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ABSTRACT

A turbulent flow is composed of swirling eddies of many sizes. Energy, which is added to the flow at the larger
scales, is transferred down through consecutively smaller eddies until the scale is small enough that viscous
forces dominate, at which point the energy is dissipated [1]. The mechanism by which energy is transferred
down the scales of eddies is generally described as eddy break-up, but the process of eddies breaking into
smaller eddies has never been directly observed. The objective of this research is to identify and visualize
eddies and their breakage into smaller eddies in numerically simulated isotropic turbulence flows. A corre-
lation vector is defined at each point in space, based upon the dot product of velocity over spatial distance.
This function shows eddies as the result of correlation over the entire field for each point, in contrast to ear-
lier eddy identification techniques which focus only on local properties of the flow, such as kinetic energy
magnitude [2]. The resultant correlation field shows blobs of high correlation, which can be interpreted as
the kernel of a coherent structure in the flow. These kernels can be seen splitting into smaller kernels over
time — an indication of the turbulent energy cascade at work. Making use of the Biot-Savart law, the veloc-
ity field associated with a coherent blob of correlation is generated from the associated vorticity field. The
reconstructed velocity field is vortex-like in structure, and appears to break into two separate vortices as the
kernel separates into two distinct kernels, yielding a visualization of turbulent eddy dynamics in real space
— the first step towards the visualization of the turbulent energy cascade.
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1
INTRODUCTION

Most flows around you are turbulent. Consider the mixing of milk into your coffee, the flow of air above a can-
dle, the foaming mess at a waterfall’s base; turbulence is everywhere. Being able to accurately describe these
flows, and being able to predict how they will develop, is an active area of research. Advancements in this
field give rise to advancements in industrial chemical engineering, medicine, weather prediction, geophysics
and many other areas to which the modelling of turbulent flows is integral.

In addition to its use in furthering scientific knowledge in the above-mentioned fields, research into tur-
bulent flows is motivated simply by its enigma. The elegant patterns inherent to turbulence, whose complex
behaviour arises from ‘simple’ laws, should in and of itself be reason enough to warrant further research. With
this beauty come other benefits: staring into the turbulent flames of a campfire reduces blood pressure[3],
and it has been theorized that the act of gathering around a fire at night is what led to the development of
singing, dancing, storytelling and many other foundations of culture[4]. Thus form and function are inter-
linked even in fluid mechanics.

This bachelor thesis is aimed towards visualizing one aspect of turbulent flows, namely the turbulent
energy cascade. Lewis Fry Richardson described this process quite poetically:

“Big whirls have little whirls, which feed on their velocity,
And little whirls have lesser whirls, and so on to viscosity”

Richardson was an English poly-scientist whose name is attached to many techniques and ideas in math-
ematics, physics, and meteorology. His poem refers to the process by which energy is transferred and eventu-
ally dissipated in all turbulent flows1. The fact that energy is indeed transferred across scales and dissipated
at the smallest scales is undisputed. However, the break-up of large eddies into smaller eddies has not yet
been adequately described or visualized.

In this project, a new method of identifying turbulent eddies by spatially isolating them as regions of
highly coherent motion is proposed. Earlier attempts at visualizing eddies considered an eddy to be a con-
tour of high turbulent energy. This approach is bound by its locality; it says nothing about the patterns and
structures found elsewhere in the flow. The proposed method of this project considers eddies as a finite re-
gion with a certain coherent structure. By considering the instantaneous correlation for each point in the
field, a spatial correlation vector field is defined, which contains information about structures on a non-local
scale.

It is found that considering eddies in this manner leads to well-defined blobs within the correlation field
that appear, merge, split and disappear. These blobs can be seen as the kernels of larger coherent structures.
The velocity field associated with these kernels can be generated by making use of Biot-Savart’s law. The
velocity fields generated in this way show vortex-like structures, which appear to move as the kernel breaks
into two distinct kernels. These results are promising and may lead to new insights on the possibilities of
characterizing vortical motions by bridging point concepts to non-local coherent structures, and with that
eventually the visualization of the turbulent energy cascade.

1Whether or not there exists a universal theory of turbulence, justifying statements such as ‘all turbulent flows’, has been neither proved
nor disproved[5], and is an entirely different but equally interesting question, which for obvious reasons this project will not even
attempt to tackle.
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2
THEORY

Investigating the turbulent energy cascade requires some groundwork in fluid mechanics. For this, a number
of books have been indispensable [6–8]. Throughout this project, the fluid being investigated is an incom-
pressible Newtonian fluid. For a full derivation of some of the more important equations described below,
see appendix A.

2.1. THE EQUATIONS OF MOTION
Instead of investigating the motion of single molecules, the statistical average velocity u(x, t ) of the fluid is
used2. This approach is valid as long as the size of the system under investigation is of a much larger scale
than the size of the motion of the individual molecules.

2.1.1. CONSERVATION OF MASS: THE CONTINUITY EQUATION
By considering a small differential control volume within a flowing liquid, and setting up a mass balance over
this volume, one arrives at:

∂ρ

∂t
+∇· (ρu) = 0. (2.1)

Since the fluid is incompressible, this equation reduces to

∇·u = 0. (2.2)

This is the continuity equation. It implies that the divergence of u is zero everywhere; whatever amount
of fluid flows into an arbitrary control volume must also be flowing simultaneously out of it.

2.1.2. CONSERVATION OF MOMENTUM: THE NAVIER-STOKES EQUATION
The Navier-Stokes equations describe the motion of a fluid. To derive them, Newton’s second law of motion
is applied to a small volume of fluid δV , upon which all surface and body forces are considered, yielding

Du

Dt
= g−∇

( p

ρ

)
+ν∇2u. (2.3)

Here the notation D
Dt is used for the material derivative, which is the derivative for a travelling control

volume (see chapter A.2 for a derivation of the material derivative). This seems like a rather common partial
differential equation, not unlike the wave equation or the diffusion equation. However, liquids flowing ac-
cording to the Navier-Stokes equation display chaotic3 results, instabilities and turbulence, which is true for
neither the wave nor the diffusion equation. To see why this is, the material derivative is expanded:

∂u

∂t
+u ·∇u = g−∇

( p

ρ

)
+ν∇2u. (2.4)

2Throughout this report, the vector u will be used for the velocity, having components ux , uy and uz for the x, y and z component of

space, the vector x = [x y z]T denoting space. In other literature, one might find the usage of u, v and w for the three components of
velocity.

3‘Chaotic’ in this context means extreme sensitivity to initial conditions.
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4 2. THEORY

The non-linear term u ·∇u, which was hidden in the material derivative, is responsible for the chaos inherent
to fluid flow. Expanding the material derivative gives another insight: by making use of the solenoidal prop-
erty of an incompressible fluid (∇ ·u = 0) and the Biot-Savart law, an expression for p in terms of u can be
found [7, chap. 2.2]. In this way, equation 2.4 can be rewritten to a deterministic partial differential equation
dependent only on u:

∂u

∂t
= f (u). (2.5)

For a given initial condition, it is theoretically possible to integrate forward in time to find u at any time
and place. Unfortunately, this is computationally expensive, even on modern computers, due to the massive
difference in scales present in most turbulent flows. Aside from the cost involved, such a computation serves
little purpose, as one is generally more interested in the statistical properties of a point in the flow than in the
specific value for u. Luckily, there exist several ways to approximate a solution of the Navier-Stokes equation
which are not as computationally expensive.

The terms of equation 2.4 merit some closer examination. On the left hand side is the rate of change of the
velocity field over time, and the (nonlinear) advection of velocity. Then, on the right hand side, there is the ef-
fect of gravity, the effect of the pressure gradient and the viscuous diffusion of velocity. The non-dimensional
form of the Navier-Stokes equation can be found by substituting the relevant scales and dimensionless vari-
ables, leading to

∂u∗

∂t∗
= 1

F r 2 g∗−∇∗p∗+ 1

Re
∇∗2u∗−u∗ ·∇∗u∗. (2.6)

Here F r is the Froude number, which for this project is not relevant, as gravity will be left out of consider-
ation. The Reynolds number Re, however, is very important, as it characterizes whether or not a given flow is
prone to become turbulent. From the dimensionless form of the Navier-Stokes equation, it can be seen that
the effect of viscous forces is inversely proportional to the Reynolds number. At low Re, viscous effects dom-
inate, but at higher Re the effect of viscosity is negligible compared to nonlinear advection and the pressure
gradient.

2.2. VORTICITY
Closely linked to the velocity is the vorticity ω. The vorticity is defined as the curl of the velocity, i.e. ω=∇×u.
It describes the local spinning motion of the fluid. Imagine a tiny volume in the flow suddenly becoming a
solid chunk. If the chunk begins rotating about its centre of mass, that area of the flow has vorticity. If however
the chunk is simply moving around but not rotating, there is no vorticity. Note that this has nothing to do with
the global rotation of the fluid. A whirlpool where the velocity is inversely proportional with the distance from
the centre, also known as an irrotational vortex, has no vorticity, although the total flow is definitely spinning
around a point. A shear flow on the other hand, can have vorticity (see figure 2.1), as a rigid chunk in the flow
will have rotated relative to its original orientation over time.

Figure 2.1: A shear flow (left) and an irrotational vortex (right). If the
area in the red square becomes solid for a short period of time, then
it will end up in the position drawn in blue. The shear flow shows
local spinning motion, which is not present in the irrotational flow.

An important result of the Navier-Stokes equa-
tions is that they can be used to derive the fact that
the pressure p is non-local. This is to say that an
eddy at a certain point x produces pressure waves
that are felt everywhere in space, which in turn in-
fluences the velocity of the flow. Thus velocity is
not really localized in space. If initially the flow is
nonzero only for a small part of the domain, this
would send pressure waves through the entire do-
main, causing the fluid to start flowing everywhere
soon. Vorticity, on the other hand, can only travel
by diffusion or advection. Since the vorticity field is
also solenoidal, there exist vortex tubes: bundles of

vortex lines which must be either closed loops, or end at a physical boundary. An everyday example of this is
a smoke ring.



2.3. TURBULENCE 5

BIOT-SAVART’S LAW

The relationship ω=∇×u may be inverted in infinite domains using the Biot-Savart law:

u(x) = 1

4π

∫
V

ω(x′)× r

|r|3 dx′, r = x−x′. (2.7)

This is very important for this project, as it allows for reconstructing a velocity field from (part of) a vor-
ticity field, hence isolating contributions of local vorticity to larger scale velocity structures.

2.3. TURBULENCE
As Lesieur describes it [9], "[turbulence] represents extremely different points of view, all of which have in com-
mon their complexity, as well as an inability to solve the problem. It is even difficult to agree on what exactly
is the problem to be solved". Although no precise formal definition of turbulence exists, there is a general
consensus that turbulent flows exhibit the following characteristics:

• Randomness: Turbulent flows seem irregular, chaotic and unpredictable.

• Nonlinearity: Turbulent flows are highly nonlinear, resulting in chaotic behaviour.

• Diffusivity: Due to the high rate of mixing, turbulent flows show high rates of diffusion of heat and
momentum.

• Vorticity: Turbulent flows show many levels of ’spinning structures’ at various scales.

• Self-similarity: The structures are display a level of self-similarity across space and time scales. Man-
delbrot first hypothesised that aspects of turbulent flow could be seen as fractals [10], after which it was
shown by Sreenivasan that they could be assigned a fractal dimension [11].

The simple answer to the question of what turbulence is, is that it is a solution of the Navier-Stokes Equa-
tions which displays these characteristics. It must be noted, however, that this is not an exhaustive list of
characteristics, nor are these unique to turbulent flows. They share causes and effects, and influence each
other greatly, such that it is hard to pinpoint where exactly each of them comes from.

In his 1935 paper [12], G.I. Taylor introduced the concept of homogeneous isotropic turbulence. Homo-
geneity implies that the statistical properties of the flow are invariant under translations, and isotropic im-
plies that the statistical properties are invariant under rotations. This project restricts itself to homogeneous
isotropic turbulence for an incompressible fluid.

2.4. THE TURBULENT ENERGY CASCADE

Figure 2.2: The turbulent energy cascade. Energy
supplied at the large scale (small wavenumber) is
transferred through successively smaller eddies in the
inertial range, until it is dissipated at the smallest
wavenumbers in the inertial range.

An important characteristic of turbulence is the presence self-
similar eddies4 of many sizes. The largest of these eddies cor-
respond to the scale at which energy is added. These eddies
might break up due to inertial forces, from which smaller ed-
dies are generated, which, in turn, might also break up, and
so on, until the vortices reach a size where they are more in-
fluenced by viscous effects than by inertial effects. It is at this
point, when the eddies have a length close toη, the Kolmogorov
scale, that energy is dissipated [1] (see figure 2.2).

The reason dissipation happens at the smaller scales only
can be found in the Navier-Stokes equations. In equation 2.6,
it can be seen that at low Reynolds numbers, viscous effects
dominate. The effective Reynolds number of the small scales
is also is small, hence viscous effects overcome inertial effects
and dissipation occurs.

The usage of the term ‘break up’ to describe what happens
to the large scale eddies is not entirely justified. The actual
breaking up of an eddy into two smaller eddies has not been

4The term ‘eddy’ allows no precise definition. For this project, any finite region of coherent motion is considered an eddy.



6 2. THEORY

observed, despite the many drawings similar to figure 2.2 of the process in literature. It is certain that energy
is transferred down from the large scales to the smaller scales, at which point it is dissipated, but how this
exactly happens is still somewhat of a mystery.

2.5. VISUALISING THE CASCADE BY FOURIER FILTERING
Shortly after Kolmogorov introduced the concept of the turbulent energy cascade, scientists such as Heisen-
berg [13], Weizsäcker [14] and Onsager [15] started describing the scales in the cascade by the associated
wavenumber k. This makes it possible to use the Fourier transform (see chapter A.3) to spectrally filter the
velocity field.

Figure 2.3: Energy eddies at four different scales for a single
instance of time, from Jiménez et al. [2]

Jimenez et al. hypothesize that eddies will manifest
in the filtered fields as regions of high kinetic energy [2].
The idea behind the approach is the following; eddies are
continuously being formed at the large scale, correspond-
ing to k = 1. These eddies break up, transferring energy
to smaller scales. By measuring the correlation of energy
between scales, a certain temporal delay can be found,
from which the eddy lifetime τ can be calculated [16]. At
t = τ the original eddy has broken up into tiny eddies at
the Taylor microscale5 λ, with wavenumber kλ. Thus it is
possible to estimate the wavenumber associated with the
original eddy for every timestep between t = 0 and t = τ.
By filtering out all wavenumbers except the wavenum-
ber associated with the eddy, it can be visualized at each
timestep as a region of high kinetic energy.

Figure 2.3 displays the results of this method. This
method has two main draw-backs. Firstly, it considers
only local properties of the flow, whereas a turbulent eddy
has non-local influences on the flow. Secondly, it does not
consider the structures present in the flow, but restricts
itself to the magnitude of the field. In an attempt to ar-
rive at a better visualization of turbulent eddies, it was
decided to investigate eddies as regions of highly coher-
ent flow.

5The Taylor microscale, which will be formally introduced in chapter 4, is the length scale at which viscous forces begin to dominate.



3
RESEARCH GOALS

In his 1970 paper [17] surveying the possibilities of a grand theory of turbulence, mathematician Steven
Orszag concluded that “... the principal result of fifty years of turbulence research is the recognition of the
profound difficulties of the subject”. This still holds today; although scientists have come a long way since the
1970s by use of powerful computers, there is still much to be discovered.

The turbulent energy cascade, as described by Richardson, accurately characterizes the flow of energy
from the larger scales down through the smaller scales until it is dissipated. What the eddies at each scale
look like exactly, and how they break up and transfer energy, is currently not known. Many scientific fields
would benefit from more knowledge on this subject. With this project, an attempt is made to gain more
insight into the eddy structures and the turbulent energy cascade in forced isotropic turbulence flow.

The long-term goal is to visualize the entire turbulent energy cascade, including but not restricted to the
shape and structure of an eddy, the eddy break-up mechanism and the manner in which energy is transferred
across scales. Richard Feynman once called turbulence “the most important unsolved problem in classical
physics”. However, in a letter to one of his former students, he had something more to say about which prob-
lems are worthwhile, and which are not: “A problem is grand in science if it lies before us unsolved and we see
some way for us to make some headway into it. I would advise you to take even simpler, or as you say, humbler,
problems until you find some you can really solve easily, no matter how trivial. You will get the pleasure of
success, and of helping your fellow man ... You must not take away from yourself these pleasures because you
have some erroneous idea of what is worthwhile”[18]. With this project, the intention is to follow Feynman’s
advice and attempt to pragmatically initiate paving the way towards the long-term goal. Concretely, there are
two main research questions:

• How can eddies be described as regions of highly coherent motion in turbulent flow?

• How can the velocity fields associated with these eddies be visualized?

Answering these questions will hopefully make for a better understanding of the turbulent energy cas-
cade, or at least a better understanding of what parts of it are worthwhile to tackle next.

7





4
DIRECT NUMERICAL SIMULATION OF

ISOTROPIC TURBULENCE

Data from two direct numerical simulations of forced isotropic turbulence have been used. The first, which
will be referred to from hereon as flow A, was simulated at the Transport Phenomena group at TU Delft by
Siddhartha Mukherjee. The second was simulated by the John Hopkins Turbulence Database group, and will
be referred to as JHTD.

4.1. FLOW A
4.1.1. SIMULATION METHOD

Flow A consists of a periodic cube of size 1283 [nondimensional length units] with 1283 gridpoints. The peri-
odic cube, while not strictly physical, is often used in turbulence research, as it has many benefits for compu-
tational cost and complexity - for example, there are no boundary effects to be taken into consideration. The
dataset was generated using the Lattice Boltzmann method, which is second-order accurate in both space
and time. The simulation is continuously forced, with a forcing scheme based upon the scheme proposed
by Alvelius [19] and ten Cate et al. [20], and sharing many features with the forcing scheme used by Perlekar
et al. [21]. The forcing is calculated in real space using the following formulae:

Fx =
kb∑

k=ka

A(k)[sin(2πk y +ϕy (k))+ sin(2πkz +ϕz (k))] (4.1)

Fy =
kb∑

k=ka

A(k)[sin(2πkx +ϕx (k))+ sin(2πkz +ϕz (k))] (4.2)

Fx =
kb∑

k=ka

A(k)[sin(2πkx +ϕz (x))+ sin(2πk y +ϕy (k))]. (4.3)

Here ϕi (k) is a random phase for the sine wave in direction i, which causes the forcing to approximate
white noise in time. The amplitude A is defined as

A(k) = A exp

(
− (k −k f )2

c

)
, (4.4)

where c is the width over which the force amplitude is to be distributed, and k f is the central forcing number,
which for this simulation was k f = 3. Equation 4.4 is defined in such a way that there exists a dominant
wavenumber which contains most of the energy. The summation parameters are ka = 1 and kb = 2.

4.1.2. CHARACTERISTIC FLOW PARAMETERS

The kinematic viscosity of the fluid in flow A is ν = 8.4×10−4 [dimensionless viscosity]. From the simulated
velocity, the vorticity ω and enstrophy ω2 can be calculated:

ω=∇×u (4.5)

9



10 4. DIRECT NUMERICAL SIMULATION OF ISOTROPIC TURBULENCE

ω2 =ω ·ω. (4.6)

Using the average enstrophy, the average energy dissipation rate can be calculated:

ϵ= ν〈ω2〉, (4.7)

where the brackets indicate a spatial average.The energy dissipation rate is the amount of energy dissipated
per unit volume. From this, the Taylor microscale can be calculated:

λ=
√

15ν

ϵ
·u′, (4.8)

where u′ is the root mean squared velocity. The Taylor microscale is the length scale at which viscous forces
begin to dominate. Related to the Taylor microscale is the Taylor-scale Reynolds number

Reλ = u′λ
ν

. (4.9)

The Kolmogorov scale is given as

η=
(ν3

ϵ

) 1
4

. (4.10)

The Taylor-scale Reynolds number is the Reynolds number for the eddies of size λ, and the Kolmogorov scale
is the length scale at which energy is dissipated, as outlined by Kolmogorov in his famous paper[1]. The final
relevant length scale is the integral length scale L, which gives an indication of the extent of autorrelation in
the flow. The autocorrelation for a given point x, direction ei (where e denotes a unit vector) and distance r
is defined by

f (r ) = 〈u(x) ·u(x+ei · r )〉
u′2 , (4.11)

where u is along ei r . From this, the integral length can be calculated by taking the integral of f (r ) as:

L(x) =
∫ ∞

0
f (r )dr. (4.12)

Alternatively, the integral length scale can be calculated using the relation

L = Re0.75
λ η. (4.13)

The large eddy turnover time TL is found using:

TL = L

u′ . (4.14)

The values of these parameters in dimensionless units for flow A are:
Domain 128×128×128 [length3]
Viscosity ν= 8.4×10−4 [length2/time]
Energy dissipation ϵ= 3.27×10−8 [energy / (time · mass)]
RMS Velocity u′ = 0.012 [length / time]
Taylor microscale λ= 7.424 [length]
Taylor-scale Reynolds number Reλ = 106 [-]
Kolmogorov length scale 6 η= 0.3667 [length]
Integral length scale L = 12.1 [length]
Large eddy turnover time TL = 1010 [time]

Figure 4.1 displays a visualisation of the velocity and vorticity profile for flow A.

6Here, the Kolmogorov scale is smaller than the grid size, thus the simulation is slightly under-resolved. This potential problem is negated
by the fact that there is enough energy dissipation to counter the generation of energy by the forcing, hence the cascade remains well-
resolved.



4.2. JHTD FLOW 11

4.2. JHTD FLOW
The John Hopkins Turbulence Database provides datasets of turbulent flows for scientific research. For this
project, the ‘Forced Isotropic Turbulence Dataset’ was used. It is a direct numerical simulation of a 10243

periodic cube, where the Navier-Stokes equation is solved using pseudo-spectral method. The relevant di-
mensionless system parameters are [22]:

Domain 2π×2π×2π [length3]
Viscosity ν= 0.000185 [length2/time]
Energy dissipation ϵ= 0.103 [energy / (time · mass)]
RMS Velocity u′ = 0.686 [length / time]
Taylor microscale λ= 0.113 [length]
Taylor-scale Reynolds number Reλ = 418 [-]
Kolmogorov length scale η= 0.0028 [length]
Integral length scale L = 1.364 [length]
Large eddy turnover time TL = 1.99 [time]

A single timestep of resolution 5123 was retrieved by coarse-graining the 10243 data and used for the eddy
identification investigation. Figure 4.2 displays a visualization of the velocity and vorticity profile for JHTD.



12 4. DIRECT NUMERICAL SIMULATION OF ISOTROPIC TURBULENCE

Figure 4.1: Velocity (left) and vorticity (right) magnitude visualisation at t=46000 for flow A. Higher magnitudes are represented by a
lighter colour, lower magnitudes by a darker colour.

Figure 4.2: Velocity (left) and vorticity (right) magnitude visualisation for JHTD dataset flow. Higher magnitudes are represented by a
lighter colour, lower magnitudes by a darker colour.



5
METHODOLOGY

5.1. EDDIES AS REGIONS OF HIGHLY COHERENT MOTION
In daily life, eddies are recognized easily: the water draining out of your bathtub, a smoke ring, or a tornado
are obvious examples which anyone could identify as swirling flows. Recognizing an eddy in isotropic turbu-
lence presents a greater challenge, since the scales lie much closer together than they do in a tornado. There
exists no precise mathematical definition of an eddy. For the purposes of this research, an eddy will be de-
fined as a finite region of the flow displaying a certain coherent structure, which will generally be swirling or
vortex-like. Since the flows under consideration are all isotropic, there is no mean flow to be considered —
the flow is statistically similar in all directions.

5.1.1. DEFINING THE CORRELATION FUNCTIONS

REGIONS OF HIGH VELOCITY CORRELATION

Figure 5.1

The objective is to define a function, taking as input a velocity
field, and yielding a value for each point quantifying the corre-
lation of the flow around that point. An obvious starting point
is the inner product: vectors that are inline with each other, and
vectors that are opposite each other, will have a large (absolute)
inner product, whereas vectors that are closer to being perpen-
dicular will have a very small inner product. Consider a point
x1 having a velocity u(x1), and another point x2, having velocity
u(x2). If these points are part of a swirling eddy, their velocities
should correlate to some extent; for example, if the points lie
in line with the ’eye’ of the eddy, their velocity vectors can be
expected to be roughly parallel. If x1 is indeed part of an eddy,
the inner product of x1 and any point in a straight line from
it through the eddy should be large. This motivates consider-
ing the correlation function as the sum of inner products in a
straight line from a given point, normalized by the maximum

value. The correlation function is thus defined as:

f (x,e) =
∫ ∞

−∞
u(x) ·u(x+er )

max(|u(x) ·u(x+er )|) dr, (5.1)

where e is a unit vector in the direction along which the correlation is being calculated.
An illustrative example of how this correlation function operates is helpful. Consider the vectors in figure

5.1. Assume the correlation is being calculated for the leftmost point, and directed along the x-axis. The vec-
tors in the top graph are aligned well with this leftmost vector, which means the inner products will be large,
and hence the integral over these inner products will be large. The vectors in the bottom graph, however, are
almost perpendicular to the leftmost vector and hence the correlation value will be small in this case. For
a uniformly random flow field, the correlation everywhere should be uniform (and zero on average) as well.
However, if a swirling eddy exists, it will manifest itself as a region of high coherence.

13
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Note that this correlation function definition relies on the isotropy of the flow; if the correlation were
calculated for a fluid flowing through a tube, for example, there would be a strong correlation in the direction
of the flow everywhere.

REGIONS OF HIGH VORTICITY CORRELATION

In addition to investigating regions of high velocity correlation, it is interesting to consider regions of high
vorticity correlation. The result of this is less intuitive; vorticity is hard to imagine, and the characteristics of a
turbulent eddy in the vorticity field unknown. It was investigated nonetheless. Simply replacing velocity with
vorticity in 5.1 yields.

f (x,e) =
∫ ∞

−∞
ω(x) ·ω(x+er )

max(|ω(x) ·ω(x+er )|) dr. (5.2)

CORRELATING VORTICITY WITH VELOCITY

Figure 5.2: The relation between vorticity and velocity;
by definition, a point with a large vorticity vector will
have a circular flow (following the right hand rule) di-
rectly around it. If this circular flow is not limited to
just the direct vicinity of the point, but is seen further
away from it as well, then it can be considered a turbu-
lent eddy.

Lastly, it makes sense to consider both the velocity and the vor-
ticity field. It is known that a vortex tube generates a circular
velocity field around it (see figure 5.2). Thus one might expect
that the cross product of the vorticity at the centre of the tube
and the velocity outside the tube would be large. This moti-
vates the third correlation function, defined as:

f (x,e) =
∫ ∞

−∞
ω(x)×u(x+er )

max(|ω(x)×u(x+er )|) dr. (5.3)

5.1.2. APPLYING THE CORRELATION FUNCTIONS
Initially, the correlation functions were applied to Flow A flow
directions x, y and z, for a wide range of timesteps. In the pre-
liminary results, coherent regions seemed to form mainly along
the principal axes (which will be elaborated upon in chapter 6).
To determine the origin of this bias, the correlation functions
were applied to flow A along diagonal axes in the x y-plane, the
y z-plane and the xz-plane. Additionally, the correlation func-
tions were applied to a single timestep of the JHTD flow. For
this report, the directions x, y and z will be referred to as the
principal axes, and the diagonal directions in the x y-plane, the
y z-plane and the xz-plane will be referred to as the diagonal
axes.

5.2. RECONSTRUCTING THE VELOCITY FIELD FROM AN EDDY
Once coherent regions of high correlation have been found, the focus can be shifted to the flow they produce
and their evolution over time. The goal is to visualize the velocity field that a coherent region generates. As
mentioned before, the Biot-Savart law can be applied to a vorticity field to retrieve its associated velocity field:

u(x) = 1

4π

∫
V

ω(x′)× r

|r|3 dx′, r = x−x′. (5.4)

Thus the velocity at a point x consists of contributions from the vorticities of all points within the domain.
The effect of the contribution diminishes rapidly with the distance from x due to the denominator |r|3.

For the purpose of this project, it is not the entire velocity field which is of interest, but solely the part
generated by a coherent blob. To implement this, the vorticity field is masked; all vorticities outside the blob
are set to zero, while the vorticity inside the blob is retained. Thus a velocity field is found for the entire
domain, solely from the vorticity inside the blob. Effectively, the velocity field is being spatially filtered to
retain only the structure associated with the blob.
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RESULTS AND DISCUSSION

For reference purposes, table 6.1 gives an overview of the correlation functions and the basic way in which
they operate.

6.1. RESULTS OF APPLYING THE CORRELATION FUNCTIONS

Figure 6.1: Velocity correlation for flow A at t=46000. Isosurface at 70% of maxi-
mum.

Figure 6.1 displays the correlation field
resulting from a single timestep of flow
A. In this case, the velocity correla-
tion function has been applied. The
blobs that can be seen are isosurfaces
within which the correlation magnitude
is greater than 70% of the maximum
correlation. These blobs are an indica-
tion of coherent structures in the flow.

Some clarification about the termi-
nology relating to the structures is use-
ful here. The goal is to find and visu-
alize eddies, defined as coherent struc-
tures within the velocity field. An iso-
surface in 6.1 can be considered as the
kernel of an eddy. Figure 6.2 illustrates
the relationship between an eddy in the
velocity field and a kernel of the corre-
lation field. The kernel is indicative of
a larger coherent structure. The values
of the correlation field within this kernel
are related to the size of the eddy. The
dimensions of the kernel are assumed to

yield less information about the size of the associated eddy, since they are a result of the choice of isosurface.
In this report, the terms ‘blob’ and ‘kernel’ will be used somewhat interchangeable when referring to an iso-
surface in the correlation field, whereas an eddy is used to refer to a coherent structure in the velocity field.

When viewing multiple timesteps in sequence, the blobs can be seen appearing, moving, merging, split-
ting up and disappearing, which would be expected of eddies as well. If the isosurface is taken at a higher

Function name Correlation by
Velocity correlation u(x) ·u(x+ r)
Vorticity correlation ω(x) ·ω(x+ r)
Vorticity/velocity cross correlation ω(x)×u(x+ r)

Table 6.1: An overview of the free correlation functions, and the value each function calculates.
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16 6. RESULTS AND DISCUSSION

value, smaller structures within the blobs can be seen. If the isosurface is taken at lower values, larger struc-
tures are observed.

Figure 6.2: An isosurface in the correlation field indi-
cates the presence of a larger structure surrounding it.

Figure 6.3 displays the breaking of one blob into two
smaller blobs. It is tempting to consider this as an eddy break-
ing into two smaller eddies. One problem with this is that
the smaller kernels still have the same correlation value as the
larger one, which disagrees with the theory of eddies of a large
scale breaking into eddies of a smaller scale. In fact, it is dif-
ficult at the moment to say much about the scale of the co-
herent structure at all. For now, all that can be said is that a
single coherent region has split into two distinct coherent re-
gions with the same correlation value.

The vorticity correlation function and the vorticity/velocity
cross correlation function were also applied to the flow. Fig-
ures 6.6(a,b,c) display the three correlation functions applied
along the principal axes for flow A. In the velocity correla-
tion field and the vorticity/velocity cross correlation field, dis-
tinct kernels can be seen, although the blobs for the vortic-
ity/velocity cross correlation are somewhat more patchy.

The correlation field resulting from the vorticity correlation (figure 6.6(b)) is somewhat less clear: the
blobs are very patchy, and seem to be biased towards the principal axes, along which the correlation is calcu-
lated. The bias may be inherent to the way the correlation is being calculated — by calculating along a certain
set of axes, contributions to structures which are aligned along those axes are magnified. The reason this bias
is observed so strongly in the vorticity correlation may be that vorticity is associated with the smaller scales,
thus giving a smaller correlation value over long distances. Following this line of reasoning, the magnitude of
the correlation vectors in the velocity correlation and the vorticity/velocity correlation is relatively larger, and
the contribution of directional bias is small, due to which it does not appear when taking the isosurface. In
the vorticity correlation function, the correlation field is small everywhere, and directional bias contributions
are larger compared to true coherent structure contributions.

Another hypothesis for the origin of the directional bias is that it is inherent to the forcing scheme em-
ployed, which forces in the principal directions. To investigate whether or not this is the case, the three func-
tions were applied along the diagonal axes as well, the results of which are displayed in figures 6.6(d,e,f).
Here there appears to be a bias towards the diagonal directions along which the correlation is calculated,
which negates the hypothesis.

At first glance, the six fields pictured in figure 6.6 don’t seem to resemble each other very much. However,
there are some similarities; in many timesteps, the correlation fields resulting from the velocity correlation
and those resulting from the vorticity/velocity cross correlation show similarities in structure and location
of blobs. The vorticity correlation field seems to impart little knowledge about the structure and location of
blobs.

The three correlation functions were applied to the JHTD flow as well, both along the principal axes (fig-

Figure 6.3: A coherent region breaking up. Isosurface at value 120 (roughly 90% of the maximum value), t= 46080,46200. The blobs have
a characteristic size of roughly 20 dimensionless length units
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ures 6.7(a,b,c)) and along diagonal axes (figures 6.7(d,e,f)). The results are very similar to those of flow A.
For example, directional bias is observed more strongly when the correlation is calculated along the prin-
cipal axes than when it is calculated along diagonal axes. The vorticity correlation field once again shows
less coherent structures, to the extent that the correlation field is not far from homogeneous, and shows the
strongest directional bias. In the vorticity correlation field it is also made clear that the directional bias is
inherent to the correlation method, and not due to the forcing scheme, since the bias is equally present in
figures 6.7(b) and 6.7(c).

One way in which the JHTD correlation fields differ from the flow A correlation fields, is that the isosur-
faces appear to be less smooth. This may be due to the fact that JHTD has a larger resolution. It could also be
due to the fact that the dataset was coarse-grained from 10243 to 5123 gridpoints.

The similarity between the velocity correlation field and the vorticity/velocity correlation field is clearly
visible in the JHTD flow. Figure 6.4 displays a superposition of those two fields, calculated along diagonal axes.
The vorticity/velocity cross correlation field is by definition assumed to show mainly swirling structures. The
fact that it is strongly similar to the velocity correlation field, which should show correlation of any structure,
lends support to the idea that coherent structures in isotropic turbulence are swirling or vortex-like in nature.

Figure 6.4: Velocity dot correlation (red) and vorticity-velocity cross corre-
lation (blue) calculated diagonally for the JHTD flow. The coherent regions
are found in approximately the same locations in the domain.

Earlier attempts at locating turbulent ed-
dies focused on areas of high kinetic energy
in a spectrally filtered velocity field. For com-
parative purposes, this method was applied
to a single timestep of the velocity field from
flow A. The field was transformed to Fourier
space. Wavenumbers between k = 1 and k = 5
(i.e. the large scale structures) were retained,
wavenumbers outside the range were filtered
out. After transforming the field back to real
space, isosurfaces of high kinetic energy were
visualized. Figure 6.5 displays a comparison
between the results of the spectral filtering
method and the velocity correlation function.

The results of the spectral filtering method
are smoother than those of the correlation
function, which is to be expected since larger
wavenumbers (associated with smaller struc-
tures) have been filtered out. The general
shapes of the blobs are similar to the blobs

found using the correlation formulae. For this timestep, it is difficult to conclude much about a relation-
ship between the location of structures in one field with those in the other. Some blobs do appear in roughly
the same location, for example the elongated structure on the left hand side of the figure, but others appear
only in one of either fields.

Figure 6.5: Comparison between eddy identification using spectral filtering with kinetic energy isosurfaces and eddy identification using
the velocity correlation function, both at ~80% of the maximum value.
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(a) Velocity correlation at 70% of maximum (d) Diagonal velocity correlation at 80% of maximum

(b) Vorticity correlation at 70% of maximum (e) Diagonal vorticity correlation at 60% of maximum

(c) Vorticity/velocity cross correlation at 70% of maximum (f) Diagonal vorticity/velocity cross correlation at 70% of
maximum

Figure 6.6: The three correlation functions applied to flow A at t=46000. Left: Along principal axes. Right: Along diagonal axes.
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(a) Velocity correlation at 80% of maximum (d) Diagonal velocity correlation at 70% of maximum

(b) Vorticity correlation at 50% of maximum (e) Diagonal vorticity correlation at 50% of maximum

(c) Vorticity/velocity cross correlation at 65% of maxi-
mum

(f) Diagonal vorticity/velocity cross correlation at 70% of
maximum

Figure 6.7: The three correlation functions applied to the JHTD flow. Left: along principal axes. Right: along diagonal axes.
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6.2. RESULTANT VELOCITY FIELDS
The second research goal is to visualize the velocity field associated with the blobs resulting from the correla-
tion functions. A consecutive series of timesteps from flow A in which a coherent kernel is seen breaking into
two separate kernels was selected. The Biot-Savart law can be used to generate the velocity field associated
with just the kernel by masking the vorticities outside of it.

Figure 6.8: The velocity field generated from a coherent blob found using the velocity correlation function, and the coherent blob itself.

Figure 6.8 displays the resultant velocity field of a kernel in the velocity correlation field7 at t = 46000. The
kernel has a characteristic size of roughly 20 dimensionless length units, or 15% of the domain size.

The velocity field is represented by streamlines coloured according to the velocity magnitude, with low
velocity in dark red and high velocity light yellow. The vorticity field is represented by a volume render, with
low vorticity in dark green and high vorticity in light green. As expected, the blob forms the kernel of a coher-
ent structure in the space around it. The velocities close to and inside of the blob are high compared to those
far from it, which is also to be expected, since the denominator in the Biot-Savart law increases rapidly with
distance.

When velocity streamlines are taken over the whole field, the finer structure is lost, and all that remains is
a large swirling vortex with very low velocity. This implies that the effect of a blob is noticeable mainly in the
region close to it. The structure of the streamlines close to the kernel shows a complex swirling pattern. This is
better illustrated by plotting solely the streamlines, which is done in figure 6.9. There seem to be three vortex-
like structures: (i) a large scale, low-velocity vortex around the entire kernel, (ii) a tight, high-velocity vortex
on the left-hand side of the kernel, and (iii) a tight, high-velocity vortex behind the kernel. The large scale
vortex does not contribute much to the velocity field of the flow, but the development of two tight vortices
near the boundary is interesting — perhaps these structures are being formed by the main coherent structure
and will develop into smaller separate coherent structures eventually.

The velocity field was generated in the same manner for a range of consecutive timesteps. During this
range, the blob breaks into two distinct blobs. At t = 46120, the breaking up has occurred. Figures 6.10 and
6.11 display the resulting velocity field.

Once again, the velocity is highest at short distances from the blob, and decays rapidly with distance. The
two main blobs seem to have distinct vortices associated with them, which may be evolutions of the distinct
tight vortices seen in figure 6.9. This could be the visualization of an eddy breaking into two smaller eddies.

7The choice for a blob from the velocity correlation field, as opposed to the vorticity/velocity cross correlation field, is somewhat arbi-
trary. As was seen in chapter 6.1, the fields are very similar.
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Figure 6.9: The velocity field generated from the same coherent blob as in figure 6.8

However, it must be noted that the two kernels have the same correlation isosurface value. If the correlation
value is linked to the scale of an eddy, it would be expected that when an eddy breaks, new kernels are formed
at a smaller correlation scale. Since no formal attempt at linking correlation to scale has been made yet, all
that can be said at the moment is that in this case, a kernel breaking into two kernels seems to generate two
separate vortices.

Figures 6.12 and 6.13 display the same blobs, with their associated velocity profile, some timesteps later
at t = 46280. The blobs have diminished in size, and the vorticity profile has lost some of its defining features,
turning into a rather simple vortex. The distinct vortex-like structures from the previous timesteps are not
seen anymore.

Figures 6.14 and 6.15 display the full time evolution of the blob and its associated velocity field. From
these figures, it is hard to draw a definite conclusion about what happens to the distinct vortex-like structures
seen in 6.9 and 6.10. One possibility is that they have merged back into the main vortex, which would imply
that what was observed was not a vortex breaking up at all. Another possibility is that they have been fully
separated from the original structure, and are not anymore generated by the vorticity inside the coherent
blobs, but are instead their own separate coherent structures.
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Figure 6.10: The blob, now split up into two separate blobs, and the velocity field they generate at t=46120

Figure 6.11: The streamlines associated with the kernel at t=46120
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Figure 6.12: The blobs and the velocity field they generate at t=46280

Figure 6.13: The streamlines associated with the kernel at t=46280
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Figure 6.14: Reconstructing a velocity field from a coherent blob of vorticity.
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Figure 6.15: Reconstructing a velocity field from a coherent blob of vorticity.





7
CONCLUSION

The long-term goal of the research started during this project is to visualize the turbulent energy cascade.
To make headway with this grand aspiration, two smaller short-term questions were proposed. These are
to determine how (i) eddies can be described as regions of highly coherent motion in turbulent flow, and to
determine how (ii) the velocity fields associated with these eddies can be visualized.

To answer the first question, several novel correlation functions were introduced. Two of these functions
show promising results. These are the velocity dot correlation and the vorticity/velocity cross correlation. In
contrast to earlier attempts to visualize turbulent eddies, these functions are not restricted to local values,
and take into account structure as well as magnitude of the coherent region. The resultant correlation fields
display regions of high correlation, which can be seen as kernels of larger coherent structures.

There is a directional bias in the location of kernels, which tend to appear as elongated structures in the
direction along which the correlation was calculated. This directional bias is most clearly observed in the
vorticity correlation field. This field is nearly homogeneous, with a grid-like arrangement of blobs. This di-
rectional bias appears to be inherent to the correlation functions. The reason the bias appears so prominently
in the vorticity correlation field may be that there is less large scale correlation in the vorticity field, and thus
the bias-effect begin to dominate over the effect of true correlation.

The fields resulting from the velocity correlation function and the vorticity/velocity cross correlation func-
tion display similarities with each other. This reinforces the idea that turbulent eddies are swirling or vortex-
like.

In the correlation field resulting from the velocity correlation function and the correlation field resulting
from the vorticity/velocity cross correlation function, the kernels can be seen splitting up over time. This
could be an indication of a large coherent structure separating into two coherent structures. The scale of the
structure, however, is related to the correlation value in the kernel. Since the two resultant kernels have the
same correlation value, it can not yet be said whether the splitting implies energy being transferred across
scales.

A correlation field resulting from the velocity correlation function has been compared to a spectrally fil-
tered velocity field. It was found that there did appear to be some overlap in the location of the correlation
kernels and the location of the filtered kinetic energy isosurfaces. If this overlap is a chance occurrence, or if
it appears systematically, has not been investigated yet.

The velocity correlation field has been used to answer the second research question. Biot-Savart’s law can
be used to generate the velocity field associated with a vorticity field. In Biot-Savart’s law, the velocity at a
point consists of contributions from the vorticity of all points in the domain. To visualize the velocity field
associated with only the kernel of a correlation field, the vorticity outside the kernel was set to zero. In this
way, the velocity field consisting only of contributions from inside the kernel can be generated.

This was done for several consecutive timesteps in which a single kernel separates into two distinct ker-
nels. It was found that a kernel generates a velocity field in the entire domain, although the velocities far from
the kernel are very small. When viewed from a distance, the velocity field appears to be a simple vortex-like
structure surrounding the kernel. However, when the velocity field close to the kernel is investigated, complex
structures appear.

The velocity field resulting from the specific kernel investigated for this project displayed two distinct
tight vortex-like structures at the boundaries of the kernel. Over time, these structures grow further apart,
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as the kernel separates into two kernels. This might be a visualization of the eddy break-up mechanism in
action. Some timesteps later, the distinct structures seem to have disappeared, and the general structure of
the velocity field around the kernel becomes simple again. Possibly, the structures disappear because they
are no longer associated with this kernel, but are now the result of two separate kernels on a smaller scale.

With more investigation into the correlation kernels of smaller-scale structures, it may be possible to fol-
low a coherent structure down the entire turbulent energy cascade. In any case, the results of this project
are promising, and the author is hopeful that they will lead to a better understanding of the turbulent energy
cascade in the future.
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RECOMMENDATIONS FOR FURTHER

RESEARCH

This project has served as an initial probe into a methodology which may shed more light on the mechanisms
of the turbulent energy cascade. As it stands now, there still does not exist a strict description of an eddy,
its break-up mechanism, or its relation to the turbulent energy cascade. If such a description exists and
can be found by continuing down the path started upon in this project, the following challenges should be
addressed:

RELATING STRUCTURES TO SCALES

In order to arrive at a visualization of the turbulent energy cascade, eddies at many scales must be identified
and visualized. The kernels in the correlation fields found in this research are probably associated with the
larger scales of the turbulent energy cascade, but their exact ’wavenumber’ is not defined. Relating the blobs
to their place in the cascade could elucidate the process of energy transfer through scales. To do this, it would
be necessary to find kernels at the smaller scales as well.

Perhaps this is possible by making use of Fourier filtering. This could be approached in two ways. The
velocity field could be spectrally filtered to retain only a certain range of wavelengths, from which the correla-
tion field can be calculated. Another approach is to spectrally filter the correlation field. Since the correlation
field is a vector field, the large scale structures can be filtered out, after which an isosurface can be con-
structed from the resultant field after inverse Fourier transformation. The benefit of the latter approach over
the former is its cheaper computational cost. Calculating the correlation field is expensive, whereas spectral
filtering is relatively cheap. However, it is not yet clear what a filtered correlation field would mean physically.

FINETUNING THE CORRELATION FUNCTION

As it is defined now, the correlation function shows a bias towards blobs arranged along the axes upon which
the correlation is calculated. This makes sense from a mathematical perspective, but not from a physical
perspective. A better correlation function might incorporate many more directions, or might correct for di-
rectional bias in a different way. This would come at a higher computational cost, but might yield better
results.

Another problem which must be overcome occurs when presented with a perfectly symmetrical velocity
field. Consider the vector field illustrated in figure 8.1, where the velocity at each point is proportional to
the distance of the point from the center of the vortex. If the velocity correlation function is applied to this
field at point x1, the resultant correlation will be zero, since the positive contributions of all the points to the
left of the center are cancelled by the negative contributions of all the points to the right of the center. If the
correlation function is applied to the field close at x2, the resultant correlation will be zero as well, since there
is no velocity at x2, so all inner products will be zero8.

The solution to the first problem may be to integrate over the absolute values of the inner product. A
solution to the second problem might be to disregard the point itself, but correlate by the points directly
around it. In any case, these problems requires some attention.

8Technically, the correlation result at point x2 will even be undefined, since the denominator will be zero as well.
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Figure 8.1: A perfectly symmetrical rigid
body vortex, in which u ∝ r , where r is
the distance from the center of the vor-
tex.

SYSTEMATIC DEFINITION OF A CORRELATION KERNEL

The kernels identified in this project were chosen by hand, with little to
no system concerning the correlation value at which the isosurfaces were
made. For results that are reproducible, comparable and useful for other
research as well, some work must be done towards a systematic definition
of a kernel.

STATISTICAL ANALYSIS OF THE SIMILARITIES BETWEEN FUNCTIONS

Three correlation functions have been defined and applied, of which two
showed similar blob locations and structure. In addition, the similarity to
the earlier method of spectral filtering has been compared. The amount
of similarity between between these correlation functions, as well as the
similarity between principal and diagonal axes of correlation, should be
investigated further. This may shed more light on the different aspects of
isotropic turbulence each function reveals in its correlation field.



A
DERIVATION AND EXPLANATION OF

RELEVANT EQUATIONS

A.1. THE CONTINUITY EQUATION
Consider a small differential control volume within a flowing fluid (with density ρ). Setting up a mass balance
over this control volume yields

dm

d t
= ṁi n −ṁout , (A.1)

since mass can neither be created nor destroyed. The terms in A.1 can be rewritten to yield

dm

d t
= d x d y d z

dρ

d t
(A.2)

ṁi n = ṁ|x=x d y d z +ṁ|y=y d x d z +ṁ|z=z d x d y

= ρux |x=x d y d z +ρuy |y=y d x d z +ρuz |z=z d x d y
(A.3)

ṁout = ṁ|x=x+d x d y d z +ṁ|y=y+d y d x d z +ṁ|z=z+d z d x d y

= ρux |x=x+d x d y d z +ρuy |y=y+d y d x d z +ρuz |z=z+d z d x d y.
(A.4)

Thus we find, after some rearrangement,

dρ

d t
= ρux |x=x −ρux |x=x+d x

d x
+ ρuy |y=y −ρuy |y=y+d y

d y
+ ρuz |z=z −ρuz |z=z+d z

d z
. (A.5)

Taking the limit of the differential lengths to zero finally yields

dρ

d t
+∇· (ρu) = 0. (A.6)

This is the continuity equation in its differential form. Since the fluid is incompressible, that is since ρ is
constant, A.6 reduces to

∇·u = 0. (A.7)

A.2. THE NAVIER-STOKES EQUATION
To derive the Navier-Stokes equations, Newton’s second law of motion is applied to a small volume of fluid
δV :

forces acting on δV = mass of δV ·acceleration of δV . (A.8)

The mass of δV is ρδV . To calculate the acceleration of δV it must be taken into account that the volume is
flowing with the liquid. To describe the rate of change in velocity at each point of the volume’s trajectory, first
consider the increment in u(x, t ) for arbitrary and independent increments dx and d t ,

du = ∂u

∂t
d t + ∂u

∂xi
d xi . (A.9)
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Here tensor notation has been used in the second term of the right-hand side, where summation over the
repeated index is implied. Now if the increments in space and time are not arbitrary and independent, but
instead follow the trajectory of the particle, they can be related to the velocity,

d xi = ui d t . (A.10)

Substitution of A.10 in A.9 yields

Du

Dt
= ∂u

∂t
+ui

∂u

∂xi
= acceleration of δV , (A.11)

where the notation using capital D has been introduced to signify the fact that a material derivative is being
used. Thus the right-hand side of A.8 becomes

ρδV
Du

Dt
. (A.12)

Now, the different forces acting on δV must be described. These are the body forces, i.e. gravity, and the
surface forces. Gravity is of course given by Fg = ρδV g. To describe the surface forces, assume that the
differential volume is cube-shaped, as in section 2.1. At each surface, we have a normal force, and shear
stresses perpendicular to the direction the surface is facing. Consider the forces working in the x-direction
first; the derivation of the forces working in the y- and z-direction is completely analogous.

On the surfaces of the cube perpendicular to the flow, there is a normal stress σxx , while on the surfaces
parallel to the flow there is a shear stress τy x and τzx . Evaluating these surface forces at the respective surfaces
and rewriting yields

ΣFx = gravity in x-direction+ surface forces in x-direction

= ρgx d xd yd z + (σxx |x+d x −σxx |x )d yd z+
(τy x |y+d y −τy x |y )d xd z + (τzx |z+d z −τzx |z )d xd y

ΣFx

δV
= ρgx + dσxx

d x
+ dτy x

d y
+ dτzx

d z
. (A.13)

To relate A.13 to the viscosity and fluid velocity, use the constitutive equations

σxx =−p +2µ
∂ux

∂x
(A.14)

τxi x j =µ
(∂ui

∂x j
+ ∂u j

∂xi

)
. (A.15)

Substituting these relations in A.13 yields, after some rewriting,

ΣFx

δV
= ρgx − d p

d x
+µ

(∂2ux

∂x2 + ∂2ux

∂y2 + ∂2ux

∂z2

)
+µ

∂

∂x

(∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z

)
. (A.16)

Since the fluid is incompressible, the second term on the right-hand side is equal to zero, and we are left with

ΣFx

δV
= ρgx − d p

d x
+µ

(∂2ux

∂x2 + ∂2ux

∂y2 + ∂2ux

∂z2

)
. (A.17)

Now the sum of forces acting on the differential cube is known, and equating that with A.12 (from which the
differential volume δV can be divided out) leads to the Navier-Stokes equation in the x-direction:

ρgx − d p

d x
+µ

(∂2ux

∂x2 + ∂2ux

∂y2 + ∂2ux

∂z2

)
= ρ

Dux

Dt
. (A.18)

Analogously, the Navier-Stokes equations in the y- and z-direction can be derived, and combining these three
yields, after some rewriting:

Du

Dt
= g−∇

( p

ρ

)
+ν∇2u. (A.19)
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Figure A.1: (a) The original function, g (t ) = sin2π · 0.5t . (b) g (t ) ·
exp(−2πi ·0.35t ) on the complex plane. (c) g (t ) · exp(−2πi ·0.5t ),
where the centre of mass is clearly shifted. (d)g (t )·exp(−2πi ·0.6t ).
(e) The location of the centre of mass for a range of frequencies, i.e.
the ’intensity’ of the centre of mass.

Figure A.2: (a) The original function, g (t ) = 0.5 · (sin2π ·2t +sin2π ·
7t ). (b,c,d) ’Wrapped’ in the complex plane, using wrapping fre-
quencies 2,3 and 7 respectively. (e) The location of the centre of
mass for a range of frequencies, i.e. the ’intensity’ of the centre of
mass.

A.3. THE FOURIER TRANSFORM
In analyzing the isotropic turbulence, a convenient way of isolating the parts of the flow corresponding to
certain wavenumbers or frequencies is desirable. To do this, the Fourier transform is used.

Consider the function g (t ) = sin2π · 0.5t , a pure sine wave with frequency 0.5 (figure A.1a). This might
represent the air pressure next to a speaker producing a tone with frequency 0.5. The idea behind the Fourier
transform is to wrap the output of this function for a certain time-interval around the origin. A convenient
way to achieve this is to use Euler’s formula, exp−2πi tζ, where ζ is the wrapping frequency. This is done in
figures A.1b, A.1c and A.1d. The centre of mass is represented by a red dot.

The interesting thing to note here is that the location of the centre of mass in the complex plane is depen-
dent on the wrapping frequency ζ. Generally, the positive and negative amplitudes in the sine wave cancel
out, and the centre of mass wobbles around the origin. However, when the wrapping frequency coincides
with the signal frequency, all the peaks and valleys of the original signal line up, and the centre of mass shifts
significantly. In figure A.1e, the real and imaginary parts of the location of the centre of mass are plotted for
a range of wrapping frequencies. As expected, they wobble about zero, only deviating when the wrapping
frequency coincides with the signal frequency.

Now consider a signal consisting of two frequencies, g (t ) = 0.5 · (sin2π ·2t +sin2π ·7t ) (figure A.2a). Once
again wrapping it for several wrapping frequencies (figures A.2b, A.2c and A.2d), and plotting the location of
the centre of mass for different frequencies (figure A.2e), two distinct peaks are found corresponding to the
frequencies making up the original signal.

This forms the basis of the Fourier transform. One notable difference between the functions plotted in
figures A.1e and A.2e and the actual Fourier Transform of their respective inputs, is that the Fourier transform
does not normalize the centre of mass, thus a signal which persists for a longer period of time will be more
prominently visible in the Fourier transform.

By flattening peaks for certain wavenumbers in Fourier space, and subsequently transforming the signal
back to real space using the inverse Fourier transform, the part of the original field corresponding to those
wavenumbers can be eliminated. In this way it is possible to isolate only the parts of the field associated with
a certain range of wavenumbers.
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