Exploring the 3D BAG: How
to define it and to what
extent can it automatically be
created using open data

Erik Heeres

©
=
o
N
L.
o)
e
=
o
>
o
Z

Delft
e t University of
Technology

MSc thesis in Geomatics for the Built Environment

EXPLORING THE 3D BAG: HOW TO DEFINE IT AND TO WHAT
EXTENT CAN IT AUTOMATICALLY BE CREATED USING OPEN
DATA

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics for the Built Environment

by
Erik Heeres

November 2016

Erik Heeres: Exploring the 3D BAG: How to define it and to what extent can it
automatically be created using open data (2016)

@@® This work is licensed under a Creative Commons Attribution 4.0 Inter-
national License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was made in the:

3D geoinformation group

Department of Urbanism

Faculty of Architecture & the Built Environment
Delft University of Technology

<3
TUDelft
3Dgeoinfo

Supervisors: Prof.dr. Jantien Stoter
Dr. Hugo Ledoux
Co-reader: Dr. Martijn Meijers

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

The System of Key Registers is the main source of information for all gov-
ernmental organizations in the Netherlands. It includes information that is
used by the government on a regular basis, such as company names, per-
sonal data and spatial information. The Basisregistraties Adressen en Gebouwen
(BAG) is part of this system, and stores all buildings and addresses within
the Netherlands. It comprises non-spatial information such as the year of
construction of a building, but also the 2D representation of buildings and
units as polygons and points. Because of the increasing densification of the
urban environment, it is more difficult to model the reality on a flat map
without losing important information. As such, the 2D representation of
the BAG has drawbacks and an improvement of this model is necessary.

The aim of this thesis was to explore the needs and possibilities to improve
the BAG representation from a 2D into a 3D-model. I have especially focused
on the main features within the BAG that are most influenced by the shift
from a 2D to a 3D representation: the Panden (buildings) and the Verblijfsob-
jecten (units). In this thesis, I have firstly proposed a definition for the 3D
BAG, and subsequently investigated to which extent the current available
open data can be used to create 3D geometries of the buildings and units.
By the use of literature studies and interviews with experts in the field,
I recognized a shift within the government regarding the use of 3D data.
However, current efforts are scattered and on different scales. Here I pro-
posed a 3D model that connects spatial information of different key registers
harmonizing these efforts, and also solving current problems with the 2D
representation of the BAG. Hence, it provides new possibilities for the data
Moreover, this thesis I proposed methodology for creating 3D geometries
of the BAG buildings and units. It is based on the use of different, na-
tionwide spatial datasets that are made available as open data by the gov-
ernment. This methodology resulted in a workflow that can theoretically
create a nationwide 3D model of the BAG. The workflow consists of dif-
ferent steps, starting with the classification of underground buildings and
followed by the calculation of the number of storeys, placement of the units
over the storeys and dividing the storeys themselves. The workflow was
implemented and tested for three areas to investigate its applicability to dif-
ferent environments; the highly densified area of The Hague, the urban area
of Hoofddorp and the rural of Schoonhoven. The resulting dataset of The
Hague was validated using a reference dataset provided by the municipal-
ity.

Results of the implementation of a 3D model of the BAG validated the poten-
tial of the designed methodology. For most buildings in the Netherlands, a
3D model can be created with reasonable accuracy. However, this thesis also
reveals uncertainties within the BAG that makes it impossible to create accu-
rate 3D models for all buildings and units with the developed methodology.
When aiming at improving the results and overcoming these uncertainties
a wide approach is needed. This approach should not solely focus on im-
proving the developed methodology, but also on the acquisition of data that
provides more information about the location and geometry of buildings
and units.

it

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who supported me during
this graduation project. First, I would like to thank my supervisor Hugo
Ledoux for his excellent guidance, suggestions, and feedback on my work.
Moreover, I would like to thank Jantien Stoter for being my graduation pro-
fessor and providing me useful contacts within different governmental orga-
nizations. Furthermore I would like to thank my co-reader, Martijn Meijers,
for his useful comments and advise during the entire thesis. Special thanks
to Natasja de Vries for her support during my graduation period and for
proof reading my concept thesis’s. Finally, I would like to thank all my fam-
ily and friends for their continued support during my student life.

CONTENTS

1

INTRODUCTION 1
1.1 Research objectives and questions 3
1.2 Researchscope 4
1.3 Outline of thisthesis 4
BACKGROUND INFORMATION ABOUT THE SYSTEM OF KEY REGISTERS
OF THE NETHERLANDS 5
2.1 Overview of the key registers 5
2.2 DBasisregistratie Adressen en Gebouwen (BAG) 6
221 Objectclasses 6
222 BAG+ ... 9
223 Usageofthe BAG...................... 11
2.3 Basisregister Grootschalige Topografie (BGT) 12
NEEDS AND OPPORTUNITIES FOR A 3D VERSION OF THE BAG 15
3.1 Drawbacks of current 2D BAG representation 15
3.1.1 Underground and above-ground structures 15
3.1.2 Complex building configurations 16
3.1.3 Unitlocation 17
3.2 Current movement to 3D information 19
321 DutchCadastre 19
322 TopioNL3D. 20
3.2.3 Municipalities L L o oL 20
324 BGTIMGeo 21
3.3 Current work on the development of the 3D BAG 21
331 DenHaag 22
3.3.2 Rotterdam 24
3.4 My proposal forthe 3DBAG 24
3.4.1 Onecompletemodel 24
3.4.2 How the 3D BAG geometries should be modelled to
fit within thismodel 25
3.4.3 The opportunities that will arise when the BAG geom-
etrymovesto3D L. 27
MY METHODOLOGY FOR CREATING 3D GEOMETRIES FOR THE BAG UNITS
4.1 Classifying underground buildings 30
4.1.1 Using density of LiDAR data to detect underground
structures o oo o oo 30
4.1.2 Using the BGT to detect underground structures . .. 33
4.2 Calculating number of storeys above ground 36
4.2.1 Related work for calculating the height and the num-
ber of storeys of buildings 36
4.2.2 Exclude complex building configurations 38
4.2.3 Calculating the height of a building 38
4.2.4 Detect complex buildings. 40
4.3 Divide units over buildings 42
4.3.1 Assign units to multiple related buildings 43
4.3.2 Combining multiple units within one building 43

29

vil

viil

| Contents

4.4 Divide unitsoverstoreys.
4.4.1 Ordering theunits
4.4.2 Placing the units on floor levels

4.5 Divide the storeys to create the unit-storeys
4.5.1 Related work for area partitioning
4.5.2 Creating the centerline

55

4.5.3 Data driven partitioning combined with region growing 56

4.5.4 Create cutlines by iterating over centerline

57

4.5.5 Comparison of the the developed partitioning methods 60

4.6 Creating and validating the 3D geometry of the unit-floors . .
4.6.1 Creating the geometry
4.6.2 Validating the geometry

4.7 Validation of the results with reference dataset

IMPLEMENTATION & RESULTS
5.1 Tools
52 Testareas o
5.3 Obtaining and preparing thedata
531 BAGExtract.
532 BGTand AHN3
5.4 Step 1: Classify underground buildings
5.4.1 LIDAR-and BGT-method
5.4.2 Result of underground identification methods
5.5 Step 2: Calculating the number of storeys above ground . . .
5.5.1 Extract height values from pointcloud
5.5.2 Detect complex buildings and configurations
5.5.3 Calculate the average storey height and set complex
building threshold with use of the reference dataset
5.5.4 Result of calculating the number of storeys
5.6 Step 3: Divide units over buildings
5.6.1 Assigningtheunits.
5.6.2 Result of dividing units over buildings
5.7 Step 4: Divide units over storeys
57.1 Orderingunits
5.7.2 Placing the units on floor levels
5.7.3 Result of dividing the units of the storeys
5.8 Step 5: Dividestoreys
5.8.1 Creating centerlines and finding starting points
5.8.2 Creating cutlines by iteration
5.8.3 Results of dividing storeys
5.9 Step 6: Create and validate the geometry
5.9.1 Creating and writing geometry
5.9.2 Result and validation of geometry
5.10 Validation of theresults
5.10.1 Validation underground classification
5.10.2 The reference dataset used for validation
5.10.3 Validation the number of storeys
5.10.4 validating the number storeys per unit
5.10.5 Validation the location of units over storeys

STORAGE OF THE 3D BAG

6.1 CityGML Standard

6.2 How to fit the 3D BAG within the current CityGML standard
6.2.1 Generic objects and attributes

60
61

Contents | ix

6.2.2 Application Domain Extension 98
6.2.3 Store model as LOD4 and create CityObjectGroups . 100
6.2.4 My proposal for extending the CityGML standard . . 100

7 CONCLUSIONS AND FUTURE WORK 103
7.1 Conclusion L 103
72 Futurework 107

7.2.1 Storey height based on parameters. 107
7.2.2 Improving thecitymodel 107
7.2.3 Partitioning 0 0 L. 107
7.3 Recommendations 108
7.3.1 Dataacquisition. 108

7.3.2 Combine BGT and BAG geometrically 109

LIST OF FIGURES

Figure 1.1
Figure 1.2
Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23
Figure 4.24
Figure 4.25
Figure 4.26
Figure 4.27
Figure 4.28

Overlay both BAG-datasets 1
3DBAGof TheHague 2
System of key registers 6

BAGcclasses 7
Difference between BGT and BAG geometry 13
BAG underground: The Hague 16
BAG underground: Delft. 16
BAG building location: Unilever 16
BAG unit location: Appartments 17
Differences of point placement 17
Single unit per building 18
Number of units per building 18
3D cadastral registration 19
BIM Leidsche Rijn Centrum 21
Dynamic3D:2 22
3D city model The Hague 23
Partitioning method The Hague 23
Vision: one complete 3Dmodel 25
Proposed LOD concept 26
3D functionalmap 27
Goal of workflow, . 29
General workflow 30
Workflow for classifying underground structures. . . 31
AHN2section 31
Surrounding points 32
Workflow for density check. 32
Workflow for BGT check 33
A selection of possible building configurations. . .. 35
Workflow for building the number of storeys. 37
Overlap above ground. 38
Determination of building height 39
Workflow for Zg. oo 39
Workflow for Zy,. 40
Complexbuilding 41
Complex buildings 41
Difference between footprint and outer perimeter . . 42
Workflow 43
Single unit, multiple buildings 44
Single building with multiple units. 44
The ordering of the units., 45
Ordering additions 46
The workflow for placing the units on storeys. 47
The order of the workflow to place units on the storeys. 47
Sectionexample L. 48
Noadditions 49
Threshold for floorarea 49
Three different partitioning approaches. 51
Result of partitioning methods, 51

Xi

xit | List of Figures

Figure 4.29
Figure 4.30
Figure 4.31
Figure 4.32
Figure 4.33
Figure 4.34
Figure 4.35
Figure 4.36
Figure 4.37
Figure 4.38
Figure 4.39
Figure 4.40
Figure 4.41
Figure 4.42
Figure 4.43
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14

Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25
Figure 5.26
Figure 5.27
Figure 5.28
Figure 5.29
Figure 5.30
Figure 5.31
Figure 5.32
Figure 5.33
Figure 5.34
Figure 5.35
Figure 5.36
Figure 6.1

An example of a voronoi partitioning. 52
Errors due Voronoi diagram 53
Building generalization, 54
A complex building configuration in Delft. 54
Straight skeleton. 55
From a straight skeleton to the centerline. 56
Finding the starting point of the centerline. 57
Result of region growing 57
Developed partitioning method 58
Iterative process to find the location of the cutlines. . 58
Exampleof cutlines 59
Problems with partitioning 60
The different heights of a building. 61
The reconstructionof walls. 61
A solid is bounded by a number of exterior shells. . . 62
Testareas 66
Test area: The Hague 67
Test area: Hoofddorp 67
Test area: Schoonhoven 67
GML data of BAGunit 68
DBMS relationships of BAG 70
PDOKtiles 70
Workflow of the first step of the implementation . . . 72
Temporal differences 73
Result of LiDAR and BGT method 73
Combined methods 73
Overlapcheck 75
Implementation for detecting complexitity 76
Result complex building and configuration classifica-

tion 77
Excluded buildings, 77
Divide units over buildings 78
Result related buildings, 79
Number of units per building: The Hague 8o
Number of units per building: Hoofddorp 8o
Number of units per building: Schoonhoven 80
Implementation: storeys with related units 82
Example of section division 83
Units perstorey 84
Unit-storeys DenHaag 85
Unit-storeys Hoofddorp 85
Unit-storeys Schoonhoven, 85
Graph network of the straight skeleton 86
Extendededges 87
Examples of the created centerlines. 88
Partitioning result 89
The three unit-storeys that are described in Figure 5.32. 91
Section of the GML code from the unit-storeys.. . . . 91
Classified as underground structured 93
Testarea 94
Accuracy of number of storey calculation 95
Validation of number of unit-storeys 96
LOD concept CityGML 97

List of Figures | «xiii

Figure 6.2 UML diagram of the IMGeo 99
Figure 6.3 The proposed schema for extending the IMGeo . .. 101

LIST OF TABLES

Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6

Attributes of the BAG buildings and units.
Possible use functions of units
BAG+ unit attributes
BAG+ building attributes
Combining BGT and LIDAR method
Results of LIDAR and BGT method
Comparison of partitioning methods
The order of the points.
Table of characteristics of testareas
Result of the different median-maximum thresholds .
Ordering key examples
Ratioexample
Example of placement
Ordering units

76

XV

ACRONYMS

DEM digital elevation model................... ... 69
DTM digital terrainmodel 69
GIS geographical information system...................o 24
LVBAG Landelijke Voorziening BAG 6
BAG Basisregistraties Adressen en Gebouwen iii
BGT Basisregistratie Grootschalige Topografieooovi.. 5
BA Basisregistratie AATesSernooiiiiiiiiiii 6
BG Basisregistratie Gebouwen o i 6
woz Waardering Onroerende Zakeno, 11
BRT Basisregistratie Topografieooiiiiiiiiiiiiiiiiiiaan.. 5
BRO Basisregistratie Ondergrond i, 5
LIDAR Light Detection And Ranging of Laser Imaging Detection And
Ranging. ... 20
AHN Actueel Hoogtebestand Nederland 30
AHNz2 Actueel Hoogtebestand Nederland 2
AHN3 Actueel Hoogtebestand Nederland 3 31
PDOK Publieke Dienstverlening Opde Kaart................................ 69
GML Geographic Markup Language...........................ooo. 63
XML Extensible Markup Languageoooiiiii 97
UML Unified Modeling Languageo. 99
LoD Level of Detail 4
BIM Building Information Modelo 20
0GC Open Geospatial Consortium ..., 21
ADE Application Domain Extension.......................ooooiiil 98

xvil

1 INTRODUCTION

The introduction of the computer in the late twentieth century has been
of great influence on how we handle spatial information. Instead of us-
ing physical paper maps, it was now possible to store spatial information
on the computer. This made it possible to create a centralized datasource
which could be shared with everybody. The Dutch government recognized
this shift and began developing policy that took advantage of the newly cre-
ated possibilities [van Duivenboden and de Vries, 2003]. One of the results
of this development was the creation of the System of Key Registers: Cen-
tralized databases in which essential information is stored that is used by
governmental organizations.

The BAG is part of this system of key registers and stores all buildings
and addresses within the Netherlands. It is a combination of two key regis-
ters: the register for addresses and the register for buildings. The registers
provide information on for instance the year of construction of a building,
the net floor area of a dwelling and the intended use of a unit. Also the
geometry of buildings is included in the BAG; the units (with their address)
are stored as points and the buildings as polygons. In Figure 1.1 the two
datasets are shown on top of each other. The BAG is mostly used because
it models the current state of all buildings and units in the Netherlands, al-
though it also includes the history of these units.

Figure 1.1: A section of the BAG with the two datasets overlaid: the buildings (gray
polygons) and the units (red points). Buildings can include multiple
units

The information that is included in the BAG is not only used by the gov-
ernment, the private sector also benefits from this information. Examples
are architecture firms, real estate companies, banks and the government. In

2

| INTRODUCTION

almost all situations the BAG is combined with other data sources in order
to create valuable information.

But when more detailed analyses are desired, the BAG is not sufficient
enough. A 3D model of buildings and units would allow them to perform
more detailed analysis about separate units, e.g. the heat loss could be es-
timated. All these factors have an influence on the value of a unit, but can
only be calculated using a detailed 3D model. Another situation in which
the 3D model of the BAG is highly valuable constitutes the fire prevention
of a building. In case of a fire in a big apartment building, firefighters can
quickly develop a plan to combat a fire when they have a 3D model avail-
able. The shape of the building and the location of the separate apartments
is in that case of great additional value.

In order to create a full accurate 3D representation of the BAG, all data
should be acquired again with that purpose in mind. However, this is not
feasible in practice due to the costs and time it takes. The current efforts by
the municipalities of Rotterdam and The Hague aim at creating a 3D BAG by
combing different datasets which are already available. They are currently
working on the creation of a 3D model of their city including the BAG. In
their work, they combine an an extended version of the BAG, named the
BAG+ (discussed in more detail in Section 2.2.2.) with a 3D city model. The
preliminary results of their work are promising, however further research is
required for improvements of this combined model. Especially the method
for placing a unit within a storey with use of a voronoi diagram gives unre-
alistic results in corner areas as shown in Figure 1.2. The method that the
municipality of The Hague used to create their 3D BAG will be discussed in
Section 3.3.1.

Figure 1.2: A section of the 3D BAG of the municipality of The Hague. Around the
corners the unrealistic placement of units is clearly visible.

However, the biggest problem is not the unrealistic placement of the units,
but the data which is used to construct the model. For the creation of their
version of the 3D BAG both municipalities relied partly on data that is also
available as open data. Open data is freely available to everyone to use and

1.1 RESEARCH OBJECTIVES AND QUESTIONS |

republish as they wish, without restrictions from copyright, patents or other
mechanism of control [Auer et al., 2007]. But both municipalities also used
other datasets in order to create their 3D BAG. Both municipalities used
a BAG+ dataset and a LODz2 city model. These datasets are not available
nationwide and therefore the methods that both municipalities use for cre-
ating their 3D BAG is not scalable for other parts of the Netherlands.

The different datasets that are created by the municipalities and how they
trie to combine these in order to create a 3D model of the BAG shows that
a common approach is absent. The current efforts are small scaled, ineffi-
cient and scattered. Since every municipality develops its own method, the
output will be different as well. The models are not uniform and cannot be
compared. This problem was noticed by the BAG BOA, the board that is re-
sponsible for the strategic direction of the development of the BAG. Recently
they have set up a working group to further develop and define the 3D BAG
(Patrick Schmidt, personal communication, April 26, 2016). This thesis may
contribute to this development because it is in line with this research.

1.1 RESEARCH OBJECTIVES AND QUESTIONS

This thesis explores the needs and opportunities when improving the BAG
representation from 2D to 3D. This research especially focusses on the place-
ment of BAG units within the buildings. Furthermore this research aims to
develop a methodology which enables the creation of a approximate 3D
version of the BAG units from open data. Furthermore, this research aims
at identifying which crucial information is missing for the development of
3D geometries of the BAG units nation wide. Hence, the research question
addressed in this thesis is:

How to define the 3D BAG and to what extent can the current avail-
able open data be used to create 3D geometries of the BAG units?

In order to answer the research question and test and validate the appli-
cability of currently available information a prototype has been developed.
This prototype tries to create a 3D model of the BAG from the current avail-
able information in which the units are represented as volumes, rather than
points. The subquestions required to answer the main research question are:

e What is the 3D BAG?

e Why are municipalities interested in a 3D version of the BAG?

e How can the number of storeys of a building be calculated?

e How can underground parking lots be detected?

e What logic can be used for placing units within a building?

¢ How can floors be divided using the information within the BAG?

e Which uncertainties had the most influence on the automatic creation
of the 3D BAG?

3

4

| INTRODUCTION

e Is it possible to combine the 3D geometries of the BAG with other key
registers?

1.2 RESEARCH SCOPE

In order to maintain a clear research focus and to more strictly define the
scope of this research, the following boundary conditions are set:

o This thesis only focusses on the geometry part of the BAG The system of
key registers includes many rules and regulations, but this is outside
the scope of this research.

e Data acquisition is not part of the research. The developed method
will be based on data which is made available by the government as
open data and is (or will be) available for the entire country. For
validation and and improvement of the method, additional non-open
information from the municipality of The Hague is used.

e To minimize temporal differences, datasets will be selected on a se-
lected date of acquisition as much as possible. The final outcomes of
the implementation will therefore not be a model of the current state.

o The exterior geometry of the BAG will be in level of detail 1 (LOD1),
the height of the building will therefore be considered the same for the
entire building. To which extent improving the Level of Detail (LoD)
will influence the result will be discussed in the conclusions as future
work (Section 7.2.2).

1.3 OUTLINE OF THIS THESIS

The chapters in this these are structured as follows:

e Chapter 2 describes the current state of System of Key Registers and
the BAG.

o Chapter 3 explores the needs and opportunities for a 3D model of the
BAG and concludes with a proposal for how it can be modelled.

e Chapter 4 presents the methodology developed in this thesis for the
creation of rough 3D volumes for the BAG units.

e Chapter 5 describes how the proposed methodology is implemented
and tested on a selected area.

e Chapter 6 explores the possibilities for storing the geometry of the BAG
within the CityGML IMGeo standard.

e Chapter 7 summaries the most important findings and conclusions of
the research. Moreover, recommendations for future work and data
acquisitions will be listed.

BACKGROUND INFORMATION

ABOUT THE SYSTEM OF KEY

2 REGISTERS OF THE
NETHERLANDS

Before the 3D BAG is discussed, this chapter will give more insight into the
system of key registers of the Netherlands. The focus of the research lies
on the creation of 3D geometries of the BAG. Hence, the emphasis of this
chapter will be on the geometrical features of the BAG. First the origin of
the system is discussed followed by a detailed overview of the BAG. The
final chapter will discuss the Basisregistratie Grootschalige Topografie (BGT), a
dataset which is of importance for this research.

2.1 OVERVIEW OF THE KEY REGISTERS

In the year 2000 the Dutch government started the two year program ”Stroom-
lijning Basisgegevens”. This program focussed on the vital information that
is used by the government and other organizations with a public task [van
Boxtel, 2001]. Examples of vital information are personal data, companies
records and information about buildings. The goal of the program is to cre-
ate the situation that citizens and companies only had to provide their data
to the government once and only to one authority. The government in the
Netherlands is obliged to use this data and are not permitted to collect any
data that already exists in a key register. The authentic key registers func-
tion government-wide as the main source of information. There are twelve
different key registers, which are all (soon to be) connected (Figure 2.1). The
content of these key registers is determined by national law.

The key registers that contain geometry are:

e Basisregistratie Topografie (BRT) - Topographical maps with multiple scales,

e BGT - Large scale topographical map, this register will be discussed at
the end of this chapter,

e Basisregistratie Ondergrond (BRO) - This registers will contain informa-
tion about the underground,

® BAG - The register for buildings and addresses.

The system of key registers can be seen as one connected system which
enables the government to serve its public task regarding the registration of
physical objects.

6 | BACKGROUND INFORMATION ABOUT THE SYSTEM OF KEY REGISTERS OF THE NETHERLANDS

Basisregistratie Basisregistratie Basisregistratie Basisregistratie

Voertuigen Inkomen Kadaster Topografie

Basisregistratie

Basisregistratie Grootschalige

woz topografie

Basisregistratie

Ondergrond

Basisregistratie Handelsregister Basisregistraties

Personen Adressen en Gebouwen

niet-ingezetenen

Figure 2.1: The state of the system of key registers in 2014. The green parts had al-
ready implemented, the yellow parts were still work in progress (Figure
by Ministerie van Binnenlandse Zaken en Koninkrijksrelaties [2014]).

2.2 BASISREGISTRATIE ADRESSEN EN GEBOUWEN
(BAG)

The BAG is composed of two connected key registers, namely the Basisregistratie
Adressen (BA) (registration for addresses) and Basisregistratie Gebouwen (BG)
(registration for buildings). Municipalities are source holder of the BAG and
are responsible for the quality and completeness of the data. The data from
all municipalities is gathered in a database called the Landelijke Voorziening
BAG (LvV BAG) and maintained by the Kadaster, the organization responsible
for the Dutch cadastre. The Kadaster is responsible for the distribution of
the data to organizations in the public sector, companies and individuals
[Ministerie van Infrastructuur en Milieu, 2016]. Since the BAG was devel-
oped in 2009, all data has been stored permanently. Therefore, not only the
current state of units is known but also their history.

2.2.1 Object classes

There are seven object classes that must legally be incorporated in the BAG
and they are described in the Catalogus Basisregistraties Adressen en Gebouwen
by Rietdijk [2009]. In Figure 2.2 relations between these object classes are
visualized. The classes coloured green are part of the BA, the others are part
of the BG. When creating a 3D model of the BAG, the Pand and the Verblijfsob-
jecten will be affected most. These affected classes will be discussed in more
detail below.

2.2 BASISREGISTRATIE ADRESSEN EN GEBOUWEN (BAG) \

Municipality
NL: 'Woonplaats'

Public area
NL: 'Openbare ruimte'

Number designation
NL: 'Nummeraanduiding'

I 1
o [] []
Mooring place Unit Plot

NL: 'Ligplaats’ NL: 'Verblijfsobject’ NL: 'Standplaats

Addressable objects

Building
NL: 'Pand’

Figure 2.2: The relationship model of the BAG object classes. The green classes
are part of the key register for addresses, the classes in gray are part of
the key register for buildings. The classes with a black point include
geometry.

Verblijfsobject

The verblijfsobject, which from now will be called an unit, is the main subject
of this research. The definition by Rietdijk [2009] for a unit is:

"Een verblijfsobject is de kleinste binnen n of meerdere panden gele-
gen en voor woon-, bedrijfsmatige, of recreatieve doeleinden geschikte
eenheid van gebruik die ontsloten wordt via een eigen toegang vanaf de
openbare weg, een erf of een gedeelde verkeersruimte en die onderwerp
kan zijn van goederenrechtelijke rechtshandelingen.”

Meaning it is the smallest unit suitable for living, professional or recre-
ational purposes which is connected to the public road and which may be
subject to property law acts. A unit can can be located in one or multiple
buildings and is accessible by a public area such as a public road. This class
is not only connected to the building class by the geometry, the point of a
unit has to lie within the polygon geometry of the building, but is also made
explicit by an identifier which is included as attribute of the units. Although
it should not be possible, in practice it can be the case that points are located
outside the building polygon. It is therefore preferred to use the identifier
to relate the unit and buildings. Other attributes of the object class that will
be used in this research are; the intended use of a unit, the floor area and
the geometry. These attributes will be discussed separately. All attributes of
the units can be found in Table 2.1

7

8 | BACKGROUND INFORMATION ABOUT THE SYSTEM OF KEY REGISTERS OF THE NETHERLANDS

Dutch English Building Unit
Identificatie Identification v v
Aanduiding data in onderzoek Indication data in research v v
Begindatum tijdvakgeldigheid Start date of validity v v
Einddatum tijdvakgeldigheid =~ End date of validity v v
Documentdatum mutatie Document mutation date v v
Documentnummer mutatie Ducument mutation number v v
Indicatie geconstateerd Indication detected v v
Geometry Geometry v v
Pandstatus Property status v
Oorspronkelijke bouwjaar Year of construction v
Aanduiding Hoofdadres Designation main address v
Aanduiding Nevenadressen Designation additional addresses v
Gebruiksfunctie Use function v
Oppervlakte Floor area v
Pandrelatering Relation with buildings v
Verblijfsobject status Status v

Table 2.1: Attributes of the BAG buildings and units.

Unit attributes

There are eleven different intended use functions that a unit can have, rang-
ing from residential to industry. These functions are based on the Bouwbesluit',
the building regulations set by the government. Combinations of these func-
tions are also possible. It is for instance not uncommon that residential and
store functions are combined. The functions types that a unit can have are:

Dutch name

English translation

Woonfunctie
Bijeenkomstfunctie
Celfunctie
Gezondheidszorgfunctie
Industriefunctie
Kantoorfunctie
Logiesfunctie
Onderwijsfunctie
Sportfunctie
Winkelfunctie

Overige gebruiksfunctie

Residential function
Gathering function
Cell function

Health care function
Industry function
Office function
Accommodation function
Educational function
Sport function

Store function
Others use function

Table 2.2: Possible use functions of units

The floor area included in the unit follows the NEN 2580 standard for us-
able floor area. The measured area is the surface bounded by the outer walls,
so it also includes the inner walls. Details about this area are described in
the Oppervlakte Verdiepingsdocument voor gemeenten [Ellenkamp et al., 2007].

The areas excluded are:

e Surfaces in which the height is less than 1,5 meters;

1 http://www.bouwbesluitonline.nl

2.2 BASISREGISTRATIE ADRESSEN EN GEBOUWEN (BL\G) \

Elevator shafts;

Stairwalls, lunettes and vides with an surface larger than 4 mZ;

Detached building constructions, with an area bigger than o.5 m2;

Supporting walls.

The last attribute of interest is the geometry. The geometry can be stored
as polygon- or point geometry, the latter being mainly used in practice.
Drawbacks of this representation will be discussed in Section 3.1.

Pand

Connected to the unit class is the Pand, the building class. The definition by
Rietdijk [2009] for a building is:

"“Een pand is de kleinste bij de totstandkoming functioneel en bouwkundig-
constructief zelfstandige eenheid die direct en duurzaam met de aarde
is verbonden en betreedbaar en afsluitbaar is.”

Meaning that it is the smallest entity that was constructed independently
in both functional and structurally ways. It is permanently connected to the
earth, enterable and lockable. In this research the geometry of the building
will be used. The geometry of the buildings follows the outer boundary
as seen from above. In section 3.1 drawbacks of this representation will be
discussed.

222 BAG+

The BAG+ is the name for an optional extension of the BAG that some mu-
nicipalities created for internal use. The content is not described by law,
thus can differ between municipalities. It is not part of the system of key
registries and therefore also not distributed by the Kadaster. Information
about which municipalities have created a BAG+ and what the content of
this dataset is per municipality, is not publicly available. The same is the
case for the data itself. A major reason for the inaccessibility might lie in
the restrictions on the data that is used for the creation of the BAG+. Often
it is created by combining datasets from different organizations within the
government which all have different restrictions for publishing their data.
Examples of BAG+ attributes are given in Table 2.4.

For the municipality of Amsterdam and Rotterdam information is avail-
able about what they include in their BAG+. On their website®, the munici-
pality of Amsterdam provide an overview what additions they made on the
BAG. However, the data itself is not made available. The number of floors of
a unit, on which floor level the entrance of a unit lies, the number of rooms
within a unit and how the unit was paid for are examples of additional in-
formation that is added by the municipality [Gemeente Amsterdam, 2016b].
The municipality of Rotterdam also includes additional information about
buildings and addresses in their BAG+. In Tables 2.4 and 2.3 the attributes
are shown which are included in the BAG+ of both municipalities. The
BAG+ attributes of the municipality of Rotterdam are described by Boeters

2 https:/ /www.amsterdam.nl/stelselpedia/bag-index/informatiemodel-bag/

9

10

| BACKGROUND INFORMATION ABOUT THE SYSTEM OF KEY REGISTERS OF THE NETHERLANDS

[2013]. Some of attributes are quite similar but defined differently. For ex-
ample the number of floors of a unit: Rotterdam includes the lowest and
highest floor of the residential unit, whereas Amsterdam only includes the
number of floors. Because the definitions of the attributes are not harmo-
nized, it is hard to compare or combine the data even if the data was made
publicly available.

Attributes Amsterdam Rotterdam
Identification (local system) v

Building type v
Function (more detailed) v v

Type of a unit v v

Lowest floor residential unit v
Highest floor residential unit v
Number of floors
Entrance floor

Access location

Number of rooms
Number of rentable units
Positioning of unit

Ownership type
Funding method
Subsidy v
Target group v

NN NS S NENENEN

Reason for erasement
Reason for generation
Indicator-expired
Mutation by

Status coordinates

Indicator housing stock
Within area

AN N N NN

Table 2.3: BAG+ attributes corresponding to the unit class.

2.2 BASISREGISTRATIE ADRESSEN EN GEBOUWEN (BL\G) \

Attributes Amsterdam Rotterdam
Identification (local system) v
Name of Building v

Lowest storey
Highest storey
Number of floors

Building type
Within building block v
District heating

N N R

Indication-expired v
Mutation by v

Table 2.4: BAG+ attributes corresponding to the buildings class.

The source of this information are often datasets that are also used within
the municipalities to determine the Waardering Onroerende Zaken (WOZ). This
key register includes the value of real estate for tax purposes. This value is
calculated every year by the municipalities. For taxation a lot of informa-
tion is used, e.g. information about the type of a unit and on which level
the units is located. This is more detailed information than is included in
the BAG. Because the key register describes the same units as the BAG, these
additional datasets can easily be combined to enrich the standard BAG data.
Another example of a municipality that stores additional information about
BAG features, is the municipality of The Hague. They have datasets in which
the unit floors are stored as separate entries, which include information
about the floor levels, floor area, the type of the unit and in which neighbor-
hood the unit is situated. What information is used by the municipalities
and the information itself is not publicly available.

2.2.3 Usage of the BAG

As mentioned in the introduction, the BAG is used by the public and private
sector. All public authorities must use the key registers for the execution
of their public tasks. This means that all municipalities, provinces, water
boards and other organizations with a public task use the key registers, in-
cluding the BAG [Digitale Overheid, 2016]. From the Tevredenheidsonderzoek
BAG, a report about the user appreciation of the BAG, can be concluded that
there is a wide range of private organizations that use the the BAG as well
[Statisfact, 2015]. The target group of the research is limited by the selection
that the Kadaster and the Ministry of Infrastructure and Environment made.
However, the research does provide insight in the users and applications of
the BAG. There are a lot of cases where the geometry of the BAG is used, for
instance for:

e Visualization - Municipalities, real estate et al.
e Determination of acces routes - Emergency services

e Appreciation of real estate - Government agency, real estate et al.

1"

12 | BACKGROUND INFORMATION ABOUT THE SYSTEM OF KEY REGISTERS OF THE NETHERLANDS

e Implementation in geo-applications - Consultancy, geo-companies et
al.

These use cases are only a small selection of the current use cases in which
the geometry of the BAG is the main subject. However, it shows the value of
this part of the register.

2.3 BASISREGISTER GROOTSCHALIGE TOPOGRAFIE
(BGT)

Along with the BAG, the BGT is also part of the system of key registers in
the Netherlands. It is a detailed topographical map of the entire country.
The BGT includes all physical objects such as buildings, roads, water and
vegetation [Ministerie van Binnenlandse Zaken en Koninkrijsrelaties, 2016]
and only shows the current situation. As is the case for the BAG, the goal of
the BGT is to provide one uniform and unambiguous dataset for the entire
country. The BGT has multiple source holders, not only governmental but
also private parties, e.g. utility providers, contribute to the creation of the
registry. The government uses BGT for the planning and maintenance of the
environment.

The part of the BGT that is interesting for this research is the Pand features.
The buildings in the BAG and the BGT use the same identification in their
attributes, so there is a strong relation between these datasets. In the BGT
also the geometry of the buildings is included. In practice not everybody is
familiar with the fact that there can be a difference between the geometry
of the BAG and the BGT. Where the geometry of the BAG follows the outer
perimeter as seen from above (including the underground structures), the
geometry of the BGT follows the footprint of the building. In most cases the
geometry of the BAG is used for the creation of the BGT, because the geome-
try of the ground level is similar to the geometry of the outer periphery. But
there can be a difference when part of the construction is under or above the
ground level. This difference is shown in Figure 2.3. Because there is a solid
connection between the BAG and the BGT but a difference in representation,
this difference between representation provides extra information about the
reality. This information will be used to find the underground structures
and when placing the units (Section 4.1).

What should be noted is that the key registers are maintained by different
organizations. In theory, both the registers contain the same information
but in practice there can be variation in time. Because information about
when the data was mutated are kept in both datasets, it is possible to check
what information is most up to date.

2.3 BASISREGISTER GROOTSCHALIGE TOPOGRAFIE (BGT) |

L
PV \
A

4

7%

2 A N
(b) BGT

(c) Streetview by Google maps [Google, 2016]

Figure 2.3: The difference between the BAG, BGT when modeling the reality. The
buildings of interest is the office building of Stadsgewest Haaglanden
(Location in EPSG 28992: 81886.6, 454907.6).

13

NEEDS AND OPPORTUNITIES FOR

A 3D VERSION OF THE BAG

The increasing demand for a 3D model of the BAG is due to several fac-
tors. In this chapter the origin of this demand will be investigated. First the
drawbacks of the current model are discussed, followed by the current trend
toward the use of 3D data by governmental organizations. The current work
the creation of 3D geometries for the BAG will be discussed next, along with
my proposal for one complete city model of which the BAG can be part of.

3.1 DRAWBACKS OF CURRENT 2D BAG REPRESEN-
TATION

Currently, a 2D representation is used for the BAG geometries. Advantages
of this 2D representation is that working with the data is relatively simple
and that most software packages support 2D geographic information. How-
ever, this 2D representation has some critical limitations. These limitations
mainly involve uncertainties about the configuration of buildings and units.
In this section three examples of these uncertainties will be discussed: Un-
derground and above-ground structures, complex building configurations
and the location of units.

3.1.1 Underground and above-ground structures

In the BAG no distinction is made between underground and above-ground
structures, not in the geometry but also not at attribute level. This can be im-
portant information, especially in densifying urban areas where the number
of underground structures increases. An example of is the Spui, a square
in The Hague. Under the square there is an underground parking garage,
which is not distinguishable as such from the BAG. The difference between
the BAG representation and the reality is shown in Figure 3.1. In this ex-
ample the geometry fits between the surrounding geometries, but there are
also cases in which the geometry overlaps partly or completely with other
geometries. In both cases it is not possible to figure out the real situation.

Because the geometry is a combination of the perimeter of the under-
ground structure, the ground level and the superstructure, it is possible that
the geometry represents a combination of these structures (Figure 3.2). The
BAG shows the underground parking garage which is part of the surround-
ing buildings, but from this representation the user might think that there
is no square at all.

15

16

| NEEDS AND OPPORTUNITIES FOR A 3D VERSION OF THE BAG

R o
§ oS N .)

(a) BAG geometry. (b) Picture, Wikimedia Commons [2007b]

Figure 3.1: Spui square in The Hague, difference between the BAG and reality.

(a) BAG geometries (b) Bing aerial view, Microsoft [2016]

Figure 3.2: The difference between the aerial view and the BAG geometry.

3.1.2 Complex building configurations

Another problem with the current 2D representation is the modeling of com-
plex building configurations. In these situations different buildings are lo-
cated above each other, or have an even more complex configuration. For
instance, buildings can interlock one another. An example is the office of
Unilever in Rotterdam (Figure 3.3). From the BAG it is not clear what the
building looks like in reality. This is an extreme example and not very com-
mon, but these configurations are not rare at unit level, the next drawback
of the 2D representation.

@

(a) BAG geometry. (b) Picture, Wikimedia Commons [2014]

Figure 3.3: The Unilever office in Rotterdam.

3.1 DRAWBACKS OF CURRENT 2D BAG REPRESENTATION \

3.1.3 Unit location

The geometry of the units in the BAG are modelled as points. There are no
constraints about the location of these points, except that is has to lie within
the polygon of the related building. In Figure 3.4, the red points in the
largest building are in fact hundred points with the same coordinates. From

this data it is not clear where in the building these units are situated.

— mﬂﬂmXD]
[\]llm\ -\

\ \/‘/’\

\
\

\ |
\ \

\ \ \ \ \ \\
V. — |

(a) BAG geometry. (b) Picture, Wikimedia Commons [2007a]

Figure 3.4: Apartment building in Delft, difference between the BAG and reality.

Some municipalities have a structure of placing the points (placing them
in the center of the building polygon or placing the points that are on the
ground floor closer to the edge of the building polygon), other municipali-
ties do not seem to follow any structure. Figure 3.5 shows the differences
between the municipalities of Delft and The Hague. For some buildings in
the section of The Hague, the placement of the points looks almost random.
In contrast to the section of Delft, where there seems to be a structure.

(b) Section of The Hague

Figure 3.5: Differences between placement of point geometries between two munic-
ipalities.

Because there is no constraint about the location of the points, it is not
possible to make unambiguous conclusions about the location of the unit
within the building: Not on which floor the unit lies, but also not where the
units is located within the plane of the building polygon.

The uncertainties on building and unit level limit the usability of the BAG
geometry. When these uncertainties are solved, new possibilities for the
data will arise. These possibilities will be discussed in Section 3.4.

17

18 | NEEDS AND OPPORTUNITIES FOR A 3D VERSION OF THE BAG

However, most buildings in the Netherlands do not lie in a highly densi-
fied area. In the less densified areas most buildings that have a related unit,
only have one of them. To put this in perspective the BAG; almost 92% of the
buildings in the Netherlands only have one related unit (Figures 3.6). From
the other buildings, the case that there are two related units is most frequent
(Figure 3.7). This is a nationwide average and will differ between rural and
urban areas.

Number of units per buildings nationwide

480255; 8%

5775184;92%

=] m>]

Figure 3.6: Number buildings that only have one related unit.

Number of units per building nationwide

250000

200000

150000
100000
50000 I
2 3 4 5 8 9

6 7 10 11 12 13 14 >15

Figure 3.7: Amount of buildings with a certain amount of related units. This infor-
mation is retrieved from the BAG dataset of the entire Netherlands.

3.2 CURRENT MOVEMENT TO 3D INFORMATION \

3.2 CURRENT MOVEMENT TO 3D INFORMATION

In recent years, there has been a trend towards 3D data in the geographic
information sector. This trend is also visible in the Netherlands. There is
not a specific demand that drives this development, but it is driven by the
potential that 3D data has for a wide range of applications. Software de-
velopers are responding on this trend, resulting in a growth of software
packages that are capable of processing 3D data. The government also plays
an important role in this development because it is an important user of ge-
ographical information and possesses large amounts of geographical data.
The 3D cadastral registration and the 3D BGT are examples of how the gov-
ernment is moving to 3D data. In this sections several examples will be
discussed of which are the result of this trend.

3.2 Dutch Cadastre

In March 2016, the first property deed with the rights visualized in 3D
was registered by The Netherlands” Cadastre, Land Registry and Mapping
Agency in short Kadaster. It concerns the railway zone in Delft, an area
where multiple parties are involved in the ownership agreements. The com-
plexity of the different parcels was a driving factor for moving to 3D in
this case. The different parcels had overlap underground and aboveground,
which made a clear visual representation in 2D almost impossible. There-
fore they developed the possibility to visualize it in 3D (Figure 3.8). This
complexity of overlapping parcels is getting more common in the densify-
ing urban environment of the Netherlands, increasing the importance of
using 3D in the cadastral registration.

Figure 3.8: 3D registration of the train station in Delft. (Image by Kadaster [2016])

19

20

| NEEDS AND OPPORTUNITIES FOR A 3D VERSION OF THE BAG

3.2.2 Top1ONL 3D

TOP10oNL is a topographical map of the Netherlands, created and main-
tained by the Kadaster. In 2015 a 3D version of the TOP10NL was created,
the TOP10oNL 3D. This was done automatically by combining 2D informa-
tion with Light Detection And Ranging of Laser Imaging Detection And
Ranging (LIDAR) data [Elberink et al.,, 2013]. The full dataset can be re-
quested, but there is also a test area available for download®. Capturing the
LIDAR data for the entire country is not done on a regular basis, which is the
main reason that the dataset is not up to date.

3.2.3 Municipalities

At smaller scale, some larger municipalities are also introducing 3D data
into their workflows. In 2011 the municipality of Rotterdam finished a 3D
model of their city and made it publicly available* [Gemeente Rotterdam,
2011]. Similar to the city model created by Den Hague’ (Figure 3.11), there
where no logistics to maintain the model so within a couple of years both
models were outdated. Because the model of Rotterdam proved to be of
big value, the municipality is currently developing a new city model which
also includes the underground. But this time the model will be maintained
regularly (Patrick Schmidt, personal communication, April 26, 2016). This
means that there is going to be a complete and integrated program: regular
acquisition of data, software and hardware solutions to store and update
the model and human resources. This project is still in his early stages and
will not be up and running soon, but it is a promising development.

The municipality of Utrecht works with 3D on a neighborhood scale. One
current project is a visualization of the Veemarktterrein, a new neighbor-
hood in Utrecht, in cooperation with the ministry of Infrastructure and En-
vironment. Another project is called Leidsche Rijn Centrum, a large new
building project in which the municipality works along with a real estate-
and housing corporation to develop a complete new city centre for Leidsche
Rijn. The complete area is included in one Building Information Model (BIM)
in which multiple architects include their designs [Hfb, 2016]. This creates
one large and detailed digital maquette (Figure 3.9).

The municipality of The Hague has a vision for the use of their 3D data
called: Dynamic 3D model. This model should become a complete 3D city
model of the city, but it should contain more information i.e.functional maps,
noise pollution and other restrictions. In the planning phase the architect
should be able to upload his design and place it within this model. This
model is then tested against all these restrictions and will be accepted or
declined.

Recently, the municipality had a pilot in which they wanted to show proof
of concept for this idea. The selected area was a small business park, De
Brinkhorst. With use of open data they were able to calculate and visualize
the impact of the uploaded designs. The pilot was a succes and the idea
will be further developed by Geodan [Geodan, 2016]. Screen-captures of

1 http://www.kadaster.nl/web/artikel / producten/3D-kaart-NL.htm

2 http://www.rotterdam.nl/links_rotterdam_3d

3 https:/ /data.overheid.nl/data/dataset/3d-model-den-haag/resource/32f598ca-8368-483d-
aay4-eccsobgeboge

3.3 CURRENT WORK ON THE DEVELOPMENT OF THE 3D BAG \

Figure 3.9: The BIM model of Leidsche Rijn Centrum. Because the model is so de-
tailed, it can directly be used for visualization. (Image by Hfb [2016])

this pilot are shown in Figure 3.10a and 3.10b.

3.2.4 BGT IMGeo

An other development that shows the trend of moving to 3D data is visible
in the BGT. The information model used for the BGT is called: IMGeo and
was especially developed to make it possible to store 3D geo-information
[van den Brink et al., 2013a]. This was made possible because it has a com-
plete integration with the international Open Geospatial Consortium (0GC)-
standard CityGML, a standard for city and landscape models (this standard
will be discussed in more detail in section 6.1). This standard makes it pos-
sible to include levels of detail in one model, e.g. a building can be included
in the model as a polygon but also as a full 3D geometry. Because the in-
formation model is so flexible, it is relatively easy to make the step from 2D
to 3D. It is therefore to be expected that this key register will be the first
register in 3D. IMGeo will be discussed in more detail in Section 6.2.2.

3.3 CURRENT WORK ON THE DEVELOPMENT OF THE
3D BAG

Possibilities for a 3D version of the BAG are currently investigated on differ-
ent levels. In may 2016, a working group was established by the Kadaster
to identify the needs and opportunities to include 3D in the BAG. This is the
first step, which may eventually lead to a nationwide 3D model of the BAG.
In addition, efforts to create a 3D model of the BAG are made on the mu-
nicipality level. In contrast to most 3D models as discussed previously, the
main focus of these efforts is at unit level. This means that besides modeling
the building itself, units within buildings are also taken into account

21

22

| NEEDS AND OPPORTUNITIES FOR A 3D VERSION OF THE BAG

3D Omgevingsmodel Address scarch:
Street Nr.

(b) The model is tested against the planning rules.

Figure 3.10: The pilot of the municipality of The Hague for interactive use of 3D
within the planning phase.

3.3.1 Den Haag

The Department of Urban Development of the municipality of The Hague
recognizes the potential of a 3D BAG. As such, they started a pilot for creat-
ing a 3D model of the BAG of their city. They developed a workflow with a
3D city model and the BAG+ as input, and thereby creating a 3D BAG (Figure
3.11). In this model, only units that are part of a building are stored, while
the buildings itself are not stored.

In Figure 3.12 the partitioning workflow is shown for a single building
with six units (A-F) and their floor levels (1-3). In order to find the floor
height, the gutter height (h), included in the city model, is divided by the
highest floor level found in related units. The floors that contain multiple ob-
jects are subsequently partitioned using a Voronoi diagram with the points
of these units as input. Using the location of the points was in this test-
case possible because the points of the units where located with a defined
structure: in the middel of the unit seen from the road side. As already

3.3 CURRENT WORK ON THE DEVELOPMENT OF THE 3D BAG \

Figure 3.11: The 3D city model that formed the basis for the 3D BAG of The Hague.

discussed in Section 3.1, this is not always the case. These partitioned floor
areas are then assigned to the units. To create the volumes, the floor areas
are extruded with the floor height (Timo Erinkveld, personal communica-
tion, March 1, 2016).

Building from City Model Number of floors Full partitioning

BAG+ floorplan Vonoroi diagram of 1 floor

Figure 3.12: The partitioning workflow of a building with six addresses

This method showed the potential of using current available information
to create a 3D BAG. However, improvement of this method is necessary for a
better accuracy of the model and a wider range of applications of the model
nationwide. The usage of the Voronoi diagram creates unrealistic partitions
if the building configuration is not straightforward as shown in the intro-
duction. In addition, the voronoi diagram does not take into account the
floor area, which are known in the BAG. Another problem that occurs when
using this method with the "normal’ BAG is that for apartment buildings, the
points can lie on exactly the same coordinates, making the use of a Voronoi
diagram impossible.

23

24

| NEEDS AND OPPORTUNITIES FOR A 3D VERSION OF THE BAG

3.3.2 Rotterdam

The buildings in the current and future 3D city model will have a connection
with the BAG. Additionally, research has focused on the way the placement
of the point geometries of BAG units could help to create a 3D model in the
future. The goal of this research was to find a logic structure of locating the
points within the building, related to the location of the units in reality. As
discussed in section 3.1.3, currently no guideline exists for the placement of
the point geometries. Hence, recent research of the municipality focuses on
creating the building models without the interior (Patrick Schmidt, personal
communication, April 26, 2016). The placement of the objects within the
buildings remains to be studied in future work.

3.4 MY PROPOSAL FOR THE 3D BAG

The trend in the previous chapters shows that there is interest in 3D infor-
mation and a 3D model of the BAG. But there are multiple interpretations of
how the 3D BAG should be defined. Experts on in this research field see the
3D BAG as a 3D model, but the inclusion of what kind of information and
how this information should be modelled differs. In this section a vision
statement is defined on how the spatial information within the key registers
could be joined within one model. Thereafter, it is discussed how the 3D
BAG geometry fits between this model is discussed next. The section finishes
with several opportunities that will arise for the BAG when it is part of this
complete 3D model.

341 One complete model

One of the most active research of the past years within the geomatics field
has been the integration of spatial and spatiotemporal aspects together with
thematic information from diverse application domains [Thomas H. Kolbe,
Gerhard Konig, 2011]. Not only research has been done on the modeling
of topographical features above ground, but also how to integrate the un-
derground [Emgérd and Zlatanova, 2007]. When all aspects are integrated,
many problems that geographical information system (GIS) specialist face
when combining different spatial datasets are solved.

In line with this vision, the municipality of Rotterdam has the long-term
goal to create one complete model of their city. In this model all data that
is used by the municipality is included in order to deliver their public tasks.
The model will not only comprise all buildings and apartments, but also
also trees, soil types, underground structures, roads and other topograph-
ical features (Figure 3.13). When establishing this model, there is no need
to have multiple registers for different types of spatial information (Patrick
Schmidt, personal communication, April 26, 2016).

3.4 MY PROPOSAL FOR THE 3D BAG |

BAG buildings
BGT topography
BRO underground

Figure 3.13: How the key registers could be joined in the future (Image adapted
from Fodor [2015]).

3.4.2 How the 3D BAG geometries should be modelled to fit within this
model

In order to achieve such a vision, all registers that contain spatial data, such
as the BGT, the BRO and the BGT, should be joined in one complete model.
As discusses in section 3.1, there are already a lot of problems and uncer-
tainties exist in the geometry of the BAG dataset. This number of problems
will only increase when the dataset is combined with other datasets. There-
fore, the complete model should be in 3D, along with the geometry of the
BAG. To exclude all special uncertainties in the BAG, also the units should be
modelled in 3D. But this is not the main reason why the focus should lie on
the units, another reason is that the units are the places where people stay.
Moreover, these units are connected with other key registers such as the
woz, the Handelsregister (commercial register), and the register for persons.
All these registers can directly benefit from a 3D model.

The amount of details of the building models influences the applicability
of model, i.e. for the determination of the average floor area in a neighbor-
hood it is not necessary to include the windows in the model. However, in
most cases it is easier to simplify a model than adding more detail. In an
ideal model, the exterior of the buildings should be modelled as close to real-
ity as possible. The same is the case for the shared areas within a buildings.
Modeling the units themselves in more detail, e.g. including the interior, is
not needed because this will raise new privacy issues. When the units and
shared spaces are modelled, it will not only make spatial analyses more ac-
curate, but will also be valuable for other use cases. For example, when the
location of staircases, common spaces and entrances of apartments build-
ings are known, 3D spatial analyses functions can be used in emergency
response situations, such as navigation and buffering [Lee and Zlatanova,
2008].

Since it will not be possible to create a completely detailed 3D model
of every building, it should be possible to include different level of details
concept for the BAG buildings and units (Figure 3.14). This proposed LoD
concept makes it possible to model the current BAG data, but also to extent
the data with 3D geometries. The order of the level of detail is based on the

25

26

| NEEDS AND OPPORTUNITIES FOR A 3D VERSION OF THE BAG

LODO
LODl 1 op2

LOD3

LODA4

Figure 3.14: The proposed LoD concept makes a difference between the interior (ob-
jects) and the exterior of a building. The interior (in blue) will always
follow the boundary of the exterior of the building.

type of data that is needed and the complexity of the creation of the model;
for LODo the current data is sufficient, LOD1 and LOD2 need additional
height information and LOD3 and LOD4 need detailed information about
the indoor environment. For municipalities it would therefore be possible to
gradually increase the LoD of the models when more data comes available.
This LoD concept enables the storage of the current BAG but also the 3D
geometries. The proposed LoD concept will include five levels for the units:

e LODo: The units are part of the building and therefore do not have
their own geometry.

e LODz1: The interior is divided by storeys. The units are related to the
these storeys: the geometry of the storey is shared by the related units.

e LOD2: The units are modelled separately. For every storey of a unit,
a solid is created. The aggregation of these solids form the total ge-
ometry of the unit. This enables to store unconnected spaces, such as
storage areas, and separate storeys.

e LOD3: Shared areas are included as volumes and the location of the
doors is modelled.

e LOD4: The shared spaces are modelled in detail and the location of
the doors are included.

How this LoD concept can be stored within the current CityGML standard
will be discussed in Chapter 6

3.4 MY PROPOSAL FOR THE 3D BAG |

3.4.3 The opportunities that will arise when the BAG geometry moves to
3D

A 3D model of the buildings and units will solve the spatial uncertainties
of the BAG and will make it possible to include the BAG geometry within the
complete model. In the previous subsection, a few use cases were already
mentioned of how users of the BAG would benefit when it moves to a 3D
representation. In this subsection more examples of how governmental or-
ganizations that use the BAG would benefit from the 3D model are discussed.
Besides these governmental benefits, the market will also respond when the
data is made publicly available. As such, private parties will find new use
cases for the 3D model.

When creating an urban plan for a municipality, urban planners use func-
tional maps of the project area. These maps provide vital information for
the creation of new plans. Previously, these maps where made by labor-
intensive fieldwork. By the introduction of the BAG, this process can be
automated [Geonovum, 2015]. The 2D representation makes it still hard to
interpreted the maps when units with different functions are overlapping.
Hence, a 3D model would make it easier to interpeter information (Figure

3.15).

X Gemeente . .
: Amsterdam Functiekaart in 3D

Figure 3.15: An experiment of the municipality of Amsterdam with the aim of cre-
ating a 3D functional map. Image by Gemeente Amsterdam [2016a].

During the planning phase, a 3D model can give better insight in the ef-
fect of the plan on individual addresses. Not the buildings are the main
topic of these predictions, but the units where people stay. Topics with a 3D
component (e.g. sunlight, noise pollution, particulate matter, line of sight
and urban heat island effects) can be predicted predicted with a higher pre-
cision. This would make it possible to not only affect large scale, but also
individual objects. The possibility to do direct predictions based on a de-
tailed 3D model fits directly within the vision of the municipality of The
Hague.

27

28

| NEEDS AND OPPORTUNITIES FOR A 3D VERSION OF THE BAG

The tax authorities are also interested in the 3D BAG. When there is an
accurate version of the 3D BAG, it is possible to detect fraud or errors in
their data. In practice, units can have more storeys or more floor area than
disclosed in their data. The value of property can therefore be calculated
wrongly, which has direct influence on the tax. A 3D model of the BAG
would make it possible to estimate the floor area in more detail, enabling
the detection of inconsistencies between the data of the tax authorities and
the BAG.

These applications are only a small selection of all possible applications
that come along with the inclusion of the 3D geometries of the BAG in one
complete model. In this section only direct opportunities of the 3D model
for the municipalities and the tax authories were described. But also differ-
ent levels of the government would benefit; e.g. flood models could predict
more exactly which homes/businesses experience damage and which peo-
ple have to leave their home. Moreover, the taxes on property-value can be
calculated in more detail.

MY METHODOLOGY FOR
4 CREATING 3D GEOMETRIES FOR
THE BAG UNITS

In this chapter, my methodology for creating 3D geometries of the BAG
units will be described. Based on this methodology, a prototype was im-
plemented, as described in the next chapter. First, an overview is provided
of the general workflow. This workflow can be divided in seven parts, which
will be discussed separately. When relevant, related work is included in this
discussion.

The goal of this methodology is to create approximate, but accurate 3D ge-
ometries for the BAG units. The geometry of the units will form the interior
of the building geometry. This rough version includes volumes for every
storey on which the living area of this unit is located, this volumes will be
called the unit-storey (Figure 4.1). This is the second level of detail for the
units, as proposed in Section 3.4. Since the information that is required to
achieve a higher level of detail is not available, the inclusion of feature like
shared spaces and building entrances is outside the scope of this research.

Unit-storey

7

Figure 4.1: The goal of the workflow is to create the object storeys.

The workflow is divided into seven parts (Figure 4.2). The methodology
is based on theory and practice. It is not possible to give an unambigu-
ous result for every building since information is missing and inconclusive.
Although for these cases it is possible to proceed the workflow based on
assumptions, this will give an undesirable result in most cases. The un-
certainties are discussed in every step and range from temporal difference
between the height data, to not knowing with certainty if a building is above-
or underground.

Because the BAG is used as a key register, the reliability of the result is
important. In case there is no certainty about the result of the step, this
will be noted and the feature will be excluded from further processing. In
Figure 4.2, these excluded features are shown in the right column. Not
every building will therefore follow the complete process. The number of

29

30

| MY METHODOLOGY FOR CREATING 3D GEOMETRIES FOR THE BAG UNITS

buildings that are excluded in practice will be discussed in the following
chapter.

Input data Process Output

BAG Underground

BGT ﬁ Uncertain
LiDAR data —— > 1: Classify underground structures [: Complex configuration
Reference data —_— 2: Calculate number of storeys Complex buildings

3: Divide units over buildings —_— Complex units

v

4: Divide units over storeys
A4
5: Divide storeys
\4

6: Create geometry

LoD1 model with interior

Validation

Figure 4.2: The general workflow. The six steps to create the model are shown in
the process column. The created model is then validated with use of
the reference dataset. This dataset is also used to determine missing
parameters.

4.1 CLASSIFYING UNDERGROUND BUILDINGS

Underground structures are not registered as such in the BAG. For creating
a 3D model, this is vital information. There is currently no related work
for detecting underground structures available. As such two methods are
combined. The first method, the LIDAR method, is based on combining
the geometry of the BAG and LIDAR data. The second method, the BGT
method, uses the differences between the BAG and the BGT (Figure 4.3) and
can only detect if the building is above or underneath the ground level. By
combing these methods, not only buildings that lie mostly or completely un-
derground can be detected but also buildings that lie (partly) above ground.
The buildings that give an inconclusive result are excluded from the work-
flow. At the end of this section these cases will be discussed.

4.1.1 Using density of LiDAR data to detect underground structures

Height data can be used to calculate the height of buildings and is there-
for vital for creating a 3D model. The most common method for acquiring
height data is with LIDAR. The acquisition cost for LIDAR data are relatively
high. Hence, hardly any LIDAR datasets are freely available at the moment.
The Actueel Hoogtebestand Nederland (AHN) is an exception. The AHN is a na-
tionwide LIDAR data set (Figure 4.4). The data was captured for the Dutch

4.1 CLASSIFYING UNDERGROUND BUILDINGS |

Input data Process Outcome

—> Underground

___> uncertain

Figure 4.3: Workflow for classifying underground structures.

government for water and flood defense management'. Later, the govern-
ment made it available as open data.

Figure 4.4: Section of the AHN> dataset.

The most recent version of the AHN is the Actueel Hoogtebestand Nederland
3 (AHN3). The difference between the versions is the temporal aspect of
capturing the data (AHN2: 2007-2012 and AHN3: 2014-2018) but also what
is included in the data itself. The average point density is still 8 point per
square meter, however in the latest version the points have more attributes.
The data not only includes time of capturing, but also the classification of
the individual points. As such, every point can easily be filtered: ground
vegetation, building, and so on, whereas the previous version was only fil-
tered by ground and non-ground points.

=

http://www.ahn.nl/

31

32 | MY METHODOLOGY FOR CREATING 3D GEOMETRIES FOR THE BAG UNITS

As the point can now be filtered based on the classification, it is possible
to only take into account the points related to a building when calculating
the height. In addition, the classification of points also provides the pos-
sibility to calculate the density of building points. This is useful because
this will prevent errors when calculating the height of buildings. As shown
in Figure 4.5, clipping the filtered point cloud by the geometry of an un-
derground structure can result in a selection of points that belong to sur-
rounding buildings. Calculating the height from these points will result in
a positive building height, that is not the case in reality (figure 3.1 shows the
same area). However, the number of points is very low, possibly meaning
that it does not involve an above ground structure.

Figure 4.5: The points with the class building.

Input data Process Outcome

LIDAR l

Select building points

v

BAG ————> Select points within polygon

v

Check date of datasets

Date.lidar > Date.BAG & Temporal difference
True ¢ False
Calculate density > "Above ground/
density < 4 above and underground”
False
True
> "Underground/

Mostly underground”

Figure 4.6: Workflow for density check.

The workflow for detecting underground structures (figure 4.6) starts
with filtering the LIDAR point cloud, so that only building points are left.
The building points are then clipped with every building polygon of the
BAG. It can be the case that the capturing date of the AHN3 is earlier than

4.1 CLASSIFYING UNDERGROUND BUILDINGS | 33

when the building was constructed, which will result in a wrong classifica-
tion of the BAG object. This wrong classification is prevented by comparing
the time of acquisition of the LIDAR points and the construction date of the
object. When the acquisition date is before the construction of the building,
it is not possible to use this method. But when this is not the case, the
density for the building points within the building polygon is calculated.
In situations where less than halve of the points are classified as buildings
points, the building is classified as underground.

4.1.2 Using the BGT to detect underground structures

When the underground structure lies (partly) under another structure, the
method discussed above will not be effective. Therefore, another method is
needed to detect underground structures. The BAG geometries can overlap
each other in some cases. The exact relation between these polygons can
not be concluded using only the overlap of BAG geometries. As discussed in
section 2.3, the BGT only includes buildings that are on ground level, while
the BAG where the BAG includes all buildings. This information is used to
exclude buildings buildings that are not located on ground level.

Input data Process Outcome

BAG l

BGT ————> Check if in BGT ~ ———————~ > "Under/above building"

True | "Above ground/

above and underground"”

Figure 4.7: Workflow for BGT check.

This method does not involve any geometrical computations. The identifi-
cation numbers that are used in the BAG are also included in the BGT. When
combining both datasets, buildings that are not included in the BGT are con-
sidered to be underneath ground level. When working with these datasets,
it seemed that there is still a difference between the BAG and BGT that is not
the result on this difference. Full certainty can therefore not be given solely
based on this method.

‘ Underground (LIDAR) Above ground (LIDAR)

On ground level (BGT) Uncertain Above ground
Above/under building (BGT) | Underground Uncertain

Table 4.1: Comparing the BGT and LIDAR methods to get the final result.

The method that uses the LIDAR data detects underground structures that
are (mostly) underground. But when there is a structure on top, this method
fails. The other method has the uncertainty that both dataset can differ in
practice, without certainty why this is the case. Therefore the result of both
methods are then compared to give a final result as shown in Table 4.1. The

34

| MY METHODOLOGY FOR CREATING 3D GEOMETRIES FOR THE BAG UNITS

result of the classification will be: mostly underground for structures that
are partly above ground but more than 50% underground, underground,
above ground and uncertain. What should be mentioned is that buildings
that are classified as above ground can also lie partly underground, i.e. of
a basement. These uncertainties can not be detected with the methods. The
result of this step is that every building in the workflow is classified, which
will be further used in the process. The buildings that are classified as uncer-
tain or mostly underground will not follow the general workflow because it
is impossible to calculate the number of storeys for these cases (as discussed
in 4.2.1).

4.1 CLASSIFYING UNDERGROUND BUILDINGS | 35

v %

(a) Underground. (b) Mostly underground.
(c) Above ground. (d) Both under- and above ground.
(e) Under building. (f) Above building.

Figure 4.8: A selection of possible building configurations.

Figure LIDAR BGT result

A Underground Above/under building Underground

B Underground On ground level Mostly underground
C Above ground On ground level Above ground

D Above ground On ground level Above ground

E Above ground Above/under building Uncertain

F Above ground Above/under building Uncertain

Table 4.2: Results of the LIDAR method and BGT method. As these results show,
both methods do not give conclusive results. Two cases (A and B) can be
classified with certainty, by combining both methods.

36 | MY METHODOLOGY FOR CREATING 3D GEOMETRIES FOR THE BAG UNITS

4.2 CALCULATING NUMBER OF STOREYS ABOVE GROUND

In this section the calculation of the number of storeys of a building is dis-
cussed. First the related work regarding this step is discussed and evaluated.
Based on this related work a methodology is developed which will suit the
desired result. The goal of this step is to calculate with certainty the number
of storeys above ground using one value for the building height.

4.2.1 Related work for calculating the height and the number of storeys
of buildings

A lot of research has been done on the creation of 3D city models from
2D data and LIDAR. Extracting building models was the main topic of this
research. In 2003 Rottensteiner and Briese [2002] presented a method for
automatically creating building models without the use of ground plans
by segmentation the points cloud. Verma et al. [2006] included roof topol-
ogy which enhanced the roof reconstruction. From the buildings, the focus
then moved to creating complete city models from LIDAR and photogram-
metry. The approach that Kada and McKinley [2009] presented produces
LODz2 models from existing ground plans and airborne LIDAR. This is done
by partitioning the building footprints and comparing the LIDAR data from
this sections to standard shapes. This partitioning will also be discussed in
Section 4.5.1 . Lafarge and Mallet [2012] presented a robust method for mod-
eling cities which combined geometric primitives and mesh-patches created
from LIDAR. Another robust method for creating a nationwide 3D dataset is
given by Elberink et al. [2013]. They generated 2.5D and 3D representations
using the 2D geometry of the TOP10NL, a nationwide topographical map,
and the AHN. Per object of the TOP10NL, the LIDAR points are selected and
processed using 3D modeling constraints of every object class. This ensures
that, for example, roads and water are modelled as surfaces and buildings as
3D units. The buildings are modelled as solid blocks with flat roofs (LODz1).

While the LoD increases for the exterior of the building and other topo-
graphic features getting included in the models, the interior is not often
part of these 3d city models. On a smaller scale there is done a lot of re-
search on the creation of indoor 3D models. These are often created with
use of indoor point clouds, i.e. the research of [Hong et al., 2015] and Diaz-
Vilarifio et al. [2015]. Because the used data is not available on a large scale,
it is not possible to extent this research to the desired scale. But efforts are
made to include indoor information to city models based on exterior infor-
mation, such as calculating the number of storeys from the building height.
In practice, the most common way of doing this is to divide the height of
the building, extracted from LIDAR, by a fixed storey height. The value that
is used for dividing the building height is often picked around 3.0, but it
differs. Same as the value that is used for the maximum building height,
the median or maximum of the clipped point cloud. Even the OGC standard
CityGML 2.0, which includes the LoD concept, gives no clarity about how the
building height for LOD1 models should be measured [Biljecki et al., 2016a].

I also investigated if it is possible to use the floor area included in the BAG
to calculate the number of storeys of a building. This would provide the pos-
sibility to detect whether a building has a basement. But after experiments

4.2 CALCULATING NUMBER OF STOREYS ABOVE GROUND \

and comparing the results with a reference data set, the results were poor.
The connection between the area of the building polygon and the number
of storeys did not relate to the area of the building units. It was expected
that there is a difference because the BAG units include the nett floor area
and the building would represent the gross floor area. There are multiple
tables available to convert these areas, multiplying the nett floor area by the
right factor would indicate the gross floor area. But when checking multiple
buildings manually, this factor can differ in reality from 1.2 to more than 4.
Because of this difference, it is not possible to use the nett floor area despite
available the conversion tables. Using LIDAR data gave much better results.

Extracting the building heights by combing LIDAR and a 2D geometry has
proven to be a robust method. The height that is chosen for creating LOD1
models is subject to different interpretations and depends on the purpose
of the data and context [Biljecki et al., 2016b]. Also the calculation of the
number of storeys from a height value is an issue that is faced by different
researchers in the 3D geoinformation field ([Boeters et al., 2015], [Alahmadi
et al., 2016]). The research on the creation of an LOD1 model without ad-
ditional height data described by Biljecki et al. [2017], shows that attributes
such as the function of the building and the age have a slight influence on
the average storey height. More research on this topic and also comparing
the average storey heights of different cities will make it possible to predict
the height parameters more accurate. For this research a fixed parameters
for the average floor height will be used calculated from reference data. But
in the future more parameters could be included. Because I use the building
height to calculate the number of storeys, I will use the top goth percentile
of the points for the building height.

This research focusses on creating the geometries of the BAG units for a
LOD1 model of the BAG buildings. Meaning that the building polygon will
get one height for the complete building, calculated from the the points that
lie within the building polygon. But using a LOD1 model will also mean
that all storeys will have the same floor area. Using this method will cause
problems when building polygons overlap (Section 4.2.2) or when there is
a big height difference within one building (Section 4.2.4). Detecting these
cases is therefore an important step of the developed workflow (Figure 4.9).

Input data Process Outcome

BAG -l

Check complex . .
building configurations 2 Temporal difference’

!

LIDAR —> Calculate building heights

v

Calculate storeys

v

Check complex building — “Complex building*

\—> Building with storeys

Figure 4.9: Workflow for building the number of storeys.

37

38

| MY METHODOLOGY FOR CREATING 3D GEOMETRIES FOR THE BAG UNITS

4.2.2 Exclude complex building configurations

When building polygons overlap it is unsure to which building the points
of the point cloud belong to (Figure 4.10). When a building is partly un-
derneath another building, the calculated median from the point cloud will
always be higher than in reality. To find overlapping buildings, the geom-
etry of the BAG is used. Most building polygons in the BAG do not overlap
each other, except of minor overlaps due to accuracy errors in the geometry
and if one of the buildings is underground. However, in cases with con-
siderable overlap in which both buildings are above ground, there will be
an overlap that influences the calculated height of the building. Calculating
the number of storeys of the building will give inaccurate results. Therefore
these buildings will be excluded from the workflow.

Figure 4.10: Overlap above ground.

4.2.3 Calculating the height of a building

For calculating the height of a building we need two heights, namely the
height of the ground (Zy) and the height of the building itself (Z;). Both
heights are extracted from the AHN3 point cloud data and are subsequently
subtracted.

4.2 CALCULATING NUMBER OF STOREYS ABOVE GROUND | 39

Points within the footprint

top (90th
percentile)
o0 ¥
L L} M L) .
S S T
P A S
. 1 '$ 1 N
: g 1
: ?; E . Reference height
. ® < .
N _} ? + bottom (5th
. 4 . il
' 3 % : percentile)
. k] A . /
| | 3
—— —

Real-world situation % Footprint + lidar 1 Ground truth
\ \

Péints within the buffer

Figure 4.11: The determination of the heights of a building. Image by Biljecki et al.
[2017].

Input data Process Outcome

LIDAR l

Filter points based on classification

BAG —_—> Buffer around BAG polygon

v

Clip pointcloud

v

Calculate point cloud statistics

Figure 4.12: Workflow for Z.

To extract the Zy value, filtered points within a one meter of the building
are used (Figure 4.11). The points within 1 meter of the buildings are used
to calculate this value. Similar to the previous step of the workflow, these
points are filtered based on the classification. This prevents that points be-
longing to other classes influence the result, e.g. points that belong to trees
can create a significant error when not excluded. The Z; is determined by
calculating the Z-median of these points.

40 | MY METHODOLOGY FOR CREATING 3D GEOMETRIES FOR THE BAG UNITS

Input data Process Outcome

LIDAR —l

Filter points based on classification

!

BAG ————> Clip point cloud

v

Calculate point cloud statistics —_—> Zmedian

Figure 4.13: Workflow for Z;,.

Zmax

Y

The Z;, (height) is calculated with a similar proces, but then by filtering
the point cloud on building points and only the points beloning to the build-
ing (Figure 4.13). Instead of only calculating the median of the points, also
the maximum height is extracted. The number of storeys is calculated by
dividing the Zpax by a parameter which will be determined from averaging
the storey height value of a reference dataset. The value is rounded to get
an integer.

4.2.4 Detect complex buildings.

The floor area will later be used for placing the units within the building.
To make this possible within a LOD1 model, all storeys will be considered
to have roughly the same size. Figure 4.14 shows the error that will occur
when the LOD1 model is not sufficiently in modelling the reality. Divid-
ing the floor area is only necessary when a building has multiple units, in
case of zero or one unit, this error will not occur. Therefore, complex build-
ings (buildings that have big differences within the floor area) with multiple
related units will be excluded from the workflow. Two types of complex
buildings will be discussed.

The first type of complex buildings constitutes buildings with big varia-
tion within the building height. Although it is still possible to calculate the
number of storeys, the calculated floor area will be completely different due
to the different floors.

4.2 CALCULATING NUMBER OF STOREYS ABOVE GROUND | 41

(a) Building with different floor areas.

(b) Placement of units in reality. (c) Result when using LoD1.

Figure 4.14: In this example two units, A (yellow) and B (orange), are placed within
building A). The area size of A is 2 times the area size of B. Figure 4.14b
shows the placement of objects in reality, whereas figure 4.14c shows
the division of floors when considering that all floor areas are the same.

In order to find out which buildings face this problem and, as such,
should be detected, the median and maximum hight values are compared
(Figure 4.15). When the difference between these values is above a certain
threshold, the building is expected to be complex and placing units will not
be possible. The threshold is set at a level in which buildings with a com-
mon, angled roof are not excluded from the proces.

Zmax = Zmedian

(a) Simple building. (b) Complex building.

Figure 4.15: Buildings in which there is not a large difference between the Zmax
and Zmedian are considered to be simple buildings. When there is a
larger difference, using LoD1 for modeling the building is insufficient.

Another type of complex buildings are buildings that have a large differ-
ence between the footprint and the outer perimeter (Figure 4.16). This will
result in a similar problem as the cases discussed previously when placing

42

| MY METHODOLOGY FOR CREATING 3D GEOMETRIES FOR THE BAG UNITS

the units. To detect this type of complex buildings, the geometry of the BAG
is compared with the geometry of the BGT. As discussed in Section 2.3, a dif-
ference between these geometries suggests an overhang or understructure.
As it is uncertain which floors are part of which geometry, the difference
cannot be used for placing the units. In cases where the geometries are
(roughly) the same, the building will not be excluded.

Figure 4.16: Complexity because of the difference between the outer perimeter and
the footprint.

Theoretically, there can be a case in which the created methods to detect
complex buildings are not sufficient. It is possible that the geometry of the
BGT and the BAG is similar, but that within the building there is a large dif-
ference between the storeys. These buildings are not common in practice,
but it is important to notice this uncertainty.

The result of this step of the workflow is that complex buildings and build-
ings with complex building configurations are excluded from the workflow.
For all other building the number of storeys above ground is calculated.
As previously discussed, the use of only one height parameter for calcu-
lating the number of storeys is not ideal. For building with high or low
ceilings, the result may not be accurate, especially when a building has a
lot of storeys. The result will be compared to a reference set to know the
accuracy of this step. Also, this method is unable to detect basements or
storeys that are partly underground. In cities where this is common, i.e.
Amsterdam, this is a serieus drawback.

4.3 DIVIDE UNITS OVER BUILDINGS

For every unit within the BAG, the related building is included. There are
two different cases possible: a building has multiple units or one unit can lie
in multiple buildings. In very rare cases, both combinations can be present
at the same time (in the test area of The Hague this occurred once). Be-
fore the buildings can be divided into multiple units, the units should be

4.3 DIVIDE UNITS OVER BUILDINGS \

divided over the buildings to which they are related. As earlier discussed,
the relation between a unit and a building is stored in the BAG geometrically
and by attribute. The latter is used because in practice there are problems
with locating the points as discussed in section 2.2.1. Further in the proces,
the nett floor area of the units in combination with the combined nett floor
area of all units is used for dividing the building. Therefore, this total floor
area is also calculated.

Input data Process Outcome

BAG i

Divide objects with
multiple related buildings

v

Combine objects
with same related building

— > Buildings with complex objects

> Buildings with objects

Figure 4.17: Workflow

4.3.1 Assign units to multiple related buildings

Although is not very common in reality, it can be the case that one unit has
multiple related buildings (this is the case for only 0.6% of the units in the
city center of The Hague). In order to divide the surface in a fair way, a
default area is introduced. The default area of a building is calculated by
multiplying the number of storeys by the floor area of the BAG geometry.
This is also the reason why complex building are excluded in the previous
step. The ratio between these calculated floor areas of the buildings is used
to divide the nett floor area of the units (Figure 4.18). When an object relates
to a small building and a large building, the latter will get a larger portion
of the net floor area of the object than the small building.

The division of the units (and their nett floor area) over multiple buildings
using the default area are based on the assumption that there is a correlation
between the total floor area of buildings and the nett floor area of the object.
However, this will not necessarily be the case. When there are multiple of
these cases and they relate to the same building, the division based on this
default area will be even more speculative. Therefore, the results for the
partitioning of the buildings with units that have multiple related buildings
may not be accurate.

4.3.2 Combining multiple units within one building

One building can have multiple units. This is a very common case in reality.
All units that have the same related building belong together. The sum of
the nett floor area of theses units is the total net floor area of the building

(Figure 4.19).

43

| MY METHODOLOGY FOR CREATING 3D GEOMETRIES FOR THE BAG UNITS

Related buildings

Sum_default_area = float

oy BAG unit
BAG building Id = int
Id = int T .
P . 7n Related_building = int
Related_building = int Id = int Part_of_multiple_buildings = boolean

Net_floor_area = float default_area = float Net_floor_area = float

Ratio = default_area/sum-default_area
New_net_floor_area = Net_floor_area * ratio|

BAG unit

BAG building Id = int

Related_building = int
Part_of_multiple_buildings = boolean
Net_floor_area = float

Ratio = default_area/sum-default_area
New_net_floor_area = Net_floor_area * ratio|

Id = int
default_area = float

BAG unit

BAG building Id = int

Related_building = int
Part_of_multiple_buildings = boolean
Net_floor_area = float

Ratio = default_area/sum-default_area
New_net_floor_area = Net_floor_area * ratio|

Id = int
default_area = float

Figure 4.18: Single unit within multiple buildings. In this case the unit is duplicated
and the the nett floor area is divided over these duplicates.

BAG building

BAG unit

‘ BAG unit | ‘

Id = int

Related_building = int
Net_floor_area = float
Total_net_floor_area = float

Id = int
Related_building = int
Net_floor_area = float

[BAG unit]

Id = int
default_area = float
Total_net_floor_area = sum(Net_floor_area)

‘ BAG unit
‘ BAG unit |

- Id = int
Id = int Related_building = int
Related_building = int Net_floor_area = float
Net_floor_area = float Total_net_floor_area = float

Figure 4.19: Single building with multiple units.

As a consequence, the related units for every building are included. The
combined net floor area of these units is calculated and stored. However,
only the first case provides certainty about the total net floor area. As such,
there should also be a distinction between the two cases. In the latter, fur-
ther division of the buildings using these divided units will give undesirable
results and therefore these buildings are excluded from the workflow. It is
not expected that this step will influence the accuracy of the methodology.

4.4 DIVIDE UNITS OVER STOREYS

The next steps in the workflow are focus on placing the units within a build-
ing. There is no additional open information available that will provide
certainty about the results of these steps. Placing the units will therefore be
largely based on logic, heuristics and assumptions.

Firstly, an ordering is made for the units based on attributes that are in-
cluded in the BAG. Then sections are created based on the additions and
letters of the house numbers. The last step is to divide the units over these
sections and to calculate the floor level for the units. The consequence of

4.4 DIVIDE UNITS OVER STOREYS | 45

these steps will be storeys containing the related units. In the objects the
occupancy of the floor level by the object will also be included.

4.4.1 Ordering the units

The ordering of units is based on three different criteria, namely the num-
ber addition, the function of the units, and the net floor area of the units or
the numbering itself in cases where the first two criteria are not sufficient
(Figure 4.20). The number addition of units will give the most certainty,
followed by the function. The house number itself will not provide much
certainty, especially in cases with only two units within one building.

Input data Process Outcome

BAG units i

House letter

v

Number addition

v

Function

v

Number of units = 2

7777777777 |False ¢ True

Floor area

l

-> Numbering

’ > Order value

Figure 4.20: The ordering of the units.

Ordering based on number additions

In situations with multiple units within one building, the units can have
either a unique house number, or an addition. In The latter case provides
reasonable certainty about the order of the units regarding the floor levels.
One problem with the number additions is that it can vary between mu-
nicipalities, i.e. in the city of Amsterdam often a latin number is used as
addition (Figure 4.21b) , while in the city of Utrecht the addition bis (Figure
4.21c¢) is often used. In general, the addition of simple letters in the order of
the alphabet (Figure 4.21a) is most commonly used.

46

| MY METHODOLOGY FOR CREATING 3D GEOMETRIES FOR THE BAG UNITS

1B 1-1 1bis A
1A 1-1 1bis
1 lhs 1
(a) Letters. (b) Latin additions. (c) Other additions.

Figure 4.21: Possible additions that indicate the location of units within buildings.
The first case is most common in general, but municipalities can have
their own ways i.e. Amsterdam (Figure 4.21b and Utrecht 4.21¢).

Ordering based on function

In cases in which the addition of numbers to order units is not available, a
ordering based on function will be tried. This only works when there is a
difference between the function of the units. As discussed in Section 2.2.1,
a unit can have eleven different intended functions. Not all these functions
will be combined in practice, e.g., a building with a residential unit and a
unit with a cell function will not be very common. In contrast, the combi-
nation of a store and residential function is quite common. In practice, in
most cases the residential object will lie above the store object because the
entrance of a store is on the ground level. This assumption will be used to
order the units.

Ordering based on size and numbering

When the previous criteria are still are still not fulfilling the ordering of
units, the floor area and the numbering itself are used. In situations with
only two objects within the buidling, the building is commonly divided
into a downstairs and upstairs apartment in the Netherlands (in Dutch it
is called an Beneden/bovenwoning). The report about house prices provided
information about the floor area [Visser and Van Dam, 2006]. The average
floor area of the upstairs apartments is around 10 square meters larger than
the area of the downstairs apartments. In cases with more than two units,
no further information is available that can be used to order the units. As
such, the standard house number is used.

4.4.2 Placing the units on floor levels

After ordering, the floor levels will be calculated for the units. This will be
done using the following steps: first create sections with the same build-
ing and additions, calculate the number of storeys in the section, divide the
units over the section floors and at last add the real floor level (Figure 4.22
and 4.23). These steps will be discussed in more detail in de following sec-
tions.

4.4 DIVIDE UNITS OVER STOREYS | 47

Input data Process Outcome

i

Figure 4.22: The workflow for placing the units on storeys.

Section 1
[(A), (B)]

(a) Sections with their related units. (b) Creation of section-storeys.

(c) Divide units over storeys. (d) Add floor level.

Figure 4.23: The order of the workflow to place units on the storeys.

Creating sections

Additions almost always indicate the storey on which the units are located:
a unit with a different addition will not be located on the same floor. How-

48

| MY METHODOLOGY FOR CREATING 3D GEOMETRIES FOR THE BAG UNITS

ever, in cases with multiple objects containing different numbers with the
same additions, they will lie on the same floor. Therefore, sections are cre-
ated first (Figure 4.23a). Sections are groups of units that are considered
to be located on the same floor, based on additions. To use the areas that
are included in the BAG units, only ratios between the areas are used. First,
the Unit-building-ratio is calculated. This is the results of dividing the
Net-floor-area of the unit by the sum of the Net-floor-area of all units that
have the same related building. This value indicaties how much of the entire
building is occupied by one unit. By multiplying this value by the number
of storeys of a building, the Unit-storey-ratio is retrieved. This indicates
how many storeys a unit occupies. This is used to calculate the number
of storeys in a section. In case there are no additions, the section will con-
tain all related units. In case that the sections fill up a storey for less than
25%, the sections is merged with the other sections. This prevents that sin-
gle, small units occupy complete storeys which can cause errors because the
other units will not fit within the building.

Create section floors and divide units

The section will now be divided into section floors. Because I assume that all
building floors are the same, the Unit-storey-ratio indicates the amount
a unit fills a storey. The sum of this value for all related units corresponds to
the number of storeys (Figure 4.23b). When the number of section floors are
calculated, the Unit-storey-ratio will be recalculated to fit exactly with
the sections. As s section will not always fill up exactly a round number
of storeys, this is a necessary step. It is not yet clear where the units lie
within these section floor. Two methods will be used to place the units on
the storeys.

In case there are additions or house letters used within the building (and
the section), all units with the same addition will also have the same storeys.
All the section storeys will therefore be divided with the Unit-storey-ratio
between these units. An example is shown in figure 4.24.

1A 2A
(0.50) (1.5)
1A 2A
(0.50) (1.5)

Figure 4.24: The units 1A and 2A are part of the same section. The sum of the
Unit-storey-ratio is 2.0, meaning that there are two section floors.
The ratio of the units is used to divide both section floors.

When no additions or letters are present, the ordering of the units is used
to fill up the entire section. The Unit-storey-ratio is used to fill up these
section storeys from the bottom. The starting point is the end point of the

4.4 DIVIDE UNITS OVER STOREYS | 49

previous object (Figure 4.25). It is possible that an object lies on multiple
floors. These units are divided and the sub-ratio for the floors are calcu-
lated (Figure 4.23c). The sum of these sub-ratios of the units that lie on the
same floor will always be 1.0. The last step is to determine the real floor
level by combing all the floor-sections of all sections (Figure 4.23d).

(1.5)
(2.5) (1.5)
(2.5)

(2.5)

Figure 4.25: In case there are no additions, the units are filled up using the order
defined in the previous section.

In practice, the ratios will not always count up to one storey which can
result in very small areas. In cases where the units lie on multiple floors,
it will be checked whether the difference between these multiple floors is
limited. The storey ratio of one floor will be divided against the storey ratio
of the previous floor. If the outcome is larger than a certain threshold value,
the area of the first part of the object will be removed. On the other hand,
if the outcome is lower than the threshold, the last part will be removed
(Figure 4.26).

B2 A2 B
1 0,1 0.9
A Bl Al
0,9 0,1 1
B2/B1 = 10 > threshold A A2/Al = 0.1 < threshold B

Figure 4.26: A threshold is set to prevent small areas in the net floor area ratios,
which can otherwise cause inaccuracies.

The steps for ordering the units and using the ratios of the floor area to
place the units on floor levels are largely based on assumptions. As a conse-
quence, his is the most uncertain part of the entire workflow. The ordering
of units will be less certain from top down: number additions are most cer-
tain, whereas the ordering by numbering will be less certain in case there
are only two units. The order of the units will highly influence the place-
ment of the units. To improve the accuracy of the model, more information

50 | MY METHODOLOGY FOR CREATING 3D GEOMETRIES FOR THE BAG UNITS

about the location of the units is desirable. As discussed in 2.2.2, some mu-
nicipalities already included information about the floor level of the units
in their BAG+. In that case the uncertainties of these steps are removed,
thereby improving the accuracy of the model tremendously. Unfortunately,
this information is not publicly available and, therefore, will not be used in
this research.

4.5 DIVIDE THE STOREYS TO CREATE THE UNIT-STOREYS

In situations that involve multiple units on one floor, the storey has to be
divided. Different ways for partitioning polygons exist. Hence, this section
will firstly provide an overview of the related work. This will be followed
by the partitioning method especially created for this research.

4.5.1 Related work for area partitioning

There are different methods for partitioning polygons. I divided them into
three categories: The Area Partitioning Problem, the voronoi diagram and
data driven approaches. Although they all achieve a partitioning of an area,
their respective approaches differ. The main differences between these three
methods is the input data used to create the partitioning (Figure 4.27). Mul-
tiple criteria should be taken into account for choosing the desired parti-
tioning method. Firstly, the method should be able to partition all simple
polygons and polygons with holes. In addition, it should also be possible
to do the partition based on an area parameter. Furthermore, it should give
a realistic partition considering it represents a floor plan. Finally, the last
criteria is that there is an robust implementation available.

Partitioning Problem

The definition that Bast and Hert [2000] use for the problem of partition-
ing is the problem for dividing a simple polygon into a given number of
smaller connected polygons that have the same size. This problem is com-
mon in computer science, that have already offered many different solutions
with various constraints and input parameters.

The algorithm created by Armaselu and Daescu [2015] partitions convex
polygons in same sized areas and introduces the constraint that all perime-
ters should be of equal size. The algorithm can partition the polygon in pn*
convex parts, so the number of partitions is not flexible. The method of Lin-
gas et al. [1982] is flexible in the number of partitions. Also it can cope with
non-convex polygons and introduces the constraint that the cut lines are as
small as possible, but the drawback of this algorithm is that it only works
with rectilinear polygons, polygons with only corners of go°. Finally, the
algorithm created by Bast and Hert [2000] is also flexible in the number of
partitions, has the same constraint (minimum cut length) but can only han-
dle convex polygons. On his blog Khetarpal [2014] describes an algorithm
which splits polygons into any number of equal areas, while ensuring the
minimum length of line based cuts. It uses the medial axes to while parti-

4.5 DIVIDE THE STOREYS TO CREATE THE UNIT-STOREYS \

Input data Process Outcome

Polygon l

Parameters/constraints e Algorithm

Y

Partitioned polygon
Area partitioning problem

Polygon l

Points —— Algorithm

> Partitioned polygon
Voronoi diagram

Polygon l

Algorithm

> Partitioned polygon
Data driven

Figure 4.27: Three different partitioning approaches.

tioning. This solution is similar to the method of Bast and Hert, but can also
handle non-convex polygons. Another difference between these methods is
that the cutlines in the method of Bast and Hert will always have a start
at a vertex. In Figure 4.28 the results of different partitioning methods are
shown.

Figure 4.28: The results of the partitioning methods. At the left the result of the
partitioning of a convex polygon in four equal sized areas by Armaselu
and Daescu [2015]. In the middle the partitioning of a non-convex
polygon in six equal sized areas by Bast and Hert [2000]. And at the
right the partitioning of a non-convex polygon in four equal sized areas
by Khetarpal [2014].

Advantages of these methods are the possible division of the polygon us-
ing the area. But these methods have their disadvantages. The algorithm
created by Armaselu and Daescu has the extra restriction that the perime-
ters should have the same size, but it is restricted in partitioning convex
polygons in pr¥ convex parts. This makes it unusable for the partitioning of
building polygons. The cutlines created by method of Bast and Hert all start

51

52

| MY METHODOLOGY FOR CREATING 3D GEOMETRIES FOR THE BAG UNITS

at a vertex, which results in unrealistic partitions. In addition, this method
only handles rectilinear polygons. The method of Ketherpal shows the most
promising result, but it should still be modified in such a way that a polygon
can be partitioned in different sized polygons. For all these methods there
is currently no robust implementation available.

Voronoi diagram

The second partitioning approach is the voronoi diagram, which is also used
in the workflow for creating the geometry for the 3D BAG of The Hague as
discussed in 3.3.1. In this method the areas are partitioned with information
about the location of the points. When considering a Euclidean plane, the
line segments of the voronoi diagram contain all the points in the plane that
have the same distance between the two nearest points. In 4.29 an example
is shown of a voronoi partitioning.

Figure 4.29: An example of a voronoi partitioning.

An advantage of this method is that it is widely used in the computer
science [Aurenhammer, 1991] and that there are different robust algorithms
available which can be directly implemented. However, this method also
has important drawbacks. Because the method uses points as input, these
points should relate to the location of the units within the building. As dis-
cussed in section 3.1.3, this is not always the case. Points can lie on each
other, which makes this method completely impossible, or can have a ran-
dom location within the polygon. Even if there is a logic placement of the
unit points, i.e. the BAG+ of The Hague, it will often still result in unrealis-
tic partitioning (Figure 4.30).

4.5 DIVIDE THE STOREYS TO CREATE THE UNIT-STOREYS \

(a) Corner-building. (b) To many points involved.

Figure 4.30: Unrealistic partitioning when using a Voronoi partitioning (in case of
the BAG), usually occur in building corners. When there are too many
points involved, the partitioning becomes a mess.

Data driven approaches

The last partitioning approaches are data driven. This means that only the
geometry of the input influences the outcome. The methods discussed here
are the partitioning in convex parts, triangulation, and the usage of direc-
tional lines. The results of these methods for partitioning are shown in 4.32.

Non-convex polygons can be partitioned into convex polygons. This
means that the parts of the partitioning all have interior angles which are
smaller than 180°, so all vertices point ‘outwards’. As shown in in 4.32a, this
method can help with partitioning a building in smaller building compart-
ments, which in turn can be used for further partitioning.

Polygon triangulation is the partitioning of a polygon in a set of triangles
of which the interiors do not intersect [de Berg et al., 2000]. Triangulation
is widely used within the computer science and, therefore, different algo-
rithms are available [Farin et al., 2006]. Usually, the result of triangulations
are not unique, meaning that different solutions for one polygon exist. The
result of this partitioning is shown in 4.32b.

The directional lines method is based on the first three steps of the gen-
eralization proces described by Kada [2006]. These three steps generate a
2D decomposition of a 3D building geometry by first calculating the plane
equations of the facades. The infinite space is then divided by these plane
equations, and the cells are identified that have a high percentage of overlap
with the original ground plan polygon (Figure 4.31). Commandeur [2012]
uses this idea for dividing buildings in partitions. But instead of a 3D model,
he uses a line equations of the 2D geometry to partition the building. Af-
terwards, he uses the height, calculated from a point cloud, to determine
which partitions belong together.

As the user has no control on how many partitions are created, these
methods cannot be used alone. Partitioning a polygon in convex parts or
in triangles is widely used and therefore available in multiple applications.
This is not the case for the directional lines method, which is unfortunate
because this would provide the most realistic partitioning for building ge-
ometry. Allin all, this method could only serve as a first step because further
partitioning/processing is needed in order to get the desired areas.

53

54

| MY METHODOLOGY FOR CREATING 3D GEOMETRIES FOR THE BAG UNITS

Figure 4.31: The generalization of a complex 3D building model using the plane
equations (Figure by Kada [2006]).

—

]

(a) Convex parts (b) Triangulation (c) Directional lines

Figure 4.32: A complex building configuration in Delft.

Conclusion of related work

The desired method for the partitioning of the building polygons would
take as input any polygon and the desired number of partitions with their
desired area sizes. The result of the partitions should look realistic visually,
because the partitions represent building units. Ideally, the corners of the
partitions would be go°.

There is currently no partitioning method available that will provide this
desired result. The methods that are most promising are the partitioning
method of Khetarpal [2014] and the use of directional lines by Kada [2006]
(Table 4.3). When combining these methods, the directional lines method
should first divide the building in compartments and the (modified) method
of Ketherpal would do the further partitioning. Unfortunately, for both
methods there is currently no robust implementation available which makes
implementing it within a workflow impossible considering the timeframe of
this research.

4.5 DIVIDE THE STOREYS TO CREATE THE UNIT-STOREYS | 55

Method Constraint Area parameter Realistic Available
Armaselu and Daescu [2015] Convex Yes, kp partitions No No
Bast and Hert [2000] Rectilinear Yes No No
Khetarpal [2014] No Yes Semi No
Voronoi No No No Yes
Convex parts No No Semi Yes
Triangulation No No No Yes
Directional lines (Kada [2006]) No No Yes No

Table 4.3: Comparison of the partitioning methods. The criteria are based on what is
needed for this research. For partitioning we need a method that also can
partition non-convex, non-rectilinear polygons. Moreover, it is important
that it can partition an area based on a parameter, give a realistic result
and that there is an implementation available.

To realize the partitioning, I experimented with developing new partition-
ing methods that fits the above mentioned criteria. The first step off all
these methods was to find a starting point by creating the centerline (Sec-
tion 4.5.2). This starting point will indicate from which side the storey will
be filled with units. This is done to make use that in case of long buildings,
the numbers will be successive. The first approaches were based on data
driven methods, followed by a region growing (Section 4.5.3). The second
approach was based on iteration over the centerline and cutting the area of
the polygon (Section 4.5.4). To make a decision about which method is most
suitable, the results of both methods are compared visually.

4.5.2 Creating the centerline

To find the start point for both partitioning approaches, first the centerline
is calculated. This is done by calculating the straight skeleton of the build-
ing geometry. A straight skeleton is a method of representing a polygon by
a topological skeleton. The straight skeleton of a polygon is defined by a
continuous shrinking process in which the edges of the polygon are moved
inwards parallel to themselves at a constant speed until they join[Aichholzer
et al., 1995]. The straight skeleton is widely used as a way of constructing
a polygonal roof structure above a general layout of ground walls (Figure
4.33). The straight skeleton provides a logical line structure for the building.

~

——

Figure 4.33: From left to right: the shrinking proces, the straight skeleton and the
roof model.

56

| MY METHODOLOGY FOR CREATING 3D GEOMETRIES FOR THE BAG UNITS

The straight skeleton is a connected graph, but not yet usable for deter-
mining the starting point. To create one line, the longest path within the
graph is calculated. This is done by calculating the shortest path between
every end note of the graph. Dijkstra’s algorithm was developed to find the
shortest path between two nodes a graph network [Skiena, 2008]. For the
weight the length of the different line strings is used. As shown in Figure
4.34b, this will result in a line that end is in a corner. Because it would be
more logic to start the partitioning in the middle, the last lines are removed
and then the line is extended till it hits the boundary of the polygon (Figure
4.34¢). This point will be used as start or end point.

Graph - longest path

Remove ends

Remove smaller than parameter

Extend the two end edges

Cut the edges with polygon

Create centerline

(a) (b) ()

Figure 4.34: From a straight skeleton to the centerline.

To find which point is the starting point and which the end point, the
numbers of the units in the surrounding buildings are used. First the build-
ings that belong to the same street and are closest from the starting and
the end-points are detected. The building the building with the lowest unit
house numbers, should be the previous building in the street. Therefore,
the starting point is set at the points for which this building is the closest

(Figure 4.35).

4.5.3 Data driven partitioning combined with region growing

Theses approaches are based on first partitioning with a data driven ap-
proach: dividing the polygon in triangles and rasterizing the polygon. The
aim is to, from a starting point, add partitions till it is comparable with the
desired area size of a unit. To place the objects with use of the area size,
the areas of these partitions are first calculated. Then a graph network is
created, which enables to do perform an adjusted Dijkstra’s algorithm. Di-
jkstra’s algorithm is normally used to find the shortest path between nodes
a graph [Skiena, 2008]. It does so by checking every node within the graph.
I adjusted the algorithm so it would add the area size of the nodes which it

4.5 DIVIDE THE STOREYS TO CREATE THE UNIT-STOREYS \

—

Object nr 2-9

Object nr 1 v Object nr 10
/

; .

Figure 4.35: Finding the starting point of the centerline.

visited and it would stop when the desired area was obtained.

As shown in Figure 4.36, the result of these approaches will not result in
a realistic areas. Also is there a problem when the region meets a corner, is
is not sure if the areas will be connected. It is possible to create a line that
divides the polygon, e.g. using the furthest partition and creating a line that
divides it by sweeping 180°and selecting the shortest line. But when the ar-
eas are not connected or the spread is wide, this will not be useful because
the line will be at the same location for multiple areas or it will divide the
polygon in a unusable way.

(a) Using raster (b) Using triangles

Figure 4.36: The region growing on both rasterized and triangulated polygon.

4.5.4 Create cutlines by iterating over centerline

The next approach is based on using the centerline to provide a direction
for the partitioning. It is known which units lie on which floor and the area
ratios between these. This is used to divide the polygon. The main idea
of the workflow is to iterate over the centerline and from the starting point

57

58

| MY METHODOLOGY FOR CREATING 3D GEOMETRIES FOR THE BAG UNITS

and divide the polygon with cutlines; the combined line from that point to
the two closest points on the polygon. The resulting area is checked if it fits
with the desired area (Figure 4.37). The output of this part of the workflow
are the separate geometries of the unites. The steps will be discussed in
more detail in the following sections.

Input data Process Outcome

Building geometry l

Create centerline

v

Find starting point

v

End ratios B Calculate cutlines

v

Split polygon

v

Identify related polygons

> Unit geometries

Figure 4.37: The method for partitioning floor areas with the geometry of the build-
ing and the floor area ratio of the object as input, and the geometries of
the units as outcome.

Calculate cutlines

The created centerline will be used for locating the cutlines. All cutlines
between the units are calculated separately. As input the ratios calculated
in section 4.5 are used, along with the building geometry and the centerline.
As already mentioned is the allocating of the cutlines an iterative proces, it
iterates over the length of the centerline. Figure 4.38 shows the process for
finding a cutline.

i T engthcomentne/ 1001
A2
Building geometry _—> Find two closest points
V i+=1
Connect points
A2
Split building geometry
\4
Floor ratio object —_— unvalid

validate area size:
valid ——m > Cutline

Figure 4.38: Iterative process to find the location of the cutlines.

4.5 DIVIDE THE STOREYS TO CREATE THE UNIT-STOREYS | 59

The cutline is obtained by the following steps:

e Select point on the centerline. The distance from the starting point of
the centerline to this point is the length of the centerline divided by
100 * 1.

e From this point, select the two closest points on the boundary of the
building. To prevent that the points are on the same boundary, a
constraint is introduced. The angle between these points has to be at
least 135°. To prevent errors at the start and beginning, boundaries on
which the start and end point lies are excluded.

o The three points, namely the point on the centerline and the two points
on the boundary of the building polygon are then connected to create
a cutline.

e Partition the building polygon using the cutline, creating a subarea.

e The size of the subarea is divided by the area of the complete building
geometry to calculate the ratio. This ratio is compared with the floor
ratio of the unit, when these ratios are equal the cutline is set. When
the ratio is not equal, i is increased by one and the process starts over
again.

The output of the proces is the cutline for the given ratio. When finding
the cutlines for the other units, only the geometry and the part of the cen-

terline which has not already been used are considered. This prevents that
cutlines intersect (Figure 4.39).

Cutline: Eng A // Cutline: En{l B
i=0

/ /

Unit A Unit B

i=100

Figure 4.39: Example for finding the cutlines of one area with a start and end ratio.
The line in red is the centerline of the building on which the proces
iterates. Subarea B is the final geometry of the object. The boundaries
in pink are not used when finding the closest points.

60

| MY METHODOLOGY FOR CREATING 3D GEOMETRIES FOR THE BAG UNITS

4.5.5 Comparison of the the developed partitioning methods

The developed data driven partitioning method based on rasterization and
triangulation will result in unrealistic partitions. Especially in corner areas
the partitioning methods will result in unrealistic partitions. However, even
straight buildings will have this problem because the partitions do not fol-
low straight or perpendicular lines. Moreover, these methods can also result
in unconnected partitions which is also undesirable.

The method based on the iteration over the centerline gives a slightly bet-
ter result. The partitions that are created are connected and for straight
buildings the cutline will be perpendicular to the boundary of the building.
Although the result of this method will still result in unrealistic partitioning
in corner regions, the results is reasonable.

Although this method is capable of creating reasonable realistic partitions,
the result of this step of the workflow is least certain. Using the direction
of the centerline to divide building floors will result in partitions that look
logic visually, but the reality can completely differ. Also can the partitioning
fail in multiple cases, two of these cases are visualized in Figure 4.40. When
there is a large building section but not large enough that it includes the
centerline, the added area within one iteration can be to large. An other
problem is when a building has a hole. Then the cutline will not result in a
subarea. These problems can result in errors in the partitioning. The result
should therefore only be used as proof on concept, not in practice. When
more information about the location of the object is known, this method can
be improved and the accuracy of the result would increase drastically.

I
Subarea B

[
|
[
[
|
|
Subarea A }
[
[
|
[
[

No subarea

Figure 4.40: Problems in the partitioning can occur in case of large differences in
area size perpendicular to the centerline. Also polygons with holes can
not be divided.

46 CREATING AND VALIDATING THE 3D GEOMETRY
OF THE UNIT-FLOORS

In this section the creation and validation of the 3D geometry will be dis-
cussed. First the method used to create the 3D geometries will be discussed,
followed by the validation of these geometries.

4.() CREATING AND VALIDATING THE 3D GEOMETRY OF THE UNIT-FLOORS \

4.6.1 Creating the geometry

For every unit-floor a 3D geometry is created. This means that a unit that
has multiple storeys also consists of multiple geometries. The height of
the storey is calculated by dividing the building height with the number of
storeys, these values are already known (section 4.2). The value of Z; is
used to place the object-floor on the ground and the starting heights of the
storeys are calculated by:

Zo + (storeyy * storeyy,)

Zy,
Storeyy
Storeyg Storey ,
_______________ Zo
.. ANP =0

Figure 4.41: The different heights of a building.

To create the 3D volumes, a Z-value is added to every node of the 2D
polygons. This Z-value is set at the starting height over the storey calculated
with the previous formula. The polygon is then extruded with the storey
height. This extruding is done by first copying the original polygon with
then with a reversed orientation. The polygons are connected with polygons
by iteratively walking through the ring of the original polygon. To create
the side polygon two points are used of the original polygon, than the two
identical points (except the z-values) of the copy.

Wall 1
o | MO o Wi(1) = Or(z)
W1i(2)= Or(1) +h
e Wi1(3)= Or(2) +h
Wall (wl) Wi(x)= Or(2)
Wall (wd) xall(fz)} = W@
wig | wiag Wi Wy(1) = Or(g)
o = W4(2) = Or(g) +h
Wi Original polygon (or) Wis(3)= Or(5) +h
o = Wa@)= Ox(5)
Wi4(5) = Wa(1)

Figure 4.42: The reconstruction of walls. Table 4.4: The order of the points.

The result of this step is a 3D model with for all object-floors a geometry.
The LOD1 geometry of a building is the aggregate of the object-floors of the
related units. When exchanging and converting the created BAG geometry, it
is important that the created units are geometrically valid. This will ensure
that it is possible to do useful GIS operations when working with the created
geometry of the BAG. In this section the international standard for geometri-

61

62 | MY METHODOLOGY FOR CREATING 3D GEOMETRIES FOR THE BAG UNITS

cal primitives are discussed and how the created BAG solids can be validated.

4.6.2 Validating the geometry

There are multiple ways of how a solid can be stored. This can result in
problems for the interoperability of datasets between systems. In order to
counteract these problems, the ISO* and the OGC3 developed standards
which define the basic geographical 2D and 3D primitives are and the pos-
sible representation on the computer. The following definitions are taken
from ISO [2003]:

e A GM_Solid is the basis for 3-dimensional geometry (Figure 4.43). The
extent of a solid is defined by the boundary surfaces. The boundaries
of GM_Solids shall be represented as GM_SolidBoundary;

e A GML_Shell is used to represent a single connected component of a
GM_SolidBoundary. It consists of a number of references to GM_OrientableSurfaces
connected in a topological cycle (an object whose boundary is empty.)

[...] Like GM_Rings, GM_shells are simple.

e A GM_Object is simple if it has no interior point of self-intersection
or self-tangency. In mathematical formalisms, this means that every
point in the interior of the object must have a metric neighbourhood
whose intersection with the object is isomorphic to an -sphere, where
is the dimension of this GM_Object.

’/ Boundary ’/ Shell

Figure 4.43: A solid is bounded by a number of exterior shells.

The different boundaries of a solid are allowed to interact with each other
in certain circumstances. The implementation specifications are not defined
by the OGC, but Ledoux [2013] described how the specifications for 2D can
be generalized to 3D. The generalization results in the following assertions
for the validity of a solid:

1. A solid is topologically closed;
2. Each shell of the solid must be simple, i.e. that it is a 2-manifold;

3. The boundaries of shells can intersect each other, but the intersection
between the shells can only contain primitives of dimensionality o (ver-
tices) and 1 (edges);

2 International Organization for Standardization: www.iso.org
3 Open Geospatial Consortium: www.opengeospatial.org

4.7 VALIDATION OF THE RESULTS WITH REFERENCE DATASET |

4. The shell is a 2-manifold and no dangling pieces can exist;

5. The interior of a solid must form a connected point-set.

To validate the results of the workflow and to ensure the validity of the
created geometry, the result has to be validated against the assertions of the
previous section. There are tools available for validating geometries. Wag-
ner et al. [2013] created rules for validation of geometry based on the def-
initions from the Geographic Markup Language (GML) standard and made
a tool that can validate 3D CityGML models based on these rules. Another
tool to validate geometry is the valsdity. This tool validates 3D primitives
and is made available through a webservice*. It is created and maintained
by Hugo Ledoux (Part of the 3D Geolnformation group at Tu Delft). This
tool can not only validate GML files, but also files with the OBJ, OFF, and
POLY extension.

4.7 VALIDATION OF THE RESULTS WITH REFERENCE
DATASET

It is hard to determine the accuracy of the created model. As discussed in
Section 4.2.1 there is no strong connection between the nett floor area of the
units and the gross floor area. Therefore it is not possible to validate the cre-
ated area of the units. To give any certainty about the accuracy of the model,
three steps within the process can be validated with the reference dataset:
the number of storeys of a building, the number of floors of the units and
on which storeys the units are located. The results of these validations will
be discussed in the next chapter.

4 http://geovalidation.bk.tudelft.nl/valzdity/

63

E; IMPLEMENTATION & RESULTS

This chapter concentrates on the technical aspects of the implementation
of the methods described in the previous chapter. Because the developed
workflow follows a chronological order: the output of every step is the input
for the next step. So every step will have its influence on the final result. To
provide a proof of concept for the developed step, the result of every step
in the workflow will be discussed using real data in order to provide a
proof of concept for the developed step. In the first three sections, the tools,
the selected area and the way the datasets are obtained will be discussed.
Thereafter, the implementation of the workflow will be explained, combined
with the results of every step.

51 TOOLS

The main tool used during this research is application FME'. It is an in-
tegrated collection of spatial transformation tools. This tool was selected
based on the easy integration of datasets. Instead of focussing on the differ-
ent datatypes, the focus can lie on combining and transforming the data.

Although FME provides a wide range of tools, not all necessary trans-
formations are available. Especially for the partitioning steps, FME lacks
flexibility and For instance, FME lacks flexibility for the partitioning steps.
Therefore, these steps were implemented in the Python scripting language.
This is a widely used and open source programming language. The follow-
ing packages are used:

e pyshp *: Provides read and write support for the Esri Shapefile format.

e NetworkX 3: Python language software package that provides func-
tions for creation and manipulation of complex graph networks.

e Shapely 4: Package that enables the manipulation and analysis of geo-
metric objects in the Cartesian plane.

The BAG data is stored in a PostgreSQL> database. PostgreSQL is an open
source, object-relational database system. The PostGIS extension® adds sup-
port for geographic data types, needed when storing the geometry of the
unitss and buildings.

1 https:/ /safe.com/

2 https:/ /pypi.python.org/pypi/pyshp

3 https:/ /networkx.github.io

4 https://pypi.python.org/pypi/Shapely
5 https:/ /www.postgresql.org

6 http:/ /postgis.net

65

66

5.2 TEST AREAS

The prototype is developed with the idea that it should work for the entire
country. Three different areas are selected to test and validate the proto-
type. The selection will test the applicability of the developed methodology
to different environments; the areas differ in level of urbanization. The
selected areas are: the highly urbanized area of the center of The Hague
(Figure 5.2), the urban area of Hoofddorp (Figure 5.3) and the rural area
of Schoonhoven (Figure 5.4). The characters of these areas are summarized
in Table 5.1 and differ in the number of buildings and number of units per
building. Moreover, the building characteristics also differ between these ar-
eas which makes them good test cases for the developed methodology. The
available data was also of influence for selecting the area. The BGT and AHN3
datasets are not yet fully completed, but are already available for these areas
(Figure 5.7 shows the tiles that are currently available).

eHoofddorp

eDen Haag

@Schoonhoven

Figure 5.1: The location of the test areas within the Netherlands

Location (city /village) The Hague Hoofddorp Schoonhoven
Setting (urban/rural) Highly urbanized Urban Rural

Area (km2) 10 40 17

Number of buildings 30586 37313 8311

Building density (buildings/km2) 3058,6 932,8 488,9
Number of units 78890 36609 7460

Units per buildings 2,6 1,0 0,9

Table 5.1: This tables list the characteristics of the selected test areas. They differ
between size, building density and number of units per building.

Figure 5.2: The test area of The Hague is highly densified. The selected buildings

are colored in black.

Figure 5.3: The test area of Hoofddorp is larger than the area of The Hague but less

densified.

0o
'
RN

Figure 5.4: The test area of Schoonhoven-Vlist is a rural area, it includes farms and

a small village.

67

68

| IMPLEMENTATION & RESULTS

5.3 OBTAINING AND PREPARING THE DATA

Obtaining and preparing the data is an important step before the data can
be processed. The datasets have to be extracted for different internet-sources
and have to be preprocessed before they can serve as input for the workflow.
In the following sections, the steps that are needed for obtaining and prepar-
ing the data are discussed.

5.3.1 BAG Extract

The BAG is made available in the GML data structure (Figure 5.5). Although
this data structure is useful for the BAG as it can include all non- and spacial
data, processing this data structure is inefficient with the current available
software applications. To solve this problem, NLExtract” created tools to
convert this GML data to a spatial database (PostgreSQL/PostGIS). NLEx-
tract is an open initiative that not only provides tools for converting the BAG,
but also for converting other Dutch geospatial datasets [Broeke, 2016].

- <bag_LVC:Verblijfsobject>
- <bag_LVC:gerelateerdeAdressen=
- «<bag_LVC:hoofdadres>
<bag_LVC:identificatie>1987200000004607 </bag_LVC:identificatie>
</bag_LVC:hoofdadres>
</bag_LVC:gerelateerdeAdressenz
<bag_LVC:identificatie>1987010000004593 </bag_LVC:identificatie>
<bag_LVC:aanduidingRecordInactief>N</bag_LVC:aanduidingRecordInactief>
<bag_LVC:aanduidingRecordCorrectie>0</bag_LVC:aanduidingRecordCorrectie
<bag_LVC:officieel =N </bag_LVC:officieel>
- <bag_LVC:verblijfsobjectGeometrie>
- <gml:Point srsName="urn:ogc:def:crs:EPS$G::28992">
<gml:pos>256461.0 573275.0 0.0</gml:pos>
</gml:Point>
</bag_LVC:verblijfsobjectGeometrie>
<bag_LVC:gebruiksdoelVerblijfsobject>woonfunctie</bag_LVC:gebruiksdoelVerblijfsobject:=
<bag_LVC:opperviakteVerblijfsobject>109</bag_LVC:opperviakteVverblijfsobject=
<bag_LVC:verblijfsobjectStatus >Verblijfsobject in gebruik</bag_LVC:verblijfsobjectStatus=
- <bag_LVC:tijdvakgeldigheid>
«<bagtype:begindatumTijdvakGeldigheid>2010042000000000</bagtype:begindatumTijdvakGeldigheid=
</bag_LVC:tijdvakgeldigheid=>
<bag_LVC:inOnderzoek>=N</bag_LVC:inOnderzoek>
<bag_LVC:bron=
<bagtype:documentdatum:>20100420</bagtype:documentdatum=
«<bagtype:documentnummer>429-2010</bagtype:documentnummer=
</bag_LVC:bron>
<bag_LVC:gerelateerdPand>
<bag_LVC:identificatie=1987100000001037 </bag_LVC:identificatie
</bag_LVC:gerelateerdPand=>
</bag_LVC:Verblijfsobject>
- <bag_LVC:Verblijfsobject>
- <bag_LVvC:gerelateerdeAdressen=
- «bag_LVC:hoofdadres=>

Figure 5.5: Example of GML data of a BAG unit.

NLExtract also provides a ready to use PostGIS dump of the BAG which
I used for this research. These dumps are updated every month and can
directly be imported in PostGIS. This is the most easy way of downloading
the data and therefore used for this research. The PostGIS dump includes
tables for every class of the BAG (Section 2.2). The data is extended with in-
formation about provinces and municipalities. As mentioned in section 2.2,
features can have multiple relations, e.g. a unit can have multiple functions
or can be located in multiple buildings. In order to store these relations,
extra tables are included in the database. The NLExtract dumps also pro-

7 http://www.nlextract.nl

5.3 OBTAINING AND PREPARING THE DATA \

vide predefined views for the current and existing buildings and units. The
relation between these views, which are used for this research, are shown
in figure 5.6. For filtering and storing the data that falls in the selected test
area, I created two extra tables: units-selected and Building-selected.
The selection of the units and buildings is performed as follows:

1. Insert the polygons of the test areas in the PostGIS database. The
polygons were created by selecting the neighborhoods in the Wijk- en
Buurtkaart ® dataset. This dataset contains all neighborhoods of the
Netherlands and is available as open data.

2. Select the features in the building table that lie within the polygon
of the test area. This is done by using the ST-Within() operation of
PostGIS. The features that fall within the test area are stored in a new
table (buildings-selected).

3. The selection of the units that fall in the test areas are selected by
joining multiple tables. As shown in figure 5.6, two joins are needed
(units - units in building - Building-selected). The units are stored in
a new table (units-selected).

The outcome of this selecting process are two extra tables that contain all
the current existing buildings and units that fall in the test area (Figure 5.34).
The building-selected table contains 30586 features and the unit-selected table
78890. The database is directly connected to the FME workflow.

532 BGT and AHN3

Publieke Dienstverlening Op de Kaart (PDOK) provides the central portal for
the dissimilation of governmental geographical datasets. The initiative for
this facility came through a partnership between the Kadaster (Dutch cadas-
tre), the ministries of Infrastructuur en Milieuw and Economische Zaken, Rijk-
swaterstaat and Geonovum. Through this portal the BAG, BGT and AHN can
be retrieved. The BGT is only available in the GML format. The AHN can
be download as raster (digital elevation model (DEM) and digital terrain
model (DTM)) and as raw point cloud. The latter is used because it contains
more information, e.g. the classification of the points. The website uses a
tile system, in which the user can select a tile for downloading a specific
area (Figure 5.7). Using this tile system, the datasets are downloaded and
stored locally.

8 https://data.overheid.nl/data/dataset/wijk-en-buurtkaart-2014-versie-1

69

70 | IMPLEMENTATION & RESULTS

Number designation
(‘'nummeraanduidingacuteelbestaand")

Identification: numeric
House number: numeric
House letter: char

House addition char
Postal code: char

Related city: numeric
Related public place: char

1
1
Unit Unit function
('Verblijfsobjectactueelbestaand'’) ('Verblijfsobjectgebruiksdoelactueel')
1. 1
Identification: numeric Identification: numeric
Floor area: numeric Use function: char
geometry: Geopunt
1.*
1

Unit - building relation
('Verblijfsobjectpandactueel’)

Identification: numeric
Related building: numeric

1
1

Building
(‘pandactueelbestaand’)

Identification: numeric
Year of construction: numeric
geometry: Geovlak

Figure 5.6: The relation between the buildings, units, and number designation in
the dbms!.

oningen
' Emmen
v"‘s-l-lemgenboscb,
Tibug' [
] E_f"‘, -E e
* Roermond
_ Maastricht
(a) BGT tiles (b) AHNS3 tiles

Figure 5.7: Tiles of the BGTY and AHN3'° that can be downloaded from the PDOK
website (November 2016).

54 STEP 1: CLASSIFY UNDERGROUND BUILDINGS |

5.4 STEP 1! CLASSIFY UNDERGROUND BUILDINGS

The first step of the workflow is to detect underground buildings. This
section will describe how the methods that are developed to identify under-
ground structures (Section 3.1.1) are implemented. A detailed workflow of
this step is shown in 5.8. The implementations for the lidar- and bgt method
will be described including the required parameter values. Because working
with large point clouds datasets is time-consuming, I extracted all needed
information from the data at once. As a consequence, not only information
that is required for detecting underground buildings is extracted, but also
other height values. The attributes that will be added to the BAG building
features in this step are:

e Area size: The area-size of the geometry of the building polygon.
This is used for calculating the density of the building points and will
also be used later in the workflow (Section 4.4);

e Zmin, Zmax: the minimum and maximum height and the building, not
only used for calculating the building height, but also for the creation
of the geometry of the units (Section 4.4);

e Hbuilding: The building height used to calculate the number of storeys
(Section 5.5);

e Nstorey: Number of storeys (Section 5.5);

e Location: indicates if a building is aboveground, underground or if
the result is uncertain;

e Complex-building: indicates if a building has a big height (Section
5:5:2);

o Temporal-difference: if there is a temporal difference between the cap-
turing of the point cloud data and the BAG.

5.4.1 LIDAR- and BGT-method

The AHN3 point cloud is filtered based on the classification. The AHN uses
the standard LIDAR point cloud format LAS, which means that the build-
ing points are classified with a value 6 and the ground point with a value
2. After the points are filtered based on this classification, they are clipped
against the building polygon. The number of points is calculated and di-
vided against the area of the building polygon. In cases where the number
is below 4 points per square meter, the attribute lider-method is set to
“true’. If there are no points that can be clipped at all, the feature will also
get this attribute value. From the point cloud the date on which the data was
captured can also be extracted. This date is compared with the BAG feature
to find out if there is a temporal difference. If the date of the points is earlier
than the date of the BAG building, the attribute temporal-difference is set
to “true’ and the building is excluded from the workflow.

To find out if the buildings are missing from the BGT, the datasets of the
same area are tried to merge using the building identification number. In sit-
uations where the buildings are not merged because they are missing from

71

72

| IMPLEMENTATION & RESULTS

Input data Process Outcome

LIDAR ﬁ

Filter point cloud

BAG polygon Buffer polygon

!

Clip ground points Clip building points

v v

Calculate Calculate
20 Zmedian/Zmax

v

Compare values

v

Compare acquisition date

v

BGT polygon ——> Check in BGT and BAG based on ID.

\—> BAG polygon with new attributes

Figure 5.8: First steps of the implementation detects underground structures, com-
plex buildings and calculates the heights which are used to determine
the number of storeys.

the BGT dataset, the attribute bgt-method is set to ‘true’.

5.4.2 Result of underground identification methods

In this section, the consequence of the implementation for the selected test
area will be discussed for the selected test areas. Outcomes of the different
methods are discussed first, followed by the final classification.

The number of buildings that have a temporal difference differs between
the test areas (Figure 5.9. In the test area of The Hague, approximately 2%
of the buildings has a temporal difference. In the areas of Hoofddorp this
percentage is around 3%. However, in the area of Schoonhoven this per-
centage is only 0.4%. These results indicate that for an accurate model, the
AHN should be captured with a higher frequency in urban areas compared
to rural areas.

The results of the LIDAR- and BGT method are shown in Figure 5.10. It is
interesting to see that there is a considerable difference between the results
of both methods for the area of Hoofddorp, where the results for the other
areas are similar. This may due the accuracy of the acquisition of their BGT,
or inaccuracies in the classification of the AHN3;. When inspecting the result
of the LiDAR method manually most of the buildings that where classified
with the LiDAR method as underground, were in fact very small, above
ground structures. Only in the test area of The Hague structures where
classified with certainty as Underground (Figure 5.11). This test area also has
the most buildings that are classified as uncertain. In Section 5.10.1, these
buildings are validated manually.

5.4 STEP 1: CLASSIFY UNDERGROUND BUILDINGS | 73

Temporal difference
3.5% 32%
3,0%
2,5%
2.1%
2,0%
1,5%
1.0%
0,5%

0.0%

Den Haag F P

Figure 5.9: The temporal differences between the AHN3 dataset and the BAG data.
In the area of Schoonhoven this percentage is very low, which indicates
that only a few buildings are changed in the past few years.

LiDAR method: BGT method:
Classified as underground Classified as underground
2,0% 1,9% 1.9% 2,0% 1.8%

1.8%
1,6%
1.4%
1,2%
1,0%
0.8%
0,6% 0,4%
m B
0,2%
| 0.0%
Den Haag Hoofddorp Schoonhoven Den Haag Hoofddorp Schoonhoven

() (b)

Figure 5.10: The result of the LiDAR and BGT method for the different test areas.
Interesting is the difference between both methods for the test area of
Hoofddorp.

1,8%
1,6%
1,4%
1,2%
1,0%
0,8%
0,6%
0,4%
0,2%
0,0%

0,5%

Result of combined underground classification methods

40000
35404
35000

30000

ings

25000

20000

Number of build
7y
[=3
[=3
=}

10000

5000
993 712
I s—

7 0 0 168

Above Underground Uncertain

Classification

®Den Haag ®Hoofddorp ®= Schoonhoven

Figure 5.11: When combining both methods, only 7 buildings are classified as
underground. As expected, most buildings are classified above ground.

74 | IMPLEMENTATION & RESULTS

5.5 STEP 2! CALCULATING THE NUMBER OF STOREYS
ABOVE GROUND

The next step of the workflow is to calculate the number of storeys above
ground and detect complex buildings. In this section the implementation
of this step will be discussed. The way the height values of buildings are
calculated along with the number of storeys will be discussed first. In sec-
tion 5.5.2, the implementation of the identification of complex buildings and
complex building configurations is discussed. This section concludes with
the result of this step of the implementation. A validation and determi-
nation of the parameters for the building height and the threshold for the
building complexity will be discussed in section 5.5.3.

5.5.1 Extract height values from point cloud

The height values are extracted during the same process as detecting under-
ground structures (Figure 5.8). From the point cloud that is clipped by the
building polygon, the median- and maximum Z-value is extracted. For the
maximum Z-value the top (9oth percentile) is used. To calculate the Zmin
value of a building, first a buffer of 1.0 meter is created around the building
polygon. This results in a polygon of the building that is extended 1 me-
ter in every direction. This polygon is subsequently used to clip the point
cloud. Instead of building points used previously, the point cloud are now
first filtered on ground points (classification = 2). Thereafter, this filtered
point cloud is clipped against the buffered building polygon to retrieve the
surrounding ground points of a building. From these points the minimum
Z is extracted.

The height of a building is calculated by subtracting the Zmax value by
the Zmin value. This building height is then divided by 3.5 and rounded
(section 5.5.3 describes how this value is determined). In few cases the num-
ber of floors turned out to be zero. All had a very small floor area (>10mz2),
which could be the consequence of the number of building points. For these
cases, the number of storeys was set at 1 and the height of the structure at
3.5 meters.

5.5.2 Detect complex buildings and configurations

Complex buildings are identified by comparing the median and maximum
Zvalue calculated in the previous step. If the difference between these val-
ues is greater than 3.0, the attribute complex-building is set to “true’. This
value is calculated from the woz-dataset. How this is done will be discussed
in section 5.5.3. Buildings that only have one related unit are not excluded
from the workflow, because these buildings do not need further division; the
interior of the complete buildings is assigned to one unit. How the number
of related units is calculated is discussed in Section 5.6. To detect the other
type of complex buildings, the geometry of the BAG and the BGT is checked.
In practice, it is sufficient to compare the floor areas of both geometries in
order to detect the presence of a large difference. If the difference is larger

.5 STEP 2! CALCULATING THE NUMBER OF STOREYS ABOVE GROUND \

o1

than 10%, the attribute is also set to true.

To detect complex building configurations (see Section 4.2.2), an overlap
test is performed. In the geometry of the BAG, plenty unintended overlaps
exist. It is therefore not possible to do a simple overlap test, but it is needed
to find out if the overlap is compelling. For this purpose, I used the percent-
age of an area that overlaps. This is implemented by first intersecting the
building polygons with each other. The overlaps are calculated and divided
against the original area. When this is larger than 10%, the the building is
classified as complex.

(a) Overlapping. (b) non-overlapping.

Figure 5.12: New polygons are created by intersecting overlapping polygons. The
difference between the original area and the resulting polygon indicate
how large the overlap is.

5.5.3 Calculate the average storey height and set complex building thresh-
old with use of the reference dataset

To calculate the average storey height and to set the threshold for the com-
plex buildings, a reference dataset (the dataset will be discussed in more
detail in Section 5.10) is used. From this dataset the number of floors of a
unit and the total number of floors can be calculated. When merged with the
buildings that are also included within the The Hague area; the calculated
number of storeys and the measured number of storeys can be compared.
Moreover, the influence of a threshold for the Max- and Median values can
be calculated.

I checked the result of 5 thresholds for the Max-median value, ranging
from 1 until 3. Also is checked what the result would be if there was no
threshold at all. After the filtering based on this threshold, the average
storey height was calculated for all features that passed. This height was
then used to calculate the number of storeys. Finally, the difference between
this value and the reference set was calculated (Figure 5.13).

In table 5.2, the outcome of this workflow on the entire dataset is shown.
As expected, a low threshold will result in the most accurate outcome, but
will on the other hand exclude 85% of the buildings. It can also be noticed
that the average storey height of the buildings is reduced when decreasing
the threshold. Based on these outcomes, an optimal threshold of 3.0 is cho-
sen. This threshold still provides reasonable results with the exclusion of
only 27% of the buildings is excluded. Although more available reference
data will lead to more accurate values, a complete accurate results will not
be possible. Moreover, the reference dataset only included buildings in The

75

76

| IMPLEMENTATION & RESULTS

Threshold None 3 25 2 1,5 1
Right number of floors 67% 82% 85% 88% 93% 95%
Buildings included 100% 73% 65% 54% 41% 15%
Storey height 37 35 35 34 34 32

Table 5.2: Result of the different thresholds. As expected, the accuracy of the calcu-
lated number of storeys increases when the threshold is lower.

Hague. This may not be completely representative for the situation in the
entire Netherlands because of the difference in building types etc.

BAG Buildings l

ID: int

hbuild: float
Max-median: float
Reference_storeys: int

Threshold ¢

- None

- N Threshold on max-median
_ 5’5 (FME: 'Tester')

=15

-1

BAG Buildings]

ID: int

Building_height: float

Max-median: float

Reference_storeys: int

Av_storey_height: (FME:'Statistics')
N_storeys: (round(hbuild/Av_storey_height))
Difference: (n_storeys - Reference_storeys)

Figure 5.13: The implemented workflow for detecting complex building configura-
tions.

5.5.4 Result of calculating the number of storeys

As a result of the chosen threshold for the complex building detection, a
considerable part of the buildings in The Hague (16.5%) is excluded from
the workflow. In the other test areas this percentage is around 2% (Figure
??). These values would be much higher when complex buildings with one
related unit were also excluded; in the test area of The Hague this value
would be almost be twice as high (28%). The number of complex configu-
ration is very low, only in a few cases the overlap was substantially (Figure

5.14).

The exclusion of complex buildings has the most influence of the total
number of excluded buildings (Figure 5.15). The difference between the test
area of The Hague and the other areas may lie in the number of units per
building. As shown in Section 5.6.2, the percentage of buildings with only
one related units is considerably lower in the area of The Hague.

5.5 STEP 2! CALCULATING THE NUMBER OF STOREYS ABOVE GROUND |77

Complex building Complex configuration

18,0% 16.5% 0.3% 0.2%

16.0%
14.0% 02%

12,0%
02%
10.0%
8.0% 0.1%
) 0.1%

6,0%
0,1%

4,0% o

0,0% 0,0%
Den Haag Hoofddorp Schoonhoven Den Haag Hoofddorp Schoonhoven

Figure 5.14: A considerable part of the buildings in The Hague was classified as a
complex building, especially when compared to the other test areas. For
all test areas, the percentage of complex configurations does not exceed
0.2%.

Result of combined complex building and configuration classification

40000

34851

35000

30000

)
w
=
=
=

20000

Number of buildings

—_
w
=
=3
=]

10000
4816

e

Included Excluded
Classification

5000

®Den Haag ®Hoofddorp ®Schoonhoven

Figure 5.15: The total number of building that are excluded from the workflow. The
number of buildings excluded in the test area of The Hague are consid-
erably higher than in the other areas.

78

| IMPLEMENTATION & RESULTS

56 STEP 3: DIVIDE UNITS OVER BUILDINGS

Assigning the units to the buildings is the next step of the process. In this
section two different scenarios will be discussed: a buildings with multiple
units and a unit with multiple buildings. This section concludes with an
overview of the results for the different test areas.

5.6.1 Assigning the units

As every unit has an ID of their related building this is straightforward. In
this implementation step, the units will not be merged with buildings. The
reason is that the units will be directly combined into floor-sections and
then combined with the related building (See section 5.7) later in the imple-
mentation. Therefore, attributes are needed that will be created in this step
of the implementation. In addition, complex units with multiple related
buildings, have to be handled.

A detailed workflow is depicted in figure 5.16. First the default area (d-
area) of the BAG units is calculated by multiplying the number of storeys
with the floor area of the polygon. This value will be used to divide the
net floor area of the units if necessary. To detect units with multiple related
buildings and buildings with multiple related units, I used the relation table.
This table shows the relations between the unit ID and the related building
ID. A unit can have multiple related buildings and the other way around.

Input data Process Outcome

BAG unit i

BAG unit-building relations ~——>» Group units to detect complex units /> "Complex objects"
BAG building —> Calculate default area l

Divide net area of objects over buildings

|

» BAG units with new:nett-floor-area

Figure 5.16: Dividing units over buildings and classifying complex units.

To find units with multiple related buildings, this table is grouped by unit
ID. The resulting dataset includes unique units with a list of their related
buildings. In cases with multiple items in the list, the unit is classified as
complex-unit. The total default area is the combined default area of all re-
lated buildings. The lists are subsequently ungrouped and the new net floor
area is calculated by using the ratio between the default area of the building
and the default area of all related buildings of the unit.

To show the result of this step, The table is grouped on building ID, re-
sulting in the unique BAG buildings with a list of the related units. It is now
possible to merge it with the BAG buildings. In situations involving a com-

56 STEP 3! DIVIDE UNITS OVER BUILDINGS \

plex units, the building is classified as Complex-unit-building. The total
net floor area is included in a building is the sum of all these values for the
related units.

5.6.2 Result of dividing units over buildings

The result of the unit placements is straightforward. All units are now as-
signed to their related building. Only 20 buildings with a complex units are
present. These buildings were checked manually and most cases seemed to
be errors in the BAG, which are just exceptions. The number of units that
is related to a buildings is shown in figure 5.17. Most buildings only have
one or zero related units. There is a clear difference visible between the test
area of The Hague and the other areas, the number of buildings with more
than one units is considerably larger. As shown in Figure 5.18 ands.19,
these buildings are often small structures, e.g. sheds. The city center of
Schoonhoven (Figure 5.20) is quite dense, however, most of the buildings
still only have one related unit.

Number of units per building

70%
60%
50%
40%

30%

Percentile of buidings

20%

10%

I .

0 1 2 3 4 5 6 7 8 9 10 >10
Number of units

0%

® Den Haag ®Hoofddorp ®Schoonhoven

Figure 5.17: The number of units that relate to one building. Most cases are simple,
even in the test area of The Hague most buildings only have one or zero
related units. In the other test areas this percentage is even highter.

79

80 | IMPLEMENTATION & RESULTS

o
b Legend
R
', Number of units per building
0

I

Figure 5.18: Compared to the other areas, the average number of units per building
is much higher in the test area of The Hague.

f ‘_/‘,'.:\ .: . ’ ‘ Legend
LIPS o3¢ Number of units per building
\w‘ﬂ";\’ (g, -0
48 By (R
2
! s ‘ \’ o alsin % 3-4
E Ry 4-6
‘?' 4" - 3-"1 oe6-8
= ; [¥

@
=2 g5
et

.

A

"f/

&
Ey
| II|‘ |
SN A\

Figure 5.19: In the area of Hoofddorp, the sheds without related units are clearly
visible.

Legend

“ Number of units per building

Figure 5.20: The buildings are colored by the number of related units.

5.7 STEP 4: DIVIDE UNITS OVER STOREYS \

5.7 STEP 4: DIVIDE UNITS OVER STOREYS

In this step, the units are divided over the storeys. The implementation is
based on the methodology discussed in section 4.4. This implementation
step starts with ordering the units by creating a key value that can be used
to order the units. Thereafter, the sections are created containing units that
are located on the same storey.

5.7.1 Ordering units

To order units, for every unit an ordering value is created. This value is
build up in such a way that an unambiguous ordering is possible for every

case. Units that are expected to lie underneath other units, get a lower value.

Finally, the key value can be ordered from low to high. The order of this
key value is as follows:

81

[Letter value] [Addition value] [Function value] [Area value] [Number

value]

The letter and addition values are created by translating the characters in
ASCII code, which are integers. These integers follow the same order as the
alfabet and can, therefore, be directly used.

For calculating the function value, the functions table is used. Units with
a residential functions will get a code of 1. In other cases the value will be
set at -1. The units are grouped based on unit ID, because a unit can have
multiple functions. The list values of this function-order are then summed
up. In order to achieve only positive values for the key, 100 is added. In
case the unit is residential, this will result in a value of 1+100=101, when a
unit is a store it wil result in -1+100=99. However, in case a units contains
both functions, it will get -1+1+100=100 as value.

Letter Addition Function Area value Number Orderkey

A 0 Woonfunctie 46 54 65.048.101.000.0054
B o Woonfunctie 56 54 66.048.101.000.0054
C 0 Woonfunctie 56 54 67.048.101.000.0054
D 0 Woonfunctie 46 54 68.048.101.000.0054
0 0 Woonfunctie 50 2 48.048.101.050.0002
0 BIS Woonfunctie 120 2 48.066.101.120.0002
0 0 Winkelfunctie 114 211 48.048.099.114.0211
0 0 Woonfunctie 150 209 48.048.101.150.0209
0 0 Woonfunctie 69 340 48.048.109.069.0340
0 0 Woonfunctie 98 338 48.048.109.098.0338

Table 5.3: The order keys for the units that belong to four different buildings. Bold
text indicates the part in the key that influences the ordering.

In case there are only two units, ordering by house number makes less
sense. If there are only two units will get an area-value in their key. As
such, the units can be ordered from small to large. They area is calculated

82

| IMPLEMENTATION & RESULTS

by dividing the net-floor-area of the unit by the total-net-floor-area of all
units in the building combined. To get an integer, this value is multiplied by
1000 and rounded. The final step is the addition of the house number to the
key. When ordering the units and all the other values are the same, this will
be used. Table 5.3 shows examples of these keys for units that are related to
four different buildings.

5.7.2 Placing the units on floor levels

The next step is to create the floors with the units and their ratios. This is
a multi-step process that will be discussed separately. Firstly, sections are
created of units with the same addition, which are then divided into section
floors (Section 5.7.2). The last step is to calculate the floor level and merge
the geometry with that of the BAG (Section 5.7.2). A workflow of these steps
is shown in figure 5.21.

Input data Process Outcome

BAG unit l

Create sections: group by addition
Order units based on order_key
Create section_storeys

A4

Calculate for every unit:
ratio per section_storey

7

BAG building polygon —_— Create storeys

> Storeys with related units

Figure 5.21: The implementation workflow for storeys with their related units.

Create sections

To group the units in sections, a key is created by combining the Letter-
and Addition value with the building ID. This key is used to group the
units in sections. The result is a section of units that have the same related
building and the same addition value. The list of key units is sorted by the
order-key for a clear order.

As discussed in the methodology, the storey-floor-ratio indicates how
much floor a unit occupies. By summing these values for the units in the
same section, the number of floors of the section is determined. When there
are no additions and the section is the entire building, the normal number
of floors is used. In case there are multiple floors, the required amount of
copies of the floor are created. These floors get an index number that will
be used in the next step.

5.7 STEP 4: DIVIDE UNITS OVER STOREYS \

Divide units over section floors

It is now clear how many floors a section has and how many units are part
of this section. To determine on which floor of the sections the units lie, the
storey-floor-ratio is used again. Firstly, this value is recalculated to fit
the floor area of the entire section.

Firstly, a distinction is made between sections that include additions or
house letters. These cases will follow a different step, namely in these
cases, all floors will include all units. The storey-unit-ratio between
these units is used to divide every section floor. When there are no addi-
tions, the sections will be filled up from below. First two lists are created,
the storey-unit-start and the storey-unit-end lists. These lists include
the starting and end point of every unit. They are created by summing up
the ratios of previous units. By subtracting these values for every unit by the
section-level, the rest values are calculated. When the rest value of the
start is lower than one (-threshold) and the rest value of the end is higher
than zero (+threshold), the units lie on the section floor. In these cases, the
rest ratios are calculated for these units. An example is shown in the follow-
ing figure and tables.

Figure 5.22: Example of section division for units A, B and C.

unit Storey-unit-ratio Storey-unit-start storey-unit-end

A 1,25 0,00 1,25
B 1,75 1,25 2,00
C 1,00 2,00 3,00

Table 5.4: The lists for the units, in which the start and end indicate where the units
is located.

Level Rest-start Rest-end Rest-start <0.9 Rest-end >0.1 Result

o) 1,25 2,00 FALSE TRUE FALSE
1 0,25 1,00 TRUE TRUE TRUE
2 -0,75 0,00 TRUE TRUE TRUE
3 -1,75 -1,00 TRUE FALSE FALSE

Table 5.5: For unit B, the result for every level is shown. The values of 0.9 and o.1
are chosen as these will prevent small divisions of the unit.

83

84

| IMPLEMENTATION & RESULTS

To prevent that sections which include only a small area occupies a com-
plete storey, a threshold is included in the workflow. When the summed
Storey-floor-ratio subtracted with the integer of the Storey-unit-ratio value
is lower than o.25 or higher than o.75, the units will follow the same work-
flow as the units without additions.

Calculate floor levels

Since floors can be created underneath the section, it is still unclear on which
floor the units lie. Therefore, the floors are grouped again on building ID
and then sorted on the addition value of the section. When exploding this
list to section-storeys, an index is created that is the same as the floor level.
This is exploded again to retrieve the the units within the section storeys.
This ungrouping will result in multiple entries for one unit because for ev-
ery storey, the unit will have one entry. The included ratio is used to inves-
tigate if the unit is part of this storey, when it is zero the entry is removed.
The entries that are not removed will be joined if they have the same level.
This will result in a storey with the units included that are part of this floor.

5.7.3 Result of dividing the units of the storeys

As a result of this implementation step, storey features with ordered related
units are created. The ratio for the floor that will be used for partition-
ing the storeys is included in the units if necessary. As shown in Figure
5.23, the number of storeys that have to be divided is low. In the test areas
of Hoofddorp and Schoonhoven this number does not exceed 5%. This is
also clear from the 3D models shown in Figures 5.24, 5.25 and 5.26. The
number of storeys without related units is remarkably high in the area of
Schoonhoven. However, this can be explained because in this area there are
many high barns. It can be chosen to set the number of storeys of these
barns at one, however the uncertainty will then still not be solved because
also structures without a related unit can have multiple storeys.

Number of units per storey
90%

80%
70%

60%

o
=}
X

= 40%

Percentile of storeys

30%

20%

- '

0% | .
1 2 3

0

Number of units

= Den Haag = Hoofddorp Schoonhoven

Figure 5.23: The number of units per storey for the different test areas.

5.7 STEP 4: DIVIDE UNITS OVER STOREYS |

Legend

Number of units per building

Figure 5.24: The unit-storeys colored by number of units per storey in The Hague.

!r—l F. v I'= .!'- - — -:- — Legend

o EF=ED w\m Number of units per building
B

e
g SVt

Figure 5.25: In the test area of Hoofddorp, the number of units per storey is lower
compared to that of the test area of The Hague.

Legend
Number of units per building

Figure 5.26: Also in the rural area of Schoonhoven, the appartement buildings are
clearly visible (colored in red).

85

86

| IMPLEMENTATION & RESULTS

5.8 STEP 5: DIVIDE STOREYS

In this section the implementation of the developed partitioning method
will be discussed, starting with the creation of the centerline (Section 5.8.1)
which is done in Python, followed by the iterative cutline process (Section
5.8.2) done in FME.

5.8.1 Creating centerlines and finding starting points

Creating the straight skeleton of a polygon can be done in FME. The next
step is to find the longest path within this straight skeleton. This is done
calculating for every end node in the graph the shortest path to the other
end nodes with Dijkstra’s algorithm (Figure 5.27). This algorithm is imple-
mented in the NetworkX package for python''. The weight of the edges is
set to the Euclidean distance between the nodes of the edge.

nl0 n9

nl n2

n4 n3 n8 n7

nd n6

Figure 5.27: Graph network of the straight skeleton. Between every red node, the
shortest path is calculated.

The path with the longest Euclidean distance is selected. Both edges at
the end are then removed. When the end edges of the resulting path are
smaller than 1.0 meter, these are also removed. This will repeated till both
end edges are longer than 1.0 meter. These edges are than extended and
intersected with the building polygon. The extension is done by first cal-
culating the angle of the edge and the bounding box of the polygon. The
line is extended till the bounding box, then the location of the intersection
is calculated (Figure 5.28).

11 https://networkx.github.io/documentation

5.8 STEP 5: DIVIDE STOREYS |

/l

Intersections

Bounding box

Figure 5.28: The edges are extended till the bounding box of the polygon. Then the
intersection point is calculated.

These intersection points are the start or end point from the centerline. To
determine which one is the starting point, for both points the closest build-
ings are determined. For every building it known which units are related,
the building polygons will get the house number of the highest units. The
point that is closest to the highest number (of the building), will be the start-
ing point.

5.8.2 Creating cutlines by iteration

This sections follows the methodology described in Section 4.5.4. This part
of the implementation was done in FME.

The length of the created centerline is calculated and divided by 100, this
is used for the iteration process. For every step the two closest points on the
polygon (the boundaries of the start- and endpoints excluded) is calculated,
with the restriction that the angle between the two points and the point on
the centerline is more than 135°. The cutline is created by joining these
points with the point on the centerline. The polygon is than divided by this
cutline, creating two sections. The area of first section is calculated and di-
vided by the total floor area. When this is larger than the required ratio, the
cutline is created. This procedure is repeated for the second cutline. The
area between these cutlines is selected.

87

88

| IMPLEMENTATION & RESULTS

5.8.3 Results of dividing storeys

This step is not yet connected to the general workflow. To find which errors
could occur when using this method, the partitioning method was tested
manually. A couple of buildings where selected and the ratios for the de-
sired areas were defined. In Figure 5.29, the result of the creation of the
centerline is shown for two buildings.

Figure 5.29: Two examples of the created centerlines. The lines in blue are the origi-
nal straight skeletons of the polygons.

For these buildings the creation of the cutline was checked manually, be-
cause in reality these buildings only have one related unit. The partitioning
method is also able to create units with different ratios, but for this test the
building polygons were divided in 4, 5 and 8 equal parts. This makes it also
visually easily to compare the results. As the results show, especially build-
ing B, the areas of the partitioning will not always have the desired area due
to larger areas perpendicular to the centerline. In these cases, the cutline is
also not perpendicular to the building, which results in a unrealistic parti-
tioning. A solution would be to create the cutlines always perpendicular to
the centerline, but this caused problems when the centerline went around a
corner.

These results show that there is potential in this method. It is possible
to partition the polygons based on the area ratios and for simple’ buildings
(buildings without large building compartments that are not in line with the
centerline) this method provides an accurate partitioning. But when dealing
with complexer buildings, this method should be improved. Suggestions for
improving the method will be discussed in Section 7.2.3.

5.8 STEP 5: DIVIDE STOREYS |

(©) (d)

(e) (f)

Figure 5.30: Two buildings that are partitioned in 4, 5 and 8 ‘equal’ parts. As clearly
visible in especially the last partitions, the desired area and the result-
ing area will not always be the same, due to large areas that lie perpen-
dicular to the centerline.

89

90

| IMPLEMENTATION & RESULTS

5.9 STEP 0: CREATE AND VALIDATE THE GEOME-
TRY

In this final step, the 3D model is created and the geometry is transformed
to a CityGML standard. The created geometry is then validated using val-
idation software. The geometries that are created belong to Unit-storeys
that only have one related unit. This because the partitioning method is not
(yet) connected to the workflow.

5.9.1 Creating and writing geometry

The 3D model is created by extruding the building geometry with height val-
ues. Three parameters are used: the lowest height of the building (Zmin),
the levels and the storey height. It will result in extruded volumes for all
unit floors. Only the last parameter is not yet calculated. This is done by
dividing the building height with the number of floors. The 3DForcer trans-
former is used to change the 2D geometry of the floor into 3D. It takes as
parameters a height, which in our case will be the lowest height of every
floor level:

Zmin + (storeyheight * level)

Although the polygon now contains a height, it is still a 2D polygon. To
translate the 2D polygon to a 3D solid, the polygon is subsequently extruded
with the storey height. Currently, the created geometry is still in FME for-
mat. However, the software provides the possibility to write the geometry
to a different file format, e.g. CityGML. The type is set at GenericCityObject,
because there is no featuretype available that can define units (in Section 6.1
citygml will be discussed in more detail).

5.9.2 Result and validation of geometry

The geometry is created for the entire dataset. For every unit-storey a Gener-
icCityObject is created. An example is shown in Figure 5.31, which consist
of three Unit-storeys. It is possible to include all attributes of the related
building and units, but for now is chosen to only include the ID, house
numbering, year of construction and on which level the unit is located. The
geometry is stored as a solid, which is build up from multiple surfaces.
These surfaces are polygons described by an exterior, LinearRing. A section
of the GML code is shown in figure 5.32.

The validation of the geometry is done with the web service valzdity. A
couple of unit-floors are checked with this service, in all cases the result
were positive.

5.9 STEP 6: CREATE AND VALIDATE THE GEOMETRY |

Figure 5.31: The three unit-storeys that are described in Figure 5.32.

<core:cityObjectMember>
<gen:GenericCityObject>
<gen:doubleAttribute name="gerelateerdpand">
<gen:value>518100000308321</gen:value>
</gen:doubleAttribute>
<gen:intAttribute name="gid">
<gen:value>7417196</gen:value>
</gen:intAttribute>
<gen:doubleAttribute name="huisnummer">
<gen:value>78</gen:value>
</gen:doubleAttribute>
<gen:stringAttribute name="huisletter">
<gen:value>0</gen:value>
</gen:stringAttribute>
<gen:stringAttribute name="huisnummertoevoeging">
<gen:value>0</gen:value>
</gen:stringAttribute>
<gen:stringAttribute name="level">
<gen:value>2</gen:value>
</gen:stringAttribute>
<gen:doubleAttribute name="bouwjaar">
<gen:value>1991</gen:value>
</gen:doubleAttribute>
<gen:lod4Geometry>
<gml:Solid srsName="EPSG:28992" srsDimension:
<gml:exterior>
<gnl:CompositeSurface>
<gnl:surfaceMember>
<gnl:Polygon>
<gml:exterior>
<gnl:LinearRing>

<gml:posList>80871.967 454225.052 6.22066636880239 80876.165 454217.546 6.22066636880239 80867.135 454212.776 6
.22066636880239 80867.072 454212.897 6.22066636880239 80861.698 454222.864 6.22066636880239 80870.527 454227
628 6.22066636880239 80871.259 454228.023 6.22066636880239 80876.773 454231.04 6.22066636880239 80878.156
454228.353 6.22066636880239 80871.967 454225.052 6.22066636880239</gml: posList>
</gml:LinearRing>
</gnl:exterior>
</gml:Polygon>
</gml:surfaceMember>
<gnl:surfaceMenber>
<gml:Polygon>
<gml:exterior>
<gml:LinearRing>
<gml:posList>80871.967 454225.052 6.22066636880239 80878.156 454228.353 6.22066636880239 80878.156 454228.353 9
.33099955320358 80871.967 454225.052 9.33099955320358 80871.967 454225.052 6.22066636880239</gml: posList>
</gnl:LinearRing>
</gnl:exterior>
</gml:Polygon>
</gml:surfaceMember>
<gnl:surfaceMenber>
<gml:Polygon>
<aml:exterior>

Figure 5.32: Section of the GML code from the unit-storeys.

91

92

| IMPLEMENTATION & RESULTS

5.10 VALIDATION OF THE RESULTS

In this section the validation of the results will be discussed. The validation
of the buildings classified as Underground will be discussed first in Section
5.10.1. This part of validation is done manually. The other part of the
validation is done with use of a reference dataset. The content dataset will
be discussed in Section 5.10.2. Using this dataset it is possible to validate
the following results: the number of storeys per building (Section 5.10.3),
the number of storeys per unit (Section 5.10.4) and the location of the Unit-
storeys (Section 5.10.5).

5.10.1 Validation underground classification

The validation of the classification of underground structures is done manu-
ally by using streetview. In the test area of The Hague, only seven buildings
where classified with certainty as underground structures. The results of
the validation is shown in Figure 5.33. The four large structures are clas-
sified correctly and are underground parking lots. However, Figure 5.33i
shows that there are three small objects classified wrongly. These objects
are missing in reality and also do not have any related units within the BAG.
This may indicate that there is an error in the BAG and these items should
be removed.

5.10 VALIDATION OF THE RESULTS \

wﬂl Y A \g

-

(e) (f) Underground parking lot.

(9)

S
o o

(] (j) Error in the BAG.

Figure 5.33: The seven buildings that are classified als underground structures. The
figures on the left show the BAG-geometry and the pictures shows the
entrances of these underground structures (Images from [Google Maps,
2016]). The buildings in the last figure are incorrectly classified. This
may be due to an error in the BAG, further emphasized by the fact that
the buildings do not have any related units.

93

94

| IMPLEMENTATION & RESULTS

5.10.2 The reference dataset used for validation

In this section the content of the reference dataset will be discussed. The
which buildings are included in the dataset will be discussed first, followed
by the structure of the dataset. The dataset is provided by the municipality
of The Hague and is not available as open data.

Content of the dataset

The dataset describes buildings and units in the city center of The Hague.
It contains 9469 buildings and 36275 units. Not all buildings and units are
included in the dataset, only buildings with residential units. Hence, it is
not possible to validate units, or extract the number of floors for buildings
that have other functions. In figure 5.34 the difference between the test area
of The Hague and the reference dataset is visualized.

: BN SN
ez Ve i
NS D
(P NN o o
EANe o W\ S
SRS W
LSS S
Salzxs @Vl

W

Figure 5.34: Not all the buildings of the selected neighborhoods are part of the refer-
ence dataset, because the buildings contain units with other functions
or the buildings are outside the area. The buildings colored in red are
the buildings within the reference dataset.

Structure of the dataset

The Building-ID’s and the Unit-ID’s are similar to the identification number
in the BAG dataset which makes it easy to combine the data. In the reference
dataset the type of the unit is described in more detail. However, the biggest
difference between the BAG data and the data in the reference dataset is that
the latter stores information of every unit for every storey (Table 5.6). The
‘Start floor” column indicates at which floor the area that is used for living
starts. The "Floor number’ indicates the relative floor number within the
unit.

5.-10 VALIDATION OF THE RESULTS |

95

— . Unit type Start floor Floor Floor
Building-ID Unit-ID (code)yp (Unit) number area
0518100000339869 0518010000786435 A10 P 1 106
0518100000339869 0518010000387915 A22 1 1 46
0518100000339869 0518010000387915 A22 1 2 53
0518100000339869 0518010000753586 A22 1 1 59
0518100000339869 0518010000753586 A22 1 2 66
0518100000340011 0518010000856442 A75 P 1 38
0518100000340011 Ays P 2 47

0518010000856442

Table 5.6: Section of the reference WOZ dataset of The Hague. It is possible to extract
the number of floors of a building from this data: i.e. the building with ID
0518100000339869 has three different units. One of the units is based on
the ground floor, whereas the other two start at the first floor. These units
also include the corresponding floor above and, as such, the building has
a total of three floors.

5.10.3 Validation the number of storeys

Using the reference dataset, the number of storeys of a building can be cal-
culated. By summing the Start-floor and the Floor-number and looking up the
highest number for each building, the number of storeys is extracted. This
results in a simple dataset that includes the BAG ID of the building and the
number of storeys.

The accuracy of the calculated can be influenced by changing the thresh-
old. The chosen threshold was set at 3.0 meters, which resulted that 27%
of the buildings was classified as complex. Not all these buildings were ex-
cluded from the workflow because the buildings with only one related unit
were not excluded. When considering only the non-complex buildings, the
accuracy of the calculated number of storeys is 82%. Without any threshold,
this percentage is 67% (Figure 5.35).

The difference between the calculated number of storeys and the reference
dataset

100%
90%
80%
70%
60%
50%
40%
30%

Percentage of buildings

20%
10%

>

-5 -4 -3 2 -1 0 1 2 3 4 5
Calculated N storeys - reference N Storeys

0%

=—None =3 2,5 2 =15 —1

Figure 5.35: The accuracy of the number of storey calculation with the different
thresholds.

96

| IMPLEMENTATION & RESULTS

5.10.4 validating the number storeys per unit

It is possible to calculate the number of storeys for every unit from the
reference dataset. By grouping the Unit-ID’s and counting the number of
features in the groups this number is extracted from the data. This calcu-
lated number of storeys is compared to the number of Unit-storeys that
the workflow created for every unit. Because every step of the workflow in-
fluences the accuracy of the result, the inaccuracy of the calculated number
of storeys (accuracy of 82%) will also influence the accuracy of the number
of created Units-storeys.

The comparison shows that the calculated number of storeys is in general
slightly higher than the reference data (Figure 5.36). However, the calculated
number of storeys is similar to the reference dataset in 72% of all cases.

Calculated number of storeys per unit compared with reference data

80%
70%

60%

its

50%

=
<
=

30%

Percentage of un

20%
10%

0%
-5 -4 3 2 -1 0 1 2 3 4 5
Calculated N storeys - reference N storeys

Figure 5.36: The number of unit-storeys created during the workflow compared
to the reference dataset.

5.10.5 Validation the location of units over storeys

Since the Unit-storeys are similar to the way the reference dataset was set
up, it is also possible to check how many Unit-storeys are on the right
level. As such, a Unit-storey-key is created in both datasets. When both
datasets are merged on these created keys, the number of Unit-storeys that
are located right can be extracted. The result of this shows that 65% of the
Unit-storeys are located on the right storey. This validation is very strict, it
does not say anything about how close the result is to the reference dataset:
only of it is exactly the same. When only considering the buildings that had
the correct number of floors, this value is much higher (74%). However, it
should be noted that the reference dataset only included residential units.
Placing the units based on the function was therefore not possible.

The result of the validation shows that every step has influence on the
correctness of the result. All steps contribute to an error: the accuracy of
the calculated number of storeys per building (82% of the buildings correct),
the number of storeys per unit (in 72% of the cases right) and finally the
location of the unit-storeys (65%).

6 STORAGE OF THE 3D BAG

An open standard for storage and exchange of data is important for the
widespread dissemination of data. For storing the geometry of the BAG, flex-
ibility will be needed. This not only means that is has to be possible to
model the current state, in case there is no 3D geometry available, but that
it also has to provide the possibility to refine the model and add more detail.
In this chapter the possibilities for modeling the objects and buildings of ge-
ometry of the BAG within CityGML is discussed. The chapter will conclude
with a proposal for how to store the 3D BAG within CityGML.

6.1 CITYGML STANDARD

Currently the BAG is available as Extensible Markup Language (XML) data
combined with GML for the spatial data. In this research we focus on the
geometry part of the BAG. GML is the XML grammar which makes it possi-
ble to express geographical features. In 2008, OGC introduces the CityGML
standard in 2008. Same as GML, it makes it possible to store information
on a XML based encoding. But the CityGML differs because it provides a
standard model and mechanism for describing 3D objects geometry, topol-
ogy, semantics and appearance [Groger and Pliimer, 2012]. In particular the
CityGML focusses on the representation, storage and exchange of virtual
3D city and landscape models. In this standard, it is not only possible to
store building geometries, but many different types of features can also be
included. This makes it an ideal model for the complete 3D model, includ-
ing the BAG geometries. The use of a standard 3D model based on CityGML
has already proven its validity by the BGT, as discussed in section 3.2.4.

> R Y

LoLOo LOD] LOD2 LOL NCSOA

Figure 6.1: The LoD concept of CityGML includes five different levels for buildings:
from flat geometries to fully detailed models including the interior.

However, the standard model in the current structure of City GML 2.0 can-
not be directly used for the BAG, which represents a major drawback. The
CityGML standard was developed to represent physical objects and object
are more abstract; they do not follow the building hierarchy. This is not the
only problem, the current LoD concept of the CityGML standard describes
how detailed a building is modelled (Figure 6.1). There are five different

97

98

| STORAGE OF THE 3D BAG

level of details, ranging from building footprint (LOD1) to a fully detailed
model (LOD4). Only in LODy4, the interior of a building is included. How-
ever, the building should be modelled in full detail in order to use the LODj4.
Which is undesirable because the interior of buildings is far more detailed
than the location of units within a building.

This problem is noticed by OGC and may be solved because the topic of
refining and improving the LoD concept is currently under consideration
[Lowner and Groger, 2016]. Concepts of this version (CityGML 3.0) include
a new LoD concept in which the buildings are not longer central, but the
building features [Biljecki et al., 2016a]. Meaning that the building features,
such as the rooms and the storeys, can be modeled in different LODs. This
LoD concept would make it possible to store the BAG geometries in the ap-
propriate manner, however it is still not ideal because of the relation schema
of the CityGML buildings.

6.2 HOW TO FIT THE 3D BAG WITHIN THE CURRENT
CITYGML STANDARD

Multiple options exist to include information not defined by the CityGML
standard: (1) Store as Generic objects; (2) develop an application domain
extension (ADE); (3) store the information as aggregates; (4) extend the
CityGML 2.0 schema. Examples of these extension and their application
to model the BAG objects will be discussed in the following sections.

6.2.1 Generic objects and attributes

For objects and attributes that not belonging to any predefined classes it is
possible to create Generic objects and Attributes. As such, the build-
ing units can be stored as a new class. However, this class will not have a
relation within the CityGML scheme, which is undesirable as the relation
between the unit and building is inextricably connected.

6.2.2 Application Domain Extension

It is possible to extent the CityGML standard with an Application Domain
Extension (ADE). This is an extra formal schema based on the CityGML
schema definitions. The ADE allows the definition of classes, their relation-
ships and attributes. For applications that require a large number of new
features, the creation of an ADE is recommended, i.e. ADEs are available for
noise and flood models. The ADE concept differs from the Generic objects
and Attributes by the fact that an ADE has to be defined in an extra XML
schema definition file with its own namespace. This file has to explicitly im-
port the XML schema definition of the extended CityGML modules [van den
Brink et al., 2013b].

As discussed in section 3.2.4, IMGeo is developed as a specialization of
CityGML. This ADE extends CityGML with the Dutch 2D national Informa-

6.2 HOW TO FIT THE 3D BAG WITHIN THE CURRENT CITYGML STANDARD \

tion Model for large-scale Geo-information (IMGeo) [van den Brink et al.,
2013b]. This made it possible to extent the 2D data into 2.5D and 3D with
the same principles as CityGML. The Unified Modeling Language (UML) di-
agram of the building class for the IMGeo shows which features were added
to fit the building information within the CityGML standard. A new ADE
element is created and called Pand. This element is related to the original
CityGML feature type BuildingPart. Despite the link between the BAG and
the BGT, no ADE element for the objects are included. This directly results
in a problem within the schema; whereas the UML diagram shows that there
is a connection between the feature: Address and the _AbstractBuilding, in
the Netherlands a building is not an addressable object, only a unit.

ADEs have been proposed that can store units within buildings. The ADE
presented by Cada [2012] can be used for the storage and exchange of im-
movable property tax records based on the Turkish Civil Law. By the ADE,
the storage of condominium units that are part of a building is possible, in a
similar way as the BAG units. In addition, it is possible to store joint facilities
and cadastral parcels.

_cityObject _Feature
<<featureType>> <<featureType>>
CityGML Core::_Site CityGML Core::Address

<<featureType>>
Building::_AbstractBuilding

+ class: GenericName [0..1] <<featureType>>
M L“;;‘g‘e'%ei‘::i;";’:‘ae"‘[g[o]] +consistsOfBuildingParts Building::Buildingpart
+ yearOfConstruction: Year [0..1]
+ yearOfDemolition: Year [0..1] o o
+ roofType: GenericName [0..1] i .
+ measuredHeight: Length [0..1]

+ storeysAboveGround: i [0..1]
+ rund: N [0..1]
+ storey: d: MeasureOr [0..1]
+ storeyst round: MeasureOr! ist [0..1]

0..*

+outerBuildinglnstallation

0.+

<<featureType>> <<featureType>> <<ADEElement, BGT, objecttype>>
Building::Buildinglnstallation Building::Building Pand

+ class: GenericName [0..1] <<BGT, attribuuttypes> >
+ usage: GenericName [0.."] + identificatieBagPND: CharacterString

+ (0.

<<attributetype>>
+bgt-typeGebouwlnstallatie: GenericName [0..1]

+geometrie2DGrondvlak

<<ADEElement, objecttype>> <<geometry>>
Gebouwinstallatie GML::GM_MultiSurface
<<attribuuttypes>>
+ plus-typeGebouwinstallatie: GenericName [0..1]

+geometrie2DGebouwlnstallatie

<<type>>
GML::GM_surface

+lod0GeometryGebouwlnstallatie

0.

<<codeList, enumeratietype,BGT>>
codelists: TypeGebouwinstallatie

Nummeraanduidingreeks

<<codeList, enumeratietype>>
codelists: TypeGebouwinstallatiePlus

‘ <<ADEElement, BGT, i >

<<enumeratiewaarde>> <<BGT, enumeratiewaarde>> <<BGT, attribuuttypes>>

+ bordes + niet-bgt + nummeraanduidingreeks: Label

+ luifel B! VBOL i ; ing

+ toegangstrap + GVEO! c [0..1]

Figure 6.2: UML diagram of the IMGeo. The colors indicate which classes belong
to CityGML (yellow), BGT (beige) or IMGeo-optional (orange). Diagram
adjusted from van den Brink et al. [2013¢]

99

100

| STORAGE OF THE 3D BAG

6.2.3 Store model as LOD4 and create CityObjectGroups

A workaround has been developed for cases that the LoD concept does not
handle. CityGML 2.0 provides a method to group objects in case of building
complexes by aggregating them using the concept of CityObjectGroups. This
concept can also be used to aggregate objects that lie on the same floor to cre-
ate storeys, such as Rooms, Doors, Windows, IntBuildingInstallations and
BuildingFurniture Groger and Pliimer [2012]. In order to use this concept,
more detailed features should be included in the model. This aggregation
concept provides the possibility to model the unit-storeys as Rooms and ag-
gregating these in objects. When improving the model by including the real
rooms, this aggregation can still be used. However, the inclusion of the real
rooms desires the movement of the complete BAG to the LOD4 level at once.
Otherwise it will not be possible to possible to include all the units. This
will be impossible in practice.

6.2.4 My proposal for extending the CityGML standard

The IMGeo provides a solid structure for storing topographical information.
As the BAG buildings are currently already part of the IMGeo, my proposal
is to extent the IMGeo schema so it can include both units and buildings.
Shared spaces within a building will be included in the schema, providing
a logic step for improving the model as discussed in Section 3.4.

Within the building class, two new ADE elements are introduced; the
Units and the Shared-Space (Figure 6.3). These elements are part of the
building; without the building it is not possible to model these elements.
However, a building may or may not include objects or shared spaces. The
predefined attributes for objects will mostly be the same as in the current sit-
uation, but there are small differences. The CityGML feature type Address
is connected to the units, instead of the _AbstractBuilding, so it fits the Dutch
situation. It should be noted that the usage defined in _AbstractBuilding is
different to the usage defined for objects. The latter uses the classification
defined in the BAG. In this way, it is possible to classify different uses within
one building, which is currently not the case. The LoD concept discussed in
Section 3.4 is included in this diagram.

The proposed extension of CityGML IMGeo will enable the storage of
buildings and objects. Because the BGT is currently already available in this
format, the two datasets can be connected directly.

6.2 HOW TO FIT THE 3D BAG WITHIN THE CURRENT

_cityObject
<<featureType>>
CityGML Core:: Site

<<featureType>>
Building::_Abstractguilding

+ class: GenericName [0..1]

+ function: GenericName [0..']
+ usage: GenericName [0.."]

+ yearOfConstruction: Year [0..1]

+ yearOfDemolition: Year [0..1]

+ roofType: GenericName [0..1]

+ measuredHeight: Length [0..1]

+ storeysAboveGround: xs::nonNegativelnteger [0..1]
+ storeysBelowGrund: xs::nonNegativelnteger [0..1]
+ M 0

+ M ONilR:

[0..1]
List [0..1]

<<featureType>>
Building: Building

<<featureType>>

0.

0.0

+outerBuildingInstallation

<<featureType>>
Building: BuildingInstallation

+ class: GenericName [0..1]
+ usage: GenericName [0.."]

<<attributetype>>
+bgt-typeGebouwinstallatie: GenericName [0..1]

<<ADEElement, objecttype>>.
Gebouwinstallatie

<<attribuuttypes>>
+ plus-typeGebouwlnstallatie: GenericName [0..1]

‘+geometrie2DGebouwlnstallatie

<type>>
GML::GM_surface

istsOf

<<ADEElement, BGT, objecttype>>
Pand

<<BGT, attribuuttypes>>
+ identificatieBagPND: CharacterString
-

CITYGML STANDARD |

<<featureType>>
CityGML Core::Address

+address

Q
<<ADEElement, BAG object>>
Unit

+ IdentificatieBAGunit: CharacterString
+ Usage: GenericName [0.."]
+ Opperviakte: Area [0..1]

<<ADEElement, BAG object>>
Shared-space

+ IdentificatieBAGunit: CharacterString
+ Type: GenericName [0.."]
+ Oppenviakte: Area [0..1]

<<geometry>> Lopa
Geometry.
e lops J
LoD2
LoD1

<<ADEElement, BGT, groepsattribuuuttype>>
N

ummeraanduidingreeks

+ toegangstrap

<<codeList, enumeratietype>> <<codeList, enumeratietype,BGT>>.
codelists: i codelists: i
<<enumeratiewaarde>> <<BGT, enumeratiewaarde>>
+ bordes + niet-bgt
+ luifel

<<BGT, attribuuttypes>>
+ nummeraanduidingreeks: Label
S

+ i a

[0..1]

Figure 6.3: The proposed schema for extending the IMGeo. The objects colored in
blue are added to the current schema to fit the objects. The object colored
in beige belong to the IMGeo extension.

101

'7 CONCLUSIONS AND FUTURE
WO RK

In this thesis, I have investigated problems with the current state of the BAG
representation and the needs and opportunities for a 3D model of the BAG.
In addition, I have proposed one complete model in which the key registers
that contain spatial information are combined (Chapters 2 and 3). There-
after, I have investigated the possibility of automatically creating a LOD1
model of the BAG units, using the raw LIDAR points of the AHN3; dataset and
the current 2D geometry of the BAG. Although it is quite common to create a
LOD1 model from a LIDAR and 2D geometries in practice, I found multiple
uncertainties that influenced the accuracy of the created model. Further-
more, I have identified multiple problems that occur when applying the
method used in practice on the BAG geometry. Therefore, I have developed
a methodology that not only created a rough version of the 3D geometry
of the units, but also identified uncertainties and errors in the BAG (Chap-
ter 4). The uncertain parameters for the storey height and the threshold
for the complexity of a building, that ensures an accurate result were cal-
culated using a reference dataset. A workflow was implemented with the
BAG, the AHN3; and the building geometry of the BGT as input. After identi-
fying and excluding building with uncertain locations, complex geometries
or buildings that include complex units, the implementation creates a 3d
model including the unit-floors. These units were subsequently validated to
ensure the geometrically correctness of the created geometries (Chapter 5).
Finally, a proposal was created on how the current standard for the BAG can
be extended so it can include the units and their 3D geometry (Chapter 6).
The most important conclusions of the thesis will be summarized (Section
7.1), and future work (Section 7.2) and recommendations (Section 7.3) will
be proposed.

7.1 CONCLUSION

This conclusion section provides answers on the research questions pro-
posed in Section 1.1. First the sub research questions will be answered,
After which the main research question will be addressed.

What is the 3D BAG?
When I started this reserach there was no definition for the 3D BAG. Hence,
as discussed in Section 3.3, efforts are being made with the aim of creat-
ing 3D geometries of the BAG. The municipality of The Hague combined a
LOD:2 citymodel with their extended version of the BAG and also the munici-
pality of Rotterdam is combining their BAG+ with 3D models. In these cases,
the aim is to create geometries for the units within the building. However,
it was not yet defined how the data should be modelled and what would
be included. By exploring possible use cases and from discussions with ex-
perts, it became clear what should be included in the 3D BAG. In section 3.4

103

104

| CONCLUSIONS AND FUTURE WORK

I proposed my version for the 3D BAG. In my proposed model, the BAG ge-
ometry is part of a model that also includes the spatial data from the other
key registers. Importantly, a distinction is made between the geometry of
buildings and units in my proposed concept. However, there is still a re-
lation because the volumes of the units are bounded by the exterior of the
buildings when modelled in 3D. This distinction between building exterior
and the units enables the enhancement of the amount of detail in case more
information is available for both exterior as interior, i.e. doors and shared
spaced can be included.

Why are municipalities interested in a 3D version of the BAG?

There are different reasons why the municipalities are interested in a 3D
version of the BAG. The drawbacks of the current BAG representations (Sec-
tion 3.1) all involve uncertainty about the location and geometry of units
and buildings. From the geometry (and attributes), it is not clear how the
building relates to its surroundings or how the units are located within the
building. A 2D representation can not model the complexity of the build
environment in an unambiguous way. The interest in a 3D version of the
BAG does not only has his origin in the drawbacks of the current representa-
tion. When the buildings and units are modelled in 3D, new opportunities
for the BAG will arise (Section 3.4.3). A 3D model would make it possible
to combine the BAG with other datasets, such as the BGT. Especially when
the units are modelled separately, more accurate predictions can be done re-
garding spatial phenomena, such as noise and air pollution. Instead of the
building being the center point of these predictions, the units were people
stay become the subject. However, the municipalities also believe the op-
portunities of the 3D BAG for other organizations within the government,
for instance emergency services the 3D model can be used for navigation
within buildings, but the 3D model alone can already provide better insight
in the situation. Moreover, the tax authorities are also interested in a 3D BAG
due to the possibility that arises to detect fraud or errors in their data.

How can underground structures be detected?

Within the BAG there is no distinction between underground and above-
ground structures. Two methods are combined in order to provide certainty
about the location of the units. The LIDAR method is based on the clas-
sification of the LIDAR points and the density of these points. When there
are more other points than building points, the building is considered to lie
underground. The BGT method is based on the fact that the fact that build-
ings that are underground underground or that do not have a geometry on
ground level are not stored in the BGT. Both methods have their uncertain-
ties. However, by combining these methods buildings that lie completely
underground and buildings that lie above ground (with or without a base-
ment) can be identified with certainty.

How can the number of storeys of a building be calculated?
To calculate the number of storeys, different methods can be used. In Sec-
tion 4.2.1 the current practice and research is discussed on these methods.
In general there are two approaches. The first approach is based on the
internal nett floor area of the building. By using a factor to convert this
area to the gross floor area, an approximation of the number of floors can
be given when divided by the area of the polygon. However, the accuracy
of this method is discovered to be poor due to differences between the nett

7.1 CONCLUSION |

floor area and the gross floor area. Hence, a conversion table based on the
year and use of a unit is not accurate in practice. The second approach is
based on extracting height data from a LIDAR dataset a dividing this height
by an average storey height. Which height value for the building has to be
extracted: the gutter height, median, maximum or average, is not defined.
The storey height by which the building height has to be divided is also
unclear. Biljecki et al. [2017] describes that there is a connection between
attributes like building year and use of a building and the average storey
height, but reference data is needed to define the parameters that enable the
use of this knowledge.

For calculating the number of storeys of a building, the maximum height
(top goth percentile) is extracted from the LIDAR points that are classified as
building points and are located within the building polygon. The minimum
height of the building is extracted using the median of the ground points
located around the building. By subtracting the maximum and minimum
height, the building height is calculated. This height is divided by the aver-
age storey height calculated from a reference dataset.

Because a LOD1 model is created, there are cases in which this method is
not sufficient. To make sure that the height extracted from the points be-
longs to the right building, building polygons that have large overlaps with
other building polygons have to be excluded.

The difference between the maximum and median height of the buildings
points influences the accuracy of the calculated number of storeys. A thresh-
old was introduced regarding the difference of this maximum and median
of the building points. When comparing the results with a reference dataset,
a threshold of 1.0 would give in 95% of the cases a correct number of storeys.
Hence, 85% of the building was excluded with this threshold. With a thresh-
old of 3.0, the number of storeys was calculated right for 83% of the build-
ings.

What logic can be used for placing units on building storeys?
The first step is to find the related units of the buildings. The relation be-
tween the buildings and the units is defined both geometrically and by an
identifier. Problems can occur regarding the location of the points. As such,
the use of the identified is preferred. As discussed in Section 3.1.3, locat-
ing the units by using the location of the point geometries is not possible.
Hence, a new method for placing the units had to be developed.

Although the nett floor area of the units is not directly related with the

gross floor area of the building, the difference between the nett floor area of
multiple units can be used to locate the unit within the building. By combin-
ing the ratios between the units with the number of storeys, it is possible to
estimate how much of a unit occupies a storey. For example: in cases with
two units within a three storey building, if the first unit has an nett floor
area that is two times bigger as the second unit. It can be assumed that this
unit occupies two storeys and the other unit only one.
To determine on which floors the units lie, the units should be ordered. At-
tributes used for this ordering include the house letter, the addition, the
function, the area and the house number. Based on these attributes an order
was created to divide the units over the storeys (Section 4.4.1).

How can floors be divided using the information within the BAG? Dividing
the storeys in order to create the unit-storeys is strongly connected to the

105

106

| CONCLUSIONS AND FUTURE WORK

storeys of the units in the developed method. The area of the units can
be used to divide the polygon (Section 4.5. Creating a centerline from the
straight skeleton of the polygon, to place the units gives visually good re-
sults. However, in case of complex buildings the methodology can result in
problems, visually and regarding the created area size (Section 5.8.3). More
information is needed to improve the accuracy of the created storeys.

Which uncertainties in the BAG and lack of information can not be solved with
information from other sources? There are uncertainties within the BAG that
cannot be solved with the use of other available information. The location
of the building cannot be unambiguously determined in every case. When
combining the developed LIDAR and BGT method, buildings that lie partly
underground or are located above the first level can not be identified as such
(Section 4.1). However, even when both buildings are located above ground
uncertainties occur. When building polygons intersect, it is not clear how
the buildings are intersecting in reality. The main uncertainty in the BAG
is the location of the units. In Section 3.1.3 this uncertainty is discussed.
Currently there is no open data available that can provide certainty about
the storey level or the location of the units within the storey. The created
methodology is only based on assumptions and heuristics.

Which uncertainties had the most influence on the automatic creation of the 3D
BAG? Because I created a LOD1 version of the BAG, it was not possible to cre-
ate 3D geometries for every building. The buildings that had to be excluded
because of complexity within the building was large, almost 28% (Section
5.5.4). Moving from LOD1 to LOD2 will solve this problem. As there was no
information available about the location of the units with the buildings, this
influences the final result. Compared to the reference set, 81% of the units
that were modelled were located on the right storey (Section 5.7.3). This is
a high numbers, because most buildings only have one or two related units.
No information about the location of the units on the storeys was available,
making it impossible to validate the results.

Is it possible to combine the 3D geometries of the BAG with other key registers?
As proposed in Section 3.4, combining the 3D BAG geometries with other
spatial data of the key registers would create new opportunities for the us-
age of the data. Although the BGT is currently integrated with the CityGML
standard that enables the storage of 3D city models, it is currently not pos-
sible to include the created 3D BAG geometries within this model. The main
reason is that feature type for units is currently missing. In Section 6.2.4 I
proposed an extension of the current CityGML IMGeo ADE which would
enable the storage of 3D solids of the units.

How to define the 3D BAG and to which extent can the current available open
data be used to create 3D geometries of the BAG units?
The 3D BAG is the geometrical part of the BAG which models the exterior of
the building, however it also includes the units and possibly the features in
the shared spaces, such as the staircases and entrances. The geometries of
the 3D BAG have a geographical location that enables the connection with
the other key registers, such as the BGT.
In this research I explored the possibility of creating 3D geometries of the
BAG units from open data. The uncertainties in the BAG and the lack of infor-
mation about the buildings (the number of storeys, the location, etc.) and

7.2 FUTURE WORK |

the units (storey level, location on storey) made the creation of a fully accu-
rate 3D model impossible. Hence, the developed methodology proved to to
enable a correct 3D model of most buildings good results for most buildings.
The largest part of the BAG buildings only have 1 or 2 related units (Section
5.6.2). And when dividing the units over storeys, the result showed that
almost 75% of the storeys was only related to one unit (Section 5.7.3).
However, during my investigation of the possibility to create a 3D BAG, many
uncertainties within the BAG were identified (Section 3.1). Although the
created methodology and implementation could be further improved, the
uncertainties and lack of information about the location of the units will
always considerably influence the accuracy of the final result.

7-2 FUTURE WORK

In this section the future work will be discussed for the creation of the 3D
geometries of the BAG. The suggestions that are provided in this section
are only related to the developed methodology, not on the data acquisition.
This will be discussed in Sectiony.3.1. These suggestions would improve the
current result with the same data.

7.2.1 Storey height based on parameters

As discussed in Section 4.2.1, a parameter for the storey height based at-
tributes, such as the year of construction, the function and the location,
would possibly increase the accuracy of the calculated number of storeys.
More research is needed to know the exact influences of these attributes
on the storey height. Hence, more reference data should be acquired and
researched.

7.2.2 Improving the city model

The next step would be to improve the level of detail of the building exterior.
As discussed in Section 4.2.1, a lot of research has been performed on cre-
ating 3D city models from LIDAR, photogrammetry and building footprints.
When the roofs of the buildings are modelled in more detail, also the storeys
can be created more accurate. This would also enable the calculation of the
floor area of the different storeys, which could then be used for placing the
units. It would then be unnecessary to exclude complex buildings. How-
ever, the research aiming at improving the level of detail of the buildings do
not always take into account the complex building configurations. For a full
correct model these cases should also be modelled.

7.2.3 Partitioning

The developed partitioning method should be improved in order to create a
more accurate approximation of reality. Area partitioning is a complex mat-
ter and not much research is performed related to the partitioning of floor
plans. The partitioning based on the nett floor area of the units alone will
not always provide the desired result. Two approaches will be discussed on

107

108

| CONCLUSIONS AND FUTURE WORK

how the partitioning can be improved.

To improve the current method, the partitioning could combine more
knowledge about the building. An example is to create building compart-
ments with the use of directional lines (Section 4.5.1). These building com-
partments would then be divided into smaller units with ‘building logic’.
The location and direction of the centerline should be designed in a way
that residential units are always connected to an outer wall. Other restric-
tions could be included, such as the fact that building units are not smaller
than 3 meters and the cutline is always perpendicular to the centerline.

Another approach would be to firstly identify the type of a building.
Building primitives can be developed that include the topological relations
between the entrances, shared spaces and units. This type could then be
used to divide the building in a specific way. For example, gallery flats for
example have a common floor plan. The topology between the main en-
trance, the staircases, the galleries and the residential units will be exactly
the same in most cases. This knowledge could be used to partition the build-
ings and would enable the estimation of the location of shared spaces and
entrances.

7-3 RECOMMENDATIONS

In this Sections recommendations are posed for the creation of a nationwide
3D BAG. The main focus is on the data acquisition and the possibility to
combine the BGT with the BAG.

7.3.1 Data acquisition

There are many uncertainties in the BAG that cannot be solved using other
data sources. To enable the creation of an accurate 3D BAG possible, data
should be acquired with that purpose in mind. Not all data has to be ac-
quired in the field. Combining the BAG with other datasets (Section 2.2.2)
will make the creation of the 3D BAG more straightforward. However, this
data will not be available in every municipality so an inventory of the avail-
able information should be made first.

To create the first level of detail proposed in section 3.4, only the num-
ber of storeys of a building is required and on which storey the units lie.
This information may already be available in certain municipalities (the ref-
erence dataset provided by the municipalitie of The Hague includes this
information). This data can be acquired with relatively small effort and will
drastically improve the accuracy of the model.

To create the second level of detail, the geometry of the unit becomes
important. In this level, the location of the unit is topologically ordered
(neighbors are next to each other). The point geometry of the units will be
sufficient in most cases, where the points are logically placed, e.g. locating
the points in the middle of the units. This is already common practice in
some municipalities, as is the case for the storey of the units. However, a
defined standard for placing the points is desirable when using this infor-

7-3 RECOMMENDATIONS \

mation for the placement of the units.

The third and fourth level of detail include the shared spaces and the en-
trances of a building. To achieve this accuracy, more detailed information
about the building is needed. For a fully accurate model, data has to be
acquired manually or reconstructed from building plans. Hence, using the
second approach discussed in 7.2.3, it would also be possible to approximate
the reality by only creating topologic graphs from the building. However,
more research is needed on the feasibility of this proposed method.

7.3.2 Combine BGT and BAG geometrically

To make it possible to store the data and adding value to both datasets the
BGT and BAG can be combined. The difference between how the buildings
are modelled (Section 2.3) will no longer cause interoperability problems
when a the geometry moves to a 3D representation.

Combining the dataset is currently not possible, however the CityGML IM-
Geo standard provides a solid base that can be further extended (Section
6.1). The LoD concept of CityGML should be adjusted in order to store the
geometry of the units without the need for storing the building geometry
in LOD4. When these adjustments are made and the 3D BAG geometries are
included within the model, new possibilities will arise for many current and
future users of these key registers.

109

BIBLIOGRAPHY

Aichholzer, O., Aurenhammer, F, Alberts, D., and Gartner, B. (1995). A
novel type of skeleton for polygons. Journal of Universal Computer Sci-
ence, 1(12):752—761.

Alahmadi, M., Atkinson, P., and Martin, D. (2016). Estimation of the Spatial
Distribution of Urban Population using Remotely Sensed Satellite Data
in Riyadh , Saudi Arabia. 44(0).

Armaselu, B. and Daescu, O. (2015). Algorithms for fair partitioning of
convex polygons. Theoretical Computer Science, 607:351-362.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z.
(2007). The Semantic Web: 6th International Semantic Web Conference, 2nd
Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea,
November 11-15, 2007. Proceedings, chapter DBpedia: A, pages 722-735.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Aurenhammer, F. (1991). Voronoi Diagrams A Survey of a Fundamental
Data Structure. ACM Computing Surveys, 23(3):345—405.

Bast, H. and Hert, S. (2000). The Area Partitioning Problem. 12th Canadian
Conference on Computational Geometry, pages 163-172.

Biljecki, F, Ledoux, H., and Stoter,]. (2016a). An improved LOD specification
for 3D building models, volume 59.

Biljecki, F, Ledoux, H., and Stoter, J. (2017). Generating 3D city models
without elevation data. Computers, Environment and Urban Systems, Un-
der review.

Biljecki, F., Ledoux, H., Stoter, J., and Vosselman, G. (2016b). The variants of
an LOD of a 3D building model and their influence on spatial analyses.
ISPRS Journal of Photogrammetry and Remote Sensing, 116:42-54.

Boeters, R. (2013). Automatic enhancement of CityGML LoD2 models with
interiors and its usability for net internal area determination. Technical
report, Tu Delft.

Boeters, R., Arroyo Ohori, K., Biljecki, F.,, and Zlatanova, S. (2015). Auto-
matically enhancing {CityGML} {LOD2} models with a corresponding
indoor geometry. International Journal of Geographical Information Science,
pages 1-21.

Broeke, J. (2016). NLExtract. Retrieved May s5th, 2016, from http://www.

nlextract.nl/.

Cada, V. (2012). An application domain extension to citygml for immovable
property taxation: A Turkish case study. International Journal of Applied
Earth Observation and Geoinformation, 21(1):545-555.

Commandeur, T. J. F. (2012). Footprint decomposition combined with point
cloud segmentation for producing valid 3D models. (March).

111

http://www.nlextract.nl/
http://www.nlextract.nl/

112

| BIBLIOGRAPHY

de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. (2000).
Computational Geometry, volume 28.

Diaz-Vilarifio, L., Khoshelham, K., Martinez-Sénchez, J., and Arias, P. (2015).
3D modeling of building indoor spaces and closed doors from imagery
and point clouds. Sensors (Basel, Switzerland), 15(2):3491-3512.

Digitale Overheid (2016). Stelsel van Basisregistraties.

Elberink, S. O., Stoter, J., Ledoux, H., and Commandeur, T. (2013). Gener-
ation and Dissemination of a National Virtual 3D City and Landscape
Model for the Netherlands. 79(2):147-158.

Ellenkamp, Y., Rietdijk, M., and Hulscher, B. (2007). Oppervlakte
Verdiepingsdocument voor gemeenten. Technical Report Versie 2.0 (de-
cember 2007), Ministerie van VROM, Den Haag.

Emgard, L. and Zlatanova, S. (2007). Design of an integrated 3D information
model. Urban and regional data management: UDMS annual, pages 143—
156.

Farin, G., Hoffman, D., and Johnson, C. R. (2006). Triangulations and Applica-
tions.

Fodor, Z. (2015). ArtStation - 3D City model, Zoltdn Fodor.

Gemeente Amsterdam (2016a). Functiekaart in 3D. Retrieved May 6th,
2016, from https://pbs.twimg.com/media/Cg{_}431iUkAAwbNm. jpg:
large/.

Gemeente Amsterdam (2016b). Objectklasse verblijfsobject. Retrieved April
11, 2016, from https://www.amsterdam.nl/stelselpedia/bag-index/
catalogus-bag/objectklasse-0/.

Gemeente Rotterdam (2011). Rotterdam 3d. Retrieved April 5, 2016, from
http://www.rotterdam.nl/rotterdam{_3}3d.

Geodan (2016). Dynamisch 3D model voor Gemeente Den Haag -
Geodan. Retrieved July 17, 2016, from http://www.geodan.nl/
dynamisch-3d-model-gemeente-haag/.

Geonovum (2015). Eenvoudiger realiseren van func-
tiekaart plangebied. Retrieved ~ April sth, 2016,
from http://www.geonovum.nl/wegwijzer/inspiratie/

eenvoudiger-realiseren-van-functiekaart-plangebied.

Google (2016). Ammunitiehaven. Retrieved April 4th, 2016, from
https://www.google.nl/maps/052.077103,4.3201057, 3a, 75y, 30.
08h,94.12t/data=!3m6!1e1!3m4!1sbYcIOHebcBVBVQEapY3suw!2e0!
7113312!8i6656

Google Maps (2016). Den Haag Centraal - Google Maps. Re-
trieved April 4th, 2016, from https://www.google.nl/maps/
place/Den+Haag+Centraal/@52.0812338,4.323752, 18z/data=
13m1!5s0x47c5b71775dcaf9b:0xcfellfeed473a618!4m5!3mé!
1s0x47c5b7179eb1cb57:0x45853774d5de7d6d ! 8m2!3d52.0812762!
4d4.3239063.

Groger, G. and Pliimer, L. (2012). CityGML Interoperable semantic 3D city
models. ISPRS Journal of Photogrammetry and Remote Sensing, 71:12—33.

https://www.amsterdam.nl/stelselpedia/bag-index/catalogus-bag/objectklasse-0/
https://www.amsterdam.nl/stelselpedia/bag-index/catalogus-bag/objectklasse-0/
http://www.geodan.nl/dynamisch-3d-model-gemeente-haag/
http://www.geodan.nl/dynamisch-3d-model-gemeente-haag/
http://www.geonovum.nl/wegwijzer/inspiratie/eenvoudiger-realiseren-van-functiekaart-plangebied
http://www.geonovum.nl/wegwijzer/inspiratie/eenvoudiger-realiseren-van-functiekaart-plangebied
https://www.google.nl/maps/@52.077103,4.3201057,3a,75y,30.08h,94.12t/data=!3m6!1e1!3m4!1sbYcI0HebcBVBVQEapY3suw!2e0!7i13312!8i6656
https://www.google.nl/maps/@52.077103,4.3201057,3a,75y,30.08h,94.12t/data=!3m6!1e1!3m4!1sbYcI0HebcBVBVQEapY3suw!2e0!7i13312!8i6656
https://www.google.nl/maps/@52.077103,4.3201057,3a,75y,30.08h,94.12t/data=!3m6!1e1!3m4!1sbYcI0HebcBVBVQEapY3suw!2e0!7i13312!8i6656
https://www.google.nl/maps/place/Den+Haag+Centraal/@52.0812338,4.323752,18z/data=!3m1!5s0x47c5b71775dcaf9b:0xcfe11fee4473a618!4m5!3m4!1s0x47c5b7179eb1cb57:0x45853774d5de7d6d!8m2!3d52.0812762!4d4.3239063
https://www.google.nl/maps/place/Den+Haag+Centraal/@52.0812338,4.323752,18z/data=!3m1!5s0x47c5b71775dcaf9b:0xcfe11fee4473a618!4m5!3m4!1s0x47c5b7179eb1cb57:0x45853774d5de7d6d!8m2!3d52.0812762!4d4.3239063
https://www.google.nl/maps/place/Den+Haag+Centraal/@52.0812338,4.323752,18z/data=!3m1!5s0x47c5b71775dcaf9b:0xcfe11fee4473a618!4m5!3m4!1s0x47c5b7179eb1cb57:0x45853774d5de7d6d!8m2!3d52.0812762!4d4.3239063
https://www.google.nl/maps/place/Den+Haag+Centraal/@52.0812338,4.323752,18z/data=!3m1!5s0x47c5b71775dcaf9b:0xcfe11fee4473a618!4m5!3m4!1s0x47c5b7179eb1cb57:0x45853774d5de7d6d!8m2!3d52.0812762!4d4.3239063
https://www.google.nl/maps/place/Den+Haag+Centraal/@52.0812338,4.323752,18z/data=!3m1!5s0x47c5b71775dcaf9b:0xcfe11fee4473a618!4m5!3m4!1s0x47c5b7179eb1cb57:0x45853774d5de7d6d!8m2!3d52.0812762!4d4.3239063

BIBLIOGRAPHY |

Hfb (2016). Project Leidsche Rijn Centrum. Retrieved July 7, 2016, from
http://www.hfb-groep.nl/LeidscheRijnCentrum.

Hong, S., Jung, J., Kim, S., Cho, H., Lee, J., and Heo, J. (2015). Semi-
automated approach to indoor mapping for 3D as-built building infor-
mation modeling. Computers, Environment and Urban Systems, 51:34—46.

ISO (2003). ISO 19107:2003: Geographic informationSpatial schema.

Kada, M. (2006). Generalization of 3D Building Models for Map-Like Pre-
sentations. Archives, (2002).

Kada, M. and McKinley, L. (2009). 3D Building Reconstruction from LIDAR
based on a Cell Decomposition Approach. CMRTog: Object Extraction
for 3D City Models, Road Databases and Traffic Monitoring - Concepts, Algo-
rithms and Evaluation, XXXVIII:47-52.

Kadaster (2016). Wereldprimeur: inschrijving met rechten in 3D.

Khetarpal, S. (2014). Dividing A Polygon In Any Given Number Of Equal
Areas. Retrieved Juanuari 2th, 2016, from http://www.khetarpal.org/
polygon-splitting/.

Lafarge, F. and Mallet, C. (2012). Creating large-scale city models from
3D-point clouds: A robust approach with hybrid representation. Inter-
national Journal of Computer Vision, 99(1):69-85.

Ledoux, H. (2013). On the validation of solids represented with the interna-
tional standards for geographic information. Computer-Aided Civil and
Infrastructure Engineering, 28(9):693-706.

Lee, J. and Zlatanova, S. (2008). A 3D data model and topological analyses
for emergency response in urban areas. Geospatial Information Technology
for Emergency Response, pages 143-167.

Lingas, A., Lingas, A., Pinter, R., Pinter, R., Rivest, R., Rivest, R., Shamir, A.,
and Shamir, A. (1982). Minimum edge length partitioning of rectilinear
polygons.

Lowner, M. O. and Groger, G. (2016). Evaluation Criteria for Recent LoD
Proposals for City-GML Buildings. Photogrammetrie - Fernerkundung -
Geoinformation, 1:31—43.

Microsoft (2016). Sebastiaansplein. Retrieved July 22, 2016, from http://
www.bing.com/maps/7FORM=Z9LH3.

Ministerie =~ van Binnenlandse @~ Zaken en Koninkrijksrelaties
(2014). Interactieve Stelselplaat. Retrieved May 6, 2016,
from https://www.digitaleoverheid.nl/onderwerpen/
stelselinformatiepunt/stelselthemas/verbindingen/
verbindingen-tussen-basisregistraties.

Ministerie van Binnenlandse Zaken en Koninkrijsrelaties (2016). Ba-
sisregistratie Grootschalige Topografie (BGT). Retrieved May
10, 2016, from http://www.digitaleoverheid.nl/onderwerpen/
stelselinformatiepunt/stelsel-van-basisregistraties/
1493-basisregistratie-grootschalige-topografie-bgt.

113

http://www.hfb-groep.nl/LeidscheRijnCentrum
http://www.khetarpal.org/polygon-splitting/
http://www.khetarpal.org/polygon-splitting/
http://www.bing.com/maps/?FORM=Z9LH3
http://www.bing.com/maps/?FORM=Z9LH3
https://www.digitaleoverheid.nl/onderwerpen/stelselinformatiepunt/stelselthemas/verbindingen/verbindingen-tussen-basisregistraties
https://www.digitaleoverheid.nl/onderwerpen/stelselinformatiepunt/stelselthemas/verbindingen/verbindingen-tussen-basisregistraties
https://www.digitaleoverheid.nl/onderwerpen/stelselinformatiepunt/stelselthemas/verbindingen/verbindingen-tussen-basisregistraties
http://www.digitaleoverheid.nl/onderwerpen/stelselinformatiepunt/stelsel-van-basisregistraties/1493-basisregistratie-grootschalige-topografie-bgt
http://www.digitaleoverheid.nl/onderwerpen/stelselinformatiepunt/stelsel-van-basisregistraties/1493-basisregistratie-grootschalige-topografie-bgt
http://www.digitaleoverheid.nl/onderwerpen/stelselinformatiepunt/stelsel-van-basisregistraties/1493-basisregistratie-grootschalige-topografie-bgt

114 | BIBLIOGRAPHY

Ministerie van Infrastructuur en Milieu (2016). Basisregistraties
Adressen en gebouwen. Retrieved June 4, 2016, from
http://www.basisregistratiesienm.nl/basisregistraties/
adressen-en-gebouwen.

Rietdijk, M. (2009). Catalogus basisregistraties adressen en gebouwen. Tech-
nical report, Ministerie van Volkshuisvesting, Ruimtelijk Ordening en
Milieubeheer, Den Haag.

Rottensteiner, F. and Briese, C. (2002). A new method for building extraction
in urban areas from high-resolution LIDAR data. International Archives
of Photogrammetry and Remote Sensing, XXXIV(3):295-301.

Skiena, S. S. (2008). The Algorithm Design Manual, volume 1.

Statisfact (2015). Tevredenheidsonderzoek BAG 2015. Technical report, Stat-
isfact, Utrecht.

Thomas H. Kolbe, Gerhard Konig, C. N. (2011). Advances in 3D Geo-
Information Sciences. Springer, page 310.

van Boxtel, R. H. L. M. (2001). Brief minister over de voortgang van het
programma Stroomlijning Basisgegevens.

van den Brink, L., Stoter, J., and Zlatanova, S. (2013a). Establishing a national
standard for 3D topographic data compliant to CityGML. International
Journal of Geographical Information Science, 27(1):92—113.

van den Brink, L., Stoter, J., and Zlatanova, S. (2013b). UML-based approach
to developing a citygml application domain extension. Transactions in
GIS, 17(6):920-942.

van den Brink, L., van Eekelen, H., and Reuvers, M. (2013c). Basisregistratie
Grootschalige Topografie: Gegevenscatalogus IMGeo 2.1.1.

van Duivenboden, H. and de Vries, M. (2003). Stroomopwaarts! Kroniek
van het Programma Stroomlijning Basisgegevens. Technical report, Den
Haag.

Verma, V., Kumar, R., and Hsu, S. (2006). 3D building detection and model-
ing from aerial LIDAR data. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, volume 2, pages
2213-2220.

Visser, P. and Van Dam, F. (2006). De prijs van de plek. Technical report,
Ruimtelijk Planbureau, Den Haag.

Wagner, D., Wewetzer, M., Bogdahn, J., Alam, N., Pries, M., and Coors,
V. (2013). Progress and New Trends in 3D Geoinformation Sciences.
Progress and New Trends in 3D Geoinformation Sciences, pages 299—314.

Wikimedia Commons (2007a). Delft Poptahof. Retrieved May
22, 2016, from https://commons.wikimedia.org/wiki/File:
Delft{_}Poptahof . JPG.

Wikimedia Commons (2007b). Spui. Retrieved May 22, 2016, from https:
//commons.wikimedia.org/wiki/File:Spui. JPG.

Wikimedia Commons (2014). Unilever “De Brug”. Retrieved
May 22, 2016, from https://commons.wikimedia.org/wiki/File:
Unilever{%}22The{_}Brug{’}22. JPG.

http://www.basisregistratiesienm.nl/basisregistraties/adressen-en-gebouwen
http://www.basisregistratiesienm.nl/basisregistraties/adressen-en-gebouwen
https://commons.wikimedia.org/wiki/File:Spui.JPG
https://commons.wikimedia.org/wiki/File:Spui.JPG

COLOPHON

This document was typeset using IXIgX. The document layout was gen-
erated using the arsclassica package by Lorenzo Pantieri, which is an
adaption of the original classicthesis package from Andr Miede.

	1 Introduction
	1.1 Research objectives and questions
	1.2 Research scope
	1.3 Outline of this thesis

	2 Background information about the system of key registers of the Netherlands
	2.1 Overview of the key registers
	2.2 Basisregistratie Adressen en Gebouwen (BAG)
	2.2.1 Object classes
	2.2.2 BAG+
	2.2.3 Usage of the BAG

	2.3 Basisregister Grootschalige Topografie (BGT)

	3 Needs and opportunities for a 3D version of the BAG
	3.1 Drawbacks of current 2D BAG representation
	3.1.1 Underground and above-ground structures
	3.1.2 Complex building configurations
	3.1.3 Unit location

	3.2 Current movement to 3D information
	3.2.1 Dutch Cadastre
	3.2.2 Top10NL 3D
	3.2.3 Municipalities
	3.2.4 BGT IMGeo

	3.3 Current work on the development of the 3D BAG
	3.3.1 Den Haag
	3.3.2 Rotterdam

	3.4 My proposal for the 3D BAG
	3.4.1 One complete model
	3.4.2 How the 3D BAG geometries should be modelled to fit within this model
	3.4.3 The opportunities that will arise when the BAG geometry moves to 3D

	4 My methodology for creating 3D geometries for the BAG units
	4.1 Classifying underground buildings
	4.1.1 Using density of LiDAR data to detect underground structures
	4.1.2 Using the BGT to detect underground structures

	4.2 Calculating number of storeys above ground
	4.2.1 Related work for calculating the height and the number of storeys of buildings
	4.2.2 Exclude complex building configurations
	4.2.3 Calculating the height of a building
	4.2.4 Detect complex buildings.

	4.3 Divide units over buildings
	4.3.1 Assign units to multiple related buildings
	4.3.2 Combining multiple units within one building

	4.4 Divide units over storeys
	4.4.1 Ordering the units
	4.4.2 Placing the units on floor levels

	4.5 Divide the storeys to create the unit-storeys
	4.5.1 Related work for area partitioning
	4.5.2 Creating the centerline
	4.5.3 Data driven partitioning combined with region growing
	4.5.4 Create cutlines by iterating over centerline
	4.5.5 Comparison of the the developed partitioning methods

	4.6 Creating and validating the 3D geometry of the unit-floors
	4.6.1 Creating the geometry
	4.6.2 Validating the geometry

	4.7 Validation of the results with reference dataset

	5 Implementation & results
	5.1 Tools
	5.2 Test areas
	5.3 Obtaining and preparing the data
	5.3.1 BAG Extract
	5.3.2 BGT and AHN3

	5.4 Step 1: Classify underground buildings
	5.4.1 LIDAR- and BGT-method
	5.4.2 Result of underground identification methods

	5.5 Step 2: Calculating the number of storeys above ground
	5.5.1 Extract height values from point cloud
	5.5.2 Detect complex buildings and configurations
	5.5.3 Calculate the average storey height and set complex building threshold with use of the reference dataset
	5.5.4 Result of calculating the number of storeys

	5.6 Step 3: Divide units over buildings
	5.6.1 Assigning the units
	5.6.2 Result of dividing units over buildings

	5.7 Step 4: Divide units over storeys
	5.7.1 Ordering units
	5.7.2 Placing the units on floor levels
	5.7.3 Result of dividing the units of the storeys

	5.8 Step 5: Divide storeys
	5.8.1 Creating centerlines and finding starting points
	5.8.2 Creating cutlines by iteration
	5.8.3 Results of dividing storeys

	5.9 Step 6: Create and validate the geometry
	5.9.1 Creating and writing geometry
	5.9.2 Result and validation of geometry

	5.10 Validation of the results
	5.10.1 Validation underground classification
	5.10.2 The reference dataset used for validation
	5.10.3 Validation the number of storeys
	5.10.4 validating the number storeys per unit
	5.10.5 Validation the location of units over storeys

	6 Storage of the 3D BAG
	6.1 CityGML Standard
	6.2 How to fit the 3D BAG within the current CityGML standard
	6.2.1 Generic objects and attributes
	6.2.2 Application Domain Extension
	6.2.3 Store model as LOD4 and create CityObjectGroups
	6.2.4 My proposal for extending the CityGML standard

	7 Conclusions and future work
	7.1 Conclusion
	7.2 Future work
	7.2.1 Storey height based on parameters
	7.2.2 Improving the city model
	7.2.3 Partitioning

	7.3 Recommendations
	7.3.1 Data acquisition
	7.3.2 Combine BGT and BAG geometrically

