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1  

1 Introduction 
 

In this thesis, a mechanical metamaterial will be developed, which is based on 
spherical symmetry groups and inspired by origami. Metamaterials are materials with 
counter-intuitive properties which are engineered and thus not found in nature. These 
man-made metamaterials open up a variety of innovations due to having properties 
which were never seen before, such as a negative index of refraction, negative 
Poisson’s ratio (auxetic metamaterials) or having vanishing sheer stress [1]–[3]. These 
properties ensured that metamaterials have found their application in fields such as 
electrical engineering, electromagnetics, classical optics, material sciences and many 
others [3]–[5]. But also in sports as, for example, impact protector devices [6] and in 
surgery as auxetic blood vessels, which increase in wall thickness as a response to a 
pulse of blood flowing through it [7]. 
 
If the metamaterial has mechanical properties which are counter-intuitive, it is 
categorized as a mechanical metamaterial, which is a specific type of metamaterials. 
Part of these materials are the auxetic metamaterials. When stretched, auxetic 
metamaterials expand in the direction perpendicular to the applied load [8]. Mechanical 
metamaterials, and more precisely: auxetic metamaterials, will be discussed in more 
detail in the literature survey. 
 
Most metamaterials have a periodic structure; they consist of a unit cell, which is 
repeated periodically throughout the structure. These metamaterials are usually 
arranged in repeating patterns to form a structure. This is done by discrete translations 
along the lattice vectors of different Bravais Lattices [9], [10].  The objective of this 
study is to identify the design possibilities of spherical symmetries as opposed to the 
standard symmetries used in current metamaterial studies. There have been multiple 
studies on spherical symmetries [11], [12], however, to the authors knowledge, they 
remain unseen for engineering purposes. If the possibilities of developing structures 
based spherical symmetries are explored, it could possibly open up a whole different 
branch of structures. For example for projecting auxetic structures on curved surfaces. 
 
Origami is used as a source of inspiration due to the fact that ideas can quickly be 
modelled with a piece of paper in order to test different possibilities and to grow intuition 
for the subject. If a model works properly when made out of paper, it can be used as a 
foundation for more complex structures. From an engineering point of view, origami 
functions as rigid body mechanics. Furthermore, a very well-known origami fold, the 
Miura-Ori fold [13], [14], has its functions as an auxetic structure for engineering 
purposes [15]. 
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Thesis outline 
This thesis is structured as followed: First, a literature survey on metamaterials and 
auxetics is presented. From this survey the current research gap is stated. Secondly, 
a paper concerning spherical symmetries is presented. In this paper an origami 
inspired  metamaterial based on a spherical symmetry-group is modelled, fabricated 
and tested. Lastly a general discussion and conclusion is presented.  
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2 Classifications of auxetic 
metamaterials and their 
periodicities 
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Abstract - Metamaterials are 

materials engineered to have certain 

properties not normally found in 

nature. Mechanical metamaterials 

are a branch of metamaterials with 

counterintuitive mechanical 

properties, such as a negative 

Poisson’s ratio. These types of 

materials are categorized as auxetic 

metamaterials, or specifically, 

metamaterials with a Poisson’s ratio 

of -1 are called dilational 

metamaterials. Auxetic materials 

have been developed both for two-

dimensional planes as well as three-

dimensional structures by 

constructing a unit cell and then 

repeating it periodically to form the 

whole structure. Different types of 

origami folds exhibit auxetic 

behaviour as well when folded. This 

survey discusses a few types of 

auxetic structures, both two-

dimensional and three-dimensional. 

The survey concludes with stating 

the current research gap of the 

auxetic metamaterials and proposes 

origami as a possibility for future 

developed auxetic structures. 

1. Introduction 
Metamaterials have rose in popularity 

due to their counterintuitive properties 

leading to many interesting possibilities 

surrounding them [1]–[3]. The advances 

in computational tools, theoretical 

advances and increases in 

experimental techniques [4], make the 

development of metamaterials possible 

on a nano- and microscale. 

Metamaterials are materials not found 

in nature but engineered by combining 

different materials to have the desired 

properties [1], [5]. All materials found in 

nature, such as glass and diamond, 

have positive values for, for instance,  

electrical permittivity, magnetic 

permeability and index of refraction. 

However, for metamaterials it is 

possible that these parameters are 

negative [1]. Due to these 

counterintuitive  properties, 

metamaterials have found their place in 

electrical engineering, 

electromagnetics, optics and many 

other fields [6].  

In this survey different types of 

metamaterials will be briefly discussed 

and quickly the focus will lie on auxetic 

metamaterials. Auxetic materials are 

defined as materials that upon 

stretching, become thicker 

perpendicular to the applied force.  

Different types of auxetic materials will 

be discussed, together with origami 

folds that also exhibit auxetic behaviour. 

This will be used to formulate the 

current research gap and possibilities 

for further research that use different 

types of symmetry groups. 

2. Mechanical Metamaterials  
Research in metamaterials started in 

the field of optics [2], but soon branched 

out to other fields such as acoustics and 

mechanics. Mechanical metamaterials 
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are metamaterials engineered with 

specific mechanical properties that are 

not found in nature, for example having 

a negative Poisson’s ratio (ν) [7]–[10] or 

having vanishing shear stresses [11]–

[13].  

As a starting point, the focus lies on 

metamaterials with interesting 

properties regarding Poisson’s ratio, i.e. 

values that lie on the edge of the 

possible range for the Poisson’s ratio in 

classical materials. Poisson’s ratio is 

defined as the amount of transversal 

expansion divided by the amount of 

axial compression, for small 

deformations of the material. For three-

dimensional isotropic materials the 

Poisson’s ratio is related to the bulk 

modulus, B, and shear modulus, G, by 

the following formula [5]: 

𝐵

𝐺
=

𝜈 + 1

3 (
1
2 − 𝜈)

 

To ensure that the material is 

thermodynamically stable, B and G are 

assumed positive. This leads to a range 

of ν of (-1, 0.5). Zadpoor [5] discusses 

metamaterials that lie on the edge of the 

spectrum of the Poisson’s ratio for 

isotropic materials. Namely ‘penta-

mode metamaterials’ with a ratio of 0.5 

and the above mentioned dilational 

metamaterials with a ratio of -1. 

Zadpoor uses the term ‘Extremal 

materials’ to describe these materials, 

since they exhibit extreme behaviour 

with respect to ν.  

Penta-mode metamaterials are 

compliant in five of the six principal 

directions, as the name implies [5]. 

These materials have an extremely high 

bulk modulus compared to their shear 

modulus and as a result heavily resist 

volume changes but are very compliant 

to shear deformations [12], [14], making 

the materials ‘flow away’ if being 

subjected to shear forces. This 

behaviour has earned them the name of 

‘meta-fluids’ [12]. Due to the specific 

properties of penta-mode 

metamaterials, they are well suited for 

certain applications, such as steering 

elastodynamic waves in specific 

directions to achieve the equivalent of 

optical cloaking for acoustic waves [12] 

or a gel that can be easily deformed in 

any given direction but resists volume 

changes [15].  

Dilational metamaterials, in contrast to 

penta-mode metamaterials, have an 

extremely high shear modulus 

compared to the bulk modulus. This 

means that these materials easily 

change volume but remain the exact 

same shape. Which is the same as 

stating that the Poisson’s ratio is equal 

to -1. An intuitive example to clarify this 

behaviour is given by Bückmann et al. 

[16] where he uses the Statue of Liberty 

as an example. If one would exert a 

force anywhere on the statue and in any 

direction, the statue would easily 

change volume, but would remain the 

exact same shape.  

3. Auxetic metamaterials 
Auxetic materials have been 

extensively studied before [17]. A few of 

these studies will be reflected on in this 

chapter. Auxetic materials can be 

divided between naturally occurring 

auxetic materials and man-made 

auxetic materials.  

3.1 Natural auxetic materials 

Auxetic materials, despite having a 

counterintuitive behaviour towards 

external forces, do appear naturally. For 

example on a molecular level in 

naturally occurring single-crystal 

materials such as arsenic and cadmium 

[18]. Naturally occurring auxetic 
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biomaterials are also existent, 

examples include cow teat skin and cat 

skin [18].  

A more well-known field are those of the 

auxetic foams[10], [19]. The first one to 

study auxetic foams is Robert lakes in 

‘Foam Structures with a Negative 

Poisson’s ratio’ [10] in 1987. Since 

these foams are man-made, they could 

be regarded as an in-between form of 

natural and engineered materials. For 

auxetic foams, it has been determined 

that the value of the Poisson’s ratio 

varies with the strain of the material, 

reaching towards the lower boundary of 

-1 for isotropic materials. For polymeric 

and metallic isotropic materials, values 

of ν of -0.7 and -0.8 respectively have 

been reported [18]. Auxetic foams have 

found an application in sports, mainly 

for protection as impact protectors in 

pads, gloves and helmets [19]. 

3.2 Man-made auxetic metamaterials 

Two-dimensional auxetic 

metamaterials have received a lot of 

attention in design studies [20]. These 

studies often take a small square, or 

rectangle, referred to as a unit cell [16], 

[21], [22] that behaves in an auxetic 

manner and repeat them along a plane. 

Because the plane is structured as a 

unit cell repeated in two directions and 

the deformations in a unit cell are 

assumed to be periodic, if the unit cell 

has ν=-1, the whole plane will as well. 

The assumption that the deformations 

are periodic is not always in compliance 

with reality since it does not have to 

correspond with the actual kinematics 

of the structure, see [23] for an in-depth 

explanation. This method is still the best 

course of action for creating theoretical 

models of entire auxetic structures, 

without it being excessively time-

consuming.  

Studies on auxetic behaviour have 

been done with a wide range of different 

types of unit cells. These unit cells are, 

for example, composed of isotropic 

elastic materials [16], composite 

materials [9] or, for prescribing the 

motion kinematically, by means of rigid 

links an hinges [20] or a rotating 

squares model [21]. Some of these 

studies aim to invent new dilational 

materials [24], while some focus only on 

auxetic behaviour. 

Auxetic structures that have the 

deformation of their representative unit 

dominated by a rotational motion are 

called ‘chiral structures’ [8], [17], [25]. 

This concept has also been 

implemented as a periodic two-

dimensional structure. For a chiral 

structure, the unit cell has to be chiral 

and the global structure has to have the 

same chirality [8]. This means that the 

unit cell is build up by rotational 

symmetry only, see fig. 1. 

  

Figure 1. Typical structure with mono 

chiralty, from [8]. 

If the unit cell exhibits auxetic rotational 

behaviour, but the unit cell has a mirror 

symmetry, rather than a rotational 

symmetry, the structure is known as 

non-chiral, or anti-chiral [2], see fig. 2.  
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Figure 2. Anti-chiral structure. The unit 

cells alternate between each other by 

turning clockwise and counter clockwise, 

from [8]. 

These structures are often considered 

non-periodic, however these structures 

are build up by different symmetries, i.e. 

mirror symmetries. Meaning that anti-

chiral structures are, in fact, periodic, 

only with a larger unit cell. This raises 

the question what other unit cells can be 

developed by considering different 

types of symmetries to create periodic 

structures.  

Three-dimensional structures with 

auxetic behaviour are a more 

challenging field of study, often relying 

on the same principles as its two-

dimensional variant, having a periodic 

framework made up of a three-

dimensional unit cell [15], [16], [26]–

[28]. Borcea and Streinu [28] provide 

mathematical proof for necessary 

geometric conditions of such a cubic 

unit cell in order to build an auxetic 

periodic framework. They do so by 

representing their structure as a 

periodic bar-and-joint framework then 

use this principle to construct a variety 

of three-dimensional auxetic periodic 

mechanisms and discuss the ideas 

involved in their design. 

A different approach is presented by 

Bückmann et al. [16]. Here a three-

dimensional cubic unit cell classified as 

non-chiral is used. Bückmann begins in 

his introduction by stating that for some 

materials and structures, perfect 

dilational behaviour is only theoretically 

possible, since it relies on perfectly rigid 

links and ideal hinges. Which are links 

that will never bend and hinges without 

volume or contact area. All of these are 

not possible in an actual model. 

Bückmann modelled a cubic unit cell in 

COMSOL, see fig. 3, and also 

fabricated a real unit cell with the use of 

three-dimensional printing 

technologies, which is shown in fig. 4. 

 

 
Figure 3. A 2x2x2 unit cell modelled in 

COMSOL with resulting in-plane strain for 

axial strain depicted, from [16]. 

 
Figure 4. A 3D printed unit cell, from [16]. 
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Bückmann calculates the phonon band 

structures to determine all the modes of 

the elastic meta-material. His blueprint 

contains small internal connections, 

d/a, to mimic the abovementioned ‘ideal 

hinges’. Bückmann made a graph of the 

phonon band structures for two different 

values of d/a. An important discovery 

made by Bückmann in this paper is the 

relation of the Poisson’s ratio versus the 

size of the internal connections. See fig. 

5.  

 
Figure 5. The minimum and maximum 

effective metamaterial Poisson’s ratio, from 

[16]. 

This conclusion provides an important 

point of attention for future developed 

dilational models, namely that internal 

connections should as be as small as 

possible if one wishes to fabricate 

dilational metamaterials.  

3.3 Auxetic origami folds 

Origami, the Japanese art of 

paperfolding, has found its applications 

in engineering. Using a broader 

definition for origami: creating three-

dimensional structures from folding two-

dimensional sheets, not necessarily 

paper; made it useful in different fields, 

such as space exploration, as a foldable 

telescope lens, and automotive safety, 

such as airbags [29]. In engineering, 

origami has been considered as rigid 

body mechanisms, consisting of rigid 

plates connected by in-plane hinges 

[30]. 

Origami has structures with auxetic 

behaviour as well. Most notably the 

Miura Ori fold, invented by Koryo Miura. 

The Miura Ori fold is well known for 

having a negative Poisson’s ratio [29], 

[31], [32] and for its application in 

astronautical engineering [33]. For 

harnessing solar energy, rockets would 

orbit around the sun with solar panels. 

To do so, the solar panels would need 

to fold  up as much as possible in order 

to stack them in the rocket for launch. 

For minimizing the area of the panels 

the Miura-Ori fold was used. The Miura-

Ori fold is exceptionally suitable for this 

purpose, not only for it has a negative ν, 

but also because it is flat-foldable. 

Geometrically, this means that the fold 

lines have a range of [-180°, 180°]. 

In ‘Geometry of Miura-folded 

metamaterials’ [32] by Schenk and 

Guest they research what exactly are 

the factors of the Miura Ori pattern that 

influence the Poisson’s ratio. They do 

so by taking a unit cell of the Miura fold 

and parameterizing every angle and 

dimension of it. This unit cell consists of  

‘three-to-one four-vertex folds’ with 

every face being a parallelogram. A 

three-to-one fold is a vertex intersection 

of four folding lines with one of the four 

folds being folded in the opposite 

direction with respect to the other three. 

Using the definition that the Poisson’s 

ratio is defined as the negative ratio 

between the transversal strain and the 

axial strain, they determined what 

dimensions of the unit cell have an 

influence on the Poisson’s ratio. They 

found that only two adjustable angles 

define the ratio of the fold. By fixing one 

angle for specific values they plotted the 

other angle versus the Poisson’s ratio, 

see fig. 6. 
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Figure 6. The in-plane expansion 

coefficent of a Miura-ori sheet, from [32].  

From the figure it is clear the Poisson’s 

ratio of the Miura-Ori fold can never be 

constant, and therefore the Miura-Ori 

fold is not a dilational fold pattern. 

However, origami poses a lot of 

possibilities for designing other auxetic 

structures, which may be of use when 

designing new structures. 

Not only the Miura-Ori fold exhibits 

auxetic behaviour. In general, all zig-

zag based patterns in origami behave in 

such a manner. Eidini and Paulino [31] 

have done an extensive study on zigzag 

based flat folded sheets. In this paper 

they start off with the standard Miura-

Ori fold and alter it slightly using 

kirigami, the concept of folding and 

cutting paper, to create a new structure. 

This process is seen in fig. 7. 

   
Figure 7. Transformation of a Miura-ori unit 

cell to a Basic unit cell with hole, from [31]. 

The unit cell of this new structure has a 

hole in it and therefore Eidini and 

Paulino named it Basic unit Cell with 

Hole (BCHn). This unit cell includes two 

large and 2n small parallelogram rigid 

panels joined via fold lines. Eidini and 

Paulino used mostly n=2 in their paper. 

Eidini did another study on zigzag-

based folded elements [34]. In this 

paper a new zigzag based folded sheet 

is presented, again based on the Miura-

Ori fold and with the use of kirigami. The 

unit cell of this structure is called Zigzag 

unit Cell with Hole (ZCH). The methods 

and results are similar to the previous 

paper with only the base unit cell being 

different, resulting in that Poisson’s 

ratio’s lower than -4 have been 

reached.  See fig. 8 for the construction 

of this unit cell and see fig. 2 in their 

paper for multiple configuration based 

on the same principle.  

 
Figure 8. Transformation of a Miura-ori 

sheet to a zigzag unit sheet with hole, from 

[34].  

Another adaptation of the Miura fold is 

in the form of a cylinder and is named 

the Tachi-Miura polyhedron and 

exhibits bellowslike folding [35], similar 

to how an accordion moves in and out. 

In contrast to two-dimensional origami 

structures, this structure changes it 

volume upon folding and is also flat 

foldable. The Tachi-Miura polyhedron 

has the added benefit of being rigidly 

foldable, meaning that its Poisson’s 

ratio can be expressed purely 

geometrically. In [35] Yasuda and Yang 

do so by examining the kinematics of 

this structure in order to show the 

adjustable characteristics of the 

Poisson’s ratio. They verify the auxetic 

behaviour of the Tachi-Miura 
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polyhedron in bilateral direction in an 

analytical and experimental manner. 

Based on the plots in fig. 2 in [35] it 

shows that a negative Poisson’s ratio is 

possible for certain angles of inner fold 

lines and for specific folding ratio’s. 

However, an isotropic negative 

Poisson’s ratio seems impossible. 

From the examples above, it becomes 

clear that the majority of research on 

auxetic origami is based on the Miura-

Ori. However, to the authors 

knowledge, these studies have not 

resulted in a structure with a constant 

Poisson’s ratio and therefore dilational 

behaviour has remained out of reach. 

This raises the question what other 

origami folds are possible that exhibit 

auxetic behaviour, whilst also have a 

constant Poisson’s ratio.  

4. Discussion  
When reviewing the state-of-the-art of 

auxetic two-dimensional and three-

dimensional models, it becomes clear 

that they all follow a similar pattern; an 

auxetic unit cell is developed, 

sometimes based on chirality or 

molecular structures, and repeated 

along a plane. For three-dimensional 

structures the method is similar; a 

parallelepipedal unit cell is repeated 

through the volume. Because the three-

dimensional unit cells are repeated 

periodically to form the whole structure, 

the structure can be classified as one of 

the fourteen three-dimensional Bravais 

lattices [13], [27]. A Bravais lattice is a 

set of discrete points generated by 

discrete translations, meaning Bravais 

lattices can tile all types of rectangular 

prisms correctly, but cannot tile a 

spherical surfaces.  This raises the 

question if it is possible to design a unit 

cell which does not have the 

conventional shapes, i.e. rectangular or 

cubic, and repeating them not following 

these Bravais lattices, but rather using 

different types of symmetry groups. If 

this would be implemented, it could 

benefit design studies that want to 

project auxetics fittingly on curved 

surfaces, unlike what is done in [36], 

where the auxetic sheets are projected 

flat on a dome, disregarding the 

curvature. 

An idea would be to design a dilational 

sphere by means of spherical 

symmetries. There have been studies 

researching spherical symmetries [37] 

that could act useful in finding 

innovative designs based on different 

types of symmetries from the standard 

Bravais lattices. The sphere is chosen 

as a starting point for its simplistic three-

dimensional form.  

Origami could pose as a solution for this 

research question, having a rich 

background in planar patterns, as well 

as some of these patterns having 

negative Poisson’s ratio’s, such as the 

Miura-Ori fold. New origami folds may 

be developed, supporting these new 

proposed methods. To classify which 

folds are able to rigidly fold, multiple 

theories have been proposed, and 

proven [38]–[40]. Combining what is 

known about spherical symmetries with 

the multiple possibilities that lie with 

origami and the newly arising field of 

dilational metamaterials, an interesting 

design question arises: What are the 

possibilities in designing a dilational 

sphere based on spherical symmetry 

groups? 

5. Conclusion 
Mechanical metamaterials are a new 

class of engineered materials with 

properties not found in nature. One type 

of these materials, the auxetic 

metamaterials, are especially 

interesting due to their counter-intuitive 

reaction to external forces. Namely that 
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they become thicker perpendicular to 

the applied force. In this paper, 

examples of two-dimensional, three-

dimensional and origami auxetic 

structures have been presented. It 

showed that the construction of these 

materials follow similar patterns; a unit 

cell is developed and then repeated 

periodically following Bravais lattices. 

Using different types of symmetries, 

new, non-conventional, auxetic 

structures could be developed and the 

rigid body mechanics of origami could 

prove to be useful. 
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3 An origami inspired 
transformable structure based 
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Abstract- This paper presents a 
transformable metamaterial, 
inspired by origami. Generally, 
metamaterials are build up following 
the periodicity of Bravais lattices. 
This study aims to design a structure 
not following the Bravais lattices, but 
rather a different type of symmetry 
which tiles a sphere, in order to 
expand on current design studies. In 
this report the different types of 
spherical symmetries are discussed 
and the icosahedral symmetry group 
is used to design a theorical model. 
Then a prototype is designed and 
3D-printed. Lastly the prototype is 
discussed and recommendations for 
further research are made.  
 
Key words – spherical symmetries, 
auxetics, polyhedron,  dilational 
metamaterial 
 

1. Introduction 

Metamaterials are materials with 
properties that are not found in naturally 
occurring materials, but rather 
engineered to have specific properties 
[1], [2]. Because these materials are 
man-made, they can have interesting 
counter-intuitive properties, such as a 
negative Poisson’s ratio [2], [3]. 
Metamaterials with these properties are 
categorized as auxetic metamaterials. 
Auxetic metamaterials is a topic that 
has increased in popularity recently [2], 
[4], [5]. This is because of the 
interesting inventions that auxetic 
metamaterials made possible, for 
example, fasteners and rivets that 
expand widthways when pulled [6]. The 

possibilities are plenty, due to the fact 
that auxetics are structures or materials 
that when stretched, become thicker 
perpendicular to the applied force, 
which is not true for most materials.  
Auxetic structures that keep their exact 
shape while transforming are called 
dilational structures [7]. Multiple studies 
have been done on two-dimensional 
auxetic [6], [7], as well as three-
dimensional auxetic [8]–[10]. Auxetic 
materials have found applications in a 
number of fields, such as sports [11] 
and nano-technology [12]. 
 
Fundamentally, most metamaterials are 
designed following the same pattern. 
First a unit cell is developed that 
exhibits auxetic behaviour. The unit cell 
is the smallest part in the material, or 
structure, that constitutes the repeating 
pattern [13]. This unit cell completely 
reflects the symmetry and structure of 
the entire material or structure, which is 
built up by repeated translations of this 
unit cell along the principal axes. These 
principal axes are defined by the nodes 
of the four different types of Bravais 
lattices in 2D, or the fourteen different 
types of Bravais lattices in 3D [14]. A 
Bravais lattice is a set of discrete points 
generated by discrete translations. 
Thus, most metamaterials are build up 
through periodic discrete translations of 
the unit cell. 
 
Abovementioned approach makes it 
impossible to form every type of 
structure. Spheres are, for example, not 
able to be formed by Bravais lattices 
[15]. Although for a sufficiently small 
unit cell, a spherical structure can be 
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approximated using discrete 
translations, the curvature of spherical 
structures can never obtained via this 
method. To explain this, fig. 1 is used. 
 

 
Figure 1. Sketched representation of the earth with 
different longitudes and the equator shown, from [16] 

In the above figure a sketched 
representation of the globe is shown 
with different longitudes highlighted. 
These longitudes are parallel to each 
other at the equator, since they are all 
perpendicular to the equator,  but 
converge to one point at both the North 
pole and South pole. These types of 
lines will never be acquired using 
Bravais lattices since they cannot be 
formed by discrete translations. Bravais 
lattices consist of sets of parallel lines, 
while meridians are only parallel at the 
equator. In other words, using the 
conventional methods of repeating units 
cells, three dimensional spherical 
structures cannot be obtained.  
 
This study aims to create a dilational 
spherical shell based on the spherical 
symmetry groups. This way, a 
mechanical structure can be created 
that inherently fits a curved surface. 
 

2. Spherical symmetry groups 

Spherical symmetry groups is a topic 
which has not received as much 
attention as its planar counterpart, also 
known as the wallpaper groups [17]. 
One of the most prominent researchers 
in this field is John Conway, who has 
written the book ‘The Symmetries of 

Things’ [18]. In this book Conway et al. 
explain intuitively what types of 
symmetries exist and how combining 
these results in different types of 
patterns. Repeating a pattern is done by 
either reflection or rotation, or a 
combination of these two. Reflection is 
mirroring an object with respect to a 
line. Rotation, or gyration, is defined by 
a circular movement of an object with 
respect to a fixed point. A translation is 
simply a rotation with the fixed point 
lying on the horizon, meaning at an 
infinite distance from the object. Thus, 
symmetries are based on only two 
types of transformations: reflections 
and rotations. 
 
Conway introduces his own notations to 
classify different types of symmetries. 
For denoting reflections, or mirrors, he 
uses *(star) followed by the number, in 
red, representing the amount of mirror 
lines coming together in a single point. 
For example in fig 2. a *632 symmetry 
is shown. This means that there are 
three different types of intersections 
where the mirror lines meet. There are 
points where six, three or two mirror 
lines intersect. The area enclosed by 
the triangle with these intersections as 
vertices contains the motif of the 
structure. By repeating only the motif 
along the mirror lines, the whole 
structure is formed. The motif has the 
same functionality as the unit cell for 
planar engineering designs. 



 

 

23 

 

 
 Figure 2. A *632 symmetry of flowers in a plane is 
shown here. In red the mirror lines are shown and the 
red number denote the number of mirror lines 
meeting at a vertex, from [18]. 

Rotations are expressed by blue 
numbers. In case the patterns consist of 
rotations and reflections, the signature 
of the patterns looks like this: [number 
of rotations] * [number of reflections], for 
example 3*2 which means a 3-fold 
rotation vertex and a 2-fold reflection 
vertex. Conway classifies two more 
types of transformations, however 
these will not apply to this research and 
are therefore not discussed. 
  
Conway, and also others, provide 
mathematic proof to explain that there 

are exactly fourteen different types of 
possible isometries that tile a sphere 
[17]–[19] These types are seen in table 
1. The table is an adaptation from [17]. 
This table shows the different types of 
symmetry groups, as well as the regular 
polyhedral corresponding to the 
platonic symmetry groups.  
 
The different types can be categorised 
as parametric or platonic. Parametric 
groups, such as NN or *NN, where N 
can be any integer. An example of a 
parametric tiling where N=7 is seen in 
fig. 3. Parametric groups can be seen 
as globes with longitudes. The other 
type is platonic. These symmetries are 
named platonic since they are 
associated with the symmetry groups of 
the platonic solids: tetrahedron, cube, 
octahedron, dodecahedron and 
icosahedron. The dodecahedron and 
the icosahedron are each other’s duals. 
The duality is because each face of the 
dodecahedron has five angles and 
three angles meet at any vertex, while 
the faces of the icosahedron all have 
three angles with five meeting at every 
vertex. Because these two platonic 
solids are each other’s duals, they 
share the same symmetry groups. The 
same is true for the cube and 
octahedron. The tetrahedron is its own 
dual. This narrows down the total 
possible platonic symmetry groups.  

 
Table 1: The fourteen types of spherical symmetries, classified by rotation or mirroring and parametric 
or platonic. The table is an adaption from [17]. 

 Polyhedron 
based on 

Rotation 
based groups 

Mirror based 
groups 

Hybrid groups 

Platonic  groups Icosahedron/ 
Dodecahedron 

532  *532   

 Cube/ 
Octahedron 

432  *432   

 Tetrahedron 332  *332  3*2  

Parametric 
groups 

 NN N22  *NN  
*N22 

N*2  
N*×  
N*M 
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Figure 3. Two parametric groups,  left is based on 
gyrations while right is based on reflections, from [17] 

The designed structure needs to be a 
rigid mechanical system, modelling a 
spherical shell, thus dilational behaviour 
will be achieved through rigid body 
dynamics of surfaces hinged together. 
For accomplishing this behaviour the 
Japanese art of paperfolding, origami, 
has proven to be useful. From a 
mechanical viewpoint, origami has 
been considered as rigid body 
mechanisms, consisting of rigid plated 
connected by in-plane hinges [20]. 
Furthermore there have been multiple 
studies which use auxetic origami 
patterns for designing structures [21]–
[24]. 
 
Because curved surfaces can, in 
general, not be folded without buckling 
or tearing, the simplification has been 
made that the spherical surface will be 
modelled as a polyhedron. Thus the 
surface will consist of multiple flat 
areas. For an adequate, and 
symmetrical, approximation of a 
sphere, the polyhedron benefits to be a 
regular polyhedron. Furthermore, 
regular polyhedral have the platonic 
symmetry groups based on them. Since 
the motifs will be designed flat instead 
of curved, it can be concluded that the 
platonic groups are more suitable for 
patterning with respect to the 
parametric groups, for this specific 
study. The platonic solids that most 
closely resemble a sphere are the 
icosahedron and the dodecahedron, 
simply because they consist of more 
faces and have a larger dihedral angle, 
which is the angle between two faces. 

This results in either the *532 or the 532 
as a suitable symmetry group. This type 
of symmetry is, therefore, called 
icosahedral. The smallest repeated 
unit, or motif, of this symmetry is called 
the fundamental domain, the 
fundamental domain for any 
icosahedral symmetry is the face of the 
Disdyakis Triacontahedron (DT), see fig 
4.  
 

 
Figure 4. Figure of the Disdyakis Triacontahedron. A 
Catalan solid with 120 faces. The face of the 
Disdyakis Triacontahedron is the fundamental 
domain for the icosahedral symmetry group, from 
[25]. 

3. Construction of the structure  

3.1 Polyhedral starting point 

For this study the spherical shell will be 
modelled as a DT. This polyhedron is 
also known as the ‘Hexakis 
Icosahedron, ‘Decakis Dodecahedron’ 
and kisRhombic Pentacontahedron. 
These names all give information about 
the figure. 'Hexakis Icosahedron', 
means having the icosahedron and 
dividing every face into six equal 
triangles. ‘Decakis Dodecahedron’ in its 
turn means taking the dodecahedron 
and dividing every face into ten equals 
parts and ‘Rhombic Pentacontahedron’ 
loosely means 30 rhombi, with a four-
vertex fold in the middle of every 
rhombus. From these names the 532-
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symmetry can be traced back, since 
these names imply that pentagons (5 
axes of symmetry), triangles (3 axes of 
symmetry) and rhombi (2 axes of 
symmetry) are found on the surface of 
the DT. From the names it can also be 
deduced that the polyhedron has 120 
equal triangles, which is also shown in 
fig. 4. With its 120 faces, the DT is the 
largest Catalan solid. A Catalan solid is 
a polyhedron which is face-transitive, 
but not vertex-transitive. This means 
that all the faces of the DT are equal, 
but the vertices are not. Drawing 
parallels with standard auxetic 
structures: two fundamental domains, 
since one is not a mechanism, of the DT 
acts as a unit cell, and the symmetry 
*532 acts as the Bravais lattices. Since 
the fundamental domain exists of just a 
plain triangle, there is no difference in a 
532 or a *532 symmetry. 
 
One might wonder if it is possible to 
create a closer resemblance of a 
sphere, with a smaller fundamental 
domain. In other words: applying crease 
lines to the fundamental domain, in 
order to create even smaller faces. Due 
to the specific angles of the 
fundamental domain, it is impossible to 
divide it into smaller congruent 
triangles. Because this study highlights 
the possibilities of using spherical 
symmetries, the choice is made to only  
have congruent triangles tiling up the 
whole spherical surface, making the DT 
the largest possible polyhedron.  
 
A different point of attention regarding 
the fundamental domain, is that for 
creating a moving mechanism, cutting 
specific edges is inevitable. This is due 
to the fact that not all four fold vertices 
are possible. The only possible four fold 
vertex are three-to-one folds [23], [26], 
and even those are only possible in flat 
folding cases. A three-to-one fold of a 
four vertex means that one of the four 
folds is folded in opposite direction with 

respect to the other three. In this design 
study, where folding will be done on 
spherical surfaces, flat-folding is not 
possible. Furthermore, since symmetry 
is the focus, three-to-one folds are not 
well suited, Since a three-to-one fold 
results in unsymmetrical behaviour. In 
order to make different types of folds 
possible, specific edges need to be cut. 
In conclusion, starting with the DT and 
making every edge a fold inwards 
(valley fold), fold outwards (mountain 
fold), or a cut, the DT may be able to 
behave dilationally. 
 
The DT can be seen as a set of twelve 
pentagons, (from the dodecahedron) or 
twenty triangles (from the icosahedron), 
see fig. 5. To achieve dilational 
behaviour, the choice is made to let 
either the pentagon or the triangle 
exhibit dilational behaviour and repeat 
that along the surface. This way it is 
ensured that the whole shell will behave 
symmetrical. Here the neighbouring 
conditions have to be factored in, such 
as that some edges needs to be cut and 
the kinematics between parts is not 
constrained. To determine what the 
best course of action is for the most 
dilational achievement, the pentagon 
model and the triangle model will be 
modelled in Matlab. 
 

 
Figure 5. The Disdyakis Triacontahedron with the 
underlying pentagon highlighter left and the 
underlying triangle highlighted right, from [25]. 

3.2 Modelling 

In order to determine what will be the 
best course of action, using a triangular 
structure as building block or a 
pentagonal structure, both these 
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structures will be discussed separately. 
The process and the results of these 
are found in Appendix A. The values 
used for constructing the plots are 
based on the unit-edge-length of the 
Truncated Icosidodecahedron [27]. 
Parts of the DT which form a triangular 
or pentagonal structure were modelled 
in Matlab. The pentagonal structure has 
a larger projected surface decrease  
with respect to the triangular surface. 
Based on this result, it is concluded that 
the pentagonal structure will function as 
a building block and the structure will be 
built by connecting twelve pentagonal 
structures. 
 
This is done by first modelling one side 
of the pentagonal structure. The 
assumption is made that all five sides of 
the pentagonal structure transform in 
the same manner, meaning that a 5 fold 
rotational symmetry is applied to the 
pentagon, see fig. 6 for the modelled 
pentagonal structure. When the 
pentagon behaves as desired, it 
functions as the unit cell for the whole 
polyhedron. The entire structure is built 
through rotation and translation of the 
unit cell.  
 

 
Figure 6. Schematic overview of the pentagonal 
model projected in the xy-plane with all imporant 
vertices and edges labelled 

 
 

3.3 Design adjustments  
For any position of the model which is 
not its initial state, it becomes evident 
that the connected edge will need to 
open up. See fig. 6 as illustration. 
 

 
Figure 7. Schematic overview of three pentagonal 
structures in correct orientation in a configuration for 
which theta is not equal to zero. In yellow areas are 
depicted which are created by the contraction of each 
individual pentagon. 

This happens since the edge points of 
each pentagon move away from one 
another. This results in an open space, 
which is depicted by the yellow area’s in 
fig. 7. This results in the pentagons 
being connected only by single points, 
which are not sufficiently strong due to 
the minimal contact area. The 
pentagons need extensions which will 
transform point contact to line contacts 
to ensure a fundamentally strong 
connection.  
 

4. Methods 
The full model is built by drawing the 
pentagonal structure and connecting 
twelve of these together. The 
pentagons are 3D-printed in a flat plane 
and then later connected to itself and 
other pentagons. The materials is PLA, 
and the used printer is the Prusa MK2. 
The model is drawn in SolidWorks with 
a thickness of 3 mm. In fig. 8 a top view 
of one flat-folded face of the model is 
shown. This model consists of the 
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pentagonal structure with appendices 
that function as line contacts between 
the pentagons. The model shows 
puzzle like structures which are 
required for smooth connections 
between the pentagons, but also for 
closing the pentagon itself. The printer 
is instructed to pause twice, after 
printing a thickness of 0.5mm and 
2.75mm, to apply a layer of netting. 
Netting is used as hinge material and 
the holes of the netting ensure that the 
plastic layers will melt together. By 
selectively cutting the top or bottom 
layer of the netting, mountain-valley 
assignments are made. This ensures 
that the hinges between the 
fundamental domains only allow 
movement along one direction. From 
the line contacts the twelve pentagons 
can be connected together. In appendix 
C more detail is given of this process, 
as well as figures of the SolidWorks 
model showing its dimensions.  
 

 
Figure 8. Top view of the pentagonal structure. 
Puzzle like appendices are added to function as line 
contacts between the pentagons. 

5. Degrees of freedom 

In order to have some insight on how to 
actuate the model, or to know how 
easily the transformation will be,  the 
total degrees of freedom of the system 
was determined. The degrees of 
freedom are determined through a 

multi-body analysis and checked with 
determining the nullspace of the 
Jacobian with the help of Matlab [28]. 
The full explanation is found in 
Appendix B. Both methods yield the 
same result: 33 DoF’s for the total 
structure. 
 

6. Results  
The whole DT consists of twelve 
pentagons. By the use of translations, 
rotations and mirroring the whole DT is 
plotted, based from a single pentagonal 
structure. See fig. 9 for the initial dilated 
state and fig. 10 for the final folded 
state. 
 

 
Figure 9. Plot of the final model in initial state, every 
pentagonal structure is coloured differently with 
respect to its neighbour. 
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Figure10. Plot of the final model in final state, every 
pentagonal structure is coloured differently with 
respect to its neighbour. 

From figures 9 and 10, it shows that the 
movement resembles symmetrical 
transformation, which is desired. If a 
specific set of points is chosen, it shows 
that a dodecahedron transforms into a 
smaller dodecahedron. In the dilated 
state, certain points are pushed 
outwards, which is not a problem for this 
design study. Since this study’s main 
focus is to explore symmetrical 
symmetries and the possibilities 
surrounding them, this is not a problem 
which affects the functionality of the 
design. 

 
A grid is printed on which the prototype 
is shown in both extreme positions. 
From this the extent of the contraction 
is indicated, see fig. 11. Positioning the 
prototype in both extreme states was 
proven very difficult to do. Left in fig. 11 
the begin state is shown to the extent 
possible, same as for the right picture 
where the final state is show.  

 
Figure 11. Picture showing the protype in the initial 
state (left) and the final state (right) placed on a grid. 

To show the extents of the 
transformation, fig. 12 is used. Here the 
contour, in red, of the begin state is 
shown over the final state, which also 
has its contour highlighted in red. 
 

 
Figure 12. Picture overlaying the contours of the 
initial and the final state. 

It shows that due to the symmetry 
groups and the mountain-valley 
assignments of pentagonal-model the 
protype transforms to a shape which is 
in accordance with the Matlab plots, 
shown in fig. 8 and fig.9. 
 
From fig. 12 it is not clear to which 
extent dilational movement is achieved. 
To determine this, the enclosed 
dodecahedron is used. The face of the 
enclosed dodecahedron is made up of 
the five vertex points of the individual 
pentagonal structure, see fig. 13. The 
volume of this dodecahedron in initial 
dilated state is equal to circa 88.34, 
while the volume of the final state is 
20.97, meaning a volume reduction of 
76.3% is reached. The values are 
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based on the dimensions given in [27], 
where no units were used. 
 

 
Figure 13. Disdyakis triacontahron shown in black with the 
enclosed dodecahedron shown in red. 

As an additional remark: the netting 
works well as hinge. It has no fatigue 
and enough play to function correctly 
even if the puzzle pieces aren’t exactly 
lined up correctly. The only downside to 
this netting is that it has almost no 
stiffness. This results in that the 
structure is difficult to contain in a 
specific state, since the hinges will 
always allow the structure to fall back 
into a static equilibrium. This makes it 
unreliable to determine if the build 
prototype has 33 DoF’s. A balloon was 
fitted inside the prototype to easily put 
the prototype in the beginning state. 
 

7. Discussion 
Likely, dilational efficiency could be 
increased by applying crease lines to 
the fundamental domain, in order to 
create even smaller faces. This 
however, is associated with different 
problems. To explain, fig. 14 is used. 
Fig. 14 is a plot of two fundamental 
domains of the DT. Same as in the DT, 
these two faces are not in the same 
plane, there is an angle between them 
not equal to 180°. The blue and red 
arrow represent the normal vector of the 
two faces. If the fundamental domain 
needs to be split up into smaller faces, 

then fold lines need to be applied to the 
fundamental domain that extend to the 
edges. For any infinitesimal crease in 
the fundamental domain on the edge, 
the edge will move perpendicular to the 
surface. For the left fundamental this is 
following the blue arrow, for the right 
this is following the red arrow. The 
middle edge is an edge for both the left 
and the right fundamental domain. This 
edge will thus need to move following 
both the blue and the right normal, 
which is not possible unless the two 
break free from each other. In 
conclusion, any fold lines that create 
smaller area’s than the fundamental will 
results in tearing of the material, or 
cutting open edges. Which is an 
consideration one needs to make. In 
addition it would add to the complexity 
of the model since more cut edges 
results in more point contacts and thus 
extra connections would be needed just 
as in the current model. 
 

 
Figure 14. Schematic representation of two 
fundamental domains of the DT under an angle, the 
normals of the faces are shown as a blue and red 
arrow. 

This study used the *532 symmetry as 
building block for creating a prototype, 
however the octahedral symmetry 
group (*432) would work in a similar 
manner, albeit with less faces. 
Parametric symmetry groups have their 
own benefits, that being that the 
number of parts to form a structure can 
be chosen and is not limited to the faces 
of a polyhedron.  
 
Looking at the final model it is seen that 
the centres of each individual pentagon 
point outwards. Since the underlying 
objective is not to have a perfect sphere 
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in every state, but rather to investigate 
whether or not new types of symmetries 
are plausible for design studies, this is 
not a detraction. 
 
However, if one would has an 
application in mind where this would a 
problem, it is possible to flip the 
pentagons upside down. This implies 
that the centres of the pentagons move 
inward, rather than outward. This is 
illustrated in fig. 15 and 16. From this 
illustration, It also shows that the 
resulting mechanism does not resemble 
a sphere as well as the design 
presented in this paper. 
 

 
Figure 15. Matlab plot of the model in initial state 
with the pentagonal parts pointed inward rather than 
outward. 

 
Figure 16. Matlab plot of the model in final state with 
the pentagonal parts pointed inward rather than 
outward. 

The fitted balloon can also be seen as 
an actuator with one DoF. Due to that 
the balloon presses against the puzzle 
pieces that are pointed inward, the 
whole prototype moves to its beginning 
position. This principle could also be 
reversed. A connection could be made 
from these inward pointing puzzle 
pieces to the centre of the prototype, 
where all these connections would 
meet. If this point could be actuated 
properly, the whole system would only 
have one DoF and thus much more 
easily actuated. This is an interesting 
idea for further research. 
 
The 33 DoF’s make actuating the model 
a difficult task. For further research an 
efficient way to actuate these 
mechanisms can be developed, which 
makes use of the symmetric properties 
of these kinds of structures, this may 
result in needing much less actuators 
than 33. 
 

8. Conclusion 

This study illustrated the possibilities of 
using different types of symmetry-
groups, other than the known Bravais 
lattices, when creating structures based 
from a unit cell. From an engineering 
perspective, origami is a type of rigid 
body mechanics, making it possible to 
model the kinematics of the structure. 
By dividing the spherical structure into 
parts that can be placed in a flat plane, 
they can be easily fabricated by, for 
example, 3D printing.  
 
Spherical symmetries, both platonic 
and parametric, could pose as a 
solution for creating new structures. In 
this study, a new origami inspired 
spherical dilational metamaterial was 
created, based on a platonic symmetry-
group. From the results it shows that the 
enclosed dodecahedron of the model 
initially has a volume of 88.34 and for 
the end state a volume of 20.97. 
Meaning the model undergoes a 



 

 

31 

 

volume reduction of 76.3% from 
beginning to end state.   
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4 
4 Discussion 
In this chapter certain design choices will be reflected upon and some ideas for 
further research will be presented as well.   
 

This design study very early on drew inspiration from origami. This was a choice by 
the author, since the wide range of possibilities made it necessary to make design 
choices. The choice of origami made it necessary to stick to rigid body mechanics as 
requirements for designing the sphere. For further research, one could explore 
different engineering principles to design spherical auxetic structures, for instance: 
compliant mechanisms or elastic materials.  
 
In chapter 3 “An origami inspired transformable structure based on spherical symmetry 
groups” the motivations for choosing a *532 symmetry-group as pattern for the design 
were stated and for this study this was the only symmetry-group explored. It would be 
interesting to explore more platonic symmetry-groups. Such as the groups based on 
the cube and octahedron: *432, 432  or the tetrahedron: *332, 332, which would result 
in a disdyakis dodecahedron and triakis tetrahedron respectively. These however, 
resemble a spherical structure much less than the disdyakis triacontahredon, due to a 
lower face count. The symmetry-group perhaps need not even be platonic, a 
parametric symmetry-group could have their application in other designs.  
 
Due to limited resources the fabrication possibilities were restricted. Using the 3D 
printer for fabrication proved to be the best option for building a prototype. If it were 
possible on campus, a laser-cutter or paper-cutter could also be beneficial. The 
prototype could be made of cardboard or paper, and double-sided tape could be used 
instead of the netting. This would result in a much thinner model, but perhaps also 
more easily puzzled together and fabricated faster. The 3D-printing process took up 
four whole days.  
 
The model could have been simplified by using tape as hinge, instead of netting and 
puzzle-like pieces. This, however, would make the prototype less intricate. The current 
prototype added more depth and design to the study. The main focus of the prototype 
was to test the dilational behaviour, but due to some inventive design choices: netting 
as hinge and puzzling the pentagons together, the prototype received another layer of 
ingenuity which added to the complexity and innovativeness of the study. 
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It has previously been stated that the icosahedron and dodecahedron are each other’s 
duals and thus share the same symmetry-group, meaning it would also be possible to 
construct the prototype out of 20 triangles, which is also mentioned in appendix A, 
where the choice for the pentagon was substantiated. As an alternative design, the 
triangle could be taken as the basis of the model, instead of the pentagon. This would 
result in 15 DoF’s for the total structure, since the triangle has 3 internal DoF’s, with 
respect to the 7 of the pentagon. 
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5 

 5 Conclusion 
This thesis developed an origami inspired dilational metamaterial. The model is based 
on spherical symmetries, specifically the icosahedral symmetry-group. This 
distinguishes it from the current state-of-the-art of metamaterials, which are all formed 
through discrete translations along the lattice vectors of different Bravais lattices.  
 
The thesis started with a literature survey where certain mechanical metamaterials 
were introduced and discussed, with the focus on auxetic metamaterials, as well as 
origami patterns that behave in an auxetic manner. Origami was stated to be useful to 
drawn inspiration from, especially in a preliminary stage, because any idea for a pattern 
could easily be tested with a piece of paper. The goal of this survey was to state the 
current research gap, which is that all metamaterials are constructed through discrete 
translations of the unit cell, making it impossible to form spherical structures. 
 
In chapter 3 this concept is further developed by listing the existing spherical symmetry-
groups and categorizing them as either parametric or platonic. The platonic symmetry-
groups were proven to be more suited for this specific study, with the platonic 
polyhedrons linked to them. The model was then constructed in Matlab, drawn in 
SolidWorks and fabricated in PLA with a Prusa MK2 3D-printer. The results of the 
prototype were in compliance with the theoretical model. 
 
This design study developed a never seen before dilational mechanical metamaterial 
based on a spherical symmetry-group, with 33 DoF’s. One degree of freedom results 
in perfect dilational behaviour from beginning to final state causing a volume reduction 
of the enclosed dodecahedron of 76,3%.  
 
The results of this study made it possible to project auxetics fittingly on curved 
surfaces, by means of spherical symmetry-groups. 
 

 

 

 

 

 

 

 

 



 

 

36 

 

Bibliography 
[1] P. M. Reis, H. M. Jaeger, and M. van Hecke, “Designer Matter: A perspective,” Extrem. Mech. 

Lett., vol. 5, pp. 25–29, 2015. 
[2] X. Hou and V. V. Silberschmidt, “Metamaterials with Negative Poisson’s Ratio: A Review of 

Mechanical Properties and Deformation Mechanisms,” in Mechanics of Advanced Materials, 
Springer, Cham, 2015, pp. 155–179. 

[3] R. S. Kshetrimayum, “A brief intro to metamaterials,” IEEE Potentials, vol. 23, no. 5, pp. 44–46, 
2004. 

[4] Y. Zárate et al., “Elastic metamaterials for tuning circular polarization of electromagnetic 
waves,” Sci. Rep., vol. 6, 2016. 

[5] M. Kadic, T. Bückmann, N. Stenger, M. Thiel, and M. Wegener, “On the practicability of 
pentamode mechanical metamaterials,” Appl. Phys. Lett., vol. 100, no. 19, p. 191901, May 
2012. 

[6] M. Sanami, N. Ravirala, K. Alderson, and A. Alderson, “ScienceDirect Auxetic materials for 
sports applications,” Procedia Eng., vol. 72, pp. 453–458, 2014. 

[7] K. E. Evans and A. Alderson, “Auxetic materials: Functional materials and structures from 
lateral thinking!,” Adv. Mater., vol. 12, no. 9, pp. 617–628, 2000. 

[8] A. A. Zadpoor, “Mechanical meta-materials,” Mater. Horizons, vol. 3, no. 5, pp. 371–381, 2016. 
[9] “Cite This Page - Wikipedia,” Wikipedia, The Free Encyclopedia., 2019. [Online]. Available: 

https://en.wikipedia.org/w/index.php?title=Special:CiteThisPage&page=Bravais_lattice&id=877
311057. [Accessed: 04-Apr-2019]. 

[10] G. F. Méjica and A. D. Lantada, “Comparative study of potential pentamodal metamaterials 
inspired by Bravais lattices,” Smart Mater. Struct., vol. 22, no. 11, 2013. 

[11] J. Van De Craats, “Symmetric Spherical and Planar Patterns,” 2011. 
[12] J. Conway, The symmetries of things, 1st ed. Taylor & Francis Inc, 2008. 
[13] M. Eidini, “Zigzag-base folded sheet cellular mechanical metamaterials,” Extrem. Mech. Lett., 

vol. 6, pp. 96–102, 2016. 
[14] B. Gin-Ge Chen et al., “Topological Mechanics of Origami and Kirigami,” Phys. Rev. Lett., vol. 

116, 2016. 
[15] Y. Nishiyama, “Miura Folding: Applying Origami to Space Exploration.” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

37 

 

Appendices  
 
The first appendix consists of the mathematical models of the triangular and 
pentagonal structures. This is the foundation of the Matlab code. The second appendix 
consists of the Degree of Freedom calculations for the triangular and pentagonal 
structures as well as the full model. The third appendix shows pictures of the fabrication 
process. The last appendix shows the used Matlab scripts. 
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Appendix A: Triangular and Pentagonal structure 

mathematical model 

 

A.1 The triangular structure 
In order to better understand the kinematics and the geometry of the structure, the 
portions of the Disdyakis Triacontahedron (DT) that represent the pentagon and the 
triangle are modelled in Matlab. First the triangle is modelled. All the vertices are 
labelled as followed, see figure 7. The vertices are labelled by the capital letter A 
through F and S. The edges of the FD are labelled with a, b and c, with a being the 
shortest edge and c the longest. The edges have a blue, red or black colour. The black 
colour denotes the contour of the structure and these edges will later be examined. 
The blue colour shows the ‘valley’ folds, meaning those foldlines are folded inward. 
The red lines represent the ‘mountain’ folds, meaning the folds are outwards. A single 
fundamental domain is coloured yellow. Fig. 1 shows a projection in the xy-plane and 
the angle θ (theta) represents the angle between AB and the x-axis and is used to 
describe the other points with respect to A, together with the constants: a, b and c. The 
values of a, b and c are based on the Truncated Icosidodecahedron, which is the dual 
of the DT. The Truncated Icosidodecahedron is an Archimedean solid, meaning that 
every edge has the same length, which is determined to be 1 for this study. Based on 
this edge length, the vales of a, b and c are determined. 
 

 
Figure 1. Schematic overview of the triangle model projected in the xy-plane with all imporant vertices and edges 
labelled 
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Fig. 2 and fig. 3 show the same triangle in the yz-plane and the xz-plane respectively. 
 

 
Figure 2. Schematic overview of the triangle model projected in yz-plane. This orientation displays angle psi 
which will be used to express point S 

 
Figure 3.  Schematic overview of the triangle model projected in xz-plane. This orientation displays angle phi which 

determines the displacement in the z-direction of the points. 

Using the angles θ, φ, ψ the coordinates of B through F and S can be expressed with 
respect to A. Angle θ lies in the xy-plane, φ lies in the xz-plane and ψ lies in the yz-
plane, as is illustrated below. Point A is fixed in the origin, meaning the coordinates of 
A are:  

𝐴 = [
0
0
0
] 

 
By fixing the y- and z-coordinate of C and the z-coordinate of E, the whole structure is 
fixed in space. The points B through F are expressed in the angles and the constants 
a, b, c. 

𝐵 = [

𝑏𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜙)

𝑏𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜙)
−𝑏𝑠𝑖𝑛(𝜙)

] 

 

The assumption is made that triangle Δ𝐴𝐵𝐶 is a isosceles triangle, meaning the 
movement is symmetrical. This assumption is extended for the whole structure, 
meaning Δ𝐴𝐹𝐸and Δ𝐶𝐷𝐸 are also assumed to be isosceles. Furthermore it is assumed 
that if ∠𝐵𝐴𝐶 = 𝜃  then ∠𝐸𝐴𝐹 = 𝜃 as well. This assumption is extend to state ∠𝐷𝐶𝐸 = 𝜃 
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too, however this assumption will later be validated. Using the assumptions and 
geometry, the following points can be expressed as: 
 

𝐶 = [
2𝑏𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜙)

0
0

] 

 

𝐷 =

[
 
 
 
 𝐶(1) − 𝑏𝑠𝑖𝑛(𝜃 +

𝜋

6
)𝑐𝑜𝑠(𝜙)

𝐶(2) + 𝑏𝑐𝑜𝑠 (𝜃 +
𝜋

6
) 𝑐𝑜𝑠(𝜙)

𝐶(3) − 𝑏𝑠𝑖𝑛(𝜙) ]
 
 
 
 

=

[
 
 
 
 2𝑏𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜙) − 𝑏𝑠𝑖𝑛(𝜃 +

𝜋

6
)𝑐𝑜𝑠(𝜙)

𝑏𝑐𝑜𝑠 (𝜃 +
𝜋

6
) 𝑐𝑜𝑠(𝜙)

−𝑏𝑠𝑖𝑛(𝜙) ]
 
 
 
 

 

 

𝐸 =

[
 
 
 
 𝐷(1) − 𝑏𝑐𝑜𝑠(𝜃 +

𝜋

3
)𝑐𝑜𝑠(𝜙)

𝐷(2) + 𝑏𝑠𝑖𝑛 (𝜃 +
𝜋

3
) 𝑐𝑜𝑠(𝜙)

𝐶(3) + 𝑏𝑠𝑖𝑛(𝜙) ]
 
 
 
 

=

[
 
 
 
 2𝑏𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜙) − 𝑏𝑠𝑖𝑛 (𝜃 +

𝜋

6
) 𝑐𝑜𝑠(𝜙) − 𝑏𝑐𝑜𝑠 (𝜃 +

𝜋

3
) 𝑐𝑜𝑠(𝜙)

𝑏𝑐𝑜𝑠 (𝜃 +
𝜋

6
) 𝑐𝑜𝑠(𝜙) + 𝑏𝑠𝑖𝑛 (𝜃 +

𝜋

3
) 𝑐𝑜𝑠(𝜙)

0 ]
 
 
 
 

 

 

F is expressed with respect to A: 

𝐹 =

[
 
 
 
 𝑏𝑠𝑖𝑛 (𝜃 +

𝜋

6
) 𝑐𝑜𝑠(𝜙)

𝑏𝑐𝑜𝑠 (𝜃 +
𝜋

6
) 𝑐𝑜𝑠 (𝜙)

−𝑠𝑖𝑛 (𝜙) ]
 
 
 
 

 

 

Lastly S is expressed with respect to B: 

𝑆 = [

𝐵(1)

𝐵(2) + 𝑎𝑠𝑖𝑛(𝜓)

𝐵(3) + 𝑎𝑐𝑜𝑠(𝜓)
] = [

𝑏𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜙)

𝑏𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜙) + 𝑎𝑠𝑖𝑛(𝜓)
−𝑏𝑠𝑖𝑛(𝜙) + 𝑎𝑐𝑜𝑠(𝜓)

] 

 

Now that the coordinates of the whole structure are defined, constraints can be defined. 
Both constraints involve point S, S is described with respect to B, but the distance 
between S and A remains constant, namely c. Even so the distance between S and D 
is the constant a. Using this, the constraints can be written as: 
 

𝑒𝑞1:              𝑑(𝐴, 𝑆) − 𝑐 = 0 

𝑒𝑞2:             𝑑(𝐷, 𝑆) − 𝑎 = 0 

 

More constraints can be added, for example the distance between  E and S also being 
c, however this will over-constrain the system and are thus not wanted. Since three 
angles are needed to express all the points of the system, and two independent 
constraints are imposed, this means that the system will be a one degree of freedom 
(DoF) mechanism. For a given value θ and the two constraint equations, values for ψ 
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and φ are determined and the structure can be plotted for any 0 ≤ 𝜃 ≤
𝜋

6
. See fig. 4 for 

𝜃 =
𝜋

12
 . 

 

 
Figure 4. Plot of the triangle model for theta=15° 

From this it is possible to determine what the maximum contraction will be, and what 
the effective area decrease is. The projected area in the xy-plane is determined by: 
 

𝐴(Δ𝐴𝐶𝐸) =
1

2
∗ 2𝑏cos(𝜃) cos(𝜓) ∗ (𝑏cos (𝜃 +

𝜋

6
) cos(𝜙) + 𝑏sin (𝜃 +

𝜋

3
) cos(𝜙)) 

 
For the initial state it follows: 
 

𝜃 = 0,𝜓 = 0.0416 𝑟𝑎𝑑, thus 𝐴(Δ𝐴𝐶𝐸) = 8.2940 
 
For the end state it holds: 
 

𝜃 =
𝜋

6
𝑟𝑎𝑑, 𝜓 = 0.0176 𝑟𝑎𝑑, thus   𝐴(Δ𝐴𝐶𝐸) = 6.2294 

 
Yielding an area deduction of almost 25 percent. 
 

6.2294 − 8.2940

8.2940
∗ 100% = −24.9% 

 

In the assumption that angle C and E are not theta, more variables are needed. The 
only point which is not describable from A with the symmetry assumption is point D. 

∠𝐷𝐸𝐵 = ∠𝐷𝐶𝐵 = 𝜁 instead of 𝜃. Angle ψ is replaced by angle δ and angle φ replaced 
by ε. The goal is to let Matlab find the angles instead of assuming symmetry. Because 
three new angles are introduced, new constraint equations need also be necessary. 
These constraints all rely on point D. 
 

𝑒𝑞3:              𝑑(𝐶,𝐷) − 𝑏 = 0 

𝑒𝑞4:             𝑑(𝐷, 𝐸) − 𝑏 = 0 
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𝑒𝑞5:              𝑑(𝐷, 𝑆) − 𝑎 = 0 

 

Letting Matlab solve this set of equations, with known angles theta, phi and psi, for 
unknown angles zeta, delta and epsilon yields values for these angles that have a 
difference  of circa 10-15 degrees when compared to complete symmetry.  This result 
shows that symmetry may be assumed. 
 

A.2 The pentagonal structure 
The pentagonal structure is a more intricate mechanism in contrast to the triangular 
counterpart, since the model has more degrees of freedom. The figure below shows a 
sketch of the model with the lengths of the sides and the angles used for describing 
the geometry, same as the triangle model. However, more angles are needed. The 
points A, C, E, G and I are assumed to behave symmetrically. Furthermore if four points 
are fixed, the fifth point is fixed as well. Thus, four different theta angles are needed. 
Every theta needs its own phi angle, thus four phi angles are needed. Lastly, one psi 
is needed to express S. Thus nine angles are needed for expressing the geometry of 
the system. Figures 5, 6 and 7 are used to express what the model should look like 
and how its coordinates are labelled for Matlab. 
 

 
Figure 5. Schematic overview of the pentagonal model projected in the xy-plane with all imporant vertices and 
edges labelled 
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Figure 6. Schematic overview of the pentagonal model projected in xz-plane. This orientation displays angle phi 
which determines the displacement in the z-direction of the points.  

 
Figure 7. Schematic overview of the pentagonal model projected in yz-plane.  

Using the same approach as for the triangular model the coordinates of the system 
can be expressed in these angles and the constants a, b and c. In order to constrain 
free motion in space point A is fixed in the origin, C is fixed in the y- and z-direction 
and G is fixed in the z-direction. Starting with A: 
 

𝐴 = [
0
0
0
] 

 
B expressed with respect to A: 
 

𝐵 = [

𝑏𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜙)

𝑏𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜙)
−𝑏𝑠𝑖𝑛(𝜙)

] 

 
C expressed with respect to B: 
 

𝐶 = [
2𝑏𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜙)

0
0

] 

 
And so forth until G: 
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𝐷 =

[
 
 
 
 𝐶(1) + 𝑎 ∗ 𝑠𝑖𝑛 (−𝜃 +

𝜋

10
) 𝑐𝑜𝑠(𝜙)

𝐶(2) + 𝑎 ∗ 𝑐𝑜𝑠 (−𝜃 +
𝜋

10
) 𝑐𝑜𝑠(𝜙)

𝐶(3) − 𝑎 ∗ 𝑠𝑖𝑛(𝜙) ]
 
 
 
 

 

 

𝐸 =

[
 
 
 
 𝐷(1) + 𝑎 ∗ 𝑠𝑖𝑛 (𝜃 +

𝜋

10
) 𝑐𝑜𝑠(𝜙)

𝐷(2) + 𝑎 ∗ 𝑐𝑜𝑠 (𝜃 +
𝜋

10
) 𝑐𝑜𝑠(𝜙)

𝐷(3) + 𝑎 ∗ 𝑠𝑖𝑛(𝜙) ]
 
 
 
 

 

 

𝐹 =

[
 
 
 
 𝐸(1) − 𝑎 ∗ 𝑠𝑖𝑛 (𝜃 +

3𝜋

10
)𝑐𝑜𝑠(𝜙)

𝐸(2) + 𝑎 ∗ 𝑐𝑜𝑠 (𝜃 +
3𝜋

10
) 𝑐𝑜𝑠(𝜙)

𝐸(3) − 𝑎 ∗ 𝑠𝑖𝑛(𝜙) ]
 
 
 
 

 

 

𝐺 =

[
 
 
 
 𝐹(1) − 𝑎 ∗ 𝑠𝑖𝑛 (−𝜃 +

3𝜋

10
)𝑐𝑜𝑠(𝜙)

𝐹(2) + 𝑎 ∗ 𝑐𝑜𝑠 (−𝜃 +
3𝜋

10
) 𝑐𝑜𝑠(𝜙)

𝐹(3) + 𝑎 ∗ 𝑠𝑖𝑛(𝜙) ]
 
 
 
 

 

 

The coordinates of J, I and H are expressed with respect to A: 

𝐽 =

[
 
 
 
 −𝑎 ∗ 𝑠𝑖𝑛 (−𝜃 +

𝜋

10
) 𝑐𝑜𝑠(𝜙)

𝑎 ∗ 𝑐𝑜𝑠 (−𝜃 +
𝜋

10
) 𝑐𝑜𝑠(𝜙)

−𝑎 ∗ 𝑠𝑖𝑛(𝜙) ]
 
 
 
 

 

 

𝐼 =

[
 
 
 
 𝐽(1) − 𝑎 ∗ 𝑠𝑖𝑛 (𝜃 +

𝜋

10
) 𝑐𝑜𝑠(𝜙)

𝐽(2) + 𝑎 ∗ 𝑐𝑜𝑠 (𝜃 +
𝜋

10
) 𝑐𝑜𝑠(𝜙)

𝐽(3) + 𝑎 ∗ 𝑠𝑖𝑛(𝜙) ]
 
 
 
 

 

 

Lastly S is expressed with respect to B, due to symmetry they share the same x-
coordinate: 
 

𝑆 = [

𝐵(1)

𝐵(2) + 𝑏 ∗ 𝑠𝑖𝑛(𝜓)

𝐵(3) + 𝑏 ∗ 𝑐𝑜𝑠(𝜓)
] 

 
The constraints are of the same type as the triangle model: 
 

𝑒𝑞6:              𝑑(𝑆, 𝐶) − 𝑐 = 0 

𝑒𝑞7:             𝑑(𝑆, 𝐷) − 𝑏 = 0 

𝑒𝑞8:              𝑑(𝑆, 𝐸) − 𝑐 = 0 

𝑒𝑞9:              𝑑(𝑆. 𝐹) − 𝑏 = 0 



 

 

46 

 

𝑒𝑞10:             𝑑(𝑆, 𝐺) − 𝑐 = 0 

𝑒𝑞11:              𝑑(𝑆,𝐻) − 𝑏 = 0 

𝑒𝑞12:              𝑑(𝑆, 𝐼) − 𝑐 = 0 

𝑒𝑞13:             𝑑(𝑆, 𝐽) − 𝑏 = 0 

 

Nine different angles are used and there are eight constraints, meaning only one angle 
is needed as input for describing the system. Matlab is used to determine the other 
eight angles. With the coordinates coupled with the constraints it is possible to plot the 
system for different angles and thus determine the maximum contraction. The 
projected area in the xy-plane is determined by: 
 

𝐴𝑟𝑒𝑎 = (2𝑏𝑐𝑜𝑠(𝜃) cos(𝜓))2 ∗
5

4
√

3 + √5

5 − √5
 

 

For the initial state it follows: 
 

𝜃 = 0,𝜓 = 0.0364 𝑟𝑎𝑑, 𝑡ℎ𝑢𝑠 𝐴𝑟𝑒𝑎 = 13.3609 
 
For the end state it holds: 
 

𝜃 =
3𝜋

10
𝑟𝑎𝑑, 𝜓 = 0.0176 𝑟𝑎𝑑, 𝑡ℎ𝑢𝑠 𝐴𝑟𝑒𝑎 = 4.6208 

 
Yielding an area reduction of over 65 percent. 
 

4.6208 − 13.3609

13.3609
∗ 100% = −65,4% 

 
In contrast to the 25 percent of the triangle, the better choice seems to be the pentagon 
as fundamental basis. For the whole Disdyakis Triacontahedron, there is need of 
twelve of these pentagons. 
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Appendix B: Degrees of Freedom 
 

When the whole model will be built it is necessary to know how many degrees of 
freedom (DOF) it will have. This will be done with two ways: a multibody analysis 
approach and through linearization. The DoF’s are counted in two ways to ensure 
correct answers. 
 
Using the multibody dynamics approach the number of bodies and constraints are 
counted, see table 1. This methods shows that the triangle has 3 internal DoF’s and 
the pentagon 7. 
 

Table 1: Table determining the Degrees of Freedom (DoF) of both the triangular and pentagonal structure 
 Body Joint   Constraint  Total  

 Number 
of 
bodies 

DoF 
per 
body 

Total  Number 
of 
revolute 
joints 

DoF per 
revolute 
joint 

Total  Number of 
over-
constraints* 

 

Triangular 
structure 

6 6 
 

36 6 -5 -30 3 9:  
6 external  
3 internal 

Pentagonal 
structure  

10 60 10 -50 3 13: 
6 external 
7 internal 

*The last hinges removes 5 DoF’s: Translation in three directions and rotation in both lateral directions. However, 
the three translations were already fixed due to the structures forming a closed loop, creating three overconstraints. 

 
To determine whether this is correct the DoF’s of the triangle and the pentagon will be 
determined by constructing the Jacobian of all the constraints with respect to the xyz-
coordinates of all the points. The size of the nullspace gives the number of DoF’s. The 
details are given in the Matlab script, which is found in appendix D. This methods also 
yields 3 DoF’s for the triangle and 7 for the pentagon. 
 
With the knowledge that the pentagon has 7 DoF’s, the DoF’s of the whole structure 
can be determined, using the net of  the DT. This can be done by visualizing the net of 
the DT as an mathematical graph. The nodes are the pentagons and the links 
represent the influence of one pentagon to the other. This methods assumes that each 
pentagon has 7 DoF’s at most and that neighbouring pentagons can decrease this total 
since they are connected by an edge. This method yields that the full model will have 
33 DoF’s.  This is illustrated in fig. 8. By constructing the Jacobian of the full model and 
determining the size of the nullspace, a value of 33 DoF’s is also determined, this 
Matlab script is also found in appendix D. 
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Figure 5. The net of the Disdyakis triacontahedron is depicted. For every single pentagon the degrees of freedom it possesses 
is shown in a white circle. With the red arrows it shows how the pentagons influence each other. The image is from Wikimedia. 
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Appendix C: Photo journal  

C.1 SolidWorks Drawings 
 

  
Figure 6. SolidWorks drawing of the pentagonal structure. The dimensions of parts A, B, C and D  are given in the next figure. 

A 

B 

C 

D 
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Figure 7. Zoomed in pictures of the SolidWorks drawing showing the dimensions of the parts. 

 

 

 

 

 

 

 

 

 

 

 

A B 

C D 
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C.2 Fabrication of the prototype 
 

 
Figure 8. Photo showing the 3D-printing process. The netting is applied and kept positioned with tape. 

 

 
Figure 9. Product after 3D-printing with the excessive netting cut away. 
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C.3 Photos of the prototype 
 

 
Figure 10. Photo of the prototype in initial state. 

 

 
Figure 11. Photo of the prototype in final state 
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Appendix D: Matlab code 
D.1 Script for the triangular structure 
%Ivar Nuijts 10-1-2019 

%triangle function thesis 

close all 

clc 

clear all 

  

%% Constants 

a=sqrt(15*(85-31*sqrt(5)))/11; 

b=3*sqrt(15*(65+19*sqrt(5)))/55; 

c=2*sqrt(15*(5-sqrt(5)))/5; 

  

%% Parameters 

%input 

theta=deg2rad(0); 

  

syms phi psi  

  

% %initial position 

% theta=0; 

% phi=pi/2-acos((a^2+3*b^2-c^2)/(2*sqrt(3)*a*b)); 

% psi=0; 

  

% %final position 

% theta=pi/6; 

% phi=0; 

% psi=0; 

  

%% Coordinates 

A=[0 0 0].'; %origin 

B=[b*cos(psi)*cos(theta), b*sin(theta)*cos(psi), -b*sin(psi)].';  

C=[2*b*cos(psi)*cos(theta), 0, 0].'; 

D=[2*b*cos(psi)*cos(theta)-b*sin(theta+pi/6)*cos(psi), 

b*cos(psi)*cos(theta+pi/6), -b*sin(psi)].'; 

E=[D(1)-b*cos(theta+pi/3)*cos(psi), 

b*cos(psi)*cos(theta+pi/6)+b*sin(theta+pi/3)*cos(psi), 0].'; 

F=[b*sin(theta+pi/6)*cos(psi), b*cos(theta+pi/6)*cos(psi), -

b*sin(psi)].'; 

S=[b*cos(psi)*cos(theta), b*sin(theta)*cos(psi)+a*sin(phi), -

b*sin(psi)+a*cos(phi)].'; 

  

%% Input theta, solving for phi en psi 

%Applying two constraint equations. vector AS=c so constant as the first 

%equation, the second equation is a cross section of the figure forming a 

%triangle with sides a, c and BE 

  

eq1=norm(S-E)-c==0; 

eq2=norm(S-D)-a==0; 

  

Solve= solve([eq1, eq2],[phi psi]); 

psi=double(Solve.psi); 

phi=double(Solve.phi); 

  

%% plotting 

X=[A(1), B(1), C(1), D(1), E(1), F(1), A(1)].'; 

Y=[A(2), B(2), C(2), D(2), E(2), F(2), A(2)].'; 

Z=[A(3), B(3), C(3), D(3), E(3), F(3), A(3)].'; 

Matrix=[A, S, B, S, C, S, D, S, E, S, F, S].'; 

X=double(subs(X, Solve)); 
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Y=double(subs(Y, Solve)); 

Z=double(subs(Z, Solve)); 

A=double(subs(A, Solve)); 

B=double(subs(B, Solve)); 

C=double(subs(C, Solve)); 

D=double(subs(D, Solve)); 

E=double(subs(E, Solve)); 

F=double(subs(F, Solve)); 

S=double(subs(S, Solve)); 

Matrix=double(subs(Matrix, Solve)); 

figure 

plot3(X, Y, Z, 'LineWidth', 1) 

grid on 

hold on  

plot3(Matrix(:,1), Matrix(:,2), Matrix(:,3), 'LineWidth', 1) 

axis equal 

thetadeg=rad2deg(theta); 

title(['\theta= ' num2str(thetadeg) ' deg']) 

xlabel 'x' 

ylabel 'y' 

zlabel 'z' 

  

%check is constraints are met 

ABerror=(norm(A-B)-b);  

ASerror=(norm(A-S)-c); 

AFerror=(norm(A-F)-b); 

BSerror=(norm(B-S)-a); 

DSerror=(norm(D-S)-a); 

FSerror=(norm(F-S)-a); 

CSerror=(norm(C-S)-c); 

ESerror=(norm(E-S)-c); 

  

%% normal vectors 

% lowerleft is 1, counting ccw 

normal1=cross(A-B, A-S); 

normal1=normal1/(norm(normal1)); 

  

normal2=cross(B-C, B-S); 

normal2=normal2/(norm(normal2)); 

  

normal3=cross(C-D, C-S); 

normal3=normal3/(norm(normal3)); 

  

normal4=cross(D-E, D-S); 

normal4=normal4/(norm(normal4)); 

  

normal5=cross(E-F, E-S); 

normal5=normal5/(norm(normal5)); 

  

normal6=cross(F-A, F-S); 

normal6=normal6/(norm(normal6)); 

  

p1 = 180-atan2d(norm(cross(normal1,normal2)),dot(normal1,normal2)); 

p2 = 180-atan2d(norm(cross(normal2,normal3)),dot(normal2,normal3)); 

  

%% Check if symmetry assumption is valid. 

%Assume different angles between C and E and check if different values 

are 

%possible. This only changes the coords of D 

syms zeta delta epsilon 
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D2=[2*b*cos(psi)*cos(theta)-b*sin(zeta+pi/6)*cos(delta), 

b*cos(delta)*cos(zeta+pi/6), -b*sin(psi)+a*cos(phi)-a*cos(epsilon)].'; 

S2=[b*cos(psi)*cos(theta), b*sin(theta)*cos(psi)+a*sin(phi), -

b*sin(psi)+a*cos(phi)].'; 

  

%zeta=theta 

%delta=psi 

%epsilon=phi 

  

eq3=norm(D2-C)==b; 

eq4=norm(D2-E)==b; 

eq5=norm(D2-S2)==a; 

  

Solve2=vpasolve([eq3 eq4 eq5], [zeta delta epsilon], [0 1; 0 1; 0 pi/2]); 

zeta=double(Solve2.zeta); 

delta=double(Solve2.delta); 

epsilon=double(Solve2.epsilon); 

%error 

thetaError=(zeta-theta)*180/pi 

psiError=(delta-psi)*180/pi 

epsilonError=(epsilon-phi)*180/pi 

  

%% plotting 

  

D2=double(subs(D2, Solve2)); 

S2=double(subs(S2, Solve2)); 

X2=[A(1), B(1), C(1), D2(1), E(1), F(1), A(1)].'; 

Y2=[A(2), B(2), C(2), D2(2), E(2), F(2), A(2)].'; 

Z2=[A(3), B(3), C(3), D2(3), E(3), F(3), A(3)].'; 

Matrix2=[A, S2, B, S2, C, S2, D2, S2, E, S2, F, S2].'; 

figure 

plot3(X2, Y2, Z2,'r', 'LineWidth', 0.5) 

grid on 

hold on  

plot3(Matrix2(:,1), Matrix2(:,2), Matrix2(:,3),'r', 'LineWidth', 1) 

plot3(X, Y, Z,'b', 'LineWidth', 1) 

plot3(Matrix(:,1), Matrix(:,2), Matrix(:,3),'b', 'LineWidth', 1) 

axis equal 
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D.2 Script for the pentagonal structure 
% Ivar Nuijts 

% Pentagon model 

  

close all 

clc 

clear all 

  

%% Constants 

a=sqrt(15*(85-31*sqrt(5)))/11; 

b=3*sqrt(15*(65+19*sqrt(5)))/55; 

c=2*sqrt(15*(5-sqrt(5)))/5; 

t1deg=45; 

t1=deg2rad(t1deg); 

syms p1 p2 p3 p4 k1 t2 t3 t4 

  

%t in xy plane 

%p in xz plane 

%k in yz plane 

  

%% coordinates 

A=[ 0 0 0].'; %origin 

B=[a*cos(t1)*cos(p1) a*sin(t1)*cos(p1) -a*sin(p1)].'; 

C=[B(1)+a*cos(t2)*cos(p2) B(2)-a*sin(t2)*cos(p2) B(3)+a*sin(p2)].'; 

D=[C(1)+a*sin(pi/10-t2)*cos(p2) C(2)+a*cos(pi/10-t2)*cos(p2) C(3)-

a*sin(p2)].'; 

E=[D(1)+a*sin(pi/10+t2)*cos(p3) D(2)+a*cos(pi/10+t2)*cos(p3) 

D(3)+a*sin(p3)].'; 

F=[E(1)-a*sin(3*pi/10+t3)*cos(p3) E(2)+a*cos(3*pi/10+t3)*cos(p3) E(3)-

a*sin(p3)].'; 

G=[F(1)-a*sin(3*pi/10-t4)*cos(p4) F(2)+a*cos(3*pi/10-t4)*cos(p4) 

F(3)+a*sin(p4)].'; 

J=[-a*sin(pi/10-t1)*cos(p1) a*cos(pi/10-t1)*cos(p1) -a*sin(p1)].'; 

I=[J(1)-a*sin(pi/10+t1)*cos(p1) J(2)+a*cos(pi/10+t1)*cos(p1) 

J(3)+a*sin(p1)].'; 

H=[I(1)+a*sin(3*pi/10+t4)*cos(p1) I(2)+a*cos(3*pi/10+t4)*cos(p1) I(3)-

a*sin(p1)].'; 

S=[B(1) B(2)+b*sin(k1) B(3)+b*cos(k1)].'; 

%S=[B(1) B(2)+b*sin(k1) B(3)-b*cos(k1)].'; %flipping it upside down 

%% constraint equations 

eq1=norm(S-E)-c==0; 

eq2=norm(S-C)-c==0; 

eq3=norm(S-G)-c==0; 

eq4=norm(S-I)-c==0; 

eq5=norm(S-D)-b==0; 

eq6=norm(S-F)-b==0; 

eq7=norm(S-H)-b==0; 

eq8=norm(S-J)-b==0; 

  

Solve= solve([eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8],[p1 p2 p3 p4 k1 t2 

t3 t4 ]); 

  

p1=double(Solve.p1); 

p2=double(Solve.p2); 

p3=double(Solve.p3); 

p4=double(Solve.p4); 

k1=double(Solve.k1); 

t2=double(Solve.t2); 

t3=double(Solve.t3); 

t4=double(Solve.t4); 

%% plot 
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X=[A(1), B(1), C(1), D(1), E(1), F(1), G(1), H(1), I(1), J(1), A(1)].'; 

Y=[A(2), B(2), C(2), D(2), E(2), F(2), G(2), H(2), I(2), J(2), A(2)].'; 

Z=[A(3), B(3), C(3), D(3), E(3), F(3), G(3), H(3), I(3), J(3), A(3)].'; 

Matrix=[A, S, B, S, C, S, D, S, E, S, F, S, G, S, H, S, I, S, J].'; 

  

%subbing 

X=double(subs(X, Solve)); 

Y=double(subs(Y, Solve)); 

Z=double(subs(Z, Solve)); 

A=double(subs(A, Solve)); 

B=double(subs(B, Solve)); 

C=double(subs(C, Solve)); 

D=double(subs(D, Solve)); 

E=double(subs(E, Solve)); 

F=double(subs(F, Solve)); 

G=double(subs(G, Solve)); 

H=double(subs(H, Solve)); 

I=double(subs(I, Solve)); 

J=double(subs(J, Solve)); 

S=double(subs(S, Solve)); 

Matrix=double(subs(Matrix, Solve)); 

  

figure 

plot3(X, Y, Z,'b', 'LineWidth', 1) 

grid on 

hold on  

plot3(Matrix(:,1), Matrix(:,2), Matrix(:,3),'b', 'LineWidth', 1) 

axis equal 

  

%% Area 

Area=C(1)^2*1.25*sqrt((3+sqrt(5))/(5-sqrt(5))) 
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D.3 Script for plotting the full model 
% Ivar Nuijts 

% Disdyakis plot 

close all 

clc 

clear all 

  

%% Constants 

a=sqrt(15*(85-31*sqrt(5)))/11; 

b=3*sqrt(15*(65+19*sqrt(5)))/55; 

c=2*sqrt(15*(5-sqrt(5)))/5; 

t1deg=0; 

t1=deg2rad(t1deg); 

  

syms p1 p2 p3 p4 k1 t2 t3 t4 

  

%t in xy plane 

%p in xz plane 

%k in yz plane 

  

%% coordinates 

A=[ 0 0 0].'; %origin 

B=[a*cos(t1)*cos(p1) a*sin(t1)*cos(p1) -a*sin(p1)].'; 

C=[B(1)+a*cos(t2)*cos(p2) B(2)-a*sin(t2)*cos(p2) B(3)+a*sin(p2)].'; 

D=[C(1)+a*sin(pi/10-t2)*cos(p2) C(2)+a*cos(pi/10-t2)*cos(p2) C(3)-

a*sin(p2)].'; 

E=[D(1)+a*sin(pi/10+t2)*cos(p3) D(2)+a*cos(pi/10+t2)*cos(p3) 

D(3)+a*sin(p3)].'; 

F=[E(1)-a*sin(3*pi/10+t3)*cos(p3) E(2)+a*cos(3*pi/10+t3)*cos(p3) E(3)-

a*sin(p3)].'; 

G=[F(1)-a*sin(3*pi/10-t4)*cos(p4) F(2)+a*cos(3*pi/10-t4)*cos(p4) 

F(3)+a*sin(p4)].'; 

J=[-a*sin(pi/10-t1)*cos(p1) a*cos(pi/10-t1)*cos(p1) -a*sin(p1)].'; 

I=[J(1)-a*sin(pi/10+t1)*cos(p1) J(2)+a*cos(pi/10+t1)*cos(p1) 

J(3)+a*sin(p1)].'; 

H=[I(1)+a*sin(3*pi/10+t4)*cos(p1) I(2)+a*cos(3*pi/10+t4)*cos(p1) I(3)-

a*sin(p1)].'; 

S=[B(1) B(2)+b*sin(k1) B(3)+b*cos(k1)].'; 

%S=[B(1) B(2)+b*sin(k1) B(3)-b*cos(k1)].'; %flipping inside out 

%% constraint equations 

eq1=norm(S-E)-c==0; 

eq2=norm(S-C)-c==0; 

eq3=norm(S-G)-c==0; 

eq4=norm(S-I)-c==0; 

eq5=norm(S-D)-b==0; 

eq6=norm(S-F)-b==0; 

eq7=norm(S-H)-b==0; 

eq8=norm(S-J)-b==0; 

  

Solve= solve([eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8],[p1 p2 p3 p4 k1 t2 

t3 t4 ]); 

  

p1=double(Solve.p1); 

p2=double(Solve.p2); 

p3=double(Solve.p3); 

p4=double(Solve.p4); 

k1=double(Solve.k1); 

t2=double(Solve.t2); 

t3=double(Solve.t3); 

t4=double(Solve.t4); 

%% plot 
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X=[A(1), B(1), C(1), D(1), E(1), F(1), G(1), H(1), I(1), J(1), A(1)].'; 

Y=[A(2), B(2), C(2), D(2), E(2), F(2), G(2), H(2), I(2), J(2), A(2)].'; 

Z=[A(3), B(3), C(3), D(3), E(3), F(3), G(3), H(3), I(3), J(3), A(3)].'; 

Matrix=[A, S, B, S, C, S, D, S, E, S, F, S, G, S, H, S, I, S, J].'; 

  

%subbing 

X=double(subs(X, Solve)); 

Y=double(subs(Y, Solve)); 

Z=double(subs(Z, Solve)); 

A=double(subs(A, Solve)); 

B=double(subs(B, Solve)); 

C=double(subs(C, Solve)); 

D=double(subs(D, Solve)); 

E=double(subs(E, Solve)); 

F=double(subs(F, Solve)); 

G=double(subs(G, Solve)); 

H=double(subs(H, Solve)); 

I=double(subs(I, Solve)); 

J=double(subs(J, Solve)); 

S=double(subs(S, Solve)); 

Matrix=double(subs(Matrix, Solve)); 

  

figure 

plot3(X, Y, Z,'b', 'LineWidth', 2) 

hold on  

plot3(Matrix(:,1), Matrix(:,2), Matrix(:,3),'b', 'LineWidth', 2) 

axis equal 

  

%plot second pentagon 

di=acos(-1/sqrt(5)); 

di=rad2deg(di); 

XYZ=[ X Y Z]; 

XYZ2=rotx(di)*XYZ'; 

Matrix2=rotx(di)*Matrix'; 

plot3(XYZ2(1,:), XYZ2(2,:), -XYZ2(3,:), 'r', 'LineWidth', 2) 

plot3(Matrix2(1,:), Matrix2(2,:), -Matrix2(3,:),'r', 'LineWidth', 2) 

  

%plot third pentagon 

ra=deg2rad(-di); 

u=I/norm(I); 

%wikipedia 

R=[ cos(ra)+u(1)*u(1)*(1-cos(ra)) u(1)*u(2)*(1-cos(ra))-u(3)*sin(ra) 

u(1)*u(3)*(1-cos(ra))+u(2)*sin(ra);... 

    u(2)*u(1)*(1-cos(ra))+u(3)*sin(ra) cos(ra)+u(2)*u(2)*(1-cos(ra)) 

u(2)*u(3)*(1-cos(ra))-u(1)*sin(ra);... 

    u(3)*u(1)*(1-cos(ra))-u(2)*sin(ra) u(3)*u(2)*(1-cos(ra))+u(1)*sin(ra) 

cos(ra)+u(3)*u(3)*(1-cos(ra))]; 

XYZ3=R*XYZ'; 

Matrix3=R*Matrix'; 

plot3(XYZ3(1,:), XYZ3(2,:), -XYZ3(3,:), 'g', 'LineWidth', 2) 

plot3(Matrix3(1,:), Matrix3(2,:), -Matrix3(3,:),'g', 'LineWidth', 2) 

  

%plot fourth pentagon 

ra=deg2rad(180-di); 

u=(E-C)/norm(E-C); 

ras=4*pi/5; 

%wikipedia 

R=[ cos(ra)+u(1)*u(1)*(1-cos(ra)) u(1)*u(2)*(1-cos(ra))-u(3)*sin(ra) 

u(1)*u(3)*(1-cos(ra))+u(2)*sin(ra);... 

    u(2)*u(1)*(1-cos(ra))+u(3)*sin(ra) cos(ra)+u(2)*u(2)*(1-cos(ra)) 

u(2)*u(3)*(1-cos(ra))-u(1)*sin(ra);... 
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    u(3)*u(1)*(1-cos(ra))-u(2)*sin(ra) u(3)*u(2)*(1-cos(ra))+u(1)*sin(ra) 

cos(ra)+u(3)*u(3)*(1-cos(ra))]; 

  

XYZ4=R*rotz(-36)*XYZ'; 

Matrix4=R*rotz(-36)*Matrix'; 

plot3(C(1)+XYZ4(1,:), XYZ4(2,:), XYZ4(3,:), 'y', 'LineWidth', 2) 

plot3(C(1)+Matrix4(1,:), Matrix4(2,:), Matrix4(3,:),'y', 'LineWidth', 2) 

  

%plot fifth pentagon 

ra=deg2rad(180-di); 

u=(G-E)/norm(G-E); 

s=S/norm(S); 

%wikipedia 

R=[ cos(ra)+u(1)*u(1)*(1-cos(ra)) u(1)*u(2)*(1-cos(ra))-u(3)*sin(ra) 

u(1)*u(3)*(1-cos(ra))+u(2)*sin(ra);... 

    u(2)*u(1)*(1-cos(ra))+u(3)*sin(ra) cos(ra)+u(2)*u(2)*(1-cos(ra)) 

u(2)*u(3)*(1-cos(ra))-u(1)*sin(ra);... 

    u(3)*u(1)*(1-cos(ra))-u(2)*sin(ra) u(3)*u(2)*(1-cos(ra))+u(1)*sin(ra) 

cos(ra)+u(3)*u(3)*(1-cos(ra))]; 

  

XYZ5=R*rotz(54-18)*XYZ'; 

Matrix5=R*rotz(54-18)*Matrix'; 

plot3(E(1)+XYZ5(1,:),E(2)+XYZ5(2,:),E(3)+XYZ5(3,:), 'c', 'LineWidth', 2) 

plot3(E(1)+Matrix5(1,:),E(2)+Matrix5(2,:),E(3)+Matrix5(3,:),'c', 

'LineWidth', 2) 

  

%plot sixth pentagon 

ra=deg2rad(180-di); 

u=(I-G)/norm(I-G); 

R=[ cos(ra)+u(1)*u(1)*(1-cos(ra)) u(1)*u(2)*(1-cos(ra))-u(3)*sin(ra) 

u(1)*u(3)*(1-cos(ra))+u(2)*sin(ra);... 

    u(2)*u(1)*(1-cos(ra))+u(3)*sin(ra) cos(ra)+u(2)*u(2)*(1-cos(ra)) 

u(2)*u(3)*(1-cos(ra))-u(1)*sin(ra);... 

    u(3)*u(1)*(1-cos(ra))-u(2)*sin(ra) u(3)*u(2)*(1-cos(ra))+u(1)*sin(ra) 

cos(ra)+u(3)*u(3)*(1-cos(ra))]; 

  

XYZ6=R*rotz(90-54)*XYZ'; 

Matrix6=R*rotz(90-54)*Matrix'; 

plot3(I(1)+XYZ6(1,:),I(2)+XYZ6(2,:),I(3)+XYZ6(3,:), 'm', 'LineWidth', 2) 

plot3(I(1)+Matrix6(1,:),I(2)+Matrix6(2,:),I(3)+Matrix6(3,:),'m', 

'LineWidth', 2) 

  

%plot seventh pentagon 

%use the orientation of the third pentagon 

ra=deg2rad(-di); 

u=I/norm(I); 

%wikipedia 

R=[ cos(ra)+u(1)*u(1)*(1-cos(ra)) u(1)*u(2)*(1-cos(ra))-u(3)*sin(ra) 

u(1)*u(3)*(1-cos(ra))+u(2)*sin(ra);... 

    u(2)*u(1)*(1-cos(ra))+u(3)*sin(ra) cos(ra)+u(2)*u(2)*(1-cos(ra)) 

u(2)*u(3)*(1-cos(ra))-u(1)*sin(ra);... 

    u(3)*u(1)*(1-cos(ra))-u(2)*sin(ra) u(3)*u(2)*(1-cos(ra))+u(1)*sin(ra) 

cos(ra)+u(3)*u(3)*(1-cos(ra))]; 

XYZ7=XYZ'; 

Matrix7=Matrix'; 

XYZ7(3,:)=-XYZ7(3,:); 

Matrix7(3,:)=-Matrix7(3,:); 

XYZ7=R*rotz(144+180)*XYZ7; 

Matrix7=R*rotz(144+180)*Matrix7; 

plot3(C(1)+XYZ4(1,7)+XYZ7(1,:),XYZ4(2,7)+XYZ7(2,:),XYZ4(3,7)-XYZ7(3,:), 

'g', 'LineWidth', 2) 
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plot3(C(1)+XYZ4(1,7)+Matrix7(1,:),XYZ4(2,7)+Matrix7(2,:),XYZ4(3,7)-

Matrix7(3,:),'g', 'LineWidth', 2) 

  

%plot eight pentagon 

%Take the orientation of the second pentagon 

XYZ8=XYZ'; 

XYZ8(3,:)=-XYZ8(3,:); 

XYZ8=rotx(di)*rotz(180+144)*XYZ8; 

Matrix8=Matrix'; 

Matrix8(3,:)=-Matrix8(3,:); 

Matrix8=rotx(di)*rotz(180+144)*Matrix8; 

plot3(I(1)+XYZ6(1,7)+XYZ8(1,:),I(2)+XYZ6(2,7)+XYZ8(2,:),I(3)+XYZ6(3,7)-

XYZ8(3,:), 'r', 'LineWidth', 2) 

plot3(I(1)+XYZ6(1,7)+Matrix8(1,:),I(2)+XYZ6(2,7)+Matrix8(2,:),I(3)+XYZ6(3

,7)-Matrix8(3,:),'r', 'LineWidth', 2) 

  

%plot ninth pentagon 

%use orientation of fourth pentagon 

ra=deg2rad(180-di); 

u=(E-C)/norm(E-C); 

R=[ cos(ra)+u(1)*u(1)*(1-cos(ra)) u(1)*u(2)*(1-cos(ra))-u(3)*sin(ra) 

u(1)*u(3)*(1-cos(ra))+u(2)*sin(ra);... 

    u(2)*u(1)*(1-cos(ra))+u(3)*sin(ra) cos(ra)+u(2)*u(2)*(1-cos(ra)) 

u(2)*u(3)*(1-cos(ra))-u(1)*sin(ra);... 

    u(3)*u(1)*(1-cos(ra))-u(2)*sin(ra) u(3)*u(2)*(1-cos(ra))+u(1)*sin(ra) 

cos(ra)+u(3)*u(3)*(1-cos(ra))]; 

XYZ9=XYZ'; 

Matrix9=Matrix'; 

XYZ9(3,:)=-XYZ9(3,:); 

Matrix9(3,:)=-Matrix9(3,:); 

XYZ9=R*rotz(0)*XYZ9; 

Matrix9=R*rotz(0)*Matrix9; 

plot3(XYZ3(1,5)+XYZ9(1,:),XYZ3(2,5)+XYZ9(2,:),-XYZ3(3,5)+XYZ9(3,:), 'y', 

'LineWidth', 2) 

plot3(XYZ3(1,5)+Matrix9(1,:),XYZ3(2,5)+Matrix9(2,:),-

XYZ3(3,5)+Matrix9(3,:),'y', 'LineWidth', 2) 

  

%plot tenth pentagon 

ra=deg2rad(180-di); 

u=(G-E)/norm(G-E); 

R=[ cos(ra)+u(1)*u(1)*(1-cos(ra)) u(1)*u(2)*(1-cos(ra))-u(3)*sin(ra) 

u(1)*u(3)*(1-cos(ra))+u(2)*sin(ra);... 

    u(2)*u(1)*(1-cos(ra))+u(3)*sin(ra) cos(ra)+u(2)*u(2)*(1-cos(ra)) 

u(2)*u(3)*(1-cos(ra))-u(1)*sin(ra);... 

    u(3)*u(1)*(1-cos(ra))-u(2)*sin(ra) u(3)*u(2)*(1-cos(ra))+u(1)*sin(ra) 

cos(ra)+u(3)*u(3)*(1-cos(ra))]; 

  

XYZ10=XYZ'; 

Matrix10=Matrix'; 

XYZ10(3,:)=-XYZ10(3,:); 

Matrix10(3,:)=-Matrix10(3,:); 

XYZ10=R*rotz(0)*XYZ10; 

Matrix10=R*rotz(0)*Matrix10; 

plot3(XYZ3(1,3)+XYZ10(1,:),XYZ3(2,3)+XYZ10(2,:),-XYZ3(3,3)+XYZ10(3,:), 

'c', 'LineWidth', 2) 

plot3(XYZ3(1,3)+Matrix10(1,:),XYZ3(2,3)+Matrix10(2,:),-

XYZ3(3,3)+Matrix10(3,:),'c', 'LineWidth', 2) 

  

%plot eleventh pentagon 

ra=deg2rad(180-di); 

u=(I-G)/norm(I-G); 
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R=[ cos(ra)+u(1)*u(1)*(1-cos(ra)) u(1)*u(2)*(1-cos(ra))-u(3)*sin(ra) 

u(1)*u(3)*(1-cos(ra))+u(2)*sin(ra);... 

    u(2)*u(1)*(1-cos(ra))+u(3)*sin(ra) cos(ra)+u(2)*u(2)*(1-cos(ra)) 

u(2)*u(3)*(1-cos(ra))-u(1)*sin(ra);... 

    u(3)*u(1)*(1-cos(ra))-u(2)*sin(ra) u(3)*u(2)*(1-cos(ra))+u(1)*sin(ra) 

cos(ra)+u(3)*u(3)*(1-cos(ra))]; 

  

XYZ11=XYZ'; 

Matrix11=Matrix'; 

XYZ11(3,:)=-XYZ11(3,:); 

Matrix11(3,:)=-Matrix11(3,:); 

XYZ11=R*rotz(0)*XYZ11; 

Matrix11=R*rotz(0)*Matrix11; 

plot3(XYZ2(1,7)+XYZ11(1,:),XYZ2(2,7)+XYZ11(2,:),-XYZ2(3,7)+XYZ11(3,:), 

'm', 'LineWidth', 2) 

plot3(XYZ2(1,7)+Matrix11(1,:),XYZ2(2,7)+Matrix11(2,:),-

XYZ2(3,7)+Matrix11(3,:),'m', 'LineWidth', 2) 

  

%plot twelfth pentagon 

XYZ12=XYZ'; 

Matrix12=Matrix'; 

XYZ12(3,:)=-XYZ12(3,:); 

Matrix12(3,:)=-Matrix12(3,:); 

XYZ12=rotz(36)*XYZ12; 

Matrix12=rotz(36)*Matrix12; 

plot3(XYZ3(1,3)+XYZ10(1,5)+XYZ12(1,:),XYZ3(2,3)+XYZ10(2,5)+XYZ12(2,:),-

XYZ3(3,3)+XYZ10(3,7)+XYZ12(3,:), 'b', 'LineWidth', 2) 

plot3(XYZ3(1,3)+XYZ10(1,5)+Matrix12(1,:),XYZ3(2,3)+XYZ10(2,5)+Matrix12(2,

:),-XYZ3(3,3)+XYZ10(3,7)+Matrix12(3,:),'b', 'LineWidth', 2) 

title(['Disdyakis Triacontahedron with angle=' num2str(54) ' deg']) 

xlabel x 

ylabel y 

zlabel z 
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D.4 script for calculating Degrees of freedom triangular structure 
% Ivar Nuijts 

% Determining the DoF’s of the triangle 

close all 

clear all 

clc 

  

%% Constants 

a=sqrt(15*(85-31*sqrt(5)))/11; 

b=3*sqrt(15*(65+19*sqrt(5)))/55; 

c=2*sqrt(15*(5-sqrt(5)))/5; 

  

%% variables 

syms ax ay az bx by bz cx cy cz dx dy dz ex ey ez fx fy fz sx sy sz 

  

V=[ax, ay, az, bx, by, bz, cx, cy, cz, dx, dy, dz, ex, ey, ez, fx, fy, 

fz, sx, sy, sz].'; 

  

%% coordinates 

A=[ax ay az].'; 

B=[bx by bz].'; 

C=[cx cy cz].'; 

D=[dx dy dz].'; 

E=[ex ey ez].'; 

F=[fx fy fz].'; 

S=[sx sy sz].'; 

  

%% constraints 

%Point A is fixed in the origin 

g1=ax; 

g2=ay; 

g3=az; 

%Point C is fixed in y and z w.r.t A 

g4=cy; 

g5=cz; 

%point E is fixed in z w.t.r. A 

g6=ez; 

%now the model is fixed in space 

  

%constraint between points 

%along the perimeter 

g7=norm(B-A)-b; 

g8=norm(C-B)-b; 

g9=norm(D-C)-b; 

g10=norm(E-D)-b; 

g11=norm(F-E)-b; 

g12=norm(A-F)-b; 

  

%w.r.t the centre S 

g13=norm(S-A)-c; 

g14=norm(S-B)-a; 

g15=norm(S-C)-c; 

g16=norm(S-D)-a; 

g17=norm(S-E)-c; 

g18=norm(S-F)-a; 

  

Q=[g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 g17 g18].'; 

  

J=jacobian(Q,V); 

  

%substitute for real coordinates.  
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theta=deg2rad(20); %initial state 

syms psi phi 

[ A, B, C, D, E, F, S ] = GetCoords( theta, phi, psi ); 

  

J=double((subs(J,[ax ay az bx by bz cx cy cz dx dy dz ex ey ez fx fy fz 

sx sy sz].',[ A; B; C; D; E; F; S ]))); 

N=null(J); 

DOF=size(N,2) 

  

%coordinates initial state 

X=[A(1), B(1), C(1), D(1), E(1), F(1), A(1)].'; 

Y=[A(2), B(2), C(2), D(2), E(2), F(2), A(2)].'; 

Z=[A(3), B(3), C(3), D(3), E(3), F(3), A(3)].'; 

Matrix=[A, S, B, S, C, S, D, S, E, S, F, S].'; 

  

for i=1:DOF 

Anew=A+0.5*N(1:3,i); 

Bnew=B+0.5*N(4:6,i); 

Cnew=C+0.5*N(7:9,i); 

Dnew=D+0.5*N(10:12,i); 

Enew=E+0.5*N(13:15,i); 

Fnew=F+0.5*N(16:18,i); 

Snew=S+0.5*N(19:21,i); 

  

Xnew=[Anew(1), Bnew(1), Cnew(1), Dnew(1), Enew(1), Fnew(1), Anew(1)].'; 

Ynew=[Anew(2), Bnew(2), Cnew(2), Dnew(2), Enew(2), Fnew(2), Anew(2)].'; 

Znew=[Anew(3), Bnew(3), Cnew(3), Dnew(3), Enew(3), Fnew(3), Anew(3)].'; 

Matrixnew=[Anew, Snew, Bnew, Snew, Cnew, Snew, Dnew, Snew, Enew, Snew, 

Fnew, Snew].'; 

  

subplot(1,3,i) 

p1=plot3(X, Y, Z,'b', 'LineWidth', 1) 

grid on 

hold on  

plot3(Matrix(:,1), Matrix(:,2), Matrix(:,3),'b', 'LineWidth', 1) 

axis equal 

p2=plot3(Xnew, Ynew, Znew,'r', 'LineWidth', 1) 

plot3(Matrixnew(:,1), Matrixnew(:,2), Matrixnew(:,3),'r', 'LineWidth', 1) 

title(['state' num2str(i)]) 

view(2) 

end 

legend([p1 p2],{'Initial state', 'Linearized next state'}) 

 
function [ A, B, C, D, E, F, S ] = GetCoords( theta, phi, psi ) 

%Coordinates based on the angles theta, phi and psi 

% the input is theta, psi and phi are calculated. Need to be syms first. 

%% constants  

a=sqrt(15*(85-31*sqrt(5)))/11; 

b=3*sqrt(15*(65+19*sqrt(5)))/55; 

c=2*sqrt(15*(5-sqrt(5)))/5;  

  

%% coordinates 

A=[0 0 0].'; %origin 

B=[b*cos(psi)*cos(theta), b*sin(theta)*cos(psi), -b*sin(psi)].';  

C=[2*b*cos(psi)*cos(theta), 0, 0].'; 

D=[2*b*cos(psi)*cos(theta)-b*sin(theta+pi/6)*cos(psi), 

b*cos(psi)*cos(theta+pi/6), -b*sin(psi)].'; 

E=[D(1)-b*cos(theta+pi/3)*cos(psi), 

b*cos(psi)*cos(theta+pi/6)+b*sin(theta+pi/3)*cos(psi), 0].'; 

F=[b*sin(theta+pi/6)*cos(psi), b*cos(theta+pi/6)*cos(psi), -

b*sin(psi)].'; 
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S=[b*cos(psi)*cos(theta), b*sin(theta)*cos(psi)+a*sin(phi), -

b*sin(psi)+a*cos(phi)].'; 

%% Input theta, solving for phi en psi 

%Applying two constraint equations. vector AS=c so constant as the first 

%equation, the second equation is a cross section of the figure forming a 

%triangle with sides a, c and BE 

  

eq1=norm(S-E)-c==0; 

eq2=norm(S-D)-a==0; 

  

Solve= solve([eq1, eq2],[phi psi]); 

psi=Solve.psi; 

phi=Solve.phi; 

  

%% Coordinates subbed 

A=double(subs(A, Solve)); 

B=double(subs(B, Solve)); 

C=double(subs(C, Solve)); 

D=double(subs(D, Solve)); 

E=double(subs(E, Solve)); 

F=double(subs(F, Solve)); 

S=double(subs(S, Solve)); 

  

%PlotCoords=[A B C D E F A S B S C S D S E S F]; 

end 
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D.5 script for calculating Degrees of freedom pentagonal structure 
% Ivar Nuijts 

% Determining the DoF’s of the pentagon 

close all 

clear all 

clc 

  

%% Constants 

a=sqrt(15*(85-31*sqrt(5)))/11; 

b=3*sqrt(15*(65+19*sqrt(5)))/55; 

c=2*sqrt(15*(5-sqrt(5)))/5; 

  

%% variables 

syms ax ay az bx by bz cx cy cz dx dy dz ex ey ez fx fy fz gx gy gz hx hy 

hz ix iy iz jx jy jz sx sy sz 

  

V=[ax ay az bx by bz cx cy cz dx dy dz ex ey ez fx fy fz gx gy gz hx hy 

hz ix iy iz jx jy jz sx sy sz]; 

  

%% coordinates 

A=[ax ay az].'; 

B=[bx by bz].'; 

C=[cx cy cz].'; 

D=[dx dy dz].'; 

E=[ex ey ez].'; 

F=[fx fy fz].'; 

G=[gx gy gz].'; 

H=[hx hy hz].'; 

I=[ix iy iz].'; 

J=[jx jy jz].'; 

S=[sx sy sz].'; 

  

%% constraints 

%Point A is fixed in the origin 

g1=ax; 

g2=ay; 

g3=az; 

%Point C is fixed in y and z w.r.t A 

g4=cy; 

g5=cz; 

%point G is fixed in z w.t.r. A 

g6=gz; 

%now the model is fixed in space 

  

%constraint between points 

%along the perimeter 

g7=norm(A-B)-a; 

g8=norm(C-B)-a; 

g9=norm(D-C)-a; 

g10=norm(E-D)-a; 

g11=norm(F-E)-a; 

g12=norm(G-F)-a; 

g13=norm(H-G)-a; 

g14=norm(I-H)-a; 

g15=norm(J-I)-a; 

g16=norm(A-J)-a; 

%w.r.t the centre S 

g17=norm(S-A)-c; 

g18=norm(S-B)-c; 

g19=norm(S-C)-c; 

g20=norm(S-D)-c; 
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g21=norm(S-E)-c; 

g22=norm(S-F)-c; 

g23=norm(S-G)-c; 

g24=norm(S-H)-c; 

g25=norm(S-I)-c; 

g26=norm(S-J)-c; 

  

Q=[ g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 g17 g18 g19 

g20 g21 g22 g23 g24 g25 g26].'; 

  

Jac=jacobian(Q,V); 

  

t1=deg2rad(25); 

syms p1 p2 p3 p4 k1 t2 t3 t4  

  

[ A, B, C, D, E, F, G, H, I, J, S ] = GetPentaCoords(t1, t2, t3, t4, p1, 

p2, p3, p4, k1); 

  

Jac=double((subs(Jac,[ax ay az bx by bz cx cy cz dx dy dz ex ey ez fx fy 

fz gx gy gz hx hy hz ix iy iz jx jy jz sx sy sz].',[ A; B; C; D; E; F; G; 

H; I; J; S ]))); 

N=null(Jac); 

DOF=size(N,2) 

  

%coordinates initial state 

X=[A(1), B(1), C(1), D(1), E(1), F(1), G(1), H(1), I(1), J(1), A(1)].'; 

Y=[A(2), B(2), C(2), D(2), E(2), F(2), G(2), H(2), I(2), J(2), A(2)].'; 

Z=[A(3), B(3), C(3), D(3), E(3), F(3), G(3), H(3), I(3), J(3), A(3)].'; 

Matrix=[A, S, B, S, C, S, D, S, E, S, F, S, G, S, H, S, I, S, J].'; 

  

for i=1:DOF 

Anew=A+0.5*N(1:3,i); 

Bnew=B+0.5*N(4:6,i); 

Cnew=C+0.5*N(7:9,i); 

Dnew=D+0.5*N(10:12,i); 

Enew=E+0.5*N(13:15,i); 

Fnew=F+0.5*N(16:18,i); 

Gnew=G+0.5*N(19:21,i); 

Hnew=H+0.5*N(22:24,i); 

Inew=I+0.5*N(25:27,i); 

Jnew=J+0.5*N(28:30,i); 

Snew=S+0.5*N(31:33,i); 

  

Xnew=[Anew(1), Bnew(1), Cnew(1), Dnew(1), Enew(1), Fnew(1), Gnew(1), 

Hnew(1), Inew(1), Jnew(1), Anew(1)].'; 

Ynew=[Anew(2), Bnew(2), Cnew(2), Dnew(2), Enew(2), Fnew(2), Gnew(2), 

Hnew(2), Inew(2), Jnew(2), Anew(2)].'; 

Znew=[Anew(3), Bnew(3), Cnew(3), Dnew(3), Enew(3), Fnew(3), Gnew(3), 

Hnew(3), Inew(3), Jnew(3), Anew(3)].'; 

Matrixnew=[Anew, Snew, Bnew, Snew, Cnew, Snew, Dnew, Snew, Enew, Snew, 

Fnew, Snew, Gnew, Snew, Hnew, Snew, Inew, Snew, Jnew, Snew, Jnew].'; 

  

subplot(2,4,i) 

p1=plot3(X, Y, Z,'b', 'LineWidth', 1); 

grid on 

hold on  

plot3(Matrix(:,1), Matrix(:,2), Matrix(:,3),'b', 'LineWidth', 1) 

axis equal 

p2=plot3(Xnew, Ynew, Znew,'r', 'LineWidth', 1); 

plot3(Matrixnew(:,1), Matrixnew(:,2), Matrixnew(:,3),'r', 'LineWidth', 1) 

title(['state' num2str(i)]) 
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view(2) 

end 

legend([p1 p2],{'Initial state', 'Linearized next state'}) 

 

 
function [ A, B, C, D, E, F, G, H, I, J, S ] = GetPentaCoords( t1, t2, 

t3, t4, p1, p2, p3, p4, k1) 

% Ivar Nuijts 

% Pentagon model 

%% Constants 

a=sqrt(15*(85-31*sqrt(5)))/11; 

b=3*sqrt(15*(65+19*sqrt(5)))/55; 

c=2*sqrt(15*(5-sqrt(5)))/5; 

  

% p1=deg2rad(0); 

% p2=deg2rad(0); 

% p3=deg2rad(0); 

% p4=deg2rad(0); 

% k1=pi/3; %not correct yet 

  

%t in xy plane 

%p in xz plane 

%k in yz plane 

  

%% coordinates 

A=[ 0 0 0].'; %origin 

B=[a*cos(t1)*cos(p1) a*sin(t1)*cos(p1) -a*sin(p1)].'; 

C=[B(1)+a*cos(t2)*cos(p2) B(2)-a*sin(t2)*cos(p2) B(3)+a*sin(p2)].'; 

D=[C(1)+a*sin(pi/10-t2)*cos(p2) C(2)+a*cos(pi/10-t2)*cos(p2) C(3)-

a*sin(p2)].'; 

E=[D(1)+a*sin(pi/10+t2)*cos(p3) D(2)+a*cos(pi/10+t2)*cos(p3) 

D(3)+a*sin(p3)].'; 

F=[E(1)-a*sin(3*pi/10+t3)*cos(p3) E(2)+a*cos(3*pi/10+t3)*cos(p3) E(3)-

a*sin(p3)].'; 

G=[F(1)-a*sin(3*pi/10-t4)*cos(p4) F(2)+a*cos(3*pi/10-t4)*cos(p4) 

F(3)+a*sin(p4)].'; 

J=[-a*sin(pi/10-t1)*cos(p1) a*cos(pi/10-t1)*cos(p1) -a*sin(p1)].'; 

I=[J(1)-a*sin(pi/10+t1)*cos(p1) J(2)+a*cos(pi/10+t1)*cos(p1) 

J(3)+a*sin(p1)].'; 

H=[I(1)+a*sin(3*pi/10+t4)*cos(p1) I(2)+a*cos(3*pi/10+t4)*cos(p1) I(3)-

a*sin(p1)].'; 

S=[B(1) B(2)+b*sin(k1) B(3)+b*cos(k1)].'; 

  

%% constraint equations 

eq1=norm(S-E)-c==0; 

eq2=norm(S-C)-c==0; 

eq3=norm(S-G)-c==0; 

eq4=norm(S-I)-c==0; 

eq5=norm(S-D)-b==0; 

eq6=norm(S-F)-b==0; 

eq7=norm(S-H)-b==0; 

eq8=norm(S-J)-b==0; 

  

Solve= solve([eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8],[p1 p2 p3 p4 k1 t2 

t3 t4 ]); 

  

%% subbing 

A=double(subs(A, Solve)); 

B=double(subs(B, Solve)); 

C=double(subs(C, Solve)); 

D=double(subs(D, Solve)); 
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E=double(subs(E, Solve)); 

F=double(subs(F, Solve)); 

G=double(subs(G, Solve)); 

H=double(subs(H, Solve)); 

I=double(subs(I, Solve)); 

J=double(subs(J, Solve)); 

S=double(subs(S, Solve)); 

  

end 
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D.6 script for calculating Degrees of freedom full model 
%Ivar Nuijts 

%Disdyakis DOFs 

close all 

clear all 

clc 

%values from: 

%http://dmccooey.com/polyhedra/DisdyakisTriacontahedron.txt 

  

%% Constants 

C0 = 1.17518645301134929748244365923; 

C1 = 1.38196601125010515179541316563; 

C2 = 1.901491624090794379859549273853; 

C3 = 2.17082039324993690892275210062; 

C4 = 2.23606797749978969640917366873; 

C5 = 3.07667807710214367734199293309; 

C6 = 3.51246117974981072676825630186; 

C7 = 3.61803398874989484820458683437; 

C8 = 3.80298324818158875971909854771; 

  

a=sqrt(15*(85-31*sqrt(5)))/11; 

b=3*sqrt(15*(65+19*sqrt(5)))/55; 

c=2*sqrt(15*(5-sqrt(5)))/5; 

%the following points will be split: 

% 0 1 2 3 4 5 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 

% 50 51 52 53 

%% variables 

syms V0X V0Y V0Z V1X V1Y V1Z V2X V2Y V2Z V3X V3Y V3Z V4X V4Y V4Z V5X V5Y 

V5Z V6X V6Y V6Z V7X V7Y V7Z V8X V8Y V8Z V9X V9Y V9Z ... 

    V10X V10Y V10Z V11X V11Y V11Z V12X V12Y V12Z V13X V13Y V13Z V14X V14Y 

V14Z V15X V15Y V15Z V16X V16Y V16Z V17X V17Y V17Z V18X V18Y V18Z V19X 

V19Y V19Z ... 

    V20X V20Y V20Z V21X V21Y V21Z V22X V22Y V22Z V23X V23Y V23Z V24X V24Y 

V24Z V25X V25Y V25Z V26X V26Y V26Z V27X V27Y V27Z V28X V28Y V28Z V29X 

V29Y V29Z ... 

    V30X V30Y V30Z V31X V31Y V31Z V32X V32Y V32Z V33X V33Y V33Z V34X V34Y 

V34Z V35X V35Y V35Z V36X V36Y V36Z V37X V37Y V37Z V38X V38Y V38Z V39X 

V39Y V39Z ... 

    V40X V40Y V40Z V41X V41Y V41Z V42X V42Y V42Z V43X V43Y V43Z V44X V44Y 

V44Z V45X V45Y V45Z V46X V46Y V46Z V47X V47Y V47Z V48X V48Y V48Z V49X 

V49Y V49Z ... 

    V50X V50Y V50Z V51X V51Y V51Z V52X V52Y V52Z V53X V53Y V53Z V54X V54Y 

V54Z V55X V55Y V55Z V56X V56Y V56Z V57X V57Y V57Z V58X V58Y V58Z V59X 

V59Y V59Z ... 

    V60X V60Y V60Z V61X V61Y V61Z 

  

syms V0XB V0YB V0ZB V1XB V1YB V1ZB V2XB V2YB V2ZB V3XB V3YB V3ZB V4XB 

V4YB V4ZB V5XB V5YB V5ZB V30XB V30YB V30ZB V31XB V31YB V31ZB V32XB V32YB 

V32ZB V33XB V33YB V33ZB V34XB V34YB V34ZB... 

     V35XB V35YB V35ZB V36XB V36YB V36ZB V37XB V37YB V37ZB V38XB V38YB 

V38ZB V39XB V39YB V39ZB V40XB V40YB V40ZB V41XB V41YB V41ZB V42XB V42YB 

V42ZB V43XB V43YB V43ZB V44XB V44YB ... 

     V44ZB V45XB V45YB V45ZB V46XB V46YB V46ZB V47XB V47YB V47ZB V48XB 

V48YB V48ZB V49XB V49YB V49ZB V50XB V50YB V50ZB V51XB V51YB V51ZB V52XB 

V52YB V52ZB V53XB V53YB V53ZB  

  

Vec=[V0X V0Y V0Z V1X V1Y V1Z V2X V2Y V2Z V3X V3Y V3Z V4X V4Y V4Z V5X V5Y 

V5Z V6X V6Y V6Z V7X V7Y V7Z V8X V8Y V8Z V9X V9Y V9Z ... 

    V10X V10Y V10Z V11X V11Y V11Z V12X V12Y V12Z V13X V13Y V13Z V14X V14Y 

V14Z V15X V15Y V15Z V16X V16Y V16Z V17X V17Y V17Z V18X V18Y V18Z V19X 

V19Y V19Z ... 
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    V20X V20Y V20Z V21X V21Y V21Z V22X V22Y V22Z V23X V23Y V23Z V24X V24Y 

V24Z V25X V25Y V25Z V26X V26Y V26Z V27X V27Y V27Z V28X V28Y V28Z V29X 

V29Y V29Z ... 

    V30X V30Y V30Z V31X V31Y V31Z V32X V32Y V32Z V33X V33Y V33Z V34X V34Y 

V34Z V35X V35Y V35Z V36X V36Y V36Z V37X V37Y V37Z V38X V38Y V38Z V39X 

V39Y V39Z ... 

    V40X V40Y V40Z V41X V41Y V41Z V42X V42Y V42Z V43X V43Y V43Z V44X V44Y 

V44Z V45X V45Y V45Z V46X V46Y V46Z V47X V47Y V47Z V48X V48Y V48Z V49X 

V49Y V49Z ... 

    V50X V50Y V50Z V51X V51Y V51Z V52X V52Y V52Z V53X V53Y V53Z V54X V54Y 

V54Z V55X V55Y V55Z V56X V56Y V56Z V57X V57Y V57Z V58X V58Y V58Z V59X 

V59Y V59Z ... 

    V60X V60Y V60Z V61X V61Y V61Z V0XB V0YB V0ZB V1XB V1YB V1ZB V2XB V2YB 

V2ZB V3XB V3YB V3ZB V4XB V4YB V4ZB V5XB V5YB V5ZB V30XB V30YB V30ZB V31XB 

V31YB V31ZB V32XB V32YB V32ZB V33XB V33YB V33ZB V34XB V34YB V34ZB... 

     V35XB V35YB V35ZB V36XB V36YB V36ZB V37XB V37YB V37ZB V38XB V38YB 

V38ZB V39XB V39YB V39ZB V40XB V40YB V40ZB V41XB V41YB V41ZB V42XB V42YB 

V42ZB V43XB V43YB V43ZB V44XB V44YB ... 

     V44ZB V45XB V45YB V45ZB V46XB V46YB V46ZB V47XB V47YB V47ZB V48XB 

V48YB V48ZB V49XB V49YB V49ZB V50XB V50YB V50ZB V51XB V51YB V51ZB V52XB 

V52YB V52ZB V53XB V53YB V53ZB].';  

%% Coordinates 

V0  =  [V0X V0Y V0Z].'; 

V1  =  [V1X V1Y V1Z].'; 

V2  =  [V2X V2Y V2Z].'; 

V3  =  [V3X V3Y V3Z].'; 

V4  =  [V4X V4Y V4Z].'; 

V5  =  [V5X V5Y V5Z].'; 

V0B  = [V0XB V0YB V0ZB].'; 

V1B  = [V1XB V1YB V1ZB].'; 

V2B  = [V2XB V2YB V2ZB].'; 

V3B  = [V3XB V3YB V3ZB].'; 

V4B  = [V4XB V4YB V4ZB].'; 

V5B  = [V5XB V5YB V5ZB].'; 

V6  =  [V6X V6Y V6Z].'; 

V7  =  [V7X V7Y V7Z].'; 

V8  =  [V8X V8Y V8Z].'; 

V9  =  [V9X V9Y V9Z].'; 

V10  = [V10X V10Y V10Z].'; 

V11  = [V11X V11Y V11Z].'; 

V12  = [V12X V12Y V12Z].'; 

V13  = [V13X V13Y V13Z].'; 

V14  = [V14X V14Y V14Z].'; 

V15  = [V15X V15Y V15Z].'; 

V16  = [V16X V16Y V16Z].'; 

V17  = [V17X V17Y V17Z].'; 

V18  = [V18X V18Y V18Z].'; 

V19  = [V19X V19Y V19Z].'; 

V20  = [V20X V20Y V20Z].'; 

V21  = [V21X V21Y V21Z].'; 

V22  = [V22X V22Y V22Z].'; 

V23  = [V23X V23Y V23Z].'; 

V24  = [V24X V24Y V24Z].'; 

V25  = [V25X V25Y V25Z].'; 

V26  = [V26X V26Y V26Z].'; 

V27  = [V27X V27Y V27Z].'; 

V28  = [V28X V28Y V28Z].'; 

V29  = [V29X V29Y V29Z].'; 

V30  = [V30X V30Y V30Z].'; 

V31  = [V31X V31Y V31Z].'; 

V32  = [V32X V32Y V32Z].'; 
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V33  = [V33X V33Y V33Z].'; 

V34  = [V34X V34Y V34Z].'; 

V35  = [V35X V35Y V35Z].'; 

V36  = [V36X V36Y V36Z].'; 

V37  = [V37X V37Y V37Z].'; 

V38  = [V38X V38Y V38Z].'; 

V39  = [V39X V39Y V39Z].'; 

V40  = [V40X V40Y V40Z].'; 

V41  = [V41X V41Y V41Z].'; 

V42  = [V42X V42Y V42Z].'; 

V43  = [V43X V43Y V43Z].'; 

V44  = [V44X V44Y V44Z].'; 

V45  = [V45X V45Y V45Z].'; 

V46  = [V46X V46Y V46Z].'; 

V47  = [V47X V47Y V47Z].'; 

V48  = [V48X V48Y V48Z].'; 

V49  = [V49X V49Y V49Z].'; 

V50  = [V50X V50Y V50Z].'; 

V51  = [V51X V51Y V51Z].'; 

V52  = [V52X V52Y V52Z].'; 

V53  = [V53X V53Y V53Z].'; 

V30B  = [V30XB V30YB V30ZB].'; 

V31B  = [V31XB V31YB V31ZB].'; 

V32B  = [V32XB V32YB V32ZB].'; 

V33B  = [V33XB V33YB V33ZB].'; 

V34B  = [V34XB V34YB V34ZB].'; 

V35B  = [V35XB V35YB V35ZB].'; 

V36B  = [V36XB V36YB V36ZB].'; 

V37B  = [V37XB V37YB V37ZB].'; 

V38B  = [V38XB V38YB V38ZB].'; 

V39B  = [V39XB V39YB V39ZB].'; 

V40B  = [V40XB V40YB V40ZB].'; 

V41B  = [V41XB V41YB V41ZB].'; 

V42B  = [V42XB V42YB V42ZB].'; 

V43B  = [V43XB V43YB V43ZB].'; 

V44B  = [V44XB V44YB V44ZB].'; 

V45B  = [V45XB V45YB V45ZB].'; 

V46B  = [V46XB V46YB V46ZB].'; 

V47B  = [V47XB V47YB V47ZB].'; 

V48B  = [V48XB V48YB V48ZB].'; 

V49B  = [V49XB V49YB V49ZB].'; 

V50B  = [V50XB V50YB V50ZB].'; 

V51B  = [V51XB V51YB V51ZB].'; 

V52B  = [V52XB V52YB V52ZB].'; 

V53B  = [V53XB V53YB V53ZB].'; 

V54  = [V54X V54Y V54Z].'; 

V55  = [V55X V55Y V55Z].'; 

V56  = [V56X V56Y V56Z].'; 

V57  = [V57X V57Y V57Z].'; 

V58  = [V58X V58Y V58Z].'; 

V59  = [V59X V59Y V59Z].'; 

V60  = [V60X V60Y V60Z].'; 

V61  = [V61X V61Y V61Z].'; 

  

%% constraints 

% fixing in space by fixing V0 V8 V18. V8  = [0.0, -C1,  C7]'; V18 = [ 

C3, 0.0,  C6]'; 

g1=V0X; 

g2=V0Y; 

g3=V0Z-C8; 

g4=V8X; 
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g5=V8Y+C1; 

g6=V8Z-C8; 

g7=V18X-C3; 

g8=V18Y; 

g9=V18Z-C6; 

%from point 18 

g10=norm(V18-V0)-b; 

g11=norm(V18-V8)-c; 

g12=norm(V18-V32)-b; 

g13=norm(V18-V56)-c; 

g14=norm(V18-V40)-b; 

g15=norm(V18-V10)-c; 

g16=norm(V18-V38)-b; 

g17=norm(V18-V54)-c; 

g18=norm(V18-V30)-b; 

g19=norm(V18-V6)-c; 

%from poin 19 

g20=norm(V19-V1)-b; 

g21=norm(V19-V7)-c; 

g22=norm(V19-V31)-b; 

g23=norm(V19-V55)-c; 

g24=norm(V19-V39)-b; 

g25=norm(V19-V11)-c; 

g26=norm(V19-V41)-b; 

g27=norm(V19-V57)-c; 

g28=norm(V19-V33)-b; 

g29=norm(V19-V9)-c; 

%from poin 20 

g30=norm(V20-V0B)-b; 

g31=norm(V20-V6)-c; 

g32=norm(V20-V34)-b; 

g33=norm(V20-V58)-c; 

g34=norm(V20-V42)-b; 

g35=norm(V20-V12)-c; 

g36=norm(V20-V44)-b; 

g37=norm(V20-V60)-c; 

g38=norm(V20-V36)-b; 

g39=norm(V20-V8)-c; 

%from point 21 

g40=norm(V21-V1B)-b; 

g41=norm(V21-V9)-c; 

g42=norm(V21-V37)-b; 

g43=norm(V21-V61)-c; 

g44=norm(V21-V45)-b; 

g45=norm(V21-V13)-c; 

g46=norm(V21-V43)-b; 

g47=norm(V21-V59)-c; 

g48=norm(V21-V35)-b; 

g49=norm(V21-V7)-c; 

%from point 22 

g50=norm(V22-V2)-b; 

g51=norm(V22-V11)-c; 

g52=norm(V22-V39B)-b; 

g53=norm(V22-V55)-c; 

g54=norm(V22-V47)-b; 

g55=norm(V22-V14)-c; 

g56=norm(V22-V46)-b; 

g57=norm(V22-V54)-c; 

g58=norm(V22-V38B)-b; 

g59=norm(V22-V10)-c; 

%from point 23 
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g60=norm(V23-V2B)-b; 

g61=norm(V23-V10)-c; 

g62=norm(V23-V40B)-b; 

g63=norm(V23-V56)-c; 

g64=norm(V23-V48)-b;  

g65=norm(V23-V15)-c; 

g66=norm(V23-V49)-b; 

g67=norm(V23-V57)-c; 

g68=norm(V23-V41B)-b; 

g69=norm(V23-V11)-c; 

%from point 24 

g70=norm(V24-V3)-b; 

g71=norm(V24-V12)-c; 

g72=norm(V24-V42B)-b; 

g73=norm(V24-V58)-c; 

g74=norm(V24-V50)-b; 

g75=norm(V24-V16)-c; 

g76=norm(V24-V51)-b; 

g77=norm(V24-V59)-c; 

g78=norm(V24-V43B)-b; 

g79=norm(V24-V13)-c; 

%from point 25 

g80=norm(V25-V3B)-b; 

g81=norm(V25-V13)-c; 

g82=norm(V25-V45B)-b; 

g83=norm(V25-V61)-c; 

g84=norm(V25-V53)-b; 

g85=norm(V25-V17)-c; 

g86=norm(V25-V52)-b; 

g87=norm(V25-V60)-c; 

g88=norm(V25-V44B)-b; 

g89=norm(V25-V12)-c; 

%from point 26 

g90=norm(V26-V4)-b; 

g91=norm(V26-V16)-c; 

g92=norm(V26-V50B)-b; 

g93=norm(V26-V58)-c; 

g94=norm(V26-V34B)-b; 

g95=norm(V26-V6)-c; 

g96=norm(V26-V30B)-b; 

g97=norm(V26-V54)-c; 

g98=norm(V26-V46B)-b; 

g99=norm(V26-V14)-c; 

%from point 27 

g100=norm(V27-V4B)-b; 

g101=norm(V27-V14)-c; 

g102=norm(V27-V47B)-b; 

g103=norm(V27-V55)-c; 

g104=norm(V27-V31B)-b; 

g105=norm(V27-V7)-c; 

g106=norm(V27-V35B)-b; 

g107=norm(V27-V59)-c; 

g108=norm(V27-V51B)-b; 

g109=norm(V27-V16)-c; 

%from point 28 

g110=norm(V28-V5)-b; 

g111=norm(V28-V15)-c; 

g112=norm(V28-V48B)-b; 

g113=norm(V28-V56)-c; 

g114=norm(V28-V32B)-b; 

g115=norm(V28-V8)-c; 
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g116=norm(V28-V36B)-b; 

g117=norm(V28-V60)-c; 

g118=norm(V28-V52B)-b; 

g119=norm(V28-V17)-c; 

%from point 29 

g120=norm(V29-V5B)-b; 

g121=norm(V29-V17)-c; 

g122=norm(V29-V53B)-b; 

g123=norm(V29-V61)-c; 

g124=norm(V29-V37B)-b; 

g125=norm(V29-V9)-c; 

g126=norm(V29-V33B)-b; 

g127=norm(V29-V57)-c; 

g128=norm(V29-V49B)-b; 

g129=norm(V29-V15)-c; 

  

%around point 18 

g130=norm(V0-V8)-a; 

g131=norm(V8-V32)-a; 

g132=norm(V32-V56)-a; 

g133=norm(V56-V40)-a; 

g134=norm(V40-V10)-a; 

g135=norm(V10-V38)-a; 

g136=norm(V38-V54)-a; 

g137=norm(V54-V30)-a; 

g138=norm(V30-V6)-a; 

g139=norm(V6-V1)-a; 

%Extra constraints when the points split 

g130B=norm(V0B-V8)-a; 

g131B=norm(V8-V32B)-a; 

g132B=norm(V32B-V56)-a; 

g133B=norm(V56-V40B)-a; 

g134B=norm(V40B-V10)-a; 

g135B=norm(V10-V38B)-a; 

g136B=norm(V38B-V54)-a; 

g137B=norm(V54-V30B)-a; 

g138B=norm(V30B-V6)-a; 

g139B=norm(V6-V1B)-a; 

  

%around point 19 

g140=norm(V1-V7)-a; 

g141=norm(V7-V31)-a; 

g142=norm(V31-V55)-a; 

g143=norm(V55-V39)-a; 

g144=norm(V39-V11)-a; 

g145=norm(V11-V41)-a; 

g146=norm(V41-V57)-a; 

g147=norm(V57-V33)-a; 

g148=norm(V33-V9)-a; 

g149=norm(V9-V1)-a; 

%Extra constraints when the points split 

g140B=norm(V1B-V7)-a; 

g141B=norm(V7-V31B)-a; 

g142B=norm(V31B-V55)-a; 

g143B=norm(V55-V39B)-a; 

g144B=norm(V39B-V11)-a; 

g145B=norm(V11-V41B)-a; 

g146B=norm(V41B-V57)-a; 

g147B=norm(V57-V33B)-a; 

g148B=norm(V33B-V9)-a; 

g149B=norm(V9-V1B)-a; 
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%around point 20 2 overconstraints 

g150=norm(V6-V34)-a; 

g151=norm(V34-V58)-a; 

g152=norm(V58-V42)-a; 

g153=norm(V42-V12)-a; 

g154=norm(V12-V44)-a; 

g155=norm(V44-V60)-a; 

g156=norm(V60-V36)-a; 

g157=norm(V36-V8)-a; 

%Extra constraints when the points split 

g150B=norm(V6-V34B)-a; 

g151B=norm(V34B-V58)-a; 

g152B=norm(V58-V42B)-a; 

g153B=norm(V42B-V12)-a; 

g154B=norm(V12-V44B)-a; 

g155B=norm(V44B-V60)-a; 

g156B=norm(V60-V36B)-a; 

g157B=norm(V36B-V8)-a; 

  

%around point 21 2 overconstraints 

g158=norm(V9-V37)-a; 

g159=norm(V37-V61)-a; 

g160=norm(V61-V45)-a; 

g161=norm(V45-V13)-a; 

g162=norm(V13-V43)-a; 

g163=norm(V43-V59)-a; 

g164=norm(V59-V35)-a; 

g165=norm(V35-V7)-a; 

%Extra constraints when the points split 

g158B=norm(V9-V37B)-a; 

g159B=norm(V37B-V61)-a; 

g160B=norm(V61-V45B)-a; 

g161B=norm(V45B-V13)-a; 

g162B=norm(V13-V43B)-a; 

g163B=norm(V43B-V59)-a; 

g164B=norm(V59-V35B)-a; 

g165B=norm(V35B-V7)-a; 

  

%around point 22 4 overconstraints 

g166=norm(V2-V11)-a; 

g167=norm(V55-V47)-a; 

g168=norm(V47-V14)-a; 

g169=norm(V14-V46)-a; 

g170=norm(V46-V54)-a; 

g171=norm(V10-V2)-a; 

%Extra constraints when the points split 

g166B=norm(V2B-V11)-a; 

g167B=norm(V55-V47B)-a; 

g168B=norm(V47B-V14)-a; 

g169B=norm(V14-V46B)-a; 

g170B=norm(V46B-V54)-a; 

g171B=norm(V10-V2B)-a; 

  

%around point 23 6 overconstraints 

g172=norm(V56-V48)-a; 

g173=norm(V48-V15)-a; 

g174=norm(V15-V49)-a; 

g175=norm(V49-V57)-a; 

%Extra constraints when the points split 

g172B=norm(V56-V48B)-a; 
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g173B=norm(V48B-V15)-a; 

g174B=norm(V15-V49B)-a; 

g175B=norm(V49B-V57)-a; 

  

%around point 24 4 overconstraints 

g176=norm(V3-V12)-a; 

g177=norm(V58-V50)-a; 

g178=norm(V50-V16)-a; 

g179=norm(V16-V51)-a; 

g180=norm(V51-V59)-a; 

g181=norm(V13-V3)-a; 

%Extra constraints when the points split 

g176B=norm(V3B-V12)-a; 

g177B=norm(V58-V50B)-a; 

g178B=norm(V50B-V16)-a; 

g179B=norm(V16-V51B)-a; 

g180B=norm(V51B-V59)-a; 

g181B=norm(V13-V3B)-a; 

  

%around point 25 6 overconstraints 

g182=norm(V61-V53)-a; 

g183=norm(V53-V17)-a; 

g184=norm(V17-V52)-a; 

g185=norm(V52-V60)-a; 

%Extra constraints when the points split 

g182B=norm(V61-V53B)-a; 

g183B=norm(V53B-V17)-a; 

g184B=norm(V17-V52B)-a; 

g185B=norm(V52B-V60)-a; 

  

%around point 26 8 overconstraints 

g186=norm(V4-V16)-a; 

g187=norm(V14-V4)-a; 

%Extra constraints when the points split 

g186B=norm(V4B-V16)-a; 

g187B=norm(V14-V4B)-a; 

  

%around point 27 10 overconstraints 

  

%around point 28 8 overconstraints 

g188=norm(V4-V16)-a; 

g189=norm(V17-V5)-a; 

%Extra constraints when the points split 

g188B=norm(V4B-V16)-a; 

g189B=norm(V17-V5B)-a; 

  

%around point 29 10 overconstraints 

  

Q=[ g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 g17 g18 g19 

g20 g21 g22 g23 g24 g25 g26 g27 g28 g29 g30 g31 g32 g33 g34 g35... 

    g36 g37 g38 g39 g40 g41 g42 g43 g44 g45 g46 g47 g48 g49 g50 g51 g52 

g53 g54 g55 g56 g57 g58 g59 g60 g61 g62 g63 g64 g65 g66 g67 g68... 

    g69 g70 g71 g72 g73 g74 g75 g76 g77 g78 g79 g80 g81 g82 g83 g84 g85 

g86 g87 g88 g89 g90 g91 g92 g93 g94 g95 g96 g97 g98 g99 g100 g101... 

    g102 g103 g104 g105 g106 g107 g108 g109 g110 g111 g112 g113 g114 g115 

g116 g117 g118 g119 g120 g121 g122 g123 g124 g125 g126 g127 g128... 

    g129 g130 g131 g132 g133 g134 g135 g136 g137 g138 g139 g140 g141 g142 

g143 g144 g145 g146 g147 g148 g149 g150 g151 g152 g153 g154 g155... 

    g156 g157 g158 g159 g160 g161 g162 g163 g164 g165 g166 g167 g168 g169 

g170 g171 g172 g173 g174 g175 g176 g177 g178 g179 g180 g181 g182... 
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    g183 g184 g185 g186 g187 g188 g189 g130B g131B g132B g133B g134B 

g135B g136B g137B g138B g139B g140B g141B g142B g143B g144B g145B 

g146B... 

    g147B g148B g149B g150B g151B g152B g153B g154B g155B g156B g157B 

g158B g159B g160B g161B g162B g163B g164B g165B g166B g167B g168B 

g169B... 

    g170B g171B g172B g173B g174B g175B g176B g177B g178B g179B g180B 

g181B g182B g183B g184B g185B g186B g187B g188B g189B].'; 

  

Jac=jacobian(Q,Vec); 

  

%% Points 

V0  = [0.0 0.0  C8]'; 

V1  = [0.0 0.0 -C8]'; 

V2  = [ C8, 0.0, 0.0]'; 

V3  = [-C8, 0.0, 0.0]'; 

V4  = [0.0,  C8, 0.0]'; 

V5  = [0.0, -C8, 0.0]'; 

V6  = [0.0,  C1,  C7]'; 

V7  = [0.0,  C1, -C7]'; 

V8  = [0.0, -C1,  C7]'; 

V9  = [0.0, -C1, -C7]'; 

V10 = [ C7, 0.0,  C1]'; 

V11 = [ C7, 0.0, -C1]'; 

V12 = [-C7, 0.0,  C1]'; 

V13 = [-C7, 0.0, -C1]'; 

V14 = [ C1,  C7, 0.0]'; 

V15 = [ C1, -C7, 0.0]'; 

V16 = [-C1,  C7, 0.0]'; 

V17 = [-C1, -C7, 0.0]'; 

V18 = [ C3, 0.0,  C6]'; 

V19 = [ C3, 0.0, -C6]'; 

V20 = [-C3, 0.0,  C6]'; 

V21 = [-C3, 0.0, -C6]'; 

V22 = [ C6,  C3, 0.0]'; 

V23 = [ C6, -C3, 0.0]'; 

V24 = [-C6,  C3, 0.0]'; 

V25 = [-C6, -C3, 0.0]'; 

V26 = [0.0,  C6,  C3]'; 

V27 = [0.0,  C6, -C3]'; 

V28 = [0.0, -C6,  C3]'; 

V29 = [0.0, -C6, -C3]'; 

V30 = [ C0,  C2,  C5]'; 

V31 = [ C0,  C2, -C5]'; 

V32 = [ C0, -C2,  C5]'; 

V33 = [ C0, -C2, -C5]'; 

V34 = [-C0,  C2,  C5]'; 

V35 = [-C0,  C2, -C5]'; 

V36 = [-C0, -C2,  C5]'; 

V37 = [-C0, -C2, -C5]'; 

V38 = [ C5,  C0,  C2]'; 

V39 = [ C5,  C0, -C2]'; 

V40 = [ C5, -C0,  C2]'; 

V41 = [ C5, -C0, -C2]'; 

V42 = [-C5,  C0,  C2]'; 

V43 = [-C5,  C0, -C2]'; 

V44 = [-C5, -C0,  C2]'; 

V45 = [-C5, -C0, -C2]'; 

V46 = [ C2,  C5,  C0]'; 

V47 = [ C2,  C5, -C0]'; 

V48 = [ C2, -C5,  C0]'; 
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V49 = [ C2, -C5, -C0]'; 

V50 = [-C2,  C5,  C0]'; 

V51 = [-C2,  C5, -C0]'; 

V52 = [-C2, -C5,  C0]'; 

V53 = [-C2, -C5, -C0]'; 

V54 = [ C4,  C4,  C4]'; 

V55 = [ C4,  C4, -C4]'; 

V56 = [ C4, -C4,  C4]'; 

V57 = [ C4, -C4, -C4]'; 

V58 = [-C4,  C4,  C4]'; 

V59 = [-C4,  C4, -C4]'; 

V60 = [-C4, -C4,  C4]'; 

V61 = [-C4, -C4, -C4]'; 

  

V0B  = [0.0 0.0  C8]'; 

V1B  = [0.0 0.0 -C8]'; 

V2B  = [ C8, 0.0, 0.0]'; 

V3B  = [-C8, 0.0, 0.0]'; 

V4B  = [0.0,  C8, 0.0]'; 

V5B  = [0.0, -C8, 0.0]'; 

V30B = [ C0,  C2,  C5]'; 

V31B = [ C0,  C2, -C5]'; 

V32B = [ C0, -C2,  C5]'; 

V33B = [ C0, -C2, -C5]'; 

V34B = [-C0,  C2,  C5]'; 

V35B = [-C0,  C2, -C5]'; 

V36B = [-C0, -C2,  C5]'; 

V37B = [-C0, -C2, -C5]'; 

V38B = [ C5,  C0,  C2]'; 

V39B = [ C5,  C0, -C2]'; 

V40B = [ C5, -C0,  C2]'; 

V41B = [ C5, -C0, -C2]'; 

V42B = [-C5,  C0,  C2]'; 

V43B = [-C5,  C0, -C2]'; 

V44B = [-C5, -C0,  C2]'; 

V45B = [-C5, -C0, -C2]'; 

V46B = [ C2,  C5,  C0]'; 

V47B = [ C2,  C5, -C0]'; 

V48B = [ C2, -C5,  C0]'; 

V49B = [ C2, -C5, -C0]'; 

V50B = [-C2,  C5,  C0]'; 

V51B = [-C2,  C5, -C0]'; 

V52B = [-C2, -C5,  C0]'; 

V53B = [-C2, -C5, -C0]'; 

  

Jac=double((subs(Jac,[V0X V0Y V0Z V1X V1Y V1Z V2X V2Y V2Z V3X V3Y V3Z V4X 

V4Y V4Z V5X V5Y V5Z V6X V6Y V6Z V7X V7Y V7Z V8X V8Y V8Z V9X V9Y V9Z ... 

    V10X V10Y V10Z V11X V11Y V11Z V12X V12Y V12Z V13X V13Y V13Z V14X V14Y 

V14Z V15X V15Y V15Z V16X V16Y V16Z V17X V17Y V17Z V18X V18Y V18Z V19X 

V19Y V19Z ... 

    V20X V20Y V20Z V21X V21Y V21Z V22X V22Y V22Z V23X V23Y V23Z V24X V24Y 

V24Z V25X V25Y V25Z V26X V26Y V26Z V27X V27Y V27Z V28X V28Y V28Z V29X 

V29Y V29Z ... 

    V30X V30Y V30Z V31X V31Y V31Z V32X V32Y V32Z V33X V33Y V33Z V34X V34Y 

V34Z V35X V35Y V35Z V36X V36Y V36Z V37X V37Y V37Z V38X V38Y V38Z V39X 

V39Y V39Z ... 

    V40X V40Y V40Z V41X V41Y V41Z V42X V42Y V42Z V43X V43Y V43Z V44X V44Y 

V44Z V45X V45Y V45Z V46X V46Y V46Z V47X V47Y V47Z V48X V48Y V48Z V49X 

V49Y V49Z ... 



 

 

80 

 

    V50X V50Y V50Z V51X V51Y V51Z V52X V52Y V52Z V53X V53Y V53Z V54X V54Y 

V54Z V55X V55Y V55Z V56X V56Y V56Z V57X V57Y V57Z V58X V58Y V58Z V59X 

V59Y V59Z ... 

    V60X V60Y V60Z V61X V61Y V61Z V0XB V0YB V0ZB V1XB V1YB V1ZB V2XB V2YB 

V2ZB V3XB V3YB V3ZB V4XB V4YB V4ZB V5XB V5YB V5ZB V30XB V30YB V30ZB V31XB 

V31YB V31ZB V32XB V32YB V32ZB V33XB V33YB V33ZB V34XB V34YB V34ZB... 

     V35XB V35YB V35ZB V36XB V36YB V36ZB V37XB V37YB V37ZB V38XB V38YB 

V38ZB V39XB V39YB V39ZB V40XB V40YB V40ZB V41XB V41YB V41ZB V42XB V42YB 

V42ZB V43XB V43YB V43ZB V44XB V44YB ... 

     V44ZB V45XB V45YB V45ZB V46XB V46YB V46ZB V47XB V47YB V47ZB V48XB 

V48YB V48ZB V49XB V49YB V49ZB V50XB V50YB V50ZB V51XB V51YB V51ZB V52XB 

V52YB V52ZB V53XB V53YB V53ZB].',[ V0; V1; V2; V3; V4; V5; V6; V7; V8; 

V9; V10; V11; V12; V13; V14; V15; V16; V17; V18; V19;... 

    V20; V21; V22; V23; V24; V25; V26; V27; V28; V29; V30; V31; V32; V33; 

V34; V35; V36; V37; V38; V39; V40; V41; V42; V43; V44; V45; ... 

    V46; V47; V48; V49; V50; V51; V52; V53; V54; V55; V56; V57; V58; V59; 

V60; V61; V0B; V1B; V2B; V3B; V4B; V5B; V30B; V31B; V32B; V33B; V34B; 

V35B; V36B; V37B; V38B; V39B; V40B; V41B; V42B; V43B; V44B; V45B; ... 

    V46B; V47B; V48B; V49B; V50B; V51B; V52B; V53B]))); 

N=null(Jac); 

DOF=size(N,2) 

 

 

 

 


