
 
 

Delft University of Technology

Play nice or pay the price
How local interactions shape a microbial community
Los, R.

DOI
10.4233/uuid:d42917bf-d1c0-4294-935e-2fba8b9c5cf6
Publication date
2025
Document Version
Final published version
Citation (APA)
Los, R. (2025). Play nice or pay the price: How local interactions shape a microbial community. [Dissertation
(TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:d42917bf-d1c0-4294-935e-
2fba8b9c5cf6

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:d42917bf-d1c0-4294-935e-2fba8b9c5cf6
https://doi.org/10.4233/uuid:d42917bf-d1c0-4294-935e-2fba8b9c5cf6
https://doi.org/10.4233/uuid:d42917bf-d1c0-4294-935e-2fba8b9c5cf6


PLAY NICE OR PAY THE PRICE

HOW LOCAL INTERACTIONS SHAPE A MICROBIAL
COMMUNITY





PLAY NICE OR PAY THE PRICE

HOW LOCAL INTERACTIONS SHAPE A MICROBIAL
COMMUNITY

Dissertation

for the purpose of obtaining the degree of doctor,
at Delft University of Technology,

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates,

to be defended publicly on,
Friday 10 January 2025 at 15:00 o’clock

by

Rachel LOS

Master of Science in Nanobioloby, Erasmus Medical Centre & Delft University of
Technology, born in Utrecht, Nederland.



This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, voorzitter
Dr. T. Idema, Technische Universiteit Delft, promotor
Dr. S.M. Depken, Technische Universiteit Delft, copromotor

Independent members:
Prof. Dr. S.J. Tans Technische Universiteit Delft
Prof. Dr. K. Drescher University of Basel
Dr. S. Jabbari Farouji University of Amsterdam
Dr. B.P. Tighe Technische Universiteit Delft
Prof. Dr. S.J.J. Brouns Technische Universiteit Delft, reserve member

Other members:
Dr. R.J. van Tatenhove-Pel

Technische Universiteit Delft

Keywords: microbial communities, cross-feeding, individual-based simula-
tions, metabolic interactions, costly cooperation

Printed by: Gildeprint

Front & Back: Ink prints by Rachel Los

Copyright © 2025 by R. Los

Casimir PhD Series, Delft-Leiden 2025

ISBN 978-94-6496-317-5

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


CONTENTS

Summary vii

Samenvatting ix

1 Introduction 1

2 Optogenetic Control of Bacterial Cell-Cell Adhesion Dynamics: Unrav-
eling the Influence on Biofilm Architecture and Functionality 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Pulsed Light Illumination to Control Bacterial Adhesion Dy-
namics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Liquid-Like Behavior in Bacterial Aggregates. . . . . . . . . . 18
2.2.3 Individual-Based Simulations of Bacterial Aggregation . . . . 19
2.2.4 Bacterial Cluster Intermixing. . . . . . . . . . . . . . . . . . 21
2.2.5 Consequences of Liquid-Like Behavior for Quorum Sensing . . 23
2.2.6 Biofilm Formations is Influenced by Bacterial Cell-Cell Adhe-

sion Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.7 Photoregulation of Bacterial Consortia. . . . . . . . . . . . . 26
2.2.8 Pulsed Light Promotes the Production of L-Threonine in Im-

mobilized Fermentation . . . . . . . . . . . . . . . . . . . . 28
2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Experimental Section . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Supplementary Information . . . . . . . . . . . . . . . . . . . . . 42

3 3D architecture of growing microcolonies 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Time of first contact determines cooperator success in a three-member
microbial consortium 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Results + Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Cooperator success is highly dependent on initial placement
of particles . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 First contact time determines cooperator success . . . . . . . 63
4.2.3 Experimental consortium of engineered L. cremoris . . . . . . 65

v



4.2.4 Relative average distance between cooperators determines co-
operator success in plate experiments . . . . . . . . . . . . . 66

4.2.5 Too few nucleation sites result in higher cheater fractions . . . 67
4.2.6 Lowering the background growth of cooperators results in higher

cheater fractions . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1 Individual based model . . . . . . . . . . . . . . . . . . . . 72
4.4.2 Cross-feeding simulations . . . . . . . . . . . . . . . . . . . 72
4.4.3 Asymmetric simulations . . . . . . . . . . . . . . . . . . . . 72
4.4.4 Microbial strains and growth conditions . . . . . . . . . . . . 73
4.4.5 Isolation of pMG820 and transformation into MG1363_GFP . . 73
4.4.6 Growth rate determination. . . . . . . . . . . . . . . . . . . 74
4.4.7 Co-cultivation on plates . . . . . . . . . . . . . . . . . . . . 74

4.5 Supplemental methods . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6 Supplemental figures . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Cooperator intermixing is an effective competitive strategy against cheaters
91

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Well-mixed model of cooperative interactions . . . . . . . . . 93
5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Reciprocal cooperation leads to mixing . . . . . . . . . . . . 95
5.3.2 Cooperator mixing is robust to changes in particle shape . . . 96
5.3.3 Asymmetric cooperators still mix . . . . . . . . . . . . . . . 96
5.3.4 Cooperator intermixing is a viable strategy to keep out cheaters

98
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5 Supplementary figures . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Conclusion 107

Acknowledgements 109

Anti acknowledgements 113

Curriculum Vitæ 115

List of Publications 117

vi



SUMMARY

Microorganisms often live in dense, surface-attached communities called biofilms.
These biofilms exist in diverse environments, from the inside of your gut and the
surfaces of your teeth, to the roots of your house plants and the inside of your cof-
fee machine. These biofilms, composed of various bacteria, fungi, and viruses en-
cased in a self-produced extracellular matrix, exhibit complex behaviours. They
also play a dual role in human health and industry, contributing to persistent infec-
tions and antibiotic resistance while being crucial for digestion and industrial ap-
plications like wastewater treatment. Understanding biofilm formation and func-
tion is essential for decreasing their detrimental effects and increasing their poten-
tial in biotechnology.

In this thesis, I use individual-based modelling of spherocylindrical particles
to learn something about the effects of spatial structure on their mechanical and
social interactions.

In chapter 2 we explore the aggregation dynamics of blue-light switchable ad-
hesive E. coli in solution. We aim to understand experimental results that bacteria
aggregate more and formed bigger clusters under pulsating light. We simulate a
system of particles undergoing Brownian motion, where the cell-cell adhesion can
be periodically turned on and off and compare and match our simulations to the
experimental data. We show how tuning the light off-period to the decay time of
the adhesion leads to increased clustering. We conclude that partial disassembly of
the aggregates leads to more effective clustering. In addition, our co-authors show
that this increased clustering leads to increased biofilm formation in a laboratory
setting. Moreover, it can be used to increase productivity in a bioreactor.

We use what we learnt about cell-cell interactions to simulate growing surface-
attached systems in chapter 3. We motivate some choices about the interactions
between cells and the interaction with the surface. We then show how varying the
strengths of these interactions can lead to different microcolony architectures.

We then use this model of growing microcolonies to study cooperator inter-
actions in a spatially structured environment. Where the mechanical interactions
occur over short distances, we also assume that metabolic interactions are close-
range. In chapter 4, we simulate a cross-feeding consortium in the presence of
a cheater species by having particles adjust their growth rate based on the cells
in their immediate environment. Using simulations and an experimental consor-
tium, we show how the time it takes for cooperators to meet is the determining
factor in whether they outcompete their cheating counterparts.

Finally, in chapter 5 we explore the patterning that cooperating particles cre-
ate by mixing. We show that this cooperator mixing is mostly determined by inter-
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action strength and is robust against variations in size and interaction symmetry.
Additionally, we show that in the presence of cheaters, cooperators intermix but
cheaters don’t mix with the cooperators and instead remain on the outside. There-
fore, we argue that focusing on strong cooperation is a great strategy for cheater
exclusion.

Have fun!
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SAMENVATTING

Micro-organismen leven vaak in dichte, aan oppervlakken gehechte gemeenschap-
pen die biofilms worden genoemd. Deze biofilms komen voor in diverse omge-
vingen, van de binnenkant van je darmen en de oppervlakken van je tanden, tot
de wortels van je kamerplanten en de binnenkant van je koffiemachine. Deze bio-
films, bestaande uit verschillende bacteriën, schimmels en virussen ingekapseld in
een zelfgeproduceerde extracellulaire matrix, vertonen complex gedrag. Ze spelen
ook een dubbele rol in de menselijke gezondheid en industrie, door bij te dragen
aan hardnekkige infecties en antibioticaresistentie, terwijl ze ook cruciaal zijn voor
de spijsvertering en industriële toepassingen zoals afvalwaterzuivering. Begrip van
biofilmvorming en -functie is essentieel voor het verminderen van hun nadelige
effecten en het benutten van al hun potentie in biotechnologische toepassingen.

In dit proefschrift gebruik ik individual-based modellen van sferocilindrische
deeltjes om iets te leren over de effecten van ruimtelijke structuur op hun mecha-
nische en sociale interacties.

In chapter 2 verkennen we de aggregatiedynamiek van op blauwlicht reage-
rende adhesieve E. coli in oplossing. We streven ernaar om experimentele resulta-
ten te begrijpen waarbij bacteriën meer aggregeren en grotere clusters vormen on-
der pulserend licht. We simuleren een systeem van deeltjes dat Brownse beweging
ondergaat, waarbij de cel-cel adhesie periodiek aan en uit kan worden geschakeld,
en vergelijken onze simulaties met de experimentele data. We tonen aan dat het
afstemmen van de lengte van de periode waarin het licht uit is op de vervaltijd van
de adhesie leidt tot toegenomen aggregatie. We concluderen dat gedeeltelijke uit-
eenvallen van de aggregaten leidt tot effectievere clustering. Daarnaast tonen onze
coauteurs aan dat deze toegenomen aggregatie leidt tot toegenomen biofilmvor-
ming in een laboratoriumomgeving. Bovendien kan het worden gebruikt om de
productiviteit in een bioreactor te verhogen.

We gebruiken wat we hebben geleerd over cel-cel interacties om groeiende aan
oppervlakken gehechte systemen te simuleren in chapter 3. We motiveren enkele
keuzes over de interacties tussen cellen en de interactie met het oppervlak. We la-
ten vervolgens zien hoe het variëren van de sterkte van deze interacties kan leiden
tot verschillende microkolonie-structuren.

Vervolgens gebruiken we dit model van groeiende microkolonies om coöpera-
tieve interacties in een ruimtelijk gestructureerde omgeving te bestuderen. Waar
de mechanische interacties over korte afstanden plaatsvinden, gaan we er ook van
uit dat metabole interacties op korte afstand zijn. In chapter 4 simuleren we een
cross-feeding consortium in aanwezigheid van een valsspeler door deeltjes hun
groeisnelheid te laten aanpassen op basis van de cellen in hun directe omgeving.
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Met behulp van simulaties en een experimenteel consortium laten we zien hoe de
tijd die nodig is voor coöperators om elkaar te vinden, bepalend is voor de vraag of
ze hun valsspelende tegenhangers overtreffen.

Tot slot verkennen we in chapter 5 de patronen die coöpererende deeltjes creë-
ren door te mengen. We tonen aan dat dit coöperatormenging voornamelijk wordt
bepaald door interactiesterkte en dat dit robuust is tegen variaties in grootte en in-
teractiesymmetrie. Daarnaast tonen we aan dat in aanwezigheid van valsspelers,
coöperators zich mengen, maar valsspelers niet met de coöperators mengen en in
plaats daarvan aan de buitenkant blijven. Daarom stellen we dat het focussen op
sterke samenwerking een uitstekende strategie is voor uitsluiting van valsspelers.

Veel plezier!
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1
INTRODUCTION

Microorganisms often live together in close-knit communities known as biofilms.
These surface-attached structures are found everywhere from natural environments
to human-made systems, and they play a crucial role in various ecological and in-
dustrial processes [1]. Biofilms generally consist of many different species of bac-
teria, fungi and viruses, which are encased in an extracellular matrix. They ex-
hibit complex behaviours that influence a wide range of ecological processes, such
as nutrient cycling and habitat formation [2], [3]. In medical contexts, biofilms
contribute to persistent infections and antibiotic resistance, presenting significant
challenges for treatment [4]. In contrast, their ability to convert and break down
compounds makes them invaluable in digestion and in industrial applications like
wastewater treatment and bioenergy production [5]–[7]. Understanding the for-
mation and function of biofilms is crucial, not only for mitigating their negative
impacts but also for harnessing their biotechnological potential.

Biofilms provide resilient and functional habitats for their inhabitants. The
multitude of species in a biofilm interact with each other through resource sharing
and task specialisation, where individual cells may take on specific roles such as
nutrient acquisition or protection [8], [9]. Cells use quorum sensing—communication
through chemical and mechanical signalling—to coordinate activities such as biofilm
formation, extracellular polymeric substance (EPS) production, and dispersal [10],
[11]. The extracellular matrix physically shields the cells from environmental threats,
including desiccation, toxins, and antibiotics [12]. These properties enable biofilms
to thrive in challenging and changing environments, but they are also what make
biofilms difficult to get rid of.

Biofilms arise when planktonic cells attach to a surface and start multiplying
there (fig. 1.1) [1], [13]. An important part of the biofilm life cycle is the micro-
colony stage, which is where colonies of up to a few thousand cells form [14].
These microcolonies form the kernel of the eventual biofilm and can determine its
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Figure 1.1: Different stages in the biofilm life cycle. A single planktonic bacterium attaches to a surface
(far left), where it starts dividing, forming a microcolony (middle). This microcolony can grow flat or
into the third dimension. The colony matures into a biofilm, and at some point, dispersal will occur (far
right): cells will leave the formed biofilm and become planktonic again.

structure and social make up [15]–[17]. The development of these microcolonies
is dependent on the environment as well as the cellular properties of its compo-
nents [14].

Different species form different microcolonies [18]–[20]. Cell properties like
shape, aspect ratio and EPS production will determine the shape and the cell den-
sity of a microcolony [21]. Additionally, the interaction with the surface and spe-
cific interactions with other cells influence the positioning of cells within a growing
microcolony [22]–[24]. The spatiotemporal establishment of microcolonies shows
several stages, including initial surface adherence, colony growth, and transition-
ing from a 2D to a 3D colony [25]–[28]. Processes like core verticalisation and pat-
tern formation can also occur depending on the conditions, creating a myriad of
colony shapes and forms [29]–[31].

The spatial structure a colony provides is important in a social context [9]. Bac-
teria interact over short ranges, because the exchange of metabolites and other
molecules is diffusion limited [32], [33]. This means that, in contrast to a mixed
system, in a surface attached colony cells are not interacting with all other species
present in the system, but only the ones in their immediate vicinity [34]–[36]. There-
fore, it is necessary for bacteria that are dependent on each other, to grow within
close proximity of each other.

Spatial patterning can help coexistence of species that otherwise would be more
easily outcompeted, such as cooperating or selfless species [37], [38]. Cooperation
can come in a variety of forms, such as resource sharing, common good produc-
tion or metabolite exchange. The latter is called cross-feeding, and this appears
when two species both produce goods that the other species benefit from [39], [40].
This seemingly altruistic behaviour has been widely studied as it is not clear how
such behaviour is stable when it is so easy to exploit [41], [42]. Additionally, cross-
feeding consortia are widely used in biotechnological applications, for example in
yoghurt production [43]–[45].
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Spatial structure has been shown to be essential for both the emergence and
the co-existence of cooperating species [46], [47]. Because cells are attached to a
surface, they remain close to their next-of-kin, which is called clonal patching [48].
This is useful for intraspecies cooperation, for instance where common goods are
produced and shared between cells [49]. On the other hand, strong mutualism has
been shown to promote mixing [47], [50]. Together, this can lead to interesting
pattern formations in multispecies colonies [51]–[54].

This constant dynamic of being close to kin and encountering other species
has a huge effect on the make-up of the population within microcolonies and the
resulting biofilms [43], [55]–[57]. Therefore it is important that we understand how
exactly bacteria interact with each other in a spatially structured environment [58],
[59]. This will increase our understanding of biofilm formation and it can help us
build consortia for biotechnological applications.

In this thesis, I make use of individual-based models (IBM) to study bacteria
and the microcolonies they form. This means I model bacteria as particles of a
certain shape and size, that interact with each other and their environment. This
approach allows us to take into account the space bacteria take up, as well as sim-
ulate a growing system. Additionally, many model parameters are easy to interpret
and sometimes even experimentally measurable [36], [60], [61]. A downside of this
type of modelling is that it requires relatively many model choices and parameters,
which can make the results difficult to interpret [62]. In this thesis I combine the
IBMs with other theoretical approaches as well as experimental work, in order to
strengthen our arguments and validate the model choices.

Throughout this thesis, bacteria are modelled as spherocylinders, implemented
similarly as in Stork et al. [63], where each particle is composed of two spheres con-
nected by a spring (fig. 1.2a). The particles are grown by increasing the rest length
of the spring. Once a particle has reached a certain division length, L, it is split
into two (fig. 1.2b). The aspect ratio of a particle (AR) is defined as L/D , with D
being the diameter of the particle. At the point of division, orientational noise is
added to the particles to ensure they don’t all align. Noise can also be added in the
z-direction, to enable particles to escape the 2D plane.

Apart from steric repulsion between the particles and the surface, we also intro-
duce adhesive forces (fig. 1.2c-d). We assume these forces act over short distances,
as adhesive proteins expressed on membranes are often only a couple nm in size.
For each particle pair that is within range of each other, the shortest distance be-
tween those two particles is determined. The force is then calculated based on that
distance, r in the following way:

F (r ) = r · FPP

α
·e−

r−α
α for r ≥ 0, (1.1)

F (r ) = kr · r for r < 0. (1.2)

If the distance is smaller than zero, the particles overlap, and a simple elastic re-
pulsion with spring constant kr is applied. If the distance is larger than zero, an
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Figure 1.2: Individual-based model a) Particles are modelled as two spheres connected by an internal
spring. b) Schematic of a particle growing and dividing. c) Schematic representation of adhesion be-
tween particles. d) Schematic representation of adhesion to the surface. e) Adhesion force profile as a
function of distance between particles. f) Example of the trajectory of a simulation starting with one
particle on a surface. Particles are coloured by orientation with respect to the z-axis.
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attractive force is applied. Here, FPP determines the magnitude of the particle ad-
hesion force and α determines the range of the force (fig. 1.2e). The force is then
distributed over the two end points of the particle, inversely proportional to where
along the particle the closest point to the other particle is.

The interaction with the surface is applied on each end point of the particle
and is of the following form:

F (r ) = r · FPS

β
·e−

r−β
β for r ≥ 0, (1.3)

F (r ) = kr · r for r < 0, (1.4)

Here, similar to the particle adhesion force, FPS determines the magnitude of the
surface adhesion force and β determines the range of this force. In this case, r is
the distance of an end-point of a particle to the surface.

The particles are grown every so many time steps, which is then followed by a
period of relaxation. Every simulation time step, all the forces on all the particles
are calculated, and they are moved accordingly. As bacteria live in a low-Reynolds’s
number environment, we only consider over damped dynamics and ignore the
inertial terms. After initialisation of one or more particles, the system is evolved
over time, either for a set amount of time, or to a particular amount of particles
(fig. 1.2f). The resulting structures and dynamics are then analysed to help us un-
derstand bacterial interactions and microcolony development.

In this thesis I aim to help understand how species interactions play out in a
spatially structured environment. In chapter 2, we start with clustering bacteria in
solution [64]. Simulating these sticky bacteria and comparing the results so closely
with experimental work, taught us a lot about how to think about bacterial adhe-
sion. We then use this knowledge and apply it to surface attached colonies in chap-
ter 3. Here we show how the individual-based model can create various colony
architectures. In chapter 4, we try to understand what determines cooperator suc-
cess in the presence of cheaters, by looking at a cross-feeding consortium growing
on a surface. We then take a deeper dive into the pattern formation of cooperator
strains in chapter 5, where we look at how cooperators mix and how robust this is
against variations in the interactions.
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2
OPTOGENETIC CONTROL OF BACTERIAL CELL-CELL

ADHESION DYNAMICS: UNRAVELING THE INFLUENCE ON

BIOFILM ARCHITECTURE AND FUNCTIONALITY

Juan José QUISPE HARO, Fei CHEN, Rachel LOS, Shuqi SHI, Wenjun
SUN, Yong CHEN, Timon IDEMA, Seraphine V. WEGNER

The transition of bacteria from an individualistic to a biofilm lifestyle profoundly
alters their biology. During biofilm development, the bacterial cell-cell adhesions
are a major determinant of initial microcolonies, which serve as kernels for the sub-
sequent microscopic and mesoscopic structure of the biofilm, and determine the re-
sulting functionality. In this study, the significance of bacterial cell-cell adhesion dy-
namics on bacterial aggregation and biofilm maturation is elucidated. Using photo-
switchable adhesins between bacteria, modifying the dynamics of bacterial cell-cell
adhesions with periodic dark-light cycles is systematic. Dynamic cell-cell adhesions
with liquid-like behavior improve bacterial aggregation and produce more compact
microcolonies than static adhesions with solid-like behavior in both experiments
and individual-based simulations. Consequently, dynamic cell-cell adhesions give
rise to earlier quorum sensing activation, better intermixing of different bacterial
populations, improved biofilm maturation, changes in the growth of cocultures, and
higher yields in fermentation. The here presented approach of tuning bacterial cell-
cell adhesion dynamics opens the door for regulating the structure and function of
biofilms and cocultures with potential biotechnological applications.

This chapter has been has been published in Advanced Science as [1].
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2.1. INTRODUCTION

Biofilms bring together different bacteria in communities that allow them to per-
form tasks, which their planktonic counterparts or a single species cannot accom-
plish [2], [3]. Within the biofilm, bacteria share communal resources [4], divide
tasks among the members and specialize [5]–[8], communicate through quorum
sensing [9], [10] and are protected from environmental challenges, all increasing
their chances of survival. Despite the well-established relevance of biofilms in
both diseases and ecology, as well as their growing relevance for biotechnological
applications [8], [11], our ability to engineer them lags behind the advancements
in engineering individual bacterial cells. Various biofilm properties, such as total
biomass, spatial microstructure, compactness, the relative distribution of differ-
ent members, and the dynamic evolution of these features over time, significantly
impact biofilm performance [12]. However, our current capabilities are primarily
limited to analyzing these parameters rather than actively controlling them.

In biofilm maturation, bacteria initially form clusters known as microcolonies,
which consist of tens to a few thousand cells [8], [13], [14]. These microcolonies are
not merely an intermediate stage in biofilm formation. They serve as the basic ker-
nel for the subsequent microscopic and mesoscopic structure of the biofilm and
alter the resulting functionality [15], [16]. A major determinant of the microcolony
and biofilm micro- and mesoscale architecture are the bacterial cell-cell adhesions
alongside other attractive and repulsive forces [12], [17]. The strength of these cell-
cell adhesions and their dynamics (ton and toff) can result in gas-like, liquid-like,
and solid-like multicellular organization analogous to different states of matter.
Free-floating bacteria in solution have negligible adhesions like molecules in gases.
If the adhesions between the cells get stronger but are still dynamic, bacteria are
still mobile within the aggregates like molecules in a liquid. On the otherhand,
if the interactions between cells are strong and not dynamic, the cells will stay
in place like molecules within a solid matrix. This has consequences for bacte-
rial behavior [17]. As shown in V. cholerae, lowering the cell-cell adhesions results
in larger cellcell distances in biofilms [12]. Moreover, in these rod-shaped bac-
teria, the cell-cell adhesions also influence nematic order reflected in the rough-
ness of the forming colony [18], [19].In other cases bacterial microcolonies behave
like liquids, where they have short-range but no long-range order, form spherical
colonies to minimize surface tension, and fuse with each other when they come
in contact [20], [21]. The liquid-like dynamics are also important for cell sorting
in colonies based on the differential strength of adhesions, as the sorting requires
some level of cell mobility [12], [14], [22]. Moreover, whether bacteria exhibit liq-
uid or solid-like properties impacts their ability to colonize capillaries [23] and
their antibiotic susceptibility [24]. Regulating the dynamics of bacterial cell-cell
adhesions and the transitions of bacteria between the gas, liquid, and solid-like
states could provide a viable approach to addressing the challenge of engineer-
ing biofilm development, yet this avenue remains largely unexplored. The sensi-
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tivity of cell-cell interactions to the dynamics and equilibration of cell-cell adhe-
sions makes them challenging to control experimentally. Current studies predom-
inantly rely on the manipulation of gene expression [25] and genetic modification
of adhesin properties [12], [20]. Conversely, various initiatives aim to introduce
synthetic adhesins that are either genetically coded (e.g. nanobody/antigen [25],
SpyTag/SpyCatcher [26]) or chemically introduced (e.g. click chemistry [27]). No-
tably, optogenetic tools enabling light-inducible expression of adhesins have en-
abled the production of micropatterned biofilms [28]–[32]. However, all these ad-
hesions lack reversibility, rely on strong and permanent interactions, and are not
dynamic. In contrast, cell-cell adhesions between bacteria are dynamic in many
instances. For example, many bacterial species use type 4 pili (T4P) to generate
attractive forces between cells, with the pili known to govern liquid-like behavior
in microcolonies [17]. Here, T4P binds to pili on neighboring bacteria and contin-
uously retracts, resulting in the observed liquid-like behavior.

In this study, we elucidate how the strength and dynamics of bacterial cell-cell
adhesions influence bacterial aggregation, as well as the architecture and func-
tion of the resulting biofilms. Using photoswitchable adhesins, we were able to
systematically modify the dynamics of bacterial cell-cell adhesions and switch be-
tween gas-like, liquid-like, and solid-like multicellular aggregates. Our findings
reveal that similar to distinct states of matter, bacterial aggregates, and biofilms
possess unique mechanical and biological properties that depend on the cell-cell
adhesion dynamics. Consequently, we propose that precise regulation of adhesion
dynamics within microcolonies holds significant potential in guiding future strate-
gies for biofilm engineering, as we have exemplified in auxotrophic cocultures and
a biofilm reactor.

2.2. RESULTS AND DISCUSSION

2.2.1. PULSED LIGHT ILLUMINATION TO CONTROL BACTERIAL ADHE-
SION DYNAMICS

In this study, we employed blue light switchable bacterial cell-cell adhesions to
manipulate adhesion dynamics and consequently control bacterial aggregation
into multicellular structures. Specifically, the bacteria could undergo transitions
from a gas-like state characterized by weak attractive interactions between cells to
a liquid-like state where dynamic cell-cell adhesions enable cell mobility within
aggregates, and finally to a solid-like state with strong and static cell-cell adhe-
sions with rigid and unchanging internal configurations (fig. 2.1a). The modu-
lation of cell-cell adhesion strength and dynamics was achieved through the ex-
pression of photoswitchable proteins, namely nMagHigh or pMagHigh, as ad-
hesins on the outer surface of E. coli [33], [34]. nMagHigh and pMagHigh proteins
have been derived from the light-dependent homodimerize VVD from Neurospora
crassa and have been engineered to expose complementary proteins interphases
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with negatively (I52D and M55G for nMagHigh) and positively (I52R and M55R for
pMagHigh) charged amino acids, respectively, under blue light [35]. This happens
due to the blue light-triggered reaction between a key cysteine (C71) reacts with the
flavin dinucleotide chromophore, resulting in global conformational changes. The
complementary electrostatic interaction between nMagHigh and pMagHigh pro-
motes selective heterodimerization and prevents undesired homodimerization. In
our case, these adhesins were displayed on the outer bacterial membrane as fusion
proteins with the circularly permutated outer membrane protein OmpX (eCPX).
In the dark, nMagHigh and pMagHigh bacteria did not adhere to each other, re-
sembling a gas-like state. On blue light illumination, these two types of bacteria
permanently adhered to each other, reminiscent of a solidlike state. Notably, these
optogenetic adhesins are reversible in the dark and can be repeatedly switched
on and off using pulsed light illumination. The photoactivation of the adhesins
occurs within seconds [34], [35], and the rate-limiting step for aggregation is bac-
teria coming in close proximity in suspension. In our previous work, we observed
that the bacterial aggregation plateaus within about 2h (t1/2 ≈ 30min) at densities
also used in this study. At the molecular level the reversion rate of the nMagHigh-
pMagHigh interaction in the dark is significantly slower (t1/2 = 4.7h) [35], also re-
sulting in slow reversion rates of the bacterial aggregates in the dark within about
1h [33], [34].

To investigate the influence of cell-cell adhesion dynamics on bacterial ag-
gregation, we mixed an equal number of E. coli MG1655 bacteria expressing
nMagHigh (labeled with green fluorescent protein GFP, shown in green) and
pMagHigh (labeled with mCherry, shown in red) in PBS and exposed them to var-
ious blue light illumination patterns (450 nm blue LED, 270µWcm−2) for a total
duration of 2h. During this time, there was minimal bacterial growth, excluding
the effects of crowing. These mixtures of bacteria aggregated in different manners
in terms of aggregation ratio (area occupied by clusters with an area > 35µm2 di-
vided by the total area occupied by all bacteria), average cluster size (objects with
an area > 35µm2), and total number of clusters depending on the illumination as
observed with confocal microscopy (fig. 2.1b; fig. S2.3, Supporting Information).
Samples kept in the dark serve as a negative control, showing weak interactions
and low levels of background aggregation (gas-like) (Few clusters with > 35µm2

were detected in the automated image analysis due to local crowding, i.e., cells
statistically being in close proximity due to their overall density). Samples exposed
to continuous blue light illumination served as a positive control with strong and
static adhesions (solid-like).

Initially, we kept the dark period constant at 20 min, altering the illumination
period from 1 to 20 min. With a brief 1-min illumination time, we still observed
comparable aggregation to constant blue light illumination. Even more strikingly,
there was a significant rise in aggregation ratio and average cluster size at 5 and 20
min illumination periods compared to continuous blue light illumination, despite
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Figure 2.1: Pulsed illumination alters aggregation ratio and cluster size. a) Schematic representation of
bacteria expressing nMagHigh-eCPX (labeled green) and pMagHigh-eCPX (red) showing different ag-
gregation levels under different pulse illumination settings. b) Confocal microscopy images of bacteria
incubated in the dark, under blue light or different pulsed illumination settings (ON:OFF time in min-
utes) for a total duration of 2 h, show different amounts of aggregation. Images at 5:20 are shown twice
to make trends visible but come from the same experiment. Scale bars are 50µm. Differences in c) ag-
gregation ratio and d) cluster size for different illumination settings. In terms of both aggregation ratio
and cluster size, some pulsed light settings outperformed constant blue light illumination. All experi-
ments were performed in 3 biological replicates with 3 technical replicates each.

overall lower light exposure (fig. 2.1c;fig. S2.1a, Supporting Information). Intrigu-
ingly, 10-min photoactivation periods resulted in a reduction in aggregation ratio
and average cluster size. In a second set of experiments, we fixed the light period
to 5 min, varying the dark period from 5 to 30 min. In this scenario, the aggrega-
tion ratio increased compared to continuous blue light illumination whenever the
dark period exceeded 10 min. Concurrently, the average cluster size also increased
as the dark period was extended from 5 to 20 min (fig. 2.1d; fig. S2.1c, Supporting
Information). In these experiments, a light period of 5 min together with a dark
period of 20 min was observed to be optimal for reaching the highest aggregation
ratio and the largest cluster size.
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2.2.2. LIQUID-LIKE BEHAVIOR IN BACTERIAL AGGREGATES

In addition to the clustering efficiency of the bacteria, the aggregate morphology
also changes significantly depending on the illumination protocol. The clusters
exhibit a wide range of structures, varying from branched structures to more com-
pact and spherical ones. To assess the morphology, we analyzed the fractal dimen-
sions of the clusters using the FracLac plugin in ImageJ (fig. 2.2a). In this analy-
sis, more compact objects have a higher fractal dimension than ones that are less
compact with an irregular shape. The median fractal dimension was highest for ag-
gregates under 5 min on and 20 min off light illumination (5:20), measuring 1.477.
In comparison, under continuous blue light illumination, the median fractal di-
mension was only 1.443 (fig. 2.2b,c). The initial stages of microcolony formation
exhibited striking similarities to the self-assembly of non-living colloidal particles
with attractive interactions. This resemblance is particularly expected since the
nMagHigh and pMagHigh expressing bacteria in PBS showed low motility. In the
self-assembly of colloids, the resulting architectures depend on the dynamics of
the interactions. When the interactions are static, diffusion-limited cluster aggre-
gation (DLCA) leads to loosely packed and branched assemblies under kinetic con-
trol. Similarly, in our experiments under constant blue light illumination, the rate-
limiting step involved different bacteria finding each other, resulting in branched
aggregates, i.e., lower fractal dimension. In contrast, dynamic interactions enable
reaction-limited cluster aggregation (RLCA) where colloids optimize their position
to maximize the interactions with neighbors, leading to compact and spherical
structures under thermodynamic control. In our experiments, pulsed light illumi-
nation introduced dynamics into the bacterial cell-cell adhesions and increased
the fractal dimension, thereby shifting the bacterial assemblies from DLCA under
constant light illumination towards RLCA (fig. S2.2, Supporting Information). As a
benchmark, ideal conditions for 2D aggregation of spherical particles yield fractal
dimensions of 1.46 and 1.55 for DLCA and RLCA, respectively [36], [37].

Our comprehensive analysis of aggregation and fractal dimension data leads
us to propose a hypothesis regarding the impact of bacterial cell-cell adhesion dy-
namics. We predict that during the dark periods, the photoswitchable adhesions
responsible for holding the clusters together gradually reverse, but not completely
if the dark period is lower than the reversion time. Consequently, bacteria resid-
ing at the periphery of the clusters that are only weakly attached could escape or
reposition themselves, enabling stronger interactions once illumination resumed.
These enhanced attachment and detachment dynamics among bacteria—akin to
a liquid-like state—result in larger and rounder aggregates. Under constant illumi-
nation, this dynamic behavior is absent (i.e. solid-like state), and adhesions occur
rapidly among neighboring cells. These cells thus form only small clusters with
permanent interactions, absorbing all freefloating bacteria that could contribute
to larger clusters. Insufficient reversion, as seen with a short dark period (e.g., 5
min), results in an insignificant improvement in bacterial aggregation, as the bac-
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Figure 2.2: Cluster morphology varies under different illumination settings. a) The fractal dimension
quantifies the compactness of the clusters, branched and irregular clusters have a low fractal dimension
while more regular clusters have a higher score. b) Distribution of bacterial clusters’ fractal dimension
from different pulse illumination settings (ANOVA with multiple comparisons, p < 0.0001). c) Visual
categorization of bacterial clusters according to fractal dimension, the key below shows the color code
of clusters’ respective fractal dimensions from 1.2 to 1.7 with 0.05 increments. ON: OFF time in minutes
(total time 2h, scale bars 50µm, all experiments were performed in 3 biological replicates with 3 techni-
cal replicates each.). Data and images in (b) and (c) at 5:20 are shown twice to make trends visible but
come from the same experiment.

teria lack the motility to reposition. On the other hand, when the dark period ex-
tends to 30 min, causing extensive reversion, both the aggregation ratio and the
average cluster size decrease, as the cells return to a gas-like state.

2.2.3. INDIVIDUAL-BASED SIMULATIONS OF BACTERIAL AGGREGA-
TION

To further investigate the dynamics of bacterial clustering, we used an individual-
based model of spherocylindrical particles to simulate the experiments. Besides
Brownian forces, each particle is influenced by light-sensitive interactions with
other particles and interactions with a hard surface (fig. 2.3a). After initializa-
tion, the system evolved over time, and particle locations were tracked and an-
alyzed like in the experiments (fig. 2.3b). We determined the magnitude of the
Brownian forces by estimating the diffusion coefficient for particles of similar size,
shape, and environment as the bacteria in the experiments and comparing the ex-
pected mean-squared-displacement (MSD) to the MSD of simulated particles with
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no adhesive forces (fig. S2.3, Supporting Information). With the correct Brownian
forces in place, we estimated the magnitudes (P and S) and ranges (σp = 5nm and
σs = 10nm) for the adhesive forces between the particles and the surface, respec-
tively, by comparing aggregation curves from the simulations to those from exper-
iments with constant light illumination (fig. S2.4, Supporting Information) [34].

In the model, the part of the force that is affected by the blue light is the magni-
tude of the particle-particle interaction, P, which is constant under blue light (Pon).
However, the adhesive force is not immediately set to zero when the light is turned
off. Instead, after each period of light exposure, it follows an exponential decay
with the decaying adhesive force of the form Pp = Pp,on ·e(−d ·t ) where d is the decay
rate and t is the time since the light was turned off in minutes. We found the value
for d by fitting it to the 5:20 pulse illumination experiments, where the aggregation
ratio was the highest (fig. 2.3c). For high decay rates (λ = 10min−1), we observed
a complete reversal of the clustering in the periods of darkness, which led to low
aggregation ratios like in the dark and no increase in cluster size over multiple cy-
cles of illumination. For low decay rates (λ= 0.1min−1), there was a persistent rise
in aggregation ratio and cluster size over multiple cycles of illumination, which is
slightly higher than what we find for constant blue light. The highest aggregation
ratio was achieved when the clusters started to disassemble just before the light
was turned back on (λ= 0.15min−1).

When using this value for other illumination conditions we could recreate most
of the findings of the experiments, where we clearly observed higher aggregation
ratios and bigger cluster sizes for all the pulsed illumination conditions compared
to constant blue light (fig. 2.3d-e; Video S1–S3, Supporting Information). For con-
ditions with an on-time of 5 min, we see that for short off-times up to 10 min,
the aggregation and cluster size only slightly increased compared to constant blue
light illumination, and the curves remained smooth during the pulsed light illumi-
nation (fig. 2.3d). However, for an off-time of 20 min there was significant disas-
sembly during dark periods, resulting in a drastic growth of the clusters when the
light was turned back on. When the off-time was increased even more, we saw an
an extensive reversal of the clustering, which explains the lower aggregation ratios
and smaller clusters found in the experiments under these conditions.

The conditions with off-times of 20 min consistently showed higher aggrega-
tion levels and bigger clusters compared to constant blue light illuminations, just
like in the experiments (fig. 2.3e). In contrast, the on-time did not seem to glob-
ally affect the aggregation ratio as all curves behaved similarly, but only the cluster
size was affected, where longer on-times led to smaller clusters. We also find that
for these conditions, the time of measurement can significantly affect the result,
which could explain why the 10:20 and 20:20 conditions gave such varying results
in the experiments, as both illumination conditions are right at the end of a period
of darkness at the time of measurement resulting in a seemingly low aggregation
ratio and smaller clusters. Analogous to our experimental results, the fractal di-
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mension of the clusters formed under pulse illumination in the simulations was
also higher than that of clusters formed under constant blue light and in the dark
(fig. 2.3f). All in all, these results demonstrate that in our experimental system un-
der pulse illumination, the off-time of 20 min was the critical parameter, which
provides just enough time for the clusters to start to disassemble before the light is
turned back on. This partial disassembly in turn leads to the particles rearranging
significantly and the clusters coming together again in bigger structures leading to
higher aggregation ratios and cluster sizes.

To explore how this rearrangement on the particle scale relates to the overall
aggregation dynamics, we looked at the neighbor rearrangement of the particles
during a 5:20 pulse cycle. For each particle, we tracked which particles were in its
close vicinity throughout the simulation. We then compared the neighbors at the
beginning and end of one ON: OFF cycle and calculated the rearrangement φ as a
value between 0 and 1, in the following way,

φ= 1

N

∑
i

1− |ni ,beg i nni ng == ni ,end |
|ni ,end |

, (2.1)

where N is the number of particles and ni,t is the vector of neighbors of particle i at
time t.

For the 5:20 pulsing scenario, we looked at the rearrangement for different val-
ues of the decay rate. For λ= 0.15min−1, where we observed the highest aggrega-
tion ratio and biggest cluster sizes, we found an average rearrangement of ≈ 35%
of neighbors per 25 min cycle (fig. 2.3g). In contrast, rearrangement between cy-
cles was almost complete (≈ 85%) for the higher values of λ and in the dark but
rearrangement remained below 20% for lower values of λ and under constant blue
light illumination. Similarly, when comparing different illumination conditions,
we saw that also here, the highest aggregation ratios correspond to a rearrange-
ment of ≈ 35% of neighbors in 25 min. In summary, the highest aggregation is
achieved with intermediate dynamics in the neighbor rearrangement, resulting in
liquid-like behavior. Here, the timescale of the disassembly process is similar to
the off-time in the pulse illumination. Because the disassembly timescale is intrin-
sic to the system, it is possible to find a pulse condition where the aggregation is
optimal by tuning off-time.

2.2.4. BACTERIAL CLUSTER INTERMIXING
Besides the rounding up of the aggregates with increasing bacterial adhesion dy-
namics, liquid-like behavior is also characterized by the intermixing of similar liq-
uids. To demonstrate that this aspect of liquid-like behavior holds true in the bac-
terial aggregates, we mixed preformed aggregates of bacterial clusters under dif-
ferent illumination conditions. In particular, we performed two populations of
compact bacterial clusters from nMagHigh- and pMagHigh-bacteria either labeled
with GFP (shown in green) or mCherry (shown in red) for 2 h under pulsed illumi-
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Figure 2.3: Individual-based simulations. a) The bacteria are modeled as spherocylindrical particles.
Each timestep, Brownian force, and adhesive forces to the surface and to other particles are exerted
for each particle. b) Still of a simulation of 2000 particles after 1 h of constant light (top view and side
view) and the resulting 2D image and segmentation used for assessing the aggregation ratio and cluster
size. c) Aggregation dynamics and cluster sizes under a pulse illumination of 5:20, with varying decay
rates of the adhesive force. Averages and standard deviation of 10 runs per condition are shown. d,e)
Aggregation dynamics and cluster sizes under different pulse illumination settings. Averages and stan-
dard deviation of ten runs per condition are shown (f) Distribution of the fractal dimension of particle
clusters for different pulse illumination settings. (ANOVA with multiple comparisons, p = 0.0005.) (g)
Neighbor rearrangement of the particles under 5:20 pulse illumination for different values of the decay
rate, λ and for different pulse illumination settings with λ= 0.15min−1.
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nation (5:20 ON:OFF, referred to as pulsed light hereafter, if not specified other-
wise). Subsequently, we mixed these clusters in equal numbers and kept them for
another 2 h in the dark, under continuous or pulsed light illumination, before ana-
lyzing the intermixing of the GFP and mCherry labeled populations using confocal
microscopy (fig. 2.4a). In the dark, the red and green bacteria were predominantly
dispersed due to the reversion of the adhesions and only a few clusters of a single
color remained. In contrast, in samples kept under blue light, we observed clus-
ters of green and red labeled bacteria with adjacent green and red domains, sug-
gestive of clusters aggregating together. For samples kept under pulsed light, we
also observed clusters, which consisted of blended red and green-labeled bacteria,
showing substantial intermixing of the two populations. We supported these qual-
itative observations by calculating the Pearson Correlation Coefficient (PCC) [38]
for the green and red channels (fig. 2.4b). The PCC was highest for samples under
pulsed illumination, indicating a high colocalization of the red and green channels.
The PCC was lowest for samples kept in the dark, indicative of only background-
level interactions between the green and the red labeled bacteria. Overall, both the
rounder and more compact bacterial aggregates (fig. 2.2) and the higher degree
of intermixing with pulsed light illumination support the higher fluidity of these
bacterial aggregates compared to ones formed under constant illumination.

2.2.5. CONSEQUENCES OF LIQUID-LIKE BEHAVIOR FOR QUORUM

SENSING

Bacteria possess the ability to sense their local population density through quorum
sensing [39]. The activation of quorum sensing is highly contingent on the spa-
tial distribution of bacteria, with compact aggregates locally reaching the thresh-
old concentration of the autoinducer earlier than loose structures. To investigate
the impact of bacterial aggregation on quorum sensing, we co-transformed bac-
teria with the photoswitchable adhesins (nMagHigh or pMagHigh, 1:1 ratio) and a
quorum sensing reporter plasmid, triggering the production of GFP when quorum
sensing is activated. After incubating these co-cultures (OD600 = 0.12) for 2 h, we
observed comparatively lower quorum sensing reporter activity in samples kept
in the dark compared to those under continuous blue light illumination (fig. 2.4c;
fig. S2.1b, Supporting Information). Remarkably, samples subjected to pulsed illu-
mination (5:20 or 5:30) exhibited a two-fold increase in reporter signal compared
to samples exposed to constant blue light. Conversely, samples kept under pulsed
illuminationwithshorterperiodsofdarkness(5minoff)orwithshorteror longer dura-
tions of light showed similar levels of quorum sensing reporter as the constant blue
light sample (fig. 2.4d). Notably, the more intense reporter signals were localized
to larger bacterial aggregates. Overall, the activation of quorum sensing correlated
with both cluster size and fractal dimension.
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Figure 2.4: Bacterial mixing and quorum sensing. a) Preformed aggregates of E. coli expressing
nMagHigh and pMagHigh labeled with GFP (shown in green) or mCherry (shown in red) were mixed
and allowed to further interact under different illumination settings. Scale bars are 30µm. b) Clus-
ters formed under 5:20 pulse illumination, showed more intermixing of GFP and mCherry expressing
bacteria than under blue light or in the dark as confirmed with a higher PCC, p-values from t-tests.
c) Confocal microscopy images of E. coli with a quorum sensing GFP reporter plasmid and expressing
nMagHigh or pMagHigh at their surface under different illumination settings. Scale bars are 50µm. d)
Average GFP fluorescence of bacteria in (c). Images in (c) at 5:20 are shown twice to make trends visible
but come from the same experiment. All experiments were performed in 3 biological replicates with 3
technical replicates each.

24



2.2.6. BIOFILM FORMATIONS IS INFLUENCED BY BACTERIAL CELL-
CELL ADHESION DYNAMICS

Bacterial aggregation constitutes an early and pivotal stage in biofilm formation,
with these microcolonies serving as structural units that prime the subsequent
maturation of the biofilm. To investigate the impact of bacterial cell-cell adhesion
dynamics on biofilm mesostructure and maturation, we produced biofilms using
1:1 cocultures of E. coli MG1655 expressing adhesins nMagHigh (co-expressing
cyan fluorescent protein, eCFP, depicted in green) and pMagHigh (co-expressing
yellow fluorescent protein, eYFP, depicted in red) for 48 h at 37 °C under various
illumination conditions. (eCFP and eYFP, being point mutants of each other, are
expected to impose an equal metabolic burden.)

We found that biofilms grown under pulsed illumination exhibited the highest
overall biomass and denser structures compared to those formed under contin-
uous blue light illumination or in the dark, as evidenced by confocal microscopy
(fig. 2.5a). In addition, biofilms formed under continuous blue light illumination
were thicker than those formed in the dark. Specifically, the average thickness was
16,30, and 42µm for biofilms formed in the dark, under continuous blue light and
pulsed blue light, respectively. These observations were further supported by crys-
tal violet staining of biofilms in microplates, demonstrating higher total biomass
under pulsed light illumination (fig. S2.5, Supporting Information).

A detailed analysis of the biofilms, encompassing mesostructure, surface prop-
erties, and bacterial distribution, was conducted using the automated image anal-
ysis tool for biofilms, Comstat 2, revealing pronounced morphological differences
(fig. 2.5b; fig. S2.6, Supporting Information). Biofilms grown under pulsed light
exhibited significantly higher biomass, with a 6.7- and 5.1-fold increase compared
to biofilms grown in the dark and under constant blue light illumination, respec-
tively. Furthermore, these biofilms formed under pulsed light displayed smoother
surfaces and higher packing density compared to biofilms formed in the dark and
under continuous blue light, as indicated by a lower surface-to-volume ratio, a
higher average fractal dimension, and a lower roughness coefficient (fig. 2.5c).
These findings align with our earlier observations of denser bacterial clusters form-
ing under pulsed light. Additionally, biofilms formed under pulsed light exhibited
7- and 5-fold higher average diffusion distances compared to those formed in the
dark and under continuous blue light, indicating enhanced connectivity between
microdomains.

Drawing an analogy to states of matter, biofilms formed under pulsed illumi-
nation—where bacteria exhibit liquid-like behavior—demonstrated enhanced in-
termixing. Like in bacterial aggregation, liquid-like behavior played a role in bac-
teria optimizing their positions to maximize contact with neighbors by filling gaps
within the biofilm. In contrast, biofilms formed under continuous blue light ex-
hibit solid-like characteristics, resulting in rougher biofilms. It is noteworthy that
strong and permanent bacterial cell-cell adhesions do not lead to more mature

25



Figure 2.5: Pulse illumination enhances biofilm formation and properties. a) 3D and side view confocal
microscopy images of biofilms formed with cocultures of nMagHigh- and pMagHigh- bacteria (shown
in green and red, respectively) after 48 h under dark, blue, and pulsed illumination. b) COMSTAT analy-
sis of biofilms. Both mechanical and morphological properties of biofilms were improved under pulsed
illumination, resulting in a more massive and compact biofilm. c) Biofilms grown in pulse illumination
have a higher biomass and lower surface roughness compared to those grown in the dark or under con-
tinuous blue light. (n = 5, each independent experiment is shown as one point).

biofilms; rather, the more dynamic and transient adhesions result in enhanced
biofilm maturation.

2.2.7. PHOTOREGULATION OF BACTERIAL CONSORTIA
In biofilms, diverse bacterial species often come together with various social inter-
actions [40] and such co-cultures bear significant technological importance. Yet,
effectively controlling, maintaining, and optimizing these biofilm cocultures is ex-
tremely challenging because their success hinges upon numerous factors, includ-
ing the interplay between different members, the costs and benefits for each par-
ticipant, the spatial distribution of members, and the availability of nutrients in
the medium over time. Consequently, community members within the biofilm
adapt their positions based on their needs, relationships (mutualistic, parasitic,
commensal, etc.), and environmental factors [41]. We propose that manipulating
the illumination conditions can alter the architecture and success of different co-
culture biofilms, providing a means of optimization.

To investigate this, we introduced the nMagHigh or pMagHigh adhesins onto
auxotrophic strains lacking the ability to synthesize threonine (T), proline (P), ly-
sine (K), methionine (M), or tryptophan (W), relying instead on another member
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of the community to produce these amino acids for them [42], [43]. The nomen-
clature of the ten new strains was derived from the amino acid they were unable
to produce (T, P, K, M, or W) and the type of adhesin they displayed (n or p). For
example, Kn denoted a lysine auxotroph expressing the nMagHigh adhesin. In ad-
dition, nMagHigh and pMagHigh expressing strains were labeled with eCFP and
eYFP, respectively. Subsequently, we co-cultured the various autotrophic pairs pos-
sessing complementary photoswitchable adhesins in minimal M9 medium in the
dark, under constant or pulsed blue light illumination. After 48 h of incubation at
37 °C in suspension culture, some pairs demonstrated successful cross-feeding and
thrived, showing synergistic growth as monitored by the OD600 (optical density at
600 nm) (fig. 2.6a). It was intriguing to observe that different co-cultures grew bet-
ter under specific illumination conditions. The Kn-Mp pair displayed significant
growth exclusively in the dark, while the WnKp pair exhibited the highest growth
under constant blue light illumination. Contrarily, pulsed light illumination was
most favorable for the growth of the three pairs Pn-Kp, Pn-Mp, and KnMp. These
initial findings underscore the fact that there is not one procedure that fits all co-
cultures and factors beyond bacterial cell-cell adhesion dynamics may be decisive.
Nevertheless, in certain cases, cell-cell adhesions prove to be crucial, enabling the
adjustmentofproximity between membersand balancing the cost of producing a
common good with the benefit derived from receiving metabolites from the other
member. Yet, these seem to be extremely sensitive to the precise context, and dif-
ferences in the metabolic adaptations of the autotrophs seem to of significant. For
instance, even switching the places of nMagHigh and pMagHigh, which only dif-
fer in two amino acids (D52R and G55R), between the two auxotrophic strains pair
altered the outcome.

To examine the differences in biofilm architecture for these auxotrophic pairs,
we formed biofilms using pairs that showed significant differences in growth de-
pending on the illumination (fig. 2.6b). Different co-cultures formed the thickest
biofilms and showed different mesostructures under different illumination con-
ditions, aligning with results from the growth analysis in suspension culture. The
Kn-Mp pair formed the thickest biofilms in the dark, almost twice as thick as under
continuous or pulsed light. The Wn-Kp pair grew most successfully under con-
tinuous blue light, forming a layered biofilm (Wn at the bottom shown in green,
Kp at the top shown in red). Finally, the Pn-Kp and Pn-Mp pairs grew the thick-
est biofilms under pulsed light illumination, with the Pn-Kp strains mixing within
the biofilm and the Pn-Mp pair forming a layered biofilm. These differences in
biofilm architecture were also visible in the COMSTAD analysis (fig. S2.7, Support-
ing Information), where the thicker biofilms came along with a lower roughness
coefficient and higher biomass (fig. 2.6c). It is also notable that we were able to
regulate the ratio of each constituent strain of bacteria with different illumination
settings (fig. 2.6d). While we initially mixed the nMagHigh and pMagHigh express-
ing strains in equal numbers, the biomass fraction of each member changed with
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different illumination settings. In some cases, the ratio changed significantly to
form the most successful biofilm, as seen in the Kn-Mp culture in the dark where
the former outnumbers its neighbor in an 8:2 ratio. In contrast, in the biofilm of
Pn-Mp, which grew the best under pulsed light illumination, the ratio remained
the same as the initial seeding condition. In the case of blue light and pulse illu-
mination, the higher growth may be linked to a more efficient metabolic exchange
between the two strains due to stronger cell-cell adhesions. Yet, in this optimiza-
tion process, bacterial motility and hence the fluidity within the biofilms at certain
stages appear to be important factors. Microbial industrial fermentations usually
rely on cocultures of different bacteria strains to carry out the energetically costly
synthesis of metabolites [44]. However, minor differences in factors such as growth
rate, inoculation density, or preculture age of bacteria used in such processes, lead
to the faster member of a coculture outcompeting the others and establishing a
monoculture [45]. The described photoswitchable adhesions and different illumi-
nation protocols may be used to counteract these challenges.

2.2.8. PULSED LIGHT PROMOTES THE PRODUCTION OF L-
THREONINE IN IMMOBILIZED FERMENTATION

Biofilm bioreactors are of great industrial importance for the production of high-
value metabolites. A previous study has already demonstrated that continuous
photoactivation of nMagHigh-pMagHigh surface adhesins enhances the produc-
tion yield of L-threonine in immobilized continuous fermentation using E. coli
W1688 [46]. Here, we hypothesized that pulsed illumination could further improve
biofilm formation, fermentation, and bioproduction.

To investigate this, we quantified the biofilm formation process during immo-
bilized fermentation experiments and assessed the yield of L-threonine produced
by cocultures of nMagHigh and pMagHigh expressing strains (E. coli W1688∆ycgF)
under different illumination conditions, including dark, blue light, and pulsed illu-
mination (5:20). The result of crystal violet staining assay revealed that under pulse
conditions there was a significant (27.4%) increase in biofilm mass after 24 h com-
pared to the dark treatment (fig. S2.8a,b, Supporting Information). Analogously,
we produced under different illumination the biofilms on a cotton fiber carrier in
a batch biofilm bioreactor, which is suitable for industrial scale-up, and measured
L-threonine production and glucose consumption (fig. 2.7a). Under constant and
pulsed illumination, we observed that from batch to batch the L-threonine yield
increased and the fermentation period stabilized gradually after three cycles, both
indicative of a more mature biofilm forming. In the seventh batch of immobilized
fermentation in the dark, L-threonine yield was 11.47gL−1 with a fermentation pe-
riod of 34 h marked by low glucose levels. Under blue light conditions in the same
batch, the L-threonine yield increased by 16.22% to 13.33gL−1 and the fermen-
tation period decreased by 3 to 31 h compared to the dark condition. The highest
L-threonine yield of 15.61gL−1 was achieved under pulse illumination, resulting in
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Figure 2.6: Pulsed illumination affects metabolic cooperation pathways in cross-feeding cultures. a)
Growth of cocultured auxotrophic strains displaying nMagHigh or pMagHigh after 48 h under different
illumination settings in suspension culture. Cocultures thrive in different illumination conditions out-
lined in green. The experiments were conducted in three biological replicates. b) 3D and side view con-
focal microscopy images of selected coculture pairs under different illumination settings. nMagHigh
and pMagHigh expressing bacteria are shown in green and red, respectively. Scale bars in µm. c) Sur-
face roughness versus biomass for different cocultures under various illumination conditions. (n = 3,
each point represents one sample) d) Biomass fraction of nMagHigh (shaded) and pMagHigh (white)
for different cocultures that all started at equal numbers. Error bars represent the SD of three biological
replicates.
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Figure 2.7: Pulse illumination increases biomass and positively affects L-threonine production and glu-
cose consumption in immobilized continuous fermentation. a) Along seven fermentation batches, 5:20
pulsed illumination increases the overall yield of L-threonine and reduces the batch duration during
fermentation in comparison with continuous dark or blue illumination. b) SEM images show that pulse
illumination improves the development of surface biofilm on the fermentation carriers. Scale bars are
20µm.

a 36.09% increase compared to dark and a fermentation period reduced by 6 hours,
totaling 28 h. To further validate the effectiveness of this strategy, we examined the
biofilm structure on the carriers at different time points using scanning electron
microscopy (SEM) (fig. 2.7b). The SEM images after the first, second, third, fourth,
and seventh batches of immobilized fermentation, qualitatively show a gradual in-
crease in the total amount of biofilms from batch to batch, where pulsed illumina-
tion produced a greater mass of biofilms which formed within a shorter time. In
contrast, there was no effect of light illumination on the L-threonine yield nor on
the fermentation period in cultures of free-floating bacteria (fig. S2.8c, Supporting
Information). Overall, in the immobilized fermentation system, both L-threonine
yield was higher and the fermentation periods were shorter under pulsed light illu-
mination than in the dark or under constant illumination. Therefore, this method
holds great potential for enhancing fermentation efficiency and reducing fermen-
tation costs for industrial fermentation processes.
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2.3. CONCLUSION

In this study, we tuned bacterial cell-cell adhesion dynamics to alter bacterial ag-
gregation and behavior using photoswitchable adhesions. We showed that pulsed
light leads to higher aggregation levels along with bigger and more compact clus-
ters of bacteria compared to continuous light illumination. Using individualbased
simulations, we could understand this being the result of different bacteria cell-
cell adhesion dynamics, which depend on the interplay of the decay rate of the
adhesins with the off-time of the pulsed illumination. Thus, analogous to differ-
ent states of matter, bacterial aggregates display gas-like, liquid-like, and solid-like
behavior in the dark, under pulsed illumination, and under continuous illumina-
tion, respectively. We subsequently demonstrate that bacterial aggregates with
liquid-like behavior have higher particle intermixing and activate quorum sens-
ing earlier. Moreover, biofilms grew thicker and denser under pulse illumination
than under constant blue light or in the dark, highlighting the importance of cell-
cell adhesion dynamics in biofilm maturation. We then applied this knowledge
to cocultures of different pairs of auxotrophic bacteria, where biofilm growth was
significantly affected by light conditions. Here, some pairs indeed did best un-
der pulsed light, whereas others grew best under dark or constant light conditions.
Hereby showing that, depending on the system, different light conditions can be
employed to optimize cocultures. Finally, we improved L-threonine production of
biofilms in bulk bioreactors by subjecting the biofilms to pulseillumination, lead-
ing to better biofilms, and subsequently higher L-threonine yield and shorter fer-
mentation times. Hereby, showing that pulse-illumination can be effectively ap-
plied in biotechnological and industrial settings to optimize biofilm formation.

The parallels between phase transitions, colloidal self-assembly, and the as-
sembly of multicellular structures are remarkable. Like for colloidal particles, it is
possible for bacterial aggregates to transition from solid-like DLCA under kinetic
control to liquid-like RLCA under thermodynamic control by simply increasing the
exchange rate between the colloids/bacteria. Moreover, we found similar behavior
also during the self-assembly and self-sorting with photoswitchable cell-cell adhe-
sions in mammalian cells [47]. Yet, it should be noted that at later stages of biofilm
development, the analogy is distorted by the growth of bacteria, the production of
extracellular polymers, and cell differentiation within the biofilm over time. From
this perspective, the maturation of a biofilm could be viewed as a transition from
gaslike planktonic bacteria to liquid-like microcolonies that become more solid
with time. Differently from the light-induced adhesion used here, bacteria alter
these cell-cell interaction dynamics through the expression of surface proteins and
secreted extracellular polymers [9]. Nonetheless, also within the mature biofilm,
the cell-cell adhesion dynamics are clearly of significance, as they determine bac-
terial mobility and colony fluidity and the dispersion for future colonization.

Optogenetics is increasing in its importance to control bioproduction, cocul-
tures of bacteria, and structuring biofilms, as light is a cheap stimulus that pro-
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vides superb spatiotemporal and quantitative control [48], [49]. Illumination with
external periodic light stimuli is straightforward to implement in existing reac-
tor designs with no concerns about contamination or offtargeting. Existing tools
already allow for optogenetic modulation of bacterial growth to maintain stable
co-cultures over long periods [50] and specifically tune the activation of different
pathways as desired [45], [51], [52]. Moreover, the light-inducible production of
various biofilm-forming molecules also makes it possible to pattern biofilms with
high fidelity [28]–[32], [53]. The here presented tuning over cell-cell adhesion dy-
namics adds another modality to enhance biofilm formation and cocultures that
is regulated directly at the level of adhesions and not gene expression. This allows
for faster on/off dynamics that are required at the time scale of microcolony for-
mation and biofilm compacting and leaves the possibility to combine with other
approaches to modulating biofilms.

In summary, the dynamics of cell-cell adhesion are just as important as the in-
teraction strength in determining the bacterial behavior including quorum sensing
and biofilm formation. The photoswitchable bacterial cell-cell adhesions provide
a straightforward approach to altering the cell-cell adhesion dynamics and the as-
sociated processes systematically. Here, we demonstrate how important cell-cell
adhesion dynamics are in engineering bacterial communities at the micro- and
mesoscopic scale with potential use in research and industrial applications.

2.4. EXPERIMENTAL SECTION
Plasmids, Bacteria and Materials: The plasmids pB33-nMagHigh-eCPX or pB33-
pMagHigh-eCPX (chloramphenicol resistant, L-arabinose inducible) were previ-
ously described [34]. Plasmids expressingGFP, mCherry, eCFP, and eYFP in a
pTrc99A vector (ampicillin resistant, IPTG inducible) and the quorum sensing plas-
mid pUA66-Plsr-eGFP [9](kanamycin resistant) were a gift from Prof. Victor Sour-
jik (Max Planck Institute for Terrestrial Microbiology). E. coli K-12 MG1655 was
purchased from DSMZ and the auxotrophic BL21 (DE3) E. coli strains RF2 (Ad-
dgene plasmid # 62070, T), RF6 (Addgene plasmid # 62074, P), RF10 (Addgene plas-
mid # 62076, K), RF11 (Addgene plasmid # 61961, M), and RF12 (Addgene plasmid
#62077, W) were a gift from Robert Gennis and Toshio Iwasaki [54].

All chemicals were purchased from Sigma-Aldrich. Eight-well slides (µSlide,
8-well glass bottom) are from ibidi and 96-well microplates are from Greiner Bio-
One. The illumination setup used was built with off-the-shelf components includ-
ing 460 nm LED strips connected to a power regulator, which controlled the inten-
sity, and a programmable timer plug which regulated the pulsing frequency.

Bacterial Strains: E. coli K-12 MG1655 was co-transformed with plasmids ex-
pressing one of the photoswitchable adhesins (pB33-nMagHigheCPX or pB33-
pMagHigh-eCPX) and one of the plasmids expressing a fluorescent protein
(pTrc99A- mNeonGreen, mCherry, eYFP or eCFP) or the quorum sensing reporter
plasmid (pUA66-Plsr-eGFP). All overnight cultures were grown at 37 °C and 250
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rpm covering the tubes in aluminum foil to keep samples dark.

Aggregation Assay and Analysis: A single colony of the desired strains
(nMagHigh-eCPX/ pTrc99A-mNeonGreen or pMagHigh-eCPX/ pTrc99AmCherry)
were picked and cultured in LB medium (10 ml) in the presence of the appropri-
ate antibiotics and inducers (50µgmL−1 ampicillin, 35µgmL−1 chloramphenicol,
0.04% L-arabinose, 100 µM IPTG) overnight. Next, the bacteria were diluted in
phosphate saline buffer (PBS) to an OD600 = 0.12, and cultures expressing com-
plementary photoswitchable adhesins were mixed in a 1:1 ratio. Aliquots of 300µL
were added into 8well slides and incubated at 22 °C under the desired illumination
setting (460 nm LED, 300µWcm−2) for 2 h without shaking. All experiments were
performed in 3 biological replicates with 3 technical replicates each.

Microscopy images were acquired on an inverted confocal laser scanning mi-
croscope (CLSM, Leica TCS SP8) equipped with a 488 and 552 nm laser for imaging
the mNeonGreen and mCherry respectively, and a 40x water-immersion objective.
For each sample, 25 images (290 × 290 µm each, total area ca. 2.1mm2) were ac-
quired in the mNeonGreen and mCherry channels. All images were processed in
FIJI.

To analyze bacterial aggregation, the images in the GFP and mCherry channel-
swere merged andconverted intoa binaryimage. All bacteria(area ≥ 2µm2, area of
a single bacteria) and clustered bacteria (area ≥ 35µm2, area of at least 15 bacteria)
were detected using the Analyze Particles function in FIJI. The aggregation ratio is
equal to the total area occupied by clustered divided by the total area occupied by
all bacteria. The fractal dimension of the bacterial clusters (area ≥ 35µm2) was
quantified using the FracLac plugin for FIJI [55], [56].

Individual-Based Simulations: We model our bacteria as spherocylindrical par-
ticles as previously implemented [57] with diameter D = 1µmand a length taken
from a uniform distribution between 1 and 2µm. Because the bacteria in the ex-
periments tend to sediment to the bottom of the wells quite quickly and only the
bottom layer is imaged, we initialize the particles in a thin slab right above the sur-
face with periodic boundary conditions on the x and y axis (2000 particles in a 110
× 110 × 5 box). For each time step, the forces on each particle are calculated, and
their positions are updated accordingly, using an overdamped dynamics model.
The amount of timesteps per experimental minute is set to 25 000.

The particles are subject to Brownian motion which is implemented by giv-
ing each end of the particles a kick in a random direction and with a magnitude
taken from a normal distribution with mean 0 and standard deviation σb f . A suit-
able value for σb f was chosen by first, estimating the diffusion coefficient for a
spherical particle of the same diameter, suspended in PBS buffer. Correcting for
the fact that the diffusion takes place near a wall [58], and that the particles are
spherocylindrical with an aspect ratio of three [59], gave us a diffusion constant of
Dparticle = 0.024µm2 s−1. Measuring the MSD after one hour for 2000 particles we
find that σb f = 1 ·10−3 gives us an MSD of the expected ≈500µm2 (fig. S2.3, Sup-
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porting Information). For each particle pair that is within reach of each other, the
shortest distance between the two particles is determined. The magnitude of the
adhesive force they experience depends on this distance r in the following way:

F (r ) = P · r

α
·e−

r−α
α , for r ≥ 0, (2.2)

F (r ) = K0 · r, for r < 0, (2.3)

where α determines the interaction range and P determines the amplitude of the
attractive forces. If there is overlap between the particles, the force is taken to be
in the form of a spring force with spring constant K. The resulting force is then dis-
tributed over the two end-points of the particle inversely related to where the clos-
est point is situated along the length of the particle. Because the membrane pro-
teins are not more than a couple of nanometers across, we argue that the range of
the interaction should be around twice their size (≈ 5nm). The interaction strength
should be quite strong, so that once the particles adhere to each other or to the sur-
face, they would not come apart due to Brownian forces. Particles also interact with
the surface; this interaction does not depend on the light conditions. The surface
adhesion works on both ends of the particles separately because we know that sur-
face interaction is mostly modulated on the ends of E. coli [59]. The magnitude of
the surface adhesion for each endpoint is calculated as follows:

Fsurface(r ) = S · r

β
·e−

r−β
β , for r ≥ 0, (2.4)

Fsurface(r ) = K0 · r, for r < 0, (2.5)

we chose the magnitude of this adhesion such that it is weaker than the ad-
hesion between particles but stronger than the Brownian forces because we know
from the experiments that clusters can pull single particles off the surface. By com-
paring the aggregation curves under constant blue light over a span of 6 hours be-
tween the experiments [34] and simulations we settled on values P = 5 ·10−3 and
S = 5 ·10−4 with ranges α= 5nm and β= 10nm (fig. S2.4a,b, Supporting Informa-
tion). Please note that, even though higher adhesive strengths gave a better fit to
the data, this resulted in artifacts in the simulations in the form of fast-spinning
particles (not shown). Additionally, we show that changing the range α does not
affect the results significantly (fig. S2.4c, Supporting Information).

Four times every experimental minute, all the particle coordinates and orien-
tations were logged. These were then used to create images of the bottom 1.2µm
slab of the simulation box, which is the z resolution of the microscope used, using
Python. The images were then analyzed using ImageJ in the same way that is used
for the experimental images (Analyze Particles, etc.). We use this data to track the
aggregation ratio and cluster size over the course of the simulation experiments.
We also measure the fractal dimension using Fraclac. We also tracked which parti-
cles were within each particle’s vicinity by logging the neighbors’ particle ID’s.
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Quorum Sensing Activation: Single colonies of the desired strains (nMagHigh-
eCPX/pUA66-Plsr-eGFP or pMagHigh-eCPX/pUA66-PlsreGFP) were picked and
cultured in LB broth (10 mL) with the respective antibiotics (50µgmL−1 ampi-
cillin, 35µgmL−1 chloramphenicol) incubated. The overnight cultures were di-
luted 1:1000 into 10 mL LB medium supplemented with antibiotics and 0.04% L-
arabinose. The bacteria were cultured in the dark at 37 °C, at 200 rpm for 3–4 h
until OD600 = 0.6 was reached. Both cultures were diluted with PBS to OD600 = 0.12
and mixed in a 1:1 ratio. Aliquots of 300µL were added into an 8-well slide and
incubated at 22 °C under the respective illumination setting for 2 h. Confocal mi-
croscopy images were acquired in the GFP channel and the eGFP reporter signal
was quantified with FIJI using the Integrated Density measurement. All experi-
ments were performed in 3 biological replicates with 3 technical replicates each.

Biofilm Formation: Overnight cultures of the desired strains (nMagHigh-eCPX/
pTrc99A-eCFP or pMagHigh-eCPX/ pTrc99A-eYFP) were grown in the presence of
antibiotics and inducers (50µgmL−1 ampicillin, 35µgmL−1 Chloramphenicol and
inducers 0.04% L-arabinose, 100 µM IPTG). The next day, the cultures were diluted
into LB medium supplemented with antibiotics and inducers to reach an OD600 =
0.01. The two strains were mixed in a 1:1 ratio, and 300µL aliquots were transferred
to 8-well slides. The samples were incubated at 37 °C without shaking under the
respective illumination setting for 48 h. The samples were rinsed three times with
water, and z-stacks were acquired using the CLSM using the 405 and 488 nm lasers
for fluorescence activation of eCFP (475–495 nm) and eYFP (540-560 nm), respec-
tively. The biofilms were 3D reconstructed using the 3D Viewer from the Leica LAS
X software. Details of the biofilm morphology were analyzed using the COMSTAT
2 plug-in in FIJI. All experiments were performed in 5 biological replicates.

For crystal violet staining we used a modified version of previously described
protocols [60], where the experiment was repeated as described above but the bac-
teria were only transformed with nMagHigh-eCPX or pMagHigh-eCPX and 200µL
aliquots of the coculture were added into 96well round bottom plates. After 48 h
incubation, the samples were gently rinsed three times with water, each well then
received 200µL of a 0.1% solution of crystal violet in water and were incubated for
15 min at room temperature. Then, the wells were rinsed three times with wa-
ter and the remaining crystal violet was solubilized by adding 200µL of 30% acetic
acid in water. Finally, the solution was diluted 1:5 with water and the absorbance
at 550 nm was measured in flat-bottomed transparent 96-well microplates using a
plate reader (TECAN Spark). The experiments were conducted in three biological
replicates.

Auxotrophic Bacterial Cocultures: Overnight cultures of the desired auxotroph
strains (RF2, RF6, RF10, RF11, RF12 were a gift from Robert Gennis and Toshio
Iwasaki; Addgene #: 62070, 62074, 62076, 61961, and 62077, respectively) trans-
formed with the photoswitchable adhesins and a fluorescent label (nMagHigh-
eCPX/ pTrc99A- eCFP or pMagHigh-eCPX/ pTrc99A- eYFP) were grown in the
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presence of antibiotics and inducers (50µgmL−1 ampicillin, 35µgmL−1 Chloram-
phenicol and inducers 0.04% L-arabinose, 100 µM IPTG) were spun and resus-
pended in minimal M9 media with the same antibiotics and inducers, to reach
OD600 = 0.01 (≈ 107 cells mL−1). Combinations of these two strains were mixed in
a 1:1 ratio and 500µL aliquots were transferred to flat-bottomed transparent 48-
well microplates and incubated at 37 °C and 200 rpm orbital shaking, under the
respective illumination setting for 48 h, when the final OD600 was measured and
the growth fold was calculated respective to the initial bacterial concentration. All
experiments were performed in 3 biological replicates.

Biofilm growth of auxotrophic strains was similar as described above, but
300µL aliquots of selected cocultures were placed on 8-well slides and incubated
at 37 °C without shaking under the respective illumination setting for 48 h. Excess
media was pipetted out of the wells without disturbing the delicate biofilms and
z-stacks were acquired using the CLSM, which were analyzed as described above.

Free-Cell Fermentation, Immobilized Fermentation, and Carrier SEM Analy-
sis: The study involved testing cocultured E. coli strains, specifically the ∆ycgF +
nMag-High and ∆ycgF + pMagHigh, through free-cell fermentation and immobi-
lized continuous fermentation. Cotton fiber carriers previously characterized for
industrial fermentation[61], [62], were taken from the fermentation batches and
observed through SEM electron microscopy. The methods and instrumentation
were employed as previously described [46], illumination conditions set to dark,
blue (450 nm; 500 lux), and 5:20 ON:OFF pulses.

Co-cultured E. coli ∆ycgF + nMagHigh and ∆ycgF + pMagHigh were subjected
to free-cell fermentation, immobilized continuous fermentation, and their carriers
were photographed by SEM electron microscopy. The methods and instrumenta-
tion used in the above experiments were also modified from previous literature [46]
to include our current illumination settings.
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2.5. SUPPLEMENTARY INFORMATION

Supplementary Figure 2.1: (a) Average aggregation ratio. (b) Average GFP fluorescence of QS reporter
bacteria. (c-d) Cluster size distribution and mean. p-Values correspond to individual t-tests.
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Supplementary Figure 2.2: Correlation of cluster size with fractal dimension.

Supplementary Figure 2.3: Mean-squared displacement (MSD) of particles after 1 hour of darkness for
different values of σb f . Dashed line represents the expected MSD for the bacteria at 500µm2.
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Supplementary Figure 2.4: Determining the parameters of the interaction parameters. Aggregation
ratio and cluster size curves for different values of P , S and α.

Supplementary Figure 2.5: Pulse illumination enhances biofilm formation of MG1655 E. coli K-12 ex-
pressing nMagHigh and pMagHigh adhesins. Biofilm grown in 96-well plates were stained with crystal
violet to quantify the total biofilm biomass by light absorption spectroscopy at 550 nm. Experiments
were performed in biological triplicates.
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Supplementary Figure 2.6: Biofilm analysis from MG1655 E. coli K-12 expressing nMagHigh or
pMagHigh. Pulse illumination enhances biofilm formation and has a significant effect on all the prop-
erties analyzed using COMSTAT.

Supplementary Figure 2.7: Biofilm analysis from E. coli auxotroph strains expressing nMagHigh or
pMagHigh. Pulse illumination allows for tunable responses in biofilm growth and properties of con-
sortia cocultures.

45



Supplementary Figure 2.8: Effects of various light frequencies on biofilm formation in E. coli. (a) E.
coli ∆ycgF + nMagHigh or pMagHigh strains were co-inoculated into a 24-well plate, incubated at 37°C
in dark, blue and 5: 20 pulse conditions for 30 h and then imaged after crystal violet staining before
washing, and the corresponding absorbance at 570 nm (b) (Student’s t-test, n.s.: not significant; ***: p
< 0.001). Experiments were performed in biological triplicates. (c) Effect of three light frequencies on
L-threonine production and glucose consumption in freecell fermentation of E. coli ∆ycgF expressing
the surface adhesins.
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3
3D ARCHITECTURE OF GROWING MICROCOLONIES

Rachel LOS, Timon IDEMA

Bacterial biofilms form through initial surface adherence and microcolony develop-
ment. These processes are influenced by cellular shape, motility, and environmental
context. Using an individual-based model, we examine how varying surface and
cell-cell adhesion affects biofilm architecture. Our results show that strong surface
adhesion leads to flat colonies, while stronger cell-cell adhesion promotes dome-
shaped structures. The model can provide various global architectures, but cannot
provide variation in internal structure. Despite these limitations, the model effec-
tively simulates diverse and realistic microcolony architectures, providing insights
into the mechanical forces.
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3.1. INTRODUCTION
Bacteria make up an enormous diversity of the species present on earth. The vast
majority of them live in surface-attached communities. A key step in the colonisa-
tion of a surface is the initial adherence of one or more cells to a surface, and the
subsequent formation of microcolonies [1], [2]. These microcolonies serve as the
foundation for biofilm development, significantly influencing the overall architec-
ture and make up of the biofilm [3], [4]. However, the mechanical development
of microcolonies is highly complex, varying across different species and environ-
mental conditions.

One critical factor at the cellular level that affects the three-dimensional struc-
ture of a colony is cell shape [5], [6]. While primarily species-dependent, cell shape
can also be modulated through quorum sensing mechanisms [7]–[9]. Cell motil-
ity, including crawling, swimming, or gliding, introduces spatial patterns such as
depletion zones and droplet formation [10]–[13]. Biofilms, being surface-attached
colonies, require cells to interact with surfaces through mechanisms such as pili
formation, general affinity, or anchoring [14], [15]. Additionally, cells can actively
modulate their surface attachment which makes them adaptable to different envi-
ronments and surfaces [16]. These surface interactions can strongly affect colony
architecture [14], [17], [18].

The environmental context in which a biofilm establishes itself signifi-
cantly impacts colony shape as more viscous environments will lead to denser
colonies [19]. Bacteria can modulate the viscosity of their environment themselves
by excreting polymeric substances [20]. Additionally, bacteria engage in specific
cell-cell interactions via adhesive proteins on their membranes [21]–[23]. Taken
together, these effects influence the development of the colony’s structure through
modulation of the cell-density [6], [10], [24].

Experimental and simulation studies have demonstrated that competing
forces within a growing colony can drive the transition from a two-dimensional to
a three-dimensional structure [25], [26]. This transition could emerge from some-
thing as simple as balancing cellular growth and division with friction with the
surface [27], but could also include any or all of the other competing effects men-
tioned above. As a counter force to growth and division, dying cells also influence
the structure significantly by inducing heterogeneity in the developing colony [28],
[29].

Understanding the establishment and development of bacterial colonies is
crucial for addressing challenges in biofouling, bacterial infections, and the
biotechnological application of biofilms [29]–[33]. However, due to all these com-
peting processes, individual mechanisms are difficult to isolate. Computational
modelling offers valuable insights into these processes, as it allows simplification
and isolation of mechanisms and it enables the exploration of parameters that are
difficult to probe experimentally. These models help elucidate complex aspects of
colony development and architecture [34]–[37].
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3.2. METHODS
The model is set up as described in chapter 1. In short, we model bacteria as sphe-
rocylindrical particles that grow and divide on a surface. The particles have short-
range mechanical interactions with each other and with the surface. Each simu-
lation starts with a single particle on a surface. Every five simulation time steps,
the particle is grown. The system is then allowed to relax for the other simulation
time steps. Each time step, all forces on all the particles are calculated and the
particles are moved accordingly, assuming overdamped dynamics. The system is
evolved until a colony size of 10000 particles is reached. Values for the simulation
parameters used in this chapter, can be found in table 3.1.

Parameter Explanation Value
kint spring constant of the internal spring 0.1
D particle diameter 1 µm
L length of the spring at division varied
kr spring constant of the overlap potential 2 ·kint

FPP particle-particle adhesion force
magnitude

varied

α particle-particle adhesion range 5 nm
FPS particle-surface adhesion force

magnitude
varied

β particle-surface adhesion range 5 nm
Rint interaction range for which

mechanical interactions are calculated
2 ·L

µ growth rate 2×10−4 µm(5·ts)−1

σµ standard deviation for the growth rate
noise

0.1 ·µ

σθ standard deviation for the
orientational noise

0.1

σφ standard deviation for the
orientational noise in the z-direction

0.01

Table 3.1: Explanation and values used for the simulation parameters.
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Figure 3.1: Fraction of the particles (AR = 4) that have moved out of the 2D plane for different magni-
tudes of the surface adhesion and particle adhesion. Shown here with snapshots of example colonies
of 10000 particles. Particles are coloured by orientation with respect to the z-axis.

3.3. RESULTS
Varying the magnitudes of the two adhesive forces - particle adhesion and surface
adhesion - results in colonies of a variety of shapes. Architectures range from fully
flat colonies for high surface adhesion, to dome shaped colonies for high particle
adhesion and low surface adhesion. One way of characterising the global struc-
tures is by measuring the fraction of cells that have (partially) moved out of the 2D
plane and have moved away from the surface (fig. 3.1).

Focusing in on the part of the colonies that have escaped to the third dimen-
sion, we see that this process can occur in different ways for similar out-of-plane
fractions (fig. 3.2a). For lower magnitudes of the particle adhesion, particles es-
cape the plane somewhat homogeneously throughout the colony, forming a dome
in the center, while the edge of the colony remains flat. For higher particle adhe-
sion, we see highly localised spots where particles grow out of the plane. In these
structures, crisp ridges are formed that sometimes even grow all the way to the
edge of the colony. The rest of the colony remains perfectly flat.

The pressure the particles experience, shows that particles experiencing
stronger particle adhesion, also experience more pressure for the in-plane parti-
cles (fig. 3.2b). Pressure for the particles that moved out of the plane is higher than
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Figure 3.2: a) Snapshots of example colonies of 5000 particles (AR = 4). Particles are coloured by orien-
tation with respect to the z-axis as in fig. 3.1, particles that have not moved out of the plane are blurred
out. b) Pressure experienced by particles in the 2D plane. The black cutout denotes the part of the
phase space where colonies are mostly flat. c) Pressure experienced by particles out of the 2D plane.

the ones in the plane for colonies with high surface adhesion. For colonies with
higher particle adhesion than surface adhesion, this is reversed, and the in-plane
particles experience more pressure.

When we look at the internal structure of these colonies, we can look at the
orientation of the particles with respect to the z-axis (fig. 3.3a). This tells us some-
thing about how vertical or horizontal the colony is. Colonies that are fully flat,
appear as pink. The more vertical the colony, the more yellow the average orien-
tation. We see that for colonies with a similar out-of-plane fraction, the average
verticalisation is also similar.

We can also compare each particle’s orientation to the orientation of its direct
neighbours. Averaged over all the particles in the colony, this gives us a value for
the orientational order of the system (fig. 3.3b). Here a value of 0 would mean a
fully disordered system, and a value of 1 would mean a fully aligned colony. Flat
colonies have roughly the same orientational order, which is slightly higher than
the order for 3D colonies.

We show 4µm slices of some of the colonies in fig. 3.3c. This shows how vertical
cells are equally dispersed. Cells somewhat align with their neighbours, however,
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Figure 3.3: a) Average orientation of particles (AR = 4) with respect to the z-axis. The black cutout
denotes the part of the phase space where colonies are mostly flat. b) Average local orientational order.
c) Slices of 4µm of example colonies of 10000 particles (AR = 4). Particles are coloured by individual
orientation with respect to the z-axis as in a).

there is no clear pattern in orientation throughout the 3D colony.

3.4. DISCUSSION
Varying the strength of surface adhesion and particle adhesion gives rise to a varied
set of colony architectures (fig. 3.1). For low particle and surface adhesion, we get
relatively flat colonies with a raised center similar to E. coli colonies reported in
literature [25]. When particle adhesion becomes stronger than surface adhesion
we see more dome-shaped colonies as earlier observed in for example V. cholerae
biofilms [38].

In the part of the phase space where the magnitudes for the surface adhesion
and particle adhesion are very similar, we see high variation in global architecture.
For example, for FPP = FPS = 10−3 ·kint, the resulting colony is a mostly flat colony
with a raised center. Varying either magnitude less than an order of magnitude
up or down leads to colonies that are either entirely flat or fully dome-shaped.
This suggests that a bacterium could regulate its shape by slightly up- or down-
regulating its adhesion properties [15].

The onset of the transition into a 3D colony is, in this case, due to the force
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balancing between the in-plane attraction forces and the pressure build-up. Look-
ing at the pressure the particles in the plane experience, we see that for weaker
adhesive forces, particles escape from the plane throughout the colony (fig. 3.2b).
It appears that for stronger particle adhesion, particles actually keep each other
in the plane, increasing the pressure. Once one particle escapes the plane, it can
trigger other particles around it to do the same, resulting in ridge like structures
(fig. 3.2b). These structures are somewhat reminiscent of the wrinkling observed
in more developed colonies, although it should be noted that those appear at a
much larger scale [39]. It should be noted here, that the pressure that cells ex-
perience is dependent on the interplay between growth and relaxation. Altering
the growth rate and/or the amount of relaxation time steps will influence at which
point in the development of the colony the pressure reaches its critical value [8].

Dimensional transition has been studied computationally, where often the first
particle starts completely flush with a perfectly flat surface [27]. This scenario be-
comes less and less relevant once cells inoculate a surface in small bacterial clus-
ters or the surface is not smooth [2]. A different initialisation condition could be
chosen to immediately give particles the opportunity to extrude from the surface.

Looking at the internal structure of the colonies, we only see an obvious dif-
ference between fully flat colonies and 3D colonies (fig. 3.3). Within 3D colonies,
varying surface or particle adhesion has very little effect on the alignment or or-
dering within the colony. This means that, with this model, we cannot capture the
verticalisation of the colony core that has been observed in experiments [26], [38].
It is very likely that this is due to the fact that we do not implement any anchoring to
the surface and the friction particles experience is isotropic [6], [14]. Our adhesion
to the surface is more like a general affinity to the surface and not an adherence to
a specific spot on the surface.

Additionally, in our simulations, there is no active alignment between the parti-
cles. This is in contrast to earlier work where particles where simulated as interact-
ing ellipses [20]. Because we distribute our forces over the end points of the cells,
we do not need an explicit torque. Besides, there is little evidence that bacteria
make an active effort to be aligned.

This individual-based model can produce a wide variety of 3D structures by
just changing 2 parameters, the magnitude for the surface adhesion and the mag-
nitude for the particle adhesion. There are many more parameters to choose from
and change, which would undoubtedly significantly alter the results. This is analo-
gous to real microcolonies, where there are numerous cellular and environmental
factors influencing the 3D architecture. That means that one should be careful
in drawing conclusions from the model alone, as different sets of parameters and
choices, might lead to very similar colony architectures. Nonetheless, it is a useful
tool, and it allows us to grow virtual bacterial colonies of a reasonable shape and
size.
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4
TIME OF FIRST CONTACT DETERMINES COOPERATOR

SUCCESS IN A THREE-MEMBER MICROBIAL CONSORTIUM

Rachel LOS, Tobias FECKER, P.A.M. VAN TOUW,
Rinke J. VAN TATENHOVE-PEL, Timon IDEMA

Microbial communities are characterised by complex interaction, including co-
operation and cheating, which have significant ecological and applied implica-
tions. However, the factors determining the success of cooperators in the presence of
cheaters remain poorly understood. Here, we investigate the dynamics of cooperative
interactions in a consortium consisting of a cross-feeding pair and a cheater strain
using individual-based simulations and an engineered L. cremoris toy consortium.
Our simulations reveal first contact time between cooperators as a critical predictor
for cooperator success. By manipulating the relative distances between cooperators
and cheaters or the background growth rates, influenced by the cost of cooperation,
we can modulate this first contact time and influence cooperator success. Our study
underscores the importance of cooperators coming into contact with each other on
time, which provides a simple and generalizable framework for understanding and
designing cooperative interactions in microbial communities. These findings con-
tribute to our understanding of cross-feeding dynamics and offer practical insights
for synthetic and biotechnological applications.

This chapter has been accepted for publication in ISME Communitations.
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4.1. INTRODUCTION
Microorganisms often live together in surface-attached communities of many
strains and species, called biofilms. An early stage of the planktonic cell to biofilm
life cycle are microcolonies, which make up the initial kernels that later grow into
larger biofilms [1]. Studying the formation of these microcolonies provides valu-
able insight into biofilm development [2]. The organisms living in biofilms can
form complicated networks of antagonistic, mutualistic, competing or cooperat-
ing interactions [3]–[5]. One of the ways species can cooperate is by cross-feeding,
where both species produce metabolites or other essential compounds, that bene-
fits the other [6]. The production of these compounds often comes at a cost for the
producer in the form of extra expended energy, e.g. in the form of ATP. This cre-
ates opportunities for cheater species to exploit cooperators, by reaping the same
benefits from the cross-fed compounds without contributing to the cooperation
themselves [7]. Studying the interactions in bacterial systems can have implica-
tions for applications concerning biofilms in medical, biotechnological and indus-
trial contexts [8]–[10]. Moreover, because mutualism and cooperative interactions
can be observed in all branches of the phylogenetic tree, there is general interest
in what makes this type of social behaviour evolutionary stable [7]. Due to their
relative simplicity, microbial systems can be used as model systems for studying
broader social behaviours in biology [11]. The interactions between microorgan-
isms are in general complex, with many inter-dependent variables which are diffi-
cult to isolate [12]. An important factor on the dynamics of any collection of inter-
acting species is spatial organisation [13]–[18]. This spatial structure plays a role
in both the emergence and the maintenance of cooperator co-existence [19]. For
example, spatially structured environments can promote clonal patching which is
useful for intraspecies cooperation [20], [21] as well as pattern formation in multi-
species colonies [16], [22].

In this paper we employ Individual-Based Modelling (IBM) to simulate a con-
sortium of two cooperating species and a selfish cheater growing on a surface. By
incorporating spatial structure and proximity in metabolic interactions we attempt
to uncover the factors that govern cooperative success in the face of cheating [23].
This will contribute to our understanding of population dynamics in cooperative
biological systems.

4.2. RESULTS + DISCUSSION

4.2.1. COOPERATOR SUCCESS IS HIGHLY DEPENDENT ON INITIAL

PLACEMENT OF PARTICLES

To explore the impact of local cross-feeding interactions on the development of
a multi-species microcolony, we modelled interacting particles growing on a sur-
face (fig. 4.1a). We defined three different species, two cooperators A and B, and
a cheater C (fig. 4.1b). We made use of the fact that metabolic interactions have

60



been shown to take place at very short distances and have the particles adjust their
growth rate based on the number of their beneficial nearest neighbours [24], [25].
The strength of the cross-feeding interaction between cooperators A and B is char-
acterised by two main factors: the metabolic cost the cooperators pay to contribute
to the cooperation, and the added growth benefit they experience from this inter-
action. The cheaters don’t pay the cost but experience the same benefit (fig. 4.1c).
For now, the interaction with the cooperators is symmetric, in the sense that the
cheater responds similarly to cooperator A as to cooperator B and it needs both to
grow. Further on in this manuscript we also explore asymmetric cheater interac-
tions. The particles, are spherocylindrical particles that grow and divide. We start
each run with 10 of each species randomly distributed on a surface. We then let
them grow till the colonies reach a size of 104 particles.
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Figure 4.1: Effect of cost and benefit of cooperation on cooperator success in individual-based sim-
ulations a) schematic representation of the individual-based-model. Spherocylindrical particles grow
and divide, forming a 3D colony. b) The simulated consortium of two cooperators (A & B) which benefit
each other and a cheater (C) which benefits from both cooperators A and B but does not reciprocate.
c) Growth rate of both the cooperators and the cheaters, dependent on the number of beneficial neigh-
bours (i.e., neighbours that provide a useful compound). The growth rate is affected by the cost and
benefit of cooperation. d) Snapshots of the final 3D colonies for different combinations of cost and
benefit. Area shown is always 130× 130µm2. e) Final cheater fractions for varying cost and benefit.
Averages taken over 15 runs and in f) the standard deviation of those runs.

In order to understand how the strength of the local interactions shaped the
development of the microcolony, we simulated growing colonies for varying costs
and benefits and recorded the cheater fraction. Typical simulation snapshots of
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the final colonies are shown in fig. 4.1d. The final cheater fractions averaged over
15 runs are shown in fig. 4.1e, the bottom left data point represents a situation
with no cost and no benefit, which means that the particles are not interacting at
all and their growth rate remains the same. As the cost of cooperation increases
while the benefit stays zero, the final cheater fraction increases. In turn, increasing
the benefit decreases the cheater fraction and favours the cooperators. Interest-
ingly, there are not many intermediate values for the final cheater fraction, show-
ing more switch-like behaviour than would be expected from a well-mixed system
(Supplemental methods, fig. S4.2).

Surprisingly, the simulations gave a large variation between runs with the same
interaction parameters, particularly for higher costs and benefits (fig. 4.1f). Here,
we found standard deviations of up to 50% which indicates that the final cheater
fraction can be anywhere between 0% and 100% for simulations with the same
interaction input parameters. Since, the only difference between these runs was
the initialisation of the 30 particles at the start of the run, the large variance had to
be a result of the initial placement of the particles, which we explored next.

4.2.2. FIRST CONTACT TIME DETERMINES COOPERATOR SUCCESS

In order to investigate how the initial placement of the particles leads to different
final cheater fractions, we visually inspected the resulting colonies of the simula-
tions. In general, we observed that colonies were fairly segregated, akin to clonal
patches observed in 2D colonies [9]. The cooperator patches are often well mixed,
with equal amounts of A and B, which we expect is due to a combination of nematic
mixing and the mutualism between these species [20], [26], [27]. In different sim-
ulations with the same input parameters, we observed a varying number of these
patches of mixed cooperators (fig. S4.1). Because the cooperators depend on each
other’s proximity to cross-feed, we speculated that the final cheater fractions might
be determined by how likely it is for cooperators to meet.

In order to investigate this relation between the likelihood of meeting and final
cheater fraction, we took all the runs and we recorded the first time point where a
cooperator A particle comes into contact with a cooperator B particle. Plotting the
final cheater fraction as a function of these first contact times for each value of the
benefit, yielded clearly defined curve with comparatively little variance (fig. 4.2a).
Therefore, for a given benefit, the time of first contact was a more informative pre-
dictor for cooperator success than the cost of cooperation.

This dependence on cooperators encountering each other is in line with ear-
lier findings on the importance of co-localisation probabilities in a similar con-
sortium growing in microdroplets [28]. Other work on two-species cooperator-
defector consortia growing plates showed the importance of founder cell config-
uration [29]. Additionally, expansion-collision dynamics and initial distance be-
tween microorganisms have been shown to be important factors for cooperator-
defector co-existence [30]. Although all these systems are not identical, they do
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Figure 4.2: First contact time determines cooperator success. a) Final cheater fraction of single runs
plotted as a function of first encounter time (measured in DT = 105 simulation time steps) for three
different benefits. Cost is denoted in green. b) Critical meeting time as a function of benefit. c) Toy
system for a well defined initial condition of three particles positioned in a triangle and the resulting
colonies, for the combinations of two values for the cost (0.2 and 0.7) and two values for the benefit (5.6
and 8.8).

point to a general principle in cooperative dynamics.
To explore this further, for each value of the benefit, we determined a critical

meeting time before which A and B need to make contact in order to outcompete
the cheaters and make up > 50% of the final population (fig. 4.2b). If the first con-
tact time happened after this point, cheaters dominated the final colony of 104

particles. The critical meeting time depended on the cooperator benefit, where a
higher benefit allowed for a later critical meeting time. In this case, once first con-
tact had been made, cooperators were able to make up for lost time by growing
faster once they were together. Conversely, if the cooperator benefit was lower, the
cooperators needed to meet earlier to outcompete the cheaters.

It is important to note that first contact time is determined not only by the cost
and benefit, but also the relative distance between the cooperators in the initial
placement. To illustrate this, we visualised the outcome of simulations with a well-
defined initial placement of the three particles (fig. 4.2c). Here, the initial distance
between the particles is always the same, and out of range from each other. The
cost then affects the time it takes for the particles to traverse that distance since
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the cost affects the growth rate of the particles when they are on their own, i.e.
their background growth. A higher cost causes the cooperators A and B to have a
lower background growth rate, so they are slower to reach each other. If they are
too slow, as shown in the top-left, cheater particles grow in between them before
they get the chance to make contact. In this case, having a higher benefit (top-
right) will not help the cooperators as they never get to reap the rewards of their
cooperation. If the cost is lower and A and B find each other before the critical
meeting time (bottom-left), they can compete effectively with the cheaters. When
the benefit becomes larger (bottom-right), they can significantly out-compete the
cheaters once they meet. In our system of random initial distances between par-
ticles, this interplay between distance and background growth is what leads to the
high variation in competitive outcome. From these simulation results, we propose
that it is not just the initial distances between cooperators nor just the details of the
cooperative interaction, but it is the first contact time that determines cooperator
success in surface attached colonies.

4.2.3. EXPERIMENTAL CONSORTIUM OF ENGINEERED L. cremoris

To test if the first contact time between cooperator species is also critical in a bi-
ological system, we attempted to translate our simulated consortium to a labora-
tory setting. We constructed a consortium of three L. cremoris strains (fig. 4.3a,
Table 4.1) growing on agar plates containing lactose as a carbon source and ca-
sein as an amino acid source. Cooperator A, NZ9000 Lac+ Glc−, can metabolize
the galactose moiety of lactose, but exports the glucose moiety from the cell. The
glucose can then be used by cooperator B, MG610, which cannot metabolise lac-
tose. In return, MG610 expresses an extracellular enzyme to break down the casein
into amino acids, which benefits A, which cannot metabolize the casein. Lastly, we
engineered a cheater C, MG1363_GFP Lac+, by transforming a plasmid contain-
ing the genes necessary to metabolise lactose into MG1363_GFP. This constructed
cheater can metabolise lactose and both resulting moieties, but, similar to A, lacks
the enzyme to degrade casein. C also expresses GFP, which we use to determine the
cheater fraction. We grew A, B and C individually on agar plates, and measured the
total growth by comparing the final cell count to the initial cell count and calcu-
lating the amount of times the cells had doubled. On the single strain plates there
was very little growth, which is what we expected from the designed cross-feeding
interaction (fig. 4.3b). When growing all the pairwise combinations, we observed
that A+B massively outgrew the other combinations. From this we concluded that,
as expected, these two strains experience a strong mutual benefit from growing to-
gether. Similarly, we concluded that on plates with C+A and B+C, there is no such
mutualism, as the total cell abundance, measured in amount of doublings, stalled.
Furthermore, when we measured cheater fractions for these combined plates, we
saw that C outgrows both A and B in a pairwise combination, pointing to a gen-
eral advantage in growth rate that C has over both A and B (fig. 4.3c). All in all, we
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Figure 4.3: Engineered consortium on agar plates a) L. cremoris consortium, consisting of cooperators
A and B and cheater C. b) Control experiments showing the amount of doublings for single strain plates
and pairwise combinations after three days incubation. c) Control experiments showing cheater frac-
tions for all single strain plates and pairwise combinations. All conditions are measured in triplicate.

concluded that our experimental consortium accurately represents a cross-feeding
pair together with a cheater.

4.2.4. RELATIVE AVERAGE DISTANCE BETWEEN COOPERATORS DETER-
MINES COOPERATOR SUCCESS IN PLATE EXPERIMENTS

To investigate how the first contact time would affect our experimental system, we
needed a way to modulate the distance between cooperators on the plates. Unfor-
tunately, it is not so simple to closely control the initial placement or the respective
growth rates of the microorganisms on plates. Therefore, we needed a different
way to adjust the chance of cooperators meeting each other. Unlike our simulated
cheater, the cheater in our experimental consortium is not symmetric in the sense
that it does not benefit as much from cooperator A as it does from cooperator B.
Since both cooperator A and the cheater, C, need cooperator B for their amino acid
production, we argue that the relative difference between the distance between B
and A (rAB) and the distance between B and C (rCB) sets the chance of cooperators
meeting. In essence it’s a race between A and C, to reach B first.

To modulate the relative distances between A and B, and C and B, we adjusted
the ratio of [C]/[A]. When [C]/[A] is small (< 1), there is more A on the plate than C.
In this case, the chance of B finding itself close to an A is larger than B finding itself
close to a C. If [C]/[A] is large (> 1), the reverse is true, so on average it is more likely
for a B to be surrounded by cheaters (fig. 4.4a). The relationship between [C]/[A]
and the expectation value of the relative distance can be derived analytically (see
SI, fig. 4.4b).

From our simulation results, we expected the final cheater fraction to rise with
a higher relative distance between cooperators, as it would take longer for them to
find each other. To test if this would also occur in our experimental consortium,
we inoculated cells on plates in different A:B:C ratios, and after 3 days of incuba-
tion we washed the plates and measured the total cell count and the final cheater
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fraction (fig. 4.5a & c). Consistent with our expectations, a small [C]/[A] resulted
in final cheater fractions of as low as 20%,where when the ratio was high, the final
cheater fraction increased to almost 70%. Note that the total amount of cells after
incubation was similar for all starting ratios (fig. 4.5c & d).

We show 2 sets of experiments, one where the initial cheater fraction is always
10% and one where it is 25%. Apart from the leftmost points of the respective
curves (discussed below), they fall onto the same curve. From this we concluded
that, regardless of initial cheater fraction, the relative abundance of A and C and
therefore the relative average distance between cooperators determines coopera-
tor success or failure in our experimental consortium.

a) b)
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Figure 4.4: [C]/[A] ratio as a proxy for relative cooperator-cheater distances a) Schematic of how
changing the A:B:C ratios is expected to affect the first contact time between cooperators A and B. b)
Relation between the expected average difference between the distance from B to A (rAB) and from B to
C (rCB) to the [C]/[A] ratio. For the derivation, see Supplemental methods.

4.2.5. TOO FEW NUCLEATION SITES RESULT IN HIGHER CHEATER

FRACTIONS
As shown in fig. 4.5a, most data points fall onto the same curve. However, for the
smallest [C]/[A] for both the 10% and the 25% curve, the final cheater fractions
were higher than expected. These points correspond to A:B:C ratios of 89:1:10 and
74:1:25, respectively, so in both cases there is a minimal amount of cooperator B
present. Because there is so much more cooperator A than cheater C, present, we
had expected that B coming into contact with A would be inevitable, and therefore
the final cheater fraction would be low. Instead, we measured the final cheater
fraction at low B to be around 50%.

In order to generate a hypothesis of what happens for low amounts of B, we
went back to our simulations. To better reflect the asymmetric interaction the
cheater has with cooperators A and B in our experimental consortium, we adapted
the model so that the cheater would only benefit from cooperator B, while keeping
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Figure 4.5: Final cheater fractions depend on initial A:B:C ratios in experiments and simulations a)
Final cheater fraction of plate experiments with different initial starting ratios of A:B:C, with a constant
starting fraction of 10% C in purple and 25% C in blue. Error bars are standard deviation for 3 repli-
cates. b) Final cheater fraction for simulations with the same starting ratios of A:B:C. Simulations are
of an asymmetric interaction where A and B interact as before, but C only benefits from B. The cost
and benefit for these runs are 0.5 and 2.4. c) Amount of times the cells doubled between the time of
initialisation and measurement on the plates and d) in the simulations.

the interaction between cooperators A and B the same. When we performed these
asymmetric simulations for all the ratios we tested in the experiments, the simu-
lations results were similar to the experimental data (fig. 4.5a & b). Additionally,
we got the same sudden increase in cheater fraction for very low B. Following the
trajectories of the composition of these colonies over time, we see that indeed, B
always finds A (fig. S4.3). However, there is only one nucleation site, defined as
a site where an A and a B are initialised close enough to interact and start a co-
operator patch. Because there is only one nucleation site, the development of the
colony takes longer, and by the time cooperators A and B have grown to a signifi-
cant size cooperator patch, the cheaters have already taken up a large part of the
colony. This suggests that, next to meeting on time, there is also a minimal amount
of nucleation sites necessary for cooperator success.
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4.2.6. LOWERING THE BACKGROUND GROWTH OF COOPERATORS RE-
SULTS IN HIGHER CHEATER FRACTIONS

The symmetric simulations demonstrated that not only the initial distance be-
tween cooperators determined cooperator success, but also how fast this distance
could be traversed (fig. 4.2c). This speed is set by the background growth of the
particles. In the simulation, we can set the background growth of the cooperator
particles by changing the cost of cooperation (fig. 4.2c). A higher cost for cooper-
ators means a lower background growth, which we expected to result in a shift of
the curve to the left, where more of cooperator A, i.e. a smaller [C]/[A] ratio, would
be needed to achieve the same final cheater fraction. Indeed, increasing the cost in
the asymmetric simulations slightly, results in a shift to the left, shown as the blue
data points in fig. 4.6b.

Again, we attempted to test these results from the simulations experimentally.
While the cost and benefit of cooperation could not be directly altered, we hypoth-
esised that by selectively inhibiting cooperator A we could achieve a similar ef-
fect. To that end, we used erythromycin which is an antibiotic that only affects the
growth of A as both B and C are resistant. We tested for a concentration of ery-
thromycin that would only slightly inhibit the growth of A, which we found to be
0.04µgmL−1 (fig. S4.4). We then performed the same experiment for the 10% ini-
tial cheater fraction on both normal (untreated) plates and on plates containing
the antibiotic (fig. 4.6a). For the final cheater fraction on the antibiotic plates, we
observed a shift to the left compared to the normal plates, where the same final
cheater fraction on standard plates could be achieved on antibiotic plates with a
lower ratio of [C]/[A].

Note that in the simulations, we increased the cost for both A and B, where in
the experiments, the antibiotic only affects cooperator A. Regardless, we achieved
good agreement between the experimental and simulated data. This demonstrates
that increasing the cost of cooperation or decreasing the background growth of the
cooperators results in higher cheater fractions. Together with our previous results,
we propose that this is because the background growth sets the first contact time
for the cooperators, which is the main determinant for cooperator success.

The general concept of first contact times being instrumental in cooperator
success, suggests several strategies for cooperators to increase their survival rate.
For instance, cooperators could increase their affinity for each other in solution,
forming mixed aggregates. These would then function as the kernels that establish
colonies elsewhere, which would greatly improve their chance of survival [1]. Inter-
estingly, the spontaneous developing of cell-cell affinity has been previously shown
in mutualistic strains of E. coli [16]. Alternatively, chemotactic motility would be
a way for cooperators that are already on a surface to establish contact early on,
thereby ensuring a beneficial cooperative environment.

Another strategy would be for cooperators to economise on the production of
the cross-fed compound when growing on their own and using quorum sensing to
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only start production when encountering other cells [31], [32]. Both these strate-
gies could also be explored in synthetic systems making use of specific adhesins
and quorum sensing pathways [33], [34].

Not only can the first contact time be exploited by cooperators, it can also
provide tactics in a biotechnological application. An example of a widely ap-
plied cross-feeding interaction is the yoghurt consortium. Here protease negative
strains can form, which act as a cheater, being able to take over the protease pos-
itive strain. Our framework explains why this is less of a problem in a surface-
attached or otherwise spatially structured environment [35]. In kombucha pro-
duction, aggregation between interacting species has a positive effect on the yield
[36], [37]. We can now hypothesize that this is due to the metabolically interact-
ing species being in contact early on in the process, outcompeting other strains
present and increasing overall yield. Although this should be further tested and
verified, the framework proposed in this work should be applicable to similar con-
sortia of different species.

Finally, what this work also shows, is that approximating metabolic interactions
by only considering the next neighbours, is a valid way of modelling cross-feeding.
Even though our model is quite simple, it is able to capture and predict behaviour
of a real system that is much more complex and has many more interdependent
variables than we include in the model. For example, the species in our simulations
only differ from each other in how they respond to their neighbours, whereas the
strains in our experiment also show variability in overall growth rate. Moreover,
in our experiments the nutrient density probably changes over time as the plates
grow more dense. Regardless, our simple model of metabolic interactions on a
surface is capable of capturing important features of the real system, providing
insight into cross-feeding in the presence of cheating.

4.3. SUMMARY
Microbial collaboration is an abundant phenomenon with ecological and applied
relevance, yet the factors contributing to cooperator success in the presence of
cheaters are poorly understood. We set out to investigate the factors contributing
to cooperator success in the presence of an exploiting cheater growing together
on a surface. Individual-based simulations of a consortium consisting of three
species, a cross-feeding pair and a cheater, indicated a strong influence of the ini-
tial placement of the microorganisms on the final outcome. Focusing in on the
mechanisms, we demonstrated that first contact time was a better predictor for
cooperator success than the value of the interaction parameters alone. We then
showed how a combination of cost and initial placement together affect this first
contact time.

We translated our simulations to an engineered L. cremoris toy consortium,
consisting of two mutualistic strains and a cheater strain growing on agar plates.
We show that by changing the relative distance between cooperators and cheaters
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Figure 4.6: Higher cost of cooperation leads to higher cheater fractions a) Final cheater fraction for ex-
periments with different [C]/[A] initial ratios on plates containing 0.04µgmL−1 erythromycin (in pink)
and plates without erythromycin (in purple). b) Final cheater fraction for asymmetric simulations of
different [C]/[A] initial ratios for two values of the cost. The benefit is 2.4 and all data points are av-
erages and standard deviations of 5 runs. c) Amount of times the cells doubled between the time of
initialisation and measurement on the plates and d) in the simulations.

by altering the starting ratios of A, B and C, we could directly influence cooper-
ator success. We recreated our experimental findings by a simple adjustment to
the model, making the cheater an asymmetric cheater, further showing how the
average distance between cooperators is responsible for cooperator success.

Finally, we showed that, next to the relative distance between cooperators, the
time it takes to traverse that distance affects the final cheater fraction as well. This
time is set by the background growth, which is dependent on the cost of coop-
eration in the simulations. In the experiments we used antibiotics to selectively
inhibit the background growth of cooperator A, giving good agreement with the
simulations.

We conclude that in a cross-feeding cooperative interaction between strain A
and strain B, the ability to find each other on time is the determining factor in co-
operator success in the presence of a cheater strain.
Additionally, we have shown that metabolic cross-feeding can be modelled by ad-
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justing the growth rate of particles depending on their nearest-neighbours. Our
findings provide better understanding of cross-feeding dynamics in surface at-
tached communities, as well as an intuitive framework for designing and altering
cross-feeding consortia in synthetic and biotechnological applications.

4.4. MATERIALS AND METHODS

4.4.1. INDIVIDUAL BASED MODEL

In our simulations we initialise spherocylindrical particles on a surface and let
them grow, divide and interact with each other [38]. The mechanical interactions
of the particles are the same for all species: in addition to steric repulsion between
the particles, they have an attractive potential which makes them stick together
and to the surface (see SI). The cross-feeding interaction between the different
species is implemented by adjusting their growth rates based on their immediate
environment (fig. 4.1c) [24], [25]. In particular, for every growth step, we count for
each particle how many beneficial neighbours they have in their immediate vicin-
ity and use this number as input for a scaled Monod equation:

µ′
A =µ′

B =µ · (1+ n

Ks +n
·b − c), (4.1)

µ′
C =µ · (1+ n

Ks +n
·b), (4.2)

which determines the growth rate of the particle,µ′. Here, n is the number of bene-
ficial neighbours, Ks is the Hill coefficient, which we set to 2.5 as this is the average
number of beneficial direct neighbours in a well-mixed colony of 104 particles, µ is
the background growth of the cheaters, i.e., the growth rate of an isolated cheater
particle. Both benefit, b, and cost, c, are given as fractions of µ, where b sets the
maximal growth rate a particle can achieve and c gives a downward shift which can
have any value between 0 and 1.

4.4.2. CROSS-FEEDING SIMULATIONS

We implement a symmetric cross-feeding interaction by having species A and B
increase their growth rate depending how many of their neighbours are B and A,
respectively. C increases its growth rate based on the minimum number of A and
B in its vicinity. At the beginning of the simulation, 10 particles of each species are
randomly initialised on a 50× 50 µm2 patch of surface. We grow the system to a
final size of 104 particles.

4.4.3. ASYMMETRIC SIMULATIONS

For the asymmetric case that resembles our experimental consortium, the inter-
actions remain the same except that for the growth rate of C, n is taken to be the
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number of B particles in the neighbourhood. Additionally, 100 particles are ini-
tialised in different A:B:C ratios, and the system is grown to a final size of 7 · 103

particles.

4.4.4. MICROBIAL STRAINS AND GROWTH CONDITIONS

Strains and plasmids used in this study are listed in table 4.1. All strains were grown
on CDMpc, described by Price et al. [39] at 30◦C in a stationary incubator. We used
glucose and lactose as carbon sources, in the concentrations as indicated. Where
indicated, the strains were grown on CDMpccas, containing 0.2 wt% casein sodium
salt (from bovine milk, #C8654, Sigma Aldrich, Saint Louis, MO, USA) instead of
amino acids. To prepare agar plates, liquid medium was supplemented with 2 wt%
BD Difco™ Bacto™ Agar (BD, NJ, USA).

L. cremoris NZ9000 Glc- Lac+ [40], L. cremoris MG5267 and MG1363_GFP Lac+

(this study) were precultured in 25 mL CDMpc + 0.09 wt% lactose, L. cremoris
MG610 [41] and MG1363_GFP [42] were precultured in 25 mL CDMpc + 0.09 wt%
glucose. Freezer stocks were prepared by growing the strains in CDMpc with the
appropriate carbon source and storing the stationary culture at -80°C with 20 vol%
glycerol. Where indicated, erythromycin (Sigma-Aldrich, 856193, Saint Louis, MO,
USA) was added at the indicated concentration. For the isolation of pMG820 and
transformation into MG1363_GFP, M17 medium was used (from powder, Thermo
Fisher Scientific, MA, USA).

4.4.5. ISOLATION OF PMG820 AND TRANSFORMATION INTO

MG1363_GFP
To construct MG1363_GFP Lac+, pMG820 was isolated from 5 mL of a station-
ary NZ9000 Glc- Lac+ culture, cultivated in M17 + 0.5 wt% lactose, as follows.
The culture was centrifuged using a Sorvall ST40 centrifuge (Thermo Fisher Sci-
entific, MA, USA) (10 min, 5000g), and resuspended in 30 mM Tris-Hcl pH 8, 3
mM MgCl2, 25 wt% sucrose and 2 mg/mL lysozyme (from egg white, 10837059001
Roche, Basel, Switzerland) and incubated for 30 min at 37 °C. Afterwards, the plas-
mid was isolated using the GeneJET Plasmid Miniprep Kit (Thermo Fisher Scien-
tific, MA, USA). Once obtained, the plasmid was transformed into MG1363_GFP as
described by Wells et al. [43] with the following adaptations. The MG1363_ GFP
cells were precultured in 50 mL M17 broth with 17 wt% (0.5 M) sucrose, 2.5 wt%
glycine and 0.5 wt% glucose at 30 °C. After overnight incubation, they were cen-
trifuged (6000 g, 20 min) and washed with 400 mL 17 wt% (0.5 M) sucrose, 10 wt%
glycerol (4°C), spun down and resuspended in 200 mL 17 wt% (0.5 M) sucrose, 10
wt% glycerol + 50 mM EDTA (4°C). After incubating on ice for 15 min and spin-
ning down (6000g, 10 min) the cells were washed again as described above and
resuspended in 4 mL 17 wt% (0.5 M) sucrose, 10 wt % glycerol (4°C). 40 µL of the
cell solution with 1 µL DNA (100 ng/µL in Tris-Buffer) was added to a chilled cu-
vette and pulsed using a Bio-rad Genepulser (Bio-Rad, CA, USA) for 5.7 ms (2000
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V, 25 µF, 200 Ω), after which 1 mL M17 broth with 17 wt% (0.5 M) sucrose, 2.5 wt%
glycine, 0.5 wt% glucose, 20 mM MgCl2 and 2 mM CaCl2 was added. The solution
was added to M17 agar plates containing 0.5 wt% lactose. After incubation for 48
h, colonies were picked and restreaked.

4.4.6. GROWTH RATE DETERMINATION
To check the phenotype of L. cremoris MG1363_GFP Lac+, we tested whether the
strain was fluorescent, and whether the growth rate was similar to the growth rate
on lactose of L. cremoris MG5267, a lactose-positive L. cremoris strain, and simi-
lar on glucose to its ancestor strain MG1363. Fluorescence of the strain was con-
firmed using flow cytometry (Accuri C6, BD, NJ, USA). To prepare the cells for in-
oculation for the growth rate determination, MG1363_GFP Lac+ was precultured
in CDMpc on both glucose and lactose, and MG5267 and MG1363 were precul-
tured as described above. After 16 h, the OD660 was determined using a Jenway
7200 Spectrophotometer (Cole-Palmer, Stone, United Kingdom) and the cells were
inoculated in duplicates in 30 mL of the same medium as in the preculture at an
OD660 of 0.01. To determine the growth rate, the OD660 was measured every hour
(??).

4.4.7. CO-CULTIVATION ON PLATES
L. cremoris MG1363_GFP Lac+, NZ9000 Glc- Lac+ and MG610 were precultured as
described above, spun down (8000g, 15 min), washed in sterile PBS and resus-
pended in PBS to a final concentration of 3x107 cells / mL, as determined by flow
cytometry (Accuri C6, BD, NJ, USA). To make the cell mixtures, cells were added
together to the indicated cell concentration and strain ratio. Of the cell mixtures,
100 µL was added to plates containing CDMpccas.The plates were incubated for
90 h at 30 °C. Afterwards, the cells were removed from the plate by adding 2 mL
sterile PBS and spreading it using a sterile spreader, as described in [44]. The cell
suspension was removed from the plate, and the cell concentration and cheater
abundance was determined using flow cytometry (Accuri C6, BD, NJ, USA). The fi-
nal cell concentration was then used to calculate a total final cell count. Together
with the known initial cell count this was used to calculate the amount of times the
cells had doubled using the following formula:

d = log2

(
N f

Ni

)
(4.3)

Here, d is the amount of doublings and N f and Ni are the final and initial cell
counts, respectively. To selectively lower the growth rate of cooperator A, ery-
thromycin was added to the agar plates at the indicated concentrations.
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Description Reference
Strains
NZ9000 Glc- Lac+ L. cremoris NZ9000∆glk∆ptnABCD,

carrying pMG820.
Pool et al.,
2006 [40]

MG610 L. cremoris MG1363 with two prtMP
copies integrated into the genome.
Erythromycin resistant.

(Leenhouts et
al., 1991) [41]

MG1363_GFP L. cremoris MG1363 with
Dasher-GFP gene integrated into the
genome. Erythromycin resistant.

(Van
Tatenhove-Pel
et al., 2019) [42]

MG1363_GFP Lac+ MG1363_GFP carrying pMG820.
Erythromycin resistant.

This study

MG5267 L. cremoris MG1363 with lactose
operon integrated into the genome.

(Tarazanova et
al., 2017) [45]

Plasmids
pMG820 23.7 kb lactose miniplasmid

containing lacFEGABCD.
(Maeda &
Gasson,
1986) [46]

Table 4.1: Strains and plasmids used in this study.
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4.5. SUPPLEMENTAL METHODS

INDIVIDUAL-BASED SIMULATION DETAILS
Each particle is modelled as a spherocylinder that consists of two spheres of di-
ameter, D , connected by a spring with a rest length L (fig. 4.1a). This rest length
is incrementally increased with growth rate µ until it reaches the division length
Ld . The particle then splits up into two daughter particles. Here, a tiny bit of noise
is added in the orientation to make sure that the particles don’t grow in a perfect
line. For each particle pair that is within interaction range, Ri nt , of each other, the
repulsive or attractive force is determined. First, the shortest distance between the
particles is determined. If it is negative, i.e. there is overlap between the particles or
the surface, the repulsive force is calculated as a spring force with spring constant
kr , scaling with the amount of overlap d ,

F (d) =−kr ·d . (4.4)

This force is then distributed along the backbone inversely proportional to where
along the backbone the overlap occurred.

Particles also experience an attractive force between each other and with the
surface. The magnitude of the particle adhesion force depends on the distance r
between the centres of the particles and their relative orientations in the following
way:

F (r,θ,φ) = FPP ·
(
4

(
0.95D

r

)5

−4

(
0.95D

r

)9)
·cosθ ·cosφ, for r > D, (4.5)

where D is the diameter of the particles, FPP determines the amplitude of the at-
tractive forces, and θ and φ are the angles between the backbones of the two parti-
cles. The resulting force is then distributed over the two end-points of the particle
inversely related to where the closest point between the particles is situated along
the length of the particle.

The attractive force to the surface is implemented similarly, but r is now the
distance from the center of the particle to the surface.

F (r,θ) = FPS ·
(
4

(
0.95R

r

)5

−4

(
0.95R

r

)9)
·cosθ, for r > R, (4.6)

where R is the radius of the particles or half the diameter, and θ is the angle the
particle makes with the surface. Again the force is distributed over the two spheres
that make up the particle, inversely proportional to the distance of each end point
to the surface. Consequently, the particles experience both a force and a torque
due to the attractive and repulsive interactions.

Every time step all the forces that the particles undergo are calculated and they
are moved accordingly. We grow all the particles once every 5 time steps. We grow
the system to a set amount of particles and then count how many of those particles
are cheaters. Values for all the parameters used can be found in table S4.1.
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Parameter Explanation Value
ki nt spring constant of the internal spring 0.1 Nm−1

D particle diameter 1 µm
Ld length of the spring at division 4 µm
kr spring constant of the overlap potential 0.2 Nm−1

FPS particle-surface adhesion prefactor 10−5 N
FPP particle-particle adhesion prefactor 10−5 N
DT division time for a particle growing with

growth rate µ
105 ts

Ri nt interaction range for which mechanical
interactions are calculated

2 ·Ld

µ background growth rate for a cheater particle 0.0002·
µm(5 · ts)−1

Ks Hill coefficient for the growth rate adjustment 2.5

Supplementary Table 4.1: Explanation and values used for the simulation parameters.

WELL-MIXED MODEL OF COSTLY COOPERATION
In order to show the effect of spatial structure on our simulated consortium, we
compare it to a well-mixed system. For this we solve the following system of equa-
tions for the evolution of populations of interacting species A, B and C:

d A

d t
= (1− c +H (B , N ,b)) A, (4.7)

dB

d t
= (1− c +H (A, N ,b))B , (4.8)

dC

d t
= (1+H (min(A,B), N ,b))C . (4.9)

(4.10)

Here A, B , and C are the size of the population of the corresponding strain. N
is the total size of the population. The growth of the populations depends on c,
which is the cost of cooperation, and H , which calculates the benefit depending
on the ratio of the cooperative species as follows:

H(n, N ,b) =
n
N · n̄

Ks + n
N · n̄

·b, (4.11)

(4.12)

where n is the amount of beneficial particles in the total population and N is the
size of the total population. Additionally, b is the benefit of cooperation, Ks is the
Hill coefficient which is set to 2.5, and n̄ is the average number of neighbours a
particle has, which is set to 7.5.
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The initial conditions are the same as for the simulations, so 10 of each strain,
the cheater fraction is measured when a population size of 104 particles is reached.
The results are summarised in fig. S4.2.

A:B:C RATIOS AND HOW THEY RELATE TO EFFECTIVE DISTANCE BE-
TWEEN COOPERATORS
If we look from the perspective of a B particle on a plate, the amount of particles
that we find within radius, r , away from that particle follows a Poisson distribution,

P (k) = λk ·e−λ

k !
, with λ=πr 2σ. (4.13)

Here, k is the amount of particles and λ is the expectation value of the amount of
particles in a circle of radius r , based on the density of the particles σ. Because we
are interested in what the first encounter will be, we want to compare the radii for
the first encounter with an A particle and the one with a C particle. The probability
of having at least one A particle within a radius, r , is given by,

P (A) = 1−P (0),

= 1−e−πr 2σA . (4.14)

From this we can get a probability density function,

f (r ) = d

dr
P (A),

= 2πrσA ·eπr 2σA , (4.15)

which we can then use to find an expectation value of what the distance is that a B
will encounter its first neighbour of type A.

〈r AB 〉 =
∫ ∞

0
r ·2πrσA ·eπr 2σA dr

= 1

2
p
σA

. (4.16)

Similarly, the first neighbour of type C is expected to be found at,

〈rC B 〉 = 1

2
p
σC

. (4.17)

When we subtract the two we get the expected relative distance which denotes who
is expected to be further away from B, A or C:

〈r AB − rC B 〉 = 1

2
p
σA

− 1

2
p
σC

. (4.18)

83



Strain Carbon
source

R2 rep. 1 R2 rep. 2 µmax

(1/h) ±
SD

MG1363-GFP
(Lac+)

0.09 wt% glc 0.997 0.998 0.67 ±
0.00

MG1363-GFP 0.09 wt% glc 0.997 0.998 0.57 ±
0.01

MG1363-GFP
(Lac+)

0.09 wt% lac 0.996 0.999 0.66 ±
0.00

MG5267 0.09 wt% lac 0.998 0.996 0.64 ±
0.00

Supplementary Table 4.2: Goodness-of-fit of all extracted growth curves as determined by the R2 of the
ln(OD660) over time and resulting µmax ± SD (n=2)

The particle density at inoculation, σ, can be easily calculated, as it is always the
same, namely 3 ·106 cells on a petri dish with a diameter of 9 cm. This gives us an
overall initial particle density of

σ= 3 ·106

π(4.5 ·104)2 , (4.19)

= 0.00465µm−2 (4.20)

The densities of A and C are then simply the fractions of those particles times this
overall density. 〈r AB − rC B 〉 is plotted for all [C]/[A] ratios used in the 10% cheater
fraction experiments in fig. 4.4b.

GROWTH STUDY
fig. S4.5 shows a representative example of how we calculated the growth rateµmax.
As example, we describe the growth study of MG1363-GFP Lac+ on 0.09 wt% glu-
cose. We measured the OD660 from duplicate shake-flasks hourly (fig. S4.5a). We
extracted the exponential phase by plotting the log-linear of OD660 versus time and
fitting a linear curve to the segment where the log(OD660) increased linearly, as de-
termined by the least-squares method (fig. S4.5b). We determined the goodness-
of-fit for all replicate curves by R2 (table S4.2).

GATING STRATEGY
fig. S4.6 shows the flow cytometry gating strategy for a representative example.

Step 1: Exclude noise We determined the location of the background noise by
the buffer by plotting the forward and side scatter of a sample consisting of only the
buffer. This yielded gate 1. From a sample with cells, gate 2 containing everything
except the noise was drawn.
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Step 2: Determining the fraction of the fluorescent cheater cells Gate 2, con-
taining the cells, was the reference for plotting fluorescence against forward scat-
ter. In this plot, the fluorescent cheater cells were marked as Gate 3. To calculate
the cheater fraction, we divided the number of these fluorescent cells by the total
cell count, excluding the noise.
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4.6. SUPPLEMENTAL FIGURES

Supplementary Figure 4.1: Examples of three different final colonies for the same input parameters for
the cross-feeding interaction; value for cost = 0.8 and benefit = 4.0. In the bottom-left corner of each
final colony, the initial configuration of that run is shown. Area shown is always 130×130 µm2.

co
st

 [µ
]

benefit [µ]

final cheater fraction [%]

Supplementary Figure 4.2: Final cheater fraction for a well-mixed system of A, B and C growing to a
population size of 104. Interactions are implemented similarly to the IBM, see SI.
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Supplementary Figure 4.3: Abundance and fraction of the different particle types over simulation time
for the simulation data points of fig. 4.5b A:B:C ratios a) 89:1:10, b) 42:48:10, and c) 1:89:10. All points
are averages and standard deviations of 5 runs.
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Supplementary Figure 4.4: Final cheater fraction for different concentrations of erythromycin a) in
plates containing casein and amino acids inoculated with A & C together, and b) in plates contain-
ing casein inoculated with A, B & C in a 42:48:10 ratio.

Supplementary Figure 4.5: Growth curve of MG1363-GFP Lac+ (cheater). a) OD660 over time. The
exponential phase is marked with red squares. b) ln(OD660) of the exponential phase measurements
over time. A linear curve was fit to the measurements by least-squares fit.
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Supplementary Figure 4.6: Flow cytometry gating strategy. Areas within the forward scatter – side scat-
ter and fluorescence – forward scatter were identified using control samples. The gating excluded
noise and was able to clearly distinguish between fluorescent and non-fluorescent cells to calculate
the %cheater fraction.
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5
COOPERATOR INTERMIXING IS AN EFFECTIVE

COMPETITIVE STRATEGY AGAINST CHEATERS

Bacteria live closely together with many other species in surface-attached commu-
nities. They interact with neighbouring cells through metabolite exchange and re-
source sharing. This chapter investigates the spatial structuring of these bacterial
colonies through individual-based modelling. We focus on mutualistic interactions
which have been shown to induce mixing. Here we demonstrate that such coop-
erative mixing within colonies is robust against variations in bacterial shape and
asymmetries in cooperative contributions. We additionally show that mixing is ef-
fective in excluding non-reciprocal cheaters. The strength of cooperation is the most
influential factor for successful intermixing and competitive stability.
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5.1. INTRODUCTION

Bacteria live with many different species which all interact and co-exist together
in surface-attached communities. They exhibit cooperative, competitive and an-
tagonistic behaviour, forming complicated population networks [1], [2]. Studying
these interaction networks is important for our understanding of biofilms, but it is
also a good simple framework to study population dynamics in general [3]–[5].

An important feature of surface-attached colonies is that they are spatially
structured. This means that individual bacteria are not interacting with all of the
other bacteria in the biofilm at all times, but only the ones surrounding them.
Multi-species spatial patterning has been shown to emerge in many different
experimental and computational systems [6], [7]. Pattern formation can occur
through passive processes such as clonal patching or genetic drift [8], [9]. It can
also occur through active competition or quorum sensing induced processes [10],
[11]. Additionally, variations in shape and other types of heterogeneity can cause
phase separation in active systems, causing patches [11], [12]. Strong mutualistic
interactions, on the other hand, have been shown to promote mixing in lattice-
based simulations and experiments [6], [13].

Physical delineation between species is essential for the stabilisation of cooper-
ative interactions and the co-existence of competing strains [11], [14]–[16]. More-
over, structural complexity has been shown to disrupt competitive dynamics and
stabilise otherwise unstable interactions [17], [18]. Additionally, spatial patterning
is important in evolutionary phenomena such as gene-surfing and the emergence
of cooperation [7], [8], [19]–[21].

Species interactions play out differently on a surface than they do in solution.
Here we use an individual-based approach to study spatially structured growing
colonies of cooperating bacteria. We are particularly interested in the spatial pat-
terning that results from mutualistic cooperation and how robust it is against per-
turbations of the system.

5.2. MATERIALS AND METHODS

INDIVIDUAL BASED MODEL

We simulate a cross-feeding pair of bacterial strains (fig. 5.1a). We simulate the
cells as spherocylindrical particles on a surface and let them grow, divide and me-
chanically interact with each other as described in chapter 1. Here, we keep the
particles in 2D and do not let them grow into the third dimension (fig. 5.1b).

The cross-feeding interaction between the different cooperators is imple-
mented by adjusting their growth rates based on their immediate environment
(fig. 5.1c) [22], [23]. In particular, for every growth step, we count for each parti-
cle how many of their neighbours are cooperators of them. For cooperator A this
means, how many of its neighbours are cooperator B, and vice versa. We use this
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number as input for a scaled Monod equation:

µ′
i =µ ·

(
1+ n

Ks +n
·bi

)
. (5.1)

This determines the growth rate, µ′, of particle i , where, n is the number of benefi-
cial neighbours. Ks is the Hill coefficient, which we set to 1.5 as this is the half-way
point of the curve at the average number of beneficial direct neighbours in a well-
mixed colony, µ is the background growth of the cooperators, i.e., the growth rate
of an isolated cooperator particle. Benefit, b, is given as multiples of µ, where b
sets the maximal growth rate a particle can achieve. We start with 2 cooperators
next to each other, and evolve the system until the colony reaches a size of 3×103

particles.
We also introduce a cheater species, C. These grow similarly to A and B, except

that they have a growth advantage of µ, as such:

µ′
C =µ ·

(
2+ n

Ks +n
·bC

)
. (5.2)

In simulations with cheaters we start with 2 cooperators next to each other and 6
cheater particles surrounding them, pointing radially outward. Again, we evolve
the system to a size of 3×103 particles.

5.2.1. WELL-MIXED MODEL OF COOPERATIVE INTERACTIONS
In order to show the effect of spatial structure on our simulated consortium, we
compare it to a well-mixed system. For this we solve the following system of equa-
tions for the evolution of populations of interacting species A and B:

dA

dt
=

(
1+H

(
B

N
,bA

))
A, (5.3)

dB

dt
=

(
1+H

(
A

N
,bB

))
B. (5.4)

Here A, and B represent the size of the population of the corresponding strain.
N is the total size of the population. The growth of the populations depends on H ,
which calculates the benefit depending on the ratio of the cooperative species in
the population as follows:

H(X ,b) = X · n̄

Ks +X · n̄
·b, (5.5)

where X is the fraction of beneficial particles in the total population and b is the
benefit of cooperation that the strain experiences. Moreover, Ks is the Hill coef-
ficient which is set to 1.5, and n̄ is the average number of neighbours a particle
has, which is set to 6 as that is what the measured amount of neighbours is for 2D
colonies (fig. S5.1).
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Parameter Explanation Value
kint spring constant of the internal spring 0.1
D particle diameter 1µm
L length of the spring at division varied
AR aspect ratio L/D
kr spring constant of the overlap potential 2 · kint

FPP particle-particle adhesion force
magnitude

1×10−4kint

α particle-particle adhesion range 5 nm
FPS particle-surface adhesion force magnitude 1×10−4kint

β particle-surface adhesion range 5 nm
Rint interaction range for which mechanical

interactions are calculated
2 ·L

µ growth rate 1×10−4 µm(5 ·
ts)−1

σµ standard deviation for the growth rate
noise

0.1 ·µ

σθ standard deviation for the orientational
noise

0.1

Ks Hill coefficient for the cooperative
interaction

1.5

n̄ average number of neighbours for the
continuum model

6

Table 5.1: Explanation and values used for the simulation parameters.
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Figure 5.1: Reciprocal cooperation leads to mixing a) Schematic representation of a cross-feeding in-
teraction between strain A and strain B. b) Stills from our individual-based model of spherocylindrical
particles, growing and dividing. c) Example of how the growth rate of a particle depends on the amount
of neighbours of the other strain it has in its immediate vicinity. Note that the average number of neigh-
bours of a particle in these simulations is around 6. d) Snapshots of colonies of 3× 103 particles for
different values for the benefit.

The initial conditions are the same as for the simulations, so 1 of each strain,
population fractions are measured when a population size of 3× 103 particles is
reached. The results are summarised in fig. S5.3.

We also introduce a cheater species C, as follows:

dC

dt
=

(
2+H

(
min{A,B}

N
,bC

))
C . (5.6)

Here, the growth of C depends on the minimum of A and B that is in the population.

5.3. RESULTS AND DISCUSSION

5.3.1. RECIPROCAL COOPERATION LEADS TO MIXING

We define the strength of the cooperative interaction by the magnitude of the ben-
efit they experience (fig. 5.1c). When we evolve the system for varying interaction
strengths, we see a clear increase in mixing compared to a non-interacting system
(fig. 5.1d). This is in line with what we expect from existing literature [6], [13].
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5.3.2. COOPERATOR MIXING IS ROBUST TO CHANGES IN PARTICLE

SHAPE

To study the effect of the interaction strength on spatial patterning, we measure
global and local mixing once the colony reaches a size of 3×103 particles. For the
global mixing, we simply look at the distribution of the x-coordinates for the differ-
ent strains (fig. 5.2a). In a non-interacting system, A and B will roughly form two
patches (bottom row). As soon as the particles start cooperating, these patches mix
and A and B will become evenly distributed over left and right. As a measure of lo-
cal mixing, we take the average fraction of cooperator neighbours, where a value
of ≈ 0.58 would mean a perfectly mixed colony (fig. 5.2b). We observe minimal
mixing where there is no cooperation, and a gradual increase of mixing with in-
creasing benefit. For values of the benefit higher than ≈ 5 µ, the mixing stabilises
at a cooperator fraction of around 0.4.

Because the particles in our system are elongated, we expected nematic effects
to influence the mixing [9]. However, when we run the simulations for varying par-
ticle sizes, there is no observable trend suggesting that longer particles mix better
(fig. 5.2b). The distribution of the cooperator neighbours is very similar for differ-
ent aspect ratios with a large spread, but most particles falling into the same range
(fig. S5.2). This is also the case for non-interacting particles, where most particles
have only neighbours of their own kind (benefit = 0).

We also looked at what happens when the two strains are dissimilarly shaped,
as previous work has shown that differences in cell shape can lead to phase separa-
tion in active systems of non-interacting particles [12]. In our cooperating system
however, particles of varying shape globally mix just as well as similarly shaped
particles (fig. 5.2c). Local mixing seems to be impeded slightly when particles have
a difference in shape of about 3 times the diameter, but up until that point, varia-
tions in shape have very little effect (fig. 5.2d). This shows us that cooperator mix-
ing is robust against the variations in cell shape that are to be reasonably expected
in different strains of bacilli.

5.3.3. ASYMMETRIC COOPERATORS STILL MIX

It seems unlikely that cross-feeding interactions in nature are perfectly symmet-
rical, in the sense that both cooperating species will experience exactly the same
benefit from the interaction. Therefore, we looked at populations where the ben-
efit that A experiences is higher than the benefit that B experiences (fig. 5.3a, b).
We show snapshots for different values of the benefit A experiences (benefit A) and
for different values of the difference between benefit A and benefit B, denoted as
∆benefit (fig. 5.3c). For each combination we show two snapshots side by side,
coloured by species (left) and by growth rate (right). For all combinations of ben-
efits, A and B show more intermixing than would be the case when there is no
cooperation.

A difference in experienced benefit does lead to a different make up of the pop-
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Figure 5.2: Cooperator mixing is robust to changes in particle shape a) Distribution of x positions for
A and B for different values of benefit. AR = 4. b) Fraction of cooperator neighbours as a function of
interaction strength for different aspect ratios. Error bars represent the standard error over 5 runs. c)
Distribution of x positions for differently shaped A and B. ARA = 4 and ARB varies. Benefit is constant
at 4.8 µ. d) Fraction of cooperator neighbours for unequally shaped particles, with the difference in AR
on the x-axis. Error bars show standard error of 5 runs.
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ulation (fig. 5.3d). The larger the difference, the more A will outgrow B in the final
colony. This effect can be captured quite well with a continuum model of interact-
ing particles which only slightly over-estimates how fast A will outgrow B. The con-
tinuum model assumes a perfectly mixed system, which in a spatially structured
environment, such as a surface-attached colony, is often not an accurate assump-
tion. Interestingly however, in this system of cooperating particles, because of the
self-induced mixing of the particles it becomes a reasonable approximation.

Even though B seems to be outgrown by A for very high values of ∆benefit, B
does find itself in more beneficial environments. This because species intermix-
ing is still prevalent, and since the B particles in the colonies are surrounded by A,
they can grow at a rate closer to their optimum growth rate (fig. 5.3c, e). A, on the
other hand, is mostly growing on its background growth rate (fig. 5.3c). This pro-
cess somewhat mitigates the difference in fitness between the strains and evens the
playing field to some extent, allowing B to catch up to A, more so than if they would
not mix. Local intermixing between species does decrease with larger ∆benefits
(fig. 5.3e).

5.3.4. COOPERATOR INTERMIXING IS A VIABLE STRATEGY TO KEEP OUT

CHEATERS

Because intermixing decreases when cooperation becomes less reciprocal, it begs
the question whether this reduced mixing is enough to keep possible cheaters out
of a cooperator patch. In order to investigate the effect of cooperator intermix-
ing on competitive dynamics, we introduce a cheater to our symmetric cooperator
system (fig. 5.4a). This cheater species, C, experiences the same benefit from A and
B as the cooperators, however, it does not reciprocate the cooperation. We also as-
sume the cheater species has an overall fitness advantage of µ because it does not
have to pay the fitness cost of producing any cross-fed metabolites.

We run simulations where we surround our cooperator pair with 6 cheaters,
and let the colony grow to a size of 3000 particles (fig. 5.4b, c). When we then record
the make up of the population for various values of the benefit, we see that at suf-
ficiently high benefit, the cooperators start out-competing the cheaters (fig. 5.4d).
This transition coincides with the value of the benefit where we start seeing opti-
mal mixing between cooperators (fig. 5.4e). Looking at the fraction of cooperator
neighbours for the different species, we see that A and B still intermix in the pres-
ence of cheaters, but the cheaters don’t manage to intermix with the cooperators.
Cheaters are mostly surrounded by other cheaters and are therefore mostly operat-
ing on their background growth rate. This is probably because as soon as cheaters
mix with cooperators, they grow very fast, however because they don’t reciprocate,
their cooperator neighbours don’t grow as fast. This means that the cheaters soon
run out of cooperator neighbours and they get pushed out of a cooperator patch.

The continuum representation of a system containing cheaters that have an
overall fitness advantage, consistently predicts cheater dominance for all benefits
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Figure 5.3: Asymmetric cooperators still mix a) Schematic representation of an asymmetric interac-
tion, where B benefits A more than A benefits B. b) Adjusted growth rate of A and B for the asymmetric
interaction. c) Snapshots of colonies at 3×103 particles for two values of the benefit A experiences and
two values for the difference between that benefit and the benefit B experiences, denoted as ∆benefit.
For each colony, the left figure shows the strains, coloured as in a). The right figure shows individual
particle growth rates, coloured in green according to the legend. d) Fraction of the population of A (cir-
cles) and B (triangles) as a function of∆benefit and for different values of benefit A. Error bars show the
standard error for 5 runs. The lines denote the solution of the continuum well-mixed model. e) Frac-
tion of cooperator benefit for A (circles) and B (triangles) as a function of ∆benefit for different values
of benefit A. Error bars show the standard error for 5 runs.
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Figure 5.4: Cooperator intermixing is a viable strategy to keep out cheaters a) Schematic representa-
tion of two cross-feeding cooperators, A and B, and a cheater strain, C, that benefits from the coopera-
tors but does not contribute to the interaction. b) Snapshot of initial configuration of the simulations,
consisting of two cooperators, surrounded by 6 cheaters. c) Snapshots of a colony of 3×103 particles
coloured by species (left), and coloured by growth rate (right). d) Fraction of the population for A, B and
C as a function of benefit. Error bars show the standard deviation of 5 runs. e) Fraction of cooperator
neighbours for A, B and C as a function of benefit. Error bars represent standard error of 5 runs.

(fig. 5.4d). Where our continuum model worked well for the reciprocal system of
just cooperators, as soon as there is non-reciprocity, it breaks down completely.
This underscores the importance of taking into account spatial structure and phys-
ical patterning when thinking about competition.

5.4. CONCLUSION
In this study, we used an individual-based modelling approach to explore the spa-
tial patterning in surface-attached colonies of cooperating bacteria. Our results
show that reciprocal cooperation leads to significant mixing within the colonies
as previously established [13]. We further show this mixing is robust against
variations in particle shape. Both in the general colony and between differently
shaped strains, the cooperative interactions consistently resulted in effective mix-
ing. Moreover, even when cooperators were asymmetric in how much they benefit
their cooperator counterpart, they continued to mix substantially. We also show
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how this self induced mixing excludes non-reciprocal cheaters from the colony,
proving an effective competitive strategy. Lastly, we show that in strongly recipro-
cal systems, continuum models that assume a well-mixed system can be accurate,
however, once we introduce non-reciprocity, continuum models do significantly
worse.

In summary, our findings show that the strength of cooperation is the most im-
portant factor for successful intermixing. The robustness of cooperator mixing to
shape variations and its effectiveness in excluding cheaters highlight the impor-
tance of these dynamics in the stability and evolution of cooperative behaviours
in microbial communities. Taken together, we propose that focusing on strong
cooperation is the best strategy to gain advantage over stronger cheaters or other
competing species.
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5.5. SUPPLEMENTARY FIGURES
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Supplementary Figure 5.1: Average number of neighbours for particles with different aspect ratios.
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Supplementary Figure 5.2: Distribution of cooperator neighbour fractions as a function of aspect ratio
for different values of benefit.
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6
CONCLUSION

In this thesis I have investigated how species interactions play out in a spatially
structured environment, providing new insights into the behaviour and optimi-
sation of biofilm-based systems. Using individual-based models, in combination
with other computational approaches, and engineered microbial consortia, I ex-
plored how tuning mechanical and social factors influences biofilm structure and
function. Here, I summarise the key findings and discuss their broader implica-
tions for research and industrial applications.

In chapter 2, we demonstrated that photoswitchable adhesins can dynami-
cally control bacterial aggregation and biofilm structure. Under pulsed light, bac-
terial aggregates exhibited liquid-like behaviour, enhancing particle intermixing
and quorum sensing activation, while continuous light resulted in more solid-like,
dense biofilms. Pulsed illumination improved biofilm growth and L-threonine pro-
duction in co-cultures, showcasing its potential for optimising industrial biofilm
applications. Our simulations, specifically, showed that aggregation increased un-
der pulsating light because the off periods allowed for partial disassembly of the
clusters, leading to bigger clusters in the end. Depending on the specific bacterial
pairs, different light conditions could be tailored to optimise biofilm performance
and productivity.

In chapter 3 we introduce an individual-based model for simulating micro-
colonies growing on a surface. Varying particle and surface adhesion strengths
led to distinct global colony architectures where high surface-adhesion resulted
in flat colonies with raised centres, while strong particle adhesion and weak sur-
face adhesion produced dome-shaped colonies. Our individual-based simulations
highlighted limitations in capturing different internal structures due to the lack of
surface anchoring and isotropic friction in the model. Nonetheless, we show the
model is versatile and can produce realistic colony shapes.

In chapter 4 we aimed to understand what determines cooperator success in
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the presence of cheaters. Simulations revealed that the initial placement of mi-
croorganisms significantly impacts cooperator success in the presence of cheaters.
First contact time between cooperators was a better predictor of success than in-
teraction parameters alone. We engineered an L. cremoris consortium represent-
ing our cooperator cheater interactions. By altering the starting ratios, we showed
that also in a real system, relative distances between cooperators and cheaters
were strong determinants of cooperator success. These results, we could closely
match with our simulations. We further probed our hypothesis by using antibi-
otics to inhibit the background growth, which was analogous to increasing cost of
cooperation. Again, we could recapitulate the predictions from our simulations in
experiments, further strengthening our argument that first contact time between
cooperators determines cooperator success in the presence of cheaters.

In chapter 4, we already observed strong mixing of cooperators. In chapter 5
we zoomed in on this phenomenon. We saw that reciprocal cooperation led to
significant mixing within colonies, even across different particle shapes and asym-
metries in cooperation levels. Strongly reciprocal systems aligned well with con-
tinuum models assuming well-mixed systems, but introducing non-reciprocity re-
duced the accuracy of these continuum models. This highlights the need for in-
corporating spatial and interaction dynamics in modelling microbial communi-
ties. The self-induced mixing effectively excluded non-reciprocal cheaters from
the colony, showing that strong cooperation is in itself a good strategy for cheater
exclusion.

In conclusion, we have gained better understanding of species interactions in
spatially structured environments. These insights will help with designing effec-
tive consortia, and help us understand how cooperative behaviour can thrive even
when it can be exploited.
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at a conference, and after having to correct him two times that I did not work
there, responded with "you should consider it". No thank you to the researcher
that asked me what I was wearing underneath my outfit during a conference. No
thank you to the physicist who declared to a room full of other physicists that
biologists "don’t know how to design an experiment". No thank you to the people
who have called me scary instead of strong and intimidating instead of intelligent.
And finally, no thank you to the executive board of the TU Delft, whose knee-jerk
reaction to being held up a mirror about the social safety at the university, was
to sue the party holding up the mirror instead of looking at the problems they
highlighted.

I wish I could tell you this has all made me stronger somehow but in reality it
has only shattered my confidence. You have made me feel like I do not belong in
science and I cannot forgive you for that.

- Rachel
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