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Abstract.
While working on a complex simulation problem, namely the safety assessment of a nu-

clear waste repository underground in a clay layer, we observed the necessity of numerical
zooms to speed-up the calculations. The problem has several scales du to the geometry,
the various geological constants and the time scales.

The domain is decomposed into a large one where the simulations may not be precise
and a small one where precision is required; the Chimera method [6] is well adapted to
this. In Brezzi et al [1] it was shown to be a particular implementation of Schwarz’ method
and of Lions’space decomposition method [5] (SDM). The method was analyzed in [1] and
in [2] for elliptic problems.

Here we shall present the parabolic case, which occurs for the study of the convection-
diffusion of a radionuclide in the clay underground around the repository. The domain is
too large and too complex to be discretized in all details. On the other hand the source
terms are confined to a small zone. The computations are done in subdomains and the
problem is to find a converging strategy for the boundary conditions.

1 Multi-scale Problems

Analysis of results are usually done after the modelling and simulation are completed.
Yet with online graphics and interactive development it may be a good idea to make
the modelling and the simulations an integrated part of the interactive design. This is
particularly useful when the problem is multi-scale because the results are also analyzed
usually from a multi-scale view point.

Without loss of generality let us present the problem on which we have applied this
paradigm and the solution proposed.
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The safety analysis for a nuclear waste repository site is a multi-scale problem because
the site extends over several kilometers while the waste is confined by canisters not bigger
than a few meters. The time scales are also of a hundred years for the cooling phase, of
a few centuries for the leaking phase of the canisters and of up to a million year for the
migration phase.

We wish to study a simplified version of the site currently investigated by Andra below
the village of Bure, in the west in France, at a depth of 450 m, in a layer of clay, above a
layer of dogger-limestone and below a geological layer of limestone and marl.

Water flows slowly through these porous media in a saturated state and convects the
radioactive materials after some thousands of years when the canisters have rusted.

The first problem then is to compute accurately the time independent hydrostatic
pressure by Darcy’s law. The computational domain is Ω = (0, 25000)×(0, 695)×(0, 300).
The repository, denoted by R, is in the clay layer. Darcy’s law says that the water velocity
u is proportional to the gradient of the hydrostatic pressure ~u = K∇H and saturation
and incompressibility imply ∇ · u = 0.

Kmarl = 3.15310−5 Klim = 6.3072
Kclay = 3.15310−6 Kdog = 25.2288

Finally H is given on the soil surface and on the lateral boundaries. Homogeneous Neu-
mann conditions are taken on the other boundaries.

In R there are galleries and horizontal holes to store the canisters. Around these the
terrain is damaged, and the Darcy constant K is increased ten fold.

The second problem is to study the advection and diffusion of the radio-nucleides. It
is governed by a linear convection-diffusion-dissipation equation where the source term is
in the initial condition because the time during which the canisters leak is short (2000
years) compared to the time scale of the advection-diffusion.

Such systems are more accurately solved by Discontinuous Galerkin Finite Element
Method, but these are an order of magnitude more expensive than standard linear ele-
ments for a given number of element (which is the leading factor to describe the geometry).

The paper describes a zooming strategy with a possibility to change the resolution mod-
ule locally. On Darcy’s law, numerical zoom (i.e. neglecting part of the domain in the
simulation) is based on Schwarz algorithm or rather on the Chimera version suggested
by Lions et al in [4]. On the convection-diffusion-dissipation equation, zooming is based
on the fact that the source term is localized in R and because the concentration decays
exponentially with the distance to the source. The fact that the resolution module can
be changed is more an implementation feast than a theoretical advance.
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2 Chimera and DDM

Consider Darcy’s law for saturated stationary flow through porous media

−∇ · (K∇H) = f in Ω, H or (K∇H) · n given on Γ = ∂Ω. (1)

To make the presentation easier assume that a translation has been made to bring zero
Dirichlet conditions on H. Consider the case where Ω = Ω1 ∪ Ω2, with overlapping and
denote Σi = ∂Ωi ∩ Ωj, j = i + 1%2 and Si = ∂Ωi\Σi.

The Chimera method presented in [2] is based on the discrete formulation: find uih ∈
Vih, i = 1, 2 solution of∫

Ω
K∇(u1h + u2h) · ∇(û1h + û2h) =

∫
Ω

f(û1h + û2h) ∀ûih ∈ Vih (2)

where Vih is an approximation of H1
0 (Ωi).

The easiest is to solve (2) by a fixed point algorithm wherein uih is assumed to be known
to compute ujh by (2) with ûih = 0, j 6= i; however convergence is guaranteed only if a
regularization term β > 0 is added, so that one finds um+1

ih ∈ Vih such that ∀ûih ∈ Vih∫
Ω
(β(um+1

ih − um
ih)ûih + K∇(um+1

ih + um
jh) · ∇ûih) =

∫
Ω

fûih (3)

2.1 Numerical Zoom and Mesh Refinement

When Ω1 = Ω2 the method consists in improving the calculation on one mesh by a
computation on another mesh. For a preliminary analysis numerical zoom can be framed
into this case. The idea is that in some region the mesh is refined (the zoom) and elsewhere
it is kept unchanged. In such case we do not want to converge the process (3) but only
perform one or two iterations and obtain an improvement over the solution computed on
the course mesh.

Usually the algorithm is initialized by u0
kh = 0. Then the first 2 iterations are∫

Ω
(βu1

1hû1h + K∇u1
1h · ∇û1h) =

∫
Ω

fû1h ∀û1h∫
Ω
(βu1

2hû2h + K∇u1
2h · ∇û2h) =

∫
Ω

fû2h ∀û2h∫
Ω
(β(u2

1h − u1
1h)û1h + K∇(u2

1h + u1
2h) · ∇û1h) =

∫
Ω

fû1h ∀û1h∫
Ω
(β(u2

2h − u1
2h)û2h + K∇(u2

2h + u1
1h) · ∇û2h) =

∫
Ω

fû2h ∀û2h (4)

The Problem. So the problem is to show that u1
1h contains the O(1) part of the solution

and that u2
2h is small.

Unless otherwise specified Vih is the P 1 finite element space; the elements are triangles
or tetrahedra.
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Mesh Refinement. Assume that V1h is built on a course mesh and that V2h is built on
a finer mesh obtained by dividing some elements of the first mesh; then V1h is a subspace
of V2h and so u1h belongs to V2h also. Assume β = 0. With obvious notations,

‖u2
2h + u1

1h − u‖ ≤ Ch2

‖u1
1h − u‖ ≤ Ch1

‖u2
2h‖ ≤ ‖u2

2h + u1
1h − u‖+ ‖u1

1h − u‖ ≤ C(h1 + h2) (5)

which proves that

Proposition 1 When mesh 2 is a refinement of mesh 1, u2
2h is an O(h1) correction to

u1
1h such that the sum approximates the exact solution with an optimal error of O(h2).

Approximated Mesh Refinement. When T2h is a perturbation of a sub-triangulation
of T1h we can still assert that u2

2h will be a correction to u1
1h.

Assume that each vertex qi of the triangulation T2h can be moved to qi + δqi so that
the new triangulation T2h̄ is a sub-triangulation of T1h. With δqh(x) :=

∑
j δqjw

j(x) and
wj the hat functions of T2h̄, we have (up to higher order terms)

δwk = −∇wk · δqh and δ
∫
Ω

f =
∫
Ω
∇ · (fδqh) (6)

Therefore let δu2h := u2h̄ − u2h where u2h is the solution on T2h and u2h̄ the solution on
T2h̄, then the following can be shown (see [7])∫

Ω
∇δu2h∇wh =

∫
Ω
∇u2h(∇δqh +∇δqT

h −∇ · δqh)∇wh

Thus ‖u2h − u2h̄‖ is bounded by ‖∇δqh + ∇δqT
h − ∇ · δqh‖ which is O(hα

2 ), α = 1, 2 de-
pending on the smoothness of limh δqh. This means that (4) will give ‖u2

2h‖ = O(h1 +hα
2 ).

When Ω2 is a sub-domain of Ω1 = Ω then we must use another idea connected with
the fact that u2h|Σ2 = 0 is an approximation of the value it would have had if Ω2 = Ω.

3 Darcy’s Law: Numerical Implementation and Results

The domain is always a rectangular box, either because it is the physical domain (Figure
1) or because it is the numerical zoom.

The selection of the numerical zoom is done by the user within the public domain
visualization software medit [9]. A patch to the software has been written for us by P.
Frey which allows to select a region with the mouse.

Then the automatic triangulation of the zoom domain is done within the open source
tool freefem3D [8] and the boundary condition u2 = 0 are applied automatically on the
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zoom bounding box. Therefore the mesh in the zoom region has nothing to do with the
mesh at one level up.

The computation of the integrals in the variational formulations involves products of
functions defined on different meshes; quadrature points are used within each element of
both triangulations as proposed in [2].

This strategy is applied thrice and the results are shown on Figures 2,3 and 4.

Figure 1: Mesh and solution u1
1h of Darcy’s equation in the entire domain. The triangulation is too coarse

to account for all the details in the repository.

Figure 2: First zoom: triangulation and solution u1
1h + u2

2h of Darcy’s equation in the clay layer around
the repository Ω2. Here u1

1h is the one shown on Figure 1 and it is not recomputed.
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Figure 3: Second zoom: triangulation and Solution of Darcy’s equation in a region which is smaller than
the entire site. Only a u3

2h is computed in Ω2 shown on the left with u2
1h = u1

1h + u2
2h.

Figure 4: Third zoom: triangulation and solution of Darcy’s equation in a region near a single gallery.
As above only a u4

2h is computed in Ω2 shown on the left with u3
1h = u1

1h + u2
2h + u3

2h.

Perspectives

The method proposed raises several questions:

• It seems to work even though it is justified only in very special cases and with two
levels only.

• A natural method for numerical zooms would be to use Schwarz algorithm and
apply on the zoom bounding box Dirichlet conditions from one course level up. The
drawback is that the computations are no longer corrections to the solution, but
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still it seems to perform just as well. We know of counter examples for convergence,
but these seems not to occur in practice, so are we doing better?

• The method is very sensitive to the position of the quadrature points which should
not be too close to any of the vertices. Can we live with that?

The same strategy can be applied to the convection diffusion part with even greater
success because the source terms are confined to a very small region. The results will be
shown at the time of the conference and in the proceedings. We will also report on a good
behavior of the interpolation operators on the method when we switch from a P 1 finite
element method on a coarse level to a Discontinuous - Galerkin method on the lower level.
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