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1. De introduktie van de Japanse supercomputers (Fujitsu, Hitachi, NEC) heeft 
bij alle supercomputer-leveranciers geleid tot een belangrijke verbetering 
van vectorisatie faciliteiten voor Fortran programma's. De auto-vectorisa-
tie faciliteiten van een goede Fortran compiler zijn thans zodanig, dat 
supercomputers niet meer als "moeilijk te programmeren" mogen worden be­
stempeld. 

2. Ondanks goede auto-vectorisatie faciliteiten van Fortran compilers op 
supercomputers zal voor produktie-programma's het verkrijgen van een hoge 
vectorisatiegraad middels een goede algoritme-keuze en geschikte program­
ma-constructies noodzakelijk blijven, aangezien voor korte doorvoertijden 
van programma's nu eenmaal een zeer hoge vectorisatie-graad vereist is. 

3. De bezetting van computers voor technisch-wetenschappelijk rekenwerk (ook 
supercomputers) wordt met name bepaald door zeer grote programma's, die zo 
complex zijn, dat een efficient gebruik van de computer-architectuur niet 
eenvoudig te realiseren is. Derhalve dient bij aanschaf van een computer 
aan de doorvoer tijd van dergelijke programma's een zwaar gewicht te worden 
toegekend. 

4. Doorberekening van kosten van het gebruik van (super)computers dient ge­
baseerd te zijn op de mate waarin een programma het draaien van andere 
programma's hindert. Derhalve dient op supercomputers het rekenen in 
scalaire mode, en het zodanig gebruik van de computer dat processoren 
nodeloos stil komen te staan, zwaar te worden belast. Anderzijds dient het 
rekenen buiten de produktie-uren vrijwel gratis te zijn. 

5. De grote waarde van de multi-rooster methode voor stromingsberekeningen 
ligt veelal niet zozeer in de relatief hoge convergentie-snelheid die met 
deze methode kan worden bereikt, als wel in de relatief lage convergentie-
nivo's die bij deze methode voor het verkrijgen van een oplossing met 
acceptabele nauwkeurigheid kunnen worden gespecificeerd. 



6. Een "snelle" oplosmethode voor stelsels van vergelijkingen ontstaan uit 
discretisatie-methoden vereist in het algemeen het kiezen van een "snel" 
rekenrooster, dat wil zeggen een rekenrooster waaraan sterke beperkingen 
worden opgelegd (bijvoorbeeld een rechthoekige struktuur) of een reken­
rooster waaraan zodanige eisen worden gesteld (bijvoorbeeld met betrekking 
tot maasverhoudingen) dat het snel oplossen van het desbetreffende stelsel 
vergelijkingen mogelijk wordt gemaakt. 

7. Het op elkaar afstellen van rekenrooster-generator en stromingsoplosser, 
zoals in dit proefschrift beschreven, vindt binnen de numerieke aërodyna­
mica veelvuldig plaats; de wijze waarop dit gebeurt komt echter in publi­
caties nauwelijks ter sprake. 

8. Bij profielstromingen leidt het gebruik van asymptotische benaderingen voor 
verre-veld randvoorwaarden met name tot nauwkeuriger numerieke resultaten. 
Het verkleinen van het rekengebied is daarbij van secundair belang. 

(ref: F.W. Wubs, J.W. Boerstoel en A.J. van der Wees, 
Grid-size reduction in flow calculations on infinite domains by 
higher-order far-field asymptotics in numerical boundary condi­
tions, J. Eng. Math. 18 (1984), p. 157-177) 

9. Kleine programmeer-fouten kunnen in grote rekenprogramma's gedurende zeer 
lange tijd verborgen blijven doordat voor de ermee gepaard gaande anoma­
lieën vanuit het geïmplementeerde model een goede verklaring kan worden 
gevonden. 

10. Artikel li, lid 2b van het competitie-reglement van de Koninklijke Neder­
landse Schaakbond: 
"Spelers die voor de competitie voor een bepaald team zijn opgegeven, 
dienen voor dat team in deze competitie minimaal tweemaal te spelen. 
Overtreding van dit artikel wordt door de competitieleider bestraft met 
het in mindering brengen van twee matchpunten per speler en een door de 
Algemene Vergadering vast te stellen boete. (...)" 

is in principe ter zake, maar druist in tegen in de Nederlandse schaak­
wereld volledig geaccepteerde gebruiken. Dit als gelegenheids-wetgeving 
ontstane artikel is derhalve nauwelijks uitvoerbaar. 

11. Niet-professionele schakers die al te grote waarde hechten aan hun ELO 
rating lopen het gevaar de lust tot spelen te verliezen. 
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SUMMARY 

In this thesis research is presented on the application of the nonlinear 
multigrid method to three-dimensional transonic potential flow. The flow is 
described by the full potential equation, which is discretized using a finite 
volume method. The smoothing algorithm in the multigrid method is a combination 
of Incomplete Lower Upper decomposition (ILU) and Strongly Implicit Procedure 
(SIP). In general this algorithm is a faster smoothing algorithm than the often 
used successive line relaxation, while it is also more robust, because it is 
uniformly stable in the supersonic regions of the flow. 
The influence of computational grid properties, such as grid aspect ratio and 
grid skewness, on the multigrid convergence speed is investigated both 
theoretically and experimentally. The usefulness of the method for practical 
applications is demonstrated for the transonic flow about the DFVLR-F4 and 
0NERA-M6 wing. 
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1 INTRODUCTION 

1.1 Purpose and scope 
The aerodynamic design process of an aircraft requires reliable 

tools to predict its aerodynamic behaviour in order to avoid design 
modifications at a later stage. Next to the windtunnel, a valuable tool 
in this respect is the numerical simulation of the flow. The flow 
simulation method developed in the present thesis is such a tool, 
developed in particular for the design of transport aircraft under 
cruise conditions. 

Flow simulation methods for aircraft can be based on various levels 
of physical flow modelling. The choice depends on the purpose of the 
simulation and the related physical relevance required, as well as on 
the combination of numerical techniques and computing power at disposal. 
To date, the highest attainable level of physical flow modelling 
feasible for full aircraft configurations are the Reynolds-averaged 
Navier-Stokes equations. These equations describe almost all relevant 
flow phenomena, but require an adequate semi-empirical turbulence model. 
For full aircraft configurations, simulation methods based on the 
Reynolds-averaged Navier-Stokes equations require computation times in 
the order of days on even the fastest supercomputers existing today. 

Simplifications of the flow model, maintaining physical relevance, 
are possible only if the flow is split up in viscosity dominated regions 
and nominally inviscid regions. Viscosity dominated regions are e.g. 
boundary layers and viscous wakes, and are always located at or 
generated from the airplane surface (inner flow). Inviscid regions are 
always located away from the airplane surface (outer flow). Although 
viscous forces are also not negligible in shocks, these can often be 
modelled adequately without taking viscosity into account. 
In airplane aerodynamics, it is often possible to model the flow in 
viscous regions using a simplified form of the Navier-Stokes equations, 
the so-called thin layer equations, or the even simpler boundary layer 
equations. 

In inviscid flows, all viscous terms in the Reynolds-averaged 
Navier-Stokes equations are dropped and the Euler equations result as 
the flow model. These equations retain the property to describe the 
transport of vorticity (rotational flow). Important sources of vorticity 
are boundary layers and viscous wakes. Also propellers and jet exhausts 
(propulsion systems) generate vorticity. Further sources of vorticity 
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are shock waves (only in transonic flow). For full aircraft configura­
tions, simulation methods based on the Euler equations require compu­
tation times in the order of hours on the fastest supercomputers exis­
ting today. 

When shock waves are weak, the flow is approximately isentropic and 
the vorticity generated by the shocks is almost negligible. Then, if no 
other sources of vorticity need be modelled, the flow can be considered 
isentropic and irrotational, and potential theory can be used. In par­
ticular, potential theory is the exact model for the inviscid outer flow 
in the subsonic case. For full aircraft configurations, simulation 
methods based on potential theory require computation times in the order 
of minutes on the fastest supercomputers existing today and in the order 
of hours on classical mainframes. 

An important design goal for transport aircraft is low drag, implying 
low fuel consumption. For transonic transport aircraft this has led to 
the so-called supercritical wings, which have local supercritical flow 
regions terminated by weak shock waves under cruise conditions, and 
consequently low wave drag. Under these circumstances potential theory 
is an adequate model for the major part of the inviscid flow. 

At present, the situation with respect to flow simulation methods 
for the aerodynamic design of transport aircraft under cruise conditions 
is as follows. Reynolds-averaged Navier-Stokes methods and Euler methods 
are not yet developed far enough to be used routinely and repeatedly in 
aerodynamic design loops. In this respect potential methods are feasible 
at present, but they require improvements with respect to accuracy, 
robustness and computational speed. The potential method developed in 
this thesis is a contribution to the fulfilment of these requirements. 
Physical relevance requires that this potential method (covering only 
the outer flow) is coupled with a fast and reliable boundary layer com­
putation method, but this aspect is outside the scope of this thesis. 

The continuous growth of available computing power and the further 
improvement of flow solution algorithms will make the Reynolds-averaged 
Navier-Stokes and Euler equations better applicable in aerodynamic 
design loops in the future. Potential methods will then still be 
valuable for quite a long time, however, because in that situation they 
can be used as a comparatively fast computing tool for use in early 
stages of the aircraft design process. 

In this thesis a relatively standard finite volume formulation will 
be used to discretize the transonic potential flow equation. Many of 



-3-

today's routinely used computer codes for the solution of the resulting 
system of equations still rely on the Successive Line Over Relaxation 
(SLOR) algorithm as developed by e.g. Murman and Cole [1] and 
Jameson [1]. Though this algorithm has proved to be fairly reliable in 
many cases of practical interest, it does not satisfy the practical 
requirements of accuracy, robustness and computational speed outlined 
above. An improvement has been the Approximate Factorization (AF) algo­
rithm, which generally has better convergence properties (Hoist [1]). 
However, the stable relaxation of the required boundary conditions for 
the auxiliary variables introduced by this method requires special 
attention (South and Hafez [1]). Another improvement has been the Con­
jugate Gradients (CG) method, which is a widely applicable convergence 
acceleration method that also has proved to be useful for transonic 
potential flow solution methods (Brédif [1]). A real breakthrough, 
however, seems to have been the MultiGrid (MG) method, introduced by 
Fedorenko [1], Hackbusch [1] and Brandt [1], and particularly popula­
rized by the latter author. Today, the multigrid method is the only 
solution method whose efficiency is not affected when computational 
grids are further refined and higher convergence levels are required. 
This property has been confirmed in many applications and is also the 
reason for adopting multigrid in the finite volume method developed in 
this thesis. However, the robustness of the multigrid method depends 
heavily on the damping characteristics and the robustness of the 
relaxation algorithm used to smooth the short wavelength error com­
ponents on each grid level. 

The choice of the "best" smoothing algorithm in a multigrid method 
for a specific class of applications depends on the balance between its 
damping characteristics for short wavelength errors, its computational 
complexity and its robustness. In this respect it is important to note 
that grids for practical aircraft configurations often exhibit strongly 
different grid aspect ratios and variations in grid skewness and in grid 
stretching. 

The smoothing algorithm most frequently used is Successive Line 
Relaxation (SLR); this algorithm has been shown to work in both two and 
three dimensions (Jameson [2], Boerstoel and Kassies [1], Shmilovich and 
Caughey [1]). However, considerable deterioration of the rate of con­
vergence can be observed for multigrid methods with SLR smoothing on 
grids with high grid aspect ratio. Moreover, SLR is not stable for all 
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local flow directions in the supersonic (hyperbolic) regions of the flow 
and is therefore not robust. 

In a search for more efficient and robust smoothing algorithms 
several alternatives have been considered. In two-dimensional applica­
tions, the Alternate Direction Implicit (ADI) and the Approximate 
Factorization algorithms have been found to be successful multigrid 
smoothing algorithms (Schmidt and Jameson [1]). So far, no success has 
been reported for multigrid methods with AF or ADI smoothing in three-
dimensional applications. Investigations by the present author along 
this line remained without success. Other possible smoothing algorithms 
are the Incomplete Lower Upper decomposition (ILU, Meijerink and van der 
Vorst [1]) and the Strongly Implicit Procedure (SIP, Stone [1]). Both 
algorithms have been investigated for two-dimensional transonic flow 
(Brédif [2], Sankar [1]). The work presented in this thesis combines 
these two algorithms into one algorithm: ILU/SIP. This algorithm is 
implicit in all three coordinate directions and uniformly stable in 
supersonic (hyperbolic) flow regions. The algorithm has also turned out 
to be very robust and is at least twice as fast as SLR when used as a 
multigrid smoothing algorithm (Van der Wees, Van der Vooren and 
Meelker [1]). No tuning of parameters is required, and its computer-
resource requirements (processor time and memory) are moderate. In this 
thesis, its performance as a smoothing algorithm is a nonlinear multi-
grid method will be analyzed. The multigrid method will be applied to 
the computation of the subsonic and transonic potential flow about a 
wing. 

1.2 Brief description of transonic wing flow 
For readers not familiar with the aerodynamics of transport air­

craft, a brief description of the transonic flow about a transport wing 
is given below. An extensive introduction to numerical flow simulation 
about aircraft can be found in Loeve and Van der Vooren [1] (in Dutch). 

At high subsonic cruise conditions, the flow about a transport wing 
is often transonic. This means that the flow has embedded supersonic 
zones, mostly on the wing upper surface. Such zones occur whenever the 
flow accelerates locally beyond the speed of sound. Each zone is usually 
terminated on the downstream side by a shock wave, which causes the flow 
to decelerate again to subsonic speed almost discontinuously 
(Figs. 1.2.1, 1.2.2). 

At the downstream (trailing) edge of the wing, the flow coming off 
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Fig . 1.2.1 Transonic flow about a wing 

FREESTREAM 
FLOW 

^ > 

BOUNDARY 
LAYER 

^ S H O C K W A V E 

r—WING i—TIP VORTEX 

VORTEX SHEET 

VISCOUS WAKE 

VISCOUSWAKE 

Fig. 1.2.2 Boundary layer and vortex sheet at a wing 
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the upper and the lower surface generally has different velocity and 
direction, mainly because the wing produces lift (Fig. 1.2.2). This 
causes a shear layer behind the wing, the so-called vortex sheet. This 
vortex sheet rolls up under the action of its self-induced velocities 
and produces the phenomenon of the tip vortex (Fig. 1.2.2). 

The flow phenomena described above are of purely inviscid charac­
ter. However, close to the wing and the vortex sheet, the flow is in 
reality dominated by viscous effects. This leads to the boundary layer 
and the viscous wake (Fig. 1.2.2). 

The drag force acting on the wing is composed mainly of vortex 
induced drag (related to the phenomenon of lift), wave drag (caused by 
the shock waves) and friction drag (caused by the boundary layer). 
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FLOW MODEL 

Flow configuration 
In this thesis, the inviscid, steady, transonic potential flow 

about a simple aircraft configuration, viz. a symmetric wing, will be 
considered. The undisturbed freestream flow is uniform and parallel to 
the symmetry plane and therefore it suffices to consider semi-configu­
rations, cf. figure 2.1.1. 

The coordinate system x , i = 1,2,3, also called (x,y,z), in phy­
sical space is Cartesian, right-turning and attached to the wing, with 
its origin in the symmetry plane. The coordinate system x is defined as 
shown in figure 2.1.1. 

Although this is not strictly necessary in Cartesian coordinates, 
in our notation we will distinguish between covariant and contravariant 
tensor components, in order to facilitate easy transformation to general 
coordinates at a later stage. 

Fig. 2.1.1 Coordinate system in physical space attached to the wing 
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2.2 Flow analysis 

2.2.1 Equations of steady inviscid gasdynamics 
The aerodynamic equations of wing flow are well established and can 

be found in standard textbooks for aerodynamics, such as Liepmann and 
Roshko [1], Batchelor [1] or Shapiro [1]. 
Two state-of-the-art survey articles on computational aerodynamics are 
Hoist, Slooff, Yoshihara and Ballhaus [1] and Hoist [2], 

The most complete model for continuum gasdynamics is provided by 
the Navier-Stokes equations, which model viscosity and describe 
turbulence phenomena. To date, the highest attainable level of physical 
modelling that is feasible for the flow computation about a wing are the 
Reynolds-averaged Navier-Stokes equations. These equations describe tur­
bulence using a semi-empirical turbulence model. 

In regions of the physical domain where viscous effects are negli­
gible, e.g. outside boundary layers and viscous wakes, the Reynolds-
averaged Navier-Stokes equations reduce to the Euler equations. 
In this thesis we assume that the flow is independent of time (steady 
flow). Then the Euler equations are: 

3 i conservation of mass: —-(pu ) = 0 , (2.2.1a) 
3X1 

conservation of momentum: —r(pu u ) = - ó -*■- , j = 1,2,3, (2.2.1b) 
3x* 3xk 

conservation of energy: —r(pu h_) = 0. (2.2.1c) 
3X1 

Here the specific total enthalpy h. per unit volume is given by 

h0 = e + p + 2~ ' q 2 = U \ (2.2.2) 

and the specific internal energy e per unit volume is given by the 
caloric equation of state: 

e = cvT. (2.2.3) 

The system of equations is completed by the thermal equation of state 
for an ideal gas: 
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p = pRT , R = c - c . (2.2.A) 

The entropy of an ideal gas is defined relative to its freestream value 
by 

AS = S - Sm = cv In (p/pT) - cy In (p^/pj) , (2.2.5a) 

y - c /c . (2.2.5b) 
P v 

In equations (2.2.1) until (2.2.5) the velocity q, the pressure p and 
the density p are scaled such that 

q M = i . P . " U P . - - 1 * ' < 2 - 2 - 6 ) 

It is important to note that in the Euler model viscosity has been 
set equal to zero. As a consequence the model allows both for compres­
sion shocks and for (non-physical) expansion shocks. The latter have to 
be removed from the model by imposing the additional condition that the 
second law of thermodynamics must be satisfied, requiring that the en­
tropy may not decrease along a streamline. 

The Euler equations (2.2.1) require the solution of a complex 
system of five equations, giving the unknown dependent variables p, u , 
2 3 

u , u , p. The potential flow model, to be described subsequently, re­
quires the solution of only one equation, giving the unknown variable *. 
We will now present the additional assumptions that allow simplification 
of the Euler equations to the so-called full potential equation. 

Define the vorticity of the fluid as 

U) - rot ü = V x u. (2.2.7) 

Define further a vortex line as a line which is everywhere tangent to 
the vorticity vector. A vortex sheet is defined as a two-dimensional 
manifold consisting of vortex lines. In this thesis we will assume that 
vortex sheets only leave from sharp edges on the downstream side of the 
wing (the wing trailing edge), thus excluding vortex sheets coming off 
e.g. the wing leading edge. 

Using Stokes' theorem in vector analysis, the following equation 
follows from equation (2.2.7): 
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ƒ u.ndA = ƒ (V x u).n dA = Ó u dx , n A, (2.2.8) 
A A C 

where C is an arbitrary closed curve and A any surface with C as boun­
dary. The right term of equation (2.2.8) is called the circulation along 
curve C. Let be C a closed contour that moves with the fluid, then it 
can be shown that in frictionless barotropic flow (i.e. p = p(p), thus 
excluding shocks) the circulation along streamlines is constant (Kel­
vin's theorem). Then for all streamlines that originate in a region 
without circulation, the left side of equation (2.2.8) must equal zero. 
Since C and A are arbitrary, it follows that the vorticity to must be 
zero, meaning that the flow is irrotational. Consequently, the only 
streamlines that can carry a nonzero vorticity are those that have 
passed through shocks. 

Another useful relation is the Crocco-Vazsonyi relation, that can 
be derived from equations (2.2.1) to (2.2.7): 

LOXU = grad hQ - T grad AS, AS = S-S^. (2.2.9) 

This equation shows that where grad h„ ^ 0 and/or grad AS f 0, to + 0, or 
(less likely) w is parallel to u. It can be shown that S is constant 
along streamlines outside shocks. Across shocks S jumps and increases an 
amount depending on the shock strength. For weak shocks (upstream normal 
Mach number M. ■« 1) it can be derived that 

2Y (M.-l)3 

S, - S. - x — , (2.2.10) 
1 w+ir 3 

where subscripts 1 and 2 refer to conditions directly upstream and down­
stream of the shock. Hence, across shocks grad S f 0, and consequently 
to ̂  0 according to equation (2.2.9). In transonic potential flow models 
it is assumed that shocks are weak (M < 1.3, say). The fact that ac­
cording to equation (2.2.10) the jump in entropy is only of third order 
in shock strength justifies the assumption of isentropic flow, i.e. 
S. = S„ = S throughout the flow. It can be shown that as a result of 
this assumption either mass or momentum in the direction normal to the 
shock will not be preserved exactly. 
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Under the assumption of isentropic flow the following formula for 
the pressure can be derived from equations (2.2.5) and (2.2.6), 

p = pY/ (YM2). (2.2.11) 

Next, we introduce Bernoulli's equation, which follows from the 
energy equation (2.2.1c), while using equations (2.2.la,lb) and (2.2.4), 
and states that the total enthalpy is constant along streamlines and 
consequently throughout the flow field: 

2 2 
q 7-1 p q Y p 1 

h = — + = — + = - 1 + . (2.2.12) 
2 Y p 2 Y-l P. (Y-1)"» 

The so-called isentropic formula for the density follows from equa­
tions (2.2.11) and (2.2.12): 

p - {1 + * ~ M 2 d-q2)}Y l , q2 = u V = 6iju4u.. (2.2.13) 
L co 1 1 J 

Note that this analytic formula thus replaces the energy equation in 
isentropic flow. 

Under the assumption of irrotational flow it is possible to intro­
duce a velocity potential <J> by 

u «££ i = 1,2,3, (2.2.14) 
9x 

since then w = rot u = 0. 
In this thesis the velocity u., i = 1,2,3 is split in the (given) 

freestream component u and the perturbation velocity component 3<p/3x , 
< x > l 

whence 

u. = u , + 22£_, i = 1,2,3. (2.2.15) 
3X 

An important property of irrotational flow is that in regions with 
continuous flow (outside shocks and vortex sheets) the momentum equa-
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tions are automatically satisfied if the mass conservation equation and 
the energy equation are satisfied. Therefore, the mass conservation 
equation (2.1.1a) can be used to describe the flow, which leads to the 
so-called full potential equation in conservation form: 

4 r (P6lju.) E -i- (p6ij(u . +3ï- )) - 0 (2.2.16) 
3xJ 9xJ 3X1 

with the density p given by equation (2.2.13). 

At shocks we will choose to conserve mass. Consequently, momentum in the 
direction normal to the shock will not be preserved. 

For later reference, the following quantities are finally intro­
duced. 
The pressure coefficient C is given by 

C = ^ = - ^ [{1 + JCzi M2 (1_q
2
)}Y-l L] _ (2.2.17) 

The asymptotic approximation of equation (2.2.17) for M = 0 is 

C = 1-q2 . (2.2.18) 

The local Mach number M is defined by 

»2 = 4 
a 

where the local speed of sound a is given by 

(2.2.19) 

a2 - (f*) . ^ E . ±-+ £ i (i-q
2) . (2.2.20) 

9p S = constant p M2 2 

* * 
The sonic velocity q and the sonic density p follow from equations 
(2.2.13), (2.2.19), (2.2.20) by requiring M = 1 and are given by 
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q* = { L ^ + £f} i • (2.2.21) 
(Y+1)M̂  

1 
P* = ̂ 4, + ̂  "V"1 • (2.2.22) 

Y+1 Y+1 " 

2.2.2 Boundary conditions 
On the wing surface and in the symmetry plane zero normal velocity 

is prescribed, 

u V = 0. (2.2.23) 

Equation (2.2.23) is not sufficient to fix the lift of the wing. 
This requires additionally that the flow at the sharp trailing edge of 
the wing satisfies the Kutta condition. Because air cannot flow around 
sharp trailing edges (this would require infinite centripetal accelera­
tion) the Kutta condition requires that the flow speed remains finite 
there. The condition implies that the flow leaves the wing trailing edge 
in a direction between the tangents to the upper and lower wing sur­
faces. 

The streamlines that leave the wing trailing edge constitute a vor­
tex sheet (shear layer) S , which is modelled as a contact discontinuity 
and therefore has zero normal velocity and continuous pressure, i.e. 

u n. = 0 on upper and lower side of S , (2.2.24a) 
l r r w 

I p I = 0 on S . (2.2.24b) 
w 

The shape of the vortex sheet is to be determined as part of the solu­
tion. Equations (2.2.24) imply that there may be a jump in tangential 
velocity across S in the 'sense that the magnitude of the velocity is w 
the same on both sides of S , but its direction is different. Defining 

w 
the mean streamline direction s as the direction of the average of the 
tangential velocities on S , the streamline direction is s + t on one 

w side of S and s - t on the other side of S , where t is normal to s and w w 
n, see also figure 1.2.2. We can then replace the nonlinear boundary 
condition (2.2.24b) by the (equivalent) boundary condition 

I u1s. 1 = 0 along s in S , (2.2.25) 
i w 
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where S is still to be determined as part of the solution. w K 

Equations (2.2.24a) and (2.2.25) prescribe three conditions, while 
only two can be satisfied by the potential flow model. Therefore the 
conditions across the vortex sheet are simplified further by assuming a 
(fixed) shape of the vortex sheet and weakening the conditions across 
the vortex sheet. In this thesis we replace the two conditions of 
equation (2.2.24a) by a zero jump in normal mass flux. Then the con­
ditions across the vortex sheet become 

I puXn. 1 = 0 on S , (2.2.26a) 
l w 

II u1s. ] =0 along prescribed directions s in S , (2.2.26b) 

with the position of the directions s prescribed in advance. Here s is 
chosen to coincide with the computational coordinate lines (to be 
introduced in section 2.3) that leave the wing at the trailing edge, let 

2 3 us say lines (£ , £ ) = constant, and S is specified as the surface w 
that is swept out by these lines. Using (cf. equation (2.2.14), 
(2.2.15)) 

u .x1 + «p (2.2.27) 

it follows that equation (2.2.26b) is satisfied if we impose 

B V ]| , 2 3 = r| 2 3 , r| 2 3 - I «p ] crailing I 2 3 (2.2.28) 
% »€ *% S >? £ »£ edge C »S 

In many computational codes a zero jump in normal velocity instead 
of a zero jump in normal mass flux is prescribed across the vortex 
sheet. This means that equation (2.2.26a) is replaced by 

(I u V I = 0. (2.2.29) 

As a result, in these codes mass will not be preserved across the vortex 
sheet. Because we will have exact mass conservation in the rest of the 
flow, we choose to maintain mass conservation also across vortex sheets. 
As a result, the normal velocity will be discontinuous across the vortex 
sheet. 
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In practice, the solution for the flow field (e.g. shock position, 
lift) is influenced to some extent by the direction in which the vortex 
sheet leaves the wing trailing edge. Because the flow solution is nearly 
singular at the wing trailing edge, an accurate numerical solution 
method will require a high grid resolution there. 

Finally, the far field boundary conditions are formulated as 
follows. In the far field, except downstream, the velocity perturbation 
potential <p is set to zero, 

ip = 0. (2.2.30) 

Downstream the flow is required to be undisturbed in a prescribed 
direction sw, e.g. the freestream direction: 

s 1 ^-r = 0. (2.2.31) 
9x 

- * ■ This condition implies that all prescribed directions s in equation 
-* (2.2.26b) must lie in the direction s at downstream infinity. 

Equations (2.2.23, 2.2.26a, 2.2.31) can be regarded as Neumann type 
boundary conditions. Equation (2.2.30) is a Dirichlet type boundary 
condition. Equation (2.2.28) is a periodic boundary condition. 

2.3. Flow equation in general coordinates 

2.3.1 General coordinates 
The flow equation (2.2.16) will be solved in general coordinates £ 

using the mapping 

x1 - x 1(C a), i - 1,2,3 , a = 1,2,3. (2.3.1) 

Define the Jacobian matrix H as 
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H = [—] = 

3x 3x 3x 
1 2 " 

H n se 
3x 3x 3x̂  
1 2 

3? 3C 3C" 
3x 3x 3x~ 
. 3£ 3C 3C 3J 

(2.3.2) 

and the Jacobian as the determinant of H, 

h = det [H]. (2.3.3) 

Then the contravariant metric tensor G is defined as 

CG] = [HTH]-1 = [giJ] = [ 6 a 6 ^ ^ ] 
3xa 3xS 

Note that G is symmetrie. 

11 12 13 
g g 8 
21 22 23 
g g g 
31 32 33 
g g g 

Covariant differentiation of scalars is defined as 

(2.3.4) 

(2.3.5) 

In this thesis we will not explicitly need the covariant differentiation 
of vectors. 
The contravariant and covariant velocity tensors Ua and U are defined 

a 
by 

i u« = i!L u1, o = 
3x 

3x 
u . . 

3Ca i 

(2.3.6) 

Note that capital letter variables always denote tensors defined on the 
^"-coordinate system, while the corresponding small letter variables 
denote vectors defined on the x -coordinate system. 

The following relation can be derived from equations (2.3.4) and 
(2.3.6), 

U ^ g ^ O (2.3.7) 
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2 Flow equation and boundary conditions in general coordinates 
According to the principles of tensor calculus, the flow equation 

in general coordinates is obtained by writing it in the invariant scalar 
form, which reduces to the Cartesian form in Cartesian coordinates. 
Along this line the mass conservation equation (2.2.16) formulated in 
general coordinates becomes 

l^-r (phU1) = 0. (2.3.8) 
h 3C1 

The covariant freestream velocity tensor Um. is given by 

n d^ °°i .ci "a . (2.3.9) 
OS 

The covariant form of (2.2.15) is 

U. = U . + ip . (2.3.10) 
l roi ,i 

and hence 

U1 = gij (U + «p ). (2.3.11) 
J • J 

The velocity q is obtained from 

q2 = ü V = gijU.U.. (2.3.12) 
x ° l j 

The boundary conditions (2.2.23), (2.2.26a) can be written in 
general coordinates using the identity 

u V = UaN . (2.3.13) 

The boundary condition (2.2.31) can be written in general coordinates 
using equation (2.3.6): 

S1 M ? ^ = o. (2.2.14) 
" ax1 Ha 
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Linearization of the full potential equation 
For later use, we will derive the linearization of the flow equa­

tion (2.3.8) by considering a perturbation around a given potential <p. 
Hence, we put 

<P = <p + "P, U1 = U 1 + 6U1, p = p + 6p, (2.4.1) 

with 
a 

0i = gij o . g ^ l i - u + 5 . ) , (2.4.2) 

i 
p = {1 + ï|i M 2 (1-52)} Y_1. q2 = ÜiÜi. (2.4.3) 

For example, ip = 0 for linearization around the freestream flow. 
Linearization means that higher order terms are neglected. Taylor expan­
sion gives: 

óU. = <P . , ÓU1 = g 1 ^ . (2.4.4) 
l , i , i 

6q2 = 6(U1U.) = Ui6U. + Ü.ÓU1 - Ü1* . + Ü.g 1^ 
i i i »i i »J 

(2.4.5) 

-2Ü f , 
1 

6p = 6({1 + ̂ - M 2 (l-q2)}Y_1) (2.4.6) 

-±--1 
= JM2 (1 + ̂ M 2 (l-q2)>Y_1 6(-q2) 

= JM2 (p)2_ï (-2Ü1 * ) = -p 32 \i> 
3 - Y-l 2-2 where the relation (p) = M a following from equations (2.2.13, 

2.2.20), has been used. 
Perturbation of the flow equation (2.3.8) around its solution <p 

gives 
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6 è -ï-r (phU1)) - r-TT (MpfiU1 + \J%)) (2.4.7) h n1 h *e 
n 3C a^ ,J 

This is the linearized full potential equation in conservation form. In 
order to determine the character of equation (2.4.7), it is written in a 
quasi-linear form (which is not in conservation form): 

(glj " }Ur) * <4 - f(«P). (2.4.8) 
a ,1J 

where f(ip) is not determinant for the character of the equation, 
Equation (2.4.8) is written in flow-aligned orthonormal coordinates by 
choosing 0 / 0, Ü = 0, Ü = 0 and g1"* = 0 if i f j . Then equation 
(2.4.8) can be written as 

11 Ü U 22 13 
9 

gH (1-^) \ 1 1
 + B 2 2 \ 2 2 + 833*.33 = a 

11 -2 22 "H -
g11 (1 - MZ) 1 u + z * 22 + g * 33 = f(«P). 

Equation (2.4.9) is elliptic in the subsonic part of the flow (M < 1), 
hyperbolic in the supersonic part of the flow (M > 1) and locally para­
bolic at sonic surfaces (M = 1). 
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3 GRIDGENERATION 

3.1 Gridgeneration process 
Curvilinear, boundary conforming (boundary fitted) grids will be 

used to discretize the physical space around the wing. The computational 
grid will be of C-H topology (figure 3.1.1), i.e. will consist of a 
number of grid planes normal to the spanwise direction of the wing; in 
each grid plane the chordwise (wrap-around) gridlines resemble a "C". 
The coordinates of the grid points will be generated using shearing 
transformations, conformal mappings, scaling transformations and trans-
finite interpolation, employing various stretching functions. The com­
putational domain, which will generally be called computational space in 
this thesis, will be a rectangular box of 2NI*NJ*NK computational cells. 
Of these cells, NI*NJ*NK cells are situated in the upper as well as in 
the lower part of the physical space (i.e. above and below the wing). 

The wing is mapped from xyz-space onto the computational space as 
follows. First a line (x (y),z (y)), called singular line, is chosen 

s s 
inside the wing and extended beyond the wing tip, cf. figure 3.1.2. 

Next, the following shearing transformation is carried out to 
remove the wing-sweep: 

X = x - x (y) 
s 

Y = y (3.1.1) 

Z = z - z (y) s 

which gives the type of configuration depicted in figure 3.1.3. 

Subsequently, the wing is unfolded by applying in each XZ-plane the 
so-called square-root mapping, which is a conformal transformation: 

(X + iZ)2= 2(X + iZ) (3.1.2) 

Y = Y 

which results in the situation sketched in figure 3.1.4. 
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PHYSICAL SPACE 

COMPUTATIONAL SPACE 

Fig . 3 . 1 .1 Curv i l inea r boundary conforming gr id of C-H topology 
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SINGULAR LINE 

Fig . 3 .1 .2 Choice of s ingu la r l i n e (x (y ) , z (y)) 
s s 

z(>-

SINGULAR LINE 

Fig. 3.1.3 Wing after shearing transformation 
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TRAILING EDGE TE" 

TRAILING EDGE TE 

Fig. 3.1.4 Computational space after square-root mapping 

i 

-BRANCH CUT 

TE" 
/ 

Y<! 

+ i 

-WING 

TE 
: / 

-BRANCH CUT 

Fig. 3.1.5 Computational space after the mapping described 
by equation (3.1.3) 
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The square-root transformation requires the specification of a 
branch cut. This branch cut starts at the singular line, leaves the wing 
trailing edge in a direction between the tangents to the upper and lower 

-»■ 

wing surfaces and must lie in the direction s at downstream infinity, 
<» 

cf. equation (2.2.31). Across the branch cut (artificial) continuity 
type boundary conditions will be specified in the next section. 

Next, a scaling and shearing transformation is applied, which maps 
the wing profile and the branch cut, i.e. S(X,Y), into the plane Z = 0, 
and makes the wing planform rectangular: 

X = - ^ — , C(Y) = X if X > 0, C(Y) = X „. if X < 0, 
C(Y) TE 

Y = Ï/Y , (3.1.3) 

Z = Z - S(X,Y). 

This results in the situation presented in figure 3.1.5. 

After the specification of outer dimensions for the XYZ-region 
and some more scaling and stretching transformations the computional 
space depicted in figure 3.1.1 is obtained. 

Next, the computational grid is generated as follows. First, the 
computational space is divided into a number of subspaces. Secondly, 
grid point distributions are specified on the edges of all computational 
subspaces. Thirdly, the faces of all computational subspaces are covered 
with grid points using the grid points on the edges of the subspaces and 
applying transfinite interpolation. Finally, the interiors of the sub-
spaces are filled with grid points using the grid points at the faces 
and applying transfinite interpolation. In all steps, a variety of grid 
stretching facilities is available, while care is taken that geometric 
derivatives are continuous over computational subbox interfaces and over 
the branch cut. Finally, the inverse transformation from the discrete 
XYZ-space to the physical xyz-space is carried out, i.e. the (x,y,z)-
coordinates of the grid points are computed. 

A typical grid resulting from the gridgeneration process described 
above is shown in figure 3.1.6. The grid is boundary conforming to the 
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GRID STRETCHING TOWARDS 
FAR FIELD BOUNDARIES 

BRANCH CUT 

WING 

25 CHORDS J 
a) Grid plane perpendicular to the wing (? |3—plane) b) Grid plane distribution in spanwise direction 

(|2-direction) 

d Detail of grid plane near the wing (£' ^J—plane 

Fig. 3.1.6 Computational grid around DFVLR-F4 wing 
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wing and reasonable orthogonal in planes perpendicular to the wing sur­
face. Most skewness occurs in the spanwise direction due to the sweep of 
the wing (figure 3.1.6b). On the whole, grid skewness is moderate. The 
grids have very fine, almost square, meshes near the wing surface 
(figure 3.1.6c) and are highly stretched towards the far field 
boundaries (figures 3.1.6a, 3.1.6b). 

In the gridgeneration process care has been taken to make the grid 
boundary conforming to the wing. However, no efforts have been made to 
make the grid boundary conforming to the wing tip, i.e. the wing tip 
contours are not exactly represented by grid lines. The grid at the wing 
tip can be made boundary conforming by using a grid which has C-0 in­
stead of C-H topology. The generation of such a grid is, however, more 
complicated. 

3.2 Boundary condition on branch cut 
The mapping (3.1.2) requires a branch cut to make it one-to-one. 

Across the branch cut continuity of potential and normal mass flux are 
prescribed: 

tt <P 1 = 0 , 

[ p u V 1 = 0. (3.2.1) 

In most, if not all, computational codes the vortex sheet is chosen to 
coincide with the branch cut. In that case equation (3.2.1) is replaced 
by equations (2.2.26a) and (2.2.28). 
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4 FINITE VOLUME DISCRETIZATION 

4.1 General remarks 
In this chapter a description will be given of the discretization 

of the full potential equation (2.3.8) on a curvilinear grid. A so-
called finite volume (FV) scheme will be used. Alternative discretizat­
ions could have been a finite difference (FD) scheme or a finite element 
method (FEM) scheme. 

When using a FD scheme, derivatives in the partial differential 
equation (pde) are directly approximated by divided differences on the 
given grid. When using FV or FEM schemes, the grid is considered to con­
sist of a finite set of cells which cover the computational space. With 
FV, the scheme follows from an integration of the pde over a control 
volume; with FEM the discretization follows from a variational formula­
tion of the pde over a control volume. FEM schemes are often applied 
using unstructured grids, while FV schemes are usually applied using 
structured grids, i.e. each interior cell has the same ordering with 
respect to its neighbours. This restriction has the advantage that the 
generation of the system matrix is cheaper and that faster solution 
methods are available. Compared with the FD scheme, the FV scheme can 
best be considered as a well chosen FD scheme, which been formulated 
such, that it facilitates an efficient implementation, viz. requiring 
only one (expensive) velocity/density evaluation per cell, while a 
FD scheme will generally require three such evaluations. Compared with 
both the FD and the FEM scheme, the FV scheme has the advantage that a 
conservative scheme, admitting weak solutions of the pde (shocks), is 
very easy to obtain. The latter is essential to obtain the correct shock 
strength (see Hoist, Slooff, Yoshihara and Ballhaus [1]). 

The FV scheme used in this thesis is a slightly modified version of 
the scheme introduced by Jameson and Caughey Q1J. Well known codes in 
computational aerodynamics applications, such as FI.027 and FL030, are 
based on this scheme. The scheme avoids explicit use of the smoothness 
of the grid and/or of the solution by performing a proper averaging of 
geometrical and solution dependent quantities. The scheme is a combina­
tion of a basic scheme, which follows from the Bateman variational 
principle in a systematic way, and a correction term (called coupling 
term), to avoid decoupling of even and odd grid points. In this thesis a 
coupling term is presented which, compared with the coupling term by 
Jameson and Caughey [1], retains the favourable properties of the 
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original scheme with respect to avoiding explicit use of smoothness 
properties of the grid and the flow solution. 

4.2 Notation 

In this chapter the following notation will be used: 

- Indices referring to grid points will be abbreviated as follows, e.g.: 

( ) , . .. .. is abbreviated to ( ) , (4.2.1) 
i+p,J+q,k+r pqr 

( ) . , ., .. ,. is abbreviated to ( ) .. 
i+p+l,j+q,k+r p+l,qr. 

- (ab) is the abbreviation of a b . 
pqr pqr pqr 

- 6, and 6, are the central and backward difference operators which, for 
1 1 L 
the E, -direction, are defined as follows: 

- central difference operator: ÓI'PQQQ ■ *IQQ - ^ I Q Q ' (4.2.2) 

- backward difference operator: t ^ ^ = *0QQ - <P_100> ( 4 - 2 - 3 ) 

The backward difference operator will also be referred to as upwind 
difference operator. 
It is convenient to introduce also the central difference operator 6. 
over two points which, for the E, -direction, is defined by 

Vooo = i(y,ioo - " - I O O ^ (4-2>4) 

- U. is the averaging operator in the i-direction which, for the E, -dir­
ection, is defined by 

^1*000 = *(*ioo + ip-ioo)- (4'2-5) 

- Products of averaging operators will be denoted by 

p12 E uly2 E U2 U1' (4.2.6) 
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Averaging and differencing operators commute: 

ui6j E 6 j V (4.2.7) 

- In case an operand is composed of more than one variable, it will be 
placed between parentheses, e.g. y.(a+b) or u,(ab). 

- 6. is a composite differencing/averaging operator: 

i E 6iwjV i * j * k * i# 6, = (4.2.8) 

4.3 Description of computational grid 
The flow equation, equation (2.3.8), is solved in curvilinear coordi­

nates E , a * 1,2,3. The grid is given by a set of computational cells, 
called finite volumes, in x -space, which are the images of unit cubes 
in £ -space (figure 4.3.1). These unit cubes are called primary cells. 

Fig. 4.3.1 Finite volumes in x -space and £X-space 

The boundaries of the computational domain are chosen to coincide 
with primary cell boundaries. 
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For each primary cell, a local Cartesian coordinate system 
-1 -2 -3 (£ ,£ ,£ ) is defined with its origin at the cell centre. The eight cor-

-1 -2 -3 ners have local coordinates (£ ,£ ,£ ) = (±l»±J»±i). 
The velocity disturbance potential w and the coordinates x are 

given in the corners of the cell. In each computational cell trilinear 
interpolation is used to compute derivatives of variables: 

o 
x = 8 Z ^ (4 + ^i? )(^ + C ^ X4 + ^ )' (4.3.1a) 

o 
1 -1-1 1 -1-1 1 -3-3 » = 8 E ip. (f + 575 )(T + ei5 )(T + CTC ), (4.3.1b) 

i=l 1 *» 1 H X <♦ 1 

where the subscripts i = 1 8 refers to the cornerpoints of the 
cell. 

Geometrical quantities will be computed as follows. In primary cell 
centers the computation of the elements of the Jacobi matrix, equa­
tion (2.3.2), follows directly from equation (4.3.1a) and is given by 

(-^ooo ■ Vooo- (4-3-2) 

In boundary grid points the geometrical quantities are computed in 
a standard way using central differences whenever possible. For example 

3 
at a £ = 0 boundary these quantities are given by 

(77^ooo = Vooo' a * 3' (4'3-3a) 

^ 0 0 0 = xJoi - xooo- (4'3-3b) 

The Jacobian h, representing the volume of the primary cell in x -space, 
and the contravariant metric tensor g can be computed subsequently 
using equations (2.3.3) and (2.3.4) respectively. 

The computation of potential derivatives in primary cell centers 
follows directly from equation (4.3.1b) and is given by 
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Fig. 4.3.2 Three-dimensional arrangement of primary and secondary cells in 
£a-space 



-32-

'SbL. )nnn = Ó « W • (A. 3.4) -_a'000 V O O O ' os 

In each boundary grid point, e.g. a £ = 0 boundary, potential de­
rivatives are computed similarly to geometrical quantities, equa­
tion (4.3.3), from 

(7^ooo = Vooo» a ' 3 ' (4-3-5a) 

(^3}000 = ^OOl " «"OOO" (4.3.5b) 

Freestream velocity components u can be specified in each grid 
<xt(X 

point (and will generally be constant). Using trilinear interpolation, 
their value in primary cell centers is computed by averaging: 

^-o'oOO = p123(u»a)000- (4-3'6) 

For the purpose of discretizing the flow equation, secondary cells 
are introduced. The secondary cell centers are the cornerpoints of the 
primary cells; the cornerpoints of the secondary cells are the primary 
cell centers, see figure 4.3.2. 

4.-4 Discretization of flow equation 

4.<J.1 General remarks 
The flow equation (2.3.8) is represented symbolically as 

Up = 0. (4.4.1) 

The discretization of this equation is denoted as 

Lh«ph = 0. (4.4.2) 

9 K 
In subsection 4.4.2 the description of the 0(h )-accurate operator L 
will be given. In the subsections 4.4.3, 4.4.4 and 4.4.5 the discretiza­
tion scheme will be extended as follows, 
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(Lh + Lh . + 1* ) <ph = fh, (4.4.3) 
coupl bias °° 

where L , is an 0(h )-accurate operator to avoid decoupling of even coupl r , 
and odd grid points (subsection 4.4.3), L, . is an 0(h)-accurate oper-

D X3S 
ator used in the supersonic region of the flow to suppress expansion 
shocks (subsection 4.A.4) and f is an 0(h )-accurate source-term which 
compensates the freestream discretization error in the far field (sub­
section 4.4.5) . 

2 Finite volume discretization 
The basic finite volume (FV) scheme follows directly from the 

Bateman variational principle, formulated here as follows: 

"A stationary point of the functional 

J[ip] = fff p h d ^ d e 2 ^ 3 - ff ipF hd3ft (4.4.4) 
ft 3ftp " 

with p defined by 

P = -4- P7 (4.4.5) 
YMco 

and 

1 
p = {1 + Ĉzi M^ (1 - U*U )} Y _ 1, (4.4.6) 

Ü 1 - gijU ; u = U + ^ - . (4.4.7) 

is a solution of the full potential equation." 

In order to satisfy the boundary conditions, in equation (4.4.4) F is 
the prescribed mass flux on <JSi , and <P is chosen to belong to the class 

r 
of continuous and almost everywhere differentiable functions satisfying 
cp - <P on 3ft\3ft . The boundary 3ft is assumed to be smooth. 

The Bateman principle is justified as follows. Variation of equa­
tion (4.4.4) with respect to ip gives, using equation (2.4.6), 



-34 -

ÓJU3 = JCip + ó<p] - JCv] = 

= - fff phU1 ~ 2 dC ldC2dC3 - ff óipF hd3ft = O (4 .4 .8 ) 
n se anF

 n 

The v a r i a t i o n of J i s taken over <p s u f f i c i e n t l y smooth, whence p a r t i a l 

i n t e g r a t i o n i s allowed in ( 4 . 4 . 8 ) . Appl ica t ion of the divergence theorem 

gives 

fff 6cp-^r(phUi)dCidC2d?3 + ƒƒ 6<pphu1n.d3n - ff 6<pF hddft = 0, (4.4.9) 
a 3S1 3f>+9n x 3ft_ n 

s r 

where n. is the outward unit normal on the boundary 3ft+3ft and 3ft are l . s s 
surfaces across which phU is not differentiable, such as shocks. 
Equation (4.4.9) must be satisfied for all smooth enough -:, and hence 

3 i — r (phi' ) = 0 in the interior of ft 
3C1 

puXn. = F on 3ftp (4.4. 10) 

ou n. must be continuous on 3ft 
1 S 

<+>*«> (i.e. 6(p = 0) on 3ft\3ft 

Consequently, the flow indeed satisfies the boundary conditions and the 
full potential equation (2.3.8) outside shocks, while mass is conserved 
across shocks. 

The Bateman variational principle will now be used to derive a dis­
cretization of the full potential equation. The potential ip will be 
chosen as follows: 

v = •i.J.k Xi,j,k 
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where the pyramid function A = 1 in grid point (i,j,k), zero in all 
i > j » K 

other grid points and of trilinear form. The values of <p. , , are such 
that <P ■ <f> in the grid points of 3fi\3Q . The requirement 
3J[ip]/3y>- - r ■ 0 then gives (switching to Greek indices to denote i • J »k 
differentiation) 

3 A 
ƒƒƒ p h u a i'J'k dC 1d€ 2dC 3 " /ƒ AT T r F hd3ft 
n 3£a 3fiF x'J'k n 

ƒƒ AT T r F hd3ft = 0. (4.4.12) 
3fiF 1 , J , k n 

The FV scheme follows directly from equation (4.4.12) by consider­
ing the contributions from the eight primary cells of which (i,j,k) is a 
cornerpoint (figure 4.3.2) to the left integral of (4.4.12). It follows 
from equations (4.4.9) and (4.4.12) that the FV scheme represents an 
integration of the full potential equation over a control volume, viz. 
the eight primary cells of which (i,j,k) is a cornerpoint. 

In the interior of Ü the fully equivalent finite difference formu­
lation of equation (4.4.12) is 

1 ó.tPhU1) = 0, (4.4.13) 
U123h000 X 

with P given by equation (4.4.6) and U given by equation (4.4.7). The 
derivation of geometrical and solution dependent quantities, necessary 
to compute p, U and h, has been given in section 4.3. 

Equation (4.4.13) represents a discrete mass balance over a secon­
dary cell. Consequently, mass is conserved over a secondary cell : the 
scheme is conservative. The contravariant (mass) flux tensor F = phU 
is obtained on each face of the secondary cell by averaging four contra-
variant mass flux tensors computed in the corners of the cell face. 

Figure 4.4.1 gives a graphical interpretation of the scheme 
(4.4.13) at a boundary with prescribed Neumann boundary conditions. 
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i3 

1,-1.0 

'F '0,0,0 

Fig. 4.4.1 Three-dimensional representation of the FV-scheme at a boundary 
with prescribed Neumann boundary conditions 

4.4.3 Coupling operator 
The scheme just presented has the undesirable property that odd and 

even grid points are decoupled when the scheme is applied to incompres­
sible flow (M = 0) on a uniform grid with square meshes. In the two-
dimensional case we then obtain the so-called rotated Laplace scheme 

i (•_!.-! + *1,-1 " S)0 + *-i,l +»1,1 } = °* (4.4.14) 

which is known to produce oscillatory ("sawtooth") solutions, because 
odd and even grid points are decoupled. 

Although the decoupling problem formally cannot occur for compress­
ible flow, where odd and even grid points are coupled implicitly in a 
nonlinear manner by the density relation, the phenomenon is suppressed 
rigorously by adding a so-called explicit coupling term to the scheme. 

It can easily be verified that on a uniform grid with square meshes 
the rotated Laplace scheme, equation (4.4.14), and the standard Laplace 
scheme 
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are related as follows: 

«1(6ij8j») - e 6klókó.(6ij616j«)) = 6±(6ij6jV) , i + k (4.4.16) 
rotated coupling term standard 
Laplace Laplace 
scheme scheme 

with e = \. Note that e = 1/3 yields the nine point fourth order accu­
rate Laplace scheme. 

There are two ways to implement the above coupling term: 
1. Shift in every secondary cell the calculation of the mass flux 

tensor F on a £ -face (face perpendicular to the £ -direction) 
from the cornerpoints to the centerpoint of that £ -face. For 
example, on a £ -face with centerpoint (J,0) the flux tensor 
F,, = 6 6-Vii is modified by adding a term 

?io " f i i - ö!o - Bii ■ filjVio - « l 3Vii (4-4-17) 

This approach is followed by Jameson and Caughey [1]. (In this 
reference also the three-dimensional formulation can be found.) 

2. Shift in every secondary cell the calculation of the divided 
£ -difference of the potential, i.e. 6.ip, cf. equation (4.3.4), 
from the cornerpoints of a £ -face to the centerpoint of that 
£ -face. For example, on a ^ -face with centerpoint (J,0) the 
divided potential difference S.tPiit i=l, is modified by adding a 
term 

6i<pJO " (5i,pJi * l - l' (4.4.18) 

This approach is followed in this thesis. 

In case of in incompressible flow (M =0) on a uniform grid with square 
00 

meshes, the above two implementations are identical. In case of 
compressible flow on a curvilinear grid, however, the first 
implementation is costly, because the calculation of the mass flux 
tensor in the centerpoint of a £ -face (F,n in equation (4.4.17)) 
requires extra evaluations of the density. Therefore, the coupling term 
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is added by Jameson and Caughey [1] in a linearized form (see also 
section 2.4). For example, equation (4.4.17) is written as 

r l o - r ! i - ( p u l ) i o - <<Ai 

- - ^(ACPU1)!!) , i = 1. j = 2, 
Z 3 £ J " 

l,-, i k Da"Ülc
x 3 3 x . , » 

- > 2 ( p ( 8 " — > 3 3 V ) H . i » i . J - 2 , 

a ot, ot, 

- i - k 

3 

It is usual to add only the k=i-part of this coupling term to the finite 
volume scheme. Likewise, only the i-part of the coupling term (4.4.18) 
is added to the fiiiite volume scheme in the general form of its formu­
lation. 

The coupling term presented here has the advantage that it does not use 
the smoothness of the flow quantities, as is required for the lineari­
zation applied in equation (4.4.19). In any case, however, the coupling 
term should be added multiplied by a small factor < (0£K£1) only, so 
that its "smearing" effect on the solution is minimized. In the experi­
ments (chapter 8) <=.1 has been chosen. 

If the grid is sufficiently smooth, the coupling term does not 
affect the order of accuracy of the FV-scheme, i.e. the scheme remains 
second order accurate. 

4.4.4 Directional bias in hyperbolic regions of the flow 
In supersonic regions of the flow, a bias has to be added to the 

discretization to suppress non-physical expansion shocks. The scheme 
described here has been adopted from Osher.Hafez,Whitlow [1] and closely 
resembles the scheme used by Boerstoel and Kassies [1]. In the upwind 
scheme which follows, the mass flux pq is retarded against the flow 
direction if a computational cell is supersonic. At sonic surfaces and 
shocks special transition operators are applied to suppress expansion 
shocks and to avoid shock smearing. The contravariant flux tensor 
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¥±= (pq) h — (4.4.20) 

is evaluated in primary cell centers as follows: 
. Both actual cell (i,j,k) and upwind cell subsonic 

<F1)OOO - ̂ o o o hooo ( i f W (4-4-21) 

Actual cell supersonic, upwind cell subsonic (sonic surface): 

(F%oo " <'V)000
 hooo < r W (4-4-22) 

Actual cell supersonic, upwind cell supersonic: 

(F\00 = (^upwind h000 ( f W (4-4-23) 

where upwind means retarded over a distance h against the 
U -direction, for example, if U > 0, (P^)UpWin<j 

= (pq)-l,0(T 
Actual cell subsonic, upwind cell supersonic (shock surface); we con­
sider two possibilities: 

- Enquist-Osher shock approximation: 

<Fi>000 = ((p«>000 + ^upwind " <P*«»*>000)h000 ( f W (A-4"2A) 

- Godunov - shock approximation: 

0 = ((pq)000 - (Pq)upwind) / (P000 " P u p w i n d ) . (4.4.25) 

i_f (a £ 0) then use equation (4.4.23) 

else use equation (4.4.21) endif, 
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where o is the shock-speed in the face between point (i,j,k) and its 
upwind point. The use of o as a supersonic/subsonic delimiter at the 
shock follows from the relation 

^ = <£±) q. (4.4.26) 

The flux pq is continuous at the shock and it follows from equation 
(4.4.26) that it has its maximum at sonic conditions. 

It appears that in transonic potential flow calculations the 
Enquist-Osher shock approximation and the Godunov shock approximation 
give nearly the same numerical results. In this thesis the Godunov 
shock approximation will be used, because of its a somewhat better 
physical background. 

Using results from section 2.4 it can be derived that the mass flux 
biasing scheme described above adds a term 

1 9 . k i l 8 , . , U1 , 

P (1 - M ) AC (♦ , + * 2 + d> 3) (4.4.27) 
ss£ ss£ SSÉ; 

to the discretized differential equation in the supersonic parts of the 
flow. This term is usually called an artifical viscosity term. As a re­
sult, the discretization becomes first order accurate in supersonic 
parts of the flow. At shocks the flow is approximated by a weak solution 
of the partial differential equation. 

Freestream consistent scheme 
A deficiency of the finite volume scheme described before is that 

it is not identically satisfied for the freestream flow values, i.e. the 
substitution of the freestream velocity field leads to a nonzero 
residual in the flow discretization, equation (4.4.13). There are 
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basically two ways to avoid this problem. One approach is to devise a 
scheme that is identically satisfied by the freestream condition. For 
two-dimensional flow such a scheme has been used successfully by Flores, 
Holst, Kwak and Batiste [1]. However, it is also shown in this reference 
that generalization to three dimensions will be cumbersome. 

Another possible approach is the addition of a source term to the 
discrete flow equation which cancels the leading term of the freestream 
flow discretization error. It can be shown that this source term does 
not to affect the formal accuracy of the scheme. 

Here, a hybrid approach will be followed. The density is evaluated 
such that the correct value p = 1 is obtained for the freestream flow; 
the flow equation will be discretized following the second approach by 
adding a source term. 

The freestream velocity distribution is described by 

u 1 = u 1 , „ = 0. (4.4.28) 
00 

Then, according to equation (2.3.6) 

u.= Il_ u = ÏL. 1*_ u = u ., (4.4.29) 

where 9 denotes divided differences of geometrical quantities. Conse­
quently 

q = u u. = u u . = l (4.4.30) 
1 oo col 

so that p is 1. Hence, the scheme is freestream consistent with respect 
to the calculation of the density p. This is due to the splitting of the 
velocity in a freestream part u . and a perturbation part 3ip/9x . 

col 

A freestream consistent discretization of the flow equation 
(4.4.13) will be obtained by adding the following source term f to the 
right side of the finite volume scheme: 

f = r 6.(p hU 1). (4.4.31) 
co n i oo oo 
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With the freestream value p = 1 and U according to equation (2.3.6) we 
00 OO w * 

obtain 

f~ = 5 V h ^ ^ %>> <4-*-32> 
3x 

Consequently, the source term depends only on the type of discretization 
of the flow equation (2.3.8) and the geometrical quantities (4.4.29), 
but not on the flow solution. For incompressible flow (p = 1), the 
source term f completely cancels the freestream flow discretization 
error, while for compressible flow only the leading term of the free-
stream flow discretization error is cancelled. 

It is shown by Flores, Holst, Kwak and Batiste [l] and also by 
Melnik and Mead [1] that this approach can lead to a substantial 
improvement in the numerical accuracy of the discretization. The best 
results are obtained, however, if special schemes are devised which are 
satisfied identically for freestream conditions, as has been shown by 
Flores, Holst, Kwak and Batiste [1]. 

It can be demonstrated that the source term f is particularly 
effective in the far field region of the flow, where the grid is 
coarse and hence the geometric differencing is inaccurate. Near the 
wing, where the grid is very fine, the influence of the source term f 
is negligible. 

The freestream correction source term f is applied in interior 
grid points only, as its implementation in boundary grid points with 
prescribed Neumann boundary conditions is complex. 

4.5 Boundary condition discretization 
Boundary conditions other than Dirichlet conditions are implemented 

using a so-called dummy grid point approach. Adjacent to each face of 
the computational box a layer of dummy primary cells is defined (figure 
4.5.1). The flow in the primary cell layer at the boundary is mirrored 
in the dummy primary cell layer as follows (consider a boundary £ = 0 ) : 

(glj)00,-j := 800,J Ü i = J ££ (i ^ 3 and j ?f 3), (4.5.1a) 

(S3j)00,-i : = - 4 5 , i Ü J * 3 , (4.5.1b) 
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b) Flow discretization at a boundary using dummy grid points 

Fig. 4.5.1 Flow discretization at boundary with prescribed Neumann boundary 
condition pu n=F Q prescribed (two-dimensional view) 
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(h)oo,-i := ( h ) o o , i ' 

(ü-i>oo,-i := (u<*>iVi' 't" 

'Woo.-i '--«Woo.r 

(4.5.1c) 

(4.5.ld) 

(4.5.1e) 

¥ OO.-l •"= <P 00,1' (4.5.If) 

As a consequence, a homogeneous boundary condition F = pu = 0 is 
automatically satisfied. Therefore in this case the flow discretization 
over the boundary secondary cell, figure 4.5.1a, given by equation 
(4.4.12), can be replaced by the flow discretization over a complete 
boundary secondary cell, figure 4.5.1b, given by equation (4.4.13). It 
follows that the discretization at the boundary is the same as in the 
interior, which is a great advantage in code development. 

The inhomogeneous boundary condition pu = F ^ 0 is implemented by 
adding a source term to the flow discretization over the complete boun­
dary secondary cell, given by equation (4.4.13): 

1 M p h U 1 ) ^ = G , 
u123h000 X 0 0° " 

(4.5.2) 

where the source term G is nonzero only at the boundarv. The term G is 
n • n 

obtained by formulating equation (4.4.12) both for the upper and lower 
half of the secondary cell sketched in figure 4.5.1: 

fj 6 (Phui>000 
y 123 000 

r (ƒƒ F hdSfi) = 0,(4.5.3a) 
upper U123 000 3Q n 

half 
of c e l l 

^h~o '* <phuI)°°° + — * r — (ƒƒ (-F )hdan) = o, 
lower w123 000 dü (4.5.3b) 
half 
of cell 

where the minus sign in front of F in equation (4.5.3b) follows from 
the mirroring of the flow (and consequently also of the specified in­
flow) across the boundary. By addition of equations (4.5.3a) and 
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(4.5.3b) it follows that in equation (4.5.2) G is given by n 

(ƒƒ F hdBfi). (4.5.4) 
n M123h000 80. " F 

Across the branch cut the vortex sheet boundary condition (equation 
(2.2.26a)) 

D pu ] = 0 (4.5.5) 

is implemented as follows. At the branch cut a transpiration flux 
F * pu is specified which serves as an in/outflow on the upper/lower n n 
side of the cut. The value of F is computed from available data near 

n r 

the cut. Subsequently the system is made determinate by prescribing the 
correct potential jump across the cut (equation (2.2.28)): 

II <p I = r (4.5.6) 
t.e. 

In the downstream Trefftz-plane equation (2.2.31) is implemented as fol­
lows. Wi 
(4.5.1) 
lows. We consider a boundary £ = 0 and define instead of equations 

<*%,oo := (*ij>i.oo • (4-5-7a) 

( h ) - i , 0 0 '•' 0»)|,0Q ' < 4 - 5 - 7 b ) 

<u~i>-j,oo : = CVj.00 ; ( 4 ' 5 - 7 c ) 

the dummy grid point potential value is obtained from straightforward 
discretization of equation (2.2.31): 

oX oi, 

with ( 6 l V ) 0 0 0 defined here as UJ^QQQ = * 0 0 0 - «>_1>00-
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Experience has shown that, due to the coarseness of the grid in 
£ -direction near the Trefftz plane, it is better to use a one sided, 
first order accurate, formula for 6., like the one above, than a cen­
tral, second order accurate, formula. 
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SOLUTION METHOD 

General remarks 
The basic notion in multigrid methods is that a system of equations 

having N unknowns should be solved in an amount of work proportional 
to N, i.e. should have complexity N. History has shown that this is not 
easy to achieve. In table 5.1.1 the complexity of a variety of methods 
is given for the solution of the Poisson equation using finite dif­
ference discretization (except for FFT) on a rectangular grid (see also 
Sonneveld, Wesseling and de Zeeuw [1]): 

TABLE 5.1.1 
Complexity of various methods for the solution of 

the Poisson equation on a rectangle 

Method 

Gauss 
SOR 
FFT, ADI 
PCG 
MG 

Complexity 
(d = problem 
dimension) 

N3"2/d 

NlnN 
Nl+l/2d 

N 

Complexity 
d 
as 

= 2, N = 
factor 

4 10 N 
102 N 
9.2 N 
10 N 

M 

for 
10A 

3f N 

Complexity for 
d = 3, N = 106 

as factor of N 

108 N 
102 N 
13.8 N 
10 N 

N 

In the above table the complexity has been evaluated for two rep­
resentative problem sizes. Multiplicative constants have been deleted. 

The Gauss matrix decomposition method is a well-known direct meth­
od. For large N it is however only of academic interest for the type of 
application under consideration. A reasonable order of complexity is 
provided by iterative methods such as SOR (Successive Over Relaxation), 
ADI (Alternating Direction Implicit algorithm), PCG (Preconditioned 
Conjugate Gradient method) and MG (MultiGrid method) and by the direct 
method FFT (Fast Fourier Transform). Table 5.1.1 shows that SOR, which 
was developed about 30 years ago, is reasonably fast, but for large N it 
cannot compete with ADI, FFT or PCG, which were developed about 20 years 
ago, or with MG, the development of which started about 10 years ago. 
The table also shows that MG has the lowest complexity and should be the 
fastest converging algorithm when N goes to infinity. In practice MG is 
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not significantly faster than ADI, FFT or PCG in many applications for 
medium-sized problems, as the proportionality factor (multiplicative 
constant) in front of N is relatively large for MG when compared with 
the factors of ADI, FFT and PCG. On the other hand, FFT is not ap­
plicable when the equation contains variable coefficients, whereas ADI 
contains parameters whose optimal values are not known in general. 

The basis for multigrid methods has already been supplied 20 years 
ago through exploratory research of the Russian researchers Fedorenko [1] 
and Bakhvalov [1]. The true potential of the method for practical ap­
plications was brought to light ten years ago due to research by 
Brandt [1] and Hackbush [1], whereas the publications by Nicolaides [1] 
and Wesseling [1] should also be mentioned in this context. Two-dimen­
sional transonic potential flow has been one of the first realistic 
applications of multigrid (South and Brandt [1], Fuchs [1]). 

In the last ten years the multigrid method has matured and has 
proved to be a comparatively generally applicable acceleration method 
for iterative matrix solution algorithms. Applications are still mostly 
restricted to the area of computational fluid dynamics, but this situa­
tion has recently started to change. 

An important drawback of multigrid is its relatively complex 
coding. For time-independent two-dimensional second order elliptic equa­
tions general purpose software is nowadays coming available, e.g. MGD1 
and MGD5 (Hemker, Wesseling and de Zeeuw [1]), recently incorporated in 
the NAG library of mathematical subroutines, MG00 (Foerster and 
Witsch [1]) and BOXMG (Dendy [1]). Also for time-dependent two-dimens­
ional Navier-Stokes-like equations progress has been made (Pau and 
Lewis [1]). Future use of multigrid as a "black-box" solution method 
therefore comes within reach. 

5.2 Multigrid method 

5.2.1 Description of multigrid method 
An excellent introduction to the multigrid method is the survey 

article by Stiiben and Trottenberg [1], while the pioneering article by 
Brandt [1] has already become classical. 
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Th e concept underlying the multigrid method is to eliminate effi­
ciently each Fourier component of the error spectrum on the coarsest 
possible grid. This concept relies on the use of relaxation algorithms 
that are very efficient in damping those components of the error whose 
wavelength, in at least one of the coordinate-directions, is comparable 
to the mesh size. 
For nonlinear equations, the nonlinear multigrid method (NMG or FAS: 
Full Approximation Storage (Brandt [1])) has been used by many 
investigators, e.g. South and Brandt [1], Jameson [2], McCarthy and 
Reyhner [1], Raj [1], Caughey [1], and is now widely accepted. A brief 
outline of the NMG method follows below. 

Consider the discretized nonlinear boundary value problem 

L V = FN (5.2.1) 

on the finest grid G of a sequence of grids G , K = N,N-1,....,2,1, of 
K—1 increasing mesh size in the computational domain. Here, G " is con-

V 

structed from G by leaving out every other grid point in each co­
ordinate direction, hence the mesh size in any coordinate-direction 
satisfies h = 2h . 

Since NMG is a recursive process, it is sufficient to explain the 
relationship between the problems that must be solved on the grids G 
and G . Suppose that the G -problem is (with F = F ) 

L K / = FK (5.2.2) 

K N K K 
where y? is an as yet unknown approximation of <p on G and L is a dis-N cretization similar to L of the differential equation to be solved on 

K. K 
grid G . Note that <p can only contain Fourier components for which the 

K K K 
wavelength \ 5 2h in each coordinate direction. Further, let <j> be a 

K K K K 
given approximation of <t . Then the desired correction ij< = «> - <t> can 
be solved from the correction equation 

L KU K+* K) - L % K = RK, (5.2.3) 

where the residual R is defined by 
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R
K = FK - LK4K. (5.2.4) 

(̂  
As it is more efficient to approximate the smooth part of ty (Fourier 

K K— 1 component wavelength A > 2h "in all coordinate-directions), as much 
K— 1 K 

as possible on the coarser grid G ' rather than G , it is worthwhile to 
K— 1 

approximate equation (5.2.3) on the grid G . In NMG this approximation 
is 

K-1,TK-1 K K-l. K-l.K-1 K, .JC-l-K r_ , « 
L (IK $ +i(, ) - L (IR 4, ) = VT R . (5.2.5) 

K— 1 _K— 1 Here lv and v£ are restriction operators (not necessarily the same) 
K K-l 

that map gridfunctions on G into gridfunctions on G . Equation 
(5.2.5) is rewritten as 

T K - 1 K - l l K - 1 , . , 
L ip = F ( 5 . 2 . 6 ) 

w h e r e 

K - l K - l K K - l ,- . _v 
<P = K <\> + i> ( 5 . 2 . 7 ) 

and 

F K _ 1 = W^"1RK + L K _ 1 ( I * " 1 * * ) - ( 5 . 2 . 8 ) 

Equation (5.2.6) has the same structure as equation (5.2.2), which al­
lows a recursive description of multigrid methods. 

K-l Equation (5.2.6) is approximately solved, with result ij . The re-
K-l suiting obvious approximation of ty is 

'Sir. " ♦ " - ^ 
see equation (5.2.7). 

K K It follows that an improved approximation $ of ip is obtained by 

* : = * + IK-l*appr. = * + I K - l < * " XK * >■ ( 5- 2- 1 0 ) 
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K K-l 
where I . is a prolongation operator that maps gridfunctions on G K into gridfunctions on G . 

V 
This way, mainly the non-smooth part of <p (Fourier component wave-

K-l K lengths between 2h and 2h in at least one coordinate direction) need 
to be determined from the G -problem, equation (5.2.2) or (5.2.3). As 
the relaxation algorithm was required to be very efficient in damping 
error components in precisely that part of the spectrum, the non-smooth 
part of ip can be determined by doing only a few relaxation sweeps. 

The two-grid NMG method that has just been explained is described 
concisely by the following algorithm in a quasi-programming language 
(cf. Hackbusch [1], p. 187). 

procedure NMGM (K,<J>K,FK) 
integer K 
array $ ,F 
v ^ ,K-I ;K-I 

begin array <Ji , F 
if K = 1 then 

solve L (J> = F 
else 

for i := l(l)v1 do <t.K := S^K.^.F*) od 
K-l ._ K-l K 

:K-1 r^-l/^K K K, K-l K-l F : = W ^ ( F - L < | > ) + L <f> 

for i := 1(1)Y do NMGM(K-1,$K_1,FK_1) od 

K ._ K K K-l K-l K 

for i := l(l)v2 do ^ := S2(K,<j,K,FK) od 
endif 

end 

Algorithm 5.2.1: The NMG method description 

Here S. and S„ stand for relaxation processes. The order in which the 
K grids G ,K=1,..,N, are visited depends on the value of y. With y = 1 one 

obtains the so-called V-cycle, while y = 2 results in W-cycles, see fig­
ure 5.2.1. 
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Nested iteration (or FMG, Full MultiGrid, Brandt [1]) is applied to 
obtain a well converged starting solution on each consecutive level of 
the multigrid process, see figure 5.2.2. 

The prolongation and restriction operator are chosen as follows. 
Trilinear as well as tricubic interpolation is used for the prolongation 
operator. Weighted restriction is chosen for the residuals, using the 
weighted operator shown in figure 5.2.3, which assigns a combination of 
fine grid point values to the coarse grid point in the middle of the 

K— 1 K box. Weighted restriction or injection, i.e. ip = <p for grid points 
K K—1 

that are both present on G and G , is used for the potential re­
striction. The best choice of operators is problem-dependent and we 
therefore refer to chapter 8 for the choices actually made. 

Restriction of Neumann type boundary conditions 
In the multigrid method the restriction of Neumann type boundary 

conditions requires careful attention. As a consequence of the dummy 
grid point approach used, the Neumann boundary condition will not be 
satisfied exactly before restriction. This residual in the boundary 
condition is interpreted as a normal velocity through the boundary and 
will be treated as follows. Oi 
normal velocity is defined as 

*i K 
will be treated as follows. On a £ = constant surface on grid G the 

w - < A j > i . j . k - < A j > t j . k + < " 1 v i . i . k ' (5-2-10 

where the plus- and minus-sign refer to the upper and lower half of the 
£ -boundary (figure 4.5.1). 

On a ^ = constant surface the covariant tensor N. , j = 1,2,3, is 
obtained as follows. In Cartesian coordinates the unit normal to a 
surface S, (x ,x ,x ) = constant is given by the normalized gradient on 
that surface: 

n(i) . Si! /vAiili! 66Y = lii/^ïi (5.2.12) 
3xa 3x6 3x^ 9x a 

Using equation (2.3.6) we find 

N U ) „3x" (i) = 6i/v£LT (5.2.13) 
J 3?J a j 
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Applying the mirroring rules from section (4.5) the following ex­
pression can be derived from equation (5.2.11), 

I K . (VJH ÜL) . (Vg^) (? „ ) on grid G* 

This residual is restricted to coarse grids using a restriction operator 
w!, , that is a two-dimens: 
leads to a normal velocity 
v£ , that is a two-dimensional version of W~ , see figure 5.2.3. This 

gK_1 = W ^ V (5.2.15) 

K-l on a coarse grid G which is used to prescribe the dummy value on 
surface £ = constant on grid G as follows, (compare equation 
(5.2.14)) 

^«"'l.J.k (Vi,;},k> " C j \ k °n *rid ̂ "^ (5-2-16) 

This way, dummy grid point potential values have been defined on grid 
K-l K 

G by using the given dummy grid point potential values on grid G , 
see also figure 5.2.4. 

K—1 K—1 K After carrying out the above procedure the term L I <J> can be 
"K-l computed to obtain F ' in equation (5.2.8). Subsequently relaxations 

K-l can be performed on grid G , defining dummy grid point potential 
values as described in section 4.5. 

Convergence and efficiency of the multigrid method 
Recently Hackbusch [2] has given a useful unifying description of 

multigrid convergence theory as known at present. Multigrid convergence 
theory currently mainly applies to linear (or weakly nonlinear) fully 
elliptic problems. The basic assumptions in the convergence proofs are: 
- a "smoothing property" for the smoothing algorithm, i.e. the algorithm 
must "smooth" the error on each grid level efficiently, 
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Fig. 5.2.3 Schematic of weighted restriction 
operator 

DUMMY GRIDPOINTS ON GK 

iK
 + 2-iK-i + 1 

DUMMY 
GRIDPOINTS 
ON G K -1 

Fig. 5.2.4 Example of dummy gridpoints on G and G * for a two-dimensional 
situation 
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- an "approximation property" for the coarse grid operator, i.e. the 
K-l K 

coarse grid operator L must "approximate" the fine grid operator L 
well enough. 

Under the above assumptions a two-level multigrid convergence proof 
can be given. Then the step to the general multi-level multigrid conver­
gence proof is small for the W-cycle (Y 2 2 in algorithm 5.2.1), as it 
only requires the additional assumptions of boundedness of the smoothing 
operator and Lipschitz-continuity of the prolongation operator. The gen­
eral multi-level multigrid convergence proof for the V-cycle (y = 1) has 
as yet only been given for symmetric matrices. 

At this moment multigrid convergence for nonlinear problems can be 
proven if the problem is sufficiently linear in the neighbourhood of its 
solution. 

The amount of work required for multigrid convergence (= effi­
ciency) can be estimated as follows. In most flow solver codes the flow 
residual calculation forms the major part of the computational work and 
therefore only the work involved in v flow relaxations (vC ) and in the 

s 
residual restriction (C ) is counted here. The total work involved in 
one multigrid iteration is therefore approximately 

W = C (1 + V) (n(N) + YO(N-1} + Y2n(N"2) + + Y ^ n ^ ) ; 
s 

n(K) =n(N)/8N-K ( 5 > 2 1 7 ) 

(K) K 
where n is the number of grid points on grid G . 
Hence, 

2 
W S Cs (1 + v) n(N)(l + * + | ^ + 

- Cg (1 + v) n(N). i _l
y/8 if Y < 8. (5.2.18) 

(N) Therefore the multigrid method requires in an order n amount of work 
if the contraction number per multigrid iteration C, is bounded away 

(N) S 

from 1, uniformly in n . This requirement is usually satisfied due 
to the smoothing property of the smoothing relaxation algorithm and a 
proper choice of multigrid restriction, coarse grid and prolongation 
operators. 



-57-

The efficiency of a multigrid method (which is proportional to the 
total amount of work, required for convergence) to a specified accuracy 
is now defined as 

E = -W / 10log X, (5.2.19) 
s 

Linearization and construction of system matrix 
In preparation for the description of the smoothing method to be 

employed in the multigrid method we here describe the linearization of 
the operators L = L and the construction of the system matrix. 

The nonlinear equation Ltp = f, described in section 2.3, is 
linearized on each grid in a straightforward manner by putting 

<p = § + Aip , $ given, (5.3.1) 

2 and subsequently deleting all terms of order (Aip) and smaller. 
This leads to the equation 

L[<t>]A<p - f - If. (5.3.2) 

The righthandside is the residual for ip = <p of the flow equation 
(2.3.8). The lefthandside is the Fréchet-derivative for <p = 4>» which 
has already been derived in section 2.4. The expression for L[<|)] follows 
from equation (2.4.8), 

LC*J A* = (gij - 2-|~) 4 r - ^ A*. (5.3.3) 
a at1 8CJ 

The system matrix L and the relaxation schemes that apply to L have 
a complex nonzero pattern involving the grid points (i+p,j+q,k+r) where 
p, q and r range from -1 to 1 in the elliptic part of the flow and can 
be -2 or 2 in the hyperbolic part of the flow. Hence, in general there 
are 125 points in the stencil of the FV discretization, 64 of which may 
be nonzero. 

A sparser scheme can be obtained by subtracting terms of order 
AC AC from the lefthand side of equation (5.3.3) by using the 
approximation 
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( A^i +p, j + q,k +r " ^ i + p . j . k + ^ i . j + q . k + (Av)i,j,k+r 

- 2(A<p) . . (5.3.4) 

In this way an approximation to L is obtained which involves terms of 
the type (Aip) . . , . where p, q and r still range from -2 to 2, but i+p,j+q , k+r 
this time with the restriction that only one of them can be nonzero at 
the same time. Schemes with such a sparsity pattern are easier amenable 
to application of the ILU/SIP relaxation scheme. The price paid is the 
deletion of crossderivative terms in A<p from the iteration scheme. These 
terms are always present due to the linearization of the density and in 
many cases also due to the skewness of the grid. Experience has shown, 
however, that the convergence properties of the iteration scheme are not 
affected much by this deletion as long as the skewness of the grid is 
moderate (see also chapter 6). A still sparser approximation to L is 
obtained by setting (e.g. in the £ -direction) 

i+2,j,k i+l,j,k i,j,k l-l.j.k 

A<p... . . - 3 A<p , + 3 A*. , . . - A«p (5.3.5) 
l+l,j,k i.j.K- l-l,j.k i-2,j,k, 

which can be used to eliminate the entry Aip. , „ . . or Aip. „ . , (nonzero 
i+2,j,k i-2,j,k 

in non-subsonic parts of the flow) from the iteration scheme. It is sim­
ple to show that equation (5.3.5) corresponds with reversing the upwind 
bias, and consequently also reversing the sign of the numerical viscos­
ity, in the iteration scheme for non-subsonic parts of the flow, compare 
subsection A.4.4. As a result of applying equation (5.3.5), the storage 
required for the ILU/SIP relaxation scheme will be diminished signifi­
cantly, while practice has shown that the convergence properties of the 
iteration scheme are not affected. 

5.4 Smoothing algorithm 

5.4.1 Description of ILU/SIP algorithm 
For reasons of robustness and efficiency an algorithm named ILU/SIP 

has been used as the smoothing algorithm in the multigrid method. Its 
properties will be compared against the properties of the more usual SLR 
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(Successive Line Relaxation) algorithm in the next chapter. 
An extensive description of ILU and SIP can be found in Meijerink 

and Van der Vorst [1] and in Stone [1] respectively. Here, only a brief 
description will be given. 

The equation to be solved follows from the previous section and is 
written as 

L[<t>]A<p - f - L+. (5.4.1) 

In t h e g r i d p o i n t ( i , j , k ) t h e e x p r e s s i o n L[<t>]Aip can be w r i t t e n a s 

{L[»]A<p} = I a*"* (A„) , ( 5 . 4 . 2 ) 

J p . q . r K J 

p . q . r Ê {-2, - 1 , 0 , 1 } , ( 5 . A . 3 ) 

with only one index p,q or r nonzero at the same time. 

An iteration scheme to solve equation (5.4.1) can be described as 

L*[4.n]A«pn = f - L$n, (5.4.4) 
*n+1 = *n + A<A (5.4.5) 

where the iteration matrix L is chosen such that it is easily 
invertible and preferably also is a good approximation of the system 
matrix L. The error matrix B is defined by 

L = L + B. (5.4.6) 

This results in the modified equation 

_»- n . , . +- n+1 , ~_ n , n+1 . ~_ n-, n , n ,r * ->\ 
BC<J. ] A t 9 t 4 , = f - L[(() ]<J> + L[(J) ]<{. - L<|> ( 5 . 4 . 7 ) 

r n , ~ r n , n+1 

w i t h 
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A^ t x n + l A " , n + l , n , c , „ . 
At 3 * = Aip = 4> - <{> . ( 5 . 4 . 8 ) 

With both ILU and SIP, an incomplete lower/upper (Gauss) decomposi­
tion of the systemmatrix L is carried out. For each algorithm, this 
decomposition is performed using a prespecified nonzero pattern (spar-
sity pattern), here coinciding with the pattern of L . In carrying out 
the Gauss matrix decomposition process for the lower triangular part of 
L, nonzero entries will be generated outside this pattern. The treatment 
of these nonzero entries determines the form of the error matrix B that 
will be obtained. This treatment differs for ILU and SIP. 

In the case of ILU, the nonzero entries mentioned before are simply 
deleted (so that they need not even be computed). It is found that 
{BAip}. . . has the form 

i.j.k 

{BA<p}. , . - I bPqr(A4>), 
l.j.k 'i+p.j+q.k+r' 

P»4 >r 

p,q,r £ {-2,-1,0,1}, p = 0 or q = 0 or r = 0, (5.4.9) 

with two indices p, q or r nonzero at the same time. The modified 
equation has the form 

(c + dAC1 i-r + e A c V — ~ + ...) At 3 *n+1 

H 1 3C 3£J 

g[*n] - L[<*n]*n+1. (5.4.10) 

In case of ILU with lumping the nonzero entries mentioned before 
are computed explicitly and added to the main diagonal of the system 
matrix, It can be shown, however, that this does not improve the 
smoothing algorithm. 

In case of SIP, all cAt3 * - and d AC — r At3 * - terms are 
C 3C 

annihilated in the modified equation (5.4.10) by making use of the ap­
proximation (compare equation (5.3.4)) 
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^i+p.J+q.lc* - ^ i + p . j . k + (A<p)i,j+q,k + (Aip)i,j,k+r 

- 2(A<p). . .. (5.4.11) 
1 »J » K 

as follows. Each of the nonzero entries mentioned before is added to the 
cr _,• , , POO OqO OOr . . „. . 

off-diagonal entries a , a , a and twice subtracted from the main 
diagonal entry a of L. All these entries are present in the sparsity 
pattern of L. The term BAip now takes the form 

P > H > r 

p,q,r £ {-2,-1,0,1}, p = 0 or q = 0 or r = 0. 

with two indices p, q or r nonzero at the same time. 
Consequently the modified equation of SIP has the form (compare equa­
tion (5.4.10)): 

(e A C V h " ̂ -T + - O Ati<(,n+1 = g[*n] - L[*n] *n+1. (5.4.13) 

Usually, only a fraction a, 0 £ a i 1 of (Ay? ). . ,, is approxi-
i+p,2Tq,K+r 

mated using equation (5.4.11). This will be denoted as SIP(a); hence, 
SIP(O) is identical to ILU. Therefore, whereas SIP is described here as 
a modification of classical ILU, ILU can also be looked upon as a spe­
cial version of SIP. The family of algorithms described here will con­
sequently be referred to as ILU/SIP(a). Usually, SIP is not described 
within the framework of ILU, but by a set of recursive formulas 
(Sankar [1], Stone [1], Zedan and Schneider [1]). The explicit deriva­
tion of these formulas is cumbersome and is here formulated implicitly 
by implementing SIP as a modified form of classical ILU. 

ILU/SIP algorithm 

The ILU/SIP is described in detail in appendix B. We therefore 
restrict ourselves to a global description here. 
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For simplicity, the principle of the construction of ILU decom­
positions will be explained for the standard 3D 7-point discretization 
of the Laplacian. The computational points will be ordered lexicogra­
phically, i.e. a point (i,j,k) in a computational box [-NI : NI, O : 
NJ, 0 : NK] is given the sequence number N = i + NI+1 + (NI+NI+1) * 
(j + k*(NJ+l)). The resulting system matrix L for the 3D Laplace 
operator is sketched in figure 5.4.1. The figure shows that the 
sparsity pattern of the system matrix consists of j-lines (j,k constant) 
which together consitute k-planes (k constant) . 
In ILU decompositions two steps can be distinguished: 
1. Decomposition of the system matrix into a lower and an upper 

triangular matrix. This is done by "sweeping" the diagonals of the 
lower triangular part of the system matrix. Here "sweeping" means 
making matrix elements zero in the standard way as in a standard 
Gauss decomposition while operating on fill-in as described above 
(equation (5.4.11)). The matrix is now upper triangular. 

2. Solving for A<P by backsubstitution, as in standard Gauss decomposi­
tion. 

The sparsity pattern of the matrices L and B in case of the ILU/SIP 
algorithm is sketched in figure 5.4.2. 

5.4.2 Properties and applications of ILU/SIP 
An important property of the ILU/SIP algorithm is the absence of a 

preferred sweep-direction. With successive line relaxation (SLR) the 
sweep-direction strongly influences the smoothing properties of the al­
gorithm, and in many cases the nature of the problem is such that it is 
is necessary to perform line relaxations in all three coordinate direct­
ions, in order to obtain a good convergence. The absence of a preferred 
sweep-direction makes ILU/SIP a suitable smoothing algorithm for use 
within the multigrid method, especially in those cases where the flow-
direction varies strongly (e.g. in air-intakes) and where mesh aspect 
ratios vary widely (as in the problem considered in this thesis). The 
price paid is a slightly higher computation time per relaxation, com­
pared to SLR, and the need to store the entire (sparse) upper triangular 
matrix U. (The algorithm is coded as a plane-by-plane algorithm, that is 
only a 2D plane of the system matrix (and possibly the lower matrix) is 
stored.) The storage required is acceptable, however, and comparable to 
the storage required for the finite volume scheme (see chapter 7). 
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Fig. 5.4.1 Upper left corner of the sparsity pattern of the system 
matrix L for the 7-point discretization of the Laplace-
operator on an i-j-k-grid 

Fig. 5.4.2 Upper left corner of the sparsity patterns of the system 
matrix L (drawn lines) and the error matrix B (drawn and 
dotted lines) for an ILU/SIP-decomposition of the 7-point 
discretization of the Laplace-operator on an i-j-k-grid 
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The alternative is, of course, to use incomplete LU decomposition per 
plane, requiring storage of one 2D plane of ILU factors only. Such an 
algorithm is in fact a three-dimensional generalization of the two-
dimensional SLR algorithm; this alternative has been analyzed in 
Van der Wees, Van der Vooren and Meelker [1], Van der Wees [1]. 

A further useful property of 1LU/SIP is its flexibility with re­
spect to the choice of the sparsity pattern for the lower and upper tri­
angular matrices L and U. For instance, less sparse difference-molecules 
than the 7-point Laplace-discretization can be fully accommodated within 
the ILU/SIP algorithm by a simple extension of the sparsity pattern. 
Extension of the sparsity pattern of the L and U matrices can also be 
applied to improve the smoothing properties and robustness of the 
ILU/SIP algorithm in the multigrid method. The price to be paid is, of 
course, that a less sparse upper matrix U has to be stored. In Van 
der Wees, Van der Vooren and Meelker [1], Van der Wees [1] an experiment 
on a relatively simple configuration shows that extension of the spar­
sity pattern used in ILU/SIP indeed improves its performance. In rea­
listic flow cases, however, the total computation then becomes I/O-bound 
on the NLR Cyber 180-855. The extra I/O time required for the transfer 
of the denser upper triangular matrix U makes the use of extended matrix 
patterns in ILU/SIP unattractive on that machine (see also chapter 7). 

Multiple applications (Sonneveld, Wesseling and de Zeeuw [1], 
Hemker [1], Wesseling [2], Kettler [1,2], Wesseling and Sonneveld [1]) 
have shown that use of ILU smoothing in the multigrid method has led to 
a very fast and robust tool for the solution of a wide variety of 2D 
elliptic problems. An application of using ILU within the multigrid 
method for the solution of 2D transonic flow is given by Brédif [2], 
Nowak and Wesseling [1] and using SIP with multigrid by Sanker [ P . The 
applicability of MG-ILU/SIP to 3D subsonic and transonic potential flow 
has been shown in Van der Wees, Van der Vooren and Meelker [lj, Van der 
Wees [1] for a simple non-lifting wing embedded in a rectangular grid. 
The capabilities of MG-ILU/SIP for transonic potential flows around 
realistic wings embedded in curvilinear grids have been demonstrated in 
Van der Wees [2]. 
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STABILITY AND SMOOTHING ANALYSIS OF ILU/SIP ALGORITHM 

Smoothing analysis for elliptic problems 

General description 
An effective tool to investigate locally the damping of the various 

(high-frequency) components of the error is the local mode (Fourier) 
analysis, introduced by Brandt [1]. The local mode analysis will be ap­
plied here to elliptic problems, while the relaxation of hyperbolic 
problems, basically a time-marching process will be analyzed in the next 
section using a modified equation technique. In both cases the assumpt­
ion is made that the coefficients of the system matrix are the same for 
all grid points. It is also assumed that boundary conditions are 
periodic or that the number of grid points is infinite in all three 
coordinate directions. Consequently, both analysis methods are only 
locally valid in smooth parts of the flow outside shocks and sonic 
surfaces. Comparison with practical computations may show discrepancies, 
because boundary conditions may influence the smoothing behaviour. 
The local mode analysis consists of two steps. First the equations 

(L(p)i,3,k = fi,j,k 

' 1 , 3 * ' *ï.J.k " •l.j.k (6-1'1) 
n n+l n n+1 n 

A»i,J,k = ♦i.J.k " ♦i.j.k = ei,j,k" ei,j,k 

for grid point (i,j,k) are combined with equations (5.4.4) and (5.4.6) 
to give 

a + B ) ( e " + 1 - e \ t . | k . - L e " 1 > : . | k . (6.1.2) 

Next, the Fourier component c , = (C[p,6,u3) e -1 is sub-
stituted into this expression, leading to the reduction-factor 

p[y,8,co] = |G[u.8,w]|, (6.1.3) 
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which can be analyzed as a function of the "frequencies" - TI S u,8,w £ fl. 
For the use in the multigrid method, in particular the high-frequency 
modes of the error (at least one "frequency" is high, e.g. — < | u | S IT) 
should be damped efficiently. A good measure for this is the smoothing 
number p: the maximum value of p(u,6,ui) over the high-frequency part of 
the (y ,8 ,iu)-domain. 
In case p < 1, but p > 1 for some low-frequency mode of the error, the 
smoothing algorithm will be considered "divergent". In practice, the 
multigrid method may work for such a case, because according to multi-
grid convergence theory the smoothing algorithm may be slowly diverging 
for low frequency modes if the smoothing algorithm is sufficiently ef­
ficient for high-frequency modes of the error. 

In this section smoothing numbers p will frequently be compared 
using the smoothing efficiency 

N i t = -1 / 10log p, (6.1.4) 

i.e. the number of iterations necessary to reduce the error in the high-
frequency modes by a factor 10. 

The local mode analysis will be used to analyze the ILU/SIP smooth­
ing properties for the Poisson equation 

<p + ip + <p = f (6.1.5) 
xx yy zz 

discretized using central differences on a uniform skew grid with 
straight grid lines. Consequently, the following equation is analyzed 

g J — r — 7 i$ - f. (6.1.6) 

Equation (6.1.5) will be used to analyze the influence of the following 
two grid properties on the error smoothing of the ILU/SIP algorithm: 
1. The influence of the two cell aspect ratios LE, /A£ , i ^ j, consider­

ing a rectangular grid. Both cell aspect ratios can vary from very 
small to very large in a realistic wing grid, see figure 3.1.6. 
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a) Wing sweep angle 0, 

< ^ 

<3 

s 

t 
b) Grid skewness angle 0, and grid rotation angle 0_ 

Fig. 6.1.1 Definition of the angles 61, e2 and 63 

2. The influence of grid skewness. The following parameters will be con­
sidered in the analysis: 

2 
- Wing sweep, i.e. the angle 8. between the y- and the £ -axis, see 

figure 6.1.1a. 
- Grid skewness in a wing-normal gridplane. For that purpose, the 
angle 6„ between the £ - and £ -axis is introduced, see fig­
ure 6.1.lb. 

- Grid rotation, i.e. the angle Q. between the £ - and the x -axis, 
see figure 6.1.1b. 

1 2 3 The relation between the physical coordinate system (x ,x ,x ) and 
1 2 3 the computational coordinate system (£ ,£ ,£ ) is described by the 

Jacobian H (see equation (2.3.2)): 

.-£,. 

9x 9x 3x 
3C1 3£2 3£3 

2 2 2 9x 3x 3x 
1 2 3 3£ 3£ 9£ 

3 3 3 3x 9x 3x_ 
1 2 3 

u n n 

cos 9. sin 8, cos (9„+9~) 

0 cos 9, 

sin 9. 0 sin (62+93) 

(6.1.7) 
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T -1 The contravariant metric tensor G = [H HJ is easily derived from this 
equation. 

Discretization of equation (6.1.6) using central difference opera­
tors gives a relatively dense system matrix due to crossderivatives in 
the partial differential equation. If this system matrix were to be used 
as a basis for the ILU/SIP algorithm, the crossderivative terms would 
severely affect the cost-effectiveness of the method. Therefore these 
terms will not be incorporated in the relaxation process, leading to the 
following relaxation equation for the solution of the desired correc­
tion Au> for a given $: 

2 2 2 
, 11 3 22 3 33 3 > , n (g — J — [ + g — o — o + g 3 3 ) & * , k= 

■ • « t . i . t - ^ ^ ^ * ; . ^ ( 6 - K 8 ) 

where u is an over/under-relaxation factor which has been introduced for 
later use. The ILU/SIP algorithm given in chapter 5 will be compared 

1 2 
with SLR-X (line relaxation along C -lines, i.e. lines of constant C 

3 and C ) , SLR-Y and SLR-Z. The use of SLR-X and SLR-Z are relatively 
common in transonic potential flow calculations. In the SLR algorithm 
there is no need to drop crossderivative terms from the system equation 
and consequently this algorithm will be applied directly to equation 
(6.1.6). The SLR algorithm will be used lexicographically for i,k,j, 

3 3 2 
i.e. for SLR-X with increasing C and for each C with increasing C . 
The same ordering of variables will be used for ILU/SIP. 

In appendix B expressions are derived for the computation of the 
smoothing number P for the various algorithms considered. Here, only re­
sults will be given. 

All data-processing and -presentation for the smoothing analysis results 
presented in this section has been sone using the EDIPAS system (Heerema 
and Kreijkamp [1]). 

6.1.2 Influence of grid aspect ratios on smoothing properties 
In figure 6.1.2 the smoothing efficiency N is plotted for 

it 1 2 
ILU/SIP, considering a rectangular grid with mesh sizes AC , AC and 
AC • The values taken for AC correspond to AC-values used later in 
table 6.1.1. Figure 6.1.2 shows N as a function of the relaxation 
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Fig. 6.1.2 Smoothing efficiency of ILU/SIP(a) as a function of 
the relaxation parameter a for several values of 
(AC ,AC",AC3) on a rectangular grid 

parameter a in ILU/SIP. The numbers presented have been obtained for the 
frequency values t p-, K » 2, 3, 4, 8, 16, 32, 64, 128, 256 and 
infinity. These values have been found to be representative for the 
entire frequency domain. 

Figure 6.1.2 shows that the smoothing efficiency of ILU/SIP im­
proves with increasing a in case one mesh size is much larger than the 
other two mesh sizes, but that the smoothing efficiency of ILU/SIP 
deteriorates with increasing a in other cases. Because wing grids 
usually have a large mesh size in the spanwise direction, see figure 
3.1.6, a will be taken close to 1. Because in practice the value 1.0 
turns out not to be optimal, as will be shown in section 6.2, the 
ILU/SIP parameter will be set to .70. This parameter will no longer be 
mentioned explicitly in this chapter. The value o = .70 was also found 
to be reasonably optimal in the SIP-analysis by Zedan and Schneider [1]. 

In table 6.1.1 the smoothing number p is given for a large set of 
1 2 3 variations of AC , AC , AC on a rectangular grid. In this table, SLR-X, 

1 2 SLR-Y and SLR-Z indicate successive line relaxation along £ -, C _ and 
3 C -lines respectively. 
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TABLE 6.1.1 
Smoothing numbers P for various algorithms in case of the 

elliptic testproblem, equation (6.1.6), on a rectangular grid 

11 22 33 AX AZ AY g g g 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

ILL'/SIP SLR-X SLR-Z SLR-V 

.3681 .5000 .5000 .5000 

.3162 
1.0000 
1.0000 

3.1623 
1.0000 
1.0000 

.5623 

.5623 
1.0000 
1.0000 
1.7783 
1.7783 

.1000 
1.0000 
1.0000 

10.0000 
1.0000 
1.0000 

.3162 

.3162 
1.0000 
1.0000 
3.1623 
3.1623 

1.0000 
.3162 

1.0000 

1.0000 
3.1623 
1.0000 

1.0000 
1.7783 
.5623 

1.7783 
.5623 

1.0000 

1.0000 
.1000 

1.0000 

1.0000 
10.0000 
1.0000 

1.0000 
3.1623 
.3162 

3.1623 
.3162 

1.0000 

1.0000 
1.0000 
.3162 

1.0000 
1.0000 
3.1623 

1.7783 
1.0000 
1.7783 
.5623 

1.0000 
.5623 

1.0000 
1.0000 
.1000 

1.0000 
1.0000 

10.0000 

3.1623 
1.000 
3.1623 
.3162 

1.0000 
.3162 

10.0001 
1.0000 
1.0000 

.1000 
1.0000 
1.0000 

3.1624 
3.1624 
1.0000 
1.0000 
.3162 
.3162 

100.0000 
1.0000 
1.0000 

.0100 
1.0000 
1.0000 

10.0001 
10.0001 
1.0000 
1.0000 
.1000 
.1000 

1.0000 
10.0001 
1.0000 

1.0000 
.1000 

1.0000 

1.0000 
.3162 

3.1624 
.3162 

3.1624 
1.0000 

1.0000 
100.0000 
1.0000 

1.0000 
.0100 

1.0000 

1.0000 
.1000 

10.0001 
.1000 

10.0001 
1.0000 

1.0000 
1.0000 

10.0001 

1.0000 
1.0000 
.1000 

. 3162 
1.0000 
.3162 

3.1624 
1.0000 
3.1624 

1.0000 
1.0000 

100.0000 

1.0000 
1.0000 
.0100 

.1000 
1.0000 
.1000 

10.0001 
1.0000 
10.0001 

.3493 

.3493 

.3493 

.5815 

.5815 

.5815 

.4449 

.4449 

.4449 

.4449 

.4449 

.4449 

.3870 

.3870 

.3870 

.9349 

.9349 

.9349 

.7858 

.7858 

.7858 

.7858 

.7858 

.7858 

.4982 

.8462 

.8462 

.9091 

.8346 

.8346 

.6397 

.6397 

.8346 

.8346 

.8681 

.8681 

.4982 

.9806 

.9806 

.9901 
9804 
.9804 

.8346 

.8346 

.9804 

.9804 

.9821 

.9821 

.8462 

.4982 

.8462 

.8346 

.9091 

.8346 

.8346 

.8681 

.6397 

.8681 

.6397 

.8346 

.9806 

.4982 

.9806 

.9804 

.9901 

.9804 

.9804 

.9821 

.8346 

.9821 

.8346 

.9804 

.8462 

.8462 

.4982 

.8346 

.8346 

.9091 

.8681 

.8346 

.8681 

.6397 

.8346 

.6397 

.9806 

.9806 

.4982 

.9804 

.9804 

.9901 

.9821 

.9804 

.9821 

.8346 

.9804 

.8346 
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1 2 It can be seen from figure 3.1.6 that all ratios of AC , AC and 
3 AC presented in table 6.1.1 are generally present in a qualitative 

sense in a realistic wing grid. The relative mesh sizes considered in 
table 6.1.1, i.e. (/ÏÏÏ)k and (10)k, k = -1, 0, 1, are however moderate 
when compared to realistic cases. For example near the leading edge of 

2 1 3 
the wing, AC can easily be over twenty times larger than AC , AC . 

It can be concluded from table 6.1.1 that SLR is very sensitive to 
mesh aspect ratios: even in the moderate cases considered, an almost un­
acceptable value p = .98 is obtained. ILU/SIP is far less sensitive than 
SLR. In the case two mesh sizes are given and the third dimension is to 
be chosen, table 6.1.1 is a useful guideline for making this choice such 
that a good smoothing efficiency is obtained. Clearly, three different 
mesh sizes is unfavourable for the smoothing algorithm and should, if 
possible, be avoided. With the grids used in actual wing calculations, 
this is possible only by requiring that grids have the property 

1 3 -
AC » AC . Smoothing numbers p for that case are shown in figure 6.1.3. 
The curves containing large circles refer to multigrid algorithms with 1 3 selective coarsening, viz. coarsening in C C -planes only. A close 
examination of the damping of the high frequency modes reveals that the 

- 1 2 bad smoothing rate p for AC << AC is caused by a mode which has a very 
low frequency in C - and C -direction, but a very high frequency in 
2 2 

C -direction. When there is no coarsening applied in the C -direction, 
this mode can equally well be smoothed on all coarser grids, and hence a 
"smaller spectrum" need be smoothed on the fine grid. Thus, the smooth­
ing factor p improves at the cost of a less efficient coarse grid cor­
rection process, as the coarser grids will now contain more grid points. 

The following conclusions can be drawn from Figure 6.1.3: 
- In general, the convergence deterioration is more severe for 

1 2 1 2 AC << AC (occurring near the wing, figure 3.1.6) than for AC >> AC 
(occurring in the far field, figure 3.1.6). 

1 2 
- In general, ILU/SIP is less sensitive to the aspect ratio AC /AC , 

1 3 1 2 
AC = AC than SLR, except when AC >> AC , where SLR-Y does a perfect 
job. 

1 2 
- In case AC << AC , mesh halving, i.e. doubling the number of grid 

2 points in the C -direction, can pay off in terms of total computing 
cost. 

- Selective coarsening can lead to a convergence rate p which is inde­
pendent of ACL/AC2 < 1 if AC1 = AC3. 
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Fig. 6.1.3 Smoothing efficiency Nit for various algorithms for the 
special case AC =AC on a rectangular grid 

It can be shown that in the general case coarsening should be applied 
only in the direction where AC > i = 1,2,3, is shortest. In realistic 
cases, where the whole variety of mesh sizes considered in table 6.1.1 
is present, this obviously leads to a very complex multigrid method. 

Finally, in figure 6.1.4 the iso-p plots are shown for ILU/SIP with 
and without selective coasening. In these plots AC has been set to 

2 3 -
unity, while AC and AC vary. The iso-p values in figure 6.1.4 of lines 
identified by 1, 2,....,10 correspond to N. (= -1/ log p) values of 2, 
3.5, 5, 7.5, 10, 15, 20, 50, 100 and 200 respectively. The plots show in 
a quantitatively more detailed fashion what already has been deduced 
qualitatively from table 6.1.1 and figure 6.1.3. 

6.1.3 Influence of grid skewness on smoothing properties 
The influence of grid skewness (non-orthogonality) on the smoothing 

properties of ILU/SIP can best be analyzed on a grid with unit aspect 
ratios, because on a grid having aspect ratios unequal to the unity the 
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influences of aspect ratios easily tend to dominate the influences of 
1 2 3 grid skewness. Therefore, in this subsection A£ = A£ = A£ = 1 is 

taken. The results obtained are found to be also valid for AC f 1, at 
least in a qualitative sense. 

Figure 6.1.5a shows the influence of the wing sweep angle 6. and 
the grid skewness angle 6~ on the smoothing properties of ILU/S1P. In 
this figure the grid rotation angle Q is taken equal to zero, i.e. the 
1 1 

£ -axis coincides with the x -axis. The figure shows primarily that 
ILU/SIP can become unstable for high wing sweep angles (> 60°) or 
extreme grid skewness angles (< 20°). Underrelaxation (see equation 
(6.1.8)) can however remove this deficiency (figure 6.1.5b). 

The instability phenomenon can be explained as follows. Considering 
only two dimensions, the following equation is analyzed (equation 
6.1.6): 

g11 * + 2 g12
 v + g22 „ = 0. (6.1.9) 

e V u n 
Deletion of crossderivative terms, see subsection 6.1.1, results in the 
following relaxat 
(equation 6.1.8): 
following relaxation equation for the solution of Aip for a given $ 

f H -,2 22 „ >. n (g 3 , , + g 3 2 2)A^ = 
r r c 5 

- u) (gU 32
L 1 + 2g12 3 ^ 2 + g22 32

2 2) $n (6.1.10) 

where u is the underrelaxation factor mentioned previously in this sec­
tion. 

1 2 
For 6, «< 90°, the £ -axis becomes nearly aligned with the Ï, -axis 

and consequently 

12 11 2 2 (c i \\\ 
g « g " g • (6.1.11) 

Then one effectively solves 

(A<p" ) l t - - 2M $ ! L • (6.1.12) 
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Using equations (6.1.1) to (6.1.3) the reduction factor p follows from 

(G-l) (L+B) e" = -2wLen , L = 32 . (6.1.13) 

A close examination of the numerics shows that there exist Fourier com­
ponents e for which Be « -eLe , e small and positive, and therefore 

p = |G| = |l - | ^ | = (6.1.14) 

Consequently the algorithm can be divergent for u> = 1 on very skew 
grids, but taking oi < 1 can remove this difficulty. The value u> = .70 
appears to be effective for suppressing divergence phenomena in all pos­
sible cases. Of course, it is also possible to extend the sparsity pat­
tern used in the ILU/SIP algorithm such that all crossderivative terms 
can be accomodated within this pattern, but, as already mentioned in 
subsection 5.4.2, this will severely affect the cost-effectiveness of 
the method in less skew cases. 

Figure 6.1.6 shows the smoothing number as a function of the 
skewness angle 6 and the grid rotation angle 6. at a given wing sweep 
6. = 30°, which is a typical value for civil aircraft configurations. 
Once more, ILU/SIP shows unstable behaviour, which can be removed by 
underrelaxation. 

In Figure 6.1.7 the smoothing number is given as a function of the 
wing sweep 6. and the grid rotation angle 6- at a given grid skewness 
angle, which has been set to 45 degrees here. The figure shows that 
ILU/SIP becomes unstable for nonzero grid rotation angles at high wing 
sweep angles. Once more, underrelaxation by a factor w = .70 stabilizes 
the algorithm. 

The conclusion can be drawn that ILU/SIP can show an unstable 
behaviour due to high wing sweep angles and/or large skewness angles in 
the grid. The unstability is caused by the deletion of crossderivative 
terms in the relaxation process and can be removed by underrelaxation 
with a factor w = .70. The price paid for applying this underrelaxation 
is however considerable. Figure 6.1.8 compares ILU/SIP smoothing effi­
ciencies on a rectangular grid with and without underrelaxation. Because 
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the grid is rectangular, underrelaxation is not necessary in this case. 
The figure shows that underrelaxation generally causes a convergence 
slow-down of 40 - 50%, which is quite substantial. Therefore, it seems 
appropriate to try to avoid underrelaxation by conditioning the 
gridgenerator such that grid skewness is not great. Figure 6.1.9 shows 
to what extent sweep and skewness are allowable on a grid with 

1 2 3 AC = AC = AC . The figure shows that in general a 45 degrees deviation 
from rectangularity will form no problem for the flow solver; however, 
at more severe deviations from rectangularity instability problems can, 
but need not necessarily occur, depending on the mesh sizes of the 
computational cell considered. 

6.2 Stability analysis of ILU/SIP for hyperbolic problems 
The application of ILU/SIP to hyperbolic problems will be analyzed 

using the modified equation method. Using this heuristic technique, an 
iterative process is associated with a time-integration process in the 
following way: 

* n + 1 *n - »«■ t * n + l (6.2.1) 
<j> - $ = At d * 

Consequently, the iterative process is associated with the time-inte­
gration of an initial value problem for a differential equation, the 
so-called modified equation. Let this initial value problem be well 
posed and let furthermore the integration process for the initial value 
problem be stable. Then it may safely be assumed that the iterative 
process is stable. 
A more extensive discussion of the modified equation method can be found 
in Jameson [1]. 

Firstly we will show that the initial value problem for the 
modified equation is well posed. This will be established by adding an 
explicit so-called temporal damping term to the modified equation as 
derived in subsection 5.4.1. 
It has been shown in subsection 5.4.1 that the modified equation of SIP 
has the following form (equation (5.4.13)) 

(eAcV ̂ T 4-+ ) At 8 *n+1 = g[*n] - L[*n] *n+1 (6.2.2) 
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where L[(Ji ]<Ji is given by equation (5.3.3): 

rrABii«+l Ar1 ArJ / ij Ü10;3. 3 3 4n+l , , „ -. 
L[<|> ]$ = AC A£J (g J T-) — r — - i|) (6.2.3) 

a 9C 3CJ 
In equations (6.2.2), (6.2.3) the quantities with bars are evaluated for 
<P = 4» ; the unit mesh sizes A£ , i = 1,2,3, have been reintroduced in 
these equations for later use. 
In streamline coordinates equation (6.2.3) can be written as 
(cf. equation (2.4.9)). 

T"r.nn,n+1 /-i w2s /» N2 ,n+l . ,. ,2 n+1 . ,. .2 ,n+l ,, . . L[$ Jé = (1-M ) (As) * + (Am) * + (An) è (6.2.4) ss mm nn 

Because gCif ] does not influence the character of the modified equation, 
see equation (5.4.7), we will investigate the following form of the 
modified equation (6.2.2): 

(eA?V -T-V > At 3> n + 1 + 
H 3CJ 

+ (1-M2) (As)2 (|.n+1 + (Am)2 $n+l + (An)2 <{>n+1 = 0 (6.2.5) 
ss mm nn 

with M>1 in supersonic (hyperbolic) regions of the flow. 
Not much is known about the third order equation (6.2.5). We therefore 
explicitly add a well-chosen temporal damping term to this equation: 

- 2aAt3 As *n+1 + (eA5 V -L.-2-+....) At 3 *n+1 + 
S 3?1 3CJ C 

+ (1-M2) (As)2 ♦ n + 1 + (Am)2 $ n + I + (An)2 $ n + 1 = 0, a>0. (6.2.6) ss mm nn 

In Jameson [1] it is explained why the added term in equation (6.2.6) 
is the proper temporal damping term for a hyperbolic equation. 
It will be shown that the modified equation (6.2.6) is a well posed ini­
tial value problem. In the limit A£ , AC * 0 the second term in equa­
tion (6.2.6) can be neglected in comparison with the first term of that 
equation. Applying a proper scaling we may put At = As = Am = An and 
consequently equation (6.2.6) can be written as 

- 2al * n + 1 + (1-M2) * n + 1 + « n + 1 + * n + 1 = 0, ct>0. (6.2.7) 

t Ys rss mm Ynn 

We now introduce the following variable: 

T = t - -|£_ , a>0. (6.2.8) 
M -1 
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Then equation (6.2.7) can be written as 

2 
— — 4> + (1-M ) * + ♦ + $ = 0 , a>0. (6.2.9) ^2 , TT ss mm nn M -1 

This equation is hyperbolic for M>1, where s is the time-like coordinate 
and T, m and n are spatial coordinates. Consequently, t (the iteration 
direction) is a mixed time-like/spatial coordinate. Equation (6.2.9) is 
known to be well-posed. 

Subsequently we will show that the integration process for the 
initial value problem (6.2.7) is stable. We therefore investigate the 
characteristics of equation (6.2.9) in point (s.,T.,m.,n.) : 

s-s 2 J^2 ' 2 
(77^) = e V 1 (T-T )) + (m-m.)2+ (n-n ) 2 , (6.2.10) 
VM -l 

where T = T(t,s) is given by equation (6.2.8). 
For the purpose of this analysis, the mass flux upwind scheme presented 
in subsection (4.A.4) can be regarded as a retarded differencing scheme 
in the time-like s-direction and as a central differencing scheme in the 
m- and n-direction. This is exactly true if (compare equation (4.4.27)) 
the stream direction s is along one of the computational coordinate 
axes; otherwise it is true by approximation. 
In the iteration direction t, a retarded differencing scheme is applied, 
see equation (6.2.1). 

The characteristics given in equation (6.2.10) and the difference 
molecule described above are assembled in figure 6.2.1. This figure 
shows that the analytical domain of dependence is embedded in the nume­
rical domain of dependence and consequently the integration algorithm 
for the initial value problem (6.2.7) is stable. The figure shows that 
the integration algorithm is in fact a time-stepping scheme, both in the 
s (time-like) and in the t (iteration) direction, while solving impli­
citly per m,n-plane of constant s and t. 

It thus has been shown heuristically that the integration process 
for the initial value problem (6.2.7) is stable, which is due to the 
addition of the temporal damping term in equation (6.2.6). Consequently 
the ILU/SIP iteration algorithm with the temporal damping term is stable 
in hyperbolic parts of the flow, and can be associated with an integra­
tion algorithm in the s-direction while advancing the solution one step 
in the iteration direction t. 
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In the ILU/SIP algorithm the temporal damping term is implemented 
as follows. Instead of applying the ILU/SIP incomplete decomposition to 
L in equation (5.4.1), where L is given by equation (5.3.3), the ILU/SIP 
algorithm is applied (in the supersonic (hyperbolic) region of the flow) 
to 

L U n ] A < / = f - L4,n, 

Ü1 9 
( 6 . 2 . 1 1 ) 

L [<(> JA<P = L[((i JAip - cxAs 7 A<P 
q SC 

where the backward difference operator 6. is used to discretize 

— r and a is chosen of the form 
U 

a = pi (C5(M2-1) + (1-M2)) , C5= 1 , Mc= .7. (6.2.12) 

2 Experience indicates that C, and 1-M must be chosen large enough, so 
that the added explicit temporal damping term is dominant over the 
second term in equation (6.2.6). On the other hand, a shall be kept as 
small as possible, so that the opening angle of the characteristic cone 
in the s,t-plane is kept as small as possible, compare figure 6.2.1, 
thus minimizing "history"-effects in the time-integration (i.e. 
iteration) process. 
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7 IMPLEMENTATION ASPECTS 

7.1 General remarks on ILU/S1P 
On many large computers the size of the main memory is not more 

than about 2-4 million numbers. This implies that the computational data 
cannot be loaded entirely in memory. 

An important requirement with respect to the choice of a relaxa­
tion algorithm in the multigrid method has therefore been that it should 
be possible to implement it on a computer of large, but limited, main 
memory (.5-4 million numbers). Therefore the algorithm has been designed 
to have a plane-by-plane structure, so that a code can be set up requi­
ring only a limited number of planes in main memory at the same moment. 
Vectorizability is desirable but not an absolute requirement. 

The evaluation of residuals is expensive in finite volume codes. 
Because residuals have to be evaluated in each relaxation, even a rather 
expensive algorithm can be cost-effective, provided its convergence is 
fast. For this reason the reduction-factors in section 6.1 have not been 
weighted by the amount of work required for each algorithm, because if 
the evaluation of residuals is expensive, the work for each algorithm 
will be about the same per iteration. 

Because it is fully implicit, the ILU/SIP algorithm requires that 
the entire computational domain is updated simultaneously. Hence the 
whole upper triangular matrix U must be stored, requiring storage-capa­
city for four large vectors (of length equal to the solution-vector). As 
in general this upper matrix U will not be stored in main memory, 10-
transfers have to be made in each relaxation. These transfers can be 
carried out plane-by-plane. The absence of a preferred sweep-direction 
(see section 5.4.2) can be used to advantage by choosing the sweep-
direction and the number of planes co be transferred simultaneously in 
such a way that an optimal balance between main memory size and IO-time 
is obtained. 

The vectorizibility of the ILU/SIP algorithm has not yet been thor­
oughly investigated. The only non-vectorizible part in the algorithm is 
in its present form the inversion of the inner (pentadiagonal) bandma­
trix. In the context of SLR-algorithms, three colour pattern relaxation 
has proved to be ar, effective way to vectorize such inversion algorithms 
and it is believed that this can also be applied to ILU/SIP. 
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7.2 Storage and computational speed requirements 
The total memory requirement of the ILU/SIP algorithm, the multi-

grid method and the finite volume discretization is given in table 
7.2.1: the code requires background memory for about 23 numbers per 
grid point. 

Experience has shown that a sufficiently accurate transonic 
potential flow calculation about a realistic transport wing can require 
in the order of 300.000 grid points on a CH-topology grid. This in­
dicates that sufficient accuracy in the case of a realistic aircraft 
configuration (wing, body, nacelles etc.) can easily raise the number of 
grid points required to 1.000.000. Since the flow solver requires about 
23 numbers per grid point, it follows that the total memory requirement 
can easily become 23 million (64 bit) words. Because of these consider­
ations the flow solver has no upper limit of the size of computational 
grid(s) employed. The flow solver has been developed such that it does 
not arrange for I/O data handling on the program level. Consequently, 
the flow solver can be made operational on computers that have a suf­
ficiently large main memory (say £ 25 million numbers) or a virtual 
operating system supported by a sufficiently large main memory 
(say £ 1.5 million numbers). The Cray 2 and the ETA-10 are in the first 
category while the NLR Cyber 180-855 and the Cyber 205 are in the second 
category. Also the Cray X-MP and NEC SX-2, having a comparably fast 
accessible memory on extended memory (solid state devices), are in the 
first category. An important side effects of the decision not to arrange 
for I/O data handling on the program level is that the software is 
simpler and consequently easier to develop and maintain. 

The flow solver has been developed on a Cyber 180-855 sequential 
computer under the NOS/VE operating system supporting a virtual environ­
ment. This computer has at present a central memory of 3 million 
(64 bit) words and has a computation speed of 2.1 million floating point 
operations per second. The computation time required by the flow solver 
is at the moment about 12 seconds per 1000 grid points (.45 seconds per 
iteration per 1000 grid points) for a solution of engineering accuracy. 
This amounts to a computation time of about one hour for a realistic 
transport wing using the CH-topology grid of 300.000 grid points 
mentioned before. The corresponding turn-arourd time is about 3-4 times 
the computation time under stand-alone conditions. 
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TABLE 7.2.1. 
Memory requirements on three sample grids in case of plane-by-plane ordering 

of the ILU/SIP algorithm in the multigrid method (K = kilo = 1000) 

Grid point variable 

1 disturbance potential 
1 status variable 
3 coordinates 
6 metrics + 1 Jacobian 
3 ILU/SIP variables + 
1 residual 
7 ILU/SIP work variables 
3 freestream flow 
variables 

sub-total 

multigrid overhead (20%) 

total 

Background 
memory per 
global 
grid point 

1 
1 
3 
7 

4 
0 

3 

19 

3.8 

22.8 

Number of grid planes 
to be stored simul­
taneously in main 
memory 

5 
5 
0 
4 

3 
1 

4 

Main memory 
per grid plane 
grid point 

5 
5 
0 
28 

12 
7 

12 

69 

13.8 

82.8 

^ \ ^ NX*NY*NZ 
^ \ ^ ^ grid 

Storage ^^\^^ 

background memory 

total main NX*NY 
memory in case of NX*NZ 
plane-by-plane NY*NZ 
ordering 

176*32*32 
(= 180 K cells) 

4109 K 

466 K 
466 K 
85 K 

220*40*48 
(= 442 K cells) 

9631 K 

729 K 
874 K 
159 K 

320*48*64 
(= 983 K cells) 

22413 K 

1271 K 
1696 K 
254 K 
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About 2/3 of the computation time and the turn-around time is spent on 
computing the flow velocities, the flow density and the flow equation 
residual. About 1/4 of the computation and turn-around time is spent on 
the ILU/SIP smoothing algorithm. 

It is clear that operation of the flow solver in a practical design 
environment (when turn-around times shorter than one quarter of an hour 
are required) requires a supercomputer like the aforementioned Cray 2, 
ETA-10, Cray X-MP or NEC SX-2. 
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8 NUMERICAL EXPERIMENTS 

8.1 General description and basic choices 
In this chapter numerical experiments are presented that show the 

computational efficiency and robustness of the MG-ILU/SIP method. Two 
types of experiments are described: 
- in section 8.2 numerical experiments for simple cases are described, 

for confirmation of the smoothing analysis given in chapter 6; 
- in section 8.3 numerical experiments for practical cases are presented 

to illustrate the usefulness of the method for practical transonic 
potential flow calculations. 

Finally, in section 8.4 results of the finite volume discretization 
are given and transonic potential flow solutions are shown for the 
DFVLR-F4 and the 0NERA-M6 wing. 

Transonic flows are highly nonlinear in the vicinity of shocks. 
Shocks are captured by the finite volume scheme as narrow zones of steep 
pressure gradients. The positions of shocks are not known a priori and 
have to be found in the course of the solution process. The experiments 
must demonstrate the applicability of the algorithm to transonic flows 
with shocks. It will appear, however, that the asymptotic rate of con­
vergence of the multigrid process is dominated by certain subsonic 
regions in the flow. These are: 
- the vicinity of the leading and trailing edge of the wing, where one 

2 1 3 mesh size is considerably larger than the other two (A£ >> A£ , A£ ) , 
especially in the far field region outboard the wing-tip 
(figure 3.1.6); 

- regions where the three mesh sizes differ widely from each other; this 
can easily occur in the far field region in grid planes perpendicular 
to the wing. 

Unless specified otherwise, the following basic choices have been 
made in the experiments: 
- The ILU/SIP parameter a is set to unity in hyperbolic regions of the 

flow, .rfhile 0 S a £ 1 in elliptic regions. It will be shown that 
a=.70 is a good value in the elliptic region, and in such cases this 
parameter will not be mentioned explicitly. 

- Either a three level or a four level multigrid method is used, 
employing weighted restriction of residuals (figure 5.2.3), injection 
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of potentials and tricubic prolongation. In Van der Wees, van der 
Vooren and Meelker [1] some experiments are described which indicate 
that this is a good choice. A slightly faster convergence can be 
obtained by taking weighted restriction instead of injection of 
potentials. It has been found, however, that this choice is not 
robust, see subsection 8.3.1. 

- A V- or W-cycle (figure 5.2.1) will be used, denoted by V (x,y) or 
WN(x,y) , in which x smoothings are performed on the coarsest grid and 
y smoothings on the finer grids after each prolongation, while 
N indicates the number of grid levels in the multigrid process. The 
number of smoothings on a grid will always be chosen such, that the 
high-frequency part of the error is sufficiently smoothed on that 
grid. A guideline for this choice is given by the smoothing analysis 
for elliptic problems, section 6.1. 

- The computation starts with a full multigrid cycle (nested iteration, 
figure 5.2.2). 

- The multigrid convergence rate is measured by monitoring the maximum 
norm of the residual on the finest grid versus the number of work 
units (WU). One work unit is equivalent to the work required for one 
fine grid smoothing. Work involved in prolongation and restriction is 
not counted. 

- Discontinuities in the geometry, such as the wing trailing edge, are 
chosen to coincide with grid lines that are present on several grid 
levels. The wing-tip requires special treatment, as will be explained 
in subsection 8.3.1. 

- The freestream flow is used as the starting solution. 

8.2 Numerical experiments for confirmation of smoothing analysis 

8.2.1 Incompressible flow in windtunnel with a bump on the bottom wall 
The smoothing analysis presented in section 6.1 will be confirmed 

by computing the incompressible flow (M = 0 . , hence we are solving the 
Laplace equation) in a windtunnel with a bump on the bottom wall. A sam­
ple configuration is given in figure 8.2.1. 

The flow domain and the grid will be varied such that the influence 
of grid aspect ratio and grid skewness on the rate of convergence of the 
multigrid method can be compared with results of the smoothing analysis 
presented in section 6.1. 
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î  = 0 

Fig. 8.2.1 Sketch of a windtunnel with a bump on the bottom wall 

Flow configuration 

The following flow domain is used (compare equation (6.1.7)) 

(C 1 , ? 2 , ? 3 ) [-1,1] * [0,2] * [0 ,2] 

f 1 = AC1 . C1 

- 2 2 2 
r = &c . r 
I3 

x = 

3 3 3 
Ar . « + c ) 

bump 

f1 cos 63 + ?2 sin 6 + I3 cos (02 + 9 ) y = 

z = 

I2 cos e. 

f1 sin + I3 sin (e2 + e3) 

► (8.2.1) 
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where the bump is given by a third degree polynomial which has 
continuous derivatives at the edges of the bump: 

''bump = E <2l*l|-l)2 (♦U1|+l) (C2-l)2 for 

(C1,?2) e C-l,i] * C0,1], (8.2.2) 

= 0 elsewhere. 

In equation (8.2.1) AC , i = 1,2,3, are parameters to stretch the 
three coordinate directions. The parameters 6 , 6 and 6 , are respec­
tively the (given) sweep, skewness and grid rotation angle of the 
domain, compare figure 6.1.1. As in section 6.1, the above parameters 
will be varied to investigate their influence on the rate of convergence 
of the multigrid method. 

The parameter e in equation (8.2.2) controls the thickness of the 
2 3 1 

bump. Thus the root section £, = 0 corresponds to a 2eA£ /A£ thick 
cusped non-lifting airfoil. In the experiments e = .0005. 

The grid contains 32*32*32 cells and is equidistant in £ -space. 
Consequently the mesh size in £ -direction is 2A£ /32. 
Due to the thinness of the bump the boundary fitted grid will hardly be 
distorted by the bump. 

The coupling factor < (subsection 4.4.3) is set to unity, so that 
effectively the Laplace equation is solved using central differences. 

In this section the full multigrid cycle (nested iteration) is not 
used: the multigrid process is started on the finest grid level. 

Optimal value of ILU/SIP-parameter a 

Figure 8.2.2 presents the convergence history of the MG-ILU/SIP 
method on a grid with A^1 = 1, A£2 = 10, A£3 = 1 , 9 = 0°, 6 = 90°, 
6 = 0° for various values of the parameter a, employing a 
V,(60,6)-cycle. The figure shows that the convergence improves with 
increasing a, as predicted in section 6.1, figure 6.1.2. The convergence 
for u = 1. was poor, as predicted in section 6.2. 
As was also found in section 6.1 the value a = .7 is reasonably optimal. 
This value for a will therefore be adopted in all subsequent numerical 
experiments of this subsection and will no longer be mentioned 
explicitly. 
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Fig. 8.2.2 MG-ILU/SIP(a) convergence history on a rectangular grid 
with A^1 =A£3 = 1, AC2 = 10, for various values of a 
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Fig. 8.2.3 MG-ILU/SIP convergence history on rectangular grid with 
AC1=AC2=AC3=1 for various V4-cycles 



- 9 4 -

Optimal number of relaxations per grid 

Figure 8.2.3 presents the MG-1LU/SIP convergence history of the 
MG-ILU/SIP method on a rectangular grid (6 = 0 ° , &2 = 90°, 63 = 0°) 
with AC = 1, i = 1,2,3, depending on the number of relaxations in a 
V-cycle. As predicted by smoothing analysis (table 6.1.1), the con­
vergence is faster than in the previous case. The optimal number of re­
laxations per grid is 2 here, but the differences are small. 

Influence of grid aspect ratios on rate of convergence 

Figure 8.2.4 shows the convergence history of the MG-ILU/SIP method 
on a rectangular grid (6. = 0 ° , e = 90°, 6 = 0°) for several values of 

1 2 1 3 the aspect ratio e = AC /AC with AC = AC . This experiment is to be 
compared with the smoothing analysis results presented in figure 6.1.3. 
The figure confirms the conclusion following from smoothing analysis, 
that the rate of convergence is better for a large aspect ratio e = 

1 2 AC /AC than for a small aspect ratio. The figure also shows that grid 
1 2 refinement in order to enlarge AC /AC can pay off in case of a small 

1 2 aspect ratio AC /AC : the efficiency N. (X) for the cases E = 1., .316, 
.10, .032 is 2.5, 3.3, 13.2, 44.9 respectively; defining the total 
amount of work as the number of iterations times the number of grid 
points to cover a (given) physical space, the amount of work is pro­
portional to N. (X) multiplied by e in this experiment, which equals 
2.5, 1.04, 1.32, 1.42 for the cases c = 1., .316, .10, .032. This means 
that although the grid with e = .032 contains 10 times fewer grid points 
than the grid with e = .316, it is 37% less efficient when the total 
amount of work for convergence on this grid is considered. This also 
means that a 10 times higher resolution (t = .316 instead of e = .032) 
can be obtained at lower computational cost. 

The multigrid cycle employed in figure 8.2.4 is V (30,3), but for 
the cases e = .10 and e = .032 the V,(60,6) and the V,(120,12) cycle 

4 4 
have been chosen, because smoothing analysis indicated that smoothing 
would be comparatively inefficient for these cases. 

Influence of grid skewness on rate of convergence 

Figure 8.2.5 shows the convergence history of the MG-ILU/SIP method 
on a grid with equal mesh sizes AC = 1 at different sweep angles 8 
with 6 = 90° and 6. = 06. This experiment is to be compared with the 
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Fig. 8.2.4 MG-ILU/SIP convergence history for various values of 
e=A£1/A£2 with A£.1=A£,3 on a rectangular grid 
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Fig. 8.2.5 MG-ILU/SIP convergence history on a grid with 
AC1 = A£,2 = A£,3 = 1 at various sweep angles 8-j_; e 2 = 9 0 , e 3 = O 
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smoothing analysis results presented in figure 6.1.5a. The tnultigrid 
cycle used is V (30,3). 

The figure confirms the conclusion following from figure 6.1.5c 
that convergence does not suffer too much from low degrees of grid 
skewness: the rate of convergence is comparable for 6, = 0° and 
6, = 30°. At larger sweep angles (say, 6, > 45°) convergence slows down 
considerably, as predicted by smoothing analysis, cf. figure 6.1.5a. 

Figure 8.2.6 shows the convergence history of the MG-ILU/SIP method 
on a grid with equal mesh sizes AC = 1 at various skewness angles 8~» 
with the sweep angle 0. = 30° and the grid rotation angle 6., = 0°. This 
figure can be compared with the smoothing analysis results presented in 
figure 6.1.6a. The multigrid cycle used is V,(30,3). 

As in the previous figure, figure 8.2.6 shows that convergence does 
not suffer too much from low degrees of grid skewness. At higher grid 
skewness (say at larger deviations from orthogonality than 45°) 
convergence slows down considerably, as predicted by smoothing analysis, 
cf. figure 6.1.6a. 

Figure 8.2.7 shows the convergence history of the MG-ILU/SIP method 
on a grid with equal mesh sizes A£ = 1 at various grid rotation angles 
0_, with the wing sweep angle 6, = 30° and the skewness angle 6„ = 45°. 
This figure can be compared with the smoothing analysis results 
presented in figure 6.1.6a. The multigrid cycle used is V (30,3). 

Convergence is indeed slower for grid rotation angle e, = 90° than 
for 0 = 0° and 6., = 45°, as predicted by smoothing analysis, cf. fig­
ure 6.1.6a. 

Figure 8.2.8 shows the convergence history of the MG-ILU/SIP method 
on a grid with equal mesh sizes AC = 1 at various grid rotation angles 
0„ while the wing sweep angle 0. = 60° and the grid skewness angle 
0„ = 45°. The multigrid cycle is V.(60,6). The smoothing analysis 
results presented in figure 6.1.7a lead one to expect divergence for 
this case for some rotation angles 0„ unequal to zero. Indeed, bad 
convergence is observed for e., = 90°. 
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Fig. 8.2.6 MG-ILU/SIP convergence history on a grid with 
AC1 = A?2 = A?3 = 1 and wing sweep 6-̂  = 30° at various grid 
skewness angles 62; 63 = 0 
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Fig. 8.2.7 MG-ILU/SIP convergence history on a grid with 
AC -A£2 = AC - 1, wing sweep 6̂  = 30 and grid skewness 
angle 82 = 45° at various grid rotation angles 63 
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Fig. 8.2.8 MG-ILU/SIP convergence history on a grid with 
A£ =A£ 2=A£ 3=1, wing sweep 8, =60° and grid skewness 
angle 62 = 45° at various grid rotation angles 63 
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The smoothing analysis results in section 6.1, lead one to expect 
that better convergence may be obtained if underrelaxation with tu = .70 
is applied. Figure 8.2.9 confirms this: the convergence history for 
6„ = 90° has become more regular. The improvement is however small, 
mainly because the convergence history presented in figure 8.2.8 is not 
as bad as would be expected from the smoothing analysis. This is 
explained as follows. In the case 6. = 90°, presented in figure 8.2.8 
(no underrelaxation), ILU/SIP has the smoothing property (smoothing 
number p<l) but is unstable for a low-frequency component of the error, 
namely an error which has a wavelength of approximately 8 meshes in all 
three coordinate directions. In the case 0_ = 90° presented in figure 
8.2.9 (with underrelaxation) ILU/SIP has been stabilized by applying 
underrelaxation, but has also become a less efficient smoothing 
algorithm because of that underrelaxation. Consequently, the convergence 
for 8 = 90° presented in figure 8.2.8 is to some degree a matter of 
luck (the multigrid cycle is apparently well chosen), while in figure 
8.2.9 the convergence behaviour corresponds with conclusions obtained 
from the smoothing analysis. 

Influence of grid stretching on convergence 

Grid stretching (successive meshes having unequal mesh sizes) can­
not be incorporated in the local mode (smoothing) analysis presented in 
section 6.1, because the assumption of constant matrix coefficients is 
violated. Therefore the influence of grid stretching is investigated 
experimentally here. 

Consider a rectangular grid with AC = 1, 9 = 0°, 6„ = 90°, 
6. = 0° containing 32*32*32 cells in which the 8 central cells in the 
2 C -direction are stretched by a factor K as follows: 

cell no. 
size AC 

1-12 
1. 

13 
K 

14 
K2 

15 
K3 

16 
K* 

17 
K4 

18 
K3 

19 
K2 

20 
K 

21-32 
1. 

2 1 4 The grid then locally has an aspect ratio AC /AC = K , but in the 
major part of the grid this aspect ratio is 1. The value of K will be 
(1.2)N, N = 0,1,2,3,4. 

The convergence history on this stretched grid will be compared 
2 1 4 N with that on a grid having an aspect ratio AC /AC = (K ) everywhere, 

N = 0,1,2,3,4. Figure 8.2.10 shows these convergence histories, 
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Fig. 3.2.10 MG-ILU/SIP convergence history on a locally stretched grid 
and a uniform grid with comparable aspect ratio 
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employing a V (60,6)-cycle. The figure clearly shows that on a grid 
4 a having only locally an aspect ratio of (K ) multigrid converges about 

4 a equally fast as a grid having globally an aspect ratio of (K ) . 
Consequently, the largest local aspect ratio ("worst" aspect ratio) of 
the grid strongly influences the ultimate rate of convergence. This 
conclusion also holds in more genera] cases, as will be shown in the 
next sections. 

Discussion of convergence results 

The convergence results presented so far compare well in a qualita­
tive sense with the smoothing analysis presented in section 6.1: all 
major findings of that section have been confirmed by the numerical 
experiments just described. However, close examination reveals dif­
ferences between the rate of convergence as analytically predicted by 
smoothing analysis (section 6.1) and the actual rate of convergence 
observed in the numerical experiments of this section. These differences 
are to be attributed to violation of the assumptions that are made when 
using the smoothing analysis as a prediction for the actual rate of 
convergence of the multigrid method. These assumptions are: 

1. The convergence speed does not deteriorate at boundaries, which are 
assumed to be absent in smoothing analysis. 

2. The coarse grid correction step gives an adequate reduction of the 
low-frequency modes of the error and does not amplify the high-fre­
quency modes of the error. Theoretically this condition can be satis­
fied by a suitable choice of the restriction, coarse grid and prolon­
gation operator. 

3. The numerical evaluation of the smoothing number p is sufficiently 
accurate. 

Under the above assumptions, one can compare the smoothing number 
p, obtained from smoothing analysis, with the error reduction per work 
unit A, observed in the numerical experiment. In case the aforementioned 
assumptions are satisfied, these numbers must be about equal. In this 
comparison the number A must be measured while not counting the work 
that is done on the coarse grids in the experiment, so that one compares 
the numbers p and A on the basis of one smoothing step on the finest 
grid. 

In all experiments presented so far, two phases can be distin­
guished in the convergence history, viz. an initial and an asymptotic 
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convergence phase. Usually the convergence speed is slowest in the 
asymptotic convergence phase, because it is then dominated by the error 
mode for which the method is converging most slowly. In nearly all 
numerical experiments presented in this subsection, the asymptotic 
convergence phase is dominated by the smoothing of errors near 
boundaries of the computational domain (the experiment on the 

1 2 3 rectangular grid with AC = AC = AC = 1 (figure 8.2.3) being the only 
exception). 

Figure 8.2.11 gives N. (A) (corrected for the work on the coarse 
grids) versus N (p) in the asymptotic convergence phase for the 
experiments given in figure 8.2.4, which appears to be reasonably 
characteristic for all experiments presented. 

-logN: 

SMOOTHING ANALYSIS. FIG. 6.1.3 
O EXPERIMENT, FIG. 8.2.4 

Fig. 8.2.11 Smoothing efficiency Nit(c) compared with the asymptotic 
(corrected) error reduction efficiency per work unit Nit(X) 
for the experiment presented in figure 8.2.4 

1 2 
Figure 8.2.11 clearly shows that for e = AC /AC > 1 the conver­

gence is slower than is to be expected on the basis of smoothing ana­
lysis. It was found that the method is slower near the boundaries with 
Neumann boundary conditions than in the interior. Therefore, the first 



-103-

assumption in this comparison (namely that the convergence speed does 
not deteriorate at boundaries) is not satisfied. Because in practice 

1 2 wing grids do not have the property e = AC /AC > 1 at most grid points 
with prescribed Neumann boundary conditions, we have not tried to 
improve the convergence for this case by using special boundary 
relaxation procedures. 

1 2 The case e = AC /AC ■ 1 converges approximately as predicted by 
smoothing analysis. 

1 2 
The case e = AC /AC < 1 converges faster than predicted by smooth­

ing analysis. As the smoothing number p only gives a lower bound for the 
rate of convergence, a better rate of convergence, as encountered in 
this case, is possible of course. 

The final conclusion of the exercise undertaken in this subsection 
is, that the smoothing analysis does not always provide an accurate pre­
diction of the convergence rate measured in numerical experiments, 
because the rate of convergence rate is different at boundaries than in 
the interior of the computational domain. 

8.2.2 Simplified wing in transonic flow 
Another set of experiments is presented that resemble realistic 

flows more closely. Again, comparison will be made with smoothing analy­
sis presented in section 6.1. The transonic flow about a simple swept 
back wing of constant chord and profile (figure 8.2.12) at freestream 
Mach number M = .84 and angle of attack a = 3° is computed. The wing 
profile is an ONERA-D profile. The grid contains 88*16*16 cells in the 
circumferential, wing-normal and spanwise directions. There are 56*7 
cells adjacent to the wing. In grid planes perpendicular to the wing, 
two different kinds of grids have been generated. Grid A (figure 12a) 

1 3 has the property AC = AC to a reasonable extent, while grid B 
(figure 12b) does not have this property at all and instead has 
computational cells with mesh sizes of three different orders of 
magnitude. Near the wing, both grids are approximately the same 
(figure 12d). In both cases, the grid spacing in the spanwise direction 
is uniform. Grid refinement in the spanwise direction will be 
investigated by doubling the number of cells in that direction. These 
refined grids will be referred to as AA and BB. The multigrid cycle used 
is W„(12,6). The full multigrid cycle is not used in this experiment. 
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Fig. 8.2.12 Computational grid used for transonic flow about swept wing 
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Figure 8.2.13 shows the convergence history of the MG-ILU/SIP(a) 
method on grid A for several values of a in the elliptic (subsonic) re­
gion. Two convergence phases can be distinguished, viz. initial 
convergence and asymptotic convergence. Initial convergence is usually 
fast and establishes the global characteristics of the flow. The asymp­
totic convergence, however, is in most cases much slower, because it is 
dominated by the cells which have the "worst" combination of mesh sizes 
in view of the smoothing analysis presented in section 6.1. The conver­
gence level obtained after the initial phase, usually about 1 - 1.5 or­
ders of magnitude reduction in the residual, is in many cases sufficient 
for engineering applications. Figure 8.2.13 shows, that asymptotic con­
vergence is best for a = .70; for a = .35 and a = 0 respectively the 
method is asymptotically 18% and 39% slower. This result also follows 
from the smoothing analysis presented in section 6.1. The value a = 1 is 
generally not allowed in the elliptic region because of an unreliable 
convergence (see also section 6.2). 

Figure 8.2.14 shows the effects of doubling the number of cells in 
the spanwise direction. The convergence history on grids A and B is 
about the same. In both cases, the maximum residual is located at the 
trailing edge of the tip section, where the grids are similar. The 
refined grids AA and BB are obtained from grids A and B respectively by 
doubling the number of cells in the spanwise direction. The convergence 
on grid AA is nearly twice as fast as on grid A. Such improved con­
vergence was already predicted in section 6.1, figure 6.1.3. The result 
implies that doubling the resolution in the spanwise direction does not 
lead to an increase in computation time. The convergence on grid BB ini­
tially shows the same improvement as grid AA. However, at 60 work units 
there occurs a sudden slowdown of the asymptotic convergence rate. This 
happens when the maximum residual, which was originally at the wing 
trailing edge, jumps to the branch cut in the far field plane down­
stream. Here the cells have mesh sizes of three different orders of 
magnitude and consequently, the convergence slows down considerably, as 
already predicted in section 6.1. 

The following lesson can be learned from figure 8.2.14. Due to 
choosing the freestream flow as a starting solution, the error will be 
highly non-uniform at the start: the initial error will be large at the 
wing, where the freestream flow is not a good guess for the final solu­
tion; the initial error will be very small in the far field, where the 
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freestream flow is hardly disturbed by the presence of the wing. Because 
the initial error is so small in the far field, slow convergence in the 
far field grid shows up only in the asymptotic convergence phase. As a 
two to three orders of magnitude error reduction is more than sufficient 
for most practical applications, one can benefit from this observation 
as follows. The grid should be generated such, that the solution method 
will be fast in regions where the freestream flow is not a good guess 
for the final solution. In other regions one can afford to generate a 
grid for which the method will not give fast convergence. As a conse­
quence, however, one accepts a slow asymptotic convergence phase and 
therefore very accurate (highly converged) results will be hard to ob­
tain. 

3 Convergence of solution method for realistic wings in transonic flow 

3.1 General remarks 
Numerical experiments on transonic flows around realistic wings 

indicated that the solution process is easily trapped in a nonlinear 
divergence in the wing tip region. A close examination of the problem 
revealed that this divergence was caused by the circulation update, 
equation (4.5.6), outside the tip. Whenever a nonzero circulation (lift) 
value was generated outside the wing tip on the wing extension, the 
relaxation of this circulation (setting it to the correct zero value) 
generated a small spurious region of highly supersonic flow outside the 
wing tip, which the solution process could not eliminate (probably 
because switching back from supersonic to subsonic flow is a highly 
nonlinear process). The nonlinear divergence phenomenon only showed up 
after a coarse grid correction, because then the flow corrections on a 
grid are the largest. This difficulty has been overcome by requiring 
that the first grid plane outside the wing tip should be present on 
several levels of the multigrid process. Also it is required to use a 
linear prolongation operator in the wing tip region. This way it is 
rigorously avoided that a section of the wing extension gets a nonzero 
circulation value after a coarse grid correction, which was already 
identified as the cause of the difficulty. For simplicity, linear 
prolongation has been used for the whole computational domain. 

Numerical experiments also indicated that weighted restriction 
instead of injection of potentials may not be robust for wing flows. In 
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case of weighted restriction, spanwise grid sections on the coarse grid 
have a different trailing edge potential jump value T on the coarse and 
on the fine grid during restriction. In the experiments this caused 
non-convergence phenomena for the potential jump T on the finest grid, 
which did not occur when potential injection was used. 

8.3.2 Convergence acceleration by local smoothings 
In the section 8.2 it has been shown that the asymptotic conver­

gence phase of the multigrid process is dominated by the smoothing in 
cells that have the "worst" combination of mesh sizes. Applying extra 
local smoothings in these cells can improve the convergence signifi­
cantly. 

In the wing flow problems considered in this thesis some difficult 
cells are always located near the wing leading or trailing edge, where 
the meshes are very fine in wing-normal and chordwise direction and 
comparatively large in the spanwise direction. The worst aspect ratios 
can be found on the wing extension, where the grid is stretched towards 
the far field boundary (figure 3.1.6). It therefore suffices to apply 
local relaxations only in the first fourth part (i.e. K £ CO, NK/4]) of 
the cells normal to the wing, the wing extension and the branch cut. 
During these local relaxations the potential is kept fixed on the outer 
plane K = NK/A, while on all other boundaries the usual boundary conditions 
are applied. An advantage of this approach is that this local smoothing 
highly resembles the global smoothing employed. 

The effect of the local smoothings on the convergence of the MG-
ILU/SIP method will be shown by computing the transonic flow about the 
DFVLR-F4 wing at Mach number M = .75 and angle of attack a = .84 
degrees. This wing and flow condition are representative for the super­
critical wings of today and this flow case has also been studied by a 
GARTEUR action group (Carr [1]). The grid, shown in figure 3.1.6, 
involves 176*32*32 (180224) cells and the multigrid method employs 
4 grids. In figure 8.3.1a a W (12,6)-strategy without local smoothings 
is chosen, while in figure 8.3.1b a V (12,6)-strategy with 2 local 
smoothings per global smoothing is chosen. Consequently, in the latter 
case one smoothing relaxation corresponds to 1 + 2*£ = 1.5 work units. 
The flow solution computed in this experiment will be presented in sub­
section 8.4,2. 
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Figure 8.3.1 shows that the convergence history becomes much 
"smoother" when local smoothings are applied, and consequently conver­
gence is more reliable. This smoother convergence is due to the extra 
smoothing of the shocks, as a major part of the supersonic zone and 
shocks is located in the local smoothing region. In the initial conver­
gence phase, the method with local smoothings is about equally fast as 
the method without local smoothings, but in the asymptotic convergence 
phase the method with local smoothings is nearly two times faster than 
the method without local smoothings. 

In figure 8.3.1b the sudden increase in the maximum residual at 
160 WU is probably caused by a shock movement. 

In this experiment, the initial convergence phase is dominated by 
the residual at the extension of the leading edge outside the wing tip. 

2 1 1 3 Here AC « 17AC i i^ ■*■ AC , which is indeed a very extreme aspect 
ratio, considering figure 6.1.3. The final convergence phase is domina­
ted by the cells near the leading edge of the wing extension near the 

2 1 2 3 far field plane, where the AC /A£ - and AC /AC -aspect ratios are well 
over one hundred. In such cases many smoothings are required on each 
grid to smooth the error, cf. figure 6.1.3, and the only good remedy 
here is to take special measures, e.g. to apply extrapolation techniques 
(see e.g. Van der Wees, van der Vooren and Meelker [1]), to use 
plane-relaxation as introduced by Thole [1] or to use the multigrid 
method as a preconditioner in a conjugate gradients algorithm (see e.g. 
Sonneveld, Wesseling and de Zeeuw [1]). 

Figure 8.3.1 also shows the convergence history of the lift (i.e. 
the sum of T for all spanwise grid sections) and the number of 
supersonic grid points (i.e. the size of the supersonic region). After 
about 40-45 work units with only .8-1.6 digits reduction in the maximum 
residual, the lift and the number of supersonic points have converged to 
well within 1% of their final value, which is sufficient for engineering 
applications. This good convergence can for a large extent be 
contributed to the usage of the full multigrid method : the starting 
solution on the fine grid, which is a prolongated converged coarse grid 
solution, approximates the final values of the lift and the number of 
supersonic points already within 5%. 
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8.3.3 Convergence of highly transonic flow calculations 
In this subsection the MG-ILU/SIP convergence history is given for 

the calculation of the transonic flow about the 0NERA-M6 wing, which is 
a well-known testcase for transonic flow codes. Each wing section is an 
ONERA-D profile, which is a symmetric profile. Consequently, at zero 
angle of attack the flow will be symmetric, with supersonic bubbles both 
on the upper and the lower side of the wing. 

Figure 8.3.2 shows the convergence history of the MG-ILU/SIP method 
for the transonic flow about the 0NERA-M6 wing at M = .92, a = 0° and 

00 
at M = .84, a = 6°. In the first flow case about 10 percent of the 

CD ' 

grid points in the 176*32*32 grid is supersonic. The flow solutions 
computed in these experiments will be presented in subsection 8.4.2. Due 
to the strong shocks that are present in the solution, the multigrid 
process only converged well if a V (20,10)-cycle was used, i.e. the 
number of ILU/SIP smoothings per grid level was increased from six (as 
used in the previous subsection) to ten. Local smoothings were not 
applied in this experiment. In the final phase of the solution process 
shown in figure 8.3.2 a V (40,20)- and a V (80,40)-cycle (thus using 
only three grid levels in the multigrid process) had to be used. Yet the 
convergence process remains very irregular due to shock movements after 
each coarse grid correction step. 

8.3.4 Concluding remarks on convergence of MG-ILU/SIP method 
Two figures are reproduced from Van der Wees [1], showing conver­

gence results for the transonic flow in a windtunnel with a bump on the 
bottom wall at M = .95. In figure 8.3.3 it is shown that the conver-

co 

gence history of the number of supersonic grid points is better for 
MG-ILU/SIP than for MG-SLR. The single grid SLOR method is significantly 
worse than the multigrid methods. Figure 8.3.4 shows a crosspiot of the 
mean residual norm (l.-norm) versus the number of supersonic grid points. 

At about 1.5 orders of magnitude reduction in the residual, 
MG-ILU/SIP has already nearly reached the final number of supersonic 
grid points, while MG-SLR is still about 1% away from this final value. 
The single grid SLOR method is, however, still far from the final value. 
If the number of supersonic grid points (development of the supersonic 
zone) is interpreted as a measure for the "quality of the solution", it 
is obvious from figure 8.3.4 that multigrid methods (MG-SLR and 
MG-ILU/SIP) provide (at a certain error level) solutions of far better 
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quality than the corresponding single grid methods. This is explained by 
a more efficient approximation of the low-frequency modes of the 
solution. Moreover, the MG-ILU/SIP method provides a solution which is 
of better quality than the one provided by the MG-SLR method. This can 
probably be used to advantage by specifying a lower convergence level. 

In conclusion, a remark is made on the efficiency of the multigrid 
method. It has been found that in the transonic potential flow problems 
described in this section the multigrid efficiency is not independent of 
the mesh size h (i.e. the number of equations N). This is in contrast 
with the considerations given in section 5.1 and with experiences in 
many other applications (e.g. elliptic problems), where it has been 
found that the multigrid efficiency is independent of the mesh size h. 
Indeed, for elliptic problems (subsonic flow) the convergence of the 
present multigrid method is independent of h, but this property does not 
hold true for transonic flow. The explanation is probably that the 
subsonic/supersonic interface, i.e. the sonic surfaces and the shock 
surfaces, have to be found as part of the solution, that is, can be seen 
as a free surface between an elliptic and a hyperbolic problem. When 
the grid is refined (h -*• 0, N ■* °>) , this interface has to be computed 
with more detail and especially at the line where a sonic surface and a 
shock surface meet it has been observed that the amount of work required 
to converge this region of the flow increases when h goes to zero (in 
the iterative process the grid points located in this region tend to 
oscillate between the subsonic and supersonic states for some time). 
Once the flow regions around shocks and sonic surfaces have converged, 
we may perhaps expect that in this final convergence phase the multigrid 
efficiency is independent of h, but in practice this phase will almost 
never be reached, see for example the irregular convergence histories of 
figures 8.3.1 and 8.3.2. 
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8.4 Computational results 

8.4.1 Results of finite volume method 
Figure 8.4.1 shows the accuracy of the finite volume method for the 

incompressible flow (Mm = 0) about a thin (RAE) wing with 5% thick NACA 
four digit series airfoil. The angle of attack is o = 5°. This wing has 
been used as a testcase to compare several existing panel methods 
(Sytsma, Hewitt and Rubbert [1]). The grid used involves 176*32*32 cells 
and resembles the grid used in section 8.3. 

The results are compared with results of the higher order panel 
method of Roberts, which emerged from the comparisons in Sytsma, Hewitt 
and Rubbert [1] as being the most accurate. The agreement is excellent. 
Only minor deviations occur at the trailing edge and close to the tip. 
These deviations are believed to be caused by the (small) differences in 
the implementation of the Kutta condition, the different spanwise 
distributions of the wing surface grid, and the different treatment of 
the wing tip. Which of the two results of figure 8.4.1 is the most 
accurate is unknown. 

An important feature of the finite volume (FV) discretization is 
its freestream consistency; this feature ensures that the freestream 
identically satisfies the finite volume scheme in the far field. Fig­
ure 8.4.2 illustrates the importance of this feature; in a transonic 
flow calculation for the DFVLR-F4 wing (see section 8.3.2) the chordwise 
position of the shock system on the wing upper surface is predicted 
3 - 5 % chord length too far upstream if the freestream consistency term 
in the finite volume scheme is switched off. 

An illustration of the results of the mass flux-vector splitting 
scheme used is given in figure 8.4.3. This figure shows that the scheme 
resolves strong (supersonic to subsonic) shocks over, say, three 
mesh widths (there are about two points in the shock), also in case the 
shock is not aligned with the grid on the wing. Weak (supersonic to 
supersonic) shocks are however smeared over, say, six meshwidths, 
because there are no facilities in the scheme to detect and capture 
these weak shocks. 
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8.4.2 Transonic flow about DFVLR-F4 and 0NERA-M6 wing 
In this subsection computational results will be shown for the 

transonic flow about the DFVLR-F4 wing, which is representative for the 
supercritical (transport) wing of today, and for the transonic flow 
about the 0NERA-M6 wing, which is a well-known testcase for transonic 
flow codes, because it is blown at relatively high freestream Mach-
numbers and it is known to have a solution with a double shock system. 
The convergence histories for these flow cases have already been given 
in subsections 8.3.2 and 8.3.3. 

Figure 8.4.4 shows the pressure distributions and the upper surface 
isobars for the transonic flow about the DFVLR-F4 wing at K^ = .75, 
a. = .84°. The results are obtained on the grid shown in figure 3.1.6. 
The grid involves 176*32*32 (= 180224) cells, of which 112*19 are adja­
cent to the wing. 

Figure 8.4.5 shows the pressure distributions and the upper surface 
isobars for the transonic flow about the 0NERA-M6 wing at M B = .92, 
a = 0°. The grid is similar to the grid used in the previous experiment. 

Figure 8.4.6 shows the pressure distributions and the upper surface 
isobars for the transonic flow about the 0NERA-M6 wing at M M = .84, 
a = 6°. The oblique (weak) supersonic to supersonic shock, which is 
known to be present at this flow condition, is smeared appreciably. 
This shock smearing has already been discussed in the previous sub­
section (figure 8.4.3a). 
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Fig. 8.4.4 Pressure distributions and upper surface isobars for computed 
transonic potential flow solution on DFVLR-F4 wing at M0o= .75, 
a = .84° on 176-32-32 grid 
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Fig. 8.4.5 Pressure distributions and upper surface isobars for computed 
transonic potential flow solution on 0NERA-M6 wing at Mco= .92, 
0t = 0° on 176-32-32 grid 
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Fig. 8.4.6 Pressure distributions and upper surface isobars for computed 
transonic potential flow solution on 0NERA-M6 wing at MQO= .84, 
a = 6° on 176-32-32 grid 
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8.4.3 Results of flow computation at engineering accuracy 
For wing flows there are two practical convergence criteria: 

1. Convergence of important global parameters to "engineering accuracy", 
for example 99% convergence of the lift to its final converged value 
and 99% convergence of the number of supersonic grid points (i.e. the 
supersonic zone) to its final value. 

2. Convergence of the solution, for example the pressure distribution, 
to some accuracy. Here this will be done by inspecting pressure 
distributions and checking whether any visible differences can be 
found between the solution obtained and the final, converged solution 
("approximate convergence") . 
Figure 8.4.7 shows that for the solution of the transonic flow 

about the DFVLR-F4 wing the first criterion is satisfied at approxima­
tely 55 workunits. The convergence point satisfying the second criterion 
is reached at a little more than 80 workunits. The solutions at the two 
convergence points are shown in figure 8.4.8 for five representative 
sections along the wing: the root section n = 0, a section at n = .13 
having (probably) a forward and a rear shock, a section at the kink in 
the trailing edge (n = .31), a section mid-wing (n = .46) and a section 
near the wing tip (n = .82). The figures show that at engineering accu­
racy the shock location is converged, but not the shock profile: at 
n = .31 the shock system of the final solution has not yet been resol­
ved, while also at n = .82, where the shock is oblique to the grid in 
the spanwise direction, the shock profile is poorly converged. At the 
"practically converged" point there is only a visible difference at the 
kink section in the wing (n = .31), but at all other stations the solu­
tion is fully converged, i.e. there are no significant, visible, dif­
ferences. 
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Fig. 8.4.7 "Engineering accuracy" and "approximate convergence" convergence 
levels for flow solution history of DFVLR-F4 wing at Mco= .75, 
0t = .84° (detail of figure 8.3.1b) 
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9 CONCLUSIONS AND FINAL REMARKS 

The Incomplete Lower Upper decomposition/Strongly Implicit Procedure 
(ILU/SIP) has been investigated for use as a smoother in a nonlinear 
multigrid (MG) method for the solution of the transonic full potential 
equation in three dimensions. The method has been applied to transonic 
flows around wings. 

The main conclusions of the research presented can be summarized as 
follows: 

- In subsonic (elliptic) regions of the flow ILU/SIP has been shown to 
be quite robust with respect to a wide set of variations of mesh sizes 
(subsection 6.1.2). The rate of convergence generally improves with 
increasing ILU/SIP parameter a, as long as a is not chosen too close 
to one. A good choice is a = .70 (sections 6.1 and 8.2). 

- In supersonic (hyperbolic) regions of the flow the ILU/SIP parameter a 
should be set to unity (a = I.). An explicit temporal damping term is 
required to obtain unconditional stability (section 6.2). 

- ILU/SIP is reasonably robust with respect to grid skewness, i.e. it 
shows a moderate convergence degradation as long as the angle between 
grid coordinate lines deviates less than 45 degrees from orthogonal. 
In case of larger skewness angles an underrelaxation of the residual 
may be necessary to keep the algorithm stable (subsection 6.1.3). Such 
large deviations from orthogonality are however also undesirable from 
an approximation point of view, because it affects the accuracy of the 
discretization. 

- The rate of convergence of MG-ILU/SIP can be improved by performing a 
priori grid optimization in those regions of the grid where the flow 
is subsonic. It has been shown that computational cells having mesh 
sizes of three different orders of magnitude should be avoided. This 
requirement can be satisfied by using a grid which is reasonably 
square in grid planes perpendicular to the wing (subsections 6.1.2, 
8.2.2). 
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- The grid should be generated such that the solution method is fast in 
regions where the freestream flow (the starting solution) is not a 
good guess for the final solution. In other regions one can afford to 
generate a grid for which the solution method will be relatively slow 
(subsection 8.2.2). 

- The calculation of the transonic flow about a realistic wing indicates 
that MG-1LU/SIP needs only .8-1.4 order of magnitude reduction of the 
maximum residual to provide results for the lift and the size of the 
supersonic zone of engineering accuracy. Convergence to this engineer­
ing level of accuracy is relatively fast compared with the asymptotic 
convergence rate (subsection 8.3.2). 

- In flow calculations about wings the asymptotic convergence rate is 
dominated by the computational cells that have the "worst" combination 
of aspect ratios. In practical wing grids the asymptotic convergence 
is generally rather slow, and very accurate (highly converged) results 
will be hard to attain (subsection 8.3.2). A way to improve on this 
situation (if required) is to apply extrapolation techniques (see e.g. 
Van der Wees, van der Vooren and Meelker [1]), to use plane-relaxation 
as introduced by Thole [1] or to use the multigrid method as a 
preconditioner in a conjugate gradients algorithm. 

- At a certain (specified) reduction of the error level, MG-SLR as well 
as MG-ILU/SIP provide solutions of better quality than the correspond­
ing single grid algorithm. This property is of great value in 
practice, because it can be used to advantage by specifying a lower 
convergence level (subsection 8.3.A), thus reducing computation time. 

- The unconditional stability as well as the robustness with respect to 
aspect ratios (conclusions 2 and 3), but also the absence of a prefer­
red sweep-direction in the coding, are especially of value if com­
plicated configurations involving strongly varying local flow direc­
tions and highly stretched grids are considered (e.g. complex aircraft 
configurations, air intakes). 

If one wants to avoid that a solution method for three-dimensional 
problems such as considered here becomes overly complicated, one has to 
accept a certain degree of degradation of rate of convergence under 
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certain circumstances. However, one may design the grid such that the 
convergence is sufficiently fast for practical applications; in general 
this will involve adding extra grid points. To this end, a grid analysis 
tool has been developed (Doctor [1]) which gives an indication whether 
the grid is sufficiently suited to allow for fast solution by MG-ILU/SIP 
(e.g. maximum skewness angles, maximum aspect ratios and estimated rates 
of convergence are listed) . This makes it possible to adapt a grid to 
the requirements of a flow solver. 
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APPENÜIX A 

Abbreviations and symbols 

The list of abbreviations and symbols given in this appendix serves 
as a reference table for abbreviations and symbols that are used 
throughout one or more chapters. Abbreviations and symbols that are used 
only locally in the thesis are therefore not mentioned. 

Abbreviations 

FAS Full Approximation Scheme 

FV Finite Volume (method) 

ILU Incomplete Lower Upper decomposition (algorithm) 

MG MultiGrid (method) 

NLR National Aerospace Laboratory NLR 

SIP Strongly Implicit Procedure (algorithm) 

SLOR, SLR Successive Line (Over) Relaxation 

t.e., TE trailing edge 

WU Work Unit 

General list of symbols 

C pressure coefficient P 
G contravariant metric sensor 

H Jacobian matrix 

L general nonlinear operator 

M Mach number 

N normal tensor 

NI half of number of cells in chordwise direction 

NJ number of cells in spanwise direction 
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NK number of cells in wing-normal direction 

U velocity tensor 

a speed of sound 
il aB 
g , g contravariant metric tensor component 
g-j» gaQ covariant metric tensor component 

h Jacobian 

m,n mutually orthogonal directions normal to stream direction 8 

n normal vector 

q velocity 

s stream direction 

u velocity vector 

x Cartesian coordinate system 

r potential jump at trailing edge of wing 

a ILU/SIP parameter 

a angle of attack (when used in combination with M) 

Y specific heat ratio =1.4 for diatomic gas 

6 fö. Kronecker symbol 

£ general coordinate system 

p density 

y perturbation potential 

<J> correction perturbation potential; approximation of <p 

,( ) contravariant component in i- (or a-) direction 

i ,( ) covariant component in i- (or a-) direction 

differentiation in i-direction 
.i 
. variable value in point (i,j,k) 

component in normal direction n 
variable value in point (i+p, j+q, k+r) 

„ freestream value 
CD 

* 
sonic value 
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List of symbols specific for chapter 2 

R specific gas constant 

S entropy 

S vortex sheet w 
T temperature 

e specific internal energy 

c specific heat at constant pressure P 
c specific heat at constant volume 
v K 

h» specific total enthalpy 

p pressure 

<t> potential 

co vorticity 

( ) "frozen" value for ip = tp 

H ] jump operator 

List of symbols specific for chapter 4 

F contravariant flux tensor 

8ft boundary of ft 

8ftp part of 8ft with prescribed influx 

ft computational domain 

6. central difference operator in i-direction 

Ó. backward difference operator in i-direction 

6. central difference operator in i-direction using grid points 

1+1, i-1 

6. composite differencing/averaging operator in i-direction 

u. averaging operator in i-direction 
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5 . local general coordinate system 

( ) discrete form of variable/operator 

List of symbols specific for chapter 5 

B error matrix 

F>f>8 general right hand side terms 

G grid on grid level K 
K-l 
1 potential restriction operator from grid K to grid K-l 
L Fréchet derivative of L, also system matrix 
* 

L iteration matrix 

N finest grid level 

R residual 
K-l W residual restriction operator from grid K to grid K-l K 

a p matrix entry of L corresponding to grid point (i+p, j+q, k+r) 

in the difference molecule 

b matrix entry of B corresponding to grid point (i+p, j+q, k+r) 

in a difference molecule 

g normal velocity at boundary 

h mesh size 

y number of coarse grid corrections per multigrid cycle 

Ö. central difference operator in i-direction using grid points 

i+1, 1-1 

X wavelength 

v number of smoothings 

A£ mesh size 

Au> potential correction 

i|) correction 

( ) variable/operator on grid K, K = N 1 

( ) variable at iteration number n 
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List of symbols specific for chapters 6 and 8 

N smoothing efficiency 

V (x,y) V-cycle on N grid levels performing x smoothings on grid 1 and 

y smoothings after each prolongation 

f right hand side term 

n scaled spanwise coordinate 

9 wing sweep angle 

8„ grid skewness angle 

6. grid rotation angle 

A error reduction per work unit 

A£ mesh size in i-direction 

p smoothing number (maximum short wave reduction factor) 

ÜJ over-/underrelaxation factor 
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APPENDIX B 

Error matrices for the SLR and ILU/SIP algorithms 

In this appendix error matrices will be derived for SLR and ILU/SIP 
when solving the partial differential equation 

8 ^ nR = f' ( B' 0 
fCiP 

These error matrices are required for the calculation of the smoothing 
numbers presented in section 6.1 (smoothing analysis for elliptic 
problems). 

For the application of Fourier smoothing analysis it is necessary 
to assume that the diagonals of the system matrix A and the lower and 
upper triangular matrices L and U are constant. This is the case if we 
solve (B.l) with constant coefficients g on an infinitely large 
domain, i.e. for the grid point indices (i,j,k) we have 

(i.j.k) £ (-~,<°)3. (B.2) 

The following central finite difference discretization will be used 
(using the notation of section 4.2), 

H . o if a = 6, (B.3a) 
,aB / 6 6Q <p if a * 6. (B.3b) 

This leads to the algebraic equation 

A relaxation process to solve (B.4) can be described as 

^ i . j . k = «A»>*>i.J.k " fi,j,k " «i.j.k' (B'5) 
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The operators A and B can conveniently be represented in stencil 
operator notation, i.e. (redefining i,j) : 

(A«p) = I A(i,j)<P , i = (i. i ), j = (j j ), d=3 (B.6) 
j 

In equation (B.6) A(i,j) is the coefficient referring to point j in the 
stencil in point i. For example, in case of the Laplace operator on a 
rectangular domain we have 

A(i,(-1,0,0)) 
A(i,(0,-1,0)) 
A(1,(0,0,-1)) 
A(i,(0,0,0)) 
A(i,j) 

= A(i,(1,0,0)) = -g 
= A(i,(0,1,0)) = -g 
= A(i,(0,0,1)) = -g 
,. 11 22A 33, = 2(g +g +g ) 

= 0 elsewhere 

11 
22 
33 

(B.7) 

so that equation (B.6) becomes 

,. , 11 22 33 
( A v ) i , j , k - - 8 V i , j , k - g ' i , j - i . k - « *i,j,k-i 

+ 2 (g U + g22 + g33) <p 

11 22 33 
" 8 i+l,j,k " 8 "i.j+l.k g "'i.j.k+l (B.8) 

The stencil of the product AC of the two operators A and C, where C also 
has a stencil of type (B.6), is given by 

(ACV). = I A(i,j) (C<P) 
j 

I A(i,j) I C(i+j,k) «P..... 
j k 1 + J + k 

I A(i(j) C(14J.k) f k 
J.k J 

(B.9) 

and c o n s e q u e n t l y 

(ACP). = I D ( i , l ) <P1+1 , 

D ( i , l ) = Z A ( i , j ) C ( i + j , k ) . 
j+k= l 

(B.10) 
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Of course, a stencil operator A, equation (B.6), can be associated with 
a system matrix A: A(i,j) is the entry for row (i.e. equation number) i 
and column (i.e. stencil entry) number i+j. Equation (B.10) then repre­
sents multiplication of the matrices A and C. Note that the ordering of 
the rows and the columns (numbering of the unknowns) has not yet been 
specified for the system matrix A. We will assume lexicographical orde­
ring, i.e. the columns in row i of the system matrix are ordered from 
left to right as follows: 

A(i,(0,0,-1)), A(i,(0,-1,0)), A(i,(-1,0,0)), 
A(i,(0,0,0)), 
A(i,(1,0,0)), A(i,(0,1,0)), A(i,(0,0,1)), (B.ll) 

compare figure (5.4.1). Hence, the first three entries of equation 
(B.ll) are located in the lower triangular part of A, and the last three 
entries are located in the upper triangular part of A. Due to the 
assumptions made in Fourier smoothing analysis, the entries A(i,(p,q,r)) 
do not depend on the location i in the matrix. 

We finally introduce a notation for the sparsity (nonzero) pattern 
of a matrix, namely 

P : sparsity pattern of lower trangular part of A, L 

P : sparsity pattern of upper triangular part of A. 

Note that the matrix main diagonal A(i,0) = A(i,(0,0,0)) does not belong 
to the above patterns. 
In the general case where in equation (B.l) g x0 for all a and 6, the 
stencil of the operator A has a 27-point structure, viz. 

P £ = Up,q,-1), (p, -1,0), (-1,0,0)}, 

pj = {(1,0,0), (p.1,0), (p,q,l)}, 

p,q, € {-1,0,1}. (B.12) 

The error matrix B of the lexicographical SLR algorithm along 
E, -lines is by definition given as 
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(BA<p)i = Z - A(i,j)A<p , j € pj, j * (1,0,0), (B.13) 

so that A = A+B consists of the lower triangular part of A, the main 
diagonal (0,0,0) and one upper diagonal (1,0,0). As a consequence, this 

* 1 
matrix A can cheaply be inverted, namely per £ -line. 

The ILU/SIP algorithm (described in section 5.4.1) has an error 
matrix that consists of two parts. The first part B represents the 
error due to the deletion of the crossderivative terms from the itera­
tion scheme, 

( B ^ * ) . = - I A(i,j)A<p , j € p£ U pj, j i PA, (B.U) 

so that the stencil of the operator A = A+B. has a 7-point structure, 
like (B.7): 

PA = P£ U (0,0,0) UPJ 

p£ = {(0,0,-1), (0,-1,0),(-1,0,0)}, 

P^ = {(1,0,0),(0,1,0),(0,0,1)} . (B.15) 

The second part B„ of the error matrix B results from the incomplete 
decomposition of A = A+B , which corresponds to an exact decomposition 
of A+B„. The matrix B„ follows (by definition) from 

LU = A + B , (B.16) 

with the sparse lower and upper triangular matrices L and U computed by 
the ILU/SIP incomplete decomposition algorithm. 

In the ILU/SIP algorithm described hereafter, the main diagonal of the 
lower triangular matrix is chosen as L(i,0) = 1. The elimination of the 
lower triangular part of the matrix A is done row by row, while per row 
the elimination is done in a lexicographical order (see equation (B.11)) 
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After execution of the ILU/SIP algorithm, the equation AA<p = f has been 
transformed to UAip = g, which can be solved by backsubstitution. 

for lexicographically increasing i do 

for lexicographically increasing j g P do 

S := {k|k £ pj, j+k { PA} 

L(i,j):= A(i,j) / (U(i+j,0) + a Z U(i+j,k)) 
k£S 

f(i) := f(i) - L(i,j) g(i+j) 

for k e PJ do 

i^ j+k G P then 

A(i,j+k) := A(i,j+k) - L(i,j) U(i+j,k) 

else 

A(i,0) := A(i,0) + a L(i,j) U(i+j,k) 

A(i,k) := A(i,k) - a L(i,j) U(i+j,k) 

endif 

od 

od 

for j 6 PJ U {(0,0,0)} do U(i,j) = A(i,j) od 

od 

Algorithm B.l : ILU/SIP(a) - algorithm for incomplete decomposition 

of AAip = f 

With the sparsity patterns given by equation (B.15) this ILU/SIP 
algorithm generates lower and upper triangular matrices L and U that 
satisfy 
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L(i,j) = A(i,j) / (U(i+j,0) + a E U(i+j,k)), j £ PA, 

where k £ PA j+k $ P ; 

U(i.O) = A(i.O) - Z L(i,j) U(i+j,-j) 
j 

+ a Z Z L(i,j) U(i+j,k), 

where j £ PA and k 6 PA, k / -j; 
IJ U 

U(i,k) = A(i,k) - a Z L(i,j) U(i+j,k) , k £ PA 
J U' 

where j £ PA j / -k. (B.17) 

Under the assumption of constant matrix coefficients (i.e. L(i,j), 
U(i,j) and A(i,j) do not depend on i) we can solve the above system of 

equations numerically by iteration, starting from U(i,j) = A(i,j), 
j £ P U {(0,0,0)}. In case of a = 0 the system of equations can also be 
solved analytically, giving 

U(i,0) = i (A(i,0) t /A2(i,0) - 4 Z ~ A(i,j) A(i,-j) ), (B.18) 
J£PL 

where the plus sign applies in practice. The expressions for L(i,j) and 
U(i,k) now follow directly from equations (B.17,18). 
Finally, the elements of the error matrix B. are obtained from B? = LU-A, 

B2(i,j+k) = L(i,j) U(i+j,k) , j £ PA , k € PA, j+k*0; 

B (i,j) = - a Z L(i,j) U(i+j,k) , j £ PA, 
k L 

where k £ P , k + - j ; 



-147-

B2(i,k) = - a E L(i,j) U(i+j,k), k £ pj, 

where j f PL, j / -k; 

B (i,0) = a ï. E L(i,j) U(i+j,k). 

where j £ pf and k € P^, k ̂  - j . (B.19) 

A A It can be verified that for the given patterns P and P the matrix B 

is symmetric, i.e. B(i,j) = B(i,-j) if the matrix A is symmetric. 
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Summary in Dutch (Samenvatting in het Nederlands) 

Een niet-lineaire multi-rooster methode voor 
drie-dimensionale transsone potentiaalstromingen 

Het aërodynamisch ontwerpproces van transport-vliegtuigen vereist 
betrouwbare rekenmethoden voor het voorspellen van het aërodynamisch 
gedrag. Dit proefschrift presenteert een rekenmethode voor het numeriek 
simuleren van de stroming rond een transport-vliegtuig onder kruiscon-
dities. Onder deze condities is de stroming transsoon, dat wil zeggen 
overwegend subsoon, met lokaal supersone gebieden nabij de vleugel. Deze 
supersone gebieden worden meestal aan de stroomafwaartse zijde begrensd 
door een schokgolf, waar doorheen de stroming vrijwel discontinu tot 
subsone snelheid wordt afgeremd. Als stromingsmodel wordt in dit proef­
schrift de volledige potentiaalvergelijking gebruikt. Deze tweede orde 
partiële differentiaalvergelijking is van gemengd elliptisch/hyperbo­
lisch karakter en bovendien sterk niet-lineair nabij schokgolven. 

De genoemde volledige potentiaalvergelijking wordt op een ruimte­
lijk rekenrooster gediscretiseerd met een eindige volume methode, waar­
bij in supersone (hyperbolische) stromingsgebieden een asymmetrie wordt 
aangebracht door het stroomopwaarts retarderen van massafluxen. Het re­
sulterende stelsel vergelijkingen wordt opgelost met een niet-lineaire 
multi-rooster methode, waarbij voor het fouten gladstrijkend algoritme 
ILU/SIP is ontwikkeld. In dit proefschrift wordt dit algoritme in detail 
beschreven en nader onderzocht. ILU/SIP (Incomplete Lower Upper decom-
pcsition/Strongly Implicit Procedure) blijkt in het subsone gedeelte van 
de stroming sneller te zijn dan de meer gebruikte lijnrelaxatie algo­
ritmen, en is bovendien onvoorwaardelijk stabiel in het supersone ge­
deelte van de stroming. Het algoritme is in hoge mate robuust met be­
trekking tot extreme maasverhoudingen in het rekenrooster. Het ILU/SIP 
algoritme wordt in dit proefschrift geanalyseerd voor zowel een ellip­
tisch als een hyperbolisch modelprobleem middels respectievelijk een 
gladstrijk-analyse en een stabiliteitsanalyse. De waarde van de glad-
strijk-analyse wordt in dit proefschrift geëvalueerd aan de hand van een 
incompressibele stroming in een windtunnel met een gladde hobbel op het 
bodemvlak. De praktische bruikbaarheid van de methode wordt gedemon­
streerd aan de hand van transsone potentiaalstromingen rond twee vleu-
gelmodellen, namelijk de DFVLR-F4 en de 0NERA-M6 vleugel. Aangetoond 
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wordt dat a priori optimalisatie van het rekenrooster tot op zekere 
hoogte noodzakelijk is voor het verkrijgen van een voldoende snel reken-
proces. Tevens wordt aangetoond dat de grote waarde van de multi-rooster 
methode vooral ligt in de relatiel lage convergentie niveau's die bij 
deze methode voor het verkrijgen van een oplossing met acceptabele nauw­
keurigheid kunnen worden gespecificeerd. 


