Real-time anomaly detection in logs using
rule mining and complex event processing
at scale

DELFT UNIVERSITY OF TECHNOLOGY

MASTERS THESIS

Real-time anomaly detection in logs using
rule mining and complex event processing
at scale

Author: Supervisor:
Alexandros STAVROULAKIS Asterios KATSIFODIMOS

]
TUDelft

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Web Information Systems Group
Software Technology

August 11, 2019

http://www.tudelft.nl
http://www.wis.ewi.tudelft.nl/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

iii

Declaration of Authorship

I, Alexandros STAVROULAKIS, declare that this thesis titled, “Real-time anomaly de-
tection in logs using rule mining and complex event processing at scale” and the
work presented in it are my own. I confirm that:

This work was done wholly or mainly while in candidature for a research de-
gree at this University.

Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

Where I have consulted the published work of others, this is always clearly
attributed.

Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed: %

Date:

12/08/2019

An electronic version of this thesis is available at

http:

//repository.tudelft.nl/.

http://repository.tudelft.nl/
Alexandros Stavroulakis
12/08/2019

Real-time anomaly detection in logs using
rule mining and complex event processing
at scale

Abstract

Author: Alexandros Stavroulakis
Student ID: 4747933
Email: stavroulakisalexandros@gmail.com

Log data, produced from every computer system and program, are widely used
as source of valuable information to monitor and understand their behavior and
their health. However, as large-scale systems generate a massive amount of log data
every minute, it is impossible to detect the cause of system failure by examining
manually this huge size of data. Thus, there is a need for an automated tool for
finding system’s failure with little or none human effort.

Nowadays lots of methods exist that try to detect anomalies on system’s logs by
analyzing and applying various algorithms such as machine learning algorithms.
However, experts argue that a system error can not be found by looking into a single
event, but in multiple log event data are necessary to understand the root cause of a
problem.

In this thesis work, we aim to detect patterns in sequential distributed system’s
logs that can capture effectively the abnormal behavior. Specifically as a first step,
we will apply rule mining techniques to extract rules that represent an anomalous
behavior, which potentially in the future may lead to a failure of a system. Except
for that step, we implemented a real-time anomaly detection framework to detect
problems before they actually occur.

Processing log data as streams is the only way to achieve a real-time detection
concept. In that direction we will process streaming log data using a complex event
processing technique. Specifically, we would like to combine rule mining algorithms
with complex event processing engine to raise alerts on abnormal log data based
on automatically generated patterns. The evaluation of the work is conducted on
Hadoop’s logs, a widely used system in the industry. The outcome of this thesis
project gives really promising results, reaching a Recall of 98% in detecting anoma-
lies. Finally, a scalable anomaly detection framework was build by integrating dif-
ferent systems into the cloud. The motivation behind this is the direct application of
our framework to a real-life use case.

Thesis Committee:

Chair: Prof. Dr. ir. Alessandro Bozzon, Faculty EEMCS, TU Delft
University Supervisor: ~ Dr. Asterios Katsifodimos, Faculty EEMCS, TU Delft
Company Supervisor: Mr. Riccardo Vincelli, KPMG

Committee Member: Dr. Mauricio Aniche, Faculty EEMCS, TU Delft

vii

Acknowledgements

With the submission of this thesis I not only finishing my Master studies in Com-
puter Science at Delft University of Technology, but I also conclude my student life.
During this time I have been improved both as a scientist and as a person, by over-
coming the challenges that I was facing. However the completion of this work would
not have been possible without the help of many people that I want to thank.

First of all I want to thank my supervisor, Asterios Katsifodimos, for his endless
help. His door was always open for me to listen to my problems and my crazy
solutions. From the early stages of finding the thesis topic till the end of the work,
his guidance was more than helpful and his expertise was crucial on lots of aspects.

Since this thesis was carried out as an internship in KPMG, I was really happy
that I had a second supervisor from the company’s side. Riccardo Vincelli thank
you very much for your continuous support and guidance throughout the past nine
months. With your experience and your enthusiasm we managed to overcome to-
gether lots of difficulties that I faced during this work. Thank you for spending
much of your time with me, to listen to my issues and proposing interesting and
helpful solutions.

I want to thank all my colleagues at KPMG for their help. Everyone helped a lot
by listening and answering random questions that I had since they had experience
in both engineering and research fields. Also I want to thank you all for welcoming
me as a member of your team and making my time there very enjoyable.

Finally, I want to thank all my friends and my family for their unconditional sup-
port, not only during the past months, but during my whole student life. Without
them it would be impossible to succeed.

Contents

Declaration of Authorship

Abstract
Acknowledgements
1 Introduction
1.1 Motivation e e e e
1.2 ResearchQuestions i it
1.3 Dataset e e e e e
14 Outline e e
2 Literature Review
21 Background
211 LogAnalysis
212 Complex Event Processing
213 RuleMining o
Definition
22 Related Work e
221 Real-timeloganalysis
Loganalysisatscale
222 Anomaly detectioninlogs
223 Patternmininginlogs
224 Complex Event ProcessinginLogs
225 Automated Complex Event Processing

Case study: Anomaly detection on distributed file-system logs

31 Generalpipeline. o
3.2 Datapre-processing
3.3 Datasets generation L o o oL
3.4 Metricsdefinition L L o oo

Anomaly detection on patterns using rule mining techniques
41 Dataset e

42 Method 1: Association rulemining
43 Method 2: Sequential rulemining
4.4 Method 3: Sliding window and Sequential rule mining
Rule transformation to complex event processing

51 Rulesgenerator
52 Automate complex event processing engine

5.3 Flinkjob configuration

iX

iii

vii

6 Experiments and Results

Baseline Experiment
Effect of number of messages per block
Necessary number of abnormal data . .
Experiment to improve Precision
Algorithm computational complexity analysis
Comparison with similar works

6.1
6.2
6.3
6.4
6.5
6.6

7 Scaling out anomaly detection in the cloud
71 Pipeline.

7.2

7.1.1

Dataflow

Large scale configuration

7.2.1
722
723
724
725
7.2.6

Scaling system
Containers
Logcollector.
Messagesink
Streaming processing
Rule generator and log publisher

8 Discussion and Conclusion
8.1 Discussion
8.2 Limitations
8.3 Conclusion and further improvements .

Bibliography

37
37
38
39
40
41
42

43
43
43
44
44
45
46
47
49
50

53
53
54
55

57

List of Figures

1.1

3.1
3.2
3.3
34

4.1
4.2
43
44

5.1
52
53
54
5.5

6.1
6.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Raw HDFSdata e e e

General Pipeline
Raw logmessage
Data pre-processing pipeline
Groupeddataset. o

Classification of frequent itemsets Pipeline
Messsages per binsof 30seconds L.
Bayesian optimization for sliding window size and support factor . . .
Minimum number of message in normal and abnormal blocks

Rules generator Pipeline
Flink job executiongraph
Inputlogdata
Final alerts of Flink CEPjob
Different notions of time in Flink streaming processing

Experiments with different size of abnormal dataset in training phase
Runtime experiments 000,

Framework Structure
Kubernetes e
Docker e e e
FluentD e e
ApacheKafka L oo
Zookeeper
Flink e

xi

16
16
18
18

21
26
28
29

32
33
34
34
35

39

List of Tables

1.1
2.1
3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

6.1
6.2
6.3
6.4
6.5
6.6

Hadoop File System Data
Rule miningexample oL
Message representation tonumbers L oL

ARM results, without itemset comparison
ARM results, with itemset comparison
Association rule frequentitemsets 0L
SRM results, without itemset comparison
SRM results, with itemset comparison,
SlidingWindowdata
SRM results, with sliding window

Results from Baseline experiment,
Metrics of Baseline experiment
Metrics of the effect of number of messages per block
Results using different support factor on normal rule generation
Metrics using different support factor on normal rule generation
Number of log messages pertestset

xiii

17

23
24
24
25
26
28
29

37
37
39
40
40

List of Abbreviations

CEP
ARM
SRM
HDFS
TP

FP
TN
FN
SMOTE
Gb
CPU
TPE

Complex Event Proccesing
Association Rule Mining
Sequential Rule Mining
Hadoop Distributed File System
True Positive

False Positive

True Negative

False Negative

Synthetic Minority Oversampling Technique
Giga Byte

Central Processing Unit

Tree Parzen Estimator

XV

Chapter 1

Introduction

Analyzing and monitoring a system’s logs is not a new trend, even though it is
one of the most popular research fields till now. Logs contain a large amounts of
unstructured information about the operation of a system. However, due to their
massive size and their non-consistent format, it is difficult to gain real value without
extensive analysis. Especially nowadays, where more and more applications and
services are deployed into the cloud, it is crucial to find a way to extract value from
these system’s log. Anomaly detection is probably the most common case to conduct
an analysis in logs, because it detects things that went wrong in the execution. In that
direction, this thesis aims to create an anomaly detection framework for applications
and services hosted in the cloud. The research value of this work will be to detect
anomalous patterns in logs via pattern mining techniques and then to integrate this
machine learning technology with a complex event processing engine in streaming
data, for real-time anomaly detection on system’s logs.

1.1 Motivation

This thesis was carried out during an internship at KPMG. Thus, except for the moti-
vation on scientific perspective, there is also direct motivation for the business itself.
To begin with, the first motivation is to be able to create a real-time anomaly detec-
tion framework which can combine different scientific fields such as machine learn-
ing and streaming processing. Specifically, using complex event processing(CEP) in
anomaly detection case on system’s logs is quite interesting since no prior work has
focused on this type of logs. The most researched logs that different works were
focused on are web logs. However, in order to use a CEP engine, first some patterns
have to be defined, which will be the patterns that have to be found in the streaming
data. Generally, when using complex event processing technology, an expert is nec-
essary, who will manually go through the logs and will determine the patterns that
should be matched in the incoming streaming data. As one can imagine, due to the
massive volume of the data it is almost impossible for an expert to go through all the
log data and identify suspicious patterns for each case (it is a really time-consuming
procedure which can also be very difficult). In order to reduce all this manual work,
the pattern mining is introduced. Pattern mining is the procedure of detecting and
extracting hidden patterns in the data. In this work, we will try to apply pattern
mining algorithms in log data to extract patterns which can capture any abnormal-
ity that the log data contain. Another goal is to find a way to automate the pattern
definition of the CEP engine by integrating it with machine learning technologies
such as pattern mining techniques. Furthermore, we want to investigate what value
can bring this work to a business like KPMG. Since most of the companies nowadays
are moving their services into the cloud, it is crucial to adapt our anomaly detection
framework in the current trends and deploy it into the cloud using state-of-the-art

2 Chapter 1. Introduction

tools. Finally, it is really important to find a general purpose of this work, such as the
different possible applications that can be applied. For instance in can be exploited
as a mean for finding the root cause of a system failure or for maintenance purposes
of the systems in the cloud.

1.2 Research Questions

The aforementioned motivations lead us to investigate the following Research Ques-
tions and try to answer them through this thesis work.

1. Can we detect real-time anomalies in system logs in the cloud?
Can we use rule mining techniques to capture abnormalities in logs?
Can we learn rules that represent abnormal behavior ?

What technology can exploit patterns from logs?

A S R

What is the minimum number of abnormal data during training, in order to
accurate capture future abnormalities?

6. On what use case for the industry this work can be applied?

The first question will be answered as the final outcome of this thesis work. Based
on the final results we will be confident about the possibility of reaching the goal
of this work by creating a new anomaly detection pipeline. The next two questions
will be answered in Chapter 4, where we will investigate different machine learning
approaches to extract patterns from log data. The fourth question will be answered
as a next step of the previous questions.

One goal of this thesis is to generate patterns to be used in a complex event pro-
cessing engine. Thus, the rules/patterns from the previous question will be used as
patterns in the CEP. Question 5 is also a great challenge. As we know, under real
world conditions, there is usually lack of abnormal data but plenty of normal, espe-
cially in cases such as the one that we investigate in this work. So it is important to
examine what is the lowest bound for the number of abnormal data, from which we
can generate patterns to capture efficiently future abnormal events. The last research
question of this thesis is related both to the engineering part and to the dataset that
we will use. Since the engineering part consists of quite a few different large-scale
technologies and frameworks, and nowadays large companies such as KPMG are
using them, it is quite relevant to create a log analysis framework by integrating
these technologies. Also the dataset used is important, since it will be a real dataset
from actual systems and thus the results will reflect a real case scenario.

1.3 Dataset

The dataset that we will use in this work contains logs from an instance of Hadoop
Distributed File System(HDEFS). Specifically this dataset was first introduced and
created in [50] and Table 1.1 summarizes it.

System Nodes | Messages Size
Hadoop File System | 203 | 11,197,692 | 2412 MB

TABLE 1.1: Hadoop File System Data

1.4. Outline 3

The log data were collected from the system running on Amazon'’s Elastic Com-
pute Cloud. Every log message in the dataset corresponds to an event of a particular
block in HDFS and the current project tries to detect the blocks which contain any
abnormal behavior. An example of data points of the used dataset is presented be-
low, where blkx are the aforementioned blocks followed by the id. In Chapter 3 the
motivation behind the choice of this dataset will be analyzed as well as the general
pipeline of this work and all the required pre-processing steps that needed to be
implemented.

205613 929 INFO dfs.DataNode$PacketResponder: PacketResponder @ for block blk_-3009784682784181114 terminating

205613 929 INFO dfs.DataNode$PacketResponder: Received block blk_-3009784682784181114 of size 67108864 from /10.251.65.237
205613 930 INFO dfs.DataNode$DataXceiver: Receiving block blk_373393615907828558 src: /10.251.35.1:38226 dest: /10.251.35.1:50010

205613 930 INFO dfs.DataNode$PacketResponder: PacketResponder 1 for block blk_5157882435353849622 terminating
9 205613 930 INFO dfs.DataNode$PacketResponder: Received block blk_5157882435353849622 of size 67108864 from /10.251.122.65
9 205613 934 INFO dfs.DataNode$DataXceiver: Receiving block blk_-287809183401037259 src: /10.251.126.255:46911 dest: /10.251.126.255:50010

FIGURE 1.1: Raw HDFS data

1.4 Outline

This thesis will start with some information background about the different tech-
nologies and scientific fields that were necessary to implement the proposed method-
ology, as well as the relevant related work that is associated with the different fields
of the thesis. In Chapter 3 we will present the case study of our work, along with the
dataset and the metrics that we will use in order to evaluate this work. Chapter 4
contains the rule mining approach as well as the experiments of that field, to exam-
ine if we can generate and classify patterns from logs. Following we will present our
anomaly detection tool using complex event processing engine with automate pat-
tern construction. Chapter 6 contains the experiments and result of the thesis work,
while the next Chapter presents the architecture of the framework and the theoreti-
cal background behind the used technologies. Finally, in Chapter 8 we evaluate our
project based on previous similar works. Furthermore, we point the answers of the
research questions that we have defined previously. Then we sum up our work, and
we present its limitations as well as some further improvements.

Chapter 2

Literature Review

In this Chapter we will present some necessary background information that will be
used through this project. A description of the different research fields, on which we
will focus on, will be presented as well as, the necessary relevant related work.

2.1 Background

In this section, the most important definitions and terms for this thesis will be ex-
plained. Specifically we will present the theoretical background of what log analysis,
complex event processing and rule mining are. This is necessary, since this project,
which is a log analysis framework, is based on the integration of rule mining tech-
niques with complex event processing technologies.

2.1.1 Log Analysis

All IT systems generate data, called logs, which represent their different activities
and behavior. Log analysis is the field that evaluate these data in order to extract
useful information for the system’s functionality. However, since log data are quite
difficult to be analyzed in their raw nature, a pre-processing is necessary to trans-
form them into valuable information. Then it can be used in cases, such as, to detect
patterns and anomalies, like system breaches. To conduct a log analysis, some com-
plex processes have to be followed. For example the pre-processing that we men-
tioned before is necessary as well as some normalization and graph representation.

2.1.2 Complex Event Processing

Nowadays, due to the big data explosion and the daily use of sensors and smart
devices, we collect continuously a massive amount of data that have to be analyzed
[8]. A great challenge is to process the streaming data in real-time in order to detect
event patterns on these streams. Complex event processing tries to address this
challenge, to match these events with a number of predefined patterns. The outcome
of this machine is some complex events which are a combination of simple events.
Thus, CEP’s advantage is that it can process an infinity number of data streams and
detect desired complex event within them. This is the reason why CEP is quite
popular today. It is mainly used in case where RFID-systems are used, to monitor
and analyze the different devices. In order to detect complex events, an expert is
required to define a set of rules-patterns that wanted to detect. For instance, a pattern
can be: if you receive a value of temperature above 40 degrees and detect smoke then make
alert of fire. In this case, data are collected from different sensors and if the above
pattern is fulfilled within a time window, then an alert of fire is raising.

6 Chapter 2. Literature Review

2.1.3 Rule Mining

Rule mining is one of the most popular and successful techniques of data mining. Its
scope is to extract frequent patterns, interesting correlations and association struc-
tures among set of items in databases. The result of rule mining is some IF. THEN
statements that show the probability and relationship between items in a database.

Definition

The formal definition of rule mining firstly stated in [1]. Let I = I3,D»,..,I;, be a set of
m distinct values, T be a transaction that contains a set of items such as TCI and D is
the database that contains different transactions Ts. A rule is of a form X = Y where
X,YCI are set of items that are called itemset and XY = @. These itemsets are
the two most important parts of rule mining. X is called antecedent and Y is called
consequent while the rule mean that X implies Y.

In rule mining we have to take into consideration two major values, the support
and the confidence factors. These factors are assigned to a minimum value in order to
remove rules and items that are not interesting for the user and to identify the most
important relationships between the items.

e Support is an indicator of how frequently an item is exist in the data. Formally
it is called the percentage/fractions of records that contain X (JY to the total

number of records in the database. This factor is calculated by : Support(XY)
_ Support count of XY
~ Total number of items in database

e Confidence indicates how many an I[F.THEN statements are found to be true
in the data. Formally, confidence of association rule is defined as the percent-
age/fraction of the number of transactions that contain X [J Y to the total num-
ber of records that contain X, where if the percentage exceeds the threshold of
confidence an interesting association rule X = Y can be generated. The calcu-

__ Support(X

lation of confidence is coming from Con fidence(X|Y) = 0 formula.

Support(X)

As mentioned in [54], a problem in rule mining is split into two parts. The first
step is to find the frequent itemsets whose occurrences exceed a predefined threshold
in the database (support). The second part is to generate rules from those frequent
itemsets with the constraints of minimal confidence. To give a better understanding
of how rule mining technique works, we present the following example where we
have a transaction database with different purchased items.

Transaction Id | Purchased items
1 AD
2 AC
3 AB,C
4 B,EF

TABLE 2.1: Rule mining example

Based on the above table we have for instance the itemset (A, B) with support
value equal to one or the itemset (A, C) with support value equal to two. Thus, if we
want to generate rules with 50% minimum support and 50% minimum confidence
we have the following rules:

2.2. Related Work 7

o A— C with 50% support and 66% confidence
o C— A with 50% support and 100% confidence

However in our case we will focus solely on the support factor since we will
generate frequent itemset that we will then convert them to rule patterns.

The rule mining methods are split in two distinct main categories: association
rule mining[52] and sequential rule mining[53]. The main difference between these
two methods is that association rule mining algorithms does not take into consider-
ation the actual order of transaction. Thus, the generated frequent itemsets from the
association rule mining method are usually more that the sequential method. On the
other hand, in sequential mining, the order of the transaction is really important thus
the generated itemsets contains the property of the correct order. However due to
that restriction, the sequential algorithms are a bit slower than the association ones.
In this work we will examine the effect of both methods in the anomaly detection
case.

2.2 Related Work

After the explanation of the most important definitions and terms, it is crucial to
present all the works that are related to the topics we will touch upon this thesis.
Thus in the following sections, related literature that focuses on similar fields will be
presented, and their weak and strong points will be analyzed.

2.21 Real-time log analysis

It is widely known that all IT systems generate records called logs, which capture the
activities of the systems. Logs analysis is the work of examining these data in order
to extract useful information about system activity and handling errors that occurred
in the systems. Log analysis is a quite hot trend nowadays and as more and more
IT infrastructures move to public clouds such as Amazon Web Services, Microsoft
Azure and Google Cloud, it is crucial to conduct this analysis in real time aspect. In
that direction, lots of production tools exist that trying to address that challenge. For
instance, the state of the art tools are ELK [13] which is a stack of three tools (Elas-
ticsearch, Logstash and Kibana) and Splunk[48] which collect, analyze and visualize
logs from different sources. ELK is used for centralizing logging in IT environments.
It includes ElasticSearch which is a NoSql database to store and query logs. Also it
includes the Logstash which is the tool for gathering the logs from different sources
and Kibana which is responsible for visualizing the logs. Although ELK’s fame, it
contains some pitfalls such as absence of anomaly detection capabilities.

All these tools use a supervised-based analysis method where they allow users to
define log patterns or generate models based on domain knowledge. Despite their
advantages, these methods have some shortcomings such as it is focused to what
the user seeks, on known errors and also it is not adaptive to new data sources and
formats. Except from the aforementioned state-of-the-art tools, also other tools such
as Logmatic, Sumo Logic, logz.io, Loggly, etc exist, which are really famous in the field
of log analysis and anomaly detection in logs. However almost all of these tools do
not exploit the possibilities of applying machine learning techniques in order to an-
alyze and detect insights in logs. Only Sumo logic use machine learning techniques,
although they use only clustering or regression analysis which might not the best
option to detect hidden pattern between logs from different sources. In our work we

8 Chapter 2. Literature Review

want to investigate the integration of machine learning, and specifically some rule
mining techniques, on the anomaly detection case.

Log analysis at scale

Another issue that has been emerged recently is the effectiveness of log analysis
tools in large scale systems. Since we are in big data era, it is crucial to analyze
big volumes of logs that emitted from different types of systems and applications.
Except from some of the aforementioned production tools that have been successful
in large scale systems(such as ELK), lots of research work has been done in that
field of log analysis at scale. For instance in [44] they create a large scale monitoring
system. Their system was build on top of Hadoop in order to inherit its scalability
and robustness. They have also created a toolkit form displaying and analyzing the
results of the collected log data. However their system do not aim at monitoring for
failure detection but for a system that can process large volume of log data. Similarly,
[49] have created a cloud-based aggregation and query platform for analyzing logs.
In order to achieve storage and computation scalability they used OpenStack and
MongoDb systems. Their scope was to store the logs, to aggregate them and to
make queries on them to extract useful information. However, both methods that
we mentioned before do not use any machine learning technique to get insights
from log data. As it is obvious, the biggest goal of log analysis is to detect anomalies
in the data to find root causes of any problem that occur. For that reason, the use of
machine learning is more than necessary in that field.

For instance Debnath et al. [10] have created a real-time log analysis system
using machine learning. Specifically they employ unsupervised machine learning to
discover patterns in application logs and then to leverage these patterns with a real-
time log parsing for an advanced log analytic tool. The above patterns are learned
from "correct" logs and then, the learned models can identify anomalies. In order to
operate in large scale, their system is deployed on top of Spark. Also they used Kafka
for shipping logs and Elasticsearch to store them. Finally, they used also Kibana to
visualize results and writing queries. Their model is consisted of :

1. The tokenization where logs are split into units
2. The identification of datatype based on RegEx rules
3. The pattern discovery using clustering

4. The incorporating domain knowledge where users can modify the extracted
patterns

However their approach lacks of real-time service with zero-downtime since Spark
lacks these features.

Another interesting work came from Xu et al. [50] where they first parse logs by
combining source code schema analysis in order to create features of logs, and then
they analyze these features using machine learning approached to detect anomalies.
In their approach, they first convert logs in a structure format using the schema of
the source code that produce the logs. Then, they create feature vectors by grouping
related messages. After that they conduct anomaly detection using PCA and finally
they visualize the results in a decision tree which explain how the problems have
occurred and detected.

Furthermore, instead of machine learning, several works exists which are trying
to tackle log analysis and anomaly detection using data mining techniques. For

2.2. Related Work 9

instance, Jakub et al. [23] use data mining and Hadoop technique for log analysis.
They used Hadoop MapReduce method in order to execute data mining in parallel
for faster calculation. As the data mining part is concerned, they generate rules
based on the logs data and then based on these rules they identify anomalies. The
rule generation is made by grouping logs with some same features such as time,
session and IP address.

2.2.2 Anomaly detection in logs

Log analysis with the aim to detect anomalies is not a new field, thus lots of works
exist that trying to tackle this matter. For example, Min Du et al. [12] create an
anomaly detection tool using Deep Learning techniques. They create a neural net-
work using Long-Short term memory to model systems log as natural language se-
quences achieving really good score in Recall and Precision metrics. Their contri-
bution is to capture normal behavior into patterns and then, any data deviates from
these patterns are categorizes as abnormal. Furthermore, they argue that logs data
can varies over time. Thus, updating the patterns collected online it is really cru-
cial in order to be able to capture future abnormalities. To make this update they
use users that provide their Deep Learning model with feedback about the current
anomaly detection results.

Mariani et al. [34] trying to identify failure causes through system logs. They detect
relationship between values and event in the logs of normal behavior and then they
build a model that compares these dependencies with models generated by failure
executions in order to detect which sequences brought the failure. Specifically it is
a heuristic-based technique that capture problems not from a single event but from
sequences of different system event. Their approach is split into three phases. In
the first phase they collect the logs, by transforming the raw date into event and
attributes. Then in the next phase they generate the model using FSA to depict the
dependencies between the events. The last phase contains the failure analysis by
comparing the different FSA models from the previous step.

A differently work come from Hayens et al. [21] where they present a contextual
anomaly detection method in logs from streaming sensor network. The purpose of
their work is that it is crucial to detect anomalies not only based on the content of the
data but also from the context perspective. The proposed technique is composed of
two modules: the content anomaly detector and the contextual anomaly detector. In
the first module, an univariate Gaussian predictor detect the point anomalies. The
other module creates sensors profiles and evaluate every sensor based on the value
of the content data as anomalous or not. The profiles are defines using clustering
algorithm. Thus when each sensor is assigned to a profiles and then is detected
as anomalous by content, the context anomaly detector will determine the average
expected value of the sensor group.

Lots of works are trying to detect anomalies in logs. However, since it is al-
ways crucial to find new methods to detect anomalies, we decided to create our own
anomaly detection tool. Also our purpose in to deploy the system into the cloud, in
contrast to the aforementioned related works.

2.2.3 Pattern mining in logs

Extracting pattern from log data is not a new trend, however it is very effective es-
pecially in case of finding patterns to capture abnormality in logs is crucial. For
example Kimura et al. [26] describe a method to generate logs patterns for proactive

10 Chapter 2. Literature Review

failure detection in large scale networks, because in such systems it is impossible
to find the root of a problem just by examine the massive amount of log data. Their
proposed system, which automatically learn relationships between log data and fail-
ures, consist of three sub-modules. The first one convert the log messages into log
templates using a similarity score for each word to belong to a specific log template
cluster. This module is applied in chunks of log messages because they argue that a
failure stems from a combination of log massages, not by just one. Then, the second
module collect the previous templates and tries to extract features that can charac-
terize the generating patterns-templates. The final module contains a supervised
machine learning approach to classify each pattern with respect of failure on the
system or not. As ML technique they use the well-known SVM classifier to classify
the future chunk log records. In their experiments, using Blue gen data, they achieve
really good results in trying to proactively detect failures in network systems.

In the same direction, Dharmik et al. [6] used pattern mining techniques to iden-
tify security breaches in log records by dynamic rule generation. To create the rules,
they used some specific attributes of the log data, such as IP address and port, since
the searching field is the networks security, and they apply association rule mining
algorithms such as Apriori. Then with these rules they train an anomaly detection
classifier to detect future anomalies.

Another work comes from Hamooni et al. [20], where they have build a frame-
work to extract patterns from log messages using unsupervised techniques. Specifi-
cally, they separate log messages into clusters and then they try to generate patterns
that represent the log messages in each cluster. To group the messages they measure
the maximum similarity distance between the messages. Then they use the Smith-
Waterman algorithm to generate patterns for the cluster. As final step they try to
combine the produced patterns in order to have a small number of of patterns that
represent the whole space of log message.

Pattern mining in logs is not a new trend, thus lots of works exist on that field.
However we can see based on the above works, that the case they investigate is to
find pattern on network logs in order to capture patterns for intrusions. In our case
we want to extract patterns to capture abnormality of the functionality of distributed
systems.

2.24 Complex Event Processing in Logs

Since Complex Event Processing has gain a lots of interest the last years, some efforts
exist on exploiting its capabilities in log analysis. For instance, Jayan et al. [24]
describe a method to integrate Complex event processing with Network security.
Specifically, they argue that it is quite difficult to detect a network security breach
when an attack can occur in a lots of different devices. Thus, they describe a method
of pre-processing all the sys log data in order to extract hidden patters on these data.
Then they feed the CEP engine with the pre-processed data to create different alarms
when an attack is occurred based on some specific features. Similarly, the same
authors, make use of CEP and sys logs data by integrating also machine learning
technology [25]. They argue that since the log data are massive, the reduction of
their size is necessary. Thus they apply a SVM reduction on the pre-processed data
before parsing them to CEP engine. By this reduction they improve their previous
results [24] and they come up with the a solution to detect a network attack using
both machine learning and Complex Event Processing.

In a complete different field Grell et al. [18] use Complex Event processing to
monitor large scale internet services. Since these internet services are deployed in

2.2. Related Work 11

large scale data centers, it is crucial to monitor their event. They conduct two differ-
ent experiments, one using a watchdog inside the different services and one using
business events and data such as CPU consumption, memory allocation, as well as
user’s action. Then applying CEP in these log data it is possible to detect future
issues in the systems and to find the root cause of multiple problems based on the
rules that can be generated from the data.

All related work that make use of complex event processing in logs are associ-
ated with networking logs. Thus, definitely we can argue that there is a absence of
using complex event processing on system logs of distributed systems, which we
will discuss in this thesis work.

2.2.5 Automated Complex Event Processing

Complex event processing (CEP) is a popular methodology which provides us with
the possibility of analyzing real-time streams of data. The main purpose of CEP is to
detect complex pattern in different types of data such as logs or RFID data. In order
to detect these pattern it is necessary to provide to the system some pattern rules that
can capture the events in the data. These rules are generally provided by experts of
a specific field. However, nowadays, where we have a huge amount of data, it is
difficult to manually determine these rules. Thus it is necessary to automate this
process of defining rules for the CEP engine.

In that direction, Mehdiyev et al.[35] tried to automate that process of generating
pattern rules in in complex event processing. The goal of their work is to use a ma-
chine learning model for identification and updating of pattern rules. For that rea-
son they used Rule-based classifiers (supervised learning) on streaming data of RFID
sensors. Specifically, they conduct experiments using six different rule-based clas-
sifiers (One-R ,JRip, PART, DTNB ,Ridor and Non-Nested Generalized Exemplars).
The reasoning for choosing rule-based classifiers is the detection of rule patterns in
an offline mode and then to provide the extracted rules to CEP engine, which can
capture complex process events from streaming data. As the behavior of streaming
data changes over time, in a specific period, the rule pattern identification has to be
conducted offline and then submitted to the CEP engine. In their experiments, us-
ing accelerometer sensor data, they manage to achieve a really good accuracy using
the above classifiers and thus they conclude that Rule-based classifiers can be use
efficiently to generate rules for CEP system.

Another approach that use an online learning technique for rule generator is of
Petersen et al.[40]. In their work, not only used machine learning algorithms to gen-
erate rules for the CEP engine but also these rules generated online based on the
inputs and feedback in the system. Their method consist of three different stages. In
the first stage, events are received and being pre-processed before performing some
action due to possible failures in the data transfer, missing values or incorrect mea-
surements. The second stage is the extraction of rule patterns from the data stream
provided as a training data for the system. This stage begins with defining a time
window (using an iterative method to define the size) for each incoming complex
event in training phase. In parallel with this process, an online SVM with Gaussian
radial basis function kernel (RBF) is created to classify complex events. The last step
in this stage is to extract rules from the SVD model. This is achieved by finding
the centroid for each Complex Event through a clustering algorithm. Then, support
vectors, from the SVM model, and centroids are used to determinate the boundaries
of a region of interest, which define an interval rule. The last stage of their work
is to feed the rules into the CEP engine for processing the data streams. However,

12 Chapter 2. Literature Review

using the same data as the previous work, they did not manage to achieve greater
accuracy when using the ML technique alongside with CEP instead of just using
Machine learning technique to classify the action of the person based on the sensor
data.

Similarly Petersen et al. [41] proposed an automated method to generate Cep

rules by mining event data. Their unsupervised approach has two stages. In the
first stage an event clustering is proposed in order to detect complex event patterns
from unlabeled data and then can be labeled with arbitrary classes. For that purpose
they used the X-means clustering algorithm to define the clusters. Then labels to the
clusters are assigned by experts.
The second step is to define rules from the labeled clusters. To accomplish that,
they used the labeled clusters as a training set to build a SVM classifier for rule
generation. Finally, their results were quite similar with those in their previous work
[40].

Another method for automating CEP comes from Mousheimish et al. [37], where
they propose a learning algorithm where complex patterns from multivariate time
series to be learned. The purpose of this work is to produce CEP rules for proac-
tive purposes. Their method is divided into two parts. The first one named USE
and SEE employed at design-time, and the second named auto-CEP for the run-time
processing. More specifically, the entire approach combines Early Classification on
Time Series (ECTS) techniques with the technology of complex event processing.
Their method contributes in both field of CEP and data mining. In the first step of
their method (USE), they take classified instances and they extract a set of shapelets.
Then, they extract sequences from the previous generated shapelets. The last step
contains the parsing sequences to transform them into rule to deployed in the auto-
CEP scheme.

An interesting work has been done from Margara et al.[33], where they proposed
a framework called iCEP, for automated CEP rule generation, which find meaning-
ful;] event patterns by analyzing historical traces.They extract event types and at-
tributes and they apply an intersection approach on those patterns to detect hidden
causalities between primitive and composite events. However their experimenting
results were not the optimal, reaching a Recall and Precision values around 85-90%.

Another interesting work in association rule mining in combination with com-
plex event processing presented by Jinglei Qu et al. [32] . Specifically they proposed
a model of autoCep for online monitoring which automatically generated CEP rules
using association rule mining methods. Their method is split in 3 phases. In the
tirst phase, a pre-processing step on the data is occurred in order to keep only the
most important attributes for their case. Then using association rule mining they
generate rules using as input the output of the previous phase. The last phase was
to convert the generated rules into CEP rules to be fed in the CEP engine. In order
to keep only the most important attributes (factor in their case), in the first step, they
used the gray entropy correlation analysis. In the second step they used the Apriori
algorithm with fixed minimum support and confidence. A generated rule from that
process had the format of R =< condition,result >. After the creation of rules an
algorithm was applied to transform them into Cep rules. From the previous format,
the result is extracted as the event type and the condition as the Cep pattern. Finally,
also a timed window is defined in order to determine the pattern that fells in that
window.

Another work that combines CEP and association rule mining is the system pro-
posed by Moraru et al. [36]. In their work, they integrate CEP with data mining
technique to be used on a smart cities scenario where data comes from multiple

2.2. Related Work 13

sources. As the previous work, they use Apriori algorithm implemented in WEKA.
Thus after collect the data, they generate rules to depict the most frequent itemsets.
Then they come to some interesting correlations between the different data sources
that can be used in a CEP engine for alerts on abnormal behavior.

Furthermore Mutschler et al. [38] propose a rule mining method using an ex-
tension of Hidden Markov Models, which is called Noise Hidden Markov Models.
These models can be trained with existing low-level event data. The idea is to pro-
vide a method by which a domain expert can tag the occurrence of a important
incident at a specific point in a period of time in a stream. The system then infers
rules for automatically detecting such occurrences. Final, these rules are used then
in a combination with Complex event processing to capture future occurrences on
the rules.

As we can see from the above related works, lots of methods exist in order to
automate the pattern generation of complex event processing. However only few
works used association rule mining techniques for that purpose and none of them
use sequential pattern mining. Also we saw that none of the aforementioned meth-
ods used their systems to detect anomalies on system logs, something that we want
to investigate. Specifically if complex event processing can be used in anomaly de-
tection in logs.

15

Chapter 3

Case study: Anomaly detection on
distributed file-system logs

In this Chapter, the case of this thesis will be presented, as well as the dataset that
was used. As mentioned in Chapter 1, the analyzed dataset contains log messages
from the Hadoop File system [46]. However since this dataset contains raw log mes-
sages, it is crucial to explain the steps that were conducted in order to generate new,
modified, in a structured way, datasets that can serve our purposes. Specifically
based on the initial dataset, we have generated two distinct datasets, each used in
different steps of our work. Nonetheless, initially have to be mentioned the rea-
sons behind the decision to create these two versions of the initial dataset. This kind
of data is really representative to examine the effectiveness of our framework since
they are real log events from a widely used distributed system. Also recently, more
and more companies are choosing to deploy a Hadoop cluster inside a Kubernetes
cluster, thus our case will serve exact this purpose, to detect anomalies in a system
inside Kubernetes. Furthermore, another reason for choosing HDFS logs is that each
log message is connected with a specific entity, which in our case are the Blocks. Fi-
nally, in HDFS logs, a message solely can not depict any information or abnormality.
A characteristic of these logs is that when a problem occurs, then you can examine
it from a sequence of different message. Thus, since in our case we will try to ex-
tract patterns from sequential log messages, it is really useful to know prior if that
sequence of messages can represent an abnormality or not.

3.1 General pipeline

In this section we will present a brief overview of the pipeline of the framework that
we developed for anomaly detection. One purpose of this thesis is to combine the
rule mining field with the complex event processing engine. Specifically we want
to extract patterns from abnormal logs and the to feed these patterns in a complex
event processing engine to detect future abnormal behavior in streaming log data.
An overview of the whole general method is presented in 3.1.

16 Chapter 3. Case study: Anomaly detection on distributed file-system logs

HDFS logs
, \ 4
Train set Test set
Pre-processing
Streaming
y log data
Rule mining

Abnormal
Patterns 4| Complex Event <

Processing

|

Alerts

FIGURE 3.1: General Pipeline

After the graph representation of the framework, it is really important to analyze
the necessary pre-processing steps conducted on the dataset.

3.2 Data pre-processing

To begin with, since the data are raw log files from the system, the first step is to
pre-process them in order to handle them. Firstly we have to extract the block that
each line is referred to, as well as the timestamp when the corresponding log line
occurred. As an example we can examine the following log line and the extracted
parts that we gathered.

081109 203518 143 INFO dfs.DataNode$DataXceiver: Receiving block blk_-1608999687919862906 src: /10.250.19.102:54106 dest: /10.250.19.102:50010

FIGURE 3.2: Raw log message

From the above log line we can extract:
o The Block id : blk_1608999687919862906
e The Time this log message occur : 081109 203518 143

o The actual message : INFO dfs.DataNodeDataXceiver: Receiving block src: /10.250.19.102 :
54106 dest: /10.250.19.102 : 50010

Then we have to encode the entire message of the log line to a specific number
for simplicity. Table 3.1 presents that relationship between numbers and messages.
Consequently instead of raw messages for each block, we have a sequence of num-
bers for each block which represents all the messages that each block contains. This

3.2. Data pre-processing

17

can also be found in Figure 3.3 where we present a graph of how raw messages are

pre-processed into a structure form.

Messages Number representation
Adding an already existing block (.*) 1
(:*)Verification succeeded for (.*) 2
(.*) Served block (.*) to (.*) 3
(.:*):Got exception while serving (.*) to (.*):(.¥) 4
Receiving block (.*) src: (.*) dest: (.*) 5
Received block (.*) src: (.*) dest: (.*) of size ([-]?[0-9]+) 6
writeBlock (.*) received exception (.*) 7
PacketResponder ([-]?[0-9]+) for block (.*) Interrupted 8
Received block (.*) of size ([-]?[0-9]+) from (.*) 9
PacketResponder (.*) ([-]?[0-9]+) Exception (.*) 10
PacketResponder ([-]?[0-9]+) for block (.*) terminating 11
(.:*):Exception writing block (.*) to mirror (.*)(.*) 12
Receiving empty packet for block (.*) 13
Exception in receiveBlock for block (.*) (.*) 14
Changing block file offset of block (.*) from ([-]?[0-9]+) to 15
([-1?[0-9]+) meta file offset to ([-]?[0-9]+)
(.*):Transmitted block (.*) to (.*) 16
(.*):Failed to transfer (.*) to (.*) got (.*¥) 17
(.*) Starting thread to transfer block (.*) to (.*) 18
Reopen Block (.*) 19
Unexpected error trying to delete block (.*)BlockInfo not

. : 20
found in volumeMap
Deleting block (.*) file (.*¥) 21
BLOCK NameSystemallocateBlock: (.*)(.*) 22
BLOCK NameSystemdelete: (.*) is added to invalidSet of 23
(")
BLOCK Removing block (.*) from needed Replications as it

o 24

does not belong to any file
BLOCK ask (.*) to replicate (.*) to (.¥) 25
BLOCK* NameSystem addStoredBlock : blockMap up- %
dated: (.¥) is added to (.*) size ([-]?[0-9]+)
BLOCK NameSystem .addStoredBlock: Redundant
addStoredBlock request received for (*) on () size | 27
([-1?[0-9]+)
BLOCK* NameSystem .addStoredBlock: addStoredBlock :
blockMap updated: (.*) is added to (.*) size ([-]?[0-9]+) But | 28
it does not belong to any file’
PendingReplicationMonitor timed out block (.*) 29

TABLE 3.1: Message representation to numbers

18 Chapter 3. Case study: Anomaly detection on distributed file-system logs

Raw logs

081109 203518 143 INFO dfs.DataNode$DataXceiver: Receiving block
1 blk_-1608999687919862906 src: /10.250.19.102:54106 dest:
/10.250.19.102:50010

081109 203521 146 INFO dfs.DataNode$PacketResponder:
PacketResponder 0 for block blk_7503483334202473044 terminating

081109 203521 29 INFO dfs.FSNamesystem: BLOCK"

200811092030_0001/job.xml. blk_-3544583377289625738

081109 203526 149 INFO dfs.DataNode$DataXceiver: 10.251.39.179:500
Served block blk_-3544583377289625738 to /10.250.18.114

Message Encoding Structured log data
Encode Message Date Block Message
5 INFO dfs.DataNode$DataXceiver: oH1/2018
Receiving block 20:35:1g | Dk -1608999687919862006 | 5
1 INFO dfs.DataNode$PacketResponder:
PacketF 0 for block i 9/11/2018

20:35:21 blk_7503483334202473044 1

INFO dfs.FSNamesystem: BLOCK*
NameSystem.allocateBlock 9/11/2018
20:35:21

22
blk_-3544583377289625738 | 22

INFO dfs.DataNode$DataXceiver: 91172018
10.251.39.179:500 Served block blk_-3544583377289625738 3

20:35:26

FIGURE 3.3: Data pre-processing pipeline

In total, the dataset contains 553.367 normal blocks and 16.839 abnormal blocks
well- defined from the experts, in these 11 million log messages. Except for the
number of normal and abnormal blocks, it is really important to present want kind
of HDFS log messages we have. As we said, our dataset contains around 11 mil-
lion messages consisting of 10.834.620 INFO, 362.814 WARNING and 258 ERROR
messages. Since our goal is to detect an abnormality in patterns before it occurs we
exclude the ERROR messages from our data. Thus, the goal is to detect an abnormal
behavior only by examining "safe" messages such as INFO and WARNINGS instead
of ERROR and FATAL which obviously depict an abnormal case. In the following
section we will describe the generation of two new datasets that we used in our
experiments.

3.3 Datasets generation

The first modification of the initial dataset, will be used in Chapter 4 for the gener-
ation and the examination of the different rule mining algorithms. For that purpose
we had to group all the logs messages based on the Block id to create a dataset where
each line will represent all the messages of a specific block in the correct time order.
So for every line in the raw data, we use the pre-processing transformation, as pre-
sented in Table 3.1 and then we group the messages based on the Block name. An
example of this modification is presented in Figure 3.4 where each line is a specific
Block and all the sequence numbers are the different log messages that correspond
to that Block in chronological order.

22 5552526 26261191191191856 16 262143 43434232323212121
558 5022 115917159 819 1962612682602 3238932239191 2021

5225 11 9 511 9 11 92626126 23 23 23 21 21 21 20
52255119119 11 9 26 26 26 23 23 23 21 21 21 20 20

FIGURE 3.4: Grouped dataset

Using this dataset we managed to extract the frequent itemsets for each block
and conduct the anomaly detection as we will in Chapter 4.

3.4. Metrics definition 19

The second dataset that we created was necessary due to the limited resources
that we have in order to test the complete framework of the log analysis. For that
reason we used around 2 millions randomly picked event logs from the initial raw
dataset, which represent 103.620 normal blocks and 2.792 abnormal blocks. This
dataset will be used in Chapter 5, where the final framework is presented, as well as
in Chapter 6, where the results of the different experiments will be presented.

To conclude, from the initial raw log data we had to create two different, modi-
tied, datasets, one by grouping all the messages based on the Block id, which is used
in the experiments of Chapter 4, and a smaller than the initial one, which is used for
the testing our log analysis framework in Chapters 5 and 6.

3.4 Metrics definition

To test the performance of our experiments and consequently the performance of
the anomaly detection framework, we have to define what kind of metrics we will
use to measure its effectiveness. To begin with, the entities, which will be character-
ized as positive and negative have to be defined. As we are focusing on detecting
anomalies, we define as positive class the anomalous and as negative class the be-
nign data. Thus, as True Positives we consider the abnormal data that we correctly
categorized them as abnormal. As False Positives we define the normal data that we
wrongly detect them as abnormal. Finally, True Negative and False Negatives are the
righted categorized normal data and the wrongly characterization of abnormal data
as normal respectively. Using the aforementioned definitions, the metrics will be
presented.

As mentioned in [42], most anomaly detection approaches have abandoned the
use of accuracy or the True Positive rates since they cannot evaluate correct the effec-
tiveness of the approach. Since in that case, a False Negative error is most of the time
more costly than False Positive ones, a common approach is to use metrics such as
Recall and Precision. Recall measure how well the system can detect the anomalies,
thus we will satisfy with a value of Recall as close to 100% as possible, which means
that all anomalies are detected. Precision, on the other hand, measures the ratio of
correctly predicted positive observations to the total amount of predicted positive
observations. Since the goal is anomaly detection and usually in this field there is an
issue with imbalance data (as we mentioned earlier, normal data are much more fre-
quent than the abnormal ones), it is possible to end up with a small precision value.
Finally, we measure also the F1 score, which is the harmonic mean of precision and
recall. However in order to have a large F1 score we must have high value on both
Precision and Recall. The formulas of all metrics that will be used are presented
below.

TP
. TP
Precision = TP+ EP (3.2)

Recall x Precision
F1 =2 3.3
score % Recall + Precision (33)

TP+ TN
TP+ TN+ FP+FN

Accuracy = (3.4)

20 Chapter 3. Case study: Anomaly detection on distributed file-system logs

In [42] is mentioned that the use of Accuracy metric is not appropriate for anomaly
detection case. However in our work we make use of this metric, but not directly
for the anomaly detection problem. The reason behind this decision is that in the
first phase of our approach and experiments, we are trying to examine if we can find
pattern in data that can efficiently capture abnormality. Thus, the goal is to gener-
ate frequent itemsets and classify them as normal or abnormal. So these experiments
are a typical classification problem and thus accuracy is the most important measure.
In the second phase of our work, where our actual framework exist, we make use
of Recall, Precision and F1 score metric which are the most useful for the anomaly
detection manner.

21

Chapter 4

Anomaly detection on patterns
using rule mining techniques

The first phase of this work requires to extract hidden patterns from logs in order to
examine if these patterns can accurately capture the abnormal behavior in the data.
These hidden patterns will be the rules in the next phase which performs the actual
logs analysis of the presented framework. Thus, from the data, the most frequent
itemsets will be extracted and then we will try to classify these itemsets as normal or
abnormal based on the data from their source. For that reason, in the experiments of
this phase, we will focus on the Accuracy metric which is the most relevant for our
classification aspect.

To give a better explanation about this procedure, we will use the data as pre-
sented in Figure 3.4 and all the required steps are depicted in Figure 4.1.

As mentioned before, the purpose of all the experiments in this chapter is to ex-
amine if the frequent itemset can play the role of rules in the next phase in order
to capture the abnormal behavior in the log data. Since the state of the art mining
methods of frequent itemset are the association and sequential rule mining, it is impor-
tant to investigate both methods to have a clear view about the potential use of the
frequent itemsets in anomaly detection of logs.

Grouped Dataset

Normal blocks Abnormal Blocks

Rule mining Rule mining
algorithm algorithm

| Frequentitemset
extraction (Rules)

josurel]

Training classifier

195159

Frequent itemset
classification

v

FIGURE 4.1: Classification of frequent itemsets Pipeline

22 Chapter 4. Anomaly detection on patterns using rule mining techniques

4.1 Dataset

For the experiments of this Chapter, the first modified dataset, as presented in Chap-
ter 3, will be used, where each line represent all the event messages in chronological
order of every block. Since we have the labels for each line of the dataset we can
conduct our experiments to examine if we can capture efficiently the abnormal be-
havior in logs and correctly classify the frequent itemset as normal or abnormal.The
number of normal data points that we have is 553.367 while the abnormal ones are
only 16.839 entries. However this is a common case when working with anomaly
detection in logs since the normal data are more common and more frequent that
the abnormal. Thus, in the following experiments also the problem of imbalanced
data has to be addressed.

4.2 Method 1: Association rule mining

In order to examine whether association rule mining(ARM) is the appropriate tech-
nique to analyze the logs and capture the abnormality in the frequent itemsets, we
have to make experiments using the state-of-the-art ARM algorithms. The goal of
this experiment is to classify the rules (the most frequent itemsets) either as normal
or abnormal, based on the given dataset. To generate the most frequent itemsets we
used the Apriori algorithm[3]. Furthermore, to handle the imbalanced data (since we
have more normal than abnormal data), we apply SMOTE[9] on the training dataset.
Last we use the Random forest classifier to conduct the classification task, using also
a 10-fold cross validation [27].

An important parameter of the algorithms is the support factor. More details can
be found on Chapter 2. Various experiments were conducted in order to identify the
most appropriate value of that parameter. More specifically we tried the generation
of the frequent itemsets with support factor values in range of 1% - 60% of the num-
ber of data entries, and different number of data fields, ranging for 5 to 20 messages
per entry, in order to have more clear results about the efficiency of using association
rule mining to detect anomalies in logs. Also we decided to keep those itemsets that
include at least 2 items, because the sets that contain only one item cannot be con-
sidered as a pattern worth looking for. Lastly experiments with another restriction
were conducted. In one case we kept all frequent itemsets from both normal and
abnormal data. In the other case, we make a comparison in the frequent itemsets
and we remove from the abnormal frequent itemset dataset those that exist also in
the normal one.

Actually the following results of these experiments confirm our initial thought
that ARM is not the appropriate technique for our case, since it does not take into
consideration the sequences of the log messages, something which is really crucial
in our case to detect the anomalies in real time and predict the errors.

The following matrices and graphs present the results of the experimenting using
ARM and the different values of the adjustable parameters as well as the restriction
of the comparison or not, of the common frequent itemsets of normal and abnormal.

4.2. Method 1: Association rule mining

23

Num.of Fields | Min_Support | Accuracy | TN | FN | FP | TP
5 0.03 0.49 2317 | 2121 | 3216 | 2929
0.05 0.5 2662 | 2423 | 2871 | 2627

0.08 0.5 2483 | 2243 | 3050 | 2807

0.1 0.49 2568 | 2422 | 2965 | 2628

0.2 0.48 1106 | 1010 | 4427 | 4040

0.3 0.5 2767 | 2525 | 2767 | 2525

0.4 0.49 1660 | 1515 | 3873 | 3535

10 0.01 0.45 1674 | 1957 | 3859 | 3093
0.03 0.47 2499 | 2522 | 3034 | 2528

0.05 0.49 2691 | 2494 | 2842 | 2556

0.08 0.52 3037 | 2551 | 2496 | 2499

0.1 0.48 2579 | 2460 | 2954 | 2590

0.2 0.51 2332 | 1899 | 3201 | 3151

0.4 0.48 2624 | 2571 | 2909 | 2479

0.5 0.52 2988 | 2531 | 2545 | 2519

0.6 0.49 2267 | 2087 | 3266 | 2963

15 0.01 0.47 3072 | 3178 | 2461 | 1872
0.03 0.49 3261 | 3161 | 2272 | 1889

0.05 0.39 1833 | 2706 | 3700 | 2344

0.08 0.48 3616 | 3568 | 1917 | 1482

0.1 0.49 3562 | 3372 | 1972 | 1678

0.2 0.48 2067 | 2064 | 3466 | 2986

0.3 0.55 4565 | 3739 | 968 | 1311

0.4 0.57 5101 | 4074 | 433 | 976

0.5 0.57 4976 | 4023 | 557 | 1027

0.6 0.52 2943 | 2445 | 2590 | 2605

20 0.01 0.30 132 | 1947 | 5402 | 3103
0.03 0.35 715 | 2034 | 4818 | 3016

0.05 0.37 297 | 1468 | 5236 | 3583

0.08 0.41 1468 | 2083 | 4065 | 2967

0.1 0.38 772 | 1731 | 4762 | 3319

0.2 0.38 1642 | 2567 | 3891 | 2483

0.3 0.58 3632 | 2527 | 1901 | 2523

0.4 0.59 5313 | 4093 | 220 | 957

0.5 0.58 5240 | 4063 | 293 | 987

0.6 0.59 5210 | 4029 | 323 | 1021

TABLE 4.1: ARM results, without itemset comparison

24 Chapter 4. Anomaly detection on patterns using rule mining techniques

Fields | Min_Support | Accuracy | TN | EN | FP | TP
10 0.01 0.44 1191 | 1553 | 4342 | 3497
15 0.01 0.52 5202 | 4736 | 331 | 314

0.03 0.52 5236 | 4735 | 297 | 315
0.05 0.46 4058 | 4148 | 1475 | 902
0.08 0.43 3233 | 3643 | 2301 | 1407
0.1 0.5 4564 | 4358 | 969 | 692
20 0.01 0.53 5533 | 4881 | 0 170
0.03 0.54 5534 | 4863 0 187
0.05 0.53 5534 | 4938 | 0 112
0.08 0.53 5534 | 4956 | O 94

TABLE 4.2: ARM results, with itemset comparison

Based on the above results we can conclude that we have some interesting out-
comes. To begin with we can clearly see that with the association rule mining we can-
not achieve a high accuracy on the anomaly detection, since the average Accuracy
is almost 50% in any different case. Furthermore, we can see that as the minimum
support factor becomes larger, in some cases the Accuracy is being decreased and
in other cases we can see that it is increased. Thus we can argue that this approach
is unsteady and consequently not appropriate for our case. Also the comparison of
normal and abnormal frequent itemset brought a slight improvement but not a sig-
nificant one. Another interesting result that verify that ARM is not a good technique
is that in almost all experiments we had a low number of True Positives. However
since our aim is to perform anomaly detection we should have as large number of
True Positives as possible.

To conclude, in ARM we generate frequent itemsets but without keeping respect
to the order of the messages. Thus, the same itemsets exist both on normal and
abnormal data, and it is impossible to detect efficiently the anomalies using the fre-
quent itemsets with no respect to the sequence order. As an example of this theory,
we present a sample of data on which we apply the ARM technique and the resulted
frequent itemsets.

Input data Frequent Itemsets
221113
261113
51113
91113
181122
22555262626131191311913119232323212121 251811
2255526261191191192623232321212120 261811
22555262611911911925261852661621434232323 18115
18119
2622115
322211926
5232211926
185252211926

TABLE 4.3: Association rule frequent itemsets

For instance, we can see that the first itemset ("22 11 13") does not appear in

Alexandros Stavroulakis

4.3. Method 2: Sequential rule mining 25

any row of the data in that specific order. So this "rule" can be generated from both
normal and abnormal data and so the classification process will not have the desire
results. For all the aforementioned reasons, the next step is to experiment with se-
quential rule mining techniques in order to examine if we can improve our results
and eventually to generate patterns that can accurate capture an anomaly behavior
in logs.

4.3 Method 2: Sequential rule mining

In the previous section we saw that the application of association rule mining in our
case does not bring great results since this technique does not take into considera-
tion the order of the log messages. Thus, a solution to improve our detection model
might be to use sequential rule mining(SRM) techniques, which are generating fre-
quent itemsets with respect to the original order of the messages. For that reason
we choose to use the PrefixSpan algorithm [39] to generate the sequential frequent
itemsets. The different experiments and the parameters that we used in SRM ex-
periments were the same as in ARM experiments. The following results present the
findings of the application of SRM in pattern finding for anomaly detection in logs.

Fields | Min_Support | Accuracy | TN | FN | FP | TP

5 0.01 0.49 2869 | 2750 | 2664 | 2301
0.03 0.56 3542 | 2697 | 1992 | 2353

0.05 0.54 3190 | 2483 | 2343 | 2568

0.08 0.51 3176 | 2822 | 2357 | 2228

0.1 0.44 2444 | 2782 | 3089 | 2269

0.2 0.65 5532 | 3673 1 1377

0.3 0.54 4691 | 3982 | 843 | 1068

10 0.01 0.71 5395 | 2957 | 139 | 2094
0.03 0.65 4685 | 2886 | 848 | 2164

0.05 0.54 3622 | 2948 | 1911 | 2103

0.08 0.68 5533 [3321 | 1 | 1730

0.1 0.66 4956 | 2936 | 577 | 2115

0.2 0.63 5504 | 3827 | 29 | 1223

15 0.01 0.71 5255 | 2764 | 278 | 2287
0.03 0.64 4095 | 2345 | 1439 | 2705

0.05 0.69 5379 | 3126 | 154 | 1925

0.08 0.63 5531 [3934 | 2 | 1117

0.1 0.70 5534 | 3193 | 0 | 1857

TABLE 4.4: SRM results, without itemset comparison

26 Chapter 4. Anomaly detection on patterns using rule mining techniques

Fields | Min_Support | Accuracy | TN | EN | FP | TP
5 0.01 0.52 5529 | 5040 | 5 10
10 0.01 0.70 5531 | 3173 2 1878
0.03 0.46 3647 | 3787 | 1886 | 1263
0.05 0.52 5494 | 5071 | 40 19
15 0.01 0.48 1903 | 1809 | 3630 | 3241
0.03 0.52 5270 | 4854 | 263 | 197
0.05 0.70 5527 | 3162 7 1889
0.08 0.56 5534 | 4600 | 0 450
0.1 0.57 5495 | 4465 | 38 | 585

TABLE 4.5: SRM results, with itemset comparison

From the aforementioned results of this second approach we can argue that we
have a slight improvement on the accuracy of the itemset classification. However
the degree of the improvement is not the desired one since best achieved accuracy is
around 70%. For that reason it is inevitable to come up with another approach that
will drastically increase our classification results.

4.4 Method 3: Sliding window and Sequential rule mining

As we saw in the previous experiments, despite the fact that SRM improves the re-
sults in contrast to ARM, we have not yet achieved results that can accurately detect
anomalies in logs. One reason can be that in SRM we use a maximum of 15 messages
for every block (and specially the first 15 messages). Thus, it is possible to lose really
important information and messages that comes after the first 15 messages. So there
is a need for an approach where we will use sliding windows in order to include the
whole range of messages for each block but also not to include a large number of
messages in a row which is computational costly. In order to use sliding windows,
first the data have to be split (both normal and abnormal) into bins where each bin
will contains messages of a block in a specific time duration (eg.30 seconds).

To begin with, as we can see in the following graph, we split normal and abnor-
mal data into bins of 30 seconds in order to examine how many messages exist in
this time window.

Average number of messages every 30 seconds

mm Normal logs
Abnormal logs

Number of messages

A B C D E F G H

Bins of 30 seconds

FIGURE 4.2: Messsages per bins of 30 seconds

4.4. Method 3: Sliding window and Sequential rule mining 27

As we can see, in the first 2 bins, the number of messages of a normal block is
almost six in both cases. On the other hand in abnormal blocks we have almost four
and six messages respectively. Then in both normal and abnormal we can see that in
a time duration of 30 seconds we have just one message in any block. Thus, a sliding
window of 5-6 can be the right one. However we have to make experiments in order
to define the best size of sliding window. Furthermore, except for this parameter, we
also have to estimate the best support factor for the SRM with respect to the sliding
window size.

In order to determine the right pair of sliding window size and support factor, to
maximize our accuracy score, we implement a Bayesian optimization technique[47].
To formulate this optimization problem, we need to define 4 major parts:

1. Objective function: It is the function that we want to minimize its loss or,
in our case, to maximize the accuracy score. The function that we test is
the sequential rule mining algorithm in combination with the sliding window
method that we have described earlier.

2. Domain space: The domain space is the range of input values that we want
to evaluate. In our case, we have two parameters that we want to test, the
support factor and the size of sliding window. Each of these parameters has its
own range. For the support factor we used a uniform distribution [4] in range
0.01 — 0.2. For the sliding window size we used again a uniform distribution
with range 1 — 10. The reason why we did not test a higher value of sliding
window size was explained in the section with the memory issues of ARM.
These memory issues hold in SRM algorithms as well.

3. Optimization algorithm: It is the method used to create the probability model
and choose the next values from the space to evaluate. In our optimization
experiment we used the Tree-structured Parzen Estimator(TPE) model [5]. The
TPE build a model by applying the Bayes rule. It uses

p(xly) * p(y) 1)

Pylx) = ==

where p(x|y) is the probability of the hyper-parameters given the score(accu-
racy) of the objective function.

4. Number of evaluations: In order to have accurately estimated results we set
the optimization algorithm to evaluate our method at least 100 times.

The result of the implementation of the Bayesian optimization are presented in
the following heat map.

28 Chapter 4. Anomaly detection on patterns using rule mining techniques

Bayesian optimization for Support and sliding window size values

0.01
0.02 -
0.03
0.04 -
0.05
0.06 -
0.07 -

80%

0.08 -
0.09 -

0.1-
0.11 -
0.12 -
0.13 -
0.14 -
0.15 -
0.16 -
0.17 -
0.18 -
0.19 -

- 60%

Support value

-20%

- 0%

Sliding Window size

FIGURE 4.3: Bayesian optimization for sliding window size and sup-
port factor

As we can see, the best sliding window size is 6 and the best support factor is
1% , since we have achieved 98% accuracy in anomaly detection. To understand
better why we used the sliding window, we present an example of a data row and
the transformed data after the sliding window application.

Input data Sliding windowed data
55225119
522511911
225119119
511911911
119119119
911911926
552251191191192626262323232121 1191192626
9119262626
1192626 26 23
92626262323
2626 26 23 23 23
26 26 23 23 23 21
262323232121

TABLE 4.6: Sliding Window data

In that part, since we have a really good accuracy, it is crucial to explain our
approach clearly and present the final results. Our implementation has the following
steps:

o We split the dataset into train and test set, both including normal and abnormal
blocks.

e For the training set:

- Separately for normal and abnormal blocks, we apply the sliding win-
dows of length 6 and step 1. Thus we end up with a new dataset that
every row has 6 number of messages as a sequence.

4.4. Method 3: Sliding window and Sequential rule mining 29

— In these new datasets (normal, abnormal), we apply the SRM algorithms
with min support factor 1%, resulting the most frequent itemsets in both
cases. Then we conduct the comparison similar to the previous experi-
ments, resulting to unique abnormal and normal frequent itemsets.

e On the test set, we iterate over the rows and if a sequence of frequent itemset
exist in the test sequence, the we label it as abnormal or normal respectively.

However with this approach we achieve 80% of accuracy. Another feature that
we don’t have taken into consideration is the length of a sequence in a normal and
abnormal case. For instance, it is important to check the minimum sequence of our
data.

Minimum sequence of normal and abnorma blocks

B Normal logs
Abnormal logs

10

Number of Minimum

Minimum of sequence length

FIGURE 4.4: Minimum number of message in normal and abnormal
blocks

We can see that there is no normal sequence that has less than 14 messages. Thus,
another restriction will be that sequences of less than 4 messages will be labeled as
abnormal. The final results of our approach are the following.

Sliding window size | Min_Support | Accuracy | TN | FN | FP | TP
6 0.01 98% 5298 | 10 | 235 | 5040

TABLE 4.7: SRM results, with sliding window

From all the above experiments, we can conclude that the frequent itemsets can
effectively capture the abnormality from the raw data that we have. Thus, we will
use sequential rule mining technique to generate rules from the raw HDFS data to
be used as patterns in the complex event processing engine for the early alerts for
abnormal behavior in the logs.

31

Chapter 5

Rule transformation to complex
event processing

After experimenting with the effectiveness of anomaly detection through itemsets,
we can build our main framework for automating the pattern creation in complex
event processing engine, by transforming the previous rules into CEP rules, to gen-
erate alerts on abnormal log data.

5.1 Rules generator

In the first step we use the training raw dataset and we apply our sequential rule
mining technique as presented in Chapter 4 to generate the most frequent itemsets
of the abnormal data. Specifically we conduct the following steps to generate the
final rules:

e Separately for normal and abnormal data, we apply a sliding windows of
length 6 and step 1. Thus, we end up with a new dataset that every row has 6
number of messages as a sequence.

¢ In these new datasets (normal, abnormal), we apply the SRM algorithm with
min support factor 1%, resulting the most frequent itemsets in both cases. Then
we conduct the comparison similar to the previous experiments, resulting to
unique abnormal and normal frequent itemsets.

e Then we keep only the final abnormal frequent itemsets to be used as rules.

In order to apply the SRM algorithm, we have to pre-process the raw data as we
mentioned in previous chapter to make grouped data for having all the messages of
a block in the same row. Then these itemsets serve the purpose of rules from which
we can generate the patterns in the complex event processing engine.

5.2 Automate complex event processing engine

After the rules generation, we have to create the process of automating the complex
event processing engine. Particularly we have created a Flink Job that read the above
rules and generates automatically patterns, using the most frequent itemsets, in or-
der to detect anomalies in streaming log data.

To begin with, we start our Flink job by defining some configurations, that we
will analyze in the next section, and we create a Kafka consumer to read the stream-
ing data from the Kafka topic. Next we read the previously generated rules from

32 Chapter 5. Rule transformation to complex event processing

PrefixSpan on
—>» chunks of 20000
data

v

Frequent Itemesets
per chunk

v

Comparison
Abnormal FI/ Normal—»
Fl per chunk

)

Frequent ltemesets

Abnormal Blocks [Slidingd‘.Ztlgdowed > PrefixSpan

Sliding Windowed

Normal Blocks | AL

Set pf Abnormal
Rules

FIGURE 5.1: Rules generator Pipeline

the Persistent Volume space [30] that have been stored and for every rule it creates
a pattern using the Pattern API of Flink. A pattern definition in Flink Cep is repre-
sented by the start of the pattern and then by a sequence of "next" occurrences that
have to be presented in the same exact order in the streaming data. Since we wanted
to have patterns with strict restrictions to sequence, we used the command "next’ to
construct the sequence of the pattern. In the example of a pattern in Algorithm 1, we
are trying to detect the sequence of messages 13 9 11. Suppose the streaming data
of a specific block arrive to the system with the messages 5 6 8 13 9 11 in that exact
order. Then the aforementioned pattern will make a match with the sequential data
of the blocks and an alert of abnormality will be raised.

Algorithm 1: Scala code of Pattern definition

var pattern= Pattern.begin[Logs]("start").where(message ==13);
next("middle").where(message == 9);
next("end").where(message == 11);

In parallel, we process the streaming data by mapping them to our pre-processor
function to transform the raw message into an object of Block id, message and times-
tamp. This timestamp will be used to chronologically order properly the incoming
streams based on their Block id. Then, for every pattern that we have created, we use
the CEP API of Flink by passing the patterns and the processed streaming data. The
result of this API is the matches between the patterns and the streaming log data.
These results are transformed into alert which indicates in which blocks a match
have been occurred and thus it raises an alarm of abnormality on that block. These
alerts then are published to another Kafka topic. In this part we have to mention that
for every rule, the Flink job is executed in parallel checking all the streaming data
for matching in all rules. An example of an execution of the job using 5 rules can be
depicted in Figure 5.2.

We can see in the above image that after the mapping and watermarking of the
streaming input, the result is passing into all 5 rules for finding a matching pattern.
Finally, the pseudo code of our implementation is presented below as well as an ex-
ample of the execution of our system by presenting the streaming log data that enter
in Flink in Figure 5.3 and the alerted result in Figure 5.4 that we have as an outcome.

5.3. Flink job configuration 33

CepQOperator -> Sink: Unname
d

CepOperator -> Sink: Unname
d

g

Source: Custom Source -> Ma CepOperator -> Sink: Unname
P — d

\ CepOperator -> Sink: Unname
d

CepOperator -> Sink: Unname
d

FIGURE 5.2: Flink job execution graph

Algorithm 2: Pseudo code of Automated Complex Event Processing Job

Input: Rules

Input: Streaming-log-messages

Output: alert(Anomaly Blocks)

initialization;

logs = Streaming-log-messages.map => Preprocessing=>Logs(Block,
message,timestamp);

kafka-consumer= Watermarks(timestamp);

logs = logs.keyBy(Block);

for rule in Rules do

pattern = rule;

patternStream = Cep(logs,pattern);

FinalPatterns= List(patternStream);

end

or f in FinalPatterns do

alert = FindMatches(f);

alert.sink(Kaftka-producer);

end

-

5.3 Flink job configuration

In this section we will analyze all the configurations and decisions chosen for Flink in
order to have a fully working framework. To begin with, the entire Flink job, which
is our program, is written in Scala [45], a Functional programming language, since
Flink works more efficiently using Scala instead of Java. The next parameter that
we have to adjust was the level of parallelism. Actually we choose to use this level
equal to 1 since the Kafka topic that we used to send the streaming data contains just
one partition and one replication. A common approach in the integration of Kafka
and Flink is to use a level of parallelism in Flink equal to the number of partitions

34 Chapter 5. Rule transformation to complex event processing

INFO dfs.DataNode$PacketResponder: Received block blk_-85956319935! 76575 of size 67108864 f
ream”:"stdout"}
INFO dfs.DataNode$PacketResponder: PacketResponder 1 for block blk_-5058827714512035593 termi

DataNode$PacketResponder: Received block blk_-5050827714512035593 of size 67108864 f

tdout"}

DataNode$DataXceiver: Receiving block blk_5151700719399069908 src: /10.251.123.195:4

\n","stream”: "stdout"}

DataNode$PacketResponder: Received block blk_2433294594295862208 of si 67108864 fr
out"}

DataNode$PacketResponder: PacketResponder 2 for block blk_243329459429 208 termin

si 67108864 fr
98909908975476 src: /10.251.214.225:5
: Receiving block blk_-3377486310340662888 src: /10.251.31.5:449

Receiving block blk_ 486310340662888 src: /10.251.105.189:
out”}

FIGURE 5.3: Input log data

blk_8987738821052531402 is about to fail
blk_6827227789958204337 is about to fail
blk_-7724713468912166542 is about to fail
blk_-3688983700621441572 is about to fail
blk_-5439842411069317338 is about to fail

blk_724798561217245470@ is about to fail
blk_7263944332659641248 is about to fail
blk_3251765155212675925 is about to fail
blk_89877388210852531402 is about to fail
blk_6827227789958204337 is about to fail

FIGURE 5.4: Final alerts of Flink CEP job

of the topic where it reads the data from. As far as the reading of rules from Flink
concerns, we choose to use the default IO package of Scala. The reason behind this
decision was that in the beginning we tried to read the rules and save them to a
list using Flink’s Dataset API. However there is a limitation in Flink which does
not allow a job to use both Dataset and Datasteam API simultaneously. Thus, since
Datastream API was definitely needed, we manage to read the rules from the file
using the default Scala package.

After the determination of the initial parameters, the most important configura-
tion of our Job have to be tuned, which is the time characteristic of processing the
streaming data. To begin with, Flink support three different notions of time [15],
Processing time, Event time and Ingestion time. In this point we will describe the
characteristic of each of these time in order to understand which notion suits best
our problem.

e Processing Time: It refers to the system time of the machine that conduct an
operation. When a Job runs of processing time, then all its operations will use
the system clock of the machine

e Event Time: It refers to the time that a specific event occurred on its producing
device. Usually this time is included within the records before even processed
by Flink and it has to be extracted from the record. Thus, the process of time
depends on the data alone.

e Ingestion Time: It refers to the time an event enters the Flink. Actually this
notion is something between Processing time and Event time.

In Figure 5.5 the difference between these three notions are clearly depicted.

Since we have a fully understanding of the different notions of time now, we can
say that the notion that we need in our case is the Event time. The first reason behind
this decision is that the log data that we use are produced from another system, the
Hadoop system. Thus, in order to detect anomalies we have to analyze the data

5.3. Flink job configuration 35

Flink Flink
Data Source Window Operator

[o |
= — @0 — 0

(PR 043G

/ \

Event @ Ingestion Window
Time Time Processing
Time

Event Producer Message Queue

FIGURE 5.5: Different notions of time in Flink streaming processing

using the time they were produced and not the time that they entered to another
system. This is because the right timed order is really crucial in our approach when
we need real time alerts on anomaly data. Another advantage for our case is that
we have the timestamp of each log within the message so we can easily extract it.
Finally, since our whole system is composed off several different tools, the transfer
of data from one to another will induce a kind of delay and thus by using processing
time in Flink, the results will be inaccurate.

The final crucial configuration that we have to adjust is related to the previous
choice of the Event time. Specifically, after the decision to use Event time when pro-
cessing the streaming data, we have to configure a program to specify how to gener-
ate Event Time Watermarks, which is the mechanism that signals progress in event
time. To use the Event time, Flink needs to know the timestamp that needs to assign
to a specific event. Thus, Flink needs to assign Watermark to measure the event time.
To generate these Watermarks, Flink has some different methods [17]. The simplest
way is to use the default .assigntimestamp operation when processing the streaming
data. However, this action requires some specific characteristics on the streaming
data. The most important one is that the data, and consequently the timestamps
must be in a monotony timed order. However, in our case, by using this default
operation we have a monotony violation. This comes from the fact that we have an
integration between Kafka and Flink where Kafka sends the streaming data to Flink.
But, despite the fact that initially Kafka reads the data in the right order from Flu-
entD, it does not send them in the right order to Flink, due to some inner operations.
So the solution is to use Periodic or Punctuated Watermarks. The difference between
these two is that in Periodic Watermarks, the system assigns timestamps and gener-
ates watermarks periodically. On the other hand, Punctuated generate watermarks
whenever a certain event indicates that a new watermark might be generated. In
our case both options are working and the produce the same results. However, since
Punctuated generate a watermark on every single event and each watermark causes
some computation downstream, we have a degrade performance of our program.
Thus, we decide to use the Periodic watermark generation to assign timestamp to
the streaming data.

37

Chapter 6

Experiments and Results

In this Chapter, we present the experiments to examine the effectiveness of the
anomaly detection framework that we have proposed in the previous Chapter. Firstly,
we have to indicate what dataset will be used in these experiments. As presented
in Chapter 3, we will use the second generated dataset consisting of 103.620 Nor-
mal blocks and 2.792 Abnormal Blocks. Furthermore, in contrast to the experiments
conducted in Chapter 4, we will evaluate the results using mainly the Recall ,the
Precision and the F1 score. Recall is the most important factor since it can mea-
sure how many of the existing anomalies we actually found. In anomaly detection
cases it is important to capture all abnormalities without considering a lot about
miss-capturing normal data as abnormal. The following sections present the main
experiments and results of this thesis.

6.1 Baseline Experiment

As we saw in Section 4.4, the number of messages of a Block plays an important
role on the classification of that Block as normal or abnormal. We saw that a great
amount of abnormal blocks hold the property that they have only two or three mes-
sages. However in the rule generator part in Section 5.1, it is not possible to create
a rule that can capture this property by using the SRM algorithm. Thus, in this first
experiment we decided to exclude from the testing dataset all the abnormal blocks
that holds this property. Also we decided not to exclude them from the training
set, from which the rules are generating, since they do not affect the outcome of the
rule generation. With this configuration we conduct three experiments, each with a
different Train/Test split and with a 5-cross validation approach [27]. The results of
these experiments are presented in Table 6.1 and Table 6.2 .

Experiment | Training set | Test set | Log messages | Rules | TP | FP TN | FEN
1 60% 40% 1.013.248 65 | 598 | 666 | 40782 | 16
2 80% 20% 506.074 64 | 301 | 559 | 20165 | 22
3 40% 60% 1.520.838 73 | 937 | 6624 | 55548 | 4

TABLE 6.1: Results from Baseline experiment

Experiment | Recall | Precision | Accuracy | F1 score
1 97% 47% 98% 63%
2 93% 35% 97% 51%
3 99% 12% 89% 21%

TABLE 6.2: Metrics of Baseline experiment

38 Chapter 6. Experiments and Results

From the above results there are lots of interesting outcomes that are worthy
analyzing. To begin with the results in Table 6.1, we can see that the number of rules
in all cases are almost the same. Another important point is the number of False
Negatives, which we can see they are just a few, which means that we have managed
to accurately capture the majority of abnormal blocks. Furthermore, despite the fact
that we have larger number of False Positives than True Positives, the results are
really promising. This stem from the fact that the False Positives are the normal
blocks that have been alerted as abnormal. However the total number of normal
blocks are way more larger than the number of False Positive, in a scale that it is
almost insignificant.

As far as the results in Table 6.2 is concerned, we can clearly see that our system
achieved its main purpose. The Recall range is almost perfect which means that we
managed to accurately detect all the abnormalities. However, the values in Precision
and F1 score are significantly lower. This is totally expected since we are facing
the problem of the imbalanced data. We have a far greater number of normal data
than abnormal, something that affects the values of these metrics. Also, since the
most appropriate dataset split is the 60-40, we can argue that the most representative
results of our tool include a Recall of 97%. Finally, one can argue that we have a
strange results in Table 6.2, since we have better Recall value with less training data.
However this is quite ordinary in our framework, since it can accurately capture
abnormality in produced patterns even with few abnormal training data. Thus, in a
40-60 split, we have more abnormal data to test and consequently a larger number
of True Positives. This characteristic of our framework will be verified in Section 6.3

6.2 Effect of number of messages per block

In the second experiment we decided to try to include the property of the number of
messages per block in the testing phase. In order to do that, we make some alteration
in the implementation of the Flink job as presented in Chapter 5. Specifically the
alteration was to include another function that will count the number of messages
per block in a fixed timed window. To do that we had also to handle the streaming
data a bit differently. Thus, we end up with two different mapping variables of these
data, the initial one as described in Chapter 5 and the new one based on the new
timed window. Then we create a pattern that will match every block that has less
than four messages in a specific time range. By this implementation we were able
to actually capture all these abnormal blocks that hold this property of the number
of messages and alert them. Thus, the following Table present actually the final
results of our framework. Furthermore, in this Table we have included the number
of abnormal blocks that were tested in order to depict how many abnormal blocks
we have with this specific property in contrast to the previous experiments. For
instance, in first experiment in Table 6.1, the total number of abnormal blocks were
614(598 + 16) while in this experiment we have 1117 abnormal blocks. Thus, we can
see that we had eventually 503 abnormal blocks with less than four messages, which
is a significant number.

In this experiment we can see that our final results have been improved a bit
by capturing also the abnormal blocks with the small number of messages. Firstly,
we can see that we reach a Recall rate in 99% in the 60-40 split which depict that
our systems works almost perfectly. Also we have a quite big improvement on both
Precision and F1 score, in a range between 15-20 %. Thus, we can conclude that our
work served its purpose and answered the research question about making a proper

6.3. Necessary number of abnormal data 39

Experiment | Testing abnormal blocks | Recall | Precision | Accuracy | F1 score
1 1117 99% 62% 98% 76%
2 559 96% 48% 97% 64%
3 1676 99% 20% 89% 33%

TABLE 6.3: Metrics of the effect of number of messages per block

log analysis and anomaly detection tool by integrating machine learning and big
data technologies.

6.3 Necessary number of abnormal data

Another interesting research question that we have to address, is the examination
of the minimum number of abnormal blocks that we need to have in prior, in train-
ing phase, to generate accurately rules that can efficiently capture the abnormality
in the blocks of testing phase. Generally, this concept is called sample efficiency,
and measures the number of learning samples an algorithm needs in order to reach
a certain accuracy score. It is true that with a large number of samples, every al-
gorithm can achieve a high accuracy level. However in real life, having a massive
number of training samples is, except for almost imaginary, extreme costly and time-
consuming (to train the model). Thus, we have to test our implementation in terms
of sample efficiency, to check how many abnormal samples we must have to capture
accurately every abnormal behavior.

For that reason, we conduct experiments using a constant number of normal
blocks and a variable number of abnormal blocks in the rule generation phase. Par-
ticularly, we used 60% of normal blocks in training phase and a range of 5% till 80%
of abnormal blocks. The goal was to examine if we have accurate alerts of abnormal
blocks using the rules from the training phase but also test the number of False pos-
itive blocks that we capture. In Figure 6.1 we can see the results of this experiment,
using the different size of abnormal blocks.

Percentage of alerts for different size of abnormal training set

100 = Normal blocks
Abnormal blocks

80

60

Percentage of alerted blocks in test phase

20

o i B B e |

5 20 40 60 80
Percentage of Abnormal data used in training phase

FIGURE 6.1: Experiments with different size of abnormal dataset in
training phase

40 Chapter 6. Experiments and Results

From Figure 6.1 we can see that despite the size of training set of abnormal
blocks, 5%, 20%, 40%, 60% and 80%, we manage to have alerts on around 96% -
98% of all abnormal blocks in the testing phase. Thus, with this result we can pro-
pose that using even a small number of abnormal block to generate rules, we can
efficiently capture all the necessary abnormality for finding future abnormal data.
Another useful insight from the above experiment is the number of incorrect alerts
of normal blocks. Specifically we can see that using 5% of abnormal blocks, we got
alerts on 25% of all normal blocks in test phase. As the size of abnormal blocks in
training is increasing, the percentage of normal alerted blocks is decreasing, which
means less false positive results. However, since a common case in real life is to
have lots of normal data but really few abnormal ones, we can conclude that even
with small number of abnormal data, we can efficiently use our framework to detect
future abnormality. However, the size of the available abnormal data will affect the
false positive rate, which is the faulty alerted blocks in our case, but not in an extent
to be restrictive for the use of our framework

6.4 Experiment to improve Precision

In the previous section we saw that our tool has a great performance in detecting
anomalies, which is proven by the achieved Recall. However there is a clear issue
with the levels of Precision and F1 score which are quite low. The reason for these
low values is that, despite the detection of almost all abnormal blocks, we categorize
also a significant number of normal blocks as abnormal. These results are associated
with the rules generation. More specifically, in the rule generation phase, we end
up with some rules that represent the normal behavior. The reason is that we have
a really large number of normal data and probably the support factor that we used
in generating normal rules and comparing with the abnormal is not the most ap-
propriate. Thus despite the fact the we have ended up with a support value of 0.01
based on the Bayesian optimization, we will conduct experiments of using a lower
support value during the normal rule generation. The results of these experiments
are presented in Tables 6.4 and 6.5.

Supportvalue | TP | FP | TN | EN
0.009 1057 | 546 | 40902 | 60
0.007 1058 | 305 | 41143 | 59
0.005 1084 | 25 | 41423 | 33
0.001 1082 | 5 | 41443 | 35

TABLE 6.4: Results using different support factor on normal rule gen-
eration

Support value | Recall | Precision | F1 score
0.009 94.6% 66% 77.7%
0.007 94.7% | 77.6% 85.3%
0.005 97% 97.7% 97.3%
0.001 96.8% | 99.5% 98.1%

TABLE 6.5: Metrics using different support factor on normal rule gen-
eration

6.5. Algorithm computational complexity analysis 41

As we can see, by lowering the support value in normal rule generation, we
have less False Positive results and consequently we have a great improvement on
the Precision and F1 score value. Furthermore, we can also argue that there is a
small degradation in the performance of the tool in terms of Recall. However this
degradation is not that significant, thus we can conclude that using a support factor
of 0.01 in abnormal rules generation and a value of 0.001 in the normal rules, we have
the best results for our tool. Although the good performance in these experiments,
there is a possibility of overfitting the system since with such a small support value,
we actually capture all the possible normal patterns, which however need further
investigation to determine it’s impact in the generalization of the algorithm.

6.5 Algorithm computational complexity analysis

In this last experiment we will try to measure the computational complexity of our
technique and to examine which factors have the greatest impact. Based on our im-
plementation, each message (or sequence of messages) are tested with every rule
in order to find a match. Thus, theoretically the complexity of our algorithm is
O(message * rules). However, we want to examine in what extend each of these
two factors affect the performance of our system.

For that reason we will measure the runtime of the algorithm by tuning these two
factors. Specifically we will measure the time when the first data enters the Flink
job until the last data passing through the Flink operation for the pattern matching.
The two factors that we want to investigate is the number of rules that we will test
for matching and the size of the testing data that we have. For that reason we use
different number of rules from 5 to 50. For the size of the testing data we use different
split percentage for train and test. The result of this experiment is presented in Figure
6.2 as well as the number of log messages in each testing percentage in Table 6.6.

Execution time for different number of rules and size of data

—— 40% testing
20% testing
—— 10% testing

4500 4

4000 4

3500

3000 A

2500

2000 -

1500

Execution time in Seconds

1000

500 A

5 10 20 30 50
Number of rules

FIGURE 6.2: Runtime experiments

To begin with interpreting the above results, we have to present the number of
log data in each of the three cases.

42 Chapter 6. Experiments and Results

Testing Percentage | Number of log messages
40% 1.024.294
20% 576.853
10% 243.075

TABLE 6.6: Number of log messages per test set

In the first case, when using the 40% of the dataset for testing, we can see that,
especially after using 30 rules, the runtime is really high. More importantly, in that
case, after using more than 40 rules, the Flink job was crashing due to memory is-
sues. On the other hand, using a smaller number of log data, we can see that the
runtime is quite low, independently of the number of rules that we examine. Thus,
we can conclude that our framework is being influenced, in term of runtime, mainly
from the size of the input data and not from the number of rules. In real life, proba-
bly we will not have that high number of testing data in a short period of time, but
also not limited resources, so our anomaly detection framework is working quite
efficiently also it terms of runtime execution.

6.6 Comparison with similar works

From all the above experiments we can see that our work has really promising re-
sults in term of anomaly detection in distributed system’s log. However, it is crucial
to evaluate our results by comparing with the results of other works that were fo-
cused on the same data. To begin with, a master thesis work exists [19], where they
conduct experiments with unsupervised techniques as well as a deep learning ap-
proach, such as LSTM, to detect anomalies in same HDEFS logs. The best results they
achieve was a Recall and Precision score of 88% and 89% respectively. Another work
that used the same data comes from [12], in which they used again deep learning
techniques. Their Precision and Recall score was 95% and 96% respectively. Finally,
Xu et al. [51], who are the people that generated HDFS dataset, achieve a Recall rate
of 100% and a Precision of around 87%, using data mining and statistical learning
methods.

Thus, we can conclude that our system outperforms the majority of the already
existing method of detecting anomalies on the same dataset, opening a totally new
field of using rule mine and complex event processing for anomaly detection in logs.
Furthermore, we can argue that our approach is also simpler that the aforemen-
tioned, such as Deep learning techniques. This is a great advantage since it needs
less time to train the model that conduct the anomaly detection.

43

Chapter 7

Scaling out anomaly detection in
the cloud

7.1 Pipeline

One great challenge of this thesis is to create a framework that will be entirely hosted
into the cloud. Thus, the decision was to build the anomaly detection framework
and all the necessary tools inside a cluster in the cloud. After the examination of all
the available tools that exist and can support our work, we decide to build our tool
using 4 well-known tools, Kubernetes, FluentD, Kafka and Flink.

Beginning with Kubernetes, the idea was to create a Kubernetes cluster and host
all the remaining tools there as pods. Also since we are in the era of Micro-services
and lots of applications are split in smaller services, one possibility is to host all the
services inside the cluster. As a results, it will be easier to gather the logs of the
different services and conduct an anomaly detection in logs using our tool. FluentD
is a really important tool since it can collect all the logs of the different application
to a centralize space. In our case however, since we will have one application that
generate logs, FluentD will be configured to read data only from that source. Also
another advantage of FluentD is that it has a well integration with Kafka, which is
our next tool that we used.

Using Kafka, we have a great tool for passing all the necessary data and spread-
ing them to our desire directions. Thus, during Kafka installation, we have created
two Kafka topics, one to publish the log data and one to publish the anomaly de-
tection results. Last but not least, we choose to use Flink as a way to handling the
streaming log data. Also, since one research question of this thesis is to automate the
complex event processing engine and Flink contains a really powerful CEP engine,
it was inevitable that we will use this tool. Combining Flink’s power in streaming
processing and the complex event processing engine, we can unlock a whole new
field with lots of possibilities in the anomaly detection of any system’s logs.

As we said before, one goal is to package all the tools into one framework inside
a cluster. In Figure7.1 we can see how the architecture of the tool looks like. Also it
is crucial to explain the data flow in the system. From Figure 7.1 we can understand
how the data flow, but in the next paragraph we provide a brief explanation of that
flow and the decision behind that.

7.1.1 Data flow

As presented in Figure 7.1, the entire framework is hosted in a Kubernetes cluster.
The application that is responsive for the rules generation is deployed as a pod and
its results are saved to a file into the Persistent Volume [30] of the cluster. The script
that plays the role of log generator, which is also deployed as a pod in the cluster,

44 Chapter 7. Scaling out anomaly detection in the cloud

////’4 3 ?x
y o §g Kiifka. Anomaly Detection “‘1 &
fluentd A | &
) \51, >
\'\ - @ :
< Rule;}eneratur \'\
\A\

sBo

L | & Complex event
_ Log Generator Persistent Volume Storage processing Engine

FIGURE 7.1: Framework Structure

read the entire raw file of HDFS logs and it prints the log messages line by line
as real logs. Fluentd, which is our log collector in the cluster, read the logs of the
aforementioned pod and publish each line to a Kafka topic. Then Flink is connected
with Kafka in order to read the logs from the Kafka topic as streaming data. In
parallel, Flink reads the file with the rules that was saved in the storage of the cluster
in order to create the necessary patterns for the complex event processing engine.
Finally, the results, which in our case are the blocks that have been predicted as
abnormal, are published back to another Kafka topic.

7.2 Large scale configuration

In this section we will describe the main technologies that we use in the implementa-
tion of the thesis project, including their purpose and why we chosen them instead of
other similar frameworks. Furthermore, we will describe the configuration parame-
ters of each tool in order to have a fully working anomaly detection framework.

721 Scaling system

In order to scale out our system we have decided to host every different service and
tool into a cluster. For that reason we choose Kubernetes to be the host system for
our anomaly detection tool.

7.2. Large scale configuration 45

Definition

Kubernetes is a portable, extensible open-source platform for managing container-
ized workloads and services, that facilitates both declarative configuration and au-
tomation. It has a large, rapidly growing ecosystem. Kubernetes services, support,
and tools are widely available. Google open-sourced the Kubernetes project in 2014.
Kubernetes builds upon a decade and a half of experience that Google has with run-
ning production workloads at scale, combined with best-of-breed ideas and prac-
tices from the community [22].

kubernetes

FIGURE 7.2: Kubernetes

Kubernetes will serve us as the main tool. All other tools that will be used, will
be deployed inside the Kubernetes cluster. In such way it is easier to monitor all the
tools that we will use and also we can be sure that we will achieve the concept of
Micro-service. Also, it has to be mentioned that the Kubernetes cluster was hosted
on Microsoft Azure cloud. The reason for using the Azure Kubernetes Services was
that it is a really easy and efficiently way to create a Kubernetes cluster in the cloud,
without considering updating and maintenance of all cluster components such as
the nodes.

Configuration

As we have mentioned before, our entire framework will be hosted in a Kubernetes
cluster running on Azure. The most important configuration of the cluster is that
we have to define a Persistent Storage [30] space for our framework. Thus we need
to define a Persistent Volume and a Persistent volume claim. The value of the former is
to provide to the cluster a solid storage space on which our tool can save different
necessary files, such as the file that contains the rules, as we will describe later. The
latter gives access to a user to use this Persistent Volume storage. Also since we
are working with streaming and maybe infinite data, it is really important to have
a solid storage to store these data instead to spread them to all Kubernetes cluster
with the risk of facing memory and storage issues.

7.2.2 Containers

In order to deploy application to Kubernetes cluster, we have to create containers of
each different tool that we want to deploy. Containers are really famous nowadays
because you can have an application and all necessary dependencies and libraries
together into one image. For that reason, we decide to containerize all our tools with
the help of Docker. Docker [11] is a tool that was designed to deploy and run appli-
cation using containers. Using containers, as we mentioned above, you can combine
your application and the necessary libraries and dependencies into one package in

46 Chapter 7. Scaling out anomaly detection in the cloud

order to run it in almost any environment. Thus, with Docker you can dockerize
every kind of application into image and deploy it to Kubernetes cluster, which is

@' docker

FIGURE 7.3: Docker

Docker contains some really useful concepts that have to be mentioned here.

e Docker Images: Docker is similar to a virtual machine image, however the
main difference is that images in docker share the Linux kernel with the host
machine. Thus Docker has better performance and it is more lightweight than
a general virtual machine.

e Dockerfile: Dockerfiles are scripts that define how to build the docker image,
just like Makefiles. In a Dockerfile you can specify the necessary dependencies
and library that your image needs and environmental variables in order to
install your application properly.

In this work, for the Python applications that we created, we had to build our
own images and thus we created our specific Dockerfiles. For the tools that we
used, such as Flink and Kafka, we used already build images provided by different
contributors.

7.2.3 Log collector

Since all services will be hosted into a Kubernetes cluster, it is necessary to find an
appropriate tool that can collect all the important logs that we want. Thus we choose
to use FluentD as log collector.

Definition

Fluentd is an open source data collector, which lets you unify the data collection and
consumption for a better use and understanding of data. Fluentd tries to structure
data in JSON format, as much as possible. This allows Fluentd to unify all facets of
processing log data: collecting, filtering, buffering and outputting logs across multi-
ple sources and destinations [43].

Thus we used Fluentd in order to collect all logs from the Kubernetes cluster and
ship them to our storage tool (Kafka). The reason for choosing Fluentd instead of
other log shippers like Logstash, was that it is really fast and it needs less resources
in contrast to other tools. Also it pre-process the logs in order to transform them
into JSON format which help us to analyze them easier. Furthermore it has lots of
input and output plugins so it can be connected easy with other tools. Finally it can
deployed as Daemonset(will be analyzed later) on Kubernetes to collect the logs of
all application and services.

7.2. Large scale configuration 47

fluentd

FIGURE 7.4: FluentD

Configuration

The reason we choose FluentD to be part of the framework is that it can provide us
with the important mechanism of collecting all the logs from the systems and trans-
mit them to the desire sources. To deploy FluentD to the Kubernetes cluster, we have
to take into consideration different configuration parameters and some different de-
ployments.

To begin with, the first action is to deploy a Service Account [31] for the FluentD.
The purpose of this is to to give access to all FluentD pods to the Kubernetes AP
Next we have to define a ClusterRole for the tool to have grant access to all resources
(pods and nodes) and a ClusterRoleBinding [28] which will bind the ClusterRole of
Fluentd as well as the Service Account that we defined in the previous step. Follow-
ing that, the next step is to deploy the FluentD to Kubernetes as a DaemonSet[29].
The purpose of deploying the tool as a Daemonset is to ensure that when a new node
is added to the cluster, then automatically a new FluentD pod will be also created
in order to collect all the logs for the new added Node. Finally the last action is to
create a configuration file for the FluentD with all the necessary configurations. For
instance we have to restrict from which pod the tool will read the logs. Since we
only have one specific pod that will produce logs in our case, it is crucial to define
the parameter for FluentD to read data only from that pod. In any other case, since
we have deployed the tool as a Daemonset, we will have logs from all the pods in the
cluster, something that in our case will make our framework a way more complex.
Another important parameter is to define the Kafka Broker on which it will publish
the logs that it collects and the memory usage in order to collect and publish the logs
to the desired Kafka topic.

7.24 Message sink

Then it is crucial to find a tool which will collect the logs, as well as to send them
to other tools. Thus we need a tool to play the role of mediator on a data flow. For
that reason we decided to use the well known tool, called Kafka, which is also easily
integrated with other tools such as FluentD.

Definition

Apache Kafka is an open source project for handling real-time data streams. Ini-
tially is was developed by LinkedIn who then open sourced it as an Apache project
in 2011. It is a distributed messaging system providing fast, highly scalable and re-
dundant messaging through a pub-sub model. Kafka’s distributed design gives it

48 Chapter 7. Scaling out anomaly detection in the cloud

several advantages. First, Kafka allows a large number of permanent or ad-hoc con-
sumers. Second, Kafka is highly available and resilient to node failures supporting
automatic recovery. In real world data systems, these characteristics make Kafka an
ideal fit for communication and integration between components of large scale data
systems [2].

The basic architecture of Kafka consists of topics, producers, consumers and bro-
kers. All Kafka messages are organized into topics. If you wish to send a message
you send it to a specific topic and if you wish to read a message you read it from a
specific topic. A consumer pulls messages off of a Kafka topic while producers push
messages into a Kafka topic. Lastly, Kafka, as a distributed system, runs in a cluster.
Each node in the cluster is called a Kafka broker.

& Kaifka

FIGURE 7.5: Apache Kafka

In our project, Kafka serves the role of a storage tool in which we store all the
streams of logs that we want to analyze, publishing them to a specific topic, before
being processed by other tools like Flink.

Configuration

Kafka is one of the most important tools in our framework since it is actually the
channel where the data actual flows. Thus, it is important to have an actual working
and stable Kafka cluster inside Kubernetes cluster. So except for Kafka, we have to
deploy Zookeeper as well, to maintain configuration information, naming, provid-
ing distributed synchronization and group services to coordinate Kafka nodes.

Zookeeper

Zookeeper [55] is a top-level software developed by Apache that acts as a central-
ized service and is used to maintain naming and configuration data and to provide
flexible and robust synchronization within distributed systems. Zookeeper keeps
track on status of the Kafka cluster nodes and it also keeps track of Kafka topics and
partitions.

7.2. Large scale configuration 49

FIGURE 7.6: Zookeeper

Configuration

Initial we have to create a Service to resolve the domain name to an internal Cluster
IP. This IP uses Kubernetes internal proxy to load balance calls to any Pods found
from the configured selector. Also we create a Headless service to return all the IPs
of Kafka pods based on the above Service. The last step is to deploy Zookeeper
as a Statefulset. The value of Statefulsets on Kubernetes is that it offer stable and
unique network identifiers, persistent storage, ordered deployments, scaling, dele-
tion, termination and automated rolling updates. Alongside with the Statefulset, we
deployed also a PodDisruptionBudget to keep the Zookeeper service stable during
Kubernetes administrative events such as draining a node or updating Pods. The
number of zookeeper pods that we used is three in order to have a stable deploy-
ment without memory issues for our case.

Kafka

The Deployment of Kafka contains the same steps as Zookeeper’s. Thus, in the end
we have a cluster of three Kafka brokers. However, in the configuration file of Kafka
we set also the two topics that we will use. In first topic we will publish the log
data that we will send then to Flink and in the other topic we will publish the alerts
(abnormal blocks) as being resulted from the Flink’s complex event processing Job.

7.2.5 Streaming processing

The final tool that is needed is a streaming processing tool to handle the streaming
logs. Also we want a tool that contains a complex event processing engine since
this is one of our main functions that our anomaly detection tool need. Thus, we
use Flink, which is the best tool for processing streaming data and also contains a
powerful complex event processing API.

Definition
Apache Flink [14],[7] is an open source framework for processing streaming data.
Its streaming engine, which provide the user with low-latency and high-throughput

is written in both Java and Scala. It is the number one tool nowadays for streaming
processing, taking the place of Spark in the streaming field. Flink contains a variate

50 Chapter 7. Scaling out anomaly detection in the cloud

of API with Datastream, Dataset and Complex event processing APIs being among
the most important ones. Except for the APIs, a Flink cluster consist of three types of
processes. The first one is the client which is responsible transform the source code
of a program into a dataflow graph. Then, a client submit this graph to the second
process, which is the Job manager. The role of Job manager is to coordinates the dis-
tributed execution of the graph and defines the Task managers, which will actually
process the data. Task managers are the third crucial component in a Flink cluster.
They are responsible for the actual processing and execution of the necessary opera-
tion of the program and they report their status and results back to the Job manager.
Finally, it has to be mentioned that the aforementioned dataflow graph is a directed
acyclic graph (DAG) which consist of data streams and stateful operators.

FIGURE 7.7: Flink

Configuration

Flink is our main stream processing framework and the tool that we want to auto-
mate. For the deployment of Flink into the Kubernetes cluster we used the general
deployment as mention in the tutorial [16]. Specifically we deployed one Job Man-
ager and two Task managers, each with 1Gb of Java Heap memory, 8 CPU cores and
32Gb physical disk. Also we deployed a service to resolve the domain name to an
internal Cluster IP. Except for these default configurations, lots of parameters have
to be tuned inside the Flink job that we created, which are analyzed in Chapter 5.

7.2.6 Rule generator and log publisher

The program that is responsible for rules generation was Dockerized to an image
with the help of Docker and then is was deployed as a pod to the cluster. Its config-
uration file just gives access to the storage of the cluster to store the resulted rules
to a file. Furthermore, since we do not have a real Hadoop cluster running into the
cloud, but only the log data, we had to make a "fake" application to simulate the
operation of Hadoop that produce the logs. Thus we make a simple application that
read the log data from a file and then it just prints them line by line, as a real ap-
plication logs. The log publishing program was also Dockerized , without the need
for having access to the storage volume. However the singularity of this application
come to the function that read and prints the logs. Since the reading and printing of
a file is a very simple function, due to the high speed of execution, Kafka is unable
to read properly all the logs lines, but instead it reads only a part of it. The actual
problem was the way that Kubernetes prints the logs and consequently what logs
FluentD collect to transit to Kafka. Due to log file rotation of inner system of Ku-
bernetes we have to reduce the speed of printing the data from the python function.
Thus we used a time sleep of some millisecond in order to have properly all the data
published to Kafka topic. Except for that, another configuration of that program was

7.2. Large scale configuration 51

to print endlessly data after the file is finished. The reason behind that, was a limi-
tation between the cooperation of Kafka and Flink. When Flink read streaming data
from Kafka, is needed, in a periodical time, from Kafka to send a heartbeat to the
task managers of Flink, otherwise the entire Flink job fails. Thus after the end of the
log file we just send every twenty seconds data from the responsible pod to Kafka
and then to Flink. Both programs were implemented using Python programming
language. Both programs were implemented using Python programming language.

53

Chapter 8

Discussion and Conclusion

8.1 Discussion

In this work, we managed to create a real-time anomaly detection tool by integrating
data mining technologies along with complex event processing that is deployed in
the cloud. We automate the difficult and time-consuming process of defining rules
in a complex event processing engine with the purpose of receiving alerts on future
anomaly data. Furthermore, the entire framework was build using large scale tech-
nologies resulting to a concrete and scalable anomaly detection system. As we have
presented in Chapter 6, we have really promising results. Specifically, we achieve
a value of Recall around 98% and a Precision around 99%. Furthermore, another
success is the scalability of the system which is hosted inside a Kubernetes cluster
and the integration multiple popular big data frameworks. Finally, a strong point of
this work is the ease deployment of the whole framework into the cloud, something
really important for any industry that wants to exploit the capabilities of this work.
Except for our work’s success, at this point, it is crucial to examine if we have
managed to answer the research questions that we have defined in Chapter 1.

o Can we detect real-time anomalies in system logs in the cloud?: This question was
answered as the overall outcome of this thesis work. We managed to create
a real-time anomaly detection tool and deployed in the cloud using big data
tools.

o Can we use rule mining techniques to capture abnormalities in logs?: In Chapter
4 we apply rule mining techniques to examine if we can capture abnormal-
ity. From the experiments we can verify that we manage to capture abnormal
behavior in logs with 98% accuracy.

o Can we learn rules that represent abnormal behavior?: As an outcome of the previ-
ous research question we manage to learn which patterns represent the abnor-
mality and thus can be used in next steps of this thesis work.

o What technology can exploit patterns from logs?: The answer to this question is
the Complex Event Processing engine that we used in our tool. We translate
the rules into CEP patterns to rise alerts on abnormal streaming data.

o What is the minimum number of abnormal data during training, in order to accurate
capture future abnormalities?: This question, as we mentioned in Chapter 6, is
related to the concept of sample efficiency. Specifically it measures the neces-
sary training samples a model needs in order to reach a desired accuracy level.
Since in real life, but also in our case, it is costly and impossible to have a mas-
sive number of abnormal training samples, it is crucial to test the efficiency of

54

Chapter 8. Discussion and Conclusion

our implementation in terms of the required number of data points. In the ex-
periments in Chapter 6 we tried to answer this question. Eventually we have
proven with even the 5% of the abnormal data that we have we managed to
detect almost all abnormal blocks in test phase. Thus even with small number
of available data, our tool is quite effective.

On what use case for the industry this work can be applied?: The last question will
be answered in a more abstract way. Since our tool was implemented in the
cloud, it is really useful from companies that host their services in the cloud as
well. Furthermore, we used data from a real distributed system that is widely
used by all modern and decent companies. Thus, the system can be applied
as well to data of other distributed systems that companies use. Finally, more
and more software architectures make use of the concept of microservices. So
collected logs form the different services and conduct anomaly detection to
find root cause in case of failure is possible using our system.

8.2 Limitations

Despite its success, this thesis work shares some limitations that have to be men-
tioned. Each of the following limitations is related to a different part of the work,
such as the implementation part or to a research perspective area.

e Rule generation: For our system to be working, we have first to generate the

rules and then to feed the Flink job with the streaming data. Thus, in case of
updating the rules, we have to stop the job and re-run it after the completion
of the rule generator. That means that we cannot generate rules on streaming
data, but only on static.

o Memory management: This limitation has been revealed in the runtime experi-

ment in Chapter 6. Despite the fact that memory optimization is a subject out
of scope of this thesis, with the experiment in Section 6.5, we saw that there
is an issue in memory management. When we have a massive number of log
messages(eg. 1.5 million messages), our framework fails to process all the
data in a small period of time. This issue is highly related to an internal issue
of complex event processing of Flink. Since the streaming data pass through
every rule in the complex event processing engine, without any deletion of old
and examined data, after some time the memory becomes full resulting some
memory and runtime problems.

Number of Rules: A limitation related to the number of rules also exists. For
instance, from experiments, we figured out that some generated rules are really
similar to each other, resulting to an increased number of rules. For example,
two possible generated rules are "5 22 5" and "5 22 5 5 5". We can see that the
first rule is also part of the second. However our system will generate both
these rules, making the system a bit slower since it will examine the streaming
data on both these almost same rules. Thus it is efficient enforce a minimum
prefix property on the space of the generated rules in order to solve the issue
of similar generated rules.

Generalization: Lastly, a drawback of our anomaly detection system is that it
has not been tested with another dataset. Since finding a real-time log dataset
is quite challenging, we managed to test our system only with the HDFS logs.

8.3. Conclusion and further improvements 55

However with the right pre-processor, the framework can efficiently generalize
to other log data.

8.3 Conclusion and further improvements

To conclude, in this thesis work we investigate the possibility of creating an anomaly
detection system for distributed log files. Additionally, we wanted to integrate rule
mining technique with complex event processing and deploy the entire system to
the cloud for scalability purposes. In a great extent we managed to achieve all the
goals of this work, developing to a tool with really promising results in the filed of
anomaly detection in system logs. Thus, this system can be applied in different cases
such as root cause analysis of systems or even for predicting future failures before
they actually happen. Since we can detect a problem before it occurs, it is possible
to do the right actions to prevent the systems from failing. However, as in every
project, there are some further improvements that can be done in the future. In the
previous section we saw that there are some limitations of this work. It is clear that
improvement have to be done in order to tackle these aforementioned limitations.
All these limitations and the further improvements can fall in two different cate-
gories. Specifically, in this work, since it is consisted of algorithmic and engineering
part, improvements exist in both these fields.

Algorithmic improvements

From algorithmic perspective, one improvement is to examine the effect of online
rule mining techniques for pattern generation on streaming data instead of the clas-
sic static approach that was followed in this work. In that way, it will be possible to
create rules on the fly and having a system that will continuously learn from new
abnormal data without the need of model re-train. Another improvement has to
be done in terms of generalization. First an examination of the effectiveness of the
tool in another dataset has to be conducted. Then, if it is possible, to create general
pre-processor for all kind of distributed system log data.

Engineering improvements

Since our system was deployed in the cloud and it consists of different tools that
work together, there are some improvements that could help anyone who would
like to use it in production. For instance, an improvement concern the way the tool
is deployed into the cloud. In this work we had to deploy every tool independently
and the to connect them by creating configuration files. An improvement will be to
deploy everything at once using for example the Helm technology of Kubernetes.
Finally, an improvement can be in terms of memory management in order to solve
the limitation that we have presented above. Since the memory issue stems from the
internal operation of complex event processing of Flink, the alteration of the engine
falls in the engineering part of the work because the entire code of Flink process has
to be changed.

57

Bibliography

[1]

2]
[3]

4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. “Mining Association
Rules Between Sets of Items in Large Databases, SIGMOD Conference”. In:
vol. 22. June 1993, pp. 207—. DOI: 10.1145/170036.170072.

Apache Kafka. URL: https://kafka.apache.org/intro.

Zachary K Baker and Viktor K Prasanna. “Efficient hardware data mining with
the Apriori algorithm on FPGAs”. In: 13th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM'05). IEEE. 2005, pp. 3-12.

B Ross Barmish and Constantino M Lagoa. “The uniform distribution: A rig-
orous justification for its use in robustness analysis”. In: Mathematics of Control,
Signals and Systems 10.3 (1997), pp. 203-222.

James S. Bergstra et al. “Algorithms for Hyper-Parameter Optimization”. In:
Advances in Neural Information Processing Systems 24. Ed. by J. Shawe-Taylor et
al. Curran Associates, Inc., 2011, pp. 2546-2554. URL: http://papers.nips.
cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf.

D Bhayani. “Identification of security breaches in log records using data min-
ing techniques”. In: International Journal of Pure and Applied Mathematics 119
(Jan. 2018), pp. 743-756.

Paris Carbone et al. “Apache Flink™: Stream and Batch Processing in a Single
Engine”. In: IEEE Data Eng. Bull. 38 (2015), pp. 28-38.

CEP. URL: https://flink.apache.org/news/2016/04/06/cep-monitoring.
html.

Nitesh V. Chawla et al. “SMOTE: Synthetic Minority Over-sampling Tech-
nique”. In: J. Artif. Int. Res. 16.1 (June 2002), pp. 321-357. 1SSN: 1076-9757. URL:
http://dl.acm.org/citation.cfm?id=1622407.1622416.

B. Debnath et al. “LogLens: A Real-Time Log Analysis System”. In: 2018 IEEE
38th International Conference on Distributed Computing Systems (ICDCS). 2018,
pp- 1052-1062. DOI: 10.1109/ICDCS.2018.00105.

Docker. URL: https://www.docker.com/.

Min Du et al. “DeepLog: Anomaly Detection and Diagnosis from System Logs
through Deep Learning”. In: Oct. 2017, pp. 1285-1298. DOI: 10.1145/3133956.
3134015.

“ElasticSearch, “Open-Source Log Storage,”” in: (Aug. 2017). URL: https://
www.elastic.co/products/elasticsearch.

Flink. URL: https://flink.apache.org/.

Flink event time. URL: https://ci.apache.org/projects/flink/flink-docs-
stable/dev/event_time.html.

Flink k8s. URL: https: //ci . apache . org/projects/flink/flink - docs -
stable/ops/deployment/kubernetes.html.

https://doi.org/10.1145/170036.170072
https://kafka.apache.org/intro
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
https://flink.apache.org/news/2016/04/06/cep-monitoring.html
https://flink.apache.org/news/2016/04/06/cep-monitoring.html
http://dl.acm.org/citation.cfm?id=1622407.1622416
https://doi.org/10.1109/ICDCS.2018.00105
https://www.docker.com/
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://flink.apache.org/
https://ci.apache.org/projects/flink/flink-docs-stable/dev/event_time.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/event_time.html
https://ci.apache.org/projects/flink/flink-docs-stable/ops/deployment/kubernetes.html
https://ci.apache.org/projects/flink/flink-docs-stable/ops/deployment/kubernetes.html

58

Bibliography

(17]

(18]

[22]

(23]

Flink watermarks. URL: https://ci . apache.org/projects/flink/flink-
docs-stable/dev/event_timestamps_watermarks.html.

Stephan Grell and Olivier Nano. “Experimenting with Complex Event Pro-
cessing for Large Scale Internet Services Monitoring”. In: (Jan. 2008).

Aarish Grover. “Anomaly Detection for Application Log Data" (2018). Mas-
ter’s Projects. 635”. In: DOL https://doi.org/10.31979/etd.znsb-bw4d. URL:
https://scholarworks.sjsu.edu/etd_projects/635.

Hossein Hamooni et al. “LogMine: Fast Pattern Recognition for Log Analyt-
ics”. In: CIKM. 2016.

M. A. Hayes and M. A. M. Capretz. “Contextual Anomaly Detection in Big
Sensor Data”. In: 2014 IEEE International Congress on Big Data. 2014, pp. 64-71.
DOI: 10.1109/BigData.Congress.2014.19.

Kelsey Hightower, Brendan Burns, and Joe Beda. Kubernetes: Up and Running
Dive into the Future of Infrastructure. 1st. O’Reilly Media, Inc., 2017. 1SBN: 1491935677,
9781491935675.

Breier Jakub and Jana BraniSova. “Anomaly Detection from Log Files Using
Data Mining Techniques”. In: Lecture Notes in Electrical Engineering 339 (Jan.
2015), pp. 449—457. DOI: 10.1007/978-3-662-46578-3_53.

K. Jayan and A. K. Rajan. “Preprocessor for Complex Event Processing System
in Network Security”. In: 2014 Fourth International Conference on Advances in
Computing and Communications. 2014, pp. 187-189. DOI: 10.1109/ICACC.2014.
52.

K. Jayan and A. K. Rajan. “Sys-log classifier for Complex Event Processing
system in network security”. In: 2014 International Conference on Advances in
Computing, Communications and Informatics (ICACCI). 2014, pp. 2031-2035. DOTI:
10.1109/ICACCI.2014.6968471.

T. Kimura et al. “Proactive failure detection learning generation patterns of
large-scale network logs”. In: 2015 11th International Conference on Network and
Service Management (CNSM). 2015, pp. 8-14. DOI: 10.1109/CNSM. 2015.7367332.

Ron Kohavi et al. “A study of cross-validation and bootstrap for accuracy es-
timation and model selection”. In: Ijcai. Vol. 14. 2. Montreal, Canada. 1995,
pp- 1137-1145.

Kubernetes Cluster Role. URL: https : / / kubernetes . io /docs / reference /
access-authn-authz/rbac/.

Kubernetes Daemonset. URL: https://kubernetes.io/docs/concepts/workloads/
controllers/daemonset/.

Kubernetes Persistent Volume. URL: https://kubernetes.io/docs/concepts/
storage/persistent-volumes/.

Kubernetes Service account. URL: https://kubernetes.io/docs/tasks/configure-
pod-container/configure-service-account.

Q.J. Lei. “Online monitoring of manufacturing process based on autocep”. In:
International Journal of Online Engineering. 2017.

Alessandro Margara, Gianpaolo Cugola, and Giordano Tamburrelli. Towards
automated rule learning for complex event processing. Tech. rep. 2013.

https://ci.apache.org/projects/flink/flink-docs-stable/dev/event_timestamps_watermarks.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/event_timestamps_watermarks.html
https://scholarworks.sjsu.edu/etd_projects/635
https://doi.org/10.1109/BigData.Congress.2014.19
https://doi.org/10.1007/978-3-662-46578-3_53
https://doi.org/10.1109/ICACC.2014.52
https://doi.org/10.1109/ICACC.2014.52
https://doi.org/10.1109/ICACCI.2014.6968471
https://doi.org/10.1109/CNSM.2015.7367332
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account

Bibliography 59

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

L. Mariani and F. Pastore. “Automated Identification of Failure Causes in Sys-
tem Logs”. In: 2008 19th International Symposium on Software Reliability Engi-
neering (ISSRE). 2008, pp. 117-126. DOI: 10.1109/ISSRE.2008.48.

Nijat Mehdiyev et al. “Determination of Rule Patterns in Complex Event Pro-
cessing Using Machine Learning Techniques”. In: Procedia Computer Science 61
(Dec. 2015), pp. 395-401. DOI: 10.1016/j.procs.2015.09. 168.

Alexandra Moraru. “COMPLEX EVENT PROCESSING AND DATA MINING
FOR SMART CITIES”. In: 2012.

Raef Mousheimish, Yehia Taher, and Karine Zeitouni. “Automatic Learning of
Predictive CEP Rules: Bridging the Gap Between Data Mining and Complex
Event Processing”. In: Proceedings of the 11th ACM International Conference on
Distributed and Event-based Systems. DEBS "17. Barcelona, Spain: ACM, 2017,
pp. 158-169. 1SBN: 978-1-4503-5065-5. DOI: 10 . 1145/3093742 .3093917. URL:
http://doi.acm.org/10.1145/3093742.3093917.

C. Mutschler and M. Philippsen. “Learning event detection rules with noise
hidden Markov models”. In: 2012 NASA/ESA Conference on Adaptive Hardware
and Systems (AHS). 2012, pp. 159-166. DOT: 10.1109/AHS . 2012. 6268645.

Jian Pei et al. “Prefixspan: Mining sequential patterns efficiently by prefix-
projected pattern growth”. In: Proceedings 17th international conference on data
engineering. IEEE. 2001, pp. 215-224.

Erick Petersen, Marco To De Leon, and Stephane Maag. “An online learning
based approach for CEP rule generation”. In: Nov. 2016, pp. 1-6. DOI: 10.1109/
LATINCOM.2016.7811563.

Erick Petersen et al. “An Unsupervised Rule Generation Approach for Online
Complex Event Processing”. In: Nov. 2018, pp. 1-8. DOI: 10.1109/NCA.2018.
8548210.

Clifton Phua et al. A Comprehensive Survey of Data Mining-based Fraud Detection
Research (Bibliography). May 2013.

Fluentd Project. Fluentd | Open Source Data Collector. URL: https : / / www .
fluentd.org/.

Ariel Rabkin and Randy Katz. “Chukwa: A system for reliable large-scale log
collection”. In: Proceedings of the 24th International Conference on Large Installa-
tion System Administration (Jan. 2010).

Scala. URL: https://www.scala-lang.org/.

Konstantin Shvachko et al. “The hadoop distributed file system.” In: MSST.
Vol. 10. 2010, pp. 1-10.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical Bayesian Op-
timization of Machine Learning Algorithms”. In: Advances in Neural Informa-
tion Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012,
pp- 2951-2959. URL: http : / / papers . nips . cc / paper /4522 - practical -
bayesian-optimization-of-machine-learning-algorithms.pdf.

“Splunk, “Turn Machine Data Into Answers”. In: (Aug. 2017). URL: https :

//www . splunk.com.

J. Wei et al. “Analysis farm: A cloud-based scalable aggregation and query
platform for network log analysis”. In: 2011 International Conference on Cloud
and Service Computing. 2011, pp. 354-359. DOI: 10.1109/CSC.2011.6138547.

https://doi.org/10.1109/ISSRE.2008.48
https://doi.org/10.1016/j.procs.2015.09.168
https://doi.org/10.1145/3093742.3093917
http://doi.acm.org/10.1145/3093742.3093917
https://doi.org/10.1109/AHS.2012.6268645
https://doi.org/10.1109/LATINCOM.2016.7811563
https://doi.org/10.1109/LATINCOM.2016.7811563
https://doi.org/10.1109/NCA.2018.8548210
https://doi.org/10.1109/NCA.2018.8548210
https://www.fluentd.org/
https://www.fluentd.org/
https://www.scala-lang.org/
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
https://www.splunk.com
https://www.splunk.com
https://doi.org/10.1109/CSC.2011.6138547

60

Bibliography

[50]

Wei Xu et al. “Detecting Large-scale System Problems by Mining Console Logs”.
In: Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Prin-
ciples. SOSP "09. Big Sky, Montana, USA: ACM, 2009, pp. 117-132. ISBN: 978-1-
60558-752-3. DOI: 10.1145/1629575.1629587. URL: http://doi.acm.org/10.
1145/1629575.1629587.

Wei Xu et al. “Online System Problem Detection by Mining Patterns of Con-
sole Logs”. In: Proceedings of the 2009 Ninth IEEE International Conference on
Data Mining. ICDM ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp- 588-597. 1SBN: 978-0-7695-3895-2. DOI: 10 . 1109 / ICDM . 2009 . 19. URL:
https://doi.org/10.1109/ICDM.2009.19.

Chengqi Zhang and Shichao Zhang. Association rule mining: models and algo-
rithms. Springer-Verlag, 2002.

Qiankun Zhao and Sourav S Bhowmick. “Sequential pattern mining: A sur-
vey”. In: ITechnical Report CAIS Nayang Technological University Singapore 1 (2003),
p- 26.

Qiankun Zhao and Sourav S Bhowmick. “Association Rule Mining: A Sur-
vey”. In: Jan. 2003.

Zookeeper. URL: https://zookeeper.apache.org/.

https://doi.org/10.1145/1629575.1629587
http://doi.acm.org/10.1145/1629575.1629587
http://doi.acm.org/10.1145/1629575.1629587
https://doi.org/10.1109/ICDM.2009.19
https://doi.org/10.1109/ICDM.2009.19
https://zookeeper.apache.org/

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Research Questions
	Dataset
	Outline

	Literature Review
	Background
	Log Analysis
	Complex Event Processing
	Rule Mining
	Definition

	Related Work
	Real-time log analysis
	Log analysis at scale

	Anomaly detection in logs
	Pattern mining in logs
	Complex Event Processing in Logs
	Automated Complex Event Processing

	 Case study: Anomaly detection on distributed file-system logs
	General pipeline
	Data pre-processing
	Datasets generation
	Metrics definition

	Anomaly detection on patterns using rule mining techniques
	Dataset
	Method 1: Association rule mining
	Method 2: Sequential rule mining
	Method 3: Sliding window and Sequential rule mining

	Rule transformation to complex event processing
	Rules generator
	Automate complex event processing engine
	Flink job configuration

	Experiments and Results
	Baseline Experiment
	Effect of number of messages per block
	Necessary number of abnormal data
	Experiment to improve Precision
	Algorithm computational complexity analysis
	Comparison with similar works

	Scaling out anomaly detection in the cloud
	Pipeline
	Data flow

	Large scale configuration
	Scaling system
	Containers
	Log collector
	Message sink
	Streaming processing
	Rule generator and log publisher

	Discussion and Conclusion
	Discussion
	Limitations
	Conclusion and further improvements

	Bibliography

