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ABSTRACT 

Runoff processes in glacier and paramo catchments in the Andean region are of interest as 
they are vitally important to serve the water needs of surrounding communities. Particularly 
in Northern Ecuador, the runoff processes are less well-known due to the high variability of 
precipitation, young volcanic ash soil properties, soil moisture dynamics and other local fac­
tors. Previous studies have shown that the melting of glaciers contributes to runoff gener­
ation and that the paramo ecosystem plays an important role in regulating runoff during 
periods of low precipitation. Data collection and experimental investigations were carried 
out in a catchment of 15.2 km2 and altitude ranging between 4000 and 5700 m above sea 
level. Environmental tracers and hydrochemical catchment characterization were used for 
identifying runoff sources and their respective contributions during dry and wet conditions. 
Dry conditions are defined as periods where precipitation was absent for at least three con­
secutive days and wet conditions imply rainfall events. This study highlights the importance 
of the paramo on contributing to total runoff during baseflow (70% of total runoff) and the 
capacity of the paramo to dissipate the stream energy and buffer the peak flow during rain­
fall conditions. Electrical conductivity together with stable isotopes were identified as conser­
vative tracers that characterize the end-member concentrations. 
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Introduction 

Tropical grasslands are one of the most abundant 
but probably least-understood ecosystems in terms 
of their biological and physical processes. In the 
Andean region such grasslands are known as 
paramos and they have been recognized for their 
importance in providing water for agriculture and 
urban use (Buytaert and Beven 2011), and sustain­
ing biodiversity and unique ecological processes 
(Hofstede et al. 2002; Madriiian et al. 2013). The 
importance of the paramos is associated with the 
tremendous capacity of water retention in its vol­
canic ash soil covered by vegetation (Poulenard 
et al. 2002; Tonneijck 2009; Roa-Garcia et al. 2011). 
Ecuador has nearly 12,500 km2 of para mo of which 
64% in areas above 3000 m a.s.l. has been trans­
formed or degraded (Hofstede et al. 2002) and the 
remaining areas are currently under constant pres­
sure. At a higher elevation (>4000 m a.s.l.), these 
ecosystems are influenced by permanent snow and 
glaciers that feed directly the river's drainage system 
or may contribute further downstream due to glacial 
meltwater infiltrations and water resurgence through 

springs (Favier et al. 2008; Villacis et al. 2008; 
Cauvy-Fraunie et al. 2013). 

A lot of attention has been given on the relation­
ship between climate change and retreating glaciers 
globally (Beniston 2003), particularly because cli­
mate change in conjunction with the rapid change 
in land use can jeopardize the water quantity and 
quality of the paramos (Jansky et al. 2002; Buytaert 
et al. 2006b; Buytaert and Beven 2009). Bradley 
et al. (2006) showed clear evidence of faster surface 
temperature changes in higher elevations compared 
to lower elevations in the Tropical Andes with a 
rate of 0.11 °C per decade in the period 1939-1998. 
The concern of the scientific community lies in the 
implications of the melting water and its impact on 
hydrological systems alongside the response of the 
terrestrial, aquatic biota (Cauvy-Fraunie et al. 2013) 
and water security for communities that rely on 
these catchments in the tropical regions (Brown 
et al. 2010; Kaser et al. 2010). The complexity of 
these glacierized-paramo catchments is higher than 
those in temperate regions since paramo catchments 
are more affected by a continuous ablation at all ele­
vations (Kaser and Osmaston 2002) leading to 
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changes in the hydrological, geomorphic and eco­
logical processes. Due to the orographic properties 
of these high mountainous regions in the paramos,

the precipitation regime has a remarkably large spa­
tial variability (Buytaert et al. 2006b; Celleri and 
Feyen 2009). 

Several studies enhance the importance of a fair 
understanding of the hydrological complexity of 
these interconnected systems and the implications 
for water resources management in the region 
(Buytaert et al. 2010; Buytaert and Beven 2011; 
Viviroli et al. 2011; Cuesta et al. 2013; Carrillo-Rojas 
et al. 2016). Tracer experiments have been widely 
used to provide more information about the con -
nectivity and time scales of the contribution of the 
main runoff sources and flow pathways to the total 
runoff (Huss et al. 2008; Villacis et al. 2008; 
Wenninger et al. 2008; Condom et al. 2012; Dahlke 
et al. 2012; Munyaneza et al. 2012; Windhorst et al. 
2013). However, appropriate tracers for a suitable 
spatial hydrochemical characterization have not yet 
been identified. In addition, a quantification of the 
different contributions from glacier and paramo

components in catchments of complex geology and 
topography remains a challenge. 

This study aims to (i) identify effective environ­
mental tracers (stable isotopes and major ions) to 
quantify the contribution of the main runoff com­
ponents, and (ii) provide an understanding of the 
runoff generation of a glacierized-paramo system 
during dry and wet conditions. 

Study area

Location 

The study catchment Los Crespos-Humboldt 
(15.2 km2

) lies within the Antisana Ecological 
Reserve (628.1 km2

) in the Andean region of 
Ecuador (Figure la). It is located at the south-west­
ern slope of the Antisana volcano (0°30'S, 78°111W) 
and its elevation ranges from 4000 to 5700 m a.s.l 
(Figure lb). This catchment is one of several water 
sources for La Mica reservoir that supplies water for 
the southern part of Quito, the capital city of 
Ecuador, located 50 km north of this catchment. 

Land cover 

It consists of 15% glaciers, 68% paramo grasslands 
and 17% moraines (Figure lc,b). The latter one is 
an ecosystem in transition between the glacier and 
the paramo. The paramo vegetation is dominated by 
tussock grasses ( Calamagrostis intermedia), acaules­
cent rosettes (Werneria nubigena, Hypochaeris sessi­

liflora) and cushions (Azorella pedunculata) (Minaya 
et al. 2016) (Figure le). The paramo vegetation has 
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adapted to specific climatic conditions of low atmos­
pheric pressure, high radiation and wind drying 
effects (Luteyn 1999). The glacier is an icecap that 
has retreated around 200 meters in the last 20 years 
(Caceres et al. 2005; Hall et al. 2012). 

Soil properties 

The soils are andosols derived from volcanic mater­
ial based on the FA O classification ( Gar di et al. 
2014). These are characterized by their high soil 
moisture (Buytaert et al. 2005a) and water retention 
capacity (Roa-Garcia et al. 2011; Janeau et al. 2015). 
The soil texture influences the ecological and hydro­
logical processes. Sandy soils drain well and reduce 
the capability of holding moisture; silty soils offer a 
high water-holding capacity. The slopes are moder­
ate (up to 15°) at lower elevations and increase up 
to 30° close to the moraines at higher elevations. 

Climate 

From lower to higher elevations the precipitation in 
the catchment increases from 900 to 1200 mm/yr, 
with an average annual precipitation of 745 mm/yr 
to 993 mm/yr for the Humboldt (4010 m a.s.l.) and 
the Crespos (4785 m a.s.l.) weather stations, respect­
ively. The average temperature ranges from 4.8 °C 
to 7.0 °C (for the period 2000 to 2011) for the same 
elevations. Figure 2 shows the climate diagram of 
monthly average values of precipitation and max­
imum and minimum temperatures at the two wea­
ther stations (Humboldt and Crespos) for the period 
of 2000 to 2011. The wet period extends typically 
from April to June. In the Ecuadorian Andes, the 
paramos above 3000 m a.s.l. receive 16% more pre­
cipitation compared to other paramos located in the 
inter-Andean valleys (Buytaert and Beven 2011). 
There are two main sources of precipitation: those 
influenced by the air masses from the Amazon 
region and those influenced by the inter-Andean 
valley regime (Vuille et al. 2000). 

Precipitation has a large spatial variability 
(Buytaert et al. 2006a) with a presence of the so­
called "horizontal precipitation", which consist of 
fog and mist developed from the orographic uplift 
caused by the Andes (Buytaert et al. 2005b), which 
also limits transpiration (Buytaert and Beven 2011). 
Although, this additional source of water is minor 
and mostly intercepted by arbustive vegetation 
( Chuquiraga ), other studies ( Crockford and 
Richardson 2000; Foot and Morgan 2005) showed 
that the paramo ecosystem can catch low energy 
rain, drizzle and fog moisture on their leaves, which 
conduct over 50% of rainwater directly to the 
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Figure 2. Average monthly precipitation, maximum and 
minimum average monthly temperatures at Humboldt and 
Crespos weather stations from 2000 to 2011. 

volcanic ash soils of Ecuadorian highlands (Janeau 
et al. 2015). 

Geology 

The geology of the catchment has a wide detritic 
range that holds a variety of volcanic deposits from 

previous eruptions (Figure ld). The last significant 
eruption in the Antisana occurred nearly 1000 years 
ago based on stratigraphic studies (Caceres et al. 
2005; Hall et al. 2012; 2017). The study area could 
have received ashes from different volcanoes as a 
result of an increase of eruptive frequency during 
the Holocene (Hall and Mothes 1999; Bernard and 
Andrade 2011). The peak is slightly flat; it presumes 
that the crater is glacier filling. Although there has 
not been volcanic activity or hot fumeroles lately, 
there are reports of SO2 gas in higher elevations 
(Caceres et al. 2005; Hall et al. 2012). Most of the 
stratigraphy is composed of dark layers of ash and 
andesite scoria, which is a product of the fall of 
eruptive clouds with intercalations of fluvial deposits 
(Caceres et al. 2005; Hall et al. 2012). 

The geology as shown in Figure ld is composed 
of the glacier, moraines, glacial-fluvial sediments, 
tillites, volcanic rocks and Lahar rojo. The moraines 
are deposited debris that form along the glacier due 
to the receding of the glacier. These areas are 
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Figure 3. Subcatchment division with sampling locations for 
precipitation, spring water, surface water and ice. 

characterized by lagune formations which intercept 
meltwater. The Lavas Pleistocene formation is older 
volcanic pyroclastic deposits which are composed of 
andesite rocks containing plagioclase, amphibole 
and feldspar minerals (Hall et al. 2012). The Hialina 
Lava is formed also of andesite content; however, 
this is a younger formation with olivine, plagioclase 
and quartz, arranged in a matrix formed by volcanic 
glass (Alvarado 2009). The Lahar Rojo is a sequence 
of red volcanic lava deposits along the Antisana 
river. Its pyroclastic material when mixed with water 
became red indicating several volcanic eruptions 
during the Holocene. 

Data and methods 

Data collection 

The catchment is equipped with two hydro-meteoro­
logical stations (Figure lb) managed by the National 
Institute of Meteorology and Hydrology of Ecuador 
(INAMHI). The DEM that was used has a resolution 
of 20 m x 20 m and was obtained from the contour 
line drawings from the Ecuadorian Military 
Geographical Institute (IGM) at a scale 1:50,000. The 
stream network was based on a 'hydrological 
approach' as defined by Mark (1984) and Lo and 
Yeung (2007) and later verified during ground-truth­
ing recording GPS point measurements and field 
observations. The subcatchment delineation was cre­
ated using the multiple flow direction model 
(Tarboton 1997) and the eight-direction method (D8) 
introduced by O'Callaghan and Mark (1984). The sta­
tion located at the outlet of the catchment is the 
Humboldt station (4010 m a.s.l.), which records data 
of precipitation, water levels, temperature and elec­
trical conductivity of the water. Isotopic and hydro­
chemical samples were collected in a sampling 
campaign carried out in July 2014. Samples were 
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collected during dry conditions on July 4-7 and dur­
ing wet conditions on July 14-15. Figure 3 shows the 
catchment with the sampling sites. The catchment 
contains two main tributaries that originate from the 
Antisana glacier. Catchments# 4, 5, 6, 7, 8 and 9 flow 
through paramo vegetation and from now on will be 
referred to as paramo catchment. Catchment #2 flows 
through large boulders and rocks of different size on 
a mixed catchment of water coming directly from the 
glacier (subcatchment 23) without any other type of 
contribution until it meets a small tributary of a com­
bined source of surface and spring water (subcatch­
ment 22). Subcatchment 23 from now on will be 
referred to as glacier catchment. 

The highest monthly average flow during the year 
occurs in June, with an average of 300 1 s- 1

; whereas 
the lowest monthly flow occurs in March with an 
average of 200 1 s -l. Due to the technical and logistics 
limitations in the study area, flow was measured only 
at the outlet of the catchment. Precipitation was also 
monitored at the outlet of the catchment. 

Experimental set-up 

During dry conditions 

In this study, dry conditions are defined as periods 
in which precipitation was absent for at least three 
consecutive days. All water samples were taken from 
the main streams including all tributaries; surface 
water (n = 113), spring water (n = 46), and ice 
(n = 3) as shown in Figure 3 during dry conditions. 
Every 200 m along the flowing stream channel, elec­
trical conductivity (EC) and temperature (°C) were 
measured in-situ using a WTW LF340 series con­
ductivity meter. A volume of 2 ml was collected in a 
glass bottle (PTFE/silicone septa) for stable isotopic 
analysis ((5 180, J2H) and filled to the top to prevent 
evaporation. Every 400 m, two polyethylene bottles 
containing 25 ml water samples were filtered for 
major anions (CL so/-) and cations (Ca2+, Mg2+, 
Na+, K+) analysis. The latter bottle was previously 
prepared for preservation by adding a drop of nitric 
acid (HNO3). All vials were kept in a cooling box at 
1 - 5 °C. Ice samples were taken at the foot of the 
glacier at three different depths: 10, 20 and 30 cm. 

Additional samples were also analysed for SiO2 

using the 8185 method of Silicomolybdate using a 
Hach DR890 Portable Spectrophotometer and for 
HCO3- using a Hach Digital Titrator (HACH 2014). 
Additional information such as weather conditions, 
GPS coordinates and a description of the sampling 
site was also recorded. 

During wet conditions 

During rainfall events, the sampling of the surface 
water and precipitation was undertaken only at the 
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outlet of the catchment at Humboldt Station for 
rainfall-runoff analyses. Surface water samples were 
collected with a frequency of 15-20 min at three 
main stages: (i) Pre-event, samples taken before the 
peak of the rainfall event (n = 3); (ii) Event, samples 
taken during the rainfall event (n = 14); and (iii) 
Post-event, samples taken after the peak of the rain­
fall event (n = 12). 

Rainfall samples were collected using a self-made 
device that consists of a funnel (diameter 140 mm) 
with a micro filter at the neck level joined to a drip 
chamber and to a 60 cm PVC tubing connected at 
the end to a rigid needle (3.8 cm, 28 G) embedded 
in rubber cork of a polyethylene vacuum packed 
bottle (1 L). One device was used per rainfall event, 
with the sample extracted immediately after or dur­
ing the event following the procedure of the IAEA 
(IAEA/GNIP 2014). 

All samples were analysed for major anions, cati­
ons and stable isotopes using the same procedure as 
described above in section During dry conditions and 
SiO2, EC and temperature were measured in-situ. 

Laboratory methods 

Oxygen and hydrogen isotopic values, expressed in 
%0 in relation to the Vienna Standard Mean Ocean 
Water (VSMOW), were measured using the Liquid­
Water Isotope Analyzer (LGR DLT-100, precision 
<0.3%0 for 180/160 and <1.0%0 for 2H/1H). The 
samples for major cations were determined by mass 
spectrometry using the Thermo Fisher Scientific 
XSeries 2 ICP-MS (limit of quantification ~2 ppb). 
Anions were analysed by using ion chromatograph 
Dionex ICS-1000 (limit of quantification 2000 ppb ). 
All analyses were performed following quality assur­
ance and control procedures of the laboratory at 
UNESCO-IHE, Delft, the Netherlands. 

Data analysis 

Spatial hydrochemical characterization 

The dispersion of sample measurements was plotted 
and the mean was computed for the different runoff 
sources, e.g. ice, precipitation, surface water and spring 
water (shallow and deep subsurface flow). Further ana­
lysis was done in the groups with a large dispersion: 
surface water and spring water. For surface water, the 
samples were divided in catchment and subcatchment 
level (Figure 3) for a detailed analysis to identify the 
origin of the variation of its concentration and to give 
more confidence intervals in the results. One-way 
ANOVA test was used to determine statistically signifi­
cant differences (P < 0.05) among group means. Tukey 
multiple comparisons used as post-hoc tests after sig­
nificant t-tests, are indicated by lowercase letters on 

top of each boxplot. For spring water, the samples 
were divided based on their geological background 
(Figure ld). The same approach of checking dispersion 
and mean comparison was carried out. 

Flow routing and contribution 

Tracers enabled the identification not only of the 
runoff sources but also the quantity they contribute 
to the river flow. We applied the mass-balance 
approach from downstream to upstream to calculate 
the discharge when two streams met at the conflu­
ence point (Eqs. (1) and (2)) 

Qy = Qi+ Q2 
Cy Qy = Ci Q1 + C2 Q2 

(1) 
(2) 

where Qy is the total runoff, Q1, Q2 are the runoff 
components in m3/s and Cy, Ci , and C2 are the 
concentrations of total runoff, and of the runoff 
components in mg/1 or %0 • To assess the flow rout­
ing and contribution along the main rivers and trib­
utaries in the catchment, concentrations were 
plotted against distance from the outlet. 

End member mixing analysis (EMMA) and hydro­

graph separation 

An End Member Mixing Analysis (EMMA) based 
on the method described by Christophersen and 
Hooper (1992) was carried out using the water qual­
ity parameters obtained. Mixing diagrams of EC 
(µSiem), SiO2 (mg/1), c1- (mg/1), so/-(mg/1), 
Na+(mg/1), Mg2+(mg/l), K+(mg/1), Ca2+(mg/l), and 
(52H and (5 180 (%0 VSMOW) were created first to 
test their suitability as tracers for the hydrograph 
separation. In addition, these parameters were plot­
ted against discharge to observe the dilution behav­
iour and hysteresis. Principal Component Analysis 
(PCA) was carried out on the above-mentioned 
parameters using R statistical software (R 
Development Core Team 2007) to indicate that two 
principal components explained at least 90% of the 
data variability and leading to a three component 
hydrograph separation. Isotope and hydrochemical 
data were combined with discharge data taken at 
the outlet of the basin to perform three-component 
hydrograph separations based on steady state mass 
balance equations and hydrograph separation 
assumptions (Pearce et al. 1986; Buttle 1994; 
Uhlenbrook et al. 2002). A third runoff component 
was included in Equations 1 and 2 to calculate 
three-component hydrograph separations for the 
total runoff (Qy) (Eq. (3)): 

Cy Qy = Ci Q1 + C2 Q2 + C3 Q3 (3) 

Rainfall characteristics, including duration, total 
rain, maximum and average intensity were estimated 
for the rain events. A rainfall event was defined as a 
rainfall occurrence with rainfall intensity greater 
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than 1 mm/hr, and intermittence less than four 
hours. Peak flow, water depth, and time to peak 
were determined for each event. 

Analytical and tracer end-member uncertainties 
were accounted for the hydrograph separation and 
quantification of the runoff components based on a 
Gaussian error propagation technique with 70% 
confidence interval (Eq. (4)) (Genereux 1998): 

W � {[%:, wx,]' + [%:, Wx,]' + + [%:. W,;rr
(4) 

where W is the uncertainty of the each runoff com­
ponent in %, Wx1 x2 are the standard deviations of 
each end-member, Wx5 is the analytical uncertainty 
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Figure 5. Major ions and EC values of water samples from surface water within the Los Crespos-Humboldt basin, analyzed 
per catchment and subcatchment. Lowercase letters indicate significant differences among catchments (P :S 0.05), according to 
Tu key's test. 

and : are the uncertainties of the runoff component 
average contribution regarding the tracer 
concentrations. 

Results 

Hydrochemical catchment characterization 

The location, main characteristics and chemical con­
centrations of all samples are shown in Table Al in 
the supplemental material section. SiO2, Na+, K+ 

and stable isotopes (62H and (5 180) gave a first 
glimpse of the composition of these groups by 
showing such differences amongst all groups (Figure 
4). Major ions and EC values in Ice and 
Precipitation showed lower values in comparison to 
surface water and spring water samples. These two 
last runoff sources require a distinctive classification 
to give more informative results and therefore those 
were disaggregated and grouped per subcatchment 
and per geological background, respectively. 

Surface runoff - subcatchment analysis

The major ions (Na+, K+), SiO2 and EC values 
from the subcatchments 41, 42, 43, 6, 7, 8 and 9 
exhibited no clear contrasting patterns among them, 
thus can be considered as a single group (Figure 5). 
These subcatchments belong to catchments 4 and 5 

which lie in a highly vegetated side of the catch­
ment. Whereas subcatchment 21, 22 and 23 that 
belong to catchment 2 exhibited very distinctive pat­
terns (p :::; 0.05) and therefore should remain 
grouped separately (Figure 5). All major cations 
showed significantly lower values of concentrations 
for subcatchment 23, thus demonstrating a unique 
hydrochemical characteristic of streams derived 
from glacier components. Subcatchments 31 and 32 
showed different concentrations between them; 
however, their low is very low compared to the con­
tributions from the other subcatchments. 

Spring water - geological background analysis

Spring water samples that come from the Lahar 
Rojo (LaRo) formation showed distinctive higher 
concentrations in most of the major ions and EC 
values; whilst stable isotopes did not show specific 
patterns (Figure 6). The rest of the geological forma­
tions showed different concentration ranges that 
could not be tested for significance due to the lack 
of samples for specific major cations. 

Flow paths and contribution 

Distance to the outlet and elevation were highly cor­
related (P < 0.001) and assumed to have a linear 
response despite the weather conditions which can 
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Figure 6. Chemical components and stable isotopes of spring water samples within the Los Crespos-Humboldt basin, analyzed 
per geological background (Ch= Chacana volcanic rocks, Hi= Hialina lava, LaRo = Lahar Rojo, LaPI = Lavas Pleistocene, 
Ti= Tillite late ice age). 

differ at different locations within this high altitud­
inal mountain ecosystem. A distance to the outlet 
was selected to display the effect of surface water 
within the subcatchment and the confluence with 
other tributaries along the way to the outlet (Figure 
7). The major ions and EC values showed a signifi­
cant spatial variability and evidently separate two 
contrasting groups: surface water directly coming 

from the melting of the glacier (subcatchment 23) 
and the surface water that comes from the paramo

vegetated areas (subcatchments 41, 42, 43, 6, 7, 8, 
9). It should be noted that subcatchment 9 starts 
also with a small contribution of glacier but most of 
the water comes from the paramo vegetated areas. 
The high EC concentration values of subcatchments 
22 and 31 are due to a considerable amount of 
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spring water contribution to the main channel as 
well as the small variations displayed among sam­
ples within the same subcatchments. 

An initial estimation of the flow percentages dur­
ing rainless periods was derived with EC, stable iso­
topes, and major ions independently. The flow path 
estimations for major ions were not considered 
because the concentrations and/or differences were 
too low thus giving unrealistic estimations for the 
subcatchments. Thus, EC values and stable isotopes 
were used to estimate the contribution of water 
from the glacier component, which was of 21 % for 
EC, 14% for J2H and 15% for 6 180 during the sam­
pling campaign on July 4-7, 2014. Likewise, the per­
centages of flow that comes from the paramo 
vegetated areas are 52% for EC, 71 % for 62H and 
78% for 6180, the remaining percentages come from 
small streams that join the main stream close to 
the outlet. 

Water sources isotopic signatures 

The sampling during the rainfall events corresponds 
to low-medium intensity rain and it was considered 
as representative for rainfall-runoff evaluation 
(Table A2 in supplemental material section). The 
duration of the event was 12 hours with a maximum 
intensity of 0.3 mm/h and an average intensity of 
0.18 mm/h. Isotope composition for all samples in 
the catchment is shown in Figure 8. The Local 
Mean Water Line (LMWL) corresponds to the 
Izobamba station (0.37°S, 78.55°W), which lies 
nearby the location where the samples were taken 

(0.5°S, 78.18°W). Precipitation ranged from -8.5 to 
-3.9 %0 for 6 180 and from -59.5 to -42.4 %0 for
62H. Ice samples have a lighter isotopic signature,
the lightest value corresponds to a 30 cm-depth sam­
ple, followed by a 20 cm-depth sample and the
slightly enriched value belongs to the 10 cm-depth
sample. The samples were clustered in such a way
that the isotopic signature of the main river and
tributaries that come from the paramo component
were clearly identifiable, along with the glacier com­
ponent. The signature of the surface water samples
from the paramo component shows a relatively
lighter or more depleted value of stable isotopes in
comparison to the signature of the surface water
samples from the glacier component, which are
heavier or enriched. Signature from the surface
water paramo showed a wide range of isotopic com­
position from -14.2 to -12.5 %0 for 6180 and from
-108.6 to -95.3 %0 for 62H. Likewise, the isotopic
composition of surface water from glacier ranges
from -13.4 to -12.3 %0 for 6 180 and from -97.4
to -87.6 %0 for 62H.

Hydrograph separation 

Mixing plots were derived with all possible permuta­
tions of the small set of parameters (EC, SiO2, Na+, 
K+, (5 180, and J2H). Three main components were 
considered: precipitation, glacier and paramo, each 
of which has its own chemical signature and serves 
as a vertex of a triangle that defines the boundaries 
of the event runoff concentrations. EC and stable 
isotopes (6 180, and 62H) were identified as conser­
vative tracers that characterize the end-member 
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concentrations represented by precipitation, glacier 
and paramo runoff (Figure 9). Most concentration 
points of the event water were located between the 
surface runoff from glacier and paramo. The mixing 
plot shows the evolution of the stream water before 
(pre-event), during (event) and after (post-event) 
the event. The discharge started with EC values of 
around 95 µs/cm, decreasing to an average of 70 µs/ 
cm during the event and rising up to 105 µs/cm 
after 12 hours of the event. During the event the 
water samples concentration show slightly heavier 
isotope values. 

The three-component hydrograph separation 
based on EC and 62H concentrations quantified the 
relative contribution of precipitation, glacier and 
paramo to the total flow. During the event, the total 
discharge was composed of 8% precipitation, 41 % 
flow from glacier and 51 % flow from the paramo

component (Figure 10). The glacier component was 

the first to rise; the precipitation and paramo com­
ponents have the maximum contribution during the 
peak time of the discharge. The rising limb mainly 
comprised similar contributions from glacier and 
paramo components and to a lesser extent by pre­
cipitation, whilst during the recession limb the con­
tribution of precipitation increased. After the event 
runoff, there was still contribution from the paramo

component while the contribution from the glacier 
decreased gradually as shown in Figure 10. 

Discussion 

Spatial hydrochemical analysis and 

suitable tracers 

Silica (SiO2) and EC were proved to be appropriate 
tracers to separate the main groups of runoff sour­
ces (precipitation, surface and spring water); 



202 @ V. MINAYA ET AL. 

m

: : ,•- - -1111ur1 _ _ _ _ _
;

0 . 6

1 a �----� 

0 . 0
- Precip .

...... o .  4 I
QI 

. . . . . . . . . . . . . . . . . . . . .  q . . . . . .  

P�m.��·-. , ,..c.;,,. - i:i. ,o. -G- -e _ & - u ;� .o- e

-

tf�"' lel.l:lrlf'iff. _, , ' .,,_ �,- -<J- -o- _,.,-
0 .  2 l . . . . .  : · ' 'd 

· · · · · · · · o -- - ·::::::- - :,o -- -o - · - ·EJ_ 

·
·
··.D - -

-
---:-. · · · ·� t - · · · :;:- - • · □ 

, ,.. - � 
.;::- .-7- -v- -v- -v 

� -'SI!! ... � - � --- 0
.,,,. 

0Paramo 

0 6 1 8  0 6  1 2  1 8  

Figure 1 0. Three-component hydrograph separation, contribution of Glacier (QGlacie,), Paramo (OParamol and event (OEvenrl to
stream runoff based on the EMMA using EC and i:?H as tracers for 14 July event. Colored area shows the estimated error 
propagation of the components. 

whereas all major ions did not show clear difference 
between surface and spring water. In all cases, the 
spring water displayed higher values with large var­
iations; this suggests that some runoff could origin­
ate from deeper sources, from fissures and fractures 
in the rock, where longer residence and contact 
times have increased the ion concentrations. 
However, attention should be paid to the outliers, 
which provide clear evidence of meltwater resur­
gence from the glacier. The latter confirms the melt­
water infiltration during a study of the influence of 
the glacier on the water levels in the same catch­
ment (Cauvy-Fraunie et al. 2013). Unfortunately, it 
is very difficult to crosscheck the water chemistry 
with the water signatures from the stable isotopes 
since they could be altered as a consequence of the 
strong influence of bedrock substrates, elevation and 
manifold underground processes (Nels on 
et al. 2011). 

The analysis of surface water per subcatchment 
identified two distinctive groups, the samples from 
subcatchments 4 and 5 were pooled together and 
defined as the paramo component. Similarly, sam­
ples from subcatchment 23 were defined as the 
Glacier component since that was the stream that 
exclusively carried water from the melting glacier. 
However, during dry conditions in the diurnal cycle 
the contribution of the glacier might: a) increase as 
a consequence of the melting of the glacier due to 
the strong shortwave radiation especially in the low 
part of the glacier, and b) decrease as consequence 
of sublimation of the glacier due to high wind 
velocities (Favier et al. 2004). 

EC, SiO2, Na+ and K+ were appropriate tracers 
that displayed the significant difference between the 
glacier and the paramo component. The landscape 
played an important role influencing the hydro­
chemical composition of the surface water, as 

confirmed by the analysis of its distance to the out­
let. The latter revealed the contribution of the spring 
water to the stream by showing changes in the con­
centration of the different tracers along each sub­
catchment and the shift in concentration while 
joining other subcatchments. 

The stable isotopes (6180 and 62H) proved to be 
appropriate tracers to distinguish between precipita­
tion and ice samples; however, they were unable to 
clearly distinguish between surface and spring water 
sources. This could be partially related to the mixing 
of surface water samples that were taken along the 
streams encompassing a combination of surface and 
spring water. Large variations in the stable isotopes 
could also be associated with the undetermined 
quantification of shallow and deep subsurface flow. 
The relative distance of the ice samples to the 
LMWL and GMWL curves are most likely due to 
evaporative losses during the melting as evidenced 
by the surplus of headspace within the vial. The 
comparatively higher concentrations in silica and 
the cations (Ca2+, Mg2+, Na+, K+) in spring water 
should be considered as indicators for water from 
deeper soil layers in study areas comparable to this 
one. These results strengthen the assumption that 
most of the spring water comes from a groundwater 
source; nevertheless, the discrimination among 
groundwater, shallow and deeper subsurface flows 
are subjects of further analysis which lies outside 
the scope of this study. 

Catchment geology and weathering processes 

Surface water samples obtained near the glacier and 
moraines formations (upper section of catchment 2) 
contain low EC (mean of 7.5 µSiem) and silica con­
centrations (mean 9 mg/1), as well as other ions 
(Figure 5). Most of the spring water samples showed 



silica concentrations of 55 to 70 mg/1; while the 
samples that correspond to the type of geology 
Tillita showed concentrations between 45 and 
50 mg/1. In most of the cases, the latter type of geol­
ogy consists of impermeable tough layers that have 
a shallow water table (Cuesta et al. 2013) and thus 
could easily get in contact with the subsurface flow 
and experience a dilution effect. Catchment 1, where 
the Hialiana lava formation is dominant, shows 
higher EC (mean: 149 µSiem) and silica concentra­
tions (mean: 48 mg/1). The Hialiana lava formation 
is dominant in catchment 1. This area is rich in 
olivine, plagioclase and quartz. Although quartz is 
highly resistant to weathering processes, olivines are 
known for decomposing faster (Goldich 1938; 
Appelo and Postma 2005). The weathering of these 
minerals results in increased contents of silica, 
bicarbonates, and cations in the water. Sodium is 
also derived from weathering of plagioclase materi­
als. Catchment 1 contains the highest sodium con­
centrations (mean: 7.5 mg/1) as shown in Figure 5. 
The lavas Pleistocene are dominant in catchment 4. 
These are characteristic for also their high silica 
content (mean: 52 mg/1), but as opposed to the 
Hialina lava, they contain lower sodium concentra­
tions (mean: 4 mg/1). Magnesium is evidence of 
weathering of pyroxenes and amphiboles. 
Catchment 4 displays a wider range of magnesium 
concentrations from 1.4 to 5.7 mg/1. For both catch­
ments 1 and 4, calcium is known to be released 
with the weathering of ambhiboles and pyroxenes. 
These weathering processes may also result in the 
precipitation of carbonates and clay minerals. 
Surface water samples from the Lahar Rojo forma­
tion did not show the high ionic content expected 
as observed in the groundwater samples. Figure 6 
shows the high concentrations observed in the 
Lahar Rojo section. The high clay content in this 
formation explains the high observed ionic content 
found in the groundwater samples. In catchments 
5,6,7,8,9, the dominant formations are glacial fluvial 
sediments, tillites, and lava and breccia. These sedi­
ment deposits have lower electrical conductivities 
thus lower ionic content, but a wide range in silica 
concentrations. Their low ionic content is explained 
by the source of these materials which comes from 
the glacial debris. 

Quantifying the contribution to event runoff 

Separation of the contribution of each runoff com­
ponent was challenging. The contributions may vary 
to an unknown amount due to unidentified layers 
and/ or fissured and fractured rocks from which 
spring water originates. The contribution from the 
paramo is a result from the mixing between surface 
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runoff, soil water, shallow surface flow and ground­
water as evidenced in other small head watersheds 
(Marechal et al. 2013). Nevertheless, since the water 
sampled in the rivers took into account the contri­
bution of spring water, our main objective remains 
in the quantification of the relative contribution 
from glacier and paramo and their evolution with 
time as the main components for the total runoff at 
the outlet of the catchment. 

The isotopic composition of rainfall and their 
relative distance to the LMWL propose a possible 
evaporation effect that occur when raindrops fall in 
a warm atmosphere. This is suggested by the values 
of deuterium excess less than 10%0 in all precipita­
tion samples. The first raindrops are usually more 
isotopically enriched (Gat and Matsui 1991). In add­
ition, the conditions between the Izobamba station 
(3059 m a.s.l.), where the LMWL was recorded, and 
the Humboldt station (4010 m a.s.l.), where the sam­
ples were taken, are slightly different. The precipita­
tion registered at Izobamba station is around 
1400 mm/yr compared to 800 mm/yr at Humboldt 
station. The Andean Region is dominated by the 
elevation effect and could explain locally the signifi­
cant deviations from the L WML. For the specific 
case of precipitation, further research on rainfall 
events at this location should be done to check for 
possible re-evaporation processes and contributions 
of different water vapour sources that might occur 
taking into account inter and intra event variability 
in the hydrological process. Spring water signature 
has a wide range; those that showed heavier isotopic 
composition could be associated to precipitation, 
wetland or shallow subsurface recharge. Conversely, 
those with depleted compositions could be linked to 
deeper subsurface layers, and moreover, the high EC 
concentrations imply that the water could have been 
stored for a longer period of time and it also 
depends on the type of rocks where mineralization 
is very fast. During the event, the water samples 
either contained heavier isotopes that came from 
the rain, or could be associated with wetlands/open 
waters or shallow subsurface flow (from previous 
rainfall events), and also with contributions from 
the saturated zone, which can be highly dynamic. 
The challenge to separate the runoff components in 
this catchment was investigated in earlier studies 
(Mena 2010) that estimated an average contribution 
of 45% of the glacier component, slightly above the 
estimation of 41 % reported in the present study. 
Natural paramo can vary around 50 to 70%, while 
this study reported around 51 % (± 5% uncertainty). 
The remaining contribution from the event can be 
attributed to direct superficial runoff. 

A representative end-member mixing analysis 
was carried out with three main components: event, 
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glacier and paramo as justified earlier. Some of the 
monitored event flow samples were not fully con­
fined within the triangles, which might increase the 
uncertainty in the evaluated event. 

In order to overcome the limitations of non-con­
servative behaviour of major ions, the application of 
stable isotopes for the hydrograph separation was 
preferred, a technique used commonly in tropical 
and subtropical areas (Elsenbeer 2001; Goller et al. 
2005; Mul et al. 2008; Klaus and McDonnell 2013). 
In the present work, a plausible approach was the 
combination of EC and 62H that demonstrated a 
clear separation of the three distinctive components: 
event, glacier and paramo likewise stated by Mena 
(2010). It is important to realize that these types of 
tropical Andean catchments have high spatial vari­
ability of precipitation (Buytaert et al. 2006b; Celleri 
et al. 2007; Buytaert and Beven 2011) due to oro­
graphic effects, which to a certain extent can influ­
ence and might mislead the quantification of the 
contribution of this component. 

Based on the hydrograph separation, the contri­
bution of the glacier component during the rainfall 
event increases at a faster rate. This is mainly attrib­
uted to the lack of water retention in that subcatch­
ment and yet the riparian area consists mainly of 
boulders, rocks and large soil particles that drain 
rapidly with a very low water retention capability. 
Conversely, in the paramo region there are several 
zones with less steep slopes that are hydrologically 
disconnected due to the irregular terrain (Buytaert 
and Beven 2011 ). Yet, they behave as floodplains, 
swamps and wetlands that dissipate the stream 
energy and buffer the peak flow at the outlet, con -
trary to what was found in a similar study by 
Buytaert et al. (2010). The soils of the riparian zone 
in the paramo subcatchments comprise smaller soil 
particles that are poor in percolation, thus offer a 
high water-holding capacity (Minaya et al. 2016) 
and consequently high water attenuation (Buytaert 
and Beven 2011). Equally important is the intercep­
tion of rainfall, which is the first process in a rain -
fall-runoff event. This interception particularly in 
the tussock vegetation should not be neglected and 
might contribute to a longer lag time during rainfall 
events and an increased recharge of water into the 
soil in these high altitude ecosystems (Buytaert and 
Beven 2009; Janeau et al. 2015). 

Conclusions 

This study estimated relative contributions of the 
main runoff components during dry and wet condi­
tions from a combined glacier and paramos catch­
ment. It provided valuable information on the 
origin of water and the hydrological and 

hydrochemical characteristics of the water cycle in 
this high mountainous region. This runoff ratio can -
not be assumed to be maintained in the future 
because it is linked to future climate and land-use 
drivers. Moreover, adequate water resource manage­
ment should include the protection of the paramos

as reservoirs of water in the highlands since they are 
major contributors to runoff. 

Rainfall events were monitored with medium 
intensity and the runoff generation patterns are in 
line with the expected dynamics within this catch­
ment. The high runoff contribution of the glacier 
component during rain events remains valid. Two 
sources with clear evidence of resurgence of melt­
water from the glacier were identified, characterized 
consistently by low values of EC. It should be noted 
that during rainless times, there might be a higher 
variability due to the diurnal cycle and contribution 
of melt water due to the exposure to solar radiation. 
Therefore, the effect of temporal resolution needs to 
be further studied since these streams depend on 
the glacier influence. Certainly, long-term analysis 
will contribute to a better understanding of the 
dependency of runoff generation on soil moisture 
and vegetation interaction. 

This study focuses on the spatial representation 
of the main runoff components. Further investiga­
tion is recommended with respect to the separation 
of shallow and deep subsurface flows. Moreover, the 
clustering of groundwater movement into a single 
group as 'spring water' offers further scope for 
investigation. The lack of soil moisture measure­
ments and assumptions of the permanently satu­
rated zones added uncertainty to the quantification 
of the subsurface processes that regulate the contri­
bution of surface runoff. Despite these limitations 
and uncertainties, the combination of stable isotopes 
and geochemical tracers improved the understand­
ing of runoff processes in this combined glacier and 
paramo catchment in the Ecuadorian Andean 
region, for which no runoff investigations were 
available before. 
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