the financial sector to come up with a currency system that would
eliminate the need for a trusted authority. Nearly a decade ago a dis-
tributed ledger technology [61] based on blockchain was introduced.
The use of blockchain technology completely opens the system mak-
ing it possible for anyone to verify transactions. As anyone can partic-
ipate in the running of the system, there is no need for a trusted third
party. This technology counters the problems faced by the electronic
voting.

why blockchain for electronic voting? The blockchain
is a promising component for election integrity [33, 45, 50]. Nobody
will be in complete control over the entire infrastructure lowering the
trust necessary of individual actors [50]. End-to-end verifiable voting
schemes require public bulletin boards by definition. Voting schemes
use them but often do not detail them. Furthermore, in actual imple-
mentations, they are neither append-only, distributed, nor broadcast
[62]. Existing bulletin board solutions have expensive assumptions to
fulfil making them impractical in reality [33]. As blockchains essen-
tially function as immutable append-only logs, they can be used as
public bulletin boards. The radical openness throughout the entire
validation process increases the transparency of the system [50]. Fur-
thermore, by actively involving stakeholders in the process the trust
in the authorities is significantly lowered increasing the adversarial
tolerance [33]. Due to the high distribution, the system is inherently
robust as there is no weakest link and damages in case of breach
are localised [50, 67]. Thus, the risk is minimised compared to tra-
ditional electronic voting schemes. Some surveys have also pointed
out the similarity between social processes including elections and
blockchain regarding distribution [45, 67]. The similarity can further
be used to entangle the system with other official functions such as
taxes, smart contracts, property ownership, execution of law and so
forth. [45, 62].

The devised electronic voting scheme ensures voter privacy thro-
ugh cryptographic means, provides conclusive verifiability through
blockchain and enhance trust by allowing distributing the authority
of the election to the concerned voters. Besides, remote voting coun-
ters coercion, as seen in recent referendums at the same time not
being any worse than absentee voting by mail, and increases the ac-

[September 26, 2018 at 22:56 – classicthesis version 0.1]

1.3 privacy and verifiability concerns 7

cessibility. Through these means, it could be possible to increase voter
turnout, trust in the system and as a result, have elections with out-
comes more accurately reflecting voters preferences. The freeness and
fairness of elections are thus increased as well.

1.3 privacy and verifiability concerns

In order to gain trust, the system needs to be inherently verifiable. On
the other hand, to be free and fair it needs to preserve the privacy of
voters. These are two naturally conflicting requirements. Achieving
the secrecy of sensitive information, while irrefutably proving to any-
one that everything has been done correctly is the central problem
of designing a suitable electronic voting scheme. A tradeoff between
privacy and verifiability is necessary, and only one can be satisfied
unconditionally [21].

Privacy notion, or as it is known in information security confiden-
tiality, in voting has evolved over time with stronger notions devised
in each iteration as follows ballot privacy [18], receipt-freeness [6],
coercion-resistance [44], and coercion-evident [28]. Democratic elec-
tions need to have the quality of integrity. Integrity makes sure the
results are not tampered with, and there is irrefutable proof that ev-
erything is correct. Verifiability, or as it is known in the information
security integrity, notion has evolved over time as well with the fol-
lowing requirements individual verifiability [18], universal verifiabil-
ity [69], end-to-end verifiability [14], and accountability [54].

1.4 direct democracy in global communities

There is a consensus that the current maturity of electronic voting
schemes does not provide strong enough security for high stakes
elections such as national elections [50]. However, to eventually get
to that maturity both theoretical and practical work needs to be done.
We can first validate the implementations in settings where the stakes
are low. Thus, we describe a potential scenario where a large scale vot-
ing can be conducted periodically. This could serve as a testbed for
finding the weaknesses of the system in the real-world example. Fur-
thermore, it is a step towards eventual acceptance and adoption of
electronic voting.

Several assumptions about the setting need to be made. First, we as-
sume a setting where the decisions are made on low stake issues. This
has a two-fold effect, it significantly lowers the reward and thereby
motivation for the adversary, and on the other hand, it lowers the
impact of risks. Second, we assume such a global or local community
where meeting in person to vote would be impractical due to distance
or frequency of voting. This requires that voting be remote and as a

[September 26, 2018 at 22:56 – classicthesis version 0.1]

8 introduction

result somewhat weakens the potential coercer. Finally, we assume
the risk of coercion is lower in this setting.

Based on these assumptions we have an adversary who can still act
according to the established security requirements model but is not
able to physically threaten the voter. It is thus a model of an adversary
in which remote voting can still be designed to be secure. We assume
for different levels of security requirements that the adversary either
cannot interact with the voter, interact with the voter after the voting
process has ended, or interact with the voter remotely during the
voting process.

These assumptions and adversaries match with global non-profit
non-governmental organisations such as professional organisations
IEEE1 or IACR2, open source organisations FSF3 or Linux4, or recre-
ational associations such as PADI5. Thus the voting in these cases
could be done to increase the directness of management by holding
more frequent votes on decisions by members, such as approval of
budgets or election of organisation president.

1.5 research question

The trust and security concerns are hindering public acceptance and
adoption of electronic voting systems. The goal of this work is to
address these issues in remote voting for a low stake and coercion
risk environments and thus make a step towards the acceptance and
adoption. This is achieved by minimising the trust required by util-
ising the distribution of record keeping with blockchain technology
while preserving strong privacy for the voters through cryptographic
means.

The main research question of this thesis is:

How can we achieve strong notions of privacy for voters in re-
mote electronic voting setting while providing transparency to

1 Institute of Electrical and Electronics Engineers (IEEE) is the world’s largest tech-
nical professional organisation dedicated to advancing technology for the bene-
fit of humanity. IEEE has over 420’000 members worldwide. More information at
https://www.ieee.org/.

2 The International Association for Cryptologic Research (IACR) is a non-profit sci-
entific organisation whose purpose is to further research in cryptology and re-
lated fields. IACR has 1702 members (in 2013) worldwide. More information at
https://www.iacr.org/.

3 The Free Software Foundation (FSF) is a nonprofit with a worldwide mission to
promote computer user freedom. FSF has over 4’000 active members in 76 countries.
More information at https://www.fsf.org/.

4 Linux is a family of free and open-source software operating systems developed
by a community of over 1’000 active developers. More information at https://www.
kernel.org/.

5 Professional Association of Diving Instructors (PADI) is a recreational diving mem-
bership and diver training organisation with an average of over 900’000 certifications
each year globally. More information at https://www.padi.com/.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

https://www.ieee.org/
https://www.iacr.org/
https://www.fsf.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.padi.com/

1.6 distributed electronic voting 9

voters through an opportunity to participate in the process of
election recording?

The main research question is composed of the following sub-questions:

1. How to achieve strong privacy in remote voting supported by block-
chain?

2. How to increase the transparency by employing volunteers in the elec-
tion validation and record keeping in a distributed manner?

3. How to make the process irrefutably verifiable?

4. How to make the process simple for voters who only want to participate
by voting?

1.6 distributed electronic voting

To address the research questions set we systematised the knowledge
of blockchain based electronic voting protocols. From there we identi-
fied the issues in the existing solutions. First of all, due to the inherent
public accessibility of blockchain, how to ensure the strong privacy of
the voters. Second, in conventional elections, the active members of
the community have a chance to participate by volunteering at polling
stations. With remote electronic voting, it is not trivial to offer voters
a similar opportunity for transparency. Third, complex cryptographic
schemes need to be adequately followed by voters to ensure their pri-
vacy. The challenge is to ensure that unintentional mistakes will not
strip voter of their privacy. Finally, there should be an option to vol-
unteer in the elections, but for the uninterested, the process should
be seamless and straightforward.

Based on these open questions and the set research questions we
have designed a remote electronic voting protocol, which uses a com-
munity run blockchain as a public election message log. It offers
stronger privacy than the existing schemes by being receipt-free. This
means that a voter cannot prove to someone else how they have voted,
preventing for example vote buying. Meanwhile, the scheme is en-
tirely verifiable satisfying the state of the art verifiability properties.
We have implemented a naive proof-of-concept of the design. Valida-
tion has shown that it is suitable for large-scale elections using con-
sumer grade hardware, regarding run-time, storage, and bandwidth
requirements.

1.7 thesis outline

The rest of the work is structured as follows. In Chapter 2 we provide
a context for voting. We discuss electronic voting, the security require-
ments including privacy and verifiability, public bulletin boards in

[September 26, 2018 at 22:56 – classicthesis version 0.1]

10 introduction

voting and why blockchain is a suitable candidate, and cryptographic
primitives necessary to understand the following content. Chapter 3

dives into the existing blockchain based electronic voting schemes
and states the open research questions in the field. Chapter 4 sets the
scene for our protocol by describing the modelling, the assumptions,
and the properties we aim to satisfy. Chapter 5 describes the protocol
we have designed. In Chapter 6 we analyse the design theoretically
going through the security, computational and communication com-
plexity. Then in Chapter 7 we validate the protocol experimentally by
describing the implementation, conducted experiments, and results.
Finally in Chapter 8 we conclude and offer future directions of work.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

2
P R E L I M I N A R I E S

In this chapter, we provide the background knowledge necessary to
understand the rest of the thesis. We begin by detailing what we mean
by electronic voting. In order to understand the security context, we
provide an overview and development of security requirements in
electronic voting. Then we describe the cryptographic primitives nec-
essary to understand prior art in the field and our proposed scheme.
Finally, as transparency and verifiability are a significant part of the
work we dedicate a subchapter for describing the developments in
public bulletin boards in electronic voting.

2.1 what is electronic voting?

An electronic voting scheme is any scheme that makes use of digital
means. Electronic voting schemes achieve security through the use
of cryptography. Usually, an electronic voting scheme has a main
primitive that it uses for breaking the link between voter and vote or
making the audit trail verifiable.

As in traditional voting systems, the electronic voting schemes can
be either remote or supervised. It describes the environment the vot-
ing takes place. In traditional voting, the voting stations are publicly
observable and conducted by appointed authorities making them an
example of supervised voting. On the other hand, in some cases, ab-
sentee voters can mail in their votes such as in the example of Switzer-
land. Sending votes by mail is an example of remote voting. Remote
electronic voting usually means that a voter can vote from the conve-
nience of their home using their own devices. In case of supervised
electronic voting, the voting stations contain digital means to cast and
record votes. In this thesis, we are concerned with remote voting.

Depending on the voting scenario the performance regarding nec-
essary computations or privacy achieved can vary. For example, in
smaller scale elections such as boardroom voting or local community
voting the number of voters can be low. On the other hand, in large-
scale elections such as national elections, the system must be able to
support a large number of voters. These environmental details set
the requirements for the complexity and performance of the protocol.
Small-scale elections can be made perfectly secret as the low number
of voters are all able to interact with each other and communication
is thus not a problem. Whereas, this does not scale to a larger pop-
ulation. In order to be practical, the voting scheme must correspond
with the scale of the intended setting.

11

[September 26, 2018 at 22:56 – classicthesis version 0.1]

12 preliminaries

Voting schemes have some form of authority in them. Authority
can be used to distinguish eligible voters, conduct the election, count
the votes, publish results or do something else. Schemes employ vari-
ous authorities with different powers. The more the power is divided
between authorities, the more risks can be lowered. Thus the trust
required by the system is diminished.

Due to the lack of control over the voting booth environment in
remote scenarios, it is not possible to guarantee absolute security. We
make some assumptions of the model to achieve security in practice
and not attempt to solve all the problems. For example, some schemes
assume the existence of a public append-only bulletin board whereas
others might assume the existence of secure anonymous communica-
tion channel. The fewer assumptions are made about the model, the
more practical it is to implement a scheme.

Security comes with a trade-off between usability. Vulnerabilities
might be known during the design and implementation of a scheme.
The risks then explained and ways to mitigate them offered. On the
other hand, vulnerabilities may be discovered after the proposal is
scrutinised. In any case, it is essential to understand the possible at-
tacks on a scheme, how to counter them or improve the systems.

Modern verifiable voting schemes require a medium to publish and
record data for public scrutiny. It is achieved through public bulletin
boards. Blockchain, a distributed ledger technology, can be viewed as
a form of a public bulletin board. In blockchain voting systems the
straightforward way to implement voting is by providing each eligi-
ble voter with a token that can then be transferred to preferred candi-
date wallet. It is an example where the transactions on the blockchain
are used straight for voting. In another case, more like traditional
electronic voting schemes, the blockchain can be used for recording
messages, which are then in a later phase used to compute the final
tally. It is an example of a voting scheme using blockchain for record-
ing messages. There can also be hybrid systems, where for example
voter first exchanges messages with authorities to prove their eligi-
bility and then in later stage obtain tokens to their ephemeral wallet
which they then use for voting.

2.2 security requirements

In cryptographic voting schemes, the security aspects are roughly di-
vided into two conflicting fields - privacy and verifiability. On the
one hand, everyone should be able to follow from the published data
that the procedure is correct, but on the other hand, nobody should
be able to detect how any individual voted. These are inherently con-
flicting requirements.

Traces of cryptographic voting schemes go back to the seminal pa-
per on mix nets Chaum, 1981 [16] coining secret ballot and individual

[September 26, 2018 at 22:56 – classicthesis version 0.1]

2.2 security requirements 13

verifiability requirements. Since then the requirements have been di-
vided into two categories and further refined in iterations to provide
ever stronger notions of security. In the following, we first introduce
the evolution of the privacy aspects followed by the verifiability as-
pects.

For examples, we define the following actors. Alice and Bob are el-
igible non-malicious participants of the election. Craig is a malicious
actor who may or may not be eligible to vote depending on the sce-
nario and has the intent of coercion or finding out individual votes.
Erin is the election authority. Victor is an honest independent verifier
of the process. Carol and Dave are eligible honest candidates of the
election between whom the voters need to choose. For clarity and
where useful, we use red colour to indicate private values and blue
colour to indicate public values.

2.2.1 Privacy

The privacy in its essence deals with breaking the link between a
voter Alice and her choice.

Mix net introduced by Chaum, 1981 [16] can be used to construct
elections where individual votes remain private. This is called ballot-
privacy (BP). Jonker, Mauw, and Pang, 2013 [43] define the secret
ballot as ’no outside observer can determine for whom a voter voted’. Sup-
pose Alice wants to vote for Carol and casts her ballot as such. Then a
passive adversary Craig, or anyone else for that matter, should not be
able to determine whom Alice voted for just by looking at the ballot.

Privacy was further refined by Benaloh and Tuinstra, 1994 [6] with
the requirement of receipt-freeness (RF). Jonker et al., 2013 [43] de-
fines receipt-freeness as ’a voter cannot prove after the election how she
voted’. This requirement assumes that Alice as a voter and Craig as
her coercer cannot interact during the voting process. Intuitively it
then means that after Alice has voted, she has not gained any infor-
mation to later prove to Craig how she has voted.

Another yet stronger notion of privacy is called coercion-resistance
(CR) proposed by Juels, Catalano, and Jakobsson, 2005 [44]. Jonker et
al., 2013 [43] define coercion-resistance as ’a voter cannot interact with a
coercer during the election to prove how she is voting’. This requirement as-
sumes that Alice as a voter can interact with Craig the coercer during
the voting process. Intuitively then Alice should be unable to provide
information to Craig so that he will learn with certainty whom she
voted for while she is voting.

Intuitively if there is coercion-resistance, then receipt-freeness fol-
lows, and if there is receipt-freeness, there is inherently ballot privacy
as well. Otherwise, the ballot serves as a proof to coercer Craig.

In recent work, coercion-evidence (CE) has been proposed by Gre-
wal, Ryan, & Bursuc, 2013 [28] for remote electronic voting to mitigate

[September 26, 2018 at 22:56 – classicthesis version 0.1]

14 preliminaries

and counter the impact of coercion. Grewal et al., 2013 [28] argue that
due to an inherent risk of coercion in remote settings where coercion
cannot be prevented via public supervision, there should at least be
evidence of how much coercion has taken place during the process.
It is achieved by two means. There is a test to determine the amount
of coercion taken place and there is coercer independence meaning
the ability for a voter to follow a protocol without the coercer de-
tecting the execution of it. Intuitively if Alice votes as coercer Craig
has dictated, then there should be a method for Victor the verifier to
statistically find it from the results without Craig knowing whether
Alice belongs in the set of coerced voters.

2.2.2 Verifiability

The verifiability in its essence deals with providing the link for any-
one to convince themselves the voting procedure has been performed
correctly.

The simplest form of verifiability the individual verifiability (IV)
was first coined in the seminal work by Chaum, 1981 [16]. Jonker et
al., 2013 [43] define it as ’a voter can verify that the ballot containing
her vote is in the published set of ’all’ (as claimed by the system) votes’.
Intuitively it means that Alice after the election can look at what Erin
has published publicly and concluded that her ballot is included in
the set of published votes.

This notion was strengthened with universal verifiability (UV) by
Sako & Kilian, 1995 [69]. Jonker et al., 2013 [43] define it as ’anyone
can verify that the result corresponds with the published set of all votes’. It
means that Victor can look at the results and votes Erin published
and conclude without doubt that results follow from votes.

The current state-of-the-art is requirement noted as end-to-end ver-
ifiability (E2E) coined by Chaum, 2004 [14]. It consists of 3 sub-steps
that all need to be satisified. The steps are cast-as-intended (CAI),
recorded-as-cast (RAC), and tallied-as-recorded (TAR). Exact word-
ing of the steps differs in literature but the overall semantics remain
the same.

Jonker et al., 2013 [43] define cast-as-intended as that voters choice
is correctly denoted on the ballot by the system. It means that Alice
after creating her ballot is convinced without a doubt that it contains
her choice of candidate. This can be achieved via methods such as
Benaloh, 2007 [5] cast-or-audit protocol where the voter is given a
choice to audit a ballot few times until they are convinced it is cor-
rectly formed and then cast it. The next requirement in the procedure
is recorded-as-cast, which is defined as the ballot being received the
way it was cast. Intuitively Erin will convince Alice that the same bal-
lot was received that Alice cast in the previous step. The final step is
tallied-as-recorded which means that the ballot was counted as it was

[September 26, 2018 at 22:56 – classicthesis version 0.1]

2.3 cryptographic primitives 15

received. Intuitively that means the final results account for all the le-
gitimate ballots published and received by Erin. It has been shown
that universal verifiability.

Less studied and employed notion of accountability (ACC) was
proposed by Küsters, Truderung, and Vogt, 2010 [54]. This attribute
requires that after the election process misbehaving parties can be
held accountable. They argue that it is a less limited form of veri-
fiability, thus providing stronger notions of security. It differs from
the similar notion of coercion-evidence on the privacy side in that it
seeks to blame a specific person, whereas coercion-evidence aims to
quantify the type of misbehaviour in the process.

2.3 cryptographic primitives

Cryptographic primitives are essential in electronic voting schemes to
achieve security. In the following, we explain the necessary primitives
to understand the prior art and the design proposed by this work. We
outline what problem they are solving, how they work, and briefly ex-
plain how they can be employed in electronic voting through exam-
ples. We discuss mix network, blind signature, masking, commitment
scheme, secret sharing, and zero-knowledge proof.

2.3.1 Mix network

Metadata of network traffic is an invaluable source of intelligence for
an adversary. It can be used to strip the privacy of individuals. In
order to counter the network metadata analysis, mix network was
proposed by Chaum, 1981 [16]. In essence, the mix shuffles the net-
work traffic around with proxy server such that it is difficult to trace
the metadata such as who is communicating with who and when.

In Figure 1, a mix network with three servers is depicted. The origi-
nal sender will encrypt the message with the public keys of the mixes
sequentially beginning from the last mix. Each encryption also in-
cludes the next destination.

We will explain a "Chaumian mix network" based on layered en-
cryption. Suppose Mn is a particular mix, associated with public and
private key pair pkMn

and skMn
. Assuming A wants to send a mes-

sage m to B they will proceed by sending first mix the constructed
message as follows

A
EpkM1

(M2,EpkM2
(M3,EpkM3

(B,EpkB(m))))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→M1

M1 will then decrypt the received message with their private key
skM1

and obtain the destination M2 and message to be delivered.
Mix then proceeds with

[September 26, 2018 at 22:56 – classicthesis version 0.1]

16 preliminaries

Figure 1: Mixnet diagram (https://en.wikipedia.org/wiki/Mix_network#
/media/File:Red_de_mezcla.png)

M1

EpkM2
(M3,EpkM3

(B,EpkB(m)))

−−−−−−−−−−−−−−−−−−−−−→M2

M2 will then decrypt the received message with their private key
skM2

and obtain the destination M3 and message to be delivered.
Mix then proceeds with

M2

EpkM3
(B,EpkB(m))

−−−−−−−−−−−−−→M3

M3 will then decrypt the received message with their private key
skM3

and obtain the destination B and message to be delivered. Mix
then proceeds with

M3

EpkB(m)
−−−−−−→ B

Bwill then decrypt the received message with their private key skB
and obtain the intended message m. None of the intermediate steps
beside the last mix knows where the messages were delivered. Only
the first mix will no the origin of the message.

Mixes can be flushed generally in two ways based on time or thresh-
old of some messages. Each has their advantages and disadvantages.
Time-based flushing guarantees that message is delivered in speci-
fied time. Whereas, threshold-based mixes will be more resilient to
time-based network traffic analysis attacks.

In electronic voting, a mix network is used to break the link be-
tween the voter and the vote. For example, each mix in the network
will collect a threshold of votes, shuffle them and send it on to the

[September 26, 2018 at 22:56 – classicthesis version 0.1]

https://en.wikipedia.org/wiki/Mix_network#/media/File:Red_de_mezcla.png
https://en.wikipedia.org/wiki/Mix_network#/media/File:Red_de_mezcla.png

2.3 cryptographic primitives 17

next mix. By the last mix, the list of votes is sufficiently permuted
that it would be difficult to determine the original order.

2.3.2 Onion Routing

Onion routing [65] is a technique for anonymous communication.
Similar to the "Chaumian mix network" it uses layered encryption.
Instead of fixed mix servers, it uses nodes from a dynamic network
to hinder traffic analysis. In order to establish a communication chan-
nel, random nodes are picked from the network and messages sent
are encrypted in a layered manner for each of the nodes.

Numerous electronic voting schemes assume the existence of an
anonymous untappable channel. Onion routing is a close approxima-
tion to such a channel in practice. However, there exist methods to
break the anonymity of onion routing, for example [60].

2.3.3 Blind Signatures

Blind signatures are a form of signatures which allow the recipient
to receive a signee’s signature without revealing the content they are
signing introduced by Chaum, 1983 [17]. In voting, they are generally
used for the voter to create a ballot and obtain a signature on the
ballot from authority without revealing the chosen candidate.

In a physical world analogy, they can be explained with an enve-
lope and a carbon paper. Suppose Alice wants to get Bob’s signature
on a particular contract but does not want to reveal the details of the
contract. Alice will then draft the contract and enclose it in the enve-
lope. In cryptographic terms, Alice blinds the contract along with a
carbon paper and hands it over to Bob. Bob will verify the envelope
indeed came from Alice and will sign the contract through the en-
velope. The carbon paper will transfer the signature on the contract
encapsulated by the envelope. Given that the envelope is still closed
on return, the content has not been leaked or tampered. Later Alice
can reopen the envelope or in cryptographic terms unblind the con-
tract. Alice now has a signature on a contract without Bob knowing
the contents.

A simple blind signature scheme implemented with RSA public
key cryptography is depicted in Figure 2. Assume Alice wants to get
a signature on messagem from Bob with public key (e,N) and private
key (d,N). The blinding factor is r. In line 1, Alice blinds message m
with the blinding factor r obtaining blinded message m

′
. Alice sends

this to Bob. Bob signs the message as per normal in RSA on line 3
obtaining a signature on the blinded message s

′
. Bob sends it back to

Alice. Alice then unblinds the message by cancelling out the blinding
factor with its inverse r−1. Alice has thus the signed message s = md

(mod N).

[September 26, 2018 at 22:56 – classicthesis version 0.1]

18 preliminaries

Blind Signature with RSA

Alice Bob

1 : m
′
≡ mre

2 : m
′

3 : s
′
≡ (m

′
)d

4 : s
′

5 : s ≡ s
′
· r−1

Figure 2: Blind signature with RSA

2.3.4 Masking

Masking is the hiding of sensitive data with random data. It is used
in cases where sensitive data needs to be protected, but meaningful
operations still need to be carried out on it.

In voting, say we have a mix network which needs to shuffle votes
to break the link between vote and voter. Assume there are three
mixes in total. They can then generate for each mix a mask in a way
that the total sum of masks is 0 modulo some N larger than the possi-
ble choices in the election. They can then in each step shuffle the list
of votes according to a particular permutation and then apply each
vote the generated mask. Then they send the next mix the permu-
tation and masked vote. The last mix will also shuffle the list and
apply the last mask thereby unmasking the vote. Then the vote can
be published for public verification.

In a concrete example assume we have mixes Alice, Bob, and Char-
lie and a voter Victor who is also the verifier. There are 10 possible
options. Victor will cast the ballot with his vote 1 and a randomly gen-
erated number 5 as v = (1||5). Alice, Bob, and Charlie will then gen-
erate their masks MA, MB, and MC such that MA +MB +MC ≡ 0
(mod 100). It can be done by generating the first two uniformly ran-
domly and then calculating the last one. For example, MA = 34,
MB = 19, and MC = 47. Victor will then submit his vote to Alice.
Alice applies the mask vA = 15+ 34 = 49 (mod 100) and sends it to
Bob. Bob applies the mask vB = 49+ 19 = 68 (mod 100) and sends
it to Charlie. Charlie applies the mask vC = 68+ 47 = 115 = 15 = v

(mod 100) and publishes it for verification. Victor then looks up the
published votes. Sees that a vote for 1 with his random number 5
is published and is convinced the mix has been done correctly. In
this example, masking has hidden Victor’s vote from the middle mix
Bob. If permutations are also used among a list of votes, then Charlie

[September 26, 2018 at 22:56 – classicthesis version 0.1]

2.3 cryptographic primitives 19

would also not realise the link between the vote and Victor. Still, the
first mix needs to be trusted.

2.3.5 Commitment Scheme

Commitment scheme in cryptography is a primitive which allows for
an entity to bind to a chosen value with the option of revealing it
in the future. Two phases are making the commitment and revealing.
It is useful in cryptographic protocols for multiple entities to choose
particular values without revealing them at the moment, which they
can not change in the future. Assuming the knowledge of said num-
bers before revealing own number can provide an advantage to an
entity. Thus they can be used to make the execution of the protocol
fair for everyone.

In a real example, a box with a lock can be used. Alice first commits
to a value by placing it inside the box, locking it with the key and
handing it over to Bob. Alice is then said to be bound to the value in
the box. In the future, Alice can also provide the key to Bob, thereby
revealing the value.

A common commitment scheme used is Pedersen Commitment
scheme as seen in Figure 3. Suppose Alice wants to commit to a value
m for Bob. Bob selects generators g, h and sends them to Alice. Alice
commits to a value as seen on line 3 using a randomisation factor r
and sends it back to Bob. In the future, when Alice wants to open the
commitment, she reveals the messagem and the randomisation factor
r. Bob verifies on line 8 that the revealed value was indeed committed
to in step 5.

From the security perspective, there are two aspects to commitment
schemes the hiding and binding. In the example, Alice hides the value
by including a randomisation factor. Hiding refers to the ability of
the adversary to find out the value committed. Binding refers to the
inability to change the value committed to later. Only one of these
aspects can be information theoretically secure, while the other one
is computationally secure. For example, the described scheme is in-
formation theoretically hiding because there are infinitely many pairs
m, r evaluating to commitment c. On the other hand, it is only com-
putationally binding because if Alice can solve the discrete logarithm,
they can find other pairs to reveal in the future instead of the initially
committed value.

2.3.6 Secret Sharing

In cryptography, the security is usually guaranteed by knowledge of
a secret. If the secret is guarding something of an exceptionally high

[September 26, 2018 at 22:56 – classicthesis version 0.1]

20 preliminaries

Pedersen Commitment Scheme

Alice Bob

1 : g,h

2 : g, h

3 : c = gr · hm

4 : commit

5 : c

6 : reveal

7 : m, r

8 : c
?
= gr · hm

Figure 3: Pedersen Commitment Scheme

impact such as nuclear football 1, it makes sense also to protect the
secret. Secret sharing is a method to distribute the secret among a
group in shares. Then a subset of the whole group can reconstruct
the secret to gain access to the guarded information.

Say there is a nuclear weapon which requires the knowledge of a
secret to be launched. There is a considerable impact on activating
such a program. Therefore if the power is given to a single person,
there are enormous risks associated. Firstly, the single actor can be
malicious. Secondly, should the single actor become unavailable it is
no longer possible to be activated due to a single point of failure.
Thus, it makes sense to distribute it to multiple actors with a cer-
tain threshold of actors necessary to reconstruct the secret. Then if
someone becomes unavailable, the procedure can still be continued.
Furthermore, some conspiring malicious actors are tolerated by the
system given a certain number of honest actors remain.

Assume Alice, Bob, Charlie, and Dave share a secret amongst them-
selves with the requirement that at least three are necessary to recon-
struct the secret. Then any subset of the four can be present to restore
the secret, for example, Alice, Bob, and Charlie or Bob, Charlie, and
Dave. Furthermore, such a secret would tolerate at least two conspir-
ing actors. Because with just two actors they are unable to reconstruct
the secret.

Shamir, 1979 [71] proposed a polynomial based secret sharing scheme.
It works on the fact that k+ 1 points are necessary to reconstruct a
polynomial of degree k. For example, a line requires two points or
parabola requires three points and so forth. The idea is that to con-

1 A briefcase which contents can be used to authorise a nuclear attack. More informa-
tion at https://en.wikipedia.org/wiki/Nuclear_football.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

https://en.wikipedia.org/wiki/Nuclear_football

2.3 cryptographic primitives 21

Figure 4: Secret Sharing: 2 points and 3 sample polynomials they are part of
(https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing#
/media/File:3_polynomials_of_degree_2_through_2_points.

svg)

struct a (t,n) secret, where n is the total number of shares, and t is
the threshold of required shares, a polynomial of degree t− 1 is cho-
sen, and n uniformly random points on the polynomial are chosen
and distributed. Once the secret needs to be reconstructed, t shares
are collected, and interpolation is used to determine the polynomial
used revealing the secret.

In Figure 4 we observe two points and three sample polynomials of
which they are part. Given a third point, a particular parabola could
be determined. In the secret sharing, at least three shares would be
needed to reconstruct the secret. Thus it is an example of a (3,n)
secret sharing scheme, with the number of shares n > 3.

In electronic voting, it is useful for diminishing the power of sin-
gle authorities as well as making the system more robust against the
attacks against secret holders. For example, it could be the case that
voters encrypt their votes with the public key of the authority, with
the secret key being shared with a t,n secret sharing scheme. Then
for tallying at least t authorities are required to decrypt the votes.
Thus no t− 1 conspiring malicious authorities can decrypt the results
before the tally phase.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing#/media/File:3_polynomials_of_degree_2_through_2_points.svg
https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing#/media/File:3_polynomials_of_degree_2_through_2_points.svg
https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing#/media/File:3_polynomials_of_degree_2_through_2_points.svg

22 preliminaries

2.3.7 Zero-Knowledge Proofs

Specific scenarios require the proof of knowledge of something with-
out leaking the secret itself. In cryptography, such protocols are called
zero-knowledge proofs. They are constructed to sufficiently convince
the verifier that a prover knows a secret. For example, assume Peggy
wants to go to a nightclub, while Victor is the guard on the door
wanting to know Peggy is sufficiently old. A simple solution would
be to provide the driving licence. However, showing driving licence
will reveal besides the age many other sensitive attributes such as the
full name, birth date, licence number, and so forth. Thus besides the
proof of age, it leaks further information.

A primitive example of zero-knowledge proofs can be explained
regarding a colourblind person and coloured balls. Assume Peggy,
the prover, wants to prove to Victor, the colourblind verifier, that two
balls are of different colour. Victor cannot distinguish the balls thus no
secret is leaked. How do we convince Victor the balls are of different
colour? Victor can hold them in his hands, behind his back and take
two actions. Either leave them in the same hand or switch them. Then
Victor will bring them forward to the view of Peggy. Peggy can now
obviously tell whether they have been switched or not. Of course,
Peggy could have been lucky since there is 1/2 chance of guessing
correctly. They can then repeat the protocol until Victor is sufficiently
convinced that they are indeed of a different colour.

A zero-knowledge proof must satisfy three properties:

• Completeness - if the actors are honest the verifier will be convinced
by the prover.

• Soundness - if the verifier is honest, a dishonest prover cannot prove
a false statement.

• Zero-knowledge - if the prover is honestly following the protocol no
secret is leaked to any verifier.

In practice, zero-knowledge proofs can be used to prove a range
of statements. For example, assume there is an election between two
possibilities 0 and 1. The votes are aggregated together by homomor-
phic encryption. To convince others that voter has cast a vote accord-
ing to the protocol, they may need to submit a proof that their vote
is either a 0 or 1. Otherwise, the voter may be incentivised to cheat
and give their choice more votes for example by submitting a higher
number than 1, thereby giving more votes than allowed. Furthermore,
not only does it ensure the following of the protocol, nothing can be
learned about how the voter voted.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

2.3 cryptographic primitives 23

2.3.8 ElGamal Cryptosystem

ElGamal is a probabilistic asymmetric key encryption algorithm for
public-key cryptography [25]. Its security relies on the discrete loga-
rithm problem, and it is IND-CPA secure. It is homomorphic under
multiplication, which is useful for several functions in electronic vot-
ing.

It can be defined over a cyclic group (G,q,g). Formally we define
the cryptosystem as a tuple of functions E = (KeyGen, Enc, Dec, ReEnc).

keygen(λ) The key generation function KeyGen takes as an input
security parameter λ and outputs the secret key x and the public key
y as seen in Equation 1.

(x , y) ← KeyGen(λ) (1)

enc(m , y) The encryption function Enc takes as an input the mes-
sage m and the public key y and yields a ciphertext c as seen in
Equation 2. A random value r ∈ Zq is chosen, which functions as
an ephemeral secret key. The public ephemeral key (also the first part
of the ciphertext) is calculated from it c1 = gr. Shared secret yr is
multiplied with the message to obtain second part of the ciphertext
c2 = m · yr. These two parts form the whole ciphertext.

c = (c1 , c2) = (gr ,m · yr) ← Enc(m , y) (2)

dec(x , c) The decryption function Dec takes as an input the pri-
vate key x and the ciphertext c and yields a message m as seen in
Equation 3. The message is calculated as seen in Equation 4.

m ← Dec(x , c) (3)

c2 · c1−x = m · yr · (gr)−x = m · gxr · g−rx = m (4)

reenc(c , y) The re-encryption function adds fresh randomness
to a ciphertext to change it without changing the underlying message
as seen in Equation 5. It is based on the multiplicative homomor-
phic property of ElGamal encryption. The idea is to encrypt identity
Enc(1 , y) value and then multiply it with the ciphertext as seen in
Equation 6.

c ′ ← ReEnc(c , y) (5)

[September 26, 2018 at 22:56 – classicthesis version 0.1]

24 preliminaries

c ′ = Enc(m , y) · Enc(1 , y) =

(gr1 ,m · yr1) · (gr2 , 1 · yr2) =
(gr1+r2 ,m · yr1+r2) =

(c ′1 , c ′2)

(6)

threshold Threshold encryption allows sharing the secret be-
tween multiple parties in a way that less than a threshold of par-
ties cannot decrypt the ciphertexts. Here we describe a (n,n) scheme
where all the parties need to work together to decrypt a ciphertext.
We model the scheme as a tuple of five functions described below.

E(n,n) = {KeyGen,PubKeyGen,Enc,DecShr,Dec}

keygen The key generation function is run n times for the number
of parties where each participant 1 < i 6 n obtains a key pair (xi,yi)
as seen in Equation 7.

(xi,yi)← KeyGen(λ) (7)

pubkeygen The public encryption key y is computed from the
shares of each participants public keys y1, ...,yn as seen in equation
Equation 8. It is calculated as the product of the individual keys y =

Πni=1(yi).

y← PubKeyGen([y1, ...,yn]) (8)

enc The encryption function works just as in the usual case.

dec The decryption function takes as an input the ciphertext c,
individual decryption shares d1, ...,dn and computes the plaintext m
as seen in Equation 9. Plaintext is computed as follows m = c2

Πni=1(di)

m← Dec(c, [d1, ...,dn]) (9)

decshr The function decryption share for party i takes as an input
the ciphertext c and private key xi and outputs a decryption share di
as seen in Equation 10. Decryption share is computed as di = c1xi

di ← DecShr(c, xi) (10)

[September 26, 2018 at 22:56 – classicthesis version 0.1]

2.3 cryptographic primitives 25

2.3.9 Chaum-Pedersen Discrete Logarithm Equality Proof

Chaum-Pedersen proof [19] is used to prove given two tuples the
discrete logarithm is equal without revealing the discrete logarithm.
Given the cyclic group parameters (G,q,g,h) it proves the equality of
discrete logarithm of two tuples (g,y) and (h, z) as seen in equation
Equation 11.

logg(y) = logh(z) (11)

The protocol can be seen Figure 5. Alice knows the discrete loga-
rithm x of y with regard to generator g and the discrete logarithm x

of zwith regard to generator h. The proof follows three steps. First Al-
ice creates a commitment (a,b) to a random number r. Bob chooses a
random challenge c. Alice computes response to the challenge s. Bob

finally verifies the challenge by verifying gs ?
= a · yc and hs ?

= b · zc.
By applying the Fiat-Shamir heuristic [26] the protocol can be made

non-interactive. The challenge is computed by Alice as c = H(h, z,a,b),
where H denotes cryptographic hash function.

Formally, we model this protocol as a tuple of two functions ΣDLogEq =

(GenProof,VerifyProof). Proof generation function takes as an in-
put the discrete logarithm x, the value y, the value g, the value z, the
value h, the cryptographic hash function H, and outputs the proof
ΠDLogEq = (a,b, s) as seen in Equation 12. Proof verification func-
tion takes as an input the proof and returns true > if it accepts the
proof or false ⊥ if it rejects the proof as seen in Equation 13.

ΠDLogEq = (a,b, s)← GenProof(x,y,g, z,h,H) (12)

>∨⊥ ← Verify(ΠDLogEq) = Verify((a,b, s)) (13)

2.3.10 Andrew Neff’s Shuffles of ElGamal Pairs

One of the most efficient shuffle protocol is due to Andrew Neff[63,
64]. It is a proof protocol for shuffles of ElGamal pairs. It can be
applied to electronic voting to create a mix network.

Given an input to mix server [(X1, Y1), ..., (Xk, Yk)] and a shuffled
output [(X̄1, Ȳ1), ..., (X̄k, Ȳk)] the protocol is used to generate a proof
that the output list is a shuffle and re-encryption of the original list.
The proof itself however efficient is rather lenghty thus we refer read-
ers to the full paper for further details in [64].

In electronic voting, we can apply this on a list of encrypted votes to
break the link between original permutation and the shuffled list that

[September 26, 2018 at 22:56 – classicthesis version 0.1]

26 preliminaries

Discrete Logarithm Equality Proof

Alice Bob

1 : G,q,g,h

2 : x,y = gx, z = hx

3 : r ∈R Zq

4 : (a,b) = (gr,hr)

5 : a,b

6 : c ∈R Zq

7 : c

8 : s = r+ cx

9 : s

10 : gs
?
= a · yc

11 : hs
?
= b · zc

Figure 5: Chaum-Pedersen Discrete Logarithm Equality Proof

will be decrypted. Few mixes can be applied in sequence to ensure
that no single mix can recover the link between a voter and decrypted
vote.

We denote the shuffled list as seen in Equation 14, where (Xi, Yi)
denotes an ElGamal encryption of a vote i, β is the randomness ap-
plied to the list of votes, π(i) is the permutation of ith vote, and the
number in brackets j denotes the mix that applied the shuffle.

(Xi(j), Yi(j)) = (gβπ(i)Xπ(i),h
βπ(i)Yπ(i)) (14)

2.3.11 Digital Signature Algorithm

Digital Signature Algorithm (DSA) [51] is a standard for digital sig-
natures. It is used for authenticating messages. The signer signs a
message. A verifier can check the message came from the claimed
source. Formally we model it as a tuple of three functions EDSA =

{KeyGen,Sign,Verify}

keygen The key generation function KeyGen takes as an input
security parameter λ and outputs the secret key x and the public key
y as seen in Equation 15.

(x,y)← KeyGen(λ) (15)

[September 26, 2018 at 22:56 – classicthesis version 0.1]

2.3 cryptographic primitives 27

sign The signing function Sign takes as an input the message m,
hash function H and returns a signature σ = (r, s) as seen in Equa-
tion 16.

(r, s)← Sign(m,H) (16)

In order to compute a signature the following steps are taken. Choose
a random value k ∈R Z∗q. Compute commitment r = (gk (mod p))
(mod q). If r = 0, repeat with new k. Compute response s = k−1(H(m)+

xr) (mod q). If s = 0, repeat with new k. Then signature σ = (r, s).

verify The function Verify takes as an input the signature σ and
outputs true > if it accepts or false ⊥ if it rejects it as seen in Equa-
tion 17.

(>∨⊥)← Verify(σ) (17)

In order to check a signature the following steps are taken. Verify
0 < r < q and 0 < s < q hold, reject otherwise. Compute v =

(gH(m)·s−1 (mod q)yr·s
−1 (mod q) (mod p)) (mod q). Accept if v = r,

reject otherwise.

2.3.12 Designated Verifier Signature and Proofs

designated verifier signature [39] allows a prover Alice to
create a signature which only a designated verifier Bob can verify.
Intuitively it proves that the prover has either signed a message or
is in possession of verifier’s secret key. It is achieved by the verifier
being able to simulate correct signatures for any message.

Formally, we model it as a tuple of four functions as described
below.

ΣDVS = {Setup, Sign, Verify, SimProof}

setup The setup function takes as an input security parameter λ
and outputs a key pair for the prover (xA,yA) and a key pair for the
verifier (xB,yB) as seen in equation .

((xA,yA), (xB,yB))← Setup(λ) (18)

sign The signing function takes as an input the secret key of the
prover xA, the public key of the verifier yB, the message m, and out-
puts a signature σ as seen in Equation 19.

σ← Sign(xA,yB,m) (19)

[September 26, 2018 at 22:56 – classicthesis version 0.1]

28 preliminaries

The prover generates the signature as follows. Prover chooses ran-
dom values w, r, t ∈R Z∗q. The prover then computes c = gwyB

r

(mod p), G = gt (mod p), M = mt (mod p), h = H(c,G,M), d =

t+ xA(h+w) (mod q). The signature is then σ = (w, r,G,M,d).

verify The function verify takes as an input the signature σ and
the public keys of the verifier yB and prover yA and accepts > or
rejects ⊥ as seen in Equation 20.

(>∨⊥)← Verify(yA,yB,σ) (20)

In order to verify the proof, the verifier first computes c = gwyb
r

(mod p), h = H(c,G,M). Then accepts if GyAh+w
?
= gd (mod p)

and Msh+w ?
= md (mod p), otherwise rejects.

simproof The proof simulation function takes as an input the pri-
vate key of verifier xB, the public key of the prover yA, the message
m and outputs a simulated signature σ ′ as seen in Equation 21.

σ ′ ← SimProof(yA, xB,m) (21)

Simulated signature is created by verifier as follows. Verifier chooses
d,α,β ∈R Z∗q. Verifier then computes c = gα (mod p), G = gdyA

−β

(mod p), M = mds−β (mod p), h = H(c,G,M), w = β− h (mod q),
r = (α − w)xB

−1 (mod q). The simulated signature is then σ ′ =

(w, r,G,M,d).
Analysis [57] found that the scheme as described is not disavow-

able. There are two modifications to the scheme they suggest to fix the
problem. First, the prover adds proof of logmM = loggG to the signa-
ture. Second, calculate the hash as follows h = H(c,G,M, s,yA,yB).

desginated verifier re-encryption proof (dvrp) DVRP
[56] are used to prove that a ciphertext has been re-encrypted with the
underlying plaintext staying the same. Given ciphertexts c = (a,b)
and c ′ = (agw,bhw) it proves that c ′ is a re-encryption of c. Intu-
itively this is achieved by proving gw and hw have equal discrete
logarithms.

We model DVRP formally as a tuple of functions as described be-
low.

ΣDVRP = {Setup, Sign, Verify, SimProof}

setup The setup function is the same as in designated verifier sig-
nature.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

2.3 cryptographic primitives 29

sign The sign function takes as an input the re-encrypted cipher-
text c ′, the randomness w, the verifier public key yB, and outputs
signature σ as seen in Equation 22.

σ← Sign(c ′,w,yB) (22)

To construct the signature σ the prover does the following steps.
First, chooses random values k, r, t ∈R Z∗q. Then computes gk, hk,
d = gryB

t, c = H(gk,hk,d, c ′), u = k −w(c + r). The signature is
then σ = (c, r, t,u).

verify The function verify takes as an input the signature σ and
the public keys of the verifier yB and prover yA and accepts > or
rejects ⊥ as seen in Equation 23.

(>∨⊥)← Verify(yA,yB,σ) (23)

In order to verify the proof, the verifier checks the equality in Equa-
tion 24 holds, otherwise rejects.

c
?
= H(gu(gw)c+r,hu(hw)c+r,grhBt, c ′) (24)

simproof The proof simulation function takes as an input the
private key of verifier xB, the public key of the prover yA, the re-
encrypted ciphertext c ′, a different ciphertext ĉ and outputs a simu-
lated signature σ̄ that c ′ is a re-encryption of c̄ as seen in Equation 25.

σ̄← SimProof(yA, xB, c ′, c̄) (25)

Simulated signature is created by verifier as follows. Verifier chooses
α,β, ū ∈R Z∗q. Verifier then computes c̄ = H(gū(gw̄)α,hū(hw̄)α,gβ, c ′),
r̄ = α − c̄, t̄ = (β − r̄)/xB. The simulated signature is then σ̄ =

(c̄, r̄, t̄, ū).

2.3.13 Fiat-Shamir Heuristic

Fiat-Shamir heuristic [26] is a technique in cryptography to turn in-
teractive proofs into non-interactive proofs. The requirement is that
the original interactive proof is a public coin protocol. The heuristic
then is to replace the verifier challenge with the output of a random
oracle. In practice, cryptographic hash functions are used with the
input of public parameters. Example of its application can be seen by
Schnorr proof in Section 2.3.14. It is a useful technique to make the
verification process independent of the proof generation.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

30 preliminaries

2.3.14 Schnorr Proof of Knowledge of a Discrete Logarithm

Schnorr’s proof is used to prove the knowledge of a discrete loga-
rithm of a value [70]. Given the cyclic group parameters (G,q,g) it
proves the knowledge of discrete logarithm x of y as seen in equation
Equation 26.

x = logg y (26)

The protocol can be seen Figure 6. Alice knows the discrete loga-
rithm x of y. The proof follows three steps. First Alice creates a com-
mitment a to a random number r. Bob chooses a random challenge
c. Alice computes response to the challenge s. Bob finally verifies the

challenge gs ?
= a · yc.

By applying the Fiat-Shamir heuristic [26] the protocol can be made
non-interactive. The challenge is computed by Alice as c = H(g,y,a),
where H denotes cryptographic hash function.

Formally, we model this protocol as a tuple of two functions ΣDLog =

(GenProof,VerifyProof). Proof generation function takes as an input
the discrete logarithm x, the value y, the cryptographic hash function
H, and outputs the proof ΠDLog = (a, s) as seen in Equation 27. Proof
verification function takes as an input the proof and returns true > if
it accepts the proof or false ⊥ if it rejects the proof as seen in Equa-
tion 28.

ΠDLog = (a, s)← GenProof(x,y,H) (27)

>∨⊥ ← Verify(ΠDLog) = Verify((a, s)) (28)

2.3.15 Stealth Address

Stealth address is a method to hide the recipient of the transaction, in-
troduced in CryptoNote whitepaper in 2013 [77]. It is based on Diffie-
Hellman key exchange [24]. Effectively the sender executes half of the
key exchange. If a message is intended for a recipient, they can com-
plete the key exchange and decrypt the message. In the following, we
describe the elliptic curve based stealth address scheme. In electronic
voting, this method can be used to send messages in a way that they
are unlinkable to the recipient by a spectator.

Formally we model stealth address system as a tuple of functions
to generate a one-time public key and one-time secret key. Encryption
and decryption work as usual.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

2.3 cryptographic primitives 31

Proof of Knowledge of a Discrete Logarithm

Alice Bob

1 : G,q,g

2 : x,y = gx

3 : r ∈R Zq

4 : a = gr

5 : a

6 : c ∈R Zq

7 : c

8 : s = r+ cx

9 : s

10 : gs
?
= a · yc

Figure 6: Schnorr Proof of Knowledge of a Discrete Logarithm

EST = {OTPubKey, OTCheck, OTSecKey}

Assume Alice wants to send Bob a message. Bob has public keys
(A, B) and secret keys (a, b).

otpubkey One-time public key generation function takes as an
input the public keys (A,B) of Bob and returns a one-time public
key P and a commitment R as seen in Equation 29. Alice picks a
random number 1 6 r 6 l− 1, computes a one-time public key P =

H(rA)G+B, and a commitment R = rG.

(P,R)← OTPubKey(A,B) (29)

otcheck One-time public key checking function takes as an input
Bob’s keys (a,B), one-time public key P, and returns true > if it is for
Bob and false ⊥ if its not for Bob as seen in Equation 30. Bob checks if
messages are for him by calculating P ′ = H(aR)G+ B, and checking

P ′
?
= P.

(>∨⊥)← OTCheck(a,B,P) (30)

otseckey One-time secret key generation algorithm takes as an
input Bob’s secret keys (a,b), public commitment R, and yields a

[September 26, 2018 at 22:56 – classicthesis version 0.1]

32 preliminaries

one-time secret key x. If the message is for Bob, he can calculate the
one-time secret key x = H(aR) + b and decrypt the message.

x← OTSecKey(a,b,R) (31)

2.4 public bulletin board

In verifiable e-voting, it is essential to publish data for public scrutiny.
For without public evidence there is no way to convince oneself of the
correctness of the process. Modern verifiable e-voting schemes make
use of a building block called public bulletin board, sometimes also
referred to as web bulletin board. However, the details such as how it
works or what are the exact requirements are not elaborated.

Earliest attempts to construct an append-only web bulletin board
by Heather and Lundin, 2009 [32] narrowly predate the release of
original Bitcoin proposal by Nakamoto, 2008 [61]. They propose the
first robust append-only web bulletin board to the knowledge of the
author.

Heather and Lunding, 2009 [32] elicit three agents for the system
the web bulletin board, readers, and writers. The bulletin board itself
works primarily as a hash list. A message to be posted on the board
is hashed with the previous state hash, timestamp, message, writers
and bulletin boards signature, and contains some further information.
Then the hash of the new message becomes the state hash to be used
in the next message.

The proposed bulletin board needs to be append-only, immutable
and have accountability on the messages. The accountability is achieved
by certified publishing, which works by signatures of writers and bul-
letin board itself. To make it robust Heather and Lunding, 2009 [32]
propose a threshold signature scheme over the peers, requiring that
each message is to be signed by some threshold of peers, thus allow-
ing for some failures in the system.

Jonker and Pang, 2011 [42] provided further work on public bul-
letin boards and a proposal for a verifiable election scheme. They
model and measure the privacy in a formal framework, furthermore
formalising the notion of coercion-resistance.

Formal analysis of web bulletin board with Event-B 2 modeling
framework were done by Culnane and Schneider, 2014 [22]. They
propose a distributed public bulletin board with a threshold of hon-
est nodes t > 2n/3. They further refined the requirements of public
bulletin board by proposing:

1. only items that have been posted to the bulletin board may ap-
pear on it;

2 Event-B is a formal method for system-level modelling and analysis. More informa-
tion at http://www.event-b.org/.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

http://www.event-b.org/

2.4 public bulletin board 33

2. any item that has a receipt issued must appear on the published
bulletin board;

3. two contradictory items must not both appear on the bulletin
board;

4. items cannot be removed from the bulletin board once they are
published.

Culnane and Schneider, 2014 public bulletin board is updated in
periodic rounds, for example, every hour. Distribution is achieved
with a fully connected distributed network of peers. The received
messages to be posted are broadcasted to peers, and a threshold sig-
nature is created.

An extensive survey on public bulletin boards and further refine-
ment to the Culnane and Schneider, 2014 scheme was done by Kuld-
maa, 2017 [52]. They propose a formal model for analysis of security
and functionality of public bulletin boards. Furthermore, the exten-
sion achieves persistence on < n/3 and liveliness on < n/2 malicious
nodes.

In summary, there has been an effort in research to build a robust
distributed append-only immutable public bulletin board to publish
messages from the process of e-voting. It needs to be robust because
it is critical to the success of fair voting. It needs to be distributed as if
a single entity holds power over history they can change it based on
who is looking. It needs to be append-only and immutable so that any
evidence of tampering is detectable. Lastly, it needs to be public so
that anyone can convince themselves of the correctness of the process
of voting.

2.4.1 Blockchain

With blind signatures, Chaum, 1983 [18] explained, how to achieve
untraceable electronic cash. Since then research has been conducted
to find a solution which would enable the system to function with-
out a central authority. Satoshi Nakamoto proposed the first practical
solution in 2008 [61].

Nakamoto, 2008 describes a distributed ledger of transactions called
Bitcoin. It eliminates double spending by eventually reaching a global
consensus. The underlying technology, the blockchain, is effectively a
public append-only immutable log. As such, it is attractive to various
fields beyond finance. In the following, we give a technical overview
of the blockchain, the properties relevant to electronic voting, and
explain the difference of blockchains based on the access and permis-
sions.

Blockchain system consists of the data structure and the network of
nodes mining it. In essence, blockchain is a hash linked list of blocks

[September 26, 2018 at 22:56 – classicthesis version 0.1]

34 preliminaries

of transactions. Each block in the chain contains a nonce, reference to
previous block hash, timestamp, and a list of transactions.

The blockchain network runs the system and extends the data struc-
ture by mining new blocks. In Bitcoin, mining is done by the Proof-
of-Work mechanism. It works by searching for a nonce to the block
that satisfies certain criteria. A valid nonce is found once the hash of
the block begins with some zeros specified by the current difficulty
of the network. The difficulty is adjusted every two weeks to keep the
average block mining time around 10 minutes.

A global consensus is achieved in the system by miners mining al-
ways on the longest valid blockchain. It may happen that at the same
time two valid but different blocks are mined. In this case, miners
continue working on the chain they observed first. Eventually, one
chain will get longer, and the shorter one will be abandoned. Thus
a global consensus is reached in time. It is generally accepted that
if a transaction is six blocks deep from the newest block, then it has
been confirmed with sufficient guarantee by the network that it is
statistically negligible chance of being reverted.

A transaction can contain one or more inputs and one or more
outputs. In order to be valid, a transaction input needs to have a ref-
erence to a previously unspent transaction and a solution to the prob-
lem specified by that output. The outputs specify the amount, public
key address, and a puzzle to unlock the output in future transactions.
These puzzles generally consist of providing a proof of knowledge of
specific private key corresponding to a public key. To make a trans-
action the user first creates a valid transaction and then submit it to
the blockchain network. The miners will verify the transaction and
include legitimate ones in future blocks.

The 10 minutes block generation time was chosen arbitrarily by the
author(s), but it serves a purpose. If the time would be too short, then
the propagation of transactions in the network would take too long
time concerning block generation. It would create a situation where
lots of forks begin to happen on the blockchain. Thus, the overall
performance of the system would suffer.

The wallets in blockchain sense are a pair of the public and private
key. Public keys are used as pseudonymous identities. These can be
used to reference someone’s wallet and to send tokens. Private keys
are a secret which unlocks the funds to that particular wallet. Anyone
can generate a wallet by generating public and private key pair.

Proof-of-Work is a computationally heavy mechanism for mining
consuming lots of energy. Thus several others have been proposed.
One of the most vetted is Proof-of-Stake, which replaces search of
nonce with the stake of the miners. The stake determines the next
miner by chance according to the proportion of tokens owned. It is
computationally not heavy. Another approach is to replace the con-
sensus mechanism with Byzantine Fault Tolerance algorithms. The

[September 26, 2018 at 22:56 – classicthesis version 0.1]

2.4 public bulletin board 35

Byzantine Fault Tolerance (BFT) algorithms solve the Byzantine Gen-
erals’ Problem. In that problem, generals are attacking a city and need
to communicate and make a joint decision otherwise failure is immi-
nent. The downside of BFT algorithms is the scalability. They require
nodes to be interconnected and authenticated.

Blockchains can be classified based on the visibility and access.
Blockchains which anyone can obtain and view are public, whereas
ones which are kept out of public are private. Furthermore, it can be
regulated whether anyone can mine new blocks or just a set of spec-
ified nodes. Permissionless blockchains allow for anyone to mine. In
contrast, permissioned blockchains allow for only specific actors to
mine. Bitcoin is an example of a public permissionless blockchain.

Thus given the properties blockchain can offer it makes it attractive
to electronic voting research. For e-voting, it can be viewed as a public
bulletin board, which is append-only and immutable. Several mod-
ern e-voting schemes use this kind of building block (see for example
[15, 20, 81]) and is generally considered to be necessary for achiev-
ing E2E verifiability. However, the privacy of the voters needs to be
guaranteed. Due to its inherently public nature, it poses a significant
challenge. Double-spending prevention is essential if votes are trans-
ferred by sending tokens. However, if the tally is computed based
on cryptographic messages, this becomes irrelevant. It is a promising
building block to build a public bulletin board which is not governed
by authority.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

[September 26, 2018 at 22:56 – classicthesis version 0.1]

3
P R I O R A RT

The scene of blockchain based voting is vibrant and has seen consid-
erable expansion in the past few years. Some surveys have already
studied the field extensively [33, 45, 50, 62, 67]. In this chapter, we
want to aggregate and summarise the findings they had, as well as
detail our findings. The academic world, governments and compa-
nies have shown considerable interest in blockchain based voting. We
briefly discuss the real world applications to date in Section 3.1. Then
focus on the overview of academic efforts in blockchain based voting
in Section 3.2. Finally, we outline issues in blockchain based voting in
Section 3.3.

3.1 blockchain based voting in the real world

Companies, governments, and other organisations have shown inter-
est in blockchain based voting. Here we provide an overview of the
government interest and usage of it, the private sector efforts, and
outline use cases already applied in practice.

public sector Several government bodies around the world have
announced researching or trialling blockchain for voting. We have
gathered such instances in Table 1 with the location either city or
country, the intended purpose, and when it was announced or used.
The voting has been proposed broadly for three different categories -
representative elections such as general or local council elections, the
direct democratic approach of voter initiative for local government,
and for the functionality of conducting votes in elected bodies. Fur-
ther, Bitcoin blockchain was used to make commitments pre-election
in the municipal election of Takoma Park, MD [62].

private sector The interest and applicability in the real world
have been shown by a large number of companies and start-ups work-
ing in this field. The complete list of companies the author is aware
of that work on blockchain voting solutions can be seen in Table 2.
Many of them have whitepapers, and some have even been used in
real-world elections such as Agora in Sierra Leone general election,
TIVI in Utah GOP caucus, and Voatz in West Virginia absentee vot-
ing. However, due to the competitive nature, the information revealed
about the exact mechanics of the protocols are sparse as well as lack-
ing in scientific detail.

37

[September 26, 2018 at 22:56 – classicthesis version 0.1]

38 prior art

Location Purpose Date

Moscow (Russia) 1 Voter initiative December 2017

Sierra Leone 2 General elections March 2018

South Korea 3 General elections March 2018

West Virginia (USA) 4 General election. May 2018

Zug (Switzerland) 5 City council June 2018

Kenya 6 General elections August 2018

Ukraine 7 General elections August 2018

Spain 8 Congress voting August 2018

Table 1: Government Interest in Blockchain Based Voting

further use cases Besides, two distinct areas have emerged
where blockchain has been used for voting - shareholder voting and
political party internal voting. Shareholder voting has been announced
or used by Nasdaq Stock Market9, and Abu Dhabi Securities Ex-
change10. Political parties (Utah (USA) GOP11, Denmark Liberal Al-

1 Moscow city government is running pilot project for voter initiative on city manage-
ment. More information at https://ag.mos.ru/.

2 More information on Sierra Leone use of blockchain
for general election at https://techcrunch.com/2018/03/14/

sierra-leone-just-ran-the-first-blockchain-based-election/.
3 Korea National Election Commission consulting with private sector to use block-

chain for general election, more information at https://techcrunch.com/2018/03/
14/sierra-leone-just-ran-the-first-blockchain-based-election/.

4 West Virginia running trials to use blockchain for absen-
tee voters, more information at https://bitcoinnews.com/

us-overseas-military-personnel-to-vote-via-blockchain-mobile-app/.
5 More information on Zug city council use of blockchain for voting in http://

fortune.com/2018/07/03/blockchain-voting-trial-zug/.
6 It has been reported Kenya will adopt blockchain based voting sys-

tem. See more at https://www.bloomberg.com/news/articles/2018-08-20/

kenya-elections-agency-to-adopt-blockchain-for-vote-transparency.
7 Ukraine is reportedly testing blockchain for elections. See more at https://www.ccn.
com/ukraine-election-body-trials-voting-on-an-nem-blockchain/.

8 Political party Podemos is lobbying for the congress to research
the use of blockchain for voting in Congress. More information at
https://bitcoinexchangeguide.com/spains-political-party-urges-congress-to-study-
blockchain-technology-and-its-applications/.

9 Nasdaq reportedly uses blockchain for shareholder voting as outlined by Nas-
daq Blockchain Strategy, accessible from https://business.nasdaq.com/media/

Blockchain%20Mutual%20Fund%20Strategy%20SEB%20and%20Nasdaq%202018_

tcm5044-61791.pdf.
10 Abu Dhabi Securities Exchange has partnered with Equifax to explore blockchain

voting for annual general meetings, more information at https://www.ccn.com/abu-
dhabi-securities-exchange-partners-uk-fintech-for-blockchain-applications/.

11 Republican Party in Utah used TIVI voting internally already in
March 2016, more information at https://www.wired.com/2016/03/

security-experts-arent-going-like-utahs-online-primary/.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

https://ag.mos.ru/
https://techcrunch.com/2018/03/14/sierra-leone-just-ran-the-first-blockchain-based-election/
https://techcrunch.com/2018/03/14/sierra-leone-just-ran-the-first-blockchain-based-election/
https://techcrunch.com/2018/03/14/sierra-leone-just-ran-the-first-blockchain-based-election/
https://techcrunch.com/2018/03/14/sierra-leone-just-ran-the-first-blockchain-based-election/
https://bitcoinnews.com/us-overseas-military-personnel-to-vote-via-blockchain-mobile-app/
https://bitcoinnews.com/us-overseas-military-personnel-to-vote-via-blockchain-mobile-app/
http://fortune.com/2018/07/03/blockchain-voting-trial-zug/
http://fortune.com/2018/07/03/blockchain-voting-trial-zug/
https://www.bloomberg.com/news/articles/2018-08-20/kenya-elections-agency-to-adopt-blockchain-for-vote-transparency
https://www.bloomberg.com/news/articles/2018-08-20/kenya-elections-agency-to-adopt-blockchain-for-vote-transparency
https://www.ccn.com/ukraine-election-body-trials-voting-on-an-nem-blockchain/
https://www.ccn.com/ukraine-election-body-trials-voting-on-an-nem-blockchain/
https://bitcoinexchangeguide.com/spains-political-party-urges-congress-to-study-blockchain-technology-and-its-applications/
https://bitcoinexchangeguide.com/spains-political-party-urges-congress-to-study-blockchain-technology-and-its-applications/
https://business.nasdaq.com/media/Blockchain%20Mutual%20Fund%20Strategy%20SEB%20and%20Nasdaq%202018_tcm5044-61791.pdf
https://business.nasdaq.com/media/Blockchain%20Mutual%20Fund%20Strategy%20SEB%20and%20Nasdaq%202018_tcm5044-61791.pdf
https://business.nasdaq.com/media/Blockchain%20Mutual%20Fund%20Strategy%20SEB%20and%20Nasdaq%202018_tcm5044-61791.pdf
https://www.ccn.com/abu-dhabi-securities-exchange-partners-uk-fintech-for-blockchain-applications/
https://www.ccn.com/abu-dhabi-securities-exchange-partners-uk-fintech-for-blockchain-applications/
https://www.wired.com/2016/03/security-experts-arent-going-like-utahs-online-primary/
https://www.wired.com/2016/03/security-experts-arent-going-like-utahs-online-primary/

3.2 blockchain based electronic voting schemes 39

liance12, Texas (USA) Libertarian Party13) around the world have used
blockchain for internal voting.

Company Website

Agora https://www.agora.vote

Boule https://www.boule.one

Coalichain https://www.coalichain.io

CryptoVoter http://cryptovoter.com

Democracy Earth https://www.democracy.earth

DemocracyOS http://democracyos.org

e-Vox http://e-vox.org

FollowMyVote https://followmyvote.com

Horizon State https://horizonstate.com

Milvum https://milvum.com

Polyz https://polys.me

SecureVote https://secure.vote

TIVI https://tivi.io

Voatz https://voatz.com

Votem https://votem.com

Votewatcher http://votewatcher.com

VotoSocial http://votosocial.github.io

Table 2: Complete List of Companies Offering Blockchain Based Voting So-
lutions

3.2 blockchain based electronic voting schemes

The earliest case of using Bitcoin blockchain to commit election values
was in 2011 Takoma Park, MD [62] municipal elections. The commit-
ments were opened in a later stage. Effectively the Bitcoin blockchain
is used as a timestamping service. These methods are not considered
here as they do not use blockchain as an underlying broadcast chan-
nel. The focus is on schemes that use blockchain as a bulletin board.
It can be realised either using existing cryptocurrencies in unmodi-
fied ways to transfer votes or sending messages on the blockchain to
directly record the voting process.

12 Danish party Liberal Alliance announced its use of blockchain for in-
ternal voting in April 2014, more information in https://www.ccn.com/

blockchain-voting-used-by-danish-political-party/.
13 Libertarian Party of Texas announced the use of blockchain for

voting internally, more information at https://www.coindesk.com/

libertarian-party-texas-logs-votes-presidential-electors-blockchain/.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

https://www.agora.vote
https://www.boule.one
https://www.coalichain.io
http://cryptovoter.com
https://www.democracy.earth
http://democracyos.org
http://e-vox.org
https://followmyvote.com
https://horizonstate.com
https://milvum.com
https://polys.me
https://secure.vote
https://tivi.io
https://voatz.com
https://votem.com
http://votewatcher.com
http://votosocial.github.io
https://www.ccn.com/blockchain-voting-used-by-danish-political-party/
https://www.ccn.com/blockchain-voting-used-by-danish-political-party/
https://www.coindesk.com/libertarian-party-texas-logs-votes-presidential-electors-blockchain/
https://www.coindesk.com/libertarian-party-texas-logs-votes-presidential-electors-blockchain/

40 prior art

We briefly describe how each scheme works, followed by a short
analysis of which requirements it satisfies or does not and the ad-
vantages and disadvantages of the schemes. First, self-tallying proto-
cols are described. We follow by schemes applying blind signatures
to votes. Then schemes using existing privacy-preserving cryptocur-
rencies are discussed. Schemes using ring signatures and homomor-
phic encryption are then discussed. We conclude by stating the open
questions and unsolved problems in the prior art. The overview of
the schemes can be seen in Table 3.

3.2.1 Masking Based

First, considerable attempt to use blockchain as the primary tool for
a voting protocol is due Zhao and Chan, 2015 [83]. It is a lottery
inspired voting scheme using techniques of secure multiparty com-
putation to achieve security requirements. It allows for an arbitrary
number of voters to choose between two options. The winner is de-
termined by a simple majority and will receive the total funds. Voters
jointly execute a protocol to generate random masks for each voter.
The total of the masks will eventually cancel out leaving the tally of
the election. For a similar method of masking in electronic voting see
[30, 31, 47, 59]. Zero-knowledge proofs are used to prove at every
step the protocol is being followed. Vote casting is built based on the
bitcoin scripting language. Thus upon correct setup, the protocol will
execute regardless of any actors further actions. They provide two
methods for vote casting by claim-or-refund introduced by Bentov
and Kumaresan, 2014 [7] and a joint transaction protocol proposed
by Andrychowicz, Dziembowski, Malinowski, and Mazurek, 2014 [2]
or Kumaresan and Bentov, 2014 [53]. In essence, the participants will
first lock a certain amount of funds in a transaction that they can later
refund if they correctly follow the protocol.

This protocol satisfies strong verifiability notions. The voter can ver-
ify their vote is cast-as-intended as they will construct it themselves
and recorded-as-cast on the blockchain. Furthermore, convinced by
the proofs of other voters and the final tally they can be satisfied their
vote has been tallied-as-recorded. It satisfies the universal verifiabil-
ity as well. This protocol achieves perfect ballot privacy if at least one
participant generates uniformly random masks.

The downside of this protocol is that for a successful election every
single participant needs to follow the protocol correctly. It leaves the
protocol open for denial of service attacks, where the attacker will
each time lose funds but succeeds in preventing the execution of the
protocol. Honest participants will theoretically not lose anything. In
practice, they will have to also pay for transaction fees to the miners.
Another disadvantage is that the protocol only satisfies the weakest
form of privacy the ballot privacy. The mask and the vote will serve

[September 26, 2018 at 22:56 – classicthesis version 0.1]

3.2 blockchain based electronic voting schemes 41

as a receipt to a coercer. Thus it does not achieve receipt-freeness nor
coercion resistance. Coercion evidence has not been considered by the
authors either.

Smart contracts on Ethereum and self-tallying protocols have been
explored for the possibility of voting by McCorry, Shahandashti, and
Hao, 2017 [59]. They adapt and implement the protocol proposed by
Hao, Ryan, and Zielinski, 2010 [31] on the Ethereum scripting lan-
guage. In essence, the protocol follows similar principles to the Zhao
and Chan, 2015 [83] protocol. The participants jointly generate masks
for each voter and in the second round cast and tally the results. In-
stead of additive masks on the votes themselves, this protocol relies
on the fact that the addition of masks in the power of the generator
adds up to zero cancelling out the masking factor. It is more complex
in a sense that the final tally still needs to be brute-forced from g

∑
i vi .

However, given the possible number of voters, the time to calculate
final tally is negligible.

The advantage of this protocol is that it provides perfect ballot se-
crecy. Furthermore, by using the Ethereum scripting language tem-
plate for voting can be made which significantly eases the admin-
istration of elections. It is suitable for small-scale elections such as
boardroom environment, due to the scaling of the protocol. It satis-
fies universal, individual and end-to-end verifiability.

The downside of the protocol is that every participant needs to
follow through the whole duration of the election to be successful.
Furthermore, the last voter has the advantage of finding out the re-
sult before the other participants. It is because, as the last voter they
complete the protocol and can compute the final tally before officially
announcing their vote. Thereby being able to choose their vote based
on previous votes.

3.2.2 Blind Signature Based

Blind signatures were first employed for voting in the seminal pa-
per by Fujioka, Okamoto, and Ohta, 1983 [27]. Similarly, it has been
explored for blockchain based voting see for example [10, 40, 58].

Blind signatures were first described in the blockchain based voting
system by Jason and Yuichi, 2017 [40]. The scheme uses bitcoin block-
chain for publishing messages rather than sending votes as transac-
tions. First, the voter creates a commitment to a vote and then blinds
it. In a face to face meeting with the administrator, the voter is au-
thenticated and provided with signature on the blinded commitment.
Then the voter unblinds and obtains the commitment of the vote
signed by the administrator. In the next step, the voter anonymously
registers their bitcoin pseudonym by creating a transaction to admin-
istrators public key and including the commitment and administrator
signed commitment in the OP_RETURN statement. In the opening

[September 26, 2018 at 22:56 – classicthesis version 0.1]

42 prior art

voter vorganizer o inspector i

phase pre-voting

register(IDi , pki)

eligible(IDi)?
V ← V ∪ (IDi, pki)

publish V

phase voting

blindi(hash(vi))

sign
′
o(blindi(hash(vi)))

blindi(hash(vi))

sign
′
o(blindi(hash(vi)))

signatures-ok?
deblind

vi||sign
′
o(hash(vi))||sign

′
i(hash(vi))

collect ballots

filter valid
tally results

publish results

phase post-voting

Figure 7: Protocol of Liu and Wang, 2017 [58]

phase, the voter creates a transaction to the counter with the key of
the commitment. The counter then counts and publishes all autho-
rised public key addresses and the votes.

This protocol is fair in that it does not keep live tally nor lets
any voter find out the tally before the others. Given the commitment
scheme used in the implementation, this protocol provides computa-
tional or theoretic ballot privacy. The protocol is individual, universal,
and end-to-end verifiable.

Due to the usage of Bitcoin blockchain, there is an opportunity to
reuse wallets. Thereby unintentionally losing the privacy. The Bitcoin
wallet and records on blockchain serve as a receipt to coercer. Thus
it does not achieve stronger notions of privacy. Another downside
is that the voters need to pay fees to miners to create transactions to
authorities. The fees can fluctuate significantly resulting in unfairness
and being difficult to predict.

A similar protocol to the previously described one is proposed by
Liu and Wang, 2017 [58] depicted on Figure 7. The difference is that
no counters are included in the system. Instead, they have an organ-

[September 26, 2018 at 22:56 – classicthesis version 0.1]

3.2 blockchain based electronic voting schemes 43

iser and an arbitrary number of inspectors. The voter first obtains a
blind signature using a previously authenticated wallet by creating
a commitment to a vote with sha256 hash function sending it to the
organiser. Organiser responds with a signature which the voter then
unblinds. Furthermore, the voter will obtain blind signatures in the
same fashion from each of the election inspectors. In the next step,
the link between the voter and the vote is broken by creating a new
pseudonym to transfer the vote and all collected signatures on the
commitment to the vote to the organiser.

This scheme is an improvement over Jason and Yuichi, 2017 [40]
in that it includes the blind signature directly on the blockchain thus
simplifying the process. It supports a nearly arbitrary number of pos-
sible voting choices. Inspectors are introduced to diminish the power
of the organiser. Diminished power is achieved as all the inspectors
need to agree on the eligibility of a particular voter. However, a mali-
cious authority can disagree and thus prevent an eligible voter from
participating.

The voter is expected to keep good security hygiene and follow
the protocol correctly. Otherwise, the link between voter and vote
is unintentionally lost and therefore privacy is lost. Privacy loss can
happen in several steps. For example, the voter can create a ballot
with insufficient randomness allowing an adversary to brute-force
the vote or by using the same wallet for obtaining blind signatures
and casting votes.

Similar to blind signatures are anonymous tokens. These have been
explored for blockchain based voting by Bistarelli, Mantilacci, San-
tancini, and Santini, 2017 [10]. The system achieves security procedu-
rally through the division of power and Anonymous Kerberos pro-
tocol. It employs two authorities the authentication server (AS) and
the token distribution server (TDS). The voter obtains an anonymous
token by following the Anonymous Kerberos protocol. First, voter au-
thenticates to the AS and obtains anonymous ID. Then by using the
anonymous ID voter receives an anonymous token from the TDS to
an ephemeral wallet. It is then used in voting phase to cast a vote by
sending the token to preferred candidate.

This scheme is lightweight on the knowledge and participation re-
quired from the voter. It diminishes the power of single authority by
dividing tasks. It strongly achieves the individual, universal, and end-
to-end verifiability notions. Furthermore, it provides ballot privacy, as
long as the authorities do not conspire.

However, the protocol is unfair due to the live tally. Any participant
can follow the election results as the ballots are cast. The ephemeral
wallet and transactions on blockchain serve as a receipt to a coercer,
thus stronger notions of privacy are not satisfied. The cost-effectiveness
and performance can fluctuate according to the Bitcoin network and
are difficult to forecast.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

44 prior art

3.2.3 Privacy-Preserving Cryptocurrency Based

Some voting schemes have been proposed that base their security on
privacy-preserving cryptocurrencies such as Zerocoin and ZCash (see
for example [73, 74]). The underlying idea is to use a cryptocurrency
which preserves the user’s privacy and adapt it to the use case of
electronic voting.

Takabatake, Kotani, and Okabe, 2016 [73] use ZeroCoin to break
the link between the voter and the vote. In essence, voters receive
bitcoin to their wallet. Then they mint ZeroCoins and use them to
transfer the funds to eligible candidates. The weakness of the systems
is that small ZeroCoin pool can be correlated with network traffic to
deanonymize the voters. Furthermore, the authority can use unspent
coins to cast votes.

Tarasov and Tewari, 2017 [74] use ZCash in unmodified way. Thus
the security follows from what ZCash offers. Individual, universal,
and end-to-end verifiability are achieved in certain cases. This scheme
also satisfies ballot secrecy. However, the user private keys and records
on blockchain serve as a receipt for coercer. Thus stronger notions of
privacy are not achieved.

The issue of applying privacy preserving cryptocurrency in an un-
modified way to the problem of electronic voting is that it does not
take into account the different security model. Furthermore, it can cre-
ate additional problems, such as the ability of the authority to vote
instead of abstaining voters. In some instances, the verifiability can be
lowered due to hiding too many details. Further analysis needs to be
carried out on the comparison of the two problems and the suitability
of these cryptocurrencies applicability on electronic voting.

3.2.4 Ring Signature Based

Ring signatures have been explored to design blockchain based vot-
ing by Wu, 2017 [79]. The protocol works as follows. Authorities will
generate a Bitcoin address pool with funds for voting. Each voter will
receive all the addresses from the pool and their public key. They fur-
ther request the private key corresponding to their public key. Users
generate a ring signature among all the public keys, on the candi-
date and their secret key. A voter uses provided private key to trans-
fer funds back to authority including in the OP_RETURN the com-
mitment to the signature, candidate and election ID. In the tallying
phase, signatures are verified and eligible votes counted. Authorities
publish the set of all public keys, the ring signatures and votes. Voters
can then verify the presence of their vote.

This scheme achieves plausible deniability against coercion. In a
sense, the voter is unable to provide proof of receipt to a coercer after
the election process. It satisfies individual, universal, and end-to-end

[September 26, 2018 at 22:56 – classicthesis version 0.1]

3.2 blockchain based electronic voting schemes 45

verifiability through blockchain. Through the commitment and ring
signatures, ballot privacy is achieved.

However, generating ring signatures on the set of all voters public
keys do not scale gracefully. Thus it is suitable for small-scale elec-
tions. They claim coercion-resistance but not receipt-freeness. Coercion-
resistance is claimed to achieved by ring signatures. The voter can
pick arbitrary suitable vote already on the chain to present it to the
coercer as their own. Coercer cannot verify the falseness of the state-
ment due to the way ring signatures work. However, this satisfies
receipt-freeness rather than coercion-resistance. They further explain
that receipt-freeness is not satisfied as the ring signature, hash of
the signature and transaction ID form the receipt, and thus receipt-
freeness is not satisfied. Intuitively the coercer still cannot verify the
link between the signature and the voter. One or both statements
they make is false because they are mutually exclusive and vague.
Further analysis needs to be conducted to prove or disprove these
statements. Thus, while the scheme provides ballot privacy, it is ques-
tionable whether it satisfies stronger notions of privacy.

Most recently, short linkable ring signatures and homomorphic en-
cryption were explored for blockchain based voting by Yu et al. 2018

[80]. They propose a smart contract based scheme, which is platform
independent. Platform independent means that it can theoretically be
implemented on Hyperledger, Cardano, Ethereum, or any other plat-
form. The voting starts by authority uploading the election parame-
ters and triggering the smart contract. Voters will then register their
public keys and other identifying information. The keys are then ac-
cumulated together in batches, with the bottom half accumulated by
the smart contract and the top half accumulated offline by the voter.
In the casting phase, the voter will encode the choice, create a cor-
rectness proof, and send it to the smart contract. The smart contract
verifies the ballot, encrypts it with zero from the pool. If the voter
accepts the re-encrypted ballot, they will sign it with short linkable
ring signature, and the ballot is finalised and stored on the block-
chain. During the tallying phase, the ballots are homomorphically
aggregated together, decrypted by the election authority and results
decoded from the plaintext.

Reportedly, the scheme achieves privacy, anonymity, double-voting
prevention, slanderability avoidance, receipt-freeness, public verifia-
bility, correctness, vote-and-go, and coercion-resistance. Time, com-
putational, and storage complexity wise it is suitable for large-scale
elections. The scheme has some disadvantages though. First of all, us-
ing short linkable ring signatures has two downsides. List of voters
needs to be locked at some point to do the accumulation of public
keys. In practice, the eligibility requirement is dynamic because voter
eligibility can change, for example, due to birthdays, deaths, or crim-
inal convictions. Furthermore, it provides a single attempt per voter.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

46 prior art

A single vote should count per voter, but the voters should have the
ability to change their mind and cast differently, in case they were
coerced or made a mistake. It is a precondition to stronger privacy re-
quirement coercion evidence and is used in practice in national elec-
tions. Second, voting requires participation in multiple steps, first in
the registration phase, then in the casting phase twice.

According to our analysis, the scheme does not achieve individual
verifiability. In the casting phase, when the smart contract takes zero
encryption to add it to the ballot and sends it back with a signature to
the voter, the voter has no way to verify zero was added. The uncer-
tainty also affects the recorded-as-cast property. Perhaps this could be
fixed by including a zero-knowledge proof that zero encryption was
used, but this is made difficult by the fact that smart contract does
not know the randomness used in the zero encryption. Otherwise, if
the voter can verify the vote in this step, the voter can also construct
a receipt. Such receipt would consist of the choice of candidate, ran-
domness used in the Paillier encryption, and the signature from the
smart contract. If this is enough to convince the voter, it is enough
to convince the coercer. The same phase could also be used to attack
coercion-resistance. An adversary can follow through the phase un-
til step five getting back re-encrypted ballot and signature from the
smart contract, then force the voter to sign on that and as a result
have its choice of the vote go on record.

3.2.5 Homomorphic Encryption Based

Homomorphic encryption has been explored for blockchain based
voting by Hsiao, Tso, Chen, and Wu, 2017 [38]. Similar to McCorry, et
al., 2017 [59] they propose smart contracts for the execution and im-
plementation of the public bulletin board. The security of the protocol
is built on Paillier encryption, Shamir’s secret sharing, and Rabin’s
oblivious transfer.

The election progresses in four phases. In the initial phase, the nec-
essary encryption schemes are initialised with key pairs. The registra-
tion phase contains two steps and is done offline. A user generates
its unique user code and sends it for verification to the Registration
Server (RS). If eligible, the RS will certify the unique code and pub-
lish the unique user codes on the blockchain. Voter provides the cer-
tificate for authentication service (AS) and receives its Paillier keys.
Through oblivious transfer, the voter will obtain the AS’s signature
on the filled ballot. The signature will be distributed via (3, 5) thresh-
old secret sharing scheme to the Distributed Data Servers. In the last
billing phase, the eligible cast ballots are decrypted, and the tally is
calculated.

The advantages of the scheme are self-executing smart contracts,
high distribution of elections tasks to Registration Server, Authenti-

[September 26, 2018 at 22:56 – classicthesis version 0.1]

3.3 open research questions 47

cation Server, Voting Website, Recording Center, and 5 Distributed
Data Servers. The scheme achieves individual, universal, and end-to-
end verifiability. It also provides ballot privacy. It is transparent in a
sense that the voters can participate both in recording and verifica-
tion of ballots. However, the downside is that this scheme has a high
communication complexity and for each ballot significant amount of
computations need to be made.

Scheme Privacy Verifiability Based on Complexity Votes

Riemann, 2017 [66] BP IV, UV, E2E Aggregation O(n logn) M

Zhao and Chan, 2015 [83] BP IV, UV, E2E Masking O(n2) or O(n) 14 M&T

McCorry et al., 2017 [59] BP IV, UV, E2E Masking O(n) M

Hsiao et al., 2017 [38] BP IV, UV, E2E Homo enc O(n) M

Bistarelli et al., 2017 [10] BP IV, UV, E2E Anon tokens O(n+ c) T

Wu, 2017 [79] BP, CR15 IV, UV, E2E Ring sig O(n+ c) M

Yu, et al., 2018 [80] BP, RF16, CR17 IV18, UV, E2E19 SL Ring sig O(n) M

Cruz and Kaji, 2016 [40] BP IV, UV, E2E Blind sig O(n) M

Liu and Wang, 2017 [58] BP IV, UV, E2E Blind sig O(n(o+ i)) M

Tarasov, 2017 [74] BP IV, UV, E2E20 zk-SNARKs O(n) T

Takabatake et al., 2016 [73] BP IV, UV, E2E ZKP O(n) M

Table 3: Blockchain Based Electronic Voting Schemes

3.3 open research questions

In this section, we enlist the open research questions identified in the
prior art as well as by the surveys [33, 45, 50, 62, 67].

Blockchain distributed ledger bears a strong resemblance to the
immutable public append-only log used in modern electronic voting
schemes. It readily satisfies the verifiability requirements of electronic
voting schemes. By putting the ballots on the blockchain, anyone can
verify them. The chain itself ensures the immutability of the audit
trail. As we can see from the existing solutions in Table 3, they eas-
ily achieve the standard requirements of Individual Verifiability (IV),
Universal Verifiability (UV), and End-to-End Verifiability (E2E).

14 Complexities for two different protocols proposed.
15 Claimed coercion-resistance, but our analysis shows it is not achieved in Sec-

tion 3.2.4.
16 Receipt-freeness claimed but our analysis shows that it is not achieved in Sec-

tion 3.2.4.
17 Coercion-resistance claimed but our analysis shows that it is not achieved in Sec-

tion 3.2.4.
18 Individual verifiability claimed but our analysis shows that it is not achieved in

Section 3.2.4.
19 Recorded-as-cast property not achieved as shown by our analysis in Section 3.2.4.
20 Certain variations of the proposed protocol can weaken verifiability.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

48 prior art

3.3.1 Privacy on Blockchain

Due to the public nature of the blockchain, it is challenging to achieve
voter privacy [45, 50]. There are a lot of risks and pitfalls. From net-
work layer, by correlating voter activity times and votes appearing
on the chain to breaking the cryptographic primitives used. Thus we
have identified a significant gap in the privacy of the blockchain vot-
ing schemes, which is advanced and paramount in conventional cryp-
tographic voting schemes.

Thus we state the first open question:

1) How to achieve strong privacy in an electronic voting scheme
based on blockchain?

In its essence, public bulletin boards are used in a variety of mod-
ern electronic voting schemes, which do satisfy receipt-freeness, coer-
cion-resistance. Thus there must be a way to incorporate them into
the blockchain voting schemes.

3.3.2 Public Supervision and Active Participation

Another question identified from the literature is the utilisation of
the participants. According to Kovic, 2017 [50] blockchain based elec-
tronic voting can only lower the risk and work when different societal
stakeholders are involved in the supervision and maintenance of the
project. There are many similarities between traditional paper-based
voting and how blockchain works [67]. Conventional methods for vot-
ing utilise volunteers for public supervision of the election process.
Furthermore, by involving voters in the validation of the process, we
weaken the trust in authorities as at least some nodes have no affilia-
tion to the authorities [62] and increase the adversarial tolerance [33].
Thus far, this has been incorporated into electronic voting schemes as
a passive form of participation. We argue that it is possible to involve
voters actively to the process in a secure manner and show that given
sufficient participation the security of the system can be increased.

Thus we state the second open question:

2) How to enable active participation of voters in the process of
voting?

3.3.3 Honest Unintentional Mistakes Without Loss of Privacy

State-of-the-art blockchain based voting schemes require significant
cryptographic knowledge and correct behaviour from the user. There
is a chance of breaking the privacy by the voters through uninten-
tional deviation from the execution of the protocol. These errors can
be bypassed by implementing software that takes care of this for the

[September 26, 2018 at 22:56 – classicthesis version 0.1]

3.3 open research questions 49

users and follows protocol appropriately. However, the protocol could
be designed in a way that the wrong behaviour does not break user
privacy, or interrupt the process, and thus guarantee it through cryp-
tographic measures. According to Heiberg et al., 2018 [33] none of the
existing blockchain voting schemes has a full list of checks needed to
establish internal consistency.

Thus the third open question is:

3) How to ensure cryptographically that honest but uninten-
tional deviation from the protocol does not break voters privacy?

3.3.4 Minimizing User Effort

State-of-the-art blockchain based voting schemes require user inter-
action and knowledge of cryptography in numerous steps such as
registration, casting a ballot, verifying tally, and so forth. This level
of involvement raises the risk of user fatigue of the system and poor
security hygiene.

Thus the fourth open question is:

4) How to design a blockchain based electronic scheme limiting
the knowledge and participation the user has to go through to
vote?

This final question concludes our overview of the prior art. We
now proceed to explain, how we have attempted to answer those
open questions and the posed research question in the following two
chapters.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

[September 26, 2018 at 22:56 – classicthesis version 0.1]

4
S E T T I N G T H E S C E N E

This chapter sets the scene necessary to understand the context of
our protocol description. We begin by laying out the modelling, intro-
ducing the actors of the system, and the voting system functionality
in Section 4.1. Modelling is followed by a description of the threat
model and the assumptions we make in Section 4.2. Then we enlist
the properties we aim to satisfy with the design in Section 4.3. Fi-
nally, we describe the requirements we have of the public bulletin
board Section 4.4.

4.1 modelling

Here we describe the voting system model. We first explain the actors
involved in the system the authorities, the voters, and the blockchain
nodes. Then we formally describe the voting system functions.

4.1.1 Actors

A voting system VS consists of some actors. The word authority indi-
cates a person or an organisation, who has a specific administrative
power and control over the listed tasks.

• Election Authority (EA) - authority in charge of setting up the
election, publishing question and options, setting the deadlines
of phases, and calculating the final tally of the election. There is
one EA.

• Authentication Authority (AA) - authority in charge of authen-
ticating the voters in the election. There is one AA.

• Mix Authorities - denoted by M = {M1,M2, ...,MnM}, this is a
set of nM actors responsible for mixing the votes before they are
decrypted. Andrew Neff’s shuffle supports arbitrary number of
mixes. If at least one of them is honest, the privacy of the votes
is guaranteed. Note that, we assume the M are semi-honest and
thus follow the protocol correctly. As a result, M always decrypt
the votes correctly.

• Voter - a person who votes and has a right to vote in the election
run by EA. The set of voters V = {V1,V2, ...,VnV } consists of nV
voters denoted by Vi for 1 6 i 6 nV , where i denotes the public
identifier of a given voter.

51

[September 26, 2018 at 22:56 – classicthesis version 0.1]

52 setting the scene

• Blockchain Nodes - Denoted by N = {N1,N2, ...,NnN} is dy-
namic set of entities running the election blockchain network,
this can be any authority or voter and thus is a subset of them
N ⊆ EA∪AA∪M∪V.

We make use of a blockchain, denoted by BC. BC is a universally
accessible broadcast channel, which all the actors have appendive-
writing and reading access. Thus, once something has been written
to BC it can no longer be removed from it.

4.1.2 Algorithms

The voting system algorithms are formally defined based on the Bern-
hard et al. 2015 [8] formalizations. We define a voting system VS =

{Setup, Vote, Valid, Mix, SimProof, Tally, Verify} as the collection of a
number of algorithms as described below.

setup(λ) The algorithm setup takes as input a security parame-
ter λ and outputs an election public key pk and secret key shares
[sk1 , . . . , sknM] for each mixnet as seen in Equation 32.

(pkM , [sk1 , . . . , sknM]) ← Setup(λ) (32)

vote(id , v , r) The algorithm Vote takes as input the id of the
voter, the choice v, fresh random value r and yields a ballot b, which
has been encrypted with the public key of the election, as seen in
Equation 33.

b ← Vote(id , v , r) (33)

valid(b) The algorithm Valid takes as input the ballot b and yields
a re-encrypted ballot b ′, designated verifier re-encryption proof of
the ballot δ, and AA signature on the re-encrypted valid ballot σ(b ′),
as seen in Equation 34.

(b ′ , δ , σ(b ′)) ← Valid(b) (34)

simproof(b ′ , b , δ , v̄ , r̄) Simulated designated verifier re-encrypt-
ion proof can be created with SimProof algorithm. It takes as an input
re-ecnrypted ballot b ′, original ballot b, new vote v̄, new randomness
r̄ and produces a simulated proof δ ′ as seen in Equation 35.

δ ′ ← SimProof(b ′ , b , δ , v̄ , r̄) (35)

[September 26, 2018 at 22:56 – classicthesis version 0.1]

4.2 threat model and assumptions 53

mix(B) The algorithm Mix takes as input an ordered list of valid
ballots (B). Mix algorithm yields a shuffled and re-encrypted list of
ballots B

′
and a proof Π of shuffle and re-encryption, as seen in

Equation 36.

(B
′
,Π)←Mix(B) (36)

tally(B
′
, {sk1 , . . . , sknM }) The algorithm Tally takes as input shuf-

fled and re-encrypted list of ballots B
′
, the secret key shares of mixes

and yields a tally vector O, as seen in Equation 37.

(O) ← Tally(B
′
, {sk1 , . . . , sknM }) (37)

verify(BC , O , Π) The algorithm Verify takes as input the block-
chain BC, tally vector O, and proof Π. It checks the correctness of the
proof and returns true > or false ⊥, as seen in Equation 38.

(>or ⊥) ← Verify(BC , O , Π) (38)

4.2 threat model and assumptions

The proposed system assumes a particular threat model. In this sec-
tion, we outline the assumptions about the adversary that we have
made and motivate why such choices were made.

4.2.1 Adversary

First, we make some assumptions about the capabilities of the adver-
sary. We assume the adversary is computationally bounded, can only
coerce the voter remotely, and can interact with an honest voter after
the election has ended.

Assumption 1. Adversary is computationally bounded.

The system does not provide perfect secrecy. This assumption is
necessary to design a practical system. Perfect secrecy would require
the secure generation and distribution of data at least equal to the
amount of data communicated between parties as shown by Shan-
non [72]. Perfect secrecy is feasible for scenarios with a low number
of participants but does not scale to a more significant number of par-
ticipants. Thus, we focus on an efficient probabilistic polynomial time
(PPT) adversary A.

Furthermore, we assume the Decisional Diffie-Hellman (DDH) as-
sumption holds for the security. DDH is a pretty standard assump-
tion, and we will not discuss it here any further. Readers can refer to
Dan Boneh 1998 [12] for further information.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

54 setting the scene

Assumption 2. Adversary is semi-honest.

Our adversary can tap into the communication, record the cipher-
texts, and in the future try to decrypt them.

Assumption 3. Adversary can only coerce the voter remotely.

As we design a remote voting system, we assume that any coercion
takes places remotely and adversary does not have physical access to
voters. This requirement reflects the reality, where coercing a signifi-
cant amount of voters physically in short period would be unscalable
for an adversary.

Assumption 4. Adversary cannot interact with the voter during ballot
preparation and recording.

We effectively prevent the adversary from simulating the voter. Nat-
urally, there must be a phase in which voter can act independently.
Otherwise, the adversary could simulate the voter and the system
would be unable to distinguish between the voter and the adversary.
Therefore, the adversary would have complete control over the voter.
As such, we assume the voter has access to a voting booth environ-
ment during ballot preparation and recording.

4.2.2 Authorities

As a significant point of failure, certain assumptions have been made
about the authorities.

Assumption 5. Authorities are semi-honest.

The authorities have a significant impact because they handle sen-
sitive data. Therefore, it makes sense to assume they are somewhat of
a malicious nature. Therefore, as with the adversary, we assume they
can listen, record, and in the future try to crack the ciphertexts.

Assumption 6. Authorities do not collude.

Authorities have been separated by different tasks to limit the pow-
ers of individual actors. The idea is to give the authority to entities,
which are mutually distrusting and therefore discouraged to work
together in order to break the security of the system.

4.2.3 Voters

Generally, in any elections, there may be some malicious voters. If
the voter willingly acts together with an adversary, there is nothing
a scheme designer can do to prevent privacy violations. Thus, the
assumptions about voters focus on honest voters.

Assumption 7. Voters will not share their private keys with the adversary.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

4.3 properties 55

We assume an honest voter will effectively not give their identity to
the adversary. This assumption closely reflects the reality for example
in the cases where the voter keys are tied to the voter in the legal
sense. For example, in Estonia, the cryptographic keys used for voting
are the same that are used for all other legal functions. Therefore, by
sharing them with an adversary, the individual would effectively be
volunteering their legal identity to a voter. Thus, given the legal and
financial incentives, it is reasonable to assume an honest voter would
not do this.

Assumption 8. Voters are malicious with respect to coercer.

An honest voter will not co-operate with the adversary. We provide
in our scheme mechanisms to simulate to a coercer certain proofs and
assume an honest voter makes full effort to take advantage of these
functionalities.

Assumption 9. Voter hardware and software is trusted.

In literature, there are numerous methods to combat vulnerabilities
regarding these issues such as out-of-band code sheets, trusted hard-
ware tokens, or trusted random number generators (see for example
[11, 14, 29, 34, 82]). Furthermore, a lot of these methods are not cryp-
tographically interesting, but rather due to implementation decisions.
Therefore, we leave this out of scope and assume the environment is
safe.

Assumption 10. There is an existing public key infrastructure for all the
actors.

We assume there exists a public key infrastructure for all the ac-
tors. Also, the mixes will jointly generate the public key for the ballot
encryption.

4.3 properties

Any voting scheme should satisfy some properties to be practically
applicable. In this section, we examine the privacy, correctness, verifi-
ability, and some auxiliary properties that our proposed scheme aims
to satisfy.

4.3.1 Privacy

Privacy is elementary for any election with an impact. The design
aims to address ballot privacy and receipt-freeness properties. Fur-
thermore, the design combats replay attacks thereby offering ballot
independence and does not provide live tally, therefore, satisfying
fairness property. We defer formal definitions to the security analysis
in Chapter 6.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

56 setting the scene

ballot privacy Informally, ballot privacy requires that any ob-
server should not be able to distinguish for whom a particular voter
voted.

receipt freeness This property states that a voter should not be
able to construct a proof after the election to prove to a coercer how
the voter voted. Hugo Jonker 2005 [41] has defined the receipt r to
have the following properties concerning a voter v and candidate c:

1. r can only have been generated by v,

2. r proves that v chose candidate c,

3. r proves that v cast her vote.

ballot independence The voting system should prevent replay
attacks. In a replay attack, an adversary records the messages a voter
sends to the blockchain. After the fact, the voter may change their
choice and send a new ballot. If the attacker now sends the first
recorded ballot again, it should not affect the choice of the voter. In
another scenario, the adversary should not be able to create their bal-
lot based on a previously recorded ballot they have tapped.

fairness The voting system should not have a live tally. Providing
a live tally may affect the independence of the voters’ choices who
have not yet voted, which is a form of coercion in itself.

4.3.2 Correctness and Verifiability

Following properties are related to the integrity of the voting system
and how specific actors can verify the results.

correctness If all the actors behave correctly, then the tally should
be computed corresponding to the submitted votes. Formally, we
have defined correctness as seen in Definition 3.

verifiability The final tally is verifiably correct. Verifiability is
achieved through sub-properties. First, all the voters should be able to
verify their ballot has been included. Second, anyone should be able
to verify the tally corresponds to the set of all eligible votes. Third,
the eligibility of the tallied votes should be verified. Finally, the votes
should be end-to-end verifiable.

individual verifiability A voter should be able to verify their
vote is in the set of all eligible votes as published by the authorities.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

4.4 public bulletin board 57

universal verifiability Anyone should be able to verify that
the set of eligible votes as published by the authorities corresponds
to the final tally.

end-to-end verifiability End-to-end verifiability property en-
sures that a voter is convinced of the correct handling of their vote
through its lifecycle. First, the vote should be cast the way the voter
intended. Second, the vote should be recorded the way voter cast it.
Finally, the vote should be tallied as it was recorded.

eligibility verifiability Only eligible voter can cast a vote
and only eligible votes count towards the final tally, with the last vote
per voter counting.

4.3.3 Functional properties

Beyond the integrity and confidentiality properties, we have some ad-
ministrative and auxiliary properties the design aims to satisfy. As
stated before, we designed the scheme to be remote. The vote can be
conducted on elections with two or more options. As with any criti-
cal system, availability is an essential security property. The design
mitigates the risk related to availability with separation of tasks, high
distribution, and offering participation in a scalable way. However,
we do not stop any further on this property as it is cryptographically
less interesting.

We designed the scheme to be publicly observable. Thus the block-
chain it utilises is publicly accessible. However, in an attempt to miti-
gate risks of availability, appending to the blockchain is permissioned.
Therefore, only certified actors can write to the blockchain. Certified
actors constitute of the set of all actors as described previously.

4.4 public bulletin board

The protocol is designed in the way that the entire communication
of the voting is persisted in a public log. Therefore, any messages
sent are stored and mediated through a public bulletin board. For the
public bulletin board, we propose to use blockchain.

The design and implementation of an aspect specific blockchain
for electronic voting entail in itself research orthogonal to a crypto-
graphic voting scheme. Therefore it should be an independent build-
ing block. Thus, we leave it out of the scope of this work and only
describe the requirements we have of the blockchain.

The main idea of the blockchain is to create an immutable log of
the voting process. Ideally, this log is created by the voters. All of
the information on the blockchain is public for anyone to view and

[September 26, 2018 at 22:56 – classicthesis version 0.1]

58 setting the scene

scrutinise. However, the mining process is permissioned to a set of
stakeholders. The participation is incentivised.

4.4.1 Assumption

We assume that all the actors have certified public keys necessary for
the running of the blockchain. Anyone who has such a certified key
can participate in the mining process. Any miner is also running as
a node in the onion router used to create an anonymous communica-
tion line to send transactions on the blockchain.

4.4.2 Actors

First of all, there are some actors involved in the system. For electronic
voting, the interesting ones are the developers of the software, the
miners, and the users of the system. The developers of the system
should be chosen by the election authority, and the security of the
software verified independently of the developers. The miners should
be anyone with a stake in the election process, therefore, for example,
the voters, the authorities, parties and so forth. Thus, the blockchain
should be permissioned to the election stakeholders only. The voters
are a set of actors who have a stake in the outcome of the election
and are identified by the election authority before the elections begin.
Any actor can submit transactions to the blockchain provided they
have identified key pair by the election authority.

4.4.3 Transaction and Block

From: source To: destination

Hash of message Timestamp

Signature of message (required in some messages)

Transaction

header


Cryptographic Message DataMessage

{
Figure 8: Public Bulletin Board Transaction Structure

The election voting protocol consists of steps of communication
between the described actors. Transaction structure can be seen in
Figure 8. A transaction has three attributes from, to, and the message
itself. Of the three, only message is a necessary part of the transaction.
To and from attributes are used to identify where the message is from
or who is the intended recipient. In the case from attribute is used, a
signature authenticates the message. The to attribute helps intended
recipients collect messages from the blockchain. If the to attribute is
missing, this means the message is broadcast to anyone and is usually

[September 26, 2018 at 22:56 – classicthesis version 0.1]

4.4 public bulletin board 59

used for publicising commitments and facts for election verifiability.
Each transaction is timestamped.

The blocks contain transactions collected during a period between
block creation. It further links to the previous block by hash, has a
timestamp, number of transactions in the block, the signature of the
block miner for future reference and any further information required
by the consensus mechanism.

4.4.4 Consensus

Bitcoin blockchain reaches consensus by Proof-of-Work [61]. This mech-
anism attempts to prevent double spending by incentivising hon-
est behaviour and making the malicious behaviour more expensive.
In our voting scenario, double spending is not a problem, because
transactions do not send tokens. Furthermore, as seen in existing sys-
tems this consensus mechanism seems to centralise into parties with
the most processing power. Once the centralisation reaches a critical
point, it can choose which transactions are going to be included in
the blocks and which not.

As double spending is not an issue and we aim for high distribu-
tion the blockchain should have Proof-of-Stake consensus mechanism.
In the voting scenario, the stake can be distributed equally among all
the actors or all the actors who show interest in running the network.
Then anyone who wants can participate in running the network and
participants are not decided by the processing power they own. The
intention is thus to let voters run the election process. However, to
make sure the network continues to run the authorities are always
required to be running.

For the Proof-of-Stake, Ouroboros scheme [23, 49] could be used
for example. It has been proven to be secure and satisfies the require-
ments for the consensus mechanism we have outlined previously.

4.4.5 Incentives

To incentivise honest behaviour, and limit malicious behaviour we
have the following three proposals.

Tokens are distributed by the election authority upon request and
used mainly to incentivise mining and prevent denial of service. If
a participant wishes to broadcast a message they pay a token as a
fee. Miner gains the tokens. Later these can be used to claim pay-
ment from the Election Authority for work done. They can only be
transferred by authority or as a fee for sending a message.

Participant interacts with the election authority out-of-band to get
token necessary to broadcast their message. The tokens should pre-
vent denial of service as participants have a limited number of mes-
sages they can broadcast. However, if the voter changes their mind

[September 26, 2018 at 22:56 – classicthesis version 0.1]

60 setting the scene

and wishes to revote, the voter needs to authenticate with authority
again to receive the new token. This authentication will be time lim-
ited to ensure someone is not flooding the blockchain.

Transaction spamming could be limited with proof-of-work [4]. In
effect, this makes the creation of transaction expensive in comparison
to the verification of the transaction. The difficulty should be high
enough to deter any malicious entity, but still be usable for honest
participants.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

5
D 4 : D I S T R I B U T E D D I R E C T D I G I TA L D E M O C R A C Y

In this chapter, we propose a novel electronic voting scheme employ-
ing blockchain technology for full transparency. Blockchain has the
benefit of increasing system transparency being inherently public and
enabling the participation of voters on a larger scale. This scheme,
to the knowledge of the author, is among the first which provides
receipt-freeness property among the existing blockchain voting pro-
tocols.

Briefly, we achieve our goals by largely three different cryptographic
constructs designated verifier re-encryption proofs [35, 39] (DVRP),
Andrew Neff’s universally verifiable shuffle [63, 64], and onion rout-
ing [65]. Intuitively, the designated verifier re-encryption proof is
used to prove to a voter that fresh randomness was added to a bal-
lot in a way that voter cannot find out what was added. Fresh ran-
domness makes the voter unable to create a receipt, and thus receipt-
freeness property follows. Mixnet is used to hide the link between a
voter and the decrypted vote from the authorities. Onion routing is
used to create an anonymous channel between a voter and the public
bulletin board to counter network analysis. The public bulletin board
is provided by the custom blockchain we describe in Chapter 4.

We proceed by first giving an overview of the protocol phases and
then describing each in detail.

5.1 overview

The protocol follows established common steps as listed by Ben Adida
in 2006 [1]:

1. Setup,

2. Ballot preparation,

3. Ballot recording,

4. Anonymization & Aggregation,

5. Results.

The schematic of the actors and data flow can be seen in Figure 19.
It assumes an untappable channel between the voter and the author-
ity and that the mix network and authority do not conspire. However,
it has several problems. First, how does the voter know their vote is
included in the published set of votes. Secondly, the mix knows the

61

[September 26, 2018 at 22:56 – classicthesis version 0.1]

62 d4 : distributed direct digital democracy

order of the votes. Thirdly, the authority or the mix can add votes to
the list and control what they publish, without the voters being able
to detect malicious behaviour.

We now proceed by laying out the protocol utilising blockchain
to solve these problems. To ensure an authority has a weak power
we separate the tasks between a set of authorities. The untappable
channel between voter and the authentication authority is achieved
by onion routing. The privacy of the votes is guaranteed as long as
one of the three mixes is honest.

Tally

AuthenticationBallot Casting

Setup Prep. Rec. Ver. Pub. Anon. Dec. Aggr.

Voter Authentication
Authority Mixes Election

Authority
Election
Authority

Figure 9: D4: Protocol Phases and Involved Actors

We have further refined the standard model of verifiable elections
with the following phases as seen on Figure 9:

1. Election Setup,

2. Ballot Preparation & Recording,

3. Vote Verification & Publishing,

4. Anonymizing by Mixing,

5. Decryption of Votes, and Aggregation.

Ballot preparation and ballot recording have been merged into one
phase. Furthermore, a phase of vote verification and weeding has
been added before anonymisation. Anonymization and aggregation
phases have been separated. Aggregation is included in the final step
along with decryption of votes and announcement of results. The
data that is recorded on blockchain is shown in Figure 20.

5.2 election setup

Each actor in the system is assumed to have a certified Elliptic Curve
ElGamal public and private key. The public keys and the associated
identities are thus known to any observer. Assume conventional cyclic
group ElGamal is used for ballot encryption and everything else is
done with an elliptic curve. Let pkID denote the public key of an
actor identified by ID and skID denote the secret key of an actor
identified by ID.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

5.2 election setup 63

general parameters Election Authority publishes the question
of the election Q represented by a string using some standard encod-
ing such as ASCII, UTF-8 or UTF-16 depending on the Election Au-
thority’s preference, the n options encoded as positive decimal inte-
gers {0, 1, ...,n−1}, the deadlines of the protocol phases 2.-4. (t2, t3, t4)
indicating the year, month, day, hour, minute, and second encoded as
a string YYYY-MM-DD hh:mm:ss consisting of decimal digits, where
Y indicates year and is 4 digits long, M indicates month and is 2 dig-
its long, D indicates day and is 2 digits long, h indicates hour and
is 2 digits long, m indicates minute and is 2 digits long, s indicates
seconds and is 2 digits long. (e.g. 2018-04-25 00:00:00), and the time
zone used in Coordinated Universal Time (e.g. UTC+0). The deadline
here indicates the latest time and date by which a phase should be
completed and further actions from that phase considered invalid.

mixnet parameters Election Authority (EA) sets up the ElGa-
mal [25] parameters for the mixnet. It generates a description of a
cyclic group G of order q with generator g. EA then publishes the de-
scription (G,q,g) on the blockchain. Furthermore, EA chooses a hash
function H and publishes it on the blockchain.

Each Mix Authority Mi, where 1 6 i 6 nM executes the threshold
ElGamal key generation algorithm to obtain a key pair (xMi

,yMi
)←

KeyGen(λ).Mi then generates a Schnorr proof [70] for xMi
, ΠDLog(Mi)←

GenProof(xMi
,yMi

,H). Finally,Mi publishes the tuple (ΠDLog(Mi),yMi
)

on the blockchain as seen in Figure 10.

From: Mi To: all

Hash of message Timestamp

Signature of message

commitment t

challenge c

response s

public key yMi

Figure 10: D4: Mixnet Setup Message

After all the mixes have published their public key shares, the EA

verifies each Schnorr proof. If for all i, > ← Verify(ΠDLog(Mi)), EA
calculates the election public key hM ← PubKeyGen(yM1

, ...,yMnM
).

Finally, EA publishes the election encryption key on the blockchain
as (G,q,g,hM) as seen in Figure 11.

Election encryption key transaction concludes the election setup.
EA has published the question and options, the schedule of the elec-
tion, and initialised the encryption parameters for the mix network

[September 26, 2018 at 22:56 – classicthesis version 0.1]

64 d4 : distributed direct digital democracy

From: EA To: all

Hash of message Timestamp

Signature of message

Group ID

prime p

prime q

generator g

election encryption key hM

Figure 11: D4: Election Encryption Key Message

ElGamal cryptosystem. The Mix Authorities M have generated their
shares of the key and proven knowledge of the secret key shares. EA
then verified the proofs and combined the shares into one single elec-
tion encryption key hM.

5.3 ballot preparation & recording

In this phase, the voter chooses their options, creates a ballot, and
publishes it on the blockchain.

5.3.1 Ballot Preparation

As the first step in the ballot preparation and recording phase, the
voter prepares a ballot as seen in Algorithm 1. The process goes as
follows:

1. Voter Vi chooses an option vi ∈ {0, 1, ...,n− 1} for the question
Q of the election they wish to participate in.

2. Voter Vi encrypts the vote with the mixnet public key as seen
in Equation 39.

cvi = Enc(vi,hM) = (Xi, Yi) (39)

3. Voter Vi records the hash tcvi of the latest block on the block-
chain, which is sufficiently buried.

4. Voter Vi constructs the ballot as a bit string concatenation of the
hash and the encrypted vote as seen in Equation 40.

bi = tcvi ||cvi (40)

[September 26, 2018 at 22:56 – classicthesis version 0.1]

5.3 ballot preparation & recording 65

5. Voter Vi signs the ballot with Digital Signature Algorithm [51]
for eligibility verification as seen in Equation 41.

σVi = Sign(bi,H) = (r, s) (41)

6. Voter Vi encrypts the tuple (bi,σVi , IDVi), which is encoded as
a concatenation of the bitstrings, with Authentication Author-
ity’s public key for secrecy as seen in Equation 42.

cVi = Enc((bi,σVi , IDVi),pkAA) (42)

Algorithm 1 Preparing a ballot

1: function PrepareBallot(O,BC)
2: vi ← Choose(O)
3: cvi ← Enc(vi,hM)

4: tcvi ← latest-hash(BC)
5: bi ← tcvi ||cvi
6: σVi ← SignskVi

(bi,H)
7: cVi ← Enc((bi,σVi , IDVi),pkAA)
8: return cVi
9: end function

5.3.2 Recording

As the second step in the ballot preparation and recording phase, the
voter publishes the ballot in a transaction as seen in Figure 12.

From: - To: EA

Hash of message Timestamp

Nonce Proof-of-Work

timestamp tsi

Xi Yi

r s

IDVi

Figure 12: D4: Voter Ballot Casting Transaction

1. Voter Vi creates an onion route and chooses j uniformly random
nodes from the blockchain network N1, ..., Nj.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

66 d4 : distributed direct digital democracy

2. Voter Vi encrypts in layered manner the ballot created in previ-
ous steps for the onion route.

3. Voter Vi sends the encrypted message through the onion route.

4. Each router will process messages as seen in Algorithm 2. If
they are the last router, they will broadcast it to the blockchain
network. Otherwise, they will send the message to the next
router in the chain.

Algorithm 2 Process messages

1: function ProcessMessage(m)
2: (is− last,addr,m

′
)← decrypt(m)

3: if is− last then
4: broadcast(m

′
)

5: return True
6: else
7: send(addr,m

′
)

8: return True
9: end if

10: return False
11: end function

5. After sending the ciphertext the voter Vi waits until predeter-
mined tw time, while scanning the network for cVi . Time tw
is chosen to be long enough so that message could pass thro-
ugh the onion route and be propagated to a sufficient degree
so that voters can see it. Furthermore, if the vote has been ob-
served propagating on the blockchain network, the voter needs
to verify it is sufficiently buried (for example n = 6 blocks) to be
satisfied that it has been recorded. The procedure for verifying
the vote has been recorded is outlined in Algorithm 3.

Algorithm 3 Verify vote recorded-as-cast

1: function VerifyRecorded(cvi , tw,n)
2: t← time()
3: while t < tw do
4: if scan-for(cvi) then
5: wait(n) . Observe n-blocks to be mined after cvi .
6: return True
7: end if
8: t← time()
9: end while

10: return False
11: end function

[September 26, 2018 at 22:56 – classicthesis version 0.1]

5.4 vote verification & publishing of eligible votes 67

5.4 vote verification & publishing of eligible votes

Assuming the Authentication Authority is honest, this phase guaran-
tees the eligibility of votes in the final tally. It is started when the
deadline t2 for vote casting is passed. It consists of two sub-phases

1. the collecting, verification and weeding of votes

2. and randomising, signing, and publishing of eligible votes.

5.4.1 Collection, Verification & Weeding

Authentication Authority (AA) verifies votes and weeds out dupli-
cates or non-eligible votes.

1. AA decrypts message cVi (as seen in Equation 43) on the block-
chain in chronological sequence to obtain a tuple (ballot, signa-
ture, identifier).

m = Dec(skAA, cVi)

= (bi,σVi , IDVi)
(43)

2. AA verifies the signature checks out σVi (as seen in Equation 44)
and IDVi is an eligible voter.

> ?
= Verify(σVi) (44)

3. AA records the vote cbi as seen in Algorithm 4.

Algorithm 4 Record vote

1: function RecordVote(Vi, cbi , votes)
2: t← time()
3: if Vi ∈ votes then
4: votes[Vi]← votes[Vi]∪ (t, cbi)
5: else
6: votes[Vi]← (t, votes[Vi])
7: end if
8: return votes
9: end function

5.4.1.1 Publishing of Eligible Votes

AA publishes re-encrypted votes and provides signatures and proofs
for the voter and mix network.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

68 d4 : distributed direct digital democracy

1. AA randomizes vote by re-encrypting them as seen in Equa-
tion 45.

c ′Vi = ReEnc(cVi ,hM) (45)

2. AA creates a designated verifier re-encryption proof [39] for
voter Vi that the vote was re-encrypted as seen in Equation 46.

σDVRP(Vi) = Sign(c ′Vi ,wVi ,pkVi) (46)

3. AA signs the re-encrypted vote with Digital Signature Algo-
rithm [51] as seen in Equation 47.

σDSA(c ′Vi
) = Sign(c ′Vi ,H) (47)

4. AA generates a one-time public key [77] (P,R) for Vi as seen in
Equation 48.

(P,R) = OTPubKey(pkVi) (48)

5. AA encrypts the tuple (c ′Vi ,σDSA(c ′Vi
),σDVRP(Vi)) with voter Vi

one-time public key (P,R) (as seen in Equation 49) and sends it
to the stealth address of voter Vi as seen in Figure 13.

cσAA = Enc((c ′Vi ,σDSA(c ′Vi
),σDVRP(Vi)), (P,R)) (49)

6. AA sends publicly to the mixnet the tuple (c ′Vi ,σDSA(c ′Vi
)) in a

transaction as seen on Figure 14.

From: AA To: (P,R)

Hash of message Timestamp

Re-encrypted Vote c
′
Vi

Signature of the Vote σ
DSA(c

′
Vi

)

Designated Verifier Re-encryption Proof σDVRPVi

Figure 13: D4: Sending Proof of Re-encryption to Voter Through Unlinkable
Channel

[September 26, 2018 at 22:56 – classicthesis version 0.1]

5.5 anonymizing by mixing 69

From: AA To: M

Hash of message Timestamp

Re-encrypted Vote c
′
Vi

Signature of the Vote σVi

Figure 14: D4: Re-encrypted Vote Publishing Transaction

Algorithm 5 PublishEligibleBallot

1: function PublishEligibleBallot(cVi ,pkVi ,pkM, skAA)
2: c

′
Vi
← ReEnc(cVi ,pkM)

3: σDVRP(Vi) ← Sign(c ′Vi ,wVi ,pkVi)
4: σDSA(c ′Vi

) ← Sign(c ′Vi ,H)
5: (P,R)← OTPubKey(pkVi)
6: c← Enc((c

′
Vi

,σDVRP(Vi),σDSA(c ′Vi
)), (P,R))

7: Send((P,R), c)
8: Publish(c

′
Vi

,σDSA(c ′Vi
))

9: return True
10: end function

5.5 anonymizing by mixing

After deadline t3 for publishing of authenticated votes has passed,
the protocol proceeds to anonymisation phase. Mixing is done by
employing Andrew Neff’s Shuffles of ElGamal Pairs protocol [63, 64].
In principle, the protocol can support an arbitrary number of mixes.
The mix count is a detail that is up to the implementation of the
scheme. However, at least two are necessary to achieve the property
that no single authority will learn the voter’s votes.

1. Mix Authority M1 collects the messages on the blockchain.

2. Mix Authority M1 verifies the signatures on the messages as
seen in Equation 50 and adds the valid votes c

′
Vi

= (Xi, Yi) = to
a list of votes to be shuffled.

Verify(c
′
Vi

,σDSA(c ′Vi
))

?
= > (50)

3. Mix Authority M1 generates fresh randomness βi for all i and
a new permutation π ∈ Σi for the whole list of verified votes.

4. Mix AuthorityM1 randomizes and shuffles the encrypted votes
as seen in Equation 51.

(Xi(1), Yi(1)) = (g
βπ(i)Xπ(i)

,hβπ(i)Yπ(i)
) (51)

[September 26, 2018 at 22:56 – classicthesis version 0.1]

70 d4 : distributed direct digital democracy

5. Mix AuthorityM1 generates a proof of correct shuffle ΠShuffle(1).

6. Mix AuthorityM1 publishes the randomized and shuffled votes
[(X1(1), Y1(1)), ..., (XnVi (1), YnVi (1))] on the blockchain along with
the proof ΠShuffle(1) as seen in Figure 15.

7. Mix Authority Mj generates fresh randomness βj for all i and
a new permutation π ∈ Σi for the whole list of verified votes.

8. Mix Authority Mj randomizes and shuffles the encrypted votes
as seen in Equation 52.

(Xi(j), Yi(j)) = (g
βπ(i)Xπ(i)

(j− 1),hβπ(i)Yπ(i)
(j− 1)) (52)

9. Mix AuthorityMj generates a proof of correct shuffle ΠShuffle(j).

10. Mix Authority Mj publishes the randomized and shuffled votes
[(X1(j), Y1(j)), ..., (XnVi (j), YnVi (j))] on the blockchain along with
the proof ΠShuffle(j).

11. Steps 7.-10. are run until all the mixes have mixed the votes.

From: M1 To: M2

Hash of message Timestamp

X1(1) Y1(1)

...

XnVi (1) YnVi (1)

ΠShuffle(1)

Figure 15: D4: Publishing Shuffled Votes and Proof

5.6 decryption of votes , aggregation and results

In the final phase of the protocol, the votes (Xi(nM), Yi(nM)) are
decrypted, tallied, and results announced.

1. Each mix Mj computes for each vote i their decryption share
as seen in Equation 53, proof that decryption share is correct as
seen in Equation 54, and publishes them in transaction as seen
in Figure 16.

di,j = DecShr(Xi(nM), xMj
) (53)

ΠDLogEqi,j = GenProof(xMj
,yMj

,g,di,j,Xi(nM),H) (54)

[September 26, 2018 at 22:56 – classicthesis version 0.1]

5.6 decryption of votes , aggregation and results 71

From: Mi To: EA

Hash of message Timestamp

Ballot #j

Decryption share di,j
Proof of decryption ΠDLogEqi,j

Figure 16: D4: Decryption Share Publishing

2. EA verifies discrete logarithm equality proofs, and if it accepts
then combines decryption shares [di,1, ...,di,nM] for vote i and
decrypts the vote as seen in Equation 55 publishing it in a trans-
action as seen in Figure 17.

vi = Dec((Xi(nM), Yi(nM)), [di,1, ...,di,nM]) (55)

From: EA To: -

Hash of message Timestamp

Hash of di,1
...

Hash of di,nM
Decrypted Vote vi

Figure 17: D4: Decrypted Vote Transaction

3. EA tallies and publishes the election results on the blockchain
in a transaction as seen in Figure 18.

From: EA To: -

Hash of message Timestamp

Option 1 Count(1)
...

Option n Count(n)

Figure 18: D4: Results Transaction

The last phase concludes the description of the D4 protocol. We
proceed by analysing the scheme theoretically in Chapter 6 and vali-
dating it practically in Chapter 7.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

72 d4 : distributed direct digital democracy

Pr
ep

ar
e

a
ba

llo
t

1

Vo
te
r

O
ni

on
 N

et
w

or
k

C
as

t b
al

lo
t

2

A
ut
he
nt
ic
at
io
n

A
ut
ho

rit
y

Ve
rif

y
el

ig
ib

le
ba

llo
ts

3

M
ix
ne
t

M
ix

 #
1

M
ix

 #
2

M
ix

 #
N

Pu
bl

is
h

el
ig

ib
le

ba
llo

ts
4

Sh
uf

fle
 B

al
lo

ts
5

Pr
od

uc
e

Pr
oo

f o
f

C
or

re
ct

 S
hu

ffl
e

6

Pr
od

uc
e

Li
st

 o
f

Sh
uf

fle
d

B
al

lo
ts

7

El
ec
tio

n
A
ut
ho

rit
y

Pr
od

uc
e

D
ec

ry
pt

io
n

Sh
ar

es
8

30
%

75
%

90
%

25
%

Ta
lly

 R
es

ul
ts

9

R
es
ul
ts

A
ut
he
nt
ic
at
ed

B
al
lo
ts

Sh
uf
fle
d

B
al
lo
ts

Sh
uf
fle

Pr
oo

f

Figure 19: D4: System Schematic

[September 26, 2018 at 22:56 – classicthesis version 0.1]

5.6 decryption of votes , aggregation and results 73

Phase 1
Setup

Phase 2
Casting

Genesis block
Actor: Election Authority

Data: Vote question, options,
deadlines, and group parameters

Mix keys
Actor: Mix server

Data: Public key and proof of
knowledge of discrete logarithm

Election key
Actor: Election Authority

Data: Combined mix keys as a
single election key

Ballot #1
Actor: Voter

Data: Encrypted ballot

Ballot #2
Actor: Voter

Data: Encrypted ballot

Ballot #1
Actor: Authentication Authority

Recipient: Voter stealth address

Data: DVRP of Ballot #1

Phase 3

Authentication

Ballot #N
Actor: Voter

Data: Encrypted ballot

Ballot #1
Actor: Authentication Authority

Recipient: Mixnet

Data: Authenticated Ballot #1

Ballot #2
Actor: Authentication Authority

Recipient: Mixnet

Data: Authenticated Ballot #2

Ballot #2
Actor: Authentication Authority

Recipient: Voter stealth address

Data: DVRP of Ballot #2

Ballot #N
Actor: Authentication Authority

Recipient: Voter stealth address

Data: DVRP of Ballot #N

Ballot #N
Actor: Authentication Authority

Recipient: Mixnet

Data: Authenticated Ballot #N

Phase 4

Anonymization

Shuffle #1
Actor: Mix #1

Data: Shuffled ballots, proof of
correctness

Shuffle #2
Actor: Mix #2

Data: Shuffled ballots, proof of
correctness

Shuffle #N
Actor: Mix #N

Data: Shuffled ballots, proof of
correctness

Phase 5

Tally

Decryption #1
Actor: Mix #1

Data: Ballot decryption shares

Decryption #2
Actor: Mix #2

Data: Ballot decryption shares

Decryption #N
Actor: Mix #N

Data: Ballot decryption shares

Decryption
Actor: Election Authority

Data: Combination of decryption
shares for each ballot

Results
Actor: Election Authority

Data: Results tallied from
decrypted ballots

Finish

Figure 20: D4: Data Recorded on the Blockchain

[September 26, 2018 at 22:56 – classicthesis version 0.1]

[September 26, 2018 at 22:56 – classicthesis version 0.1]

6
A N A LY S I S

We proposed a new scheme in Chapter 5, and in this chapter, we anal-
yse the scheme from a theoretical perspective in two dimensions. We
begin by going through the security aspects of privacy and verifiabil-
ity in Section 6.1 and finish by analysing the complexity of the scheme
from communication and computational aspects in Section 6.2.

6.1 security

The proposed electronic voting protocol is secure if it satisfies the se-
curity properties related to privacy and verifiability, and the auxiliary
properties enlisted in Section 4.3. In this section, we analyse the pro-
tocol’s security concerning these properties one by one focusing on
privacy and verifiability.

6.1.1 Privacy

A voting protocol ensures privacy if the voter’s choice remains anony-
mous. Thus the attempts to influence or buy votes is hindered. To this
end, we have attempted to satisfy ballot privacy and receipt freeness.

ballot privacy The proof that the property of ballot privacy as
defined earlier is satisfied hinges on the security of the underlying
encryption scheme used to encrypt the vote in ballot casting phase.
Since after that step until mixing, only independent fresh randomness
is added to the ballot on the blockchain, it is trivial to see that it
does not leak any information about the underlying vote. The mixing
procedure breaks the link between the input and output votes. The
correctness and privacy of mixing are proven by the respective papers
in [63, 64]. Hence nothing can be learned of the ballot with greater
than negligible probability after it has been decrypted.

Definition 1. A voting scheme has ballot privacy if no adversary can do
better in the ballot distinguishing Experiment B− IND than guess at ran-
dom.

75

[September 26, 2018 at 22:56 – classicthesis version 0.1]

76 analysis

Experiment B− IND

1 : (pkM, [sk1, sk2, ..., sknM])← Setup(λ)

2 : (v0, v1)← A(λ,pkM)

3 : β← {0, 1};b← Vote(pkM, vβ)

4 : β ′ ← A(pkM,b)

5 : β = β ′

In the Experiment B− IND the challenger flips a coin, the adver-
sary provides two votes, challenger finally casts a ballot for one of
the votes. The adversary wins if they can distinguish which of the
two votes was cast.

Lemma 1 (Ballot privacy). The protocol as described in Chapter 5 provides
ballot privacy given that a PPT adversary A is unable to distinguish between
two ballots encapsulating different votes in a chosen-plaintext attack (CPA)
model as described in the Experiment B− IND.

Proof. The adversary has access to an oracle for creating a ballot for a
left or right vote. Also, an oracle for creating any ballot can be called
at any time before or after creating a left or right ballot. Ballot creation
is essentially ElGamal encryption of a vote. Therefore, it is trivial to
see that the security of ElGamal encryption IND-CPA follows. IND-
CPA is sufficient for ballot privacy in the scheme.

Remark 1. For ballot privacy it is not necessary to have IND-CCA security
as the protocol does not provide a decryption oracle for any data that can
be linked to an individual. After the mixing phase, the ciphertexts will be
decrypted. These will be unlinkable to the input ciphertexts as proven in [63,
64]. Therefore, the decrypted votes are unlinkable to the ballots input for
mixing.

receipt freeness After the voting ends, the voter cannot com-
pile a receipt to prove to a coercer, how they voted. Recall that a
receipt has to satisfy three conditions: the voter generates it, it shows
how the voter voted, and it proves the ballot was cast [41].

Definition 2. A voting scheme is receipt free if no adversary can do better
in the receipt distinguishing Experiment R− IND than guess at random.

Experiment R− IND

1 : (pkM, [sk1, sk2, ..., sknM])← Setup(λ)

2 : (v, r)← A(λ,pkM)

3 : b← Vote(pkM, v, r)

4 : (b ′, δ0,σ(b ′))← Valid(b)

5 : δ1 ← SimProof(b ′,b, δ0, v̄, r̄)

6 : β← {0, 1};

7 : β ′ ← A(pkM, δβ)

8 : β = β ′

[September 26, 2018 at 22:56 – classicthesis version 0.1]

6.1 security 77

In R− IND the adversary has the power to choose a vote for the
challenger, effectively also dictating the randomness r used in the El-
Gamal encryption. The challenger then prepares a ballot and casts
it, getting a re-encrypted ballot b ′, designated verifier re-encryption
proof δ0 and the authentication authorities signature on the re-en-
crypted ballot σ(b ′). The challenger now simulates a proof for a dif-
ferent vote (v̄, r̄) 6= (v, r) and obtains a proof δ1. The challenger then
flips a coin β and submits δβ as a receipt to the adversary. The adver-
sary must now determine whether the proof is simulated or not, and
wins the game if they can do better than guessing at random.

Lemma 2 (Receipt freeness). The protocol as described in Chapter 5 pro-
vides receipt-freeness given that a PPT adversary A is unable to distinguish
between two receipts proving the vote of different options as described in
Experiment R− IND.

Proof. This property is achieved in our scheme through designated
verifier re-encryption proofs. Further, recall Assumption 7 the coercer
does not own the voter identity in the sense of knowing their private
keys. Otherwise, the coercer could participate in the voting as a voter
in any phase of the protocol.

The voter publishes their encrypted vote under their ephemeral
pseudonym on the blockchain through an anonymous channel pro-
vided by the onion routing. The voter can reveal the pseudonym and
the plaintext ballot. In the Experiment R− IND this is emulated by
the adversary providing the vote and randomness for a ballot to the
challenger. It reveals the intention of the voter to the coercer. An un-
willing voter can thus submit a vote to the liking of the coercer and
later submit their own vote, thus protecting against coercion in this
stage.

The Authentication Authority verifies the vote and sends the voter
back designated verifier re-encryption proof that it has been recorded.
This proof in of itself cannot satisfy the coercer, as the voter can sim-
ulate the proof for any ballot. The eligible votes on the blockchain
are randomised by the Authentication Authority, where the randomi-
sation is kept secret from the voter. Furthermore, the use of voter
stealth address can provide voter deniability of receiving any confir-
mation of recording. Thus we conclude, the receipt-freeness is satis-
fied, with the assumption that the coercer does not have ownership
of the voter’s secrets and the voter is not willingly cooperating with
the coercer.

Therefore, the receipt-freeness property relies on the security of
the designated verifier re-encryption proof [39, 56]. The security was
analysed in [57], where a flaw was identified and a solution proposed.
Thus we conclude the protocol achieves the receipt-freeness property.

Lemma 3 (Private). The described protocol ensures privacy of the voters.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

78 analysis

Proof. The proof follows from the proofs of the privacy properties:

• ballot privacy,

• receipt freeness.

6.1.2 Verifiability

The voting protocol is verifiable if any observer can be convinced
without a doubt that the procedure has been followed correctly. This
property is ensured in the described protocol by satisfying the veri-
fiability requirements enlisted above. We now proceed to argue they
have been satisfied.

individual verifiability Voter is satisfied their vote is in the
set of all the eligible votes.

Proof. The protocol provides overwhelming evidence for a voter. Should
their vote ever be excluded they can dispute the results by showing it
was recorded on the blockchain, but not in the results. The proof for
a voter consists of:

• Observation of the ciphertext sent to Authentication Authority.

• Observation of the designated verifier re-encryption proof and
the re-encrypted ballot on the blockchain.

• Confidence that AA is not in possession of the voter’s secret key,
nor that the key has been leaked to anyone else.

Thus we conclude the protocol has this property.

universal verifiability Final tally corresponds to the set of
all eligible votes.

Proof. Assuming AA follows the protocol we are convinced that all
eligible votes are published for mixing without discrimination. Given
the voter’s follow the protocol honestly and verify their votes have
been recorded on the blockchain, we conclude any single vote not in-
cluded in the records will be recognised. The shuffle protocol we use
was proven secure in the original papers [63, 64]. Thus we conclude
the universal verifiability is satisfied with overwhelming probability
due to the public inputs, outputs and proof from mix network.

end-to-end verifiable The voting protocol is end-to-end ver-
ifiable given that a voter can verify their vote was cast-as-intended,
recorded-as-cast, and tallied-as-recorded.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

6.1 security 79

cast-as-intended The ballot correctly encapsulates the vote of
the voter.

Proof. In our scheme, the voter constructs the ballot without the help
of anyone else. Assuming the user software and hardware is trusted,
we conclude the ballots are cast-as-intended.

recorded-as-cast The ballot is recorded as cast.

Proof. In our scheme, the voter verifies the ballot is published on the
blockchain and is satisfied that it has been recorded as seen in Algo-
rithm 3. Furthermore, the Authentication Authority provides proof
that the vote was randomised and included in the set of votes to be
mixed. Given the authority cannot forge a proof, we conclude the
ballot was recorded-as-cast.

tallied-as-recorded The ballot recorded counts in the final
tally.

Proof. In our scheme, the mix network provides overwhelming proof
of correct shuffle. Thus when the ballots are finally decrypted and
counted the voter is satisfied their vote was tallied. Thus we conclude
the ballot was tallied-as-recorded.

Lemma 4 (Verifiable). The described protocol is verifiable by anyone.

Proof. The proof follows from the proofs of following verifiability
properties:

• individual verifiability,

• universal verifiability,

• end-to-end verifiability.

Beyond the requirements explained we elicited auxiliary security
requirements independent of the privacy and verifiability:

• fairness,

• eligibility,

• correctness,

• ballot independence,

• and accessibility and visibility of blockchain.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

80 analysis

fairness The tally is unavailable during the casting phase.

Proof. In our scheme, fairness is achieved by the separation of phases.
When the ballots are cast everything is encrypted, and there is no way
to tally the results. Tallying is done in the final phase when the cast-
ing has already ended. Thus we conclude the fairness requirement is
satisfied as long as PPT adversary A is unable to break the ElGamal
encryption.

eligibility Only eligible voters can vote, and the votes must be
for one of the published options.

Proof. The Authentication Authority establishes the eligibility of the
voters. Assuming the authority follows the protocol honestly the el-
igibility of voters is satisfied. In the final phase, the ballots are de-
crypted, and correctly formed ballots are counted meaning that any
non-eligible ballot is discarded. Anyone can observe the decryption
shares for votes and tally the results independently. Thus we conclude
the eligibility requirement is satisfied.

correctness Honest execution of the voting process yields re-
sults according to the cast ballots.

Definition 3. The described protocol is correct if the final output after hon-
est execution of the algorithms is true.

Let v1, ..., vi ∈ V be the set of valid votes and id1, ..., idi ∈ ID be the set
of voter identifiers for 1 6 i 6 nV and the set of randomness r1, r2, ..., ri ∈
Zq used by the voters to create a ballot.

The protocol is initialized by (pk, [sk1, ..., sknM]) ← Setup(λ). Hon-
est votes are cast by bi ← Vote(idi, vi, ri) for all i. Eligible ballots are
then mined on the network (b ′i, δi,σ(b

′
i)) ← Valid(bi) for all i. Mixes

anonymize the eligible ballots (B
′
,Π) ← Mix(B). Tally is computed as

(O)← Tally(B
′
, [sk1, ..., sknM]). Then on honest execution the Verify algo-

rithm should return true as Verify(BC, O,Π) = >.

We are assuming the adversary is semi-honest, thus follows the
protocol correctly. Therefore, it is sufficient to see that the protocol
can be executed correctly.

Proof. The consensus mechanism of the blockchain ensures the in-
tegrity of the data on blockchain as an invalid transaction is not
recorded. Furthermore, the cryptographic proofs are publicly verifi-
able meaning that anyone can audit them. As the adversary is as-
sumed to be semi-honest, they follow the protocol correctly. Thus we
conclude, the correctness is satisfied.

ballot independece An adversary cannot record a ballot sent
by a voter and later replay it to change the choice of the voter.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

6.2 complexity 81

Proof. This property is achieved by including the latest hash of the
block on the blockchain as observed by the voter in the ballot. The
hash acts effectively as carbon dating that the adversary cannot forge.
As such, the ballots are non-replayable. Furthermore, the adversary
cannot ask the voter to create a ballot to be sent in the last minute
before casting phase ends. Thus we conclude the ballot independence
is satisfied.

public and permissioned The blockchain is public for obser-
vation and permissioned to actors for appending.

Proof. Access to blockchain requires that anyone can view it and cer-
tified actors may be able to append to it. This property is achieved
by making the blockchain public and permissioned. It ensures any-
one can view it and only certified actors actions are considered in
the consensus mechanism by other nodes in the blockchain. Thus we
conclude the access and visibility of blockchain is as specified.

6.2 complexity

In this section, we will analyse the protocol complexity based on
two dimensions communication and computation. The complexity
depends on several variables listed in Table 4. The analysis is done
gradually by phases and for each actor. Recall the actors in the system
are Election Authority (EA), Authentication Authority (AA), voters
(V), mixes (M), and blockchain nodes (N). The complexity analysis
assumes the correct execution of the protocol. The tables reflect the
complexity for individual actor. Thus for the total cost, the complexi-
ties are linear to the number of actors of that type.

Symbol Description

V Number of voters

M Number of mixes

N Number of routers in onion route

Table 4: D4: Complexity Analysis Symbols

6.2.1 Computation

For the computational complexity, we analyse how the number of ac-
tors affects the cost of computations asymptotically. Summary of the
analysis can be seen in Table 5. The most costly phase is the decryp-
tion of the ballots after they have been anonymised, which is linear to
the number of two actors the voters and mixes. Overall, the process is

[September 26, 2018 at 22:56 – classicthesis version 0.1]

82 analysis

linear in all phases and should scale well in practice. In the following,
each phase is analysed in detail.

1. Setup: EA generates the election parameters and has to com-
bine the public keys of M by multiplication, thus the complex-
ity is O(1). Each mix has to generate a random secret key, com-
pute the public key which is one exponentiation and Schnorr
proof which involves one exponentiation. The setup computa-
tion complexity for a particular mix is thus constant O(1).

2. Ballot Preparation & Recording: To prepare a ballot the voter
has to execute 2 ElGamal encryptions and generate a single DSA
signature. Ballot preparation is thus constant for the voter. To
record the ballot the voter needs to do N ElGamal encryptions.
Thus ballot recording for the voter is linear to the number of
onion routers used.

3. Verification & Publishing: To verify a ballot of a single voter
the AA has to do an ElGamal decryption, DSA signature ver-
ification, and record the vote. Thus the verification process is
linear to the number of voters. In order to publish a ballot the
AA has to do a re-encryption of the ballot, generate a DVRP for
the ballot, generate a DSA signature, generate a one-time pub-
lic key for the voter, and execute an ElGamal encryption. Thus
the computational complexity for publishing of the submitted
ballots for the AA is linear to the voter.

4. Anonymization: To anonymize all the ballots each mix has to
for each voter verify the DSA signature of the AA requiring 2

exponentiations, generate a proof of correct shuffle requiring a
total of 8|V|+4 exponentiations, and for the shuffle itself execute
a total of 2|V| exponentiations. Thus the anonymisation is linear
to the number of voters O(V)

5. Decryption & Results: To decrypt each mix will execute a sin-
gle ElGamal decryption share generation for each ballot requir-
ing single exponentiation and Chaum-Pedersen discrete loga-
rithm equality proof which requires further two exponentia-
tions. Decryption is thus linear to the number of mixes and
voters. Further then, the EA will multiply together all the ElGa-
mal decryption shares of each voter, finally adding together V

votes. This step is thus linear to the number of mixes and the
number of voters O(MV).

6.2.2 Communication

All the communication in the protocol is done through the blockchain
and the network. Thus we analyse the number of messages sent thro-

[September 26, 2018 at 22:56 – classicthesis version 0.1]

6.2 complexity 83

Casting Auth.

Actor Setup Prep. Rec. Ver. Pub. Anon. Dec. Tally

EA O(1) O(VM) O(V)

AA O(V) O(V)

V O(1) O(N)

M O(1) O(V) O(V)

Table 5: D4: Computational complexity

ugh the network and on the blockchain. We assume each participant
is also part of the blockchain network and once the messages are pub-
lished everyone has them. Summary of the analysis can be found in
Table 6.

1. Setup: EA generates the election parameters and publishes them
once which takes constant time O(1). Each mix of M generates
a key pair and Schnorr proof which can be sent in one message.
Thus this step is linear to the number of mix servers O(M). Fi-
nally, EA collects the public key shares, computes the election
public key and publishes it once which takes constant time O(1).
In total, for Setup we have then O(M+ 2).

2. Ballot preparation & recording: Ballot preparation does not re-
quire any communication on behalf of the voter. Once the voter
has prepared a ballot, they send it through the onion route to be
mined on the blockchain. For N nodes and V voters this phase
then requires O(V(N+ 1)) messages.

3. Vote verification & publishing: Verification is done non-inter-
actively and thus requires no communication from the AA. AA

has to generate a proof of re-encryption for each ballot and a
re-encrypted ciphertext for input to the mix network, which is
broadcast to the network. In total this then requires O(2V) mes-
sages.

4. Anonymization: Each mix server will receive the ballots, shuf-
fle them and publish a single proof over the entire shuffle. Thus
the shuffled votes are linear to the number of votes and mix
servers as in O(VM). Furthermore, each mix publishes a proof
of correct shuffle O(M(9V+ 10)). In total Anonymization then re-
quires communication linear to the number of mixes and voters
as in O(10M(V+ 1)).

5. Decryption & results: Each mix publishes for each vote a de-
cryption share O(MV). EA combines the decryption shares for

[September 26, 2018 at 22:56 – classicthesis version 0.1]

84 analysis

each vote and publishes them V. Thus the total communication
for decryption and results is O(V(M+ 1)).

Considering all the step, the total communication complexity for
the entire protocol is thus O(11VM+VN+ 3V+M+ 4).

Casting Auth.

Actor Setup Prep. Rec. Ver. Pub. Anon. Dec. Tally

EA O(1) O(V)

AA O(V)

V O(N)

M O(1) O(V) O(V)

Table 6: D4: Communication complexity

[September 26, 2018 at 22:56 – classicthesis version 0.1]

7
VA L I D AT I O N

In Chapter 5 we described the design and in Chapter 6 analysed the
protocol theoretically from security and complexity dimensions. In
this chapter we describe the practical work done to validate the de-
signed protocol.

First, we describe the implementation of the protocol in Section 7.1.
The description is followed by how the system was instantiated in
Section 7.2. Then we outline the things we want to measure in experi-
ments Section 7.3. The results are presented in Section 7.4 and finally
scalability is discussed and future work outline in Section 7.5.

7.1 implementation

In order to demonstrate the feasibility of the design, a proof of con-
cept was implemented. For rapid development Python 3.6.51 was
used. Python was chosen not because of efficiency but because of
the ample availability of libraries which implement different concepts
that were used.

The implementation makes use of some Python libraries amongst
which the most relevant from cryptographic perspective are in no
particular order:

• eth-keys2,

• cryptography.io3,

• cryptography-hazmat4,

• pycryptodomex5,

• ecies6.

1 Python programming language https://www.python.org/.
2 Eth-keys library provides functionality to operate on Elliptic Curve secp256k1 keys,

available from https://pypi.org/project/eth-keys/.
3 Cryptography.io library provides high-level functionality for symmetrical

and asymmterical cryptography, available from https://pypi.org/project/

cryptography/.
4 Cryptography-hazmat is part of the cryptography.io library providing low-level

functionality referred to as hazardous materials due to the expertise required.
5 PyCryptodome is a package for low-level cryptographic primitives, available from
https://pypi.org/project/pycryptodomex/.

6 Ecies is a package for Elliptic Curve Integrated Encryption Scheme for secp256k1

curve, available from https://pypi.org/project/eciespy/.

85

[September 26, 2018 at 22:56 – classicthesis version 0.1]

https://www.python.org/
https://pypi.org/project/eth-keys/
https://pypi.org/project/cryptography/
https://pypi.org/project/cryptography/
https://pypi.org/project/pycryptodomex/
https://pypi.org/project/eciespy/

86 validation

In the first phase of the implementation, all the primitives neces-
sary were implemented in Jupyter Notebook7. Notable primitives that
were implemented included:

• Designated Verifier Re-encryption Proof [39],

• ElGamal (n, n)-threshold cryptosystem [25],

• Schnorr Proof of Knowledge of Discrete Logarithm [70],

• Stealth Addresses [77],

• Shuffles of ElGamal Pairs [63, 64].

The primitives we borrowed from libraries and did not have to
implement are listed below:

• ElGamal cryptosystem;

• Elliptic Curve Integrated Encryption System,

• SHA-256 Cryptographic Hash,

• Elliptic Curve Digital Signature Algorithm,

• Elliptic Curve Cryptography.

The second phase of implementation involved integrating the prim-
itives into the five phases of the design:

1. Setup,

2. Casting,

3. Authentication,

4. Anonymization,

5. Tally.

Once the implementation was complete, we identified the processes
we wanted to measure for storage, and time required.

7.2 instantiation

Several decisions were made regarding the configuration variables.
Where possible, safe standards were used8. To show that the imple-
mentation works the key size is not essential. However, to demon-
strate that the design is still feasible in realistic scenario safe parame-
ters regarding length should be chosen.

7 Jupyter Notebook homepage http://jupyter.org/.
8 Cryptographic Key Length Recommendation found at https://www.keylength.com.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

http://jupyter.org/
https://www.keylength.com

7.3 experiments 87

For the Diffie-Hellmann the guides recommend a group with 3072-
bits and the key length of 256-bits. Thus, we chose Group 15

9 a 3072-
bit MODP Group as seen in Table 7.

Parameter Value

p 23072 − 23008 − 1+ 264 ∗ 22942π+ 1690314
g 2

Table 7: Group 15 - 3072-bit MODP Group

For near future security, the guides suggest 256-bits for Elliptic
Curve Cryptography. Thus curve secp256k1

10 as seen in Table 8 was
chosen for Elliptic Curve Cryptography. The curve is not regarded
as entirely safe by SafeCurves project11. SafeCurves has found that
it has some weaknesses which lessen the security by marginal bits,
there is still no attack identified which completely breaks the security.
Furthermore, for performance, it is comparable to other curves with
similar key sizes. Additionally, as it is used for numerous projects in
cryptocurrencies and is thus widely implemented by libraries, it was
chosen.

Parameter Value

Curve y2 = x3 + 0x+ 7

p 2256 − 232 − 977

Table 8: Elliptic Curve secp256k1

7.3 experiments

As we are interested in testing the feasibility of the design on con-
sumer hardware, the experiments were run on a workstation. The
experiment computer specification can be seen in Table 9.

To validate the feasibility we are interested in two characteristics
the amount of data that needs to be handled by the network and
stored locally, and the time processes take to execute by individual
actors.

9 More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Ex-
change (IKE) found at https://www.ietf.org/rfc/rfc3526.txt.

10 SEC 2: Recommended Elliptic Curve Domain Parameters found at http://www.secg.
org/SEC2-Ver-1.0.pdf.

11 SafeCurves: choosing safe curves for elliptic-curve cryptography (https://
safecurves.cr.yp.to/).

[September 26, 2018 at 22:56 – classicthesis version 0.1]

https://www.ietf.org/rfc/rfc3526.txt
http://www.secg.org/SEC2-Ver-1.0.pdf
http://www.secg.org/SEC2-Ver-1.0.pdf
https://safecurves.cr.yp.to/
https://safecurves.cr.yp.to/

88 validation

Component Specification

CPU Intel(R) Xeon(R) CPU E5-1620 v2 @ 3.70GHz

Memory 2x 4GB PC3-14900R DDR3-1866

Hard drive 500 GB SATA 3.0 7200 RPM

Table 9: Experiment hardware

setup In the setup phase we have two kinds of active actors namely
the Election Authority and Mix. Here we want to measure the time it
takes for the mix network to generate the Schnorr proof and how
much data the proof requires. Secondly, we want to validate the
amount of time it takes for Election Authority to verify the proofs
and combine them as the election key.

casting In the casting phase voters are the active actors. Here we
want to measure the time it takes to cast a ballot and the size of the
data required for a ballot.

authentication In the authentication phase the Authentication
Authority collects the submitted ballots, re-encrypts them, generates
a designated verifier re-encryption proof, stealth address for the voter,
and encrypts it for sending. Here we want to measure the time taken
to execute these individual steps atomically and the size of the data
required to store re-encrypted ballot and encryption of the designated
verifier re-encryption proof.

anonymization In the anonymisation phase the mix network
collects ballots, shuffles them, generates a proof, and publishes the
shuffled ballots and proofs. Here we want to measure how much
time it takes for the mix network to shuffle the ballots and the size
of the proof relative to the number of voters. The shuffled proofs are
constant in size to the input.

tally In the tally phase, the mixes and Election Authority jointly
decrypt the shuffled ballots by producing decryption shares for each
ballot, and then combining the decryption shares. Here we want to
measure, the size of data required to store all the decryption shares
and the time taken to execute the decryptions and verify the shuffle
proofs relative to the number of voters.

We can calculate the amount of data that needs to be handled by
the network by estimating the amount of data that needs to be stored
on the blockchain. Mostly, we are interested in how the operations
scale relative to the number of voters.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

7.4 results 89

7.4 results

Experiments were run using Python timeit functionality. Measure-
ments were run for repetitions of batches of 10-100 in steps of 10, and
1000-10000 in steps of 1000 voters. As the assumption is that there is
already an existing public key infrastructure no measurements were
taken regarding key generation except for the election key generation.
Therefore, we also generated the keys that were necessary and used
static keys for the measurements. We used the mean values for anal-
ysis, as there can be significant discrepancies in timings, due to other
activities the CPU is involved.

7.4.1 Time Performance

Phase Actor Procedure Median

Time

(seconds)

Setup M Key Generation and 0.36736

Schnorr Proof

Setup EA Public Key Combination 0.18614

Casting V Casting a Vote 0.02011

Authentication AA Authenticating and 0.18955

Publishing

Anonymization M Shuffle and Proof 0.67452

Anonymization EA Verifying Proof 0.53820

Tally M Creating a 0.00702

Decryption Share

Tally M Proof of Decryption 0.14474

Tally EA Decryption 0.00153

Table 10: D4: Proof-of-Concept Implementation Run-time per Voter/Ballot

To measure time performance we cast in total 55550 ballots for mea-
surement. The overall results of each operation per ballot/voter can
be seen in Table 10. Comparison of the median operation times can
be seen in Figure 21.

setup In this phase we measured the time it takes for a mix to
generate a key and Schnorr proof of knowledge of the discrete loga-
rithm of the public key. We used three mixes for each iteration, and
the process was repeated 1000 times. The median time to generate

[September 26, 2018 at 22:56 – classicthesis version 0.1]

90 validation

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Performance (seconds)

Setup/Mix/Key and Proof

Setup/EA/Verify and Combine

Casting/Voter/Ballot

Authentication/AA/Verify and Publish

Anonymization/Mix/Proof per Ballot

Anonymization/EA/Verify Proof per Ballot

Tally/Mix/Decryption Share

Tally/Mix/Decryption Proof

Tally/EA/Decryption

Operation Time

Figure 21: D4: Operation Times

a key and Schnorr proof for three mixes is 0.36736033099987253 sec-
onds as seen in Figure 21. Then we measured the time it takes for
the Election Authority to verify the proofs and combine the public
key shares into a single election key. The median time to do that
was 0.1861420570021437 seconds as seen in Figure 21. Given the se-
curity parameters, the setup computation heavy parts take in total
0.5535023880020162 seconds.

ballot casting In this phase we measured the time it takes for
a voter to cast a ballot. We assumed the voter has their public in-
frastructure keys and has made up a choice. Thus we pre-generated
these values and then measured the time it takes to cast the ballot
based on those parameters. Over 55550 cast ballots the median time
was 0.020106587500777096 seconds as seen in Figure 21.

authentication In this phase we measured the time it takes
for the Authentication Authority to verify and publish ballots. We
assumed the voters had all participated honestly. Thus we reused the

[September 26, 2018 at 22:56 – classicthesis version 0.1]

7.4 results 91

output from the previous phase. Over 55550 cast ballots the median
time of authentication processing was 0.18954966250021243 seconds
as seen in Figure 21.

anonymization In this phase we measured the time it takes for
the mixes to shuffle and generate a proof. We reused the output from
the previous phase as an input to the anonymisation phase. The re-
sults of anonymization experiments on a logarithmic scale can be
seen in Figure 22 and the verification of the shuffle in Figure 23. The
comparison of proof generation and verification can be seen in Fig-
ure 24. As expected, the process is linear to the number of voters. The
process works on a set of ballots as a whole. Therefore we could not
measure times for individual ballots but rather calculate the average
over a batch of ballots. On average it takes 0.674519313820274 seconds
to shuffle and generate a proof for a ballot. Similarly, the verification
works over a set of ballots and a proof for the shuffle. On average it
takes 0.5381966577999264 seconds to verify proof per ballot.

0 2000 4000 6000 8000 10000
Number of voters

0

1000

2000

3000

4000

5000

6000

7000

Ti
m

e
in

 se
co

nd
s

(100,66)
(1000,667)

(2000,1348)
(3000,2041)

(4000,2752)
(5000,3474)

(6000,4208)

(7000,5081)
(8000,5723)

(9000,6507)

(10000,7594)
Anonymization

Figure 22: D4: Experiment Times of Anonymizing Ballots

decryption & tally In this phase we measured the time it takes
for the mixes to create decryption shares and for the election author-
ity to decrypt the ballot based on the decryption shares. The median
time to create a decryption share is 0.007020432996796444 seconds
and to decrypt a ballot is 0.001525457002571784 seconds as seen in
Figure 25. The tally from decrypted ballots is simple counting and
negligible compared to the rest of the operations measured.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

92 validation

0 2000 4000 6000 8000 10000
Number of voters

0

1000

2000

3000

4000

5000

6000

Ti
m

e
in

 se
co

nd
s

(100,53)
(1000,532)

(2000,1078)
(3000,1642)

(4000,2216)
(5000,2802)

(6000,3402)
(7000,4020)

(8000,4649)
(9000,5295)

(10000,6112)
Shuffle Verification

Figure 23: D4: Experiment Times of Verification of Shuffle

0 2000 4000 6000 8000 10000
Number of voters

0

1000

2000

3000

4000

5000

6000

7000

Ti
m

e
in

 se
co

nd
s

Verifiable Shuffle Proof Generation and Verification
Shuffle and Proof Generation
Verification

Figure 24: D4: Comparison of Proof Generation and Verification

7.4.2 Storage Performance

The overall storage and data transfer requirements of the implemen-
tation based on individual elements can be seen in Table 11 and the
required data relative to the number of voters can be seen in Fig-
ure 25.

setup The setup phase requires the least amount of data to be
handled. For each mix, Schnorr Proof needs 12288 bits and public key
3072 bits. Therefore in the case of three mixes, 46080 bits = 5760 bytes
are required to be stored on the blockchain and handled by the net-
work. The combined election key takes 3072 bits = 384bytes. In ad-
dition to these basic requirements, the Election Authority will also
publish deadlines of the phases, the election question, and choices,

[September 26, 2018 at 22:56 – classicthesis version 0.1]

7.4 results 93

Phase Actor Data Size (bits)

Setup M Schnorr Proof 12288

Setup M Public key 3072

Setup EA Election Key 3072

Casting V Ballot 7792

Authentication AA DVRP 12288

Authentication AA Re-encrypted Ballot 6144

Anonymization M Shuffle (per ballot) 6144

Anonymization M Proof (per ballot) 27648

Tally M Decryption Proof 9216

Tally M Decryption Share 3072

Table 11: D4: Storage Requirements of Blockchain

0 2000 4000 6000 8000 10000
Number of voters

0.0

0.5

1.0

1.5

2.0

2.5

3.0

By
te

s

1e7 Data size relative to number of voters
Ballot
DVRP
Re-encrypted ballot
Proof size

Figure 25: D4: Data Size Relative to the Number of Voters

which we consider to be negligible in comparison to the rest of the
data.

casting In the casting phase each voter will cast their ballot. They
are allowed to do so multiple times or even abstain, but we consider
an honest execution of the protocol with a single ballot per voter. Each
ECIES encrypted ballot takes 7792bits = 974bytes.

authentication In the authentication phase the authority will
store on the blockchain the DVRP for the voter and re-encrypted bal-
lot for the voter and the mix network. The DVRP requires 12288 bits =

1536 bytes. The re-encrypted ballot will require 6144 bits = 768 bytes.
The authority will have to additionally generate several random val-
ues, which it is assumed not to store. However, the authority is ex-

[September 26, 2018 at 22:56 – classicthesis version 0.1]

94 validation

pected to keep a list of 256 bits = 32 bytes hash and ballot 6144 bits =

768 bytes locally. The list is for checking whether a ballot is the last
one submitted by the voter and for private verification. It is assumed
that this information will not be stored after the phase ends.

anonymization In the anonymisation phase, each mix is going
to generate a shuffle and proof and store on the blockchain the shuf-
fled ballots and the proof. Ignoring the constant data necessary for
each shuffle the mixes need to store per ballot 27648 bits = 3456 bytes
for the proof and 6144 bits = 768 bytes per shuffled list.

tally In the decryption the mixes each decrypt a share of the bal-
lot producing a share of 3072 bits = 384 bytes per ballot per mix,
which amounts to 9216 bits = 1152 bytes for each ballot in case of
3 mixes. Furthermore, each mix creates a decryption proof of size
9216 bits = 1152 bytes, which amounts to 27648 bits = 3456 bytes.
The decrypted vote is negligible in size in comparison to the rest of
the data thus we ignore this for analysis.

7.5 discussion

The execution times measured in the experiments show that the run-
time scales proportional to the number of voters in the anonymity set.
The bottleneck of the design is the anonymisation part. Any other
operation is either distributed already, can be trivially parallelised, or
takes negligible time in comparison.

The naive implementation has demonstrated that a mix server can
anonymise 10,000 votes in about 2 hours and 7 minutes. Given the
median time of 0.67452 seconds per vote to generate a proof the esti-
mated times relative to the number of voters are shown in Table 12.
Thus, it would not be feasible for larger scale elections as it is given
the time cost.

Nevertheless, it is still applicable to for example national elections
due to the anonymity set sizes. As an example consider general elec-
tions of Netherlands in 2017. During the election, 10,516,041 valid
votes were cast. There are about 10,000 polling stations (stembureau).
The average polling station thus receives about 1,052 votes. The aggre-
gate results of the polling stations are considered public and will be
published when counted. Therefore, the shuffling could be applied
based on the polling station and therefore would be feasible for a
generic workstation.

An important factor in determining the feasibility is the amount of
storage needed per actor and in total how much would be needed
to store on the blockchain. As shown by the experimentation each
vote requires 12110 bytes to store all the information through all the

[September 26, 2018 at 22:56 – classicthesis version 0.1]

7.5 discussion 95

Votes Time Data Bandwidth

10 6 seconds 118 KiB 11 bit/s

100 1 minute 1 MiB 112 bit/s

1000 11 minutes 12 MiB 1 Kbit/s

10 000 1 hour 115 MiB 11 Kbit/s

100 000 19 hours 1 GiB 110 Kbit/s

1 000 000 8 days 11 GiB 1 Mbit/s

10 000 000 78 days 113 GiB 11 Mbit/s

100 000 000 2 years 1 TiB 107 Mbit/s

1 000 000 000 21 years 11 TiB 1 Gbit/s

Table 12: D4: Scalability of the Design

phases. Given this amount and ignoring any constants, we can see the
scalability of the storage relative to the number of votes in Table 12.

We conclude that the naive implementation is feasible as it is for a
large-scale national election regarding storage. Up to 1 million votes
the storage would be satisfied by an average phone, 10 million votes
the required storage would be satisfied by an average laptop, and
100 million is feasible for desktop computers. By comparison, Bitcoin
blockchain is 173 GB as of Q2 2018, and Ethereum blockchain exceeds
1TB as of May 2018.

Regarding communication, we have calculated the average band-
width required if the election took place over 24 hours as seen in
Table 12. The average bandwidth over 24 hours would be feasible up
to 10 million votes on a consumer connection. This analysis is not
considering the asymmetry of traffic throughout the day.

7.5.1 Comparison to existing schemes

Due to the diverse nature of the proposed schemes, the security re-
quirements they satisfy, their scalability, and the detail of evaluation it
is difficult to compare the schemes objectively. However, we attempt
to briefly compare the schemes on privacy, verifiability, fairness, and
performance.

As shown in Chapter 3, none of the existing schemes prevent the
voter from creating receipts. Consequently, our scheme is the first
such blockchain based voting scheme that achieves this privacy prop-
erty. Concerning verifiability, there are not many differences between
schemes and most of them satisfy this strongly. Our scheme also
achieves a degree of coercion-resistance by allowing revoting. Schemes
which only give the voter a single attempt are less robust to errors

[September 26, 2018 at 22:56 – classicthesis version 0.1]

96 validation

and less tolerant to coercion. Currently, most proposed schemes only
allow for a single attempt per voter.

Our scheme achieves fairness through the separation of the casting
and tally phase. This property cannot be achieved in schemes which
send votes as tokens, such as the blind signature or privacy oriented
cryptocurrency based schemes. Fairness is an essential security re-
quirement as it can significantly affect the outcome of the vote.

There is a broad spectrum regarding complexity and performance.
Even though the literature does not contain detailed results, we can
expect that token based schemes perform better regarding commu-
nication and computation. Generally, the obfuscation and masking
based schemes can be expected to perform worse than our scheme, be-
cause it is expected that voters can participate throughout the process
and communicate with everyone else. Ring signature based schemes
do not scale well regarding storage. The throughput of the underly-
ing cryptocurrencies limits privacy-preserving cryptocurrency based
schemes. For example, in the case of ZCash 2.3 million votes could
be recorded per day assuming nothing other than the ballot related
transactions are mined.

In conclusion, our scheme has significant advantages concerning
security, but some schemes claim or can be expected to have better
performance. Therefore, the suitability of the scheme depends on the
use case.

7.5.2 Improvements

The implementation could be improved in several aspects to gain sig-
nificant performance enhancements.

First of all, the heaviest procedure regarding computation is shuf-
fling. We have implemented the algorithm as described in the refer-
ence paper based on classical discrete logarithm modulo p group. An
implementation adapted to Elliptic Curve Cryptography would see
significant enhancements regarding all the critical aspects of the com-
putational difficulty, storage requirements, and communication. The
improvement is because for the same level of security the key sizes
would be 3072/256 = 12 times smaller.

Secondly, for validation, we implemented a naive version of the al-
gorithm for shuffling. Fast implementation could take advantage of
concurrent calculations. In nearly every step of the algorithm, com-
putations are run for lists of values which are not dependent on
each other. Therefore, the parallel execution could show significant
improvements.

Thirdly, the implementation is done in a high-level language which
has significant overhead. Doing it in lower level language and opti-
mising for hardware can improve performance regarding computa-
tion time.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

7.5 discussion 97

Finally, the anonymisation nodes are preselected before the election
begins. Thus, they could be chosen such that they have an appropriate
amount of resources available for the volume of voters in the election.
The validation was done on consumer grade hardware to validate the
feasibility for any participant to act as a mix. Furthermore, the verifi-
cation of the shuffle takes a comparable amount of computations to
shuffle and should be accessible to anyone with a reasonable amount
of resources as well.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

[September 26, 2018 at 22:56 – classicthesis version 0.1]

8
D I S C U S S I O N A N D F U T U R E W O R K

Voting is a fundamental component of democracy. Controversies of-
ten surround elections. For example, during the 2016 United States
elections, it was reported that nation-state adversaries targeted vot-
ing systems in 20 states of which four occasions there was a successful
intrusion1. No data manipulation or change has been reported. An-
other example is 2018 Russian elections, where immediately during
the election evidence was posted online of widescale election fraud2.
Most recently 2018 Zimbabwe presidential election stirred up contro-
versy3. We do not provide these examples to take a political stance,
but rather to demonstrate the fact that paper-based voting is contro-
versial regardless of geographical location or the state of democracy
in the country.

In all of these cases, the transparency of the process can be in-
creased by cryptographic methods and electronic means. It would
allow virtually anyone to verify the results and prove that votes were
recorded honestly. The electronic means are also practical regarding
cost and effort to conduct the process, carbon footprint, security, ef-
ficiency, improved accuracy (human errors in casting and counting),
and convenience to the voters. According to the calculus of voting
theory, the convenience would increase the turnout. It benefits the
democracy as the will of the people is reflected more accurately.

The existing electronic voting solutions have some shortcomings.
They usually require the voters to trust either centralised authority or
appointed authorities. There are no mechanisms to verify the records
shown to the voter are complete. It is not possible for voters to ac-
tively participate in the election beyond voting. The systems have
single points of failure due to centralisation and therefore are not ro-
bust against denial of service attacks. Furthermore, there is a general
lack of trust in electronic voting as demonstrated by legal bans in the
Netherlands, Germany, and Norway.

A number of these problems can be solved by distributing the elec-
tion process. First of all, the process needs to be made transparent so
that anyone can see the entire log and nobody can remove records

1 U.S. official: Hackers targeted voter registration systems of 20 states. Chicago Tri-
bune. Article available from http://www.chicagotribune.com/news/nationworld/

ct-hackers-target-election-systems-20160930-story.html.
2 Vladimir Putin secures record win in Russian presidential election. The Guardian.

Article available from https://www.theguardian.com/world/2018/mar/19/

vladimir-putin-secures-record-win-in-russian-presidential-election.
3 Zimbabwe’s Opposition Calls Vote Results ‘Fraudulent’ in Tense Aftermath. The New York

Times. Article available from https://www.nytimes.com/2018/08/03/world/africa/

zimbabwe-election-chamisa.html.

99

[September 26, 2018 at 22:56 – classicthesis version 0.1]

http://www.chicagotribune.com/news/nationworld/ct-hackers-target-election-systems-20160930-story.html
http://www.chicagotribune.com/news/nationworld/ct-hackers-target-election-systems-20160930-story.html
https://www.theguardian.com/world/2018/mar/19/vladimir-putin-secures-record-win-in-russian-presidential-election
https://www.theguardian.com/world/2018/mar/19/vladimir-putin-secures-record-win-in-russian-presidential-election
https://www.nytimes.com/2018/08/03/world/africa/zimbabwe-election-chamisa.html
https://www.nytimes.com/2018/08/03/world/africa/zimbabwe-election-chamisa.html

100 discussion and future work

once added. Secondly, as the records are public, anyone with a rea-
sonable computer should be able to verify the election results. Thirdly,
voters with reasonable computing resources should be able to volun-
teer in the election recording and validation process. Furthermore,
as the stakeholders are involved in the recording process the trust
require in authorities is lowered. Finally, in comparison to the cen-
tralised solutions, the network is robust against denial of service at-
tacks due to the distribution. To achieve these goals, we have pro-
posed a scheme that utilises blockchain as the underlying public bul-
letin board.

Several blockchain-based electronic voting schemes have been pro-
posed already. The proposed schemes generally achieve the verifia-
bility requirements necessary for remote electronic voting. However,
concerning privacy, they satisfy the weakest notion of ballot privacy.
Most of them are designed on top of existing cryptocurrencies, which
has several disadvantages.

• First, the cost of running the elections is pegged to the market
price of the tokens, which has been proven to fluctuate highly.
It makes predictions and budgeting for elections difficult.

• Second, as shown by CryptoKitties congestion4 of Ethereum the
network can be clogged by a single honest distributed appli-
cation or in case of Bitcoin during the bubble of 2017 trans-
action queue grew in size to where it could take days before
a transaction was included in the blockchain5. The cryptocur-
rency blockchains are not necessarily optimised for the number
of messages/transactions necessary to send in a short period.

• Third, the tokens used for voting have real monetary value.
Thus there is an incentive not to use them for the intended pur-
pose of voting.

• Fourth, if the voting works by casting tokens, there is by defini-
tion a live tally, which is against fair voting principles.

In this chapter we first discuss how the research goal has been
achieved in Section 8.1. Then we identify unresolved problems and
potential directions for future work in Section 8.2. We conclude the
thesis by final remarks in Section 8.3.

4 CryptoKitties craze slows down transactions on Ethereum. BBC News. Article available
from https://www.bbc.com/news/technology-42237162.

5 Bitcoin Mempool Woes Worsen as Over 220,000 Unconfirmed Transactions Remain
Queued. News BTC. Article available from https://www.newsbtc.com/2017/12/08/

bitcoin-mempool-woes-worsen-220000-unconfirmed-transactions-remain-queued/.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

https://www.bbc.com/news/technology-42237162
https://www.newsbtc.com/2017/12/08/bitcoin-mempool-woes-worsen-220000-unconfirmed-transactions-remain-queued/
https://www.newsbtc.com/2017/12/08/bitcoin-mempool-woes-worsen-220000-unconfirmed-transactions-remain-queued/

8.1 discussion 101

8.1 discussion

We have given the context and motivation of the problem in the previ-
ous section. In this chapter we dicuss the research question and how
it has been addressed by our work. To restate the research goal:

How can we achieve strong notions of privacy for voters in re-
mote electronic voting setting while providing transparency to
voters through an opportunity to participate in the process of
election recording?

We now proceed to investigate the subquestions and how they have
been addressed in turn.

How to achieve strong privacy in remote voting supported by
blockchain?

Privacy notions in electronic voting are Ballot Privacy, Receipt-Freeness,
and Coercion-Resistance. We achieve Ballot Privacy through ElGamal
encryption and shuffling of the ballots. Through ElGamal encryption,
we ensure that nobody can distinguish votes. The shuffling will break
the link between the eventually decrypted ballot and the ballot sub-
mitted by the voter. Receipt-Freeness is achieved in our scheme thro-
ugh Re-Encryption, Designated Verifier Re-Encryption Proofs (DVRP)
and Stealth Addresses which do not let the voter prove to anyone
how they voted. Re-Encryption introduces new randomness, which
the voter is oblivious to, to the ballot. The voter is convinced that
their ballot has been honestly re-encrypted by the DVRP. The DVRP
ensures that nobody else will be convinced. The Stealth Addresses
are used to hide the intended recipient and offer deniability in the
participation of elections.

How to increase the transparency by employing volunteers in
the election validation and record keeping in a distributed man-
ner?

The transparency is increased by openness and equal opportunity
to participate in the process. All the public messages related to the
election are recorded in a distributed ledger. This ledger is append-
only and maintained mostly by the voters. Provably secure dynamic
proof-of-stake scheme Ouroboros ensures that any voter regardless of
their processing power has equal chance to participate in the process.
Therefore, in order to change which votes are included in the log,
there would need to be a majority. If there is a majority of voters
colluding, then it makes no sense to undermine the process, but vote
honestly, and the same objective would be achieved.

How to make the process irrefutably verifiable?

[September 26, 2018 at 22:56 – classicthesis version 0.1]

102 discussion and future work

The verifiability of the process is ensured by the cryptographic
primitives used. First of all, the voter is in charge of creating their bal-
lot. Thus it will be cast-as-intended. DVRP and records on the block-
chain are sufficient to convince the voter that it has been recorded-as-
cast. Finally, the proof constructed in the shuffling process convinces
the voter that their vote is tallied-as-recorded. In order to change the
records, a majority is required. If there is a majority, then there is al-
ready consensus and attacking the system would not make sense as
honest actions would require fewer resources and effort.

How to make the process simple for voters who only want to
participate by voting?

This subquestion has not been addressed directly. However, it is
more of an actual implementation question. To make the process sim-
ple for voters is down to the voting software. Admittedly, the verifica-
tion of cryptographic proofs might be well beyond the competency of
anyone but experts. However, this could be simplified by software for
example by displaying a red colour when proof does not verify or dis-
playing green colour when proof does verify. Therefore, out scheme
still requires trust in the experts who are developing the system.

Thus we conclude we have achieved the set research question, ex-
cept one subquestion which is up to the real world implementation.

8.2 future work

We have identified several directions this research can be extended on
in the future.

Fast implementation of the design. The validation was done by
a naive implementation and could be improved in several aspects
as noted before. This work could adapt the design to Elliptic Curve
Cryptography (ECC) in several steps. The implementation itself can
benefit from ECC, concurrency, and using lower level language. The
performance regarding speed, storage, and bandwidth can then be
validated for larger scale elections in practice.

Implementation on top of blockchain network. In this work, we
did not implement the underlying blockchain network or the onion
routing network. Therefore, it would be interesting to implement or
adapt these parts to the validation as well. It would be a step towards
a complete working version of the system. Then the network require-
ments and scalability can be validated more accurately in practice
rather than just theoretically.

Improving the security properties of the protocol. The design
does not satisfy the latest requirements such as accountability, coercion-
resistance, or coercion-evidence. These are relatively new notions and
are not straightforward in how they should be designed or whether
they apply to the design as it is. Considerable research is necessary to

[September 26, 2018 at 22:56 – classicthesis version 0.1]

8.3 concluding remarks 103

answer these questions. However, by allowing re-voting, the prereq-
uisite for coercion-resistance and coercion-evidence is satisfied.

Improving the design to weaken the assumptions. We made nu-
merous assumptions about the adversary and the general model. Some
of these assumptions can be removed if the design is evolved. For
example, implementing 2-factor authentication, or trusted hardware
tokens can be used to remove the assumption that voter software
and hardware are trusted. Self-sovereign identity could be used to
eliminate Authentication Authority. Smart contracts could be used to
remove several administrative tasks of the Election Authority. This
work would be a step towards implementation applicable in the real
world.

Use case implementation. We have described a generic election
protocol design. Voting takes place under various conditions. For ex-
ample, Dutch general elections have around 10,000 polling stations.
The polling station aggregate data is considered public information.
Therefore the design should be enhanced to take into account these
specifics. In another example, there may be elections with multiple
questions. A direction towards real application would be to choose a
specific use case, adapt the design, and implement it for that case.

8.3 concluding remarks

We have outlined the motivation for distributed verifiable remote elec-
tronic voting, due to the problems surrounding traditional voting.
The properties blockchain offers regarding integrity, consensus, and
transparency makes it a prospective candidate for distributing the
process and increasing transparency. Survey on the existing block-
chain schemes revealed that privacy had not been adequately ad-
dressed. We proposed a scheme that satisfies strong privacy require-
ment receipt-freeness. We also provide security analysis on the pri-
vacy and verifiability. Complexity analysis shows that the communi-
cation and computation scale linearly to the voters. Validation demon-
strated that the scheme could be applied to general elections regard-
ing storage and run-time requirements. However, the scheme could
still be improved in several aspects - performance, security properties,
relaxing assumptions, and validation concerning complete implemen-
tation.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

[September 26, 2018 at 22:56 – classicthesis version 0.1]

B I B L I O G R A P H Y

[1] Ben Adida. “Advances in Cryptographic Voting Systems.” AAI0810143.
PhD thesis. Cambridge, MA, USA, 2006.

[2] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek.
“Secure Multiparty Computations on Bitcoin.” In: 2014 IEEE
Symposium on Security and Privacy. 2014, pp. 443–458. doi: 10.
1109/SP.2014.35.

[3] UN General Assembly. “Universal declaration of human rights.”
In: UN General Assembly (1948).

[4] Adam Back et al. Hashcash-a denial of service counter-measure.
2002.

[5] Josh Benaloh. “Ballot Casting Assurance via Voter-initiated Poll
Station Auditing.” In: Proceedings of the USENIX Workshop on Ac-
curate Electronic Voting Technology. EVT’07. Boston, MA: USENIX
Association, 2007, pp. 14–14. url: http://dl.acm.org/citation.
cfm?id=1323111.1323125.

[6] Josh Benaloh and Dwight Tuinstra. “Receipt-free secret-ballot
elections.” In: Proceedings of the twenty-sixth annual ACM sympo-
sium on Theory of computing. ACM. 1994, pp. 544–553.

[7] Iddo Bentov and Ranjit Kumaresan. “How to Use Bitcoin to De-
sign Fair Protocols.” In: Advances in Cryptology – CRYPTO 2014.
Ed. by Juan A. Garay and Rosario Gennaro. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 421–439. isbn: 978-3-662-
44381-1.

[8] D. Bernhard, V. Cortier, D. Galindo, O. Pereira, and B. Warin-
schi. “SoK: A Comprehensive Analysis of Game-Based Ballot
Privacy Definitions.” In: 2015 IEEE Symposium on Security and
Privacy. 2015, pp. 499–516. doi: 10.1109/SP.2015.37.

[9] Sylvia Bishop and Anke Hoeffler. “Free and fair elections: A
new database.” In: Journal of Peace Research 53.4 (2016), pp. 608–
616. doi: 10.1177/0022343316642508. eprint: https://doi.org/
10.1177/0022343316642508. url: https://doi.org/10.1177/
0022343316642508.

[10] Stefano Bistarelli, Marco Mantilacci, Paolo Santancini, and Francesco
Santini. “An End-to-end Voting-system Based on Bitcoin.” In:
Proceedings of the Symposium on Applied Computing. SAC ’17. Mar-
rakech, Morocco: ACM, 2017, pp. 1836–1841. isbn: 978-1-4503-
4486-9. doi: 10.1145/3019612.3019841. url: http://doi.acm.
org/10.1145/3019612.3019841.

105

[September 26, 2018 at 22:56 – classicthesis version 0.1]

http://dx.doi.org/10.1109/SP.2014.35
http://dx.doi.org/10.1109/SP.2014.35
http://dl.acm.org/citation.cfm?id=1323111.1323125
http://dl.acm.org/citation.cfm?id=1323111.1323125
http://dx.doi.org/10.1109/SP.2015.37
http://dx.doi.org/10.1177/0022343316642508
https://doi.org/10.1177/0022343316642508
https://doi.org/10.1177/0022343316642508
https://doi.org/10.1177/0022343316642508
https://doi.org/10.1177/0022343316642508
http://dx.doi.org/10.1145/3019612.3019841
http://doi.acm.org/10.1145/3019612.3019841
http://doi.acm.org/10.1145/3019612.3019841

106 Bibliography

[11] Jens-Matthias Bohli, Jörn Müller-Quade, and Stefan Röhrich.
“Bingo Voting: Secure and Coercion-Free Voting Using a Trusted
Random Number Generator.” In: E-Voting and Identity. Ed. by
Ammar Alkassar and Melanie Volkamer. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 111–124. isbn: 978-3-540-77493-8.

[12] Dan Boneh. “The Decision Diffie-Hellman problem.” In: Algo-
rithmic Number Theory. Ed. by Joe P. Buhler. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998, pp. 48–63. isbn: 978-3-540-
69113-6.

[13] Stephen Burgen. Thousands protest and strike over Catalonia ref-
erendum violence. Ed. by theguardian.com. [Online; posted 03-
October-2017]. 2017. url: https : / / www . theguardian . com /

world / 2017 / oct / 03 / catalonia - holds - general - strike -

protest-referendum-violence.

[14] D. Chaum. “Secret-ballot receipts: True voter-verifiable elections.”
In: IEEE Security Privacy 2.1 (2004), pp. 38–47. issn: 1540-7993.
doi: 10.1109/MSECP.2004.1264852.

[15] D. Chaum, A. Essex, R. Carback, J. Clark, S. Popoveniuc, A.
Sherman, and P. Vora. “Scantegrity: End-to-End Voter-Verifiable
Optical- Scan Voting.” In: IEEE Security Privacy 6.3 (2008), pp. 40–
46. issn: 1540-7993. doi: 10.1109/MSP.2008.70.

[16] David L. Chaum. “Untraceable Electronic Mail, Return Addresses,
and Digital Pseudonyms.” In: Commun. ACM 24.2 (Feb. 1981),
pp. 84–90. issn: 0001-0782. doi: 10.1145/358549.358563. url:
http://doi.acm.org/10.1145/358549.358563.

[17] David Chaum. “Blind Signatures for Untraceable Payments.”
In: Advances in Cryptology. Ed. by David Chaum, Ronald L. Rivest,
and Alan T. Sherman. Boston, MA: Springer US, 1983, pp. 199–
203. isbn: 978-1-4757-0602-4.

[18] David Chaum. “Blind signatures for untraceable payments.” In:
Advances in cryptology. Springer. 1983, pp. 199–203.

[19] David Chaum and Torben Pryds Pedersen. “Wallet Databases
with Observers.” In: Advances in Cryptology — CRYPTO’ 92. Ed.
by Ernest F. Brickell. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1993, pp. 89–105. isbn: 978-3-540-48071-6.

[20] David Chaum, Richard Carback, Jeremy Clark, Aleksander Es-
sex, Stefan Popoveniuc, Ronald L Rivest, Peter YA Ryan, Emily
Shen, and Alan T Sherman. “Scantegrity II: End-to-End Veri-
fiability for Optical Scan Election Systems using Invisible Ink
Confirmation Codes.” In: EVT 8 (2008), pp. 1–13.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

https://www.theguardian.com/world/2017/oct/03/catalonia-holds-general-strike-protest-referendum-violence
https://www.theguardian.com/world/2017/oct/03/catalonia-holds-general-strike-protest-referendum-violence
https://www.theguardian.com/world/2017/oct/03/catalonia-holds-general-strike-protest-referendum-violence
http://dx.doi.org/10.1109/MSECP.2004.1264852
http://dx.doi.org/10.1109/MSP.2008.70
http://dx.doi.org/10.1145/358549.358563
http://doi.acm.org/10.1145/358549.358563

Bibliography 107

[21] Benoît Chevallier-Mames, Pierre-Alain Fouque, David Pointcheval,
Julien Stern, and Jacques Traoré. “On Some Incompatible Prop-
erties of Voting Schemes.” In: Towards Trustworthy Elections: New
Directions in Electronic Voting. Ed. by David Chaum, Markus
Jakobsson, Ronald L. Rivest, Peter Y. A. Ryan, Josh Benaloh,
Miroslaw Kutylowski, and Ben Adida. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 191–199. isbn: 978-3-642-12980-3.
doi: 10.1007/978-3-642-12980-3_11. url: https://doi.org/
10.1007/978-3-642-12980-3_11.

[22] C. Culnane and S. Schneider. “A Peered Bulletin Board for Ro-
bust Use in Verifiable Voting Systems.” In: 2014 IEEE 27th Com-
puter Security Foundations Symposium. 2014, pp. 169–183. doi:
10.1109/CSF.2014.20.

[23] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander
Russell. “Ouroboros Praos: An Adaptively-Secure, Semi-synchronous
Proof-of-Stake Blockchain.” In: Advances in Cryptology – EURO-
CRYPT 2018. Ed. by Jesper Buus Nielsen and Vincent Rijmen.
Cham: Springer International Publishing, 2018, pp. 66–98. isbn:
978-3-319-78375-8.

[24] W. Diffie and M. Hellman. “New directions in cryptography.”
In: IEEE Transactions on Information Theory 22.6 (1976), pp. 644–
654. issn: 0018-9448. doi: 10.1109/TIT.1976.1055638.

[25] T. Elgamal. “A public key cryptosystem and a signature scheme
based on discrete logarithms.” In: IEEE Transactions on Informa-
tion Theory 31.4 (1985), pp. 469–472. issn: 0018-9448. doi: 10.
1109/TIT.1985.1057074.

[26] Amos Fiat and Adi Shamir. “How To Prove Yourself: Practi-
cal Solutions to Identification and Signature Problems.” In: Ad-
vances in Cryptology — CRYPTO’ 86. Ed. by Andrew M. Odlyzko.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1987, pp. 186–
194. isbn: 978-3-540-47721-1.

[27] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. “A practi-
cal secret voting scheme for large scale elections.” In: Advances
in Cryptology — AUSCRYPT ’92. Ed. by Jennifer Seberry and
Yuliang Zheng. Berlin, Heidelberg: Springer Berlin Heidelberg,
1993, pp. 244–251. isbn: 978-3-540-47976-5.

[28] G. S. Grewal, M. D. Ryan, S. Bursuc, and P. Y. A. Ryan. “Caveat
Coercitor: Coercion-Evidence in Electronic Voting.” In: 2013 IEEE
Symposium on Security and Privacy. 2013, pp. 367–381. doi: 10.
1109/SP.2013.32.

[29] G. S. Grewal, M. D. Ryan, L. Chen, and M. R. Clarkson. “Du-
Vote: Remote Electronic Voting with Untrusted Computers.” In:
2015 IEEE 28th Computer Security Foundations Symposium. 2015,
pp. 155–169. doi: 10.1109/CSF.2015.18.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

http://dx.doi.org/10.1007/978-3-642-12980-3_11
https://doi.org/10.1007/978-3-642-12980-3_11
https://doi.org/10.1007/978-3-642-12980-3_11
http://dx.doi.org/10.1109/CSF.2014.20
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1109/TIT.1985.1057074
http://dx.doi.org/10.1109/TIT.1985.1057074
http://dx.doi.org/10.1109/SP.2013.32
http://dx.doi.org/10.1109/SP.2013.32
http://dx.doi.org/10.1109/CSF.2015.18

108 Bibliography

[30] Jens Groth. “Efficient Maximal Privacy in Boardroom Voting
and Anonymous Broadcast.” In: Financial Cryptography. Ed. by
Ari Juels. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 90–104. isbn: 978-3-540-27809-2.

[31] F. Hao. “Anonymous voting by two-round public discussion.”
English. In: IET Information Security 4 (2 2010), 62–67(5). issn:
1751-8709. url: http://digital-library.theiet.org/content/
journals/10.1049/iet-ifs.2008.0127.

[32] James Heather and David Lundin. “The Append-Only Web Bul-
letin Board.” In: Formal Aspects in Security and Trust. Ed. by Pier-
paolo Degano, Joshua Guttman, and Fabio Martinelli. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 242–256. isbn:
978-3-642-01465-9.

[33] Sven Heiberg, Ivo Kubjas, Janno Siim, and Jan Willemson. On
Trade-offs of Applying Block Chains for Electronic Voting Bulletin
Boards. Cryptology ePrint Archive, Report 2018/685. https://
eprint.iacr.org/2018/685. 2018.

[34] Jörg Helbach and Jörg Schwenk. “Secure Internet Voting with
Code Sheets.” In: E-Voting and Identity. Ed. by Ammar Alkas-
sar and Melanie Volkamer. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 166–177. isbn: 978-3-540-77493-8.

[35] Martin Hirt and Kazue Sako. “Efficient Receipt-Free Voting Based
on Homomorphic Encryption.” In: Advances in Cryptology —
EUROCRYPT 2000. Ed. by Bart Preneel. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2000, pp. 539–556. isbn: 978-3-540-45539-4.

[36] Freedom House. “Populists and autocrats: The dual threat to
global democracy.” In: Freedom in the World Report (2017).

[37] Freedom House. “Freedom in the World 2018. Democracy in
crisis.” In: Freedom House (2018).

[38] Jen-Ho Hsiao, Raylin Tso, Chien-Ming Chen, and Mu-En Wu.
“Decentralized E-Voting Systems Based on the Blockchain Tech-
nology.” In: Advances in Computer Science and Ubiquitous Com-
puting. Ed. by James J. Park, Vincenzo Loia, Gangman Yi, and
Yunsick Sung. Singapore: Springer Singapore, 2018, pp. 305–
309. isbn: 978-981-10-7605-3.

[39] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. “Des-
ignated Verifier Proofs and Their Applications.” In: Advances in
Cryptology — EUROCRYPT ’96. Ed. by Ueli Maurer. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1996, pp. 143–154. isbn:
978-3-540-68339-1.

[40] Paul Cruz Jason and Kaji Yuichi. “E-voting System Based on
the Bitcoin Protocol and Blind Signatures.” In: TOM 10.1 (2017),
pp. 14–22. issn: 1882-7780. url: https://ci.nii.ac.jp/naid/
170000148490/en/.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

http://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2008.0127
http://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2008.0127
https://eprint.iacr.org/2018/685
https://eprint.iacr.org/2018/685
https://ci.nii.ac.jp/naid/170000148490/en/
https://ci.nii.ac.jp/naid/170000148490/en/

Bibliography 109

[41] H. L. Jonker and E. P. de Vink. “Formalising Receipt-Freeness.”
In: Information Security. Ed. by Sokratis K. Katsikas, Javier López,
Michael Backes, Stefanos Gritzalis, and Bart Preneel. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2006, pp. 476–488. isbn:
978-3-540-38343-7.

[42] H. Jonker and J. Pang. “Bulletin Boards in Voting Systems: Mod-
elling and Measuring Privacy.” In: 2011 Sixth International Con-
ference on Availability, Reliability and Security. 2011, pp. 294–300.
doi: 10.1109/ARES.2011.50.

[43] Hugo Jonker, Sjouke Mauw, and Jun Pang. “Privacy and verifi-
ability in voting systems: Methods, developments and trends.”
In: Computer Science Review 10 (2013), pp. 1 –30. issn: 1574-0137.
doi: https : / / doi . org / 10 . 1016 / j . cosrev . 2013 . 08 . 002.
url: http://www.sciencedirect.com/science/article/pii/
S1574013713000282.

[44] Ari Juels, Dario Catalano, and Markus Jakobsson. “Coercion-
resistant electronic elections.” In: Proceedings of the 2005 ACM
workshop on Privacy in the electronic society. ACM. 2005, pp. 61–
70.

[45] MyungSan Jun. “Blockchain government - a next form of infras-
tructure for the twenty-first century.” In: Journal of Open Innova-
tion: Technology, Market, and Complexity 4.1 (2018).

[46] MyungSan Jun. “Blockchain government-a next form of infras-
tructure for the twenty-first century.” In: Journal of Open Innova-
tion: Technology, Market, and Complexity 4.1 (2018), p. 7.

[47] Aggelos Kiayias and Moti Yung. “Self-tallying Elections and
Perfect Ballot Secrecy.” In: Public Key Cryptography. Ed. by David
Naccache and Pascal Paillier. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 141–158. isbn: 978-3-540-45664-3.

[48] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. “End-
to-end verifiable elections in the standard model.” In: Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer. 2015, pp. 468–498.

[49] Aggelos Kiayias, Alexander Russell, Bernardo David, and Ro-
man Oliynykov. “Ouroboros: A Provably Secure Proof-of-Stake
Blockchain Protocol.” In: Advances in Cryptology – CRYPTO 2017.
Ed. by Jonathan Katz and Hovav Shacham. Cham: Springer In-
ternational Publishing, 2017, pp. 357–388. isbn: 978-3-319-63688-
7.

[50] Marko Kovic. “Blockchain for the people: Blockchain technol-
ogy as the basis for a secure and reliable e-voting system.” In:
(2017).

[51] David W Kravitz. Digital signature algorithm. US Patent 5,231,668.
1993.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

http://dx.doi.org/10.1109/ARES.2011.50
http://dx.doi.org/https://doi.org/10.1016/j.cosrev.2013.08.002
http://www.sciencedirect.com/science/article/pii/S1574013713000282
http://www.sciencedirect.com/science/article/pii/S1574013713000282

110 Bibliography

[52] Annabell Kuldmaa. “On Secure Bulletin Boards for E-Voting.”
In: Master. University of Tartu (2017).

[53] Ranjit Kumaresan and Iddo Bentov. “How to Use Bitcoin to
Incentivize Correct Computations.” In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Secu-
rity. CCS ’14. Scottsdale, Arizona, USA: ACM, 2014, pp. 30–41.
isbn: 978-1-4503-2957-6. doi: 10.1145/2660267.2660380. url:
http://doi.acm.org/10.1145/2660267.2660380.

[54] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. “Account-
ability: Definition and Relationship to Verifiability.” In: Proceed-
ings of the 17th ACM Conference on Computer and Communications
Security. CCS ’10. Chicago, Illinois, USA: ACM, 2010, pp. 526–
535. isbn: 978-1-4503-0245-6. doi: 10.1145/1866307.1866366.
url: http://doi.acm.org/10.1145/1866307.1866366.

[55] Lynn Landes. Scrap the "secret" ballot - return to open voting. Ed.
by freepress.org. [Online; posted 05-November-2005]. 2005. url:
http : / / freepress . org / article / scrap - secret - ballot -

return-open-voting.

[56] Byoungcheon Lee and Kwangjo Kim. “Receipt-Free Electronic
Voting Scheme with a Tamper-Resistant Randomizer.” In: Infor-
mation Security and Cryptology — ICISC 2002. Ed. by Pil Joong
Lee and Chae Hoon Lim. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 389–406. isbn: 978-3-540-36552-5.

[57] Helger Lipmaa, Guilin Wang, and Feng Bao. “Designated Ver-
ifier Signature Schemes: Attacks, New Security Notions and a
New Construction.” In: Automata, Languages and Programming.
Ed. by Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catus-
cia Palamidessi, and Moti Yung. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 459–471. isbn: 978-3-540-31691-6.

[58] Yi Liu and Qi Wang. An E-voting Protocol Based on Blockchain.
Cryptology ePrint Archive, Report 2017/1043. https://eprint.
iacr.org/2017/1043. 2017.

[59] Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. “A
Smart Contract for Boardroom Voting with Maximum Voter Pri-
vacy.” In: Financial Cryptography and Data Security. Ed. by Agge-
los Kiayias. Cham: Springer International Publishing, 2017, pp. 357–
375. isbn: 978-3-319-70972-7.

[60] S. J. Murdoch and G. Danezis. “Low-cost traffic analysis of Tor.”
In: 2005 IEEE Symposium on Security and Privacy (S P’05). 2005,
pp. 183–195. doi: 10.1109/SP.2005.12.

[61] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
2008.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

http://dx.doi.org/10.1145/2660267.2660380
http://doi.acm.org/10.1145/2660267.2660380
http://dx.doi.org/10.1145/1866307.1866366
http://doi.acm.org/10.1145/1866307.1866366
http://freepress.org/article/scrap-secret-ballot-return-open-voting
http://freepress.org/article/scrap-secret-ballot-return-open-voting
https://eprint.iacr.org/2017/1043
https://eprint.iacr.org/2017/1043
http://dx.doi.org/10.1109/SP.2005.12

Bibliography 111

[62] Yomna Nasser, Chidinma Okoye, Jeremy Clark, and Peter YA
Ryan. “Blockchains and Voting: Somewhere between hype and
a panacea.” In: (2018).

[63] C. Andrew Neff. “A Verifiable Secret Shuffle and Its Applica-
tion to e-Voting.” In: Proceedings of the 8th ACM Conference on
Computer and Communications Security. CCS ’01. Philadelphia,
PA, USA: ACM, 2001, pp. 116–125. isbn: 1-58113-385-5. doi:
10.1145/501983.502000. url: http://doi.acm.org/10.1145/
501983.502000.

[64] C Andrew Neff. “Verifiable mixing (shuffling) of ElGamal pairs.”
In: (2003).

[65] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. “Anonymous
connections and onion routing.” In: IEEE Journal on Selected Ar-
eas in Communications 16.4 (1998), pp. 482–494. issn: 0733-8716.
doi: 10.1109/49.668972.

[66] Robert Riemann. “Towards Trustworthy Online Voting: Distributed
Aggregation of Confidential Data.” Theses. Ecole normale supérieure
de Lyon, Dec. 2017. url: https://hal.inria.fr/tel-01675509.

[67] Robert Riemann and Stéphane Grumbach. “Distributed Proto-
cols at the Rescue for Trustworthy Online Voting.” In: CoRR
abs/1705.04480 (2017). arXiv: 1705.04480. url: http://arxiv.
org/abs/1705.04480.

[68] William H Riker and Peter C Ordeshook. “A Theory of the Cal-
culus of Voting.” In: American political science review 62.1 (1968),
pp. 25–42.

[69] Kazue Sako and Joe Kilian. “Receipt-free mix-type voting scheme.”
In: Advances in Cryptology—EUROCRYPT’95. Springer. 1995, pp. 393–
403.

[70] C. P. Schnorr. “Efficient Identification and Signatures for Smart
Cards.” In: Advances in Cryptology — CRYPTO’ 89 Proceedings.
Ed. by Gilles Brassard. New York, NY: Springer New York, 1990,
pp. 239–252. isbn: 978-0-387-34805-6.

[71] Adi Shamir. “How to Share a Secret.” In: Commun. ACM 22.11

(Nov. 1979), pp. 612–613. issn: 0001-0782. doi: 10.1145/359168.
359176. url: http://doi.acm.org/10.1145/359168.359176.

[72] Claude E Shannon. “Communication theory of secrecy systems.”
In: Bell Labs Technical Journal 28.4 (1949), pp. 656–715.

[73] Yu Takabatake, Daisuke Kotani, and Yasuo Okabe. “An anony-
mous distributed electronic voting system using Zerocoin.” In:
(2016).

[74] Pavel Tarasov and Hitesh Tewari. Internet Voting Using Zcash.
Cryptology ePrint Archive, Report 2017/585. https://eprint.
iacr.org/2017/585. 2017.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

http://dx.doi.org/10.1145/501983.502000
http://doi.acm.org/10.1145/501983.502000
http://doi.acm.org/10.1145/501983.502000
http://dx.doi.org/10.1109/49.668972
https://hal.inria.fr/tel-01675509
http://arxiv.org/abs/1705.04480
http://arxiv.org/abs/1705.04480
http://arxiv.org/abs/1705.04480
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
https://eprint.iacr.org/2017/585
https://eprint.iacr.org/2017/585

112 Bibliography

[75] Inter-Parliamentary Union. Declaration on Criteria for Free and
Fair Elections. Inter-Parliamentary Union, 1994.

[76] Eric M. Uslaner and Marc Hooghe. Trust and Elections. 2018. url:
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/

9780190274801.001.0001/oxfordhb-9780190274801-e-17.

[77] Nicolas Van Saberhagen. Cryptonote v 2. 0. 2013.

[78] Aleksandar Vasovic and Mike Collett-White. Crimea prepares for
referendum under heavy military presence. Ed. by reuters.com. [On-
line; posted 15-March-2014]. 2014. url: https://www.reuters.
com/article/us-ukraine-crisis-crimea/crimea-prepares-

for-referendum-under-heavy-military-presence-idUSBREA2E09R20140315.

[79] Yifan Wu. “An E-voting System based on Blockchain and Ring
Signature.” In: Master. University of Birmingham (2017).

[80] Bin Yu, Joseph Liu, Amin Sakzad, Surya Nepal, Paul Rimba,
Ron Steinfeld, and Man Ho Au. Platform-independent Secure Blockchain-
Based Voting System. Cryptology ePrint Archive, Report 2018/657.
https://eprint.iacr.org/2018/657. 2018.

[81] Filip Zagórski, Richard T. Carback, David Chaum, Jeremy Clark,
Aleksander Essex, and Poorvi L. Vora. “Remotegrity: Design
and Use of an End-to-End Verifiable Remote Voting System.” In:
Applied Cryptography and Network Security. Ed. by Michael Jacob-
son, Michael Locasto, Payman Mohassel, and Reihaneh Safavi-
Naini. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 441–
457. isbn: 978-3-642-38980-1.

[82] Filip Zagórski, Richard T. Carback, David Chaum, Jeremy Clark,
Aleksander Essex, and Poorvi L. Vora. “Remotegrity: Design
and Use of an End-to-End Verifiable Remote Voting System.” In:
Applied Cryptography and Network Security. Ed. by Michael Jacob-
son, Michael Locasto, Payman Mohassel, and Reihaneh Safavi-
Naini. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 441–
457. isbn: 978-3-642-38980-1.

[83] Zhichao Zhao and T.-H. Hubert Chan. “How to Vote Privately
Using Bitcoin.” In: Information and Communications Security. Ed.
by Sihan Qing, Eiji Okamoto, Kwangjo Kim, and Dongmei Liu.
Cham: Springer International Publishing, 2016, pp. 82–96. isbn:
978-3-319-29814-6.

[September 26, 2018 at 22:56 – classicthesis version 0.1]

http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780190274801.001.0001/oxfordhb-9780190274801-e-17
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780190274801.001.0001/oxfordhb-9780190274801-e-17
https://www.reuters.com/article/us-ukraine-crisis-crimea/crimea-prepares-for-referendum-under-heavy-military-presence-idUSBREA2E09R20140315
https://www.reuters.com/article/us-ukraine-crisis-crimea/crimea-prepares-for-referendum-under-heavy-military-presence-idUSBREA2E09R20140315
https://www.reuters.com/article/us-ukraine-crisis-crimea/crimea-prepares-for-referendum-under-heavy-military-presence-idUSBREA2E09R20140315
https://eprint.iacr.org/2018/657

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Distributed Direct Digital Democracy
	1 Introduction
	1.1 Issues with Paper-Based Voting
	1.2 Cryptography to the Rescue
	1.3 Privacy and Verifiability Concerns
	1.4 Direct Democracy in Global Communities
	1.5 Research Question
	1.6 Distributed Electronic Voting
	1.7 Thesis Outline

	2 Preliminaries
	2.1 What is electronic voting?
	2.2 Security requirements
	2.2.1 Privacy
	2.2.2 Verifiability

	2.3 Cryptographic primitives
	2.3.1 Mix network
	2.3.2 Onion Routing
	2.3.3 Blind Signatures
	2.3.4 Masking
	2.3.5 Commitment Scheme
	2.3.6 Secret Sharing
	2.3.7 Zero-Knowledge Proofs
	2.3.8 ElGamal Cryptosystem
	2.3.9 Chaum-Pedersen Discrete Logarithm Equality Proof
	2.3.10 Andrew Neff's Shuffles of ElGamal Pairs
	2.3.11 Digital Signature Algorithm
	2.3.12 Designated Verifier Signature and Proofs
	2.3.13 Fiat-Shamir Heuristic
	2.3.14 Schnorr Proof of Knowledge of a Discrete Logarithm
	2.3.15 Stealth Address

	2.4 Public Bulletin Board
	2.4.1 Blockchain

	3 Prior art
	3.1 Blockchain Based Voting in the Real World
	3.2 Blockchain Based Electronic Voting Schemes
	3.2.1 Masking Based
	3.2.2 Blind Signature Based
	3.2.3 Privacy-Preserving Cryptocurrency Based
	3.2.4 Ring Signature Based
	3.2.5 Homomorphic Encryption Based

	3.3 Open Research Questions
	3.3.1 Privacy on Blockchain
	3.3.2 Public Supervision and Active Participation
	3.3.3 Honest Unintentional Mistakes Without Loss of Privacy
	3.3.4 Minimizing User Effort

	4 Setting the Scene
	4.1 Modelling
	4.1.1 Actors
	4.1.2 Algorithms

	4.2 Threat model and assumptions
	4.2.1 Adversary
	4.2.2 Authorities
	4.2.3 Voters

	4.3 Properties
	4.3.1 Privacy
	4.3.2 Correctness and Verifiability
	4.3.3 Functional properties

	4.4 Public Bulletin Board
	4.4.1 Assumption
	4.4.2 Actors
	4.4.3 Transaction and Block
	4.4.4 Consensus
	4.4.5 Incentives

	5 D4: Distributed Direct Digital Democracy
	5.1 Overview
	5.2 Election Setup
	5.3 Ballot Preparation & Recording
	5.3.1 Ballot Preparation
	5.3.2 Recording

	5.4 Vote Verification & Publishing of Eligible Votes
	5.4.1 Collection, Verification & Weeding

	5.5 Anonymizing by Mixing
	5.6 Decryption of Votes, Aggregation and Results

	6 Analysis
	6.1 Security
	6.1.1 Privacy
	6.1.2 Verifiability

	6.2 Complexity
	6.2.1 Computation
	6.2.2 Communication

	7 Validation
	7.1 Implementation
	7.2 Instantiation
	7.3 Experiments
	7.4 Results
	7.4.1 Time Performance
	7.4.2 Storage Performance

	7.5 Discussion
	7.5.1 Comparison to existing schemes
	7.5.2 Improvements

	8 Discussion and Future Work
	8.1 Discussion
	8.2 Future work
	8.3 Concluding remarks

	Bibliography

