
The Effects of Heuristic Optimisations on Planning Algorithms Within
Cooperative AI

Cooperative Planning in Overcooked

Jonte Herben1

Supervisor(s): Frans Oliehoek1, Robert Loftin1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Jonte Herben
Final project course: CSE3000 Research Project
Thesis committee: Frans Oliehoek, Robert Loftin, Klaus Hildebrandt

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Cooperative AI is AI designed to cooperate with
humans. One example of such an AI, made using
planning algorithms, was studied in a paper from
2019 which used a simplified version of the video
game Overcooked for evaluation. However, only
limited evaluations were possible due to the long
runtime and heuristic optimisations made. This pa-
per will attempt to increase the amount of evalu-
ations while removing an important optimisation
limiting the functionality of the AI: the omission
of counters. In the end it will find ways of reduc-
ing the runtime and increasing performance, which
together allow for the addition of counters in a few
instances. The final results with counters suggest
there is more to gain upon removal of a select few
heuristic optimisations and improvement of the hu-
man behavioural clone used to simulate a human.

1 Introduction
Cooperative AI is a field dealing with AI specifically made
to work with humans[1]. The main difficulty in this field is
not so much creating an optimal AI, instead it is creating one
that can handle a suboptimal human. One way of doing so
is through machine learning, as it can learn to work around
the complex behaviours of a human. However, most machine
learning methods offer little transparency and require human
data to be trained on. This paper will focus on a version of co-
operative AI that does not suffer from these problems: plan-
ning algorithms.

Planning algorithms could be described as ”a search for
a sequence of logical operators or actions that transform an
initial world state into a desired goal state.”[2] Or, in other
words, an algorithm to create a plan to get from state A to
state B. This search usually involves an exploration of the
problem space, which can lead to a significant runtime in
complex environments.

In 2019 a paper was written by Carroll et al. titled
”On the Utility of Learning about Humans for Human-AI
Coordination”[3], which compared multiple methods of cre-
ating a cooperative AI, both machine learning and planning
algorithms. The environment used for evaluation was a sim-
plified version of the video game Overcooked, a game that
gives players a score based on how well they cooperate. In
the paper they found optimal planning algorithms to be too
slow to be feasibly evaluated, so they had to make multiple
heuristic optimisations, leading to, as described in the paper,
near optimal algorithms instead[3]. This paper will analyse
the impact of one such optimisation made, namely the omis-
sion of counters.

In short, this paper aims to answer the question: ”How
can cooperative planning within Overcooked be improved
by removing heuristic optimisations?” On top of this it will
recreate the results from the original paper by answering how
planning can be used to achieve cooperative AI. The specific
heuristic sub-optimisations, also analysed, will answer what

the impact of more focused heuristics and incorporating his-
tory is on cooperative planning.

The answer to these questions will be able to aid future re-
search in deciding when to use what kinds of heuristic optimi-
sations. It will also directly advise on how to further improve
the planning agents in the Overcooked-AI environment.

The final conclusion reached in this paper suggests that
more focused heuristics and history achieve their intended
results of lowering the runtime and improving the score, re-
spectively. The final planning agents using counters still take
too long to be evaluated in many situations, and achieve low
scores when they are. This is due to the low priority of coun-
ters and the limitations of the human behavioural clone.

The paper will answer the research question according to
the following structure: first it will discuss the preliminaries
to this research in section 2. It will then go on to explain
the step-by-step plan to reach a conclusion in section 3, and
the specific contributions to the planning algorithms made in
this research in section 4. section 5 will then detail the fi-
nal results, which will be analysed in section 6. Following
this will be an ethical consideration of this research in sec-
tion 7. Finally, the conclusions will be summarised together
with possible future work in section 8.

2 Preliminaries
This section will explain the work and data used in this re-
search. First, it will explain the evaluation environment in
subsection 2.1, followed by the paper this research is built
upon in subsection 2.2.

2.1 Overcooked
Overcooked1 is a video game where two or more players are
tasked with preparing meals by combining or processing in-
gredients according to certain recipes. The gameplay heavily
revolves around cooperation with other players. Recipes of-
ten require multiple steps, to be completed separately from
each other, incentivising cooperation. On top of this, players
are not able to move through each other, which creates fur-
ther dependencies on other players. This collision mechanic
is often focused on in the layout of the levels, giving the play-
ers very little room to move around, with some even going
as far as to restrict players to their own separate sections of
the kitchen, forcing them to pass ingredients over counters to
make a delivery.

This dependency on cooperation, tied to a score, is what
makes it an ideal environment to test cooperative AI. How-
ever, inserting the cooperative agents straight into the game
comes with unneeded complexity, in both the visuals and
level layouts. Instead, it is easier to create a simpler version
made to run as fast as possible, while also allowing for full
control over the evaluation environment. For that reason, the
paper by Carroll et al.[3] created a simplified version of the
Overcooked, visible in Figure 1. This environment was used
as the foundation for the research conducted in this paper.
The environment includes only a single recipe: onion soup,
prepared by putting three onions into a pot, turning it on and

1https://www.team17.com/games/overcooked/

https://www.team17.com/games/overcooked/


waiting for it to cook, before collecting it with a plate and de-
livering it. Each layout consists of: walkable tiles, counters
to put items down on, pots, onions, and delivery tiles.

Figure 1: The 5 layouts in the simplified version of Overcooked,
made and used in the paper by Carroll et al.[3] From left to
right: Cramped Room, Asymmetric Advantages, Coordination
Ring, Forced Coordination, and Counter Circuit.

2.2 On the Utility of Learning about Humans for
Human-AI Coordination

The two planning algorithms compared in the paper by Car-
roll et al.[3] are ’coupled planning with replanning’ and
’model-based planning’. Both of these algorithms use hier-
archical A*, a version of the A* pathfinding algorithm that
splits up the problem space into a higher- and lower-level,
called medium and low level actions in the original paper, to
optimise traversal.

The environment used in the paper, as well as all algo-
rithms and models, are publicly available as a Github reposi-
tory2. This repository, the overcooked environment, the plan-
ning algorithm implementations and the behavioural cloning
models were used as a foundation for the research presented
in this paper.

Coupled planning with replanning
Coupled planning computes the optimal path for both agents
and plays their part in that plan, essentially assuming the other
player will play optimally as well. To account for the human
deviating from the planned path, the agent replans their plan
after every timestep.

Model-based planning
Model-based planning uses a model of the other player to pre-
dict its actions. It then plans an optimal path around that. The
paper uses a machine learning model trained on human player
data for its predictions.

Behavioural Cloning
The paper and the repository also include machine learning
models for every layout trained to mimic a human. This
speeds up evaluations by removing the constant need for hu-
man test subjects. It was found in the paper by Carroll et al.
that the models would sometimes get stuck by repeating the
same action over and over again. To combat this a manual
check was added to take a different action if the model was
stuck for three timesteps in a row.

Conclusions in the original paper
The relevant conclusions made in the original paper are as
follows:

2https://github.com/HumanCompatibleAI/overcooked ai/
releases/tag/neurips2019

• Coupled Planner - Performs well when paired with itself,
but significantly worse when paired with the behavioural
clone.

• Model-based planner - The model-based planner was
evaluated with both a different behavioural cloning
model, as well as the exact one it uses during planning.
The latter scenario was intended to measure a what-if
scenario where the planner could perfectly predict the
other agent’s actions. These perfect predictions proved
to lead to significantly higher scores than the standard
model, proving there is much to gain in increasing the
accuracy of the prediction model. The standard planner
even scored zero on half of the evaluations as it would
get stuck in a loop with the other agent.

3 Removing Heuristic Optimisations
This section will outline the steps taken in answering how
cooperative planning in Overcooked can be improved by re-
moving heuristic optimisations. It will start by explaining the
steps to reproducing the results from the original paper by
Carroll et al. in subsection 3.1, followed by the process of
measuring the impact of the omission of counters, explained
in subsection 3.2.

3.1 Reproducing Results
In order to measure the impact of the optimisations, the base-
line results will be measured first. To this end, the original
results from the paper by Carroll et al. will be reproduced
through the Github repository containing the codebase used
in the paper2. This repository will also be used to achieve all
other results in this research. This repository contains a file
that contains almost all code to run the evaluations needed.
The code to evaluate the coupled planning agent with the be-
havioural clone is missing, and will thus be added.

In the paper by Carroll et al., evaluations of the planning
algorithms were only executed for the first two of the five lay-
outs and for only 100 out of an intended 400 timestep. One
’timestep’ being an action done by both agents. This evalua-
tion will also be done in order to compare the new results to
the original ones.

3.2 Omission of Counters
The current implementations of the planning agents do not
consider picking up or dropping off items at counters, due
to the drastic amount of options it adds to the search space,
which leads to a drastic increase in runtime. The impact this
has on the score will be measured by adding counters back in.
The existing code has a list of counters for each map, which
was set to be empty in order to remove them. Adding them
back in will be as simple as updating this list.

However, just adding counters to the search space will lead
to a runtime too long to be feasibly evaluated, thus requiring
the need for additional heuristic optimisations. The main ad-
ditional optimisation will be the improvement of the A* pre-
diction heuristics. On top of this, the accuracy of the model
inside the model-based planner will be improved by correctly
setting its history. These changes, along with some additional
smaller optimisations will be explained in detail in section 4.

https://github.com/HumanCompatibleAI/overcooked_ai/releases/tag/neurips2019
https://github.com/HumanCompatibleAI/overcooked_ai/releases/tag/neurips2019


Figure 2: Reproduced results from the paper by Carroll et al. with a retrained behavioural cloning model.[3]

These smaller optimisations will also be evaluated on their
own in order to more accurately evaluate their impact.

The final impact of counters will mainly be measured
through the Forced Coordination layout, as the optimal path
includes the use of counters, unlike three of the other four
layouts. The last layout, Counter Circuit, also has an opti-
mal path involving layouts. However, unlike Forced Coordi-
nation, it does not force the agents to use them. Therefore
the agents will have to look through a lot more states before
finding the optimal path, probably increasing the runtime to
infeasible levels. This layout will still be attempted to be eval-
uated, just not a focus of this research.

3.3 Evaluating Runtime

Since a significant portion of the work that will be done dur-
ing this research will be optimising the runtime of the plan-
ning agents, evaluations of those will as be done. In order to
evaluate this, not the time but the amount of states explored
during the medium-level A* search will be measured. This
statistic is independent of the specifications of the system run-
ning the code, and is linearly correlated to runtime, as when
the planning agent has to look at twice as many states be-
fore finding the optimal path, the code will run for twice as
long. All changes that will be made will also mainly impact
this number. These numbers can, however, not be used to
compare between the coupled planner and the model-based
planner, as the model-based planner does a lot more work for
each state it explores.

4 Specifics of Adding Counters

The option to drop items or pick them up is implemented in
the current codebase, but is restricted to a list of valid loca-
tions. This list is currently empty, and adding in counters is
as simple as changing this list. However, running this as it
is takes too long. Because of this, multiple supplementary
optimisations were introduced. First the priority of counters
were decreased in subsection 4.1, followed by improvements
to the A* heuristics in subsection 4.2. Finally, the model in-
side the model based planner was given an accurate history in
subsection 4.3.

4.1 Decreased Priority of Counters
All actions involving counters, picking up and dropping
items, were decreased in priority to the same level as wait-
ing. Originally, when considering what medium-level action
to do(I.E. picking up an onion, delivering soup), the agent
would only consider waiting if no other option is available.
When adding the options to pick up or drop items, the agent
would consider picking up or dropping an item every state,
which proved to be too complex to feasibly evaluate. There-
fore both picking up and dropping off items were decreased
in priority to be similar to waiting.

This change had multiple side-effects on how the agent in-
teracted with counters. However, in the layouts looked at,
it was either the only option(Forced Coordination layout), or
only reasonable when nothing else is possible. The only lay-
out it would negatively affect was the Counter Circuit layout,
as the usage of counters is optional, but optimal.

A generic change was also made to the coupled planning
agent. Originally, both agents could only consider waiting to-
gether, meaning as soon as one of them could do nothing but
wait, both of their search spaces increased. This was changed
to be based on each individual agent, hopefully leading to less
states explored overall.

4.2 Improved Heuristics
The heuristic function used to predict the cost of a new state
during the medium-level A* search was also improved. Dur-
ing the a* search, the next node to explore is chosen on the
basis of the predicted timesteps needed to deliver the soup.
Originally, it did not consider distance between the items and
their destination, and would see an onion held by a player
as equal to one in a pot. The distance between items and
their destination was added, as well as the time left to cook
soup. These changes were hypothesised to differentiate be-
tween more states, and lead to less states being considered.

4.3 Adding History to Model
The behavioural cloning model has protection that makes it
take a different action if it is stuck in the same state for 3
timesteps. This is based on a history stored inside the model.
However, because the planner uses A*, states are often ex-
plored non-linearly, preventing the model inside the model-
based planner from keeping an accurate history and getting



itself unstuck. This was fixed by adding the history to each
state explored during the A* searches.

The way the planner handles duplicate states was also
changed, where before the planner would not explore a state
it has already seen, now it counts the times it has seen a state.
This is to give the model time to potentially break out of the
loop.

5 Results
This section will showcase the obtained results, starting with
reproduced results from the paper by Carroll et al. in sub-
section 5.1. Followed by the results for the new heuristics in
subsection 5.2 and the model-based planner with history in
subsection 5.3. Finally,the results of the agents using coun-
ters will be presented in subsection 5.4. These results can be
reproduced from the codebase attached to this paper. That
codebase will have a readme detailing the specific instruc-
tions needed to reproduce the results shown in this section.

5.1 Reproducing Results
Figure 2 Shows the reproduced results for all layouts and for
the full 400 timesteps. For these evaluations the behavioural
cloning model was also retrained using the data in the original
repository. The most significant difference with the original
results is a score of zero for the first layout between the cou-
pled planner(CP) and the behavioural clone(HProxy), caused
by both agents picking up an onion and getting stuck due to
their inability to drop them. This behaviour was not present
in the results of the original paper, nor mentioned.

The second significant difference is in the reward of the
model-based planner. The original paper concludes there is
much to gain by improving the internal model of the planning
agent. However, the reproduced results show little room for
improvement between the rewards of the model-based agent
with the training model(PBC) and the model-based agent
with the test model(PHProxy

); the former even exceeding the
latter’s score in one situation.

Original Behavioural Cloning Model
The significant differences between the original and the re-
produced results were theorised to either be the product of a
change in the behavioural cloning agent or some uncontrolled
randomness in each run. To test these hypotheses, the evalu-
ations were rerun with the original behavioural cloning agent
for just the layouts in the original paper. The evaluations were
also repeated five times, with the exact same cloning agent
and parameters, to showcase the randomness between each
run. The results of these evaluations are visible in Figure 3.
These results feature the same differences as before; the cou-
pled planning agent gets stuck and achieves a very low score,
and the model-based planner shows little reward to gain by
improving the model.

Finally, to rule out the possibility of the up-scaling of re-
wards done in the original paper affecting the results, the
results were also evaluated with the original model and a
timestep of 100. These results multiplied by four are visi-
ble in Figure 4. These results do show room for improvement
for the model-based agent on the second layout, but the other
differences remain the same.

The planning-based agents were also evaluated for the
three layouts not used in the paper due to their complex-
ity. Results of the evaluation are displayed in Figure 2. The
Forced Coordination layout only results in scores of zero as
the counter optimisation makes it impossible. The Counter
Circuit layout is also missing the model-based planning re-
sults as the evaluations were estimated to take roughly ten
weeks, which is out of scope for this research.

Figure 3: Recreated results using the original behavioural cloning
agent, and taking the average of five runs.

Figure 4: Recreated results using the original behavioural cloning
agent. Only evaluated for 100 timesteps and scaled to the full 400
timesteps.

5.2 Improved Heuristics
The results of the improved heuristics are shown in Figure 5a
and Figure 5b for the coupled planner, and in Figure 7a and
Figure 7b for the model-based planner. The reward achieved
with the improved heuristic is not significantly different over-
all; the agent with the new heuristics reaches a higher score in
some cases and lower in others. The main difference presents
itself when looking at the performance. The new heuristic
leads to less states explored in all cases except for the cou-
pled planner in the Cramped Room layout, which is caused
by the original coupled planner getting stuck. This difference
is more extreme on more complex layouts, with some even
presenting a magnitude of difference between the amount of
states explored.

5.3 Model-Based Planner with History
The reward and runtime of the addition of history to the model
based planner are visible in both Figure 7a and Figure 7b,
respectively. Even though the evaluations were only com-
pleted for the first and half of the second layout, a clear trend



(a)

(b)

Figure 5: (a) Rewards for all coupled planning agent variations for all layouts except Forced Coordination. All variations were evaluated on all
layouts except for the agent with counters, which was only evaluated on the Cramped Room layout due to time constraints. (b) Average states
expanded per timestep for the same agents and layouts as (a). Notice the logarithmic scale, used to properly show the extreme differences
between some agents. The amount of states expanded is linearly correlated with the runtime and machine independent, and was therefore
used as a more objective measure of the impact on runtime.

is still visible in both graphs. In every evaluated situation,
the reward is higher or equal to the standard planner and the
runtime is worse. This is expected, as the internal model be-
comes more accurate, but the planner has to check each du-
plicate state multiple times to see if the model breaks out of
the loop, whereas the normal model rejects every duplicate
state.

5.4 Counter Results
In the end, the results for the planning agents with counters
were only obtained for the Forced Coordination layout and
the coupled planner in the Cramped Room layout. This is
due to the runtime still being too high for most layouts.

Cramped Room
The reward for the coupled planning with counters are both
better for the regular starting indices, as the agent success-
fully puts down their onion instead of getting stuck. However,
the reward is still roughly half of the results of the coupled
planner that do not get stuck. This is due to the counters in
the layout slowly filling up with items, which are not picked
up because the agent only considers counters once no other
action is possible. Once all counters are filled up, the agent
breaks in the same way as the planner without counters, as it
cannot put its item down.

The reward for the switched indices is almost zero, because
the human proxy grabs the soup and gets stuck in a loop in
front of the delivery tile. This is probably due to the filled
counters creating a state the model did not encounter during

training. These counters are filled up because the planning
agent frequently drops items while waiting, as it does not see
that as a negative thing, since it does not directly impact the
amount of timesteps needed to make a delivery.

Forced Coordination
The Forced Coordination layout took too long to evalu-
ate for the regular starting indices of the coupled planning
agent, and for the switched indices of the model-based agent.
This was due to the suboptimal performance of the human
proxy agents, leading to states that required complex plans to
achieve a result. The rewards that were achieved were high
for two coupled planners playing together, and for the human
proxy based planner, although the coupled planners scored
much higher than the model-based planner, as it did not in-
volve the poorly performing human proxy.

The reward for the other two results, one of the model-
based planner and one of the coupled planner, was zero. In
both cases the planning agents became stuck in a loop with
the behavioural cloning agents, which they did not break out
of.

5.5 Complete Comparison
A complete comparison between the planning agents and the
human proxy agents is visible in Table 1. This table only in-
cludes results that simulate a planning agent playing with a
human, so two coupled planning agents and a model-based
agent with the model of the other agent were left out. This



leads to low scores for the agents using counters, as they per-
formed poorly when paired with an agent they could not pre-
dict.

6 Discussion
This section will analyse the different results obtained for
each subject.

6.1 Recreated Results
The recreated results do not match the original results in the
paper by Carroll et al., despite multiple attempts to find an
explanation for the randomness. Even with the original be-
havioural cloning model and technique the coupled planner
picks up an onion at the same time as the human clone and
gets stuck, and the difference between a fully accurate model-
based planner and a regular one is much less than reported.

6.2 Improved Heuristics
The improved heuristic does not result in a significantly dif-
ferent score; for most instances the score is comparable to a
model without. Only three instances resulted in a significant
difference in reward, but there does not seem to be any pattern
between those cases.

The main difference made by the heuristics is the runtime,
with significant decreases in expanded states ranging from
a slight decrease to almost one-tenth of the regular planner.
This difference is most apparent in more complex layouts.

6.3 Model-based Planner with History
Adding history to the model-based planner results in a higher
reward in all evaluated cases, although it also increases the
runtime significantly. This increased runtime is what limited
the situations that were evaluated. This improvement does
require more evaluations before it can be claimed to achieve
higher scores, but the theory of improving the accuracy of the
model inside the model-based planner does suggest it.

6.4 Planners with Counters
The evaluations obtained from the planning agents using
counters are limited due to the poor runtime, and it is thus
hard to conclude anything about them. The Cramped Room
evaluations show the usage of counters allow the planning
agent to escape a state where both agents are holding onions
while the soup is cooking, albeit temporarily until all coun-
ters fill up. Increasing the priority of counters would fix this
by allowing the agent to pick the items back up when needed,
but would also drastically increase the runtime.

The Forced Coordination evaluations achieve low scores
when paired with an agent that does not do exactly as they
predict. This is due to the layout, which forces agents to work
with one another instead of around one another, unlike the
other layouts. In the current evaluation both the planning and
behavioural cloning agent do not adapt to each other, lead-
ing to a score of zero. In a realistic scenario where a plan-
ning agent would be paired with an actual human, the human
would realise they are stuck in a loop, and adapt to the plan-
ning agent. Therefore, the low scores observed are likely due
to limitations of the behavioural clone.

Figure 6: Rewards for the Forced Coordination layout. Only the
agents with the counter optimisation are shown as the layout requires
the agents to use counters. Three results are missing due to time con-
straints, namely the coupled planner with the human proxy for the
regular starting indices, and the two model-based planning evalua-
tions for the switched start indices. Other results that appear to be
missing are instead zero.

7 Responsible Research
This section will discuss the ethical aspects of this research.
The main points that will be addressed are the reproducibility
of this research and the use of human data.

7.1 Reproducibility
In an effort to make the results achieved in this research as
reproducible and transparent as possible, the codebase used
will be supplied along with this paper. That codebase will
contain a readme and clear instructions on how to generate
both the results and the graphs shown in this paper.

7.2 Human Data
In order to train the behavioural cloning models human data
had to be used. The data set used was the one present in
the repository from the paper by Carroll et al.[3]. This is a
data set of human play sessions of the Overcooked-AI en-
vironment. This data has already been made anonymous by
Carroll et al. and will thus not be a privacy risk.

8 Conclusions and Future Work
This paper aimed to answer the question: ”How can coop-
erative planning within Overcooked be improved by remov-
ing heuristic optimisations?” In order to do so, it would also
recreate results from the original paper by Carroll et al. and
measure the impact of improving A* heuristics and incorpo-
rating history into planning, two optimisations necessary to
run the heuristic optimisation analysed: the omission of coun-
ters. This section will discuss what answers were found and
where to go from here.

The recreated results were found to be significantly dif-
ferent from the original ones, even after using the same
limited horizon evaluation technique and the same evalua-
tions were executed multiple times to account for random-
ness. Where the original paper showed both the coupled plan-
ner and model-based planner as leaving room for improve-
ment; the newly obtained results showed the opposite, apart



Table 1: Rewards for every planning agent and optimisation when paired with the human proxy. The highest reward for each layout and
starting indices have been marked in bold. The average reward for all layouts is also shown, where missing results were treated as zero.

Layout Start CP CPHeur CPCounter PBC PHeur
BC PHist

BC PCounter
BC

Cramped Rm. AI +HProxy 0 180 100 200 200 200 -
HProxy +AI 220 180 20 200 200 220 -

Asymm. Adv. AI +HProxy 320 320 - 220 320 - -
HProxy +AI 320 340 - 260 220 - -

Coord. Ring AI +HProxy 120 180 - 160 160 - -
HProxy +AI 180 180 - 120 200 - -

Forced Coord. AI +HProxy 0 0 - 0 0 0 0
HProxy +AI 0 0 0 0 0 0 -

Counter Circ. AI +HProxy 60 80 - - - - -
HProxy +AI 120 20 - - - - -

Average 134 148 12 116 130 42 0

from one instance where the coupled planner got into an in-
escapable situation and achieved a near zero score, which was
also not present in the original results.

Improving the heuristic predictions used in the A* search
of both agents by accounting for distance between an item
and its destination led to no significant difference in score, but
a drastic decrease in runtime, especially for the more complex
layouts.

Adding history to the models inside the model-based plan-
ner improved their accuracy, and increased all scores mea-
sured. However, doing so also increased the runtime of the
evaluations, and thus only a few situations were evaluated.
This improvement could benefit from more tests to allow for
a more concrete conclusion.

With both of these improvements the planning agents with
counters ran in reasonable time for half of the situations of
the Cramped Room and Forced Coordination layout. The
first layout caused the coupled planner to get stuck because
it could not put away its item. This was fixed by the intro-
duction of counters, but only temporarily, due to an optimisa-
tion decreasing the priority a planning agent gives to picking
up or dropping off items. Further improvement to this could
be made by removing this optimisation, although this would
need to be replaced by a different optimisation, as it helped
keep the runtime low.

The Forced Coordination layout required the use of coun-
ters, so the addition of counters made evaluation of this layout
in the first place possible. The layout also requires agents to
fully cooperative with each other, which resulted in scores of
zero for all situations where the planning was paired with an
agent they could not fully predict. The achieved scores could
be improved by future research by making the behavioural
cloning models used in evaluation more realistic. Currently
they are very prone to loop the same actions forever, espe-
cially on more complex layouts like Forced Coordination.
Possible ways this can be achieved are adding some random-
ness into the agents or adding a memory, so they have a lim-
ited learning capacity.

(a)

(b)

Figure 7: (a) Rewards for all model-based planning agent variations
for all layouts except Forced Coordination and Counter Circuit. All
variations were evaluated on all layouts except for the agent with
counters, which was only evaluated on the Cramped Room layout
due to time constraints; and the agent with history, which was only
evaluated on Cramped Room and partially on Asymmetric Advan-
tages, which is missing the PHist

BC results, also due to time con-
straints. (b) Average states expanded per timestep for the same
agents and layouts as (a). Notice the logarithmic scale, used to
properly show the extreme differences between some agents. The
amount of states expanded is linearly correlated with the runtime
and machine independent, and was therefore used as a more objec-
tive measure of the impact on runtime.



References
[1] A. Dafoe, E. Hughes, Y. Bachrach, T. Collins, K. R.

McKee, J. Z. Leibo, K. Larson, and T. Graepel,
“Open problems in cooperative ai,” arXiv preprint
arXiv:2012.08630, 2020.

[2] S. M. LaValle, Planning algorithms. Cambridge univer-
sity press, 2006.

[3] M. Carroll, R. Shah, M. K. Ho, T. Griffiths, S. Seshia,
P. Abbeel, and A. Dragan, “On the utility of learning
about humans for human-ai coordination,” Advances in
neural information processing systems, vol. 32, 2019.


	Introduction
	Preliminaries
	Overcooked
	On the Utility of Learning about Humans for Human-AI Coordination
	Coupled planning with replanning
	Model-based planning
	Behavioural Cloning
	Conclusions in the original paper


	Removing Heuristic Optimisations
	Reproducing Results
	Omission of Counters
	Evaluating Runtime

	Specifics of Adding Counters
	Decreased Priority of Counters
	Improved Heuristics
	Adding History to Model

	Results
	Reproducing Results
	Original Behavioural Cloning Model

	Improved Heuristics
	Model-Based Planner with History
	Counter Results
	Cramped Room
	Forced Coordination

	Complete Comparison

	Discussion
	Recreated Results
	Improved Heuristics
	Model-based Planner with History
	Planners with Counters

	Responsible Research
	Reproducibility
	Human Data

	Conclusions and Future Work

