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1 | introduction This catalog is the result of an inventory of decentralized solutions for wastewater 
and solid waste. Each chapter provides an overview of elected solutions specific to 
each flow, based on literature research. In addition, in the beginning of each chapter, 
a diagram highlights how the solutions relate to treatment phases and the by-products 
they produce. The purpose of these catalogs is to provide substantiation for comparing 
the solutions and support design decisions. Therefore, a matrix comparing the solutions 
is also provided at the end of each chapter. This matrix includes technical information 
present in this catalog (such as area requirement), as well as other criteria related to the 
urban environment, defined for the purpose of this thesis.

It should be noted that there may be other solutions not included in this inventory. 
Moreover, some solutions presented here can also be applied in centralized systems. 
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2 | wastewater Each solution is given the following parameters: description, scale, area, restrictions, 
pros, cons and costs in a qualitative way. Whenever possible, these parameters are 
expanded, incorporating quantities. A typical scheme of each system and/or examples 
are also provided.   

The scales indicated refer to the most suitable situation for each solution. However, it 
does not exclude the possible implementation on different scales.

Literature: for the description given in this annex, four main sources were used: Hoffmann 
et al., 2011; Pötz, 2016; Sasse, 1998 and Tilley et al., 2014. However, other literature was 
also used during the research phase, including the Flemish Department of Agriculture 
and Fisheries (Vlaanderen Department Landbouw en Visserij) and the BORDA approach 
(http://en.borda.de/) 

household neighborhood city
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Description:

Scale:

Area:

Restrictions:

Pros x Cons:

A septic tank is a combination of at least two chambers where occur 
pre-treatment (settling – heavy particles sink and scum floats) and 
primary treatment (anaerobic digestion of the solids) (Tilley et al., 
2014). This process has biogas as by-product, but usually it is not 
possible to be collected. (Sasse, 1998). 

• requires further treatment of effluent and sludge;

• in high-density areas, infiltration is not adequate; 

• not appropriate for flooding areas or areas with high ground 
water table; 

• requires regularly desludging

• simple construction

• durable

• little space requirement 
(underground)

• low costs

• no electrical energy use

• low pathogen reduction

• effluent with odor

• requires regular desludging 

• requires further treatment 
of effluent and sludge

0,5 m²/m³ daily flow  (Sasse, 1998)

[0,08m²/person equivalent (160L/day)]

(Sasse, 1998; Tilley et al., 2014)

(Tilley et al., 2014)

5-200 inhabitants (Hoffmann et al., 2011)

septic tank

Costs:

Source: Tilley et al., 2014

Figure 1. Septic tank scheme

Picture: James Clarke

Figure 2. Concrete septic tank
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Description:

Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

A baffled tank, or anaerobic baffled reactor, uses the same principle 
of a septic tank. It has additional baffles (barriers) to guide the 
wastewater flow, increasing the contact with the active biomass and 
improving the treatment results (Tilley et al., 2014). This process 
also produces biogas, but given its insufficient production, it is not 
collected (Tilley et al., 2014).

• requires further treatment of effluent and sludge;

• implementation should take in consideration odors nuisance;

• desludging frequency depends on the chosen pre-treatment;

• simple and adaptable

• durable

• little space requirement 
(underground)

• low  operational costs

• no electrical energy use

• high efficiency (reduction 
of BOD and low sludge 
production)

• copes with organic and 
hydraulic fluctuation loads

• low pathogen  and nutrients 
reduction

• long start-up period

• requires technical 
knowledge for design and 
construction

• requires further treatment 
of effluent and sludge

1 m²/m³ daily flow  (Sasse, 1998)

(Sasse, 1998; Tilley et al., 2014)

(Tilley et al., 2014)

200-2.500 inhabitants (Hoffmann et al., 2011)

baffled tank

[0,16m²/person equivalent (160L/day)]

Source: Tilley et al., 2014

Figure 3. Baffled tank scheme

Picture: Moses Wakala

Figure 4. Baffled tank under construction
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Description:

Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

A Imhoff tank is a two-stage anaerobic system for primary treatment, 
where solids and liquids are digested in separate compartments,  
mixing with incoming sewage (Hoffmann et al., 2011; Tilley et al., 
2014).  This process also produces biogas, but given its insufficient 
production, it is not collected (Hoffmann et al., 2011).

• pre-treatment is recommended (bar screen or grit chamber);

• underground construction is restricted to areas with low 
groundwater tables and no flooding risks; 

• requires further treatment of effluent and sludge;

• durable

• little space requirement 
(underground)

• odorless effluent

• low  operational costs

•  combines multiple 
treatment steps in one unit 

• copes with organic 
fluctuation loads

• low pathogen reduction

• requires regular desludging

• requires technical 
knowledge for design and 
construction

• requires further treatment 
of scum, effluent and sludge

• possible conflicts with 
groundwater table

• robust (high) infrastructure 
when above ground

0,5 m²/m³ daily flow  (Sasse, 1998)

(Sasse, 1998; Tilley et al., 2014)

(Tilley et al., 2014)

500-20.000 inhabitants (Hoffmann et al., 2011)

imhoff tank

[0,08m²/person equivalent (160L/day)]

Source: Tilley et al., 2014

Figure 5. Imhoff tank scheme

Source: Acogei

Figure 6. Imhoff tank under construction
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Description:

Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

An anaerobic filter, also known as fix-bed or fixed-film reactor, uses 
filter materials such as gravel, crushed rocks and bricks, to trap 
and digest organic matter using the growing active biomass in the 
system. (Tilley et al., 2014). It can be used as a secondary or tertiary 
treatment as well. (Tilley et al., 2014)

• requires pre-treatment (can be associated or separated);

•  more appropriate in areas with constant amount of wastewater;

• if used as primary treatment, the effluent requires further 
treatment;

• simple and adaptable

• durable

• little space requirement 
(underground)

• low  operational costs

• no electrical energy use

• high efficiency (reduction of 
BOD, solids and low sludge 
production)

• requires technical 
knowledge for design and 
construction

• requires further treatment 
of effluent and sludge

• effluent with slight odor

• low pathogen and nutrients 
reduction

• clogging risk (pre-treatment 
dependent) 

1 m²/m³ daily flow  (Sasse, 1998)

(Sasse, 1998; Tilley et al., 2014)

(Tilley et al., 2014)

anaerobic filter

[0,16m²/person equivalent (160L/day)]

Source: Tilley et al., 2014

Figure 7. Anaerobic filter scheme

Picture: Process Wastewater Technologies LLC, Baltimore, MD

Figure 8. Fixed film reactor
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Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• requires primary treatment;

• requires trained maintenance staff and constant energy source 
and wastewater flow; 

• smaller space requirement 
(compared to constructed 
wetlands)

• high efficiency (nitrification)

• copes with wide range of 
organic and hydraulic loads

• requires technical 
knowledge for design and 
construction

• clogging risk (primary 
treatment dependent)

•  costly

• odor and mosquitoes 
problems

•  systems part may not be 
locally available

• requires trained maintenance 
staff and constant  energy 
source and wastewater flow; 

64 to 480kg BOD5/100m³

(Tilley et al., 2014)

(Tilley et al., 2014)

(EPA, 2000)

trickling filter

Description: A trickling filter is a biological reactor that uses filter material 
(gravel, rocks, shredded PVC) to allow biofilm creation. Wastewater 
is sprayed over this filter and digested by the organisms that grow 
on it (Tilley et al., 2014). 

[0,6-7m²/person equivalent]

Source: Tilley et al., 2014

Figure 9. Trickling filter scheme

Picture: Ingreenion

Figure 10. Trickling filter
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Description:

Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

Stabilization ponds are artificial water bodies subdivided in 
anaerobic, facultative and aerobic (maturation or oxidation). They 
can be associated to each other or function individually  (Tilley et al., 
2014). The anaerobic pond corresponds to the primary treatment, 
where the sedimentation and anaerobic digestion take place. The 
facultative and aerobic ponds correspond to secondary treatment, 
but the last can also be used for tertiary treatment  (Tilley et al., 
2014).. These ponds use “oxygen from natural diffusion, wind mixing 
and algae-driven photosynthesis” for BOD and pathogens removal  
(Tilley et al., 2014).

• requires pre-treatment;

• not appropriate for high-density or urban areas;

• human, animal and waste contact should be prevented;

• may require algae control;

• simple / flexible degree of 
treatment / reliable

• low  operational costs / little 
maintenance

• no electrical energy use

• high efficiency (reduction of 
BOD, solids and pathogens)
and nutrient removal when 
combined with aquaculture)

• possible landscape 
integration

• copes with organic and 
hydraulic fluctuation loads

• large space requirement

• requires further treatment 
of sludge

• possible odor and 
mosquitoes problems if not 
designed and maintained 
properly

• requires technical 
knowledge for design and 
construction

anaerobic: 4 m²/m³ daily flow  (Sasse, 1998)

aerobic: 25 m²/m³ daily flow  (Sasse, 1998)

(Sasse, 1998; Tilley et al., 2014)

(Tilley et al., 2014)

stabilization ponds

[0,64m²/PE(160L/day)]

[4m²/PE(160L/day)]
Source: Tilley et al., 2014

Figure 11. Stabilization ponds scheme

Source: Multi-Flow LDVS

Figure 12. Stabilization ponds
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Description:

Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

An aerated pond is similar to stabilization ponds, with the addition 
of mechanical aerators that add oxygen to the system and increases  
mixing, assuring higher treatment efficiency (Tilley et al., 2014).

• requires pre-treatment;

• requires constant electric source and skilled staff

• not appropriate for high-density or urban areas;

• human, animal and waste contact should be prevented;

• no electrical energy use

• high efficiency (reduction of 
BOD, solids and pathogens)

• copes with organic and 
hydraulic fluctuation loads

• when designed properly, 
no odors and mosquitoes 
problems 

• large space requirement

• requires further treatment 
of sludge and effluent

• costly

• high energy consumption

• requires technical 
knowledge for design and 
construction

• materials might not be 
found locally

(Sasse, 1998; Tilley et al., 2014)

(Tilley et al., 2014)

aerated pond

25 m²/m³ daily flow  (considered similar as aerobic ponds)

[4m²/person equivalent (160L/day)]

Source: Tilley et al., 2014

Figure 13. Aerated pond scheme

Source: Napier-Reid

Figure 14. Aerated pond
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Description:

Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

A biogas reactor, also known as anaerobic digestor, is an airtight 
chamber that uses anaerobic degradation to treat wastewater and/
or biodegradable waste  (Tilley et al., 2014). It has by-products that 
can be used as fertilizer (digestate) or energy (biogas). (Tilley et al., 
2014)

• requires storage and transport and/or use of the digestate 
outside the site;

• functions better with regular feeding;

• the amount of biogas production depends on concentrated 
substrates (animal manure, organic market or household waste);

• durable

• little space requirement 
(underground)

• low  operational costs 

• no electrical energy use

• nutrients conservation 
(digestate can be used as 
fertilizer)

• clean energy production

• requires technical 
knowledge for design and 
construction

• requires further treatment 
of the digestate

• incomplete pathogen 
removal

•  not suitable for “weak” 
wastewater

(Sasse, 1998; Tilley et al., 2014)

(Tilley et al., 2014)

(Eawag & Spuhler, n.d.)

biogas bioreactor

Reactor: 100 to 100.000L 
Human yield 0,12-0,6kg / Biogas production 20-150L/kg feces

0,06m²/person (Van Leer, 2016)  

Source: Tilley et al., 2014

Figure 15. Biogas reactor scheme

Source: Veolia

Figure 16. Biogas reactor
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Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• requires pre- and primary treatment (Tilley et al., 2014) 

• should not be placed in flooding or protected areas

• to use gravity - slopes of 10-20%

• requires desludging every 10 years

• does not suffer from 
mosquito problems

• low  operational costs

• no electrical energy use

• high efficiency (reduction of 
BOD, suspended solids and 
pathogens)

• possible landscape 
integration

• simpler construction 
(without pipes/pumps)

• large space requirement

• little nutrient removal

• clogging risk (pre- and 
primary treatment 
dependent) 

• requires large amount of 
gravel supply for construction

5 to 10m²/person equivalent (Tilley et al., 2014)

consider +30% of area for landscape integration

(Pötz,  2016; Tilley et al., 2014)

horizontal subsurface constructed wetland 

Description: A horizontal subsurface constructed wetland is a form of secondary 
treatment. This system uses gravel and sand as filtering materials that 
allow bacteria attachment and act as base for appropriated planted 
vegetation. The horizontal flow allows the filtering of particles and 
degradation of organics (Tilley et al., 2014). Alternative filtering 
materials, such as PET and coconut, can also be used (Flanders 
Department of Agriculture and Fisheries. n.d.; Tilley et al., 2014).

Source: Tilley et al., 2014

Picture: M. Blumberg

Figure 17. Horizontal subsurface constructed wetland scheme

Figure 18. Horizontal constructed wetland in Changshu, China
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Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• requires pre- and primary treatment;

• requires trained maintenance staff, constant power supply, and 
spare parts of the system should be available;

• the liner should be protected from tree roots;

• does not suffer from 
mosquito problems

• low  operational costs

• high efficiency (reduction of 
BOD, suspended solids and 
pathogens)

• possible landscape 
integration

• large space requirement

• requires technical 
knowledge for design and 
construction

• little nutrient removal

• clogging risk (pre- and 
primary treatment 
dependent)

• long start-up period 

• requires large amount of 
gravel supply for construction

1 to 3m²/person equivalent (Tilley et al., 2014)

(Tilley et al., 2014)

(Tilley et al., 2014)

vertical flow constructed wetland 

Description: A vertical flow constructed wetland is constructed wetland for 
secondary treatment. This system uses a filter bed with planted 
vegetation that vertically receives water in intermittently doses 
(Tilley et al., 2014).. The filter bed allows bacteria attachment and 
act as base for appropriated planted vegetation.(Tilley et al., 2014). 

• should not be placed in flooding or protected areas

• to use gravity - slopes of 10-20%

• requires desludging every 10 years

Source: Tilley et al., 2014

Figure 19. Vertical flow constructed wetland scheme

Picture: Ingenieurbüro Blumberg

Figure 20. Vertical helophyte filters in Shenyang, China
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Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• does not require pre-
treatment

• does not produce primary 
sludge 

• does not suffer from 
mosquito problems

• low  operational costs

• high efficiency (reduction of 
BOD, suspended solids and 
pathogens)

• possible landscape 
integration

• large space requirement

• requires technical 
knowledge for design and 
construction

• requires pumping stations 
(energy consumption)

• little nutrient removal

• long start-up period 

• possible low social 
acceptance

• requires large amount of 
gravel supply for construction

first stage: 1,2m²/person equivalent
second stage: 0,8m²/person equivalent (Hoffmann et al., 2011)

(Hoffmann et al., 2011 ; Tilley et al., 2014)

“french system”

Description: A “french system” is when a vertical flow constructed wetland is used 
in a two-stage system, removing the necessity of pre-treatment. 
The first stage include three different vertical filter beds (gravel), 
whereas the second only two (sand) (Tilley et al., 2014). 

• requires trained maintenance staff, constant power supply, and 
spare parts of the system should be available;

• the liner should be protected from tree roots;
(Tilley et al., 2014)

• should not be placed in flooding or protected areas

• to use gravity - slopes of 10-20%

• requires desludging every 10 years

Source: (Florent Chazarenc, n.d.)

Figure 21. French system: two-stage vertical flow constructed wetland scheme

Picture: SuSanA Secretariat

Picture: SuSanA Secretariat

Figure 22. Fist stage of the French System for wastewater treatment

Figure 23. Second stage of the French System for wastewater treatment
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Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• requires primary treatment;

• appropriate for low-strength wastewater;

• when used as secondary treatment human exposure to 
pathogens should be prevented;

• requires proper design and maintenance to assure no odors 
issues

• higher efficiency (BOD 
reduction and solids)

• moderate pathogen removal

• no electrical energy use

• low costs

• can be built using local 
materials

• provides animal habitat

• possible landscape 
integration

• large space requirement

• mosquitoes problems

•  requires technical knowledge 
for design and construction

• long start-up time

(Tilley et al., 2014)

(Tilley et al., 2014)

Description: A free-water surface constructed wetland is a form of secondary or 
tertiary treatment. It recreates the natural conditions of a wetland, 
promoting particles settlement, pathogens destruction and 
nutrients absorption by the plants in the system (Tilley et al., 2014). 
In this configuration, these processes take place simultaneously, by 
exposing the water to sunlight and its slow flow through the wetland  
(Tilley et al., 2014).

free-water surface constructed wetland 

1 to 3m²/person equivalent (considered similar as vertical wetlands) Source: Tilley et al., 2014

Figure 24. Free-water constructed wetland scheme

Picture: Austin

Figure 25. Free-water constructed wetland near Columbia Missouri
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Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• requires primary and secondary treatment;

• requires constant monitoring;

• higher efficiency (pathogens 
and chemical contaminants)

• possible direct use of the 
treated water

• costly

•  requires technical knowledge 
for design and construction

• membrane requires regular 
replacement

• technology and skill might 
not be available locally

• requires constant source of 
energy

n/d

(Tilley et al., 2014)

(Tilley et al., 2014)

Description: A membrane filter is a tertiary treatment (surface filtration) in order 
to achieve higher water quality. The particles are removed as the 
water is mechanically sieved through the membrane (Tilley et al., 
2014).

membrane filter

Picture: Logisticon, n.d.

Figure 26. Membrane filter at Puur Waterfabriek Nieuw-Amsterdam
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Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• excessive rain may harm the process;

• should be located far from residential areas;

• low costs

• no electrical energy use

• facilitates further sludge 
treatment

• can be built using local 
materials

• large space requirement

• odor and mosquitoes 
problems

•  requires technical knowledge 
for design and construction

• requires further treatment 
of effluent and sludge

• long storage periods

0,006m²/ cap (considering 1l of fecal sludge/cap/day) 

(Tilley et al., 2014)

(Tilley et al., 2014)

(Strauss, Heinss, & Larmie, 1998)

sedimentation pond

Description: Sedimentation pond is a system for sludge treatment. This system 
consists of a basin where sludge is able to stabilize before dehydration 
processes (Tilley et al., 2014). 

Source: Tilley et al., 2014

Figure 27. Sedimentation pond scheme

Picture:  Blumberg Engineers

Figure 28. Sedimentation pond
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Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• excessive rain may harm the process;

• should be located far from residential areas;

• good dewatering efficiency

• low costs

• no electrical energy use

• can be built using local 
materials

• simple operation

• large space requirement

• odor and mosquitoes 
problems

•  requires technical knowledge 
for design and construction

• requires further treatment 
of leachate

• sludge and leachate removal 
are labor intensive 

(Tilley et al., 2014)

(Tilley et al., 2014)

unplanted drying bed

Description: An unplanted drying bed consists of a permeable bed with layers 
of gravel and sand that promotes sludge evaporation and collects 
percolated leachate. (Tilley et al., 2014). 

0,05m²/ cap (considering 1l of fecal sludge/cap/day) 

(Strauss, Heinss, & Larmie, 1998)

Source: Tilley et al., 2014

Figure 29. Unplanted drying bed scheme

Source: UNESCO-IHE

Figure 30. Desluding of a unplanted drying bed
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Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• requires trained maintenance and operation;

• effluent should be properly collected and disposed of

• drains require maintenance

• requires minimum vegetation growth before sludge application

• copes with high loads

• higher efficiency

• no electrical energy use

• low costs

• can be built using local 
materials

• allows growing of fruit or 
forage

• large space requirement

• odor and mosquitoes 
problems

•  requires technical knowledge 
for design and construction

• requires further treatment 
of leachate

• long storage periods

• sludge and leachate removal 
are labor intensive

(Tilley et al., 2014)

(Tilley et al., 2014)

planted drying bed

Description: A planted drying bed follows the same principle of the unplanted 
drying bed with the inclusion of adequate vegetation. The plants 
associated with filtering layers stabilize and dewater sludge, without 
the need of further desludging. This system is similar with constructed 
wetlands, with the difference of applying sludge instead of effluent 
on the surface and drainage operation (Tilley et al., 2014). 

0,05m²/ cap (considered similar as unplanted drying bed) Source: Tilley et al., 2014

Figure 31. Planted drying bed scheme

Source: Ecotech systems

Figure 32. Planted drying bed
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Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• requires well-sorted biodegradable solid waste;

• the system should be closer to sludge and organic waste sources, 
but not close to residential areas;

• in areas with heavy rainfall, the system should covered;

• for dewatered sludge - 1:2 ratio / for liquid sludge 1:5 - 1:10 ratio

• simple

• creates valuable product 
for local agriculture/food 
production

• no electrical energy use

• low costs

• can be built using local 
materials

• large space requirement

• requires technical knowledge 
for design and construction

• long storage periods

• labor intensive

800m² for 3 ton/day plant
(a plant can receive 10 to 200ton/day)

(Tilley et al., 2014)

(Tilley et al., 2014)

(Tilley et al., 2014)

co-composting

Description: Co-composting is a combined system of sludge with organic 
solid waste that together create an aerobic degradation process. 
Decentralize systems operate in open composting mixed piles left 
for decomposing (Tilley et al., 2014). 

Source: Tilley et al., 2014

Figure 33. Co-composting scheme

Picture: Public Domain 

Figure 34. Edmonton Co-composting facility - Canada
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Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• for human consumption preferably move the fish to clear water 
pond; 

• wastewater additions should be limited to maintain aerobic 
conditions; 

• preferable conditions: high rainfall

• cheap and local protein 
source

• job creation

• low costs

• can be built using local 
materials

• can be harvest for human or 
animal consumption

• large space requirement

•  requires technical knowledge 
for design and construction

• requires fresh water 
abundance 

• potential health risk from 
human consumption

• possible low social 
acceptance

(Tilley et al., 2014)

(Tilley et al., 2014)

fish pond

Description: A fish pond is a system that receives sewage water and where fishes 
feed from organisms that grow in nutrient-rich water (such as algae). 
The fish are responsible, thus, for the removal of nutrients and can 
be consumed afterwards (Tilley et al., 2014). It can also be associated 
with aerobic ponds (Tilley et al., 2014).  

25 m²/m³ daily flow  (considered similar as aerobic ponds)

[4m²/person equivalent (160L/day)]

Source: Tilley et al., 2014

Figure 35. Fish pond scheme

Source: Ecoswell, n.d.

Figure 36. Fish pond for wastewater treatment in Lobitos, Peru
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Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• for increased efficiency and space reduction, the ponds can 
aerated (energy requirement);

• people and animals should not have contact with the water;

•  the plants require constant harvesting;

• depending on the load of solids, may require desludging

• some plants have landscape 
potential

• job creation

• low costs

• can be built using local 
materials

• high efficiency (BOD 
reduction and solids)

• large space requirement

• low pathogen reduction

• some plants can be become 
invasive

(Tilley et al., 2014)

(Tilley et al., 2014)

floating plant pond

Description: A floating plant pond is similar to a maturation pond with additional 
plants as part of the system. Wastewater is discharge in the pond 
where appropriate plants remove nutrients and filters the water  
(Tilley et al., 2014).  Depending on the choice of plants, they can be 
used as food for fish and poultry or as a fiber source (Tilley et al., 
2014).  

25 m²/m³ daily flow  (considered similar as aerobic ponds)

[4m²/person equivalent (160L/day)]

Source: Tilley et al., 2014
Figure 37. Floating plant pond scheme

Source: Achal Garg, 2012
Figure 38. Maturation pond with floating plants for wastewater treatment in Namibia



50 51

Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

(Pötz, 2016; Tilley et al., 2014)

living machine®

Description: Living Machine is a patent for wastewater treatment. There are two 
types of systems: Tidal Flow Wetland Living Machine System and 
Hydroponic Living Machine System. The first one consists of multiple 
cells that are flooded and drained in turns, mimicking tidal cycles. 
The nutrients are removed by the micro-ecosystems present in the 
cells and the effluent also goes through a filtration and disinfection 
process. The second system is similar to a vertical constructed 
wetland, where multiple hydroponic reactors take place usually 
inside a greenhouse (Living Machine®, 2012).  

1m²/person equivalent (Pötz, 2016)

• requires trained maintenance staff, constant power supply, and 
spare parts of the system should be available; (Tilley et al., 2014)

• requires primary treatment

• does not suffer from 
mosquito problems

• high efficiency (reduction of 
BOD, suspended solids and 
pathogens)

• possible landscape 
integration

• other plants and animals 
can be incorporated in the 
system

• requires technical 
knowledge for design and 
construction

• large space requirements 
(less than typical vertical 
constructed wetlands 
though)

Source: Living Machine, 2012

Figure 39. Hydroponic Living Machine System

Picture:  Findhorn Foundation

Figure 40. Hydroponic Living Machine in Findhorn
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Diagram 2. Wastewater treatment: solutions matrix
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3 | solid waste Each solution is given the following parameters: description, scale, area, restrictions, 
pros, cons and costs in a qualitative way. Whenever possible, these parameters are 
expanded, incorporating quantities. A typical scheme of each system and/or examples 
are also provided.   

The scales indicated refer to the most suitable situation for each solution. However, it 
does not exclude the possible implementation on different scales.

Main literature for recycling solutions: Van Leer Master Thesis - “Waste Solutions to use 
in urban districts” (Van Leer, 2016)

Main literature for other solutions:  (Ludwig, Hellweg, & Stucki, 2003; McDougall, 2001; 
Misra et al., 2003; Singh & Singh, 2017)

household neighborhood city
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Diagram 3. Solid waste treatment: decentralized solutions overview
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Small paper industry including a sorting machine and a bailing 
pressing machine to sort cardboard and paper and transform them 
into bales. 

Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• At least 50m away from housing areas (noise)

• Location close to easy access

• job creation

• can process 0,17kg/day/
person of paper 

• the small scale of the 
industry allows integration 
with the neighborhood, 
which also increases 
awareness

• noise

• transportation requirements 
(to and from the industry)

minimum 50m²

paper industry

Description:

(Van Leer, 2016)

(Van Leer, 2016)

(Van Leer, 2016)

Source: Sinobaler

Figure 41. Baling press machine
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Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• At least 50m away from housing areas (noise)

• Location close to easy access

• 3 or 4 people working

• job creation

• can process 300kg/hour = 
23,5kg/year/person

• the small scale of the 
industry allows integration 
with the neighborhood, 
which also increases 
awareness

• noise and smell

• transportation requirements 
(to and from the industry)

300m²

plastic industry

Description: Small plastic industry including cleaning and shredding facilities to  
transform them into bales. 

(Van Leer, 2016)

(Van Leer, 2016)

(Van Leer, 2016)

Source: Untha

Figure 42. Plastic shredder
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Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• At least 50m away from housing areas (noise)

• Location close to easy access

• job creation

• can process 400kg/hour = 
10,7kg/year/person

• the small scale of the 
industry allows integration 
with the neighborhood, 
which also increases 
awareness

• volume reduction in 6 times

• noise 

• transportation requirements 
(to and from the industry)

• if upscaled, it can reduce 
transportation benefits.

minimum 50m²

metal crusher

Description: Small metal industry with a shredding facility to reduce volume of 
denser metals and transform them into bales. 

(Van Leer, 2016)

(Van Leer, 2016)

(Van Leer, 2016)

Picture: Russ Willcutt

Figure 43. Metal crusher
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Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• At least 50m away from housing areas (noise)

• Location close to easy access

• job creation

• can process 300kg/hour = 
31,8 kg/year/person

• the small scale of the 
industry allows integration 
with the neighborhood, 
which also increases 
awareness

• volume reduction

• noise 

• transportation requirements 
(to and from the industry)

• if upscaled, it can reduce 
transportation benefits.

minimum 50m²

glass crusher

Description: Small glass industry with a shredding facility to reduce volume of 
glass and transform them into bales for further recycling facilities.

(Van Leer, 2016)

(Van Leer, 2016)

(Van Leer, 2016)

Source: KRS Recycling Systems GmbH

Figure 44. Glass crusher
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Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• Location close to easy access and in dense urban areas

• awareness increase

• can be associated with social 
programs

• separation of household 
waste

• transportation requirements 
(to and from the waste 
point)

• can be restrictive on waste 
types

30m²

waste trade point

Description: Urban facility where you can take your waste and get money. An 
alternative is to get goods (fruits and vegetables) or public transport 
tickets.

(Van Leer, 2016)

(Van Leer, 2016)

Residents take their waste (back) and get food in return

Picture: Jaelson Lucas

Picture: Richard Stump

Figure 45. “Câmbio Verde” in Curitiba

Figure 46. Retourette in Rotterdam - Netherlands
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Sensors attached to waste containers that are linked to a system and 
provide information when its full

Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• create and monitor this system 

• awareness increase

• less transportation trips

• prevention of overfull 
containers 

• costly

n/a

(Van Leer, 2016)

(Van Leer, 2016)

smart waste container

Description:

Source: WasteB®

Figure 47. Dynamic waste pick
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An integrated technology that combines mechanical processes (such 
as sorting and screening) with biological processes (such as composting 
and anaerobic digestion) (Ludwig, Hellweg, & Stucki, 2003). It is largely 
used for recovering material for industrial use (in particular refuse-
derived fuel - RDF -, a fuel that can substitute fossil fuels) (Ludwig, 
Hellweg, & Stucki, 2003). There are two main techniques for RDF 
recovery: two-streams (bio-stabilization) or one stream treatment 
(bio-drying) (Rada, 2015). However, bio-stabilization results in a 
contaminated compost, which is not suitable for use (Rada, 2015).

Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• minimum capacity for economical operation: 50.000 to 80.000 
tons/year

• separation of recyclables 

• production of usable by-
products 

• flexible to waste 
composition and volume

• safer to human health

• large space requirement

• costly

• has negative climate effects

• add transportation trips for 
recyclables

3.000m² (Defra, 2005)

(Ludwig et. al, 2003)

mechanical-biological treatment (MBT)

Description:

Source: Urbaser

Figure 48. MBT unit
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Open-air composting technique with “the mixture of raw materials in 
long narrow piles called wind-rows”

Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• the desired goal of the output of the compost will determined 
its inputs restrictions (for example a compost for sale may 
require specific organic waste separation, whereas if the goal is 
to minimized landfilling waste, other materials can be included) 
(McDougall, 2001).

• there has to be a market in place in order to produce the compost 
regardless of the type (higher or lower quality) (McDougall, 2001).

• low cost

• high quality product

• requires regular turning of 
the composting material

• produce odors when 
including kitchen waste or 
when it is too large (above 
5.000 to 10.000 ton/year)

• limited control of the 
moisture (temperature and 
content)

1,45 m²/ ton capacity (McDougall, 2001)

(Misra, Roy, & Hiraoka, 2003)

(Ludwig et. al, 2003; McDougall, 2001)

windrow composting

Description:

Picture:  Crystalclear CC BY-SA 3.0

Figure 49. Composting site in Germany
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Similar to windrow composting, with additional mechanical aeration 
system 

Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• requires a base structure

• more control of the mix

• allows larger piles and do 
not required further turning

• faster composting

• bulky materials do not get 
compost (such as straw or 
wood)

• more sensitive the selection 
of the materials 

• difficult to control odors

1,45 m²/ ton capacity (McDougall, 2001)

(Misra, Roy, & Hiraoka, 2003)

(Misra, Roy, & Hiraoka, 2003)

(Misra, Roy, & Hiraoka, 2003)

aerated static pile

Description:

Picture: Caroll Mortensen

Figure 50. Aerated static pile - California
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Composting techniques that occur in a closed environment 
(building, container or vessel). They typically use forced aeration 
and mechanical turning. There are many possible combinations that 
result in different methods such as bin composting, rectangular 
agitated beds and rotating drums.

Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• enclosed environment

• more control of the mix

• low noise and more odor 
control

• higher weather tolerance

• higher costs

Flexible. For rectangular agitated beds and rotating drums minimum 
length of 35m

(Misra, Roy, & Hiraoka, 2003)

(Misra, Roy, & Hiraoka, 2003)

in-vessel composting

Description:

(McDougall, 2001)

Source: X-Act Systems

Source: South London Waste Partnership

Figure 51. In-vessel compositing: container

Figure 52. In-vessel compositing: building
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Composting techniques that uses earthworms. The organic material 
acts as food for the worms and their excreta is rich in nitrates. The 
worm’s movement is responsible for aerating and turning the mix.

Scale:

Area:

Costs:

Restrictions:

Pros x Cons:

• performance is linked to type of application, substrate and 
aeration systems

• earthworms consume a wide 
range of organic material

• no need for aeration and 
turning 

• superior compost quality

• can be used in wastewater 
treatment

• contributes for soil 
remediation and fertility

• can be used as landscaping 
and biofertilzer

• small space requirement

• requires continuous input 
of water and organic 
waste, which may also add 
transportation costs

• low social acceptance

• produce GHG emissions

• in high concentrations may 
cause harm to soil and plants 

• inexistent market

• emits odors

Flexible.
1kg of worms consumes 1kg of waste. A compost heap of 2.4 x 1.2 x 
0.6 m can host 50.000 worms (Misra, Roy & Hiraoka, 2003)
1.000 breeders weigh 2,2kg (Appelhof, Olszewski & Stewart, 2017)

(Misra, Roy, & Hiraoka, 2003)

(Singh & Singh, 2017)

(Singh & Singh, 2017)

vermicomposting

Description:

Source: mindnetworks.blogspot.nl

Figure 53. Vermicomposting in Kahariam Farms - Phillipines
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