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Preface

Dear reader,

Before you lies my master thesis called “Frustumbug: a 3D Mapless Stereo-Vision-based Bug Algo-
rithm for Micro Air Vehicles”. Since drones are getting smaller and lighter, I have been researching
efficient and lightweight autonomous path planning solutions for drones.

I sincerely hope that the value of my work is recognised by someone who has the interest and re-
sources to focus on future work. The results have validated the method and I am proud to see how
well the algorithm performs. Now it is time to solve for the very few cases where the drone does
not reach its target, and to brainstorm about how to best extend its sensing capabilities to improve
performance, while keeping the added computational expenses low.

I would like to direct a massive thank you to my PhD supervisor ir. Tom van Dijk for his help in this
project full of new challenges for me. Normally supervisors are given a bottle of wine at the diploma
ceremony, but Tom deserves the whole crate. He has been very approachable and is willing to put
his own research aside to help me. Also, I would like to thank my supervisor Prof. dr. Guido de
Croon for his guidance and critical mindset during our meetings. He is a great example for always
being in a good mood, whilst living an extremely busy life.

It is a great relieve to be able to say that I can end my master thesis on a high note. The topic has
been exciting, especially since I started working with the real drone. I enjoyed the problem-solving
approach and the room for creativity. But as you know, the only reason that these highs exist, is
because there have been lows. These were especially present during the pandemic lockdowns. I am
glad to see that the TU Delft is focusing more and more on mental health, but perhaps it should just
be less of a taboo in general.

I have tried many different locations to study during my thesis, and I would like to say that the con-
nections I have made with the people in room 2.56 mean a lot to me and gave me motivation to
continue studying, day in, day out.

Megan, I am excited now that we have both finished our MSc thesis. I look forward to the coming
year, full of new experiences and who knows where we will be. I value your support during my low
days, and your happiness during my high days.

Via this way, I would also like to thank my parents for their interest, support and motivation during
my studies. I came to Delft without knowing anything about student life, and they simply trusted
that it would turn out alright. I am grateful to be given this chance.

Thank you to all the friends I have made over the past few years: housemates, Duikboot, Tenniphil
and VSV friends. You have made these past years extremely memorable and I look forward to keep-
ing in touch.

For now, I would like to thank you for your interest in my work, and I hope you will enjoy reading.

R.S. Meester
Delft, January 2023
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Introduction

The drone market is going through a massive economic growth, which can be translated into billions
of dollars (Aswini et al., 2018). Researchers are highly interested in developing efficient on-board
obstacle avoidance algorithms, since there is no room for large on-board computers. Solutions ex-
ist, and are currently on the market. Both DJI and Skydio have drones which use multiple stereo
camera pairs to generate computationally expensive 3D depth, colour and heat maps. Skydio needs
over 256 GPU cores to handle over a trillion operations per second. Since these drones are small,
a relative high weight ratio is allocated to the equipment needed to plan its path. A simpler solu-
tion could decrease some of the weight. Decreasing weight is advantageous for the battery life for
(e.g.) industrial inspection or package delivery, but it is crucial for applications like interplanetary
missions, which are taking place present-day. For example, Mars’ first UAV "Ingenuity" landed on
the planet in February 2021 and has made 18 flights up to December 2021. Any weight that can be
saved does not need to be transported millions of kilometres.

Problem statement
The goal of this literature study is to explore multiple distance measurement sensors and map-
based and mapless path planning algorithms to create a new 3D static obstacle avoidance algo-
rithm, which can navigate a small drone from outdoor GPS coordinate A to B, while minimising
deviation from the nominal path and minimising computational resources.

Research questions
To find an answer to the problem statement, it has been divided up into three research questions.

Research question 1: Which distance measurement sensor would be a good candidate to obtain
the relevant information about the environment?

To avoid obstacles, the drone needs sensors that will give it information about its environment.
Therefore, the first research question looks at the different types of sensors, and compares their
advantages and disadvantages. Furthermore, it investigates the necessary post-processing of the
incoming data.

Research question 2: Which existing method, or combination of existing methods, is the most
advantageous to find an obstacle free path?

Sub-question 2.1: How to avoid obstacles?

Sub-question 2.2: How to avoid local minima?

Sub-question 2.3: How to limit computational expenses?

Sub-question 2.4: How to find paths that resemble global optimal solutions?

Since this question is rather broad, it has been broken down into four sub-questions. Firstly,
how to avoid obstacles? In other words, once the drone realises there is an obstacle in its way, how
does it pick the next waypoint? Secondly, how to avoid local minima? There exists the possibility
to get trapped by obstacles, so the drone will have to find its way out. Thirdly, how to limit com-
putational expenses? Fourthly, how to find paths that resemble global optimal solutions? The last
two have an interesting relationship, since generally the computationally more intensive algorithms
produce better results. Running computationally heavy algorithms on a small drone’s processor will
result in a low FPS.

x
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Two drones that were often used in research at the TU Delft are the Parrot ARDrone 1.0 (De
Croon et al., 2013, De Croon et al., 2014) and the Parrot ARDrone 2.0 (van Hecke et al., 2018, Remes
et al., 2013). In recent years, the focus has been shifted to smaller drones which use a JeVois stereo
camera, running on a 1.34 GHz ARM A7 quad-core processor, which has 256 MB RAM (“JeVois Smart
Machine System”, n.d.). Although it is not yet certain whether stereo cameras are the way to go,
these give rough estimates of representative values for small processors used and will be taken as a
reference in this study.

Research question 3: Is it necessary to create a map of the environment?

Sub-question 3.1: In what ways can obstacles be represented?

Sub-question 3.2: In what ways can the workspace be represented?

A map provides more information about the environment than a local percept, but requires
more memory to be stored and more computation to be built. This question will be broken down
into two sub-questions. Firstly, in what ways can obstacles be represented? Secondly, in what ways
can the workspace be represented? These so-called environment representations are used by map-
based path planning algorithms.

Assumptions
The assumptions for this literature study are:

• The environment is outdoor.

• The drone has to avoid static obstacles only

• GPS signal is available.

• The target is known and static.

• Maze-like environments are not considered.

• No a priori information about the environment is known to the drone.

• Flights take place during daylight.

Organisation
This final product consists of two parts: a scientific paper and a literature study. The scientific pa-
per presents the implementation and results. Since the literature study is slightly outdated, there is
a chance that conclusions or implementation proposals have changed. If so, the scientific paper is
leading. The literature study answers the research questions: chapter 1 will dive into the world of
sensing. After, chapter 2 explains different methods for analysing and processing this sensor infor-
mation. An interesting topic here is whether or not to store a map which represents both obstacles
and the workspace. Multiple map-based path planning algorithms exist, which will be presented in
chapter 3. Aside from that, it is also possible to plan a path without any environment representa-
tion. These mapless algorithms are discussed in chapter 4. Subsequently, chapter 5 explains how
the proposed algorithm is going to be implemented, and finally chapter 6 presents the conclusion.
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Frustumbug: a 3D mapless stereo-vision-based bug algorithm for
micro air vehicles

R.S. Meester * , G.C.H.E. de Croon † , T. van Dijk †

Control and Simulation, Faculty of Aerospace Engineering
Delft University of Technology, The Netherlands

ABSTRACT

We present a computationally cheap path planning al-
gorithm for drones in 3D, by combining stereo vision with
bug algorithms. Obstacle avoidance is important, but dif-
ficult for robots with limited resources, such as drones.
Stereo vision requires less weight and power than active
distance measurement sensors, but typically has a lim-
ited Field of View (FoV). In addition, the stereo cam-
era is fixed on the drone, preventing sensor movement.
For path planning, bug algorithms require few resources.
We base our proposed algorithm, Frustumbug, on the
Wedgebug algorithm, since this bug algorithm copes with
a limited FoV. Since Wedgebug only focuses on 2D prob-
lems, the Local-ϵ-Tangent-Graph (LETG) is used to ex-
tend the path planning to 3D. Disparity images are ob-
tained through an optimised stereo block matching algo-
rithm. Obstacles are expanded in disparity space to ob-
tain the configuration space. Furthermore, Frustumbug
has an improved robustness to noisy range sensor data,
and includes reversing, climbing and descending manoeu-
vres to avoid or escape local minima. The algorithm has
been extensively tested with 225 flights in two challeng-
ing simulated environments, with a success rate of 96%.
Here, 3.6% did not reach the goal and 0.4% collided.
Frustumbug has been implemented on a 20 gram stereo
vision system, and guides drones safely around obstacles
in the real world, showing its potential for small drones to
reach their targets fully autonomously.

1 INTRODUCTION

The drone market keeps growing, with applications rang-
ing from industrial inspection to search-and-rescue and pack-
age delivery. Since most of the applications have to be per-
formed autonomously, autonomous obstacle avoidance is of
the essence. Current solutions for this combine multiple sen-
sors and are computationally expensive and memory inten-
sive. An efficient, lightweight solution would require less en-
ergy from the battery, increasing the flight time. Moreover,
the size and weight of on-board processors can be reduced,
allowing tiny drones to navigate autonomously to a goal. Ide-
ally, this solution makes decisions that have an explanation
based on logic, instead of randomly generating obstacle-free
paths.

*MSc Student
†Supervisor

(a) Drone’s viewing frustum
(b) Depth image obtained from in-
formation inside frustum

Figure 1: Creation of the 3D viewing frustum. Drone rep-
resented by the red structure. Red dotted line indicates the
travelled path. Depth image includes a safety margin around
obstacles.

Over the past few decades, several distance measurement
sensors have been studied. To allow for on-board path plan-
ning, vision-based sensors are the only promising candidate
when looking at size and weight and power [Aswini et al.,
2018]. To limit the computational resources used by the
drone, a mapless method is preferred over a map-building
method. Since outdoor flight is assumed, building maps of
large, complex environments requires high resources.

Ideally, the generated path should resemble the globally
shortest path. Therefore, the drone’s ability to move up or
down to avoid obstacles needs to be exploited, hence this pa-
per focuses on path planning in three dimensions. 3D map-
less vision-based methods exist, but are often combined with
probabilistic roadmaps [e.g. Matthies et al., 2014 and Lee
et al., 2021] or machine learning algorithms [e.g. Doukhi and
Lee, 2022 and Grando et al., 2022]. Since there is a certain
amount of randomness in these methods, the choice of paths
can not always be explained, and may not always lead to the
goal. Furthermore, these methods tend not to include strate-
gies for escaping local minima, or use randomly generated
sub-optimal paths to escape [e.g. Matthies et al., 2014 and
Yu et al., 2018].

Bug algorithms are used for robots with limited com-
putational resources, since they plan their path using very
little computation and memory. Another advantage is that
these finite-state machines provide a strategy for escaping lo-
cal minima. Wedgebug [Laubach and Burdick, 1999] is a
two-dimensional bug algorithm that solved the problems for
robots with a small Field of View (FoV), by rotating the sen-
sor when more information is required. However, to create an
accessible algorithm for the many drones and cameras with-
out that capability, and to limit the necessary moving compo-
nents, the algorithm should be designed without the require-
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ment of camera rotation. When stuck in a local minimum,
Wedgebug will follow the obstacle boundary until an inter-
mediate waypoint is found which decreases the distance to
goal [Laubach and Burdick, 1999]. However, in 2D an ob-
stacle can only be avoided in two directions: left or right. In
3D, the number of directions to avoid an obstacle increases to
infinity, since any location on the obstacle boundary can be
chosen. 3DBug [Kamon et al., 1996] reduces the necessary
calculations by discretising the continuous obstacle contour
into a set of points. However, 3DBug assumes infinite sensor
range and a 360 degrees FoV. Furthermore, it has been tested
on relatively simple environments where the locally best de-
cisions mostly lead to the globally best paths.

The goal of this study is to create a 3D path planning al-
gorithm, which can navigate a drone to a target while min-
imising deviation from the nominal path using limited re-
sources. We contribute to the existing literature by: (i) ex-
tending Wedgebug to operate in 3D, (ii) introducing addi-
tional navigation states for avoiding and escaping local min-
ima, (iii) designing a novel waypoint selection method to in-
crease robustness to noisy range sensor data, (iv) extensively
testing the proposed algorithm in simulation and real-world,
using a very light-weight stereo vision system. We will call it
Frustumbug, as the frustum can be seen as the 3D extension of
a wedge. Figure 1 shows how the viewing frustum is shaped
(Figure 1a), along with its corresponding configuration space
(Figure 1b). Our contributions take the next step towards a
publicly available self-contained path planning package and
allows for future extensions, since each path planning deci-
sion follows from logical decision captured in a decision tree,
and each branch can be altered individually. Assumptions
include outdoor flight during daylight, where GPS signal is
available. Furthermore, the target and obstacles are assumed
static and maze-like environments are not considered. The
remaining part of the paper is structured as follows: first, sec-
tion 2 shows the related work and section 3 explains how the
chosen approach is implemented. Then, section 4 presents
the experimental results from both simulation and real world
testing. This paper then discusses the results in section 5 and
concludes in section 6.

2 RELEVANT WORK

The relevant work is divided into two sections: we first
look at literature on distance measurement sensors to opti-
mise our sensing, followed by literature on avoidance algo-
rithms to complete the path planning package.

2.1 Sensing
Vision-based sensors are suitable for outdoor environ-

ments, since they usually have enough texture to be captured
with a camera [Matthies et al., 2014]. Deep/Machine learning
algorithms are not considered for obtaining depth informa-
tion, since these methods consist of multiple convolutional
layers, which require large matrices to be stored and many
computations to be made [e.g. Doukhi and Lee, 2022]. More-

over, parameters of a neural network result from training the
algorithm for a longer period of time. If it shows inconsistent
results for repetitive image texture, or low-textured regions,
the parameters can not be easily adapted to improve the re-
sult. It would have to be trained again on an improved dataset,
or with different hyperparameters.

Vision-based sensing can be done with one, two or more
cameras. Monocular vision in obstacle avoidance is generally
paired with optical flow methods. These have their drawbacks
in obtaining disparity images compared to stereo vision: a
larger image area needs to be searched to find matching pix-
els, estimates on position and attitude changes need to be in-
cluded in the calculation and it is not able to sense distances
in the direction of travel, since there is no optical flow in the
focus of expansion [van Dijk, 2020]. Following the argu-
ment above, stereo vision is preferred, since the added weight
and required power are small; they can be as lightweight as
4 grams and be run on 168 MHz microprocessors [McGuire
et al., 2017]. To limit the computational resources, a solution
using more than two cameras is not considered.

Stereo matching can be done either local or global, and
sparsely or densely. Although global methods tend to gen-
erate better results in low-texture environments, it comes at
a computational cost [Liu et al., 2020]. Furthermore, out-
door environments during daylight have enough texture for
local methods. Sparse methods only calculate the dispar-
ity for interesting features, which decreases the computa-
tional cost. However, this would leave large gaps in the
disparity image, which are unwanted. Therefore, a local
dense stereo matching algorithm will be used to create the
disparity image. Possible stereo matching algorithm candi-
dates can be compared by their run-time, used platforms, per-
formance and code availability from common benchmarks
KITTI [Geiger et al., 2012] and Middlebury [Scharstein and
Szeliski, 2002]. The most promising candidates are Block
Matching (BM) [Scharstein and Szeliski, 2002] and Semi-
Global Block Matching (SGBM) [Hirschmuller, 2005], due
to their fast execution time and performance in outdoor envi-
ronments [Lyrakis, 2019]. In addition, it was concluded that
BM is preferred over SGBM, since it is faster and does not
have the tendency to fill the sky with incorrect large disparity
values [Lyrakis, 2019].

Block Matching can be performed using various metrics
for similarity, pre-/post-filters and block sizes. The Sum of
Absolute Differences (SAD) consists of relatively simple cal-
culations, resulting in a fast algorithm [Patil et al., 2013]. Fil-
ters are used to delete outliers, which can be caused by occlu-
sions or untextured or repetitive image regions. These filters
will be discussed in more detail in subsection 3.1.

2.2 Avoidance

After the obstacles have been observed by the stereo cam-
era, a path needs to be planned around them for avoidance.
Path planning can be done by using either map-based or map-
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less methods. Map-based methods either start with a com-
plete map of the environment (global map), or build them
using sensors (local map), here referred to as map-building
[Elmokadem and Savkin, 2021]. Mapless methods do not
utilise this previously gathered information and show reflex-
like behaviour based on current sensor data [Elmokadem and
Savkin, 2021]. Since complete maps of outdoor environments
are hardly ever available, map-based approaches which re-
quire a global map are unrealistic for outdoor path planning.

There is a trade-off in the decision for a map-building
or mapless method. The objective of this research is to
minimise deviation from the nominal path using limited re-
sources. Map-building methods require more computational
resources and memory, whereas mapless methods make re-
active decisions using a relatively small amount of process-
ing of the sensor data [Elmokadem and Savkin, 2021]. How-
ever, when stuck in a local minima, a mapless method does
not use any information of previously sensed obstacles. It
needs to scan the obstacles again and it could fail to identify
an escape path already known to the map-building method.
Hence, map-building methods could lead to more optimal
paths. Nevertheless, only a small amount of dead ends is ex-
pected in outdoor environments, since obstacles can also be
avoided by passing over them. Therefore, a mapless approach
is chosen to limit computational resources.

Bug algorithms are computationally cheap mapless path
planning algorithms, due to their simple reasoning in find-
ing a way to the goal. For example, Bug2 [Lumelsky and
Stepanov, 1986] draws a main line, or M-line, from start-
to goal position and follows this line until an obstacle is en-
countered. The obstacle boundary is then followed until the
M-line is met, and the motion to goal is resumed. Wedgebug
[Laubach and Burdick, 1999] is of interest because it uses a
range sensor with a small FoV, and we also have limited FoV
vision. It scans a ’wedge’ to see if the goal is safe, or if an
intermediate waypoint needs to be set. In case there is no
solution inside the wedge, it will scan an adjacent wedge to
obtain more information. This algorithm was used to move
a planetary rover horizontally, i.e. in 2D. Extending it to 3D
is necessary to utilise the drones ability to move vertically.
3DBug [Kamon et al., 1996] is a bug algorithm that extends
path planning to 3D by constructing a Local-ϵ-Tangent-Graph
(LETG) which discretises the obstacle boundary. This is nec-
essary since any obstacle boundary is a line with an infinite
number of points. 3DBug assigns a finite number of points
to the boundary, and creates the LETG, which consists of the
lines connecting the current- and the goal position to these
waypoints, as shown in Figure 2. Figure 2a shows an exam-
ple for a 2D plane and Figure 2b for a concave obstacle.

A reactive approach requires each disparity image to be
used individually for path planning. Since the assumption
that the robot can be modelled as a point robot does not hold,
a safety margin needs to be included. This can be done with
low computational costs and little memory by expanding the

(a) 2D plane blocking the path (b) Concave obstacle
blocking the path

Figure 2: LETG edges used by 3DBug for an obstacle block-
ing the drone’s path to goal, represented by the thicker line.

obstacles in disparity space to construct the configuration
space (C-space) [Matthies et al., 2014], as presented in
Figure 3. Each pixel in the disparity image is translated into
its world coordinates and a sphere of a predefined expansion
radius is drawn around it. An example for one pixel is shown
in Figure 3a. Next, a rectangle which hides the sphere behind
it is drawn just in front of the sphere, to simplify calculations.
The area captured by each rectangle obtains a depth value
equal to the pixel’s original depth value minus the expansion
radius. Using the C-space, the drone can be modelled as a
point and it can safely choose an obstacle-free pixel in the
disparity image, as shown in Figure 3b.

(a) Obstacle expansion for
one pixel. Draw a sphere
with expansion radius rv
and capture in a rectangle.

(b) C-space after obstacle expan-
sion

Figure 3: Obstacle expansion in disparity space using expan-
sion radius rv , creating the drone’s C-space.

3DBug makes two assumptions that do not hold: The
range sensor has perfect readings and all obstacles can be
modelled as polyhedral obstacles. The stereo camera will not
provide perfect readings, which makes it difficult to model
the obstacles as polyhedral. As a solution, a boundary tracing
algorithm can be used to find the obstacle contours in the dis-
parity image. The Moore-Neighbor tracing algorithm is often
used, since it is fast and easy to implement [Reddy et al.,
2012]. After creating the contour, the point that represents
the locally shortest path can be calculated. Since a boundary
tracing could identify the (unsafe) concave edge in Figure 2b
as safe, sudden points are searched within the image. These
are defined in Pointbug [Buniyamin et al., 2011] as large sud-
den changes in depth readings. Hence, the sudden points will
ensure that the drone chooses a waypoint around the obstacle
instead of into it.

If the drone is stuck in a local minimum, it needs to ap-
ply a strategy to escape. Wedgebug halts the robot and scans
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additional wedges to find an intermediate waypoint [Laubach
and Burdick, 1999] and goes into boundary following mode.
Here, the robot skirts the contour of the obstacle and leaves
the boundary whenever the goal direction is free of obsta-
cles. Other escaping strategies are proposed by potential
field methods, for example introducing virtual obstacles that
push the drone away [Lee and Park, 2003] or using rotational
forces to steer around the obstacle [Sfeir et al., 2011]. How-
ever, the literature focuses on solutions for 2D problems, and
3D mapless obstacle avoidance algorithms tend not to men-
tion they are getting stuck in local minima [e.g. Lee et al.,
2021 and Oleynikova et al., 2015]. Due to the limited FoV of
stereo vision also in the vertical direction, situations in which
the drone cannot instantly see a vertical escape route can def-
initely occur.

3 METHOD

The method section first discusses the sensing, followed
by the intermediate waypoint selection method and the finite-
state machines. The latter is divided into the description of the
Wedgebug states, changes in these states and the additional
states for avoiding and escaping local minima.

3.1 Sensing

The rectified stereo image pair is fed to the stereo match-
ing algorithm to generate the disparity image. The depth in
metres can be obtained by multiplying the stereo base by the
focal length, and dividing by the disparity in pixels. Fig-
ure 4 shows the result of the stereo BM algorithm using SAD.
The RGB image in Figure 4a is taken from simulated envi-
ronment UrbanCity1. Its corresponding true depth image is
shown in Figure 4b. The generated depth image shown in
Figure 4c shows the result using BM’s default parameters.
To improve the result, a grid search is performed to find the
parameter combination giving the best disparity images. For
this, a dataset of 100 images with ground truth depth values is
generated from the open-source simulation software AirSim2.
To quantitatively compare the performance of the parameter
combination, each disparity image was evaluated for com-
pleteness, accuracy and noise. The parameters are for block
size, texture filter, uniqueness ratio filter, speckle filter, left-
right consistency check. An extra filter has been added in an
attempt to further reduce noise: morphological opening. The
method and results are described in Appendix B. The gener-
ated depth image using these optimised parameters is shown
in Figure 4d.

The next step is to expand the obstacles in disparity space,
to create the C-space. As suggested by the authors, look-up
tables for obstacle expansion coefficients are generated pre-
flight for efficiency [Matthies et al., 2014]. The method is
shown in Figure 5. Figure 5a is a small cutout of the op-
timised parameters’ depth image showing two pixels as ex-

1https://www.unrealengine.com/marketplace/en-US/product/urban-city
2https://microsoft.github.io/AirSim/

(a) RGB image UrbanCity (b) True depth image

(c) Depth image using BM with
default parameters

(d) Depth image using BM with
optimised parameters

Figure 4: True- and stereo Block Matching depth images, be-
longing to an RGB image from simulated environment Ur-
banCity.

ample of obstacle expansion. The width of rv has to be at
least the half the width of the drone to include a large enough
safety margin. Expanding every pixel of an image with a
pixel resolution of 240x320, results in the C-space shown in
Figure 5b. To further improve performance, pixels are only
expanded if their depth value is below a threshold, and the
images are downscaled. In the example of Figure 5c, a depth
threshold of 30 meters is used, speeding up the runtime by a
factor 2.5. Figure 5d shows the image downscaled by a factor
100, yielding a 24x32 resolution, and is 110 times faster than
the complete C-space. The thresholded and downscaled im-
age shown in Figure 5e is 210 times faster than the complete
C-space, with satisfactory results. Figure 5f shows what hap-
pens to the C-space if the BM parameters are not optimised:
the noisy pixels on the nearby building cover the entire FoV
after obstacle expansion, making path planning impossible.
More examples can be found in Appendix A.

The best parameters for a dataset are not necessarily
the best parameters for each individual image. For exam-
ple, some images could have highly repetitive textures and
would need different values for the uniqueness ratio param-
eter. Therefore, if the drone is not able to move due to poor
stereo matching, Frustumbug will change the uniqueness ra-
tio temporarily, in an effort to escape the current location.
Results can be found in Appendix C.

3.2 Waypoint selection

Wedgebug and 3DBug are both finite-state machines
(FSM). They set intermediate waypoints to avoid obstacles,
and move to the goal position when possible. The basis of the
avoidance strategy is shaped by Wedgebug.

The novel waypoint selection method, shown in Figure 6,
finds the locally best waypoint based on its sensor data. The
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(a) Expansion radius rv
(b) Complete C-space

(c) Thresholded C-space (2.5x
faster)

(d) Downscaled C-space (110x
faster)

(e) Thresholded and Down-
scaled C-space (210x faster)

(f) Thresholded and Down-
scaled C-space default parame-
ters

Figure 5: Comparing C-space efficiency measures results

goal- or current waypoint pixel must always be located inside
the FoV, else the drone will hover and scan. The goal pixel
is shown in white in the middle of each image. In this exam-
ple, the goal is blocked by an obstacle at around 30 meters
and a waypoint with a clearance of at least 35 meters will
be selected. The first step is to identify the ’safe’ pixels, as
shown by the white mask in Figure 6a. Second, the mathe-
matical erosion of this mask is performed, yielding the eroded
mask in Figure 6b. Since the obstacle expansion in disparity
space is extremely sensitive to noise, as shown in Figure 5f,
its expansion radius can not be too large. The mathematical
erosion is performed to ensure a large enough safety margin,
in a noise-robust manner. Third, the edge of the eroded mask
is calculated, shown in Figure 6c. To get the locally shortest
path, the obstacle needs to be avoided with the smallest devi-
ation possible. Hence, the best waypoint will be located on
the edge.

Since the Moore-Neighbor Tracing Algorithm requires a
starting point for each boundary it traces, the novel method
is preferred because it is able to find multiple safe areas. In
addition, it makes it simpler to include an extra safety mar-
gin. Since a mask also makes no distinction between way-
points around or into concave obstacles, the fourth step is to
look for sudden points. These are defined as pixels that have
neighbouring pixels have a change larger than 20% in their
depth value, and are shown in Figure 6d.

The last step is to find the best waypoint according to
a cost function. For this, the obstacle boundary is discre-
tised to pixel resolution: each pixel indicates a new possi-
ble waypoint. The cost function minimises the pixel distance
to the sudden points within the eroded mask (if they exist)
and the goal pixel, shown in Figure 6e. Wedgebug places
the waypoint at a finite sensor range [Laubach and Burdick,
1999]. Frustumbug places the waypoint beside the obstacle it
is avoiding, to allow for goal scanning upon arrival.

(a) Safe pixels mask (b) Eroded mask

(c) Eroded mask edge (d) Sudden points

(e) Selected waypoint

Figure 6: Waypoint selection procedure

3.3 Finite-state machine - Wedgebug states
Similar to Wedgebug and 3DBug, Frustumbug is also a

finite-state machine. A simplified version is shown in Fig-
ure 7. The Wedgebug FSM is shown by the blue, green and
yellow shapes, which are connected by solid lines. Frustum-
bug expands the FSM by adding reversing, climbing and de-
scending states, indicated by the dashed grey lines. These
can be activated from motion to goal, motion to waypoint or
boundary following. The states with a solid boundary indi-
cate a moving robot, whereas the dotted boundaries indicate
a stationary robot, used for scanning. For the drone, station-
ary means hovering.

Wedgebug uses state Motion to Goal (MtG) to move the
robot directly towards the goal. If the goal is reached, the
algorithm halts. If an obstacle is detected, a new waypoint
will be searched using the method described above. If found,
state MtG transitions to state Motion to Waypoint (MtW). If
not, it transitions to state Scanning Waypoint (SW). State
MtW moves the robot to the waypoint and checks if state
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MtG is possible when the waypoint is reached. If the path
to the waypoint becomes unsafe because of a previously un-
seen obstacle, a new waypoint is searched. If this waypoint is
not found, state MtW transitions to state SW. In other words,
state SW is activated when there are no safe waypoints visi-
ble in the current wedge. The robot halts and scans additional
wedges to find a new waypoint that can still decrease its dis-
tance to the goal. If no such waypoint can be found, state SW
transitions to state Scanning Boundary (SB). State SB keeps
scanning additional wedges until a new waypoint is found. If
none are found, the goal is deemed unreachable. Otherwise,
state SB transitions to state Boundary Following (BF), which
moves the robot around the obstacle boundary until a transi-
tion to state MtG is possible, or until there exists a leaving
point: a waypoint which has a smaller distance to the goal
than the previously visited coordinates, making a transition
to state MtW possible [Laubach and Burdick, 1999]. The al-
gorithm stores the direction in which the obstacle boundary
is being followed (CW/CCW) to prevent backtracking. If the
goal is reachable, Wedgebug guarantees global convergence
[Laubach and Burdick, 1999].

3.4 Finite-state machine - Changes to Wedgebug states

Since Frustumbug obtains depth information from imper-
fect sensor readings, it is not able to identify independent
obstacle boundaries. In other words, it is not sure whether
it has been following the boundary of the same obstacle, or
if it has jumped to different ones (e.g. it is hard to identify
which branch belongs to which tree in a dense forest). This
causes Frustumbug to lose its global convergence guarantee.
Moreover, if an unseen obstacle appears within a short time
after transitioning from state BF into state MtW, it cannot be
said with certainty if this is the same obstacle whose bound-
ary it was just following, or if it is a new obstacle. If it is
the same, it should follow the boundary in the same direc-
tion (CW/CCW). Therefore, the positive direction around an
obstacle is remembered until a distance is travelled which ex-
ceeds a threshold, currently implemented as 20 meters.

Frustumbug is designed for a fixed stereo camera, hence
it can not rotate its sensors like Wedgebug. Whenever it has
to scan an extra wedge, it will rotate the drone around the
vertical axis (yaw). To minimise the chance of crashing into
obstacles while the camera is facing away from the direction
of motion, this is only performed when hovering stationary. If
the drone is moving, it has to come to a stop first. To transition
from state MtW to state MtG, the drone first needs to stop and
scan the goal. This is done via the state Scanning Goal (SG).
Furthermore, it required a design change for state BF, since it
cannot scan the goal direction while moving along the bound-
ary. Frustumbug divides state BF into two states: Bound-
ary Following - Waypoint (BFW) and Boundary Following
- Turning (BFT). When state SB has found a waypoint, it
transitions to state BFW, which moves the drone to the way-
point. Upon arrival, there is a transition to state BFT, which
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Figure 7: Simplified Frustumbug FSM

rotates the drone to scan the goal and/or the obstacle bound-
ary to plan a new waypoint. The distance between the way-
points results from a trade-off between stopping too often,
and missing opportunities where the goal direction was safe.
Unfortunately, states BFW and BFT can lead to long paths if
they miss safe goal direction opportunities and the continuous
stopping, rotating and going can be time-demanding.

To decrease the frequency in which states BFW and BFT
are activated, state SW is allowed to scan for waypoints that
do not necessarily decrease the distance to goal, as long as
they are within a 180 degrees FoV when facing the goal.
Since Frustumbug already lost its global convergence guar-
antee due to being unable to identify independent obstacle
boundaries, this rule is implemented to improve the overall
performance. Further improvements are made by allowing
state SW to always scan a left wedge and a right wedge, unless
a fixed direction around the obstacle has been specified. This
is implemented to prevent missing out on good opportunities
to avoid the obstacle. Wedgebug would stop scanning as soon
as it finds a waypoint in the left or right wedge [Laubach and
Burdick, 1999].

To prevent looping around the same obstacle, Wedgebug
has implemented a loop detection: when a location on the ob-
stacle boundary is visited twice, a loop is detected [Laubach
and Burdick, 1999]. A two-dimensional loop might not be
found in a three-dimensional environment, since the shape of
an object is not always constant over height, and the altitude
of the drone can change during state BFW. Since Frustumbug
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can not clearly distinguish independent obstacle boundaries,
it is possible that it will follow the boundary of multiple ob-
stacles. Hence, even if a loop is found, the manoeuvre can
be time consuming. Therefore, state MtG is activated by state
BFT once the M-line is crossed. Instead of using the M-line
from start- to goal position, Frustumbug defines this line as
the line between the start of state SB and the goal position,
since the M-line does not play a role in the other states.

3.5 Finite-state machine - Additional states

To further decrease the frequency in which states BFW
and BFT are activated, Frustumbug introduces the possibility
to reverse the drone backwards along previously visited GPS
points using state Waypoint Reverse (WR). This state looks
for escape points that would steer the drone around the ob-
stacle in an earlier stage, using different parameter settings.
Perhaps it did not see the obstacle before due to a stereo mis-
match. Just in case it is mismatched again, the obstacle loca-
tion is remembered as a single pixel, which is redrawn in the
incoming images while reversing. One pixel is enough since
it will be expanded in disparity space to create the C-space.
State WR is only activated if the previously visited GPS coor-
dinates are located on a straight line, since the drone is going
there blindly and turning radii can be different than on the
way there.

Next, a distinction has been made regarding obstacle size
when reaching local minima: the C-space could be blocked
by a farther away large obstacle (note that these pixels are
still unsafe) or a nearby smaller obstacle which caused the
obstacle expansion to cover the entire FoV, similar to what
happened in Figure 5f. In case of a small obstacle, it is pre-
ferred to reverse and avoid using state WR, or to find a new
waypoint using state SW. However, for a large obstacle, a new
waypoint may not be found by states WR or SW. Instead, the
altitude is increased in an effort to avoid the obstacle by going
over it.

The process for selecting the best waypoint for climbing
is shown in Figure 8. Due to the limited FoV it is not pos-
sible to move straight up, hence the drone will climb using
a small flight path angle. To limit the required memory and
computation when scanning its surroundings, only three pixel
rows are checked, shown in white in Figure 8a. In the 32x24
image, these are rows 3, 6 and 9. The waypoint will not be
selected in the top rows (0, 1 and 2), since it would move out
of FoV quickly when the drone pitches forward to move, and
obstacle presence could not be checked. For each white row,
the best pixel’s column is stored if the number of safe pixels
exceeds the threshold for a safe climb. The best pixel’s col-
umn is the column with the largest distance from any obstacle
in that row. Figure 8b shows the safe pixels in grey, as well
as the best pixel in white. If a safe pixel exists in the high-
est row, it is chosen first, followed by the middle row and then
the bottom row. Preference is given to the climbing directions
that are closer towards the goal direction.

(a) The three scanned rows in
white

(b) Waypoint for quickest and
safest climb in white. Grey
shows obstacle-free waypoints

Figure 8: Method for selecting the best waypoint for a climb-
ing manoeuvre

The goal direction is always scanned first for a possible
waypoint to climb. If not found, state Scanning Climb (SC)
is activated. It will first scan the 180 degrees in the goal di-
rection to find a suitable climbing waypoint. If no waypoints
are found, it will scan the remaining 180 degrees. If a way-
point is found, state Waypoint Climb (WC) will move the
drone towards this waypoint. Else, state SB is activated. A
climbing manoeuvre always consists of at least 2 segments to
minimise the deviation from the nominal path: halfway the
desired height difference, a new waypoint will be searched.
It is possible that Frustumbug uses more than 2 segments to
obtain the desired height difference if a previously unseen ob-
stacle blocks the waypoint in state WC. A new segment is then
added, using the method described above.

The climbing manoeuvre is created to allow the drone to
avoid obstacles by flying over them, followed by a descend-
ing manoeuvre. Therefore, the drone is instructed to keep
flying at a higher altitude until the obstacle is passed. Since
individual obstacle boundaries can not be distinguished, this
is implemented as a minimal distance to be flown towards the
goal at higher altitude. Once arrived, the goal direction is al-
ways scanned first for a possible waypoint to descend. If not
found, state Scanning Descent Forwards (SDF) is activated.
The method is similar to selecting climbing waypoints, but
rows 14, 17 and 20 are scanned for descent.

State SDF only scans the 180 degrees FoV towards the
goal. This state is normally used after the obstacle has been
passed, because descending backwards could send the drone
back to the wrong side of the obstacle. If no waypoint for
descent is found, the drone will keep flying towards the goal
at the same altitude for a few metres and transitions to state
SDF again. Else, state Waypoint Descent (WD) will move the
drone towards this waypoint. Upon arrival, the goal direction
will be scanned to see if the goal is inside the FoV. If not,
state Scanning Descent Backwards (SDB) will be activated,
which will scan the 180 degrees in the opposite direction of
the goal. If a waypoint exists here, state WD is activated to
execute the path. Else, state SDF is activated, which will try
to find a waypoint to descend the drone towards the goal.

In case the drone is located nearby and above the goal, or
if state BFT noticed that the goal is located below its FoV, it
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has no clear preference between states SDF or SDB. Hence,
state Scanning Descent Either (SDE) is designed such that
it will first scan in goal direction. If no waypoint is found,
it will continue to scan until a waypoint is found or until a
full revolution is completed, similar to what state SC does
for climbing. A note to this: if the drone realises it is above
an obstacle (e.g. a roof), it will keep moving towards the
goal until this obstacle is passed. It attempts to identify this
situation by checking if the pixels blocking the goal have a
roughly linearly increasing depth value, since this is usually
the case when above buildings or large trees.

In total, the drone can adapt to 14 different states on its
way to the goal position. A complete overview of each state
individually can be found in Appendix G, as well as the possi-
ble state transitions. We are aware that these FSMs can come
across as quite elaborate. However, in complex environments
there are many possible failure modes which need to be ac-
counted for, and we would like to present the states in detail to
keep a clear overview of the drone’s behaviour during flight.
Note that each path planning decision can be changed easily,
allowing for quick user-preferred changes or upgrades.

4 EXPERIMENTAL RESULTS

The proposed algorithm has been tested both in simula-
tion and on a real drone. First, results from simulation en-
vironments UrbanCity and Forest are presented, followed by
the the real world results. A number of start- and goal po-
sitions are generated for both UrbanCity and Forest environ-
ments. The generated paths are stored, from which the suc-
cess rate and the path length can be obtained.

4.1 Simulation UrbanCity

UrbanCity is an environment built in Unreal Engine 4.
Open source project UnrealCV included several commands
to interact with the environment. The environment simulates
a urban city corner and contains buildings, trees, roads and
street signs. Start- and goal positions are chosen throughout
the environment: 11 on ground level and 3 on top of build-
ings. These 14 locations yield 182 possible paths to be trav-
elled. Since UnrealCV is only able to set static camera poses,
drone dynamics are not included. To navigate through the en-
vironment, the camera location is moved by 1 metre in the
direction of the waypoint each time. Only the yaw angle is
changed, not pitch nor roll.

In total, 177 out of 182 goals were reached successfully,
leading to a success rate of 97.3 %. Figure 9 shows all the suc-
cessful paths. Each path has the same color as its goal, how-
ever since there are only 7 colours for 14 goals, every color
appears twice. The 5 unsuccessful paths are shown in Fig-
ure 10, of which the first two are shown in Figure 10a. Here,
the crosses represent the starting points, the dots are where it
failed and the stars are the goals. The black line used state
WC to avoid an obstacle at higher altitude near the end. Upon
arrival, the goal was still inside FoV near the bottom, but was

Figure 9: All successful paths in UrbanCity. The paths are
colour coded similar to their goal position.

blocked by the top of the building, hence state MtW was ac-
tivated. A small distance later, the goal went out of FoV and
state SDE was activated, which found a waypoint in the direc-
tion it just came from: in the front of the building. The drone
got stuck in this loop until a timeout was reached. The green
line collided with a building, due to a temporary change in
value for the uniqueness ratio parameter, as explained in the
last paragraph of subsection 3.1. After a turn, the drone was
facing a different obstacle, which could not be detected using
the temporarily increased uniqueness ratio. However, with-
out this change in the uniqueness ratio parameter, dozens of
simulations got stuck. Corresponding onboard RGB images
and depth maps are shown in Appendix C.

(a) Paths 1 and 2
(b) Paths 3, 4 and 5

Figure 10: All unsuccessful paths in UrbanCity. A cross rep-
resent a starting point, a star represent the goal and the dot is
where the simulation failed.

The three other unsuccessful flights, shown in Figure 10b,
all ended in state BFT or BFW at the timeout. The blue and
cyan lines could not find a path in between the buildings and
continued to follow the boundary of a growing group of ob-
stacles. The red line initially starts boundary following al-
most from the start, but gets stuck in a loop around one of
the higher buildings. All three did not cross their respective

8



M-lines. They initially did not start climbing because they
were looking into small alleys, meaning that the minimum
percentage of nearby pixels was not reached.

(a) RGB image light pole (b) RGB image building

(c) Depth image light pole (d) Depth image building

Figure 11: Examples of nearby (light pole) and farther away
(building) obstacles, both blocking the C-space. The light
pole would trigger a transition to either state SW or WR, de-
pending on the current state. The building would trigger a
transition to state SC.

In subsection 3.5 a distinction between small and large
obstacles was made, which would both have the entire FoV
covered after obstacle expansion. Figure 11 shows an exam-
ple to explain both possibilities using on-board data. Fig-
ure 11a shows a nearby light pole and Figure 11b shows a
farther away building. This is supported by their depth maps:
Figure 11c shows only a few nearby pixels in blue, whereas
Figure 11d shows a large obstacle. After obstacle expansion,
the nearby pixels cover the complete FoV for both. To transi-
tion to state SC, the percentage of nearby pixels in the depth
image needs to exceed a threshold (currently 80 percent), else
there will be a transition to either SW or WR, depending on
the current state. For Figure 11a, state SW was activated, be-
cause the camera had just turned and there was no straight
line segment, so the transition to state WR was not allowed.
For Figure 11b, state MtG transitioned into state SC.

The path lengths are compared to their default path length.
Note that the default path is not equal to the global optimal
path. Since it is complicated to get the globally shortest path
out of UrbanCity, the default path length is defined by the
path length that is obtained if the drone would simply climb
high enough, fly over all obstacles, and descend to goal, using
the FoV restricted climbing manoeuvre. On average the path
lengths are 75.8 % of their default path lengths, meaning that
Frustumbug has found an average shortcut of 24.2 %. Results
are shown in Figure 12. All 6 flights exceeding 115 % have
activated states BFW and BFT during flight.

4.2 Simulation Forest

The open-source simulator AirSim is developed by
Microsoft and contains an outdoor environment called

Figure 12: Frustumbug’s path lengths histogram

Forest. It includes many trees, branches, bushes, rocks and
hills, and is shown in Figure 13. The green dot indicates
the starting position, and the 8 orange dots indicate the goal
positions. Some of the goals are located near trees, but all
are reachable. The paths are flown at 3 different altitudes,
and from low to high altitude and vice versa, resulting in 40
paths. The area with the purple dots consists of fewer trees
and more hills, hence it is used to test Frustumbug’s ability
to deal with ground elevation changes. In total, 43 paths are
generated. The arrows indicate that the waypoint location is
outside of the image. Drone dynamics are included in this
simulation, making it more representative for outdoor flight.

Figure 13: Forest environment. Green dot represents the start
position, the orange and purple dots show all the goal posi-
tions. Arrows indicate they are off the map.

39 out of 43 goals were reached successfully, leading to
a success rate of 90.7 %. Figure 14 shows all the successful
paths and Figure 15 shows the 4 unsuccessful paths. Fig-
ure 14a starts with the top view. Note that the left side of this
plot is the most cluttered part of the environment, with a large
number of trees located close together. Figure 14b shows the
24 paths where start- and goal position have the same altitude.
Two goals (14 and 15) are not reached, both in the cluttered
area. Figure 14c shows the 16 paths that go from low to high
altitude and vice versa. Here, two goals (34 and 38) were not
reached, of which one was located in the cluttered area. Fig-
ure 14d shows the three waypoints far into the forest, in the
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area containing hills. All three were reached by the proposed
algorithm. More data, including onboard images during the
flight, are presented in Appendix E.

(a) Top view of all paths

(b) Paths at constant altitude

(c) Paths with changing altitude
(d) Paths into the hills

Figure 14: All successful flights in Forest

Ideally, the generated path lengths are compared to the
globally shortest path lengths. However, calculating these
would require accurate obstacle data, which is not available.
Furthermore, the climbing and descending method presented
in UrbanCity would yield unrealistically long default paths,
since the trees are generally not avoided by climbing over
them. Therefore, the paths had to be analysed qualitatively.
It was found that any deviation it took from the nominal path
was supported by obstacle presence.

Figure 15: Four unsuccessful paths in Forest

The four unsuccessful paths are caused by three differ-
ent reasons. The paths shown in Figure 15 belong to the
red markers in Figure 14b and Figure 14c. Paths 34 and 38
both got stuck for the same reason: states BFW and BFT did
not find an escape point in any of the wedges. Path 14 was
working its way around the trees, but got stopped by a time-
out. Path 15 transitioned many times from state BFT to state
MtW, and from state MtW back to SB (followed by BFW and
BFT). This was because the positive direction around the ob-
stacle boundary was forgotten by the time the transition to SB
happened. In other words, the threshold explained in subsec-
tion 3.4 was too low for this run, since it kept going around
the same group of obstacles in different directions, until the
timeout was reached.

4.3 Real World
For real world testing, two JeVois3 cameras were con-

nected to one ARM-A7 processor, responsible for the navi-
gation. The setup is shown in Figure 16, where the stereo
camera is shielded in tin foil to block the electromagnetic ra-
diation.

Figure 16: Experimental setup: JeVois stereo camera
mounted to the bottom of the drone.

The testing is performed in the Cyber Zoo facility at the
faculty or Aerospace Engineering at the TU Delft. The drone
obtains accurate position and orientation estimates via the
motion capture system Optitrack. In the experiment shown
in Figure 17, obstacles are placed in a V-shape to create a
local minimum.

Figure 17: Real world testing environment: Cyber Zoo facil-
ity at the TU Delft. Obstacle are positioned to create a local
minimum.

The results are shown in Figure 18, where Frustumbug
has created a safe path around the obstacles. Figure 18a uses

3http://jevois.org/
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a low elevation angle to show that the height is approximately
constant throughout the flight. Figure 18b shows a better per-
spective of the generated path. The path starts at the green
dot, and the drone moves to goal using state MtG. Once the
obstacle is detected, the drone stops and hovers, because a
waypoint is not found. State SW (cyan cross) starts scanning
for a waypoint, and on the second left scan, a waypoint is
found and the drone moves there. At both the orange crosses
an obstacle (the Cyber Zoo edge) is detected and a new way-
point is found while in state MtW. At the dark blue cross,
the waypoint reached and state MtG moves the drone towards
the goal. A waypoint above the obstacles was not found due
to the limited vertical FoV. More results, including on-board
images and decision making, are included in Appendix F.

(a) Low elevation angle

(b) High elevation angle

Figure 18: Result of a Cyber Zoo flight test. State SW finds
a waypoint around the group of obstacles. State MtW steers
clear of the Cyber Zoo edge. State MtG moves the drone
towards the goal.

Another experiment, where the drone only had to avoid
one obstacle, is shown in Figure 19. It starts at the green
dot in state MtG, and the obstacle is detected at the orange
cross. However, in this experiment, a waypoint is imme-
diately found, hence no transition to state SW is necessary.
State MtW moves the drone towards the waypoint. Upon ar-
rival, the state transitions to MtG to complete the last segment
to goal. Note that these real world tests do not test all the pos-
sible state transitions. Since the simulated environments have
already proven that the algorithm can reach its goal through
challenging environments, the main focus of the real world
tests is to show its feasibility on resource limited systems.

5 DISCUSSION

The results have shown that Frustumbug is able to reac-
tively plan its path from start- to goal position with an accept-
able path length, using limited computation and memory.

Figure 19: Result of a simple Cyber Zoo flight test. In state
MtG, the obstacle is detected and a waypoint is found. State
MtW moves the drone to the waypoint and a transition to state
MtG follows.

Previous research had various simplifications and limita-
tions. 3DBug assumed that the range sensor has perfect read-
ings over a 360 degrees FoV and that all obstacles could be
modelled as polyhedral. In addition, it was only tested in
simulation. Other studies on reactive path planning in 3D
did not explicitly mention escaping local minima or used ran-
domly generated sub-optimal paths to escape. Frustumbug
has been demonstrated in complex, realistic environments. It
has found solutions for the assumptions that do not hold in
these environments, and escapes local minima by taking log-
ical decisions. The strengths of the proposed algorithm are
the high success rate and the small size, weight and power.
Furthermore, every path planning decision is made according
to a large decision tree. This means that any choice made by
the algorithm can be examined afterwards and changed indi-
vidually. Moreover, the stereo matching parameters can be
altered mid-flight if the incoming image shows signs of low
texture or highly repetitive texture.

The limitations of the algorithm come in twofold, which
will be discussed along with a few recommendations.

First, the choice of using a stereo camera with a small FoV
limits the drone’s local environment information. For exam-
ple during boundary following, the drone has to stop often
to scan extra wedges. Furthermore, it results in small climb-
ing and descending angles in states WC and WD. Increasing
the FoV is a possible solution, but comes with issues. In-
creasing the FoV while keeping the same image resolution
will decrease the focal length, which decreases the largest
depth that can be measured. The stereo base could be in-
creased to counteract, but for small drones this is not ideal.
To keep a constant focal length, the image size needs to be
increased, but this will increase the computation. Another so-
lution is to allow separate rotation of the stereo camera, sim-
ilar to Wedgebug. However, this would introduce more mov-
ing components that can fail, and puts more requirements on
drones which would like to use Frustumbug. A third solution
would be the use additional lightweight sensors, for example
an HC-SR04 SONAR. Since it has an extremely small FoV
it could not be used for normal path planning, but it could
scan to see if there is an obstacle above the drone. If not, the
FoV limited climbing manoeuvre can be avoided. Pointing
a stereo camera up would be excessive, since detailed infor-
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mation about obstacles above the drone is not required. The
SONAR requires only 15 mA (JeVois: 800 mA), but adds an
extra weight of 8.7 gram per sensor 4.

Second, the c-space expansion could hide any escape
points in narrow streets, or local areas with a high obstacle
density. Future work could focus on running two instances of
the c-space algorithm, with both a small and large expansion
radius. The small expansion radius could be used temporarily
to escape the situations described above. However, the larger
expansion radius is the default for path planning, to keep a
big enough safety margin from obstacles for changes caused
by wind or GPS inaccuracy.

Further improvements can be found when looking at the
results. The black path in Figure 10a failed because it did
not identify that it was above an obstacle that needed to be
passed, as described in subsection 3.5. In this particular flight,
the drone was squeezed between two buildings of different
heights, and no linearly increasing depth values were found in
the direction to the goal. Future work could focus on design-
ing an improved version of this function. The same rationale
applies to the green path: it failed because the trick to ignore
repetitive texture caused it to not recognise another building.
Future work could use image characteristics to have a vari-
able parameter set for the stereo matching algorithm. Some
on-board examples are shown in Appendix C.

Looking at Figure 10b, improvements can be made in the
decision for state transition. For example, state SB is ac-
tivated when the obstacle is relatively small (and state SW
could not find a waypoint), but once state BFW or BFT re-
alises that the obstacle is in fact quite large, the state should
switch to state SC and not stay in BFW or BFT, as was seen
in Figure 10b. The same figure also shows a red path getting
stuck in a loop around the same building, hence implement-
ing something equivalent to a 3D loop detection seems useful
after all.

6 CONCLUSION

Frustumbug is a cheap, lightweight three-dimensional
path planning package for small drones. It reaches more than
90% of its goals in complex environments, is robust to noisy
range sensor data and runs smoothly on a 20 gram stereo vi-
sion system with limited memory and computation. Further-
more, it has been extensively tested, both in simulation and
real-world.

Our paper takes a step towards a publicly available path
planning package. Since it does not rely on heavy processing
power, it will be less demanding for the battery and onboard
computer, increasing valuable flight time.
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APPENDIX A C-SPACE THRESHOLDS

To show the effect of the thresholds used for creating the C-space, a few examples are shown below. These four images are
chosen since they have both nearby and farther away obstacles.

For each figure, subfigures (a), (b) and (c) show the RGB image, the generated disparity map using BM with optimised
parameters and the complete C-space (i.e. without thresholding or downscaling). Subfigures (d), (e), (f) and (g) show thresholds
at 10, 20, 30 and 40 metres respectively. Any pixels with depth values larger than these threshold will not be expanded in
disparity space. The time in between the brackets indicates runtime, averaged over 3 runs. Note that the thresholded images are
also downscaled.

Since some of Frustumbug’s states require obstacle information at more than 20 metres (e.g. SC), the threshold needed to
exceed 20. The selected threshold is 30 meters, since obstacles at a distance between 30 and 40 meters distance are not used by
Frustumbug’s reactive planning.

(a) RGB image nearby tree (b) Depth image (c) Complete C-space (257 msec)

(d) Threshold at 10m (11 msec) (e) Threshold at 20m (23 msec) (f) Threshold at 30m (25 msec) (g) Threshold at 40m (28 msec)

Figure 20: An example from on-board footage, used to show the influence of the obstacle expansion threshold. It shows two
nearby trees, and a farther away building. Any pixels with depth values above the threshold are not expanded to improve
runtime. Frustumbug uses a threshold of 30m.

(a) RGB image buildings along road (b) Depth image (c) Complete C-space (212 msec)

(d) Threshold at 10m (17 msec) (e) Threshold at 20m (19 msec) (f) Threshold at 30m (20 msec) (g) Threshold at 40m (22 msec)

Figure 21: An example from on-board footage, used to show the influence of the obstacle expansion threshold. It shows the
side of a building, slowly disappearing in the distance. Any pixels with depth values above the threshold are not expanded to
improve runtime. Frustumbug uses a threshold of 30m.
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(a) RGB image nearby tree and building (b) Depth image (c) Complete C-space (224 msec)

(d) Threshold at 10m (20 msec) (e) Threshold at 20m (26 msec) (f) Threshold at 30m (26 msec) (g) Threshold at 40m (30 msec)

Figure 22: An example from on-board footage, used to show the influence of the obstacle expansion threshold. It shows a
nearby building and tree, and a large building farther away. Any pixels with depth values above the threshold are not expanded
to improve runtime. Frustumbug uses a threshold of 30m.

(a) RGB image above tree, near building (b) Depth image (c) Complete C-space (225 msec)

(d) Threshold at 10m (12 msec) (e) Threshold at 20m (21 msec) (f) Threshold at 30m (23 msec) (g) Threshold at 40m (29 msec)

Figure 23: An example from on-board footage, used to show the influence of the obstacle expansion threshold. It shows the
drone passing over a tree and a building, with another large building in the background. Any pixels with depth values above the
threshold are not expanded to improve runtime. Frustumbug uses a threshold of 30m.
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APPENDIX B OPTIMISING STEREO BLOCK MATCHING PARAMETERS

The parameters used in the stereo block matching algorithm are the following:

• MinDisparity (MD) - minimum possible disparity.

• NumDisparities (ND) - maximum possible disparity. A high value allows nearby obstacles to be matched, but it increases
computation.

• BlockSize (BS) - sliding window size. High values give smooth, but possibly inaccurate images. Low values give
detailed, but possibly noise images.

• SpeckleWindowSize (SWS) - maximum group size for pixels to still be considered a speckle.

• SpeckleRange (SR) - maximum range between pixel values to be considered the same group.

• Disp12MaxDiff (LR) - maximum allowed difference in the left-right consistency check.

• PreFilterType (PT) - either NormalizedResponse or XSobel

• PreFilterSize (PS) - pre-filtering size for NormalizedResponse

• PrefilterCap (PC) - clip value if outside range [-cap, cap]

• TextureThreshold (TXT) - minimum texture required within one BlockSize. Relates quadratically to BlockSize.

• UniquenessRatio (UR) - a high ratio means the best disparity match must be a unique match, i.e. SAD(d) >= SAD(d) ·
(1 + UR/100) for any other disparity d within NumDisparities

• SmallerBlockSize (SBS) - Unused/not defined in source code

• ROI1 and 2 - Region Of Interest left and right image

In addition, morphological opening (OP) has been added, in an effort to further reduce the noise in the image. Grey-scale
opening consists of two stages: first the image is eroded, then dilated. The window size used for these operations is the
parameter that will be optimised. Table 1 shows for each parameter its default value, whether it is included in the optimisation,
what values are used to test the parameter and the implemented.

Table 1: Default and optimised values for each stereo BM parameter

Default Optimised Tested range Implementation
MD 0 No - 0
ND 64 Yes - 32
BS 21 Yes [5-21] 17
SWS 0 Yes [0-150] 150
SR 0 Yes [0-14] 14
LR -1 Yes [-1-10] 14
PT XSobel No - XSobel
PS 9 No - 9
PC 31 No - 31
TXT 10 Yes [0-5780] 1156
UR 15 Yes [0-45] 2
SBS 0 No - 0
ROI (0,0,0,0) No - (0,0,0,0)
OP 0 Yes [0-7] 0
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A grid search is used to test all parameter combinations on a dataset containing 100 images. These images are taken
from the Forest environment and include a mix of obstacles: trees, branches, bushes, rocks, ground, etc. Each parameter
combination generates a disparity image, which is expanded to create the C-space. The generated C-space is then compared to
the C-space resulting from ground-truth depth data. The generated C-space is evaluated on completeness, accuracy and noise.
Firstly, completeness is quantified by the amount of pixels that did not get a disparity value, from which the true disparity value
is higher than 2 pixels. Secondly, accuracy is quantified by the amount of pixels that give a depth estimate within a 30% error.
Note that pixels with a disparity value lower than 2 pixels are not considered here either. Using a 60 degrees FoV, 256x144
resolution and a stereo base of 0.25m, a 2 pixel disparity gives a depth of 27.6m. A 30% error within this depth range could be
crucial, whereas inaccurate depth values of above 27.6m have small consequences to the algorithm. Thirdly, noise is quantified
by the amount of pixels that were given a disparity error of more than 10 pixels. For all three metrics, only the pixels inside
the stereo BM frame are considered. This frame excludes the first 31 columns, since stereoBM can not match these due to the
NumDisparities being equal to 32. In addition, it excludes half the blocksize around the whole contour of the image. All three
objectives are minimised. Testing all possible parameter combinations would roughly take a couple of years to run. Instead,
each variable is assigned a small array of values. For example, SR would be given the array [3, 5, 7, 10], and SWS the array
[55, 75, 95, 115].

The results of the first run are shown in Figure 24. Figure 24a shows the result of all 11520 parameter combinations. Each
data point shows the average value of the parameter combination from 100 images. Since all objectives need to be minimised,
the best solutions appear on the left side of the graph. The pareto front forms a V-shape, stretching from this corner both up and
to the right. Figure 24b shows a more detailed zoom of the left corner.

(a) All 11520 parameter combinations. The best combination is
found in the left corner, where all objectives are minimised.

(b) Zoom of the best parameter combinations in the left corner.

Figure 24: Results of each stereo BM parameter combination averaged over 100 images

The zoom of the best parameter combinations is analysed in more detail. Figure 25a shows how BS influences the results.
From BS 13 to 17 there is an increase in performance, which stagnates around BS 17 and 19. The best results of BS 21 show a
slightly improved completeness, but perform worse in accuracy and noise. Figure 25b shows how TXT influences the results.
A TXT of 8 shows the worst results, followed by a TXT of 6. There is no clear difference between the other two. The actual
values used for the texture threshold are equal to TXT x BS2. This is because a TXT of 50 at a BS of 5 had the same influence
as a TXT of 450 at a BS of 15.
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(a) BlockSize (b) TextureThreshold

Figure 25: Results showing influence of BlockSize and TextureThreshold. The best parameters are located on the left, where
all the values on all three axes are minimised.

The same process takes place for the other parameters. From Figure 26a it can be concluded that values 3 and 5 perform
worse for SR than 7 and 10, but it might be that there exists a value above 10 that could improve performance. Figure 26b
shows a preference towards higher SWS values, although there are also a few combinations using 55 and 75 that still show good
results.

(a) SpeckleRange (b) SpeckleWindowSize

Figure 26: Results showing influence of SpeckleRange and SpeckleWindowSize. The best parameters are located on the left,
where all the values on all three axes are minimised.

Lastly, the results are shown for LR and OP in Figure 27. Figure 27a shows that a higher LR values yields better performance
and Figure 27b shows that any other value than 0 for OP yields worse performance.
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(a) Left-Right consistency check (b) Morphological Opening

Figure 27: Results showing influence of Left-Right consistency check and Morphological Opening. The best parameters are
located on the left, where all the values on all three axes are minimised.

From these observations, a subsequent run slightly adjusts the values of the parameters in promising directions. The final
set of parameters used for the stereo block matching algorithm , as presented in Table 1, resulted after 6 iterations.
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APPENDIX C VARIABLE BM PARAMETERS

In a few specific cases in environment UrbanCity, the drone gets stuck due to incorrect stereo matching. The examples
presented here show obstacles with repetitive texture. It is included to show that changing the Uniqueness Ratio threshold can
get the drone out of tricky situations, and to show that it does not have the perfect response to every possible situation. In
future work, a variable parameter set could be optimised based on the characteristics inside an image (e.g. repetitive texture,
low texture or obstacle size).

Figure 28 shows what the majority of the results looked like: the noise is removed and path planning is made possible
again. However, Figure 29 shows that for some cases, it can delete many pixels. This can make it difficult to check if the goal
direction is safe in state MtG, or to find new waypoints for state MtW, since it requires the new waypoint to have a disparity
value assigned to it. On the other hand, an example where the Uniqueness Ratio threshold of 105 is still too low is shown in
Figure 30. The approach did not completely solve the problem, however the drone was able to find a waypoint. Figure 31
shows an example where the Uniqueness Ratio threshold was temporarily changed, but the drone turned and did not identify
the obstacle and crashed.

(a) RGB repetitive texture building 1 (b) Depth image (UR = 2) (c) C-space (UR = 2)

(d) Depth image (UR = 105) (e) C-space (UR = 105)

Figure 28: Increasing the Uniqueness Ratio (UR) removes the incorrect stereo matches, and allows the drone to escape the
current location.

(a) RGB repetitive texture building 2 (b) Depth image (UR = 2) (c) C-space (UR = 2)

(d) Depth image (UR = 105) (e) C-space (UR = 105)

Figure 29: Increasing the Uniqueness Ratio (UR) removes the incorrect stereo matches. In fact, it removed many pixels since
their uniqueness ratio was small.
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(a) RGB repetitive texture building 3 (b) Depth image (UR = 2) (c) C-space (UR = 2)

(d) Depth image (UR = 105) (e) C-space (UR = 105)

Figure 30: Example showing that increasing the Uniqueness Ratio (UR) does not always solve the problem of incorrect matches.

(a) RGB rooftop (b) Depth image (UR = 2) (c) C-space (UR = 2)

(d) Depth image (UR = 105) (e) C-space (UR = 105)

Figure 31: Example of the effects on a disparity image with low Uniqueness Ratio (UR) overall. All estimates were deleted
from the depth image, and the drone was told the path to goal was safe. This led to a collision.
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APPENDIX D URBANCITY RESULTS

Many paths have been travelled through UrbanCity and a large amount of data has been collected. This appendix is included
to show the strengths of the stereo matching through six good results, but also to reflect on its limitations by showing two
acceptable and two unsatisfactory results.

The first six examples show good stereo matches for buildings, trees, streetlights and electric cables. The buildings in Fig-
ure 32 and Figure 33 are well matched and it has no problems regarding nearby obstacles, as shown in Figure 34. Furthermore,
it can match small objects like the leaves and branches in Figure 35, the streetlight in Figure 36 and the cable in Figure 37.

(a) RGB building 1 (b) Depth image (c) C-space

Figure 32: Good example: correct depth image of a building, with most of the pixels matched.

(a) RGB building 2 (b) Depth image (c) C-space

Figure 33: Good example: correctly matched building, even though the texture and brightness are low.

(a) RGB tree 1 (b) Depth image (c) C-space

Figure 34: Good example: the stereo matching algorithm has no problems with nearby obstacles, and the branches and leaves
are matched correctly.

Next, there are three examples that show satisfactory results for stereo matching. By this is meant that the initial depth
image may not be perfect, but it is compensated for by the obstacle expansion in disparity space, or it is not a direct threat to
a safe flight. Figure 38 shows an image with large patches of low-texture, especially near the bottom, which are not matched.
Note that it initially does not match the window, but the reflection in the window. Figure 39 shows a traffic light which is not
completely visible in the depth image. However, enough texture has been matched for it to block the entire FoV in the C-space.
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(a) RGB tree 2 (b) Depth image (c) C-space

Figure 35: Good example: good stereo matches for both the trees and the building.

(a) RGB streetlight 1 (b) Depth image (c) C-space

Figure 36: Good example: small obstacles like streetlights are identified and marked unsafe.

(a) RGB cable (b) Depth image (c) C-space

Figure 37: Good example: cables are noticed in time.

(a) RGB low texture (b) Depth image (c) C-space

Figure 38: Satisfactory example: not all low-textured pixels are matched, but after obstacle expansion there are no more gaps.

Lastly, two on-board images are presented to show bad stereo matches. Most of the bad matches were caused by repetitive
texture. This was already shown in Appendix C, and yet another example follows in Figure 40. Moreover, there same cable
from Figure 37 is shown, this time from a farther distance. Although the depth image still matches a tiny part of the cable, it
indicates that the cable should not get a lot thinner.
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(a) RGB traffic light (b) Depth image (c) C-space

Figure 39: Satisfactory example: not all pixels belonging to the traffic light are matched, but it is enough to cover the FoV in
the C-space

(a) RGB repetitive texture (b) Depth image (c) C-space

Figure 40: Unsatisfactory example: Repetitive texture is often identified as a large disparity, leading to incorrect C-spaces.

(a) RGB cable 2 (b) Depth image (c) C-space

Figure 41: Unsatisfactory example: The cable almost goes unnoticed. If it would get thinner, the drone might not notice it until
it is very close.
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APPENDIX E FOREST RESULTS

This appendix shows a number of examples coming from on-board footage of the drone flying through the Forest (AirSim)
environment. Three good, and three unsatisfactory results are presented.

Compared to UrbanCity, Forest tends to have highly textured images and repetitive textures are uncommon. The result is
that stereo matching performs well. Figure 42 shows that wide trunks are matched easily. Figure 43 and Figure 44 show the
performance for larger branches. In general, the obstacles are matched correctly and are avoided without problems.

(a) RGB tree trunks (b) Depth image (c) C-space

Figure 42: Good example: tree trunks are matched correctly, as well as the branch in the top-middle of the image

(a) RGB large branches (b) Depth image (c) C-space

Figure 43: Good example: large tree branches are identified and the C-space makes sure the drone navigates around them

(a) RGB nearby branches (b) Depth image (c) C-space

Figure 44: Good example: nearby branches are matched correctly, and the path is marked unsafe.

However, there are also examples of less successful matches. Figure 45 shows an example where a small section of the tree
in the bottom right is matched incorrectly, leading to a large disparity which covers the FoV after obstacle expansion, possibly
caused by a small patch of repetitive texture. This type of mismatch is uncommon in Forest. Next, there are two examples where
matching branches was not successful. For Figure 46 only a small part of the branch was detected. The branch in Figure 47 is
incorrectly matched, since the estimated depth is around 30 metres while the true depth is less than 10 metres. This is likely to
be caused by the blocksize of the algorithm: a smaller blocksize has a higher chance of detecting small branches, but generally
gives a more noisy depth image.
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(a) RGB mismatch (b) Depth image (c) C-space

Figure 45: Unsatisfactory example: mismatch on the tree trunk on the bottom right causes the FoV to be covered after obstacle
expansion.

(a) RGB small branch 1 (b) Depth image (c) C-space

Figure 46: Unsatisfactory example: only a small part of the branch has been matched correctly. It is not enough to steer the
drone around it safely.

(a) RGB small branch 2 (b) Depth image (c) C-space

Figure 47: Unsatisfactory example: the branch is not matched and the path is incorrectly labelled as safe.
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APPENDIX F CYBER ZOO RESULTS

This section shows 7 images which summarise the first path created by Frustumbug in the Cyber Zoo experiment. Note that
for finding a waypoint, the ’safe’ pixels in the C-space still have to be mathematically eroded, as explained in subsection 3.2.
Therefore, there are no safe waypoints found in C-spaces such as Figure 48d and Figure 49d.

(a) Greyscale image (b) Depth image (c) Depth image downscaled (d) C-space

Figure 48: Obstacle depth drops below threshold, path is unsafe and no waypoint is found in the C-space. State MtG transitions
to state SW.

(a) Greyscale image (b) Depth image (c) Depth image downscaled (d) C-space

Figure 49: State SW first scans left. Obstacle blocks the path and no waypoint is found.

(a) Greyscale image (b) Depth image (c) Depth image downscaled (d) C-space

Figure 50: State SW scans right. Obstacle blocks the path and no waypoint is found.

(a) Greyscale image (b) Depth image (c) Depth image downscaled (d) C-space

Figure 51: State SW scans further to the left. Obstacle is detected, but a safe waypoint around it is found.
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(a) Greyscale image (b) Depth image (c) Depth image downscaled (d) C-space

Figure 52: To make sure it does not miss out on opportunities, state SW also scans the right wedge. Obstacle is detected, and
a safe waypoint is found on the right-hand side. Since this waypoint yields a (locally) longer path to goal than the waypoint
found on the left, it is discarded. The drone turns left again and transitions to state MtW.

(a) Greyscale image (b) Depth image (c) Depth image downscaled (d) C-space

Figure 53: In state MtW, the Cyber Zoo safety net is matched incorrectly, likely because of repetitive texture. A waypoint on
the right-hand side is found. This happens once more in this experiment.

(a) Greyscale image (b) Depth image (c) Depth image downscaled (d) C-space

Figure 54: The drone has arrived at the waypoint, and state MtG scans for a safe path to goal and executes the last segment of
the path.
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APPENDIX G FINITE-STATE MACHINES FOR ALL STATES
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1
Sensing

Drones need multiple sensors in order to fly. For example, the Inertial Measurement Unit (IMU)
measures accelerations and angular velocities, and the Global Positioning System (GPS) gives the
position, as well as the velocity. With these sensors, both the attitude and location of the drone is
known. However, autonomous drones will need distance measurement sensors to obtain the nec-
essary information about their environment. The size, weight and power consumption of these
sensors on small drones must be minimised.

1.1. Distance measurement sensors
Many different distance measurement sensors exist. This section holds eight common sensors used
for autonoumous drones: SONAR, LIDAR, RADAR, Infrared, Time-of-Flight cameras, structured
light, mono camera, stereo camera and multi camera. (Fiorenzani, 2017, Lyrakis, 2019). Nyasulu
et al. (2017) performed a survey on low-cost sensing solutions for drones in an outdoor environ-
ment, and concluded that there is no clear winner which outperforms all the other sensors. Every
sensor comes with its advantages and disadvantages, hence a more detailed exploration is provided
in this section.

• Sound Navigation and Ranging (SONAR) emits sound waves and calculates the distance based
on the time it takes before the echo returns. It tends to be inaccurate, since the echo of the
sound wave bounces off many surfaces. For round obstacles like a tree, the wave will not
reflect back to the drone when it hits the side of the tree (Nyasulu et al., 2017). Furthermore,
these sensors only have a range around 5 meters, making fast flight difficult.

• Light Detection and Ranging (LIDAR) applies the same theory, but works with a laser which
sends out pulses. LIDAR is more accurate than SONAR, but it comes at the cost of a heavier
system. It has been proven to work on a small drone by Shen et al. (2011). They combine a
laser scanner with a Microsoft Kinect to obtain a 3D map for a computationally constrained
drone. However, their drone is able to store 1 GB RAM, compared to the 256 MB used in this
study. Furthermore, LIDAR does not give information about the obstacle’s shape, unless some
signal processing is done, leading to large computational expenses (Nyasulu et al., 2017)

• Radio Detection and Ranging (RADAR) is another application of the theory, which uses radio
waves. A RADAR gives very good estimates of the distance to the obstacles (Aswini et al.,
2018). Unfortunately, like LIDAR, these sensors are heavy and cannot be carried by small
drones. Moses et al. (2011) attempted to build a RADAR system on top of a Parrot AR drone to
detect other nearby drones. Shown in Figure 1.1, the system is rather bulky, weighs 230g and
decreased the performance of the drone regarding velocity, flight time and wind resistance.

• Infrared proximity sensors send out waves in the infrared spectrum and measure the inten-
sity of the light when it has bounced off a surface. To calculate the distance to an obstacle,
the change in intensity of the light is used (Adarsh et al., 2016a). To prevent the sunlight from
interfering with the infrared signal, Rusu et al. (2010) send out these waves at 38.5 kHz, and
only look for received signals at around this frequency. A disadvantage is that the sensor can
be inaccurate, for example when detecting a non-smooth surface like wood (Adarsh et al.,
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1.1. Distance measurement sensors 39

Figure 1.1: Radar system on top of Parrot AR drone (Moses et al., 2011)

2016b). Furthermore, like SONAR, infrared waves are not returned when they hit curved ob-
stacles. Lastly, these sensors are not appropriate for outdoor environments, since they have a
short range of about 2 meters (Nyasulu et al., 2017).

• A Time of Flight camera sends out pulses or a continuous wave of light, and waits for the
reflected light to hit the lens. In case of a pulse this reflection has a time difference, and in
case of a continuous wave it has a phase difference. Either of these methods can be used to
obtain the depth and intensity information of all pixels at the same time (Moeller, 2016). There
are three main disadvantages. First, the reflected light gets scattered inside the camera if an
obstacle gets too close. Second, concave obstacles might cause multiple reflections, leading
to erroneous readings. Third, sunlight directly into the camera saturates the pixels and no
useful information can be obtained anymore.

• Structured light can be seen as LIDAR, but without the use of scanning. For LIDAR, either
the camera, object or light needs to be in motion. Structured light is similar to stereo vision,
however one of the cameras is replaced by a projector which sends out a structured light pat-
tern. The camera observes this pattern on an obstacle and is able to form a 3D reconstruction.
The advantages of a structured light camera over a stereo camera is that it can still give depth
estimates when the visual texture is low (Bachrach et al., 2012). Disadvantages of structured
light are that it also has troubles with reflections and transparent obstacles, and that the range
depends on the projector’s performance.

• A mono camera takes a 2D picture of the environment. Cameras are accurate and can provide
a high resolution. Moreover, Aswini et al. (2018) state that vision-based sensors are the only
promising option for a distance measurement sensor when looking at computational power,
size, weight and cost. Furthermore, outdoor environments usually have enough texture to be
captured with a mono or stereo camera (Matthies et al., 2014). Obstacle depth can be ob-
tained from a mono camera in two different ways: either by using one image, or multiple im-
ages with a different time stamp. (Deep) Machine learning algorithms can be trained to map
a single RGB image onto a depth map. The downside is that these algorithms needs many
images to train on. Keltjens et al. (2021) train their monocular depth estimation algorithm
with 18,000 images, and their environment is limited to a relative small indoor simulated en-
vironment. For outdoor environments there is an extreme variety of different surroundings.
A dataset representing the complete variety will first have to be created, which will likely take
more than just a few thousand images.
Another option is an algorithm that uses optical flow. These algorithms use at least two im-
ages, and translate the differences into image disparity. Image disparity is a measure of how
much an obstacle has moved between the two images, which is inversely related to the dis-
tance. Optical flow yields a flow divergence, which is defined as the velocity divided by the
distance. The inverse gives a unit in seconds, which is the Time-To-Contact (TTC), or: the
time it takes for the drone to hit the obstacle. Since GPS data is known, the velocity can be
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obtained, as well as the distance to the obstacle.

• For a stereo camera, the depth of an obstacle can be calculated through simple triangulation
(de Croon, 2021). The base b of the cameras is known, and the focal length f can be calcu-
lated using the FoV. Dividing the base by the disparity d , and multiplying this with the focal
length will give depth values, as shown in Equation 1.1. To clarify, Figure 1.2 shows how these
variables are related (van Dijk, 2020). Disparity information can be obtained from a stereo im-
age matching algorithm. Since these algorithms will not yield perfect disparity images due to
noise, they likely need to be post-processed before a path planning algorithm can be applied.

z[m] = B ∗ f

d
(1.1)

• Multi-camera layouts can provide reliable depth maps, since multiple images can be taken
from different angles at the same time (Sanchez-Rodriguez and Aceves-Lopez, 2018). The
more cameras used on the drone, the smaller the errors in depth estimation. Unfortunately,
as expected, this comes at the cost of extra weight and heavier computations (Lyrakis, 2019).

Figure 1.2: Depth estimation using stereo vision (van Dijk, 2020)

To conclude, either a mono or stereo camera will be used to give the drone the information it
needs to plan its path, due to their high range, low weight and relatively low required computational
resources. Since outdoor flights during daylight are assumed, there will be enough texture to be cap-
tured by a camera. The next section will discuss the differences between the two methods. A path
planning algorithm will use either the local percept directly, or use a map created by one or multiple
percepts, as shown in Figure 1.3. The rest of this literature study will discuss both possibilities. The
chapters in the figure at the arrows refer to the chapters in this report that deal with the topic.

Figure 1.3: Two types of path planning: map-based and mapless

1.2. Visual perception
A camera captures the environment by taking 2-dimensional RGB images. For a mono camera, dis-
parity can be obtained using optical flow algorithms. For a stereo camera, a stereo image matching
algorithm is needed. In this section, these two methods will be compared. Both methods can have
either sparse or dense approaches.
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Sparse: Sparse approaches only look at a small amount of recognisable features inside an image,
and perform their calculations on this small portion of pixels. For optical flow these features can be
corners for example, and for stereo vision highly textured regions are of interest. Since not all pixels
are matched between the images, the resulting disparity images will consist of large gaps (van Dijk,
2020).

Dense: Dense algorithms will give each pixel in the image a disparity value, which yields more
available information for path planning algorithms. Since large gaps of information need to be
avoided, the dense approach is the most suitable for drone sensing. Dense approaches for both
mono- and stereo camera will be discussed.

1.2.1. Mono camera
Optical flow uses vectors as an indication of how much a pixel moved from one image to the next.
Pixels with large vectors likely belong to nearby obstacles, while pixels with smaller vectors are likely
to be farther away obstacles. Optical flow gives information about the flow divergence, which can
be combined with GPS data to obtain estimates for the distances.

Figure 1.4: Image coordinate system (Longuet-Higgins and Prazdny, 1980)

The coordinate system used in the following calculations is shown in Figure 1.4. Here, the im-
age coordinates x and y are the normalised coordinates of X and Y, since they are divided by Z and
multiplied by the focal length. When there is movement between two images, x and y will have a
derivative unequal to zero. These derivatives can be calculated, and are a function of velocities U, V
and W, rotations A, B and C, depth Z and normalised image coordinates x and y. They are presented
in Equation 1.2 and Equation 1.3 (de Croon, 2016). The values of ẋ and ẏ can be found for every pixel
using dense optical flow algorithms. An example of this is Farnebäck’s method, which only requires
two sequential images (Farnebäck, 2002). For every pixel, it takes into account a few neighbouring
pixels and tries to approximate their values using a second degree polynomial function. Using the
parameters of this function, the method finds an estimation of the displacement of the pixels be-
tween the two images.
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Since GPS signal is available, the velocities U, V and W are known. Furthermore, the IMU holds
information about the angular velocities in pitch, yaw and roll, which are represented by A, B and C.
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The normalised image coordinates can simply be read from the image and the optical flow can be
found using methods like Farnebäck. Therefore, the only unknown is depth Z, which can be calcu-
lated by rewriting the equations, shown by Equation 1.4 and Equation 1.5. In case a pixel has both
optical flow in x and y, an average of the two calculated depth values can be used.

Z = −U +xW

ẋ − Ax y +B x2 +B −C y
(1.4)

Z = −V + yW

ẏ +C x − A− Ay2 +B x y
(1.5)

Optical flow has three main drawbacks. Firstly, if there are small inaccuracies in GPS and IMU
data compared to the actual velocities and rotations, these will accumulate, since many are needed
for the depth calculation. Secondly, a larger area has to be searched to find a matching pixel neigh-
bourhood, compared to stereo vision. This is due to the fact that stereo vision knows that the match-
ing pixel in the second image can be found on the epipolar line (van Dijk, 2020). For a stereo camera
which has both cameras pointing in the same direction, assuming a rectified stereo image pair, this
line is a horizontal line. Thirdly, and most importantly, optical flow algorithms are not able to sense
depth in the direction of flight. The drone is flying towards the point of divergence, which is an im-
age coordinate in which no optical flow is present, since there is no disparity.

Due to these drawbacks, the stereo based algorithms are preferred. Stereo cameras can be very
lightweight, for example the 4 g stereo camera used by K. McGuire et al. (2017), which also includes
a microprocessor. The small bit of extra weight from the second camera is preferred over the draw-
backs mentioned of a mono camera using optical flow.

1.2.2. Stereo camera
The second option is to use a stereo camera, to obtain two images at the same time from a differ-
ent position. Dense stereo matching methods combine these two images into one image which
contains disparity values for each pixel. A distinction can be made between local and global ap-
proaches (van Dijk, 2020).

Local: The local approach only looks at disparity values around a pixel within a small window.
resulting in relatively fast computation. However, it is less accurate than the global approach.

Global: The global approach performs an optimisation which takes all disparity values into ac-
count. It includes a smoothness term, which makes sure that pixels that are located around the
same area obtain similar disparity values. This creates better results, especially in environments
with low texture, but it comes at a computational cost.

Since an outdoor environment during daylight is assumed, there is enough texture for the local
approach. Therefore, a local dense approach will be used to create a disparity map. Lyrakis (2019)
performed a state-of-the-art literature search on local dense stereo algorithms. These algorithms
were tested on two famous datasets: KITTI and Middleburry. The most promising candidates were
Block Matching (BM), Semi-Global Block Matching (SGBM), Efficient Large-Scale Stereo Matching
(ELAS) and Slanted Plane Smoothing Stereo (SPS-St). These were then tested on the outdoor scenes
shown in Figure 1.5(a) and Figure 1.6(a), as well as an indoor scene shown in Figure 1.7(a). ELAS and
SPS-St mixed up background and foreground for the outdoor scene, and failed to produce a mean-
ingful disparity image for the indoor scene. Furthermore, their runtime is a disadvantage: ELAS is 5
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times slower than BM, and SPS 31 times. Therefore, only results from BM and SGBM will be shown
in this study.

Block Matching (BM): BM is a local dense approach which computes disparity for every pixel.
Excluded here are the first few columns equal to the number of maximum disparity, and a frame
around the picture equal to half the blocksize, rounded down. It draws a so-called aggregation win-
dow around a pixel, and compares this to a similar sized window in the other image. This compari-
son is done by using the intensity values within this window, where multiple classes of metrics exist.
Lyrakis (2019) mentions Normalized Cross-Correlation (NCC), Sum of Squared Differences (SSD),
Sum of Absolute Differences (SAD), Rank Transforms (RT) and Census Transforms (CT). The result
will be a cost value given to a range of disparities for a pixel, and the disparity with the lowest cost
will be chosen, since it likely belongs to the true disparity of the original pixel. Lyrakis (2019) found
an efficient implementation of Kurt Konolige, who compared intensity values using the Sum of Ab-
solute Differences (SAD). The SAD is expected to be fast, since its calculations are relatively simple.

Semi-Global Matching (SGM): SGM is a mix between a local and global approach. The nec-
essary computations are comparable to local algorithms, yet its performance is slightly under that
of global methods. For every pixel it computes the disparity value using a Birchfield and Thomasi
(BT) or Mutual Information (MI) metric (Hirschmuller, 2005). Although these methods are compu-
tationally more expensive than the ones mentioned for BM, they perform better under illumination
differences, reflections and radiometric differences between the images. Instead of using an aggre-
gation window like BM, SGM uses a set of 1D paths in 8 or 16 different directions, and sums the cost
of all these paths for a certain disparity for a pixel. Semi-Global Block Matching (SGBM) is an algo-
rithm that is available in the OpenCV library, which uses a combination of SGM and an aggregation
window.

The first comparison between the two is shown in Figure 1.5. Using BM, the algorithms has dif-
ficulties to find exact matches for the road patches, as seen in Figure 1.5(b). Since multiple sections
of the road look alike, the repetitive texture creates many outliers for disparity values. BM deals with
these by simply deleting them out of the final disparity image (Lyrakis, 2019). SGBM results, shown
in Figure 1.5(c), show better results for the road. However, it tends to fill the sky with incorrect large
pixel disparities.

((a)) KITTI image 1

((b)) BM ((c)) SGBM

Figure 1.5: Disparity images generated for outdoor scene 1 (Lyrakis, 2019)

A similar observation can be made in Figure 1.6, where Figure 1.6(c) shows pixel disparities in
the sky, top left of the image. BM has a lower performance in the low-textured areas, as seen in
Figure 1.6(b), however it does not produce as many outliers in areas where there are no obstacles
present.

Figure 1.7 shows an indoor image, to introduce a variety of environments. Again, it is clear from
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((a)) KITTI image 2

((b)) BM ((c)) SGBM

Figure 1.6: Disparity images generated for outdoor scene 2 (Lyrakis, 2019)

Figure 1.7(c) that SGBM performs better in low textured area. Two assumptions in chapter were
that the flights take place during daylight, and in an outdoor environment. Since it is quite unlikely
that the drone will be hovering above low-textured roads for cars, the BM algorithm will be suitable
for this study. Furthermore, many of the holes in the disparity map will be filled using a C-space
expansion, which will be explained in section 1.5.

((a)) Indoor image

((b)) BM ((c)) SGBM

Figure 1.7: Disparity images generated for indoor scene (Lyrakis, 2019)

1.3. Filters
Occlusions, untextured or repetitive image regions create challenges for the creation of a dispar-
ity map (van Dijk, 2020). Imperfect disparity maps mean that not every pixel will have the correct
value. Furthermore, also aliasing, bluriness, image distortions, reflections and radiometric differ-
ences like image noise or vignetting have a negative effect on the resulting disparity map (Lyrakis,
2019). However, since they are independent of the chosen stereo algorithm, so they will not be dis-
cussed further in this study.

Multiple filters exist that try to find a solution for getting rid of outliers in the disparity map.
Three post-processing filters that are also included in the OpenCV StereoBM function are a texture
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filter, a uniqueness ratio filter and a speckle filter.

Texture filter: A texture filter gets rid of disparity values that were calculated for a region in the
original image with low texture. The higher the threshold for this filter, the more disparity values
will be discarded.

Uniqueness ratio filter: A uniqueness ratio filter checks if there are similar cost values for dif-
ferent disparity values. If the costs of the best and second best pixel match are similar, this would
mean that the solution is not unique and the disparity value will be discarded.

Speckle filter: This filter tries to get rid of the speckles, or: pixels with high disparity values
which are not so representative for the area around it. If there is a larger blob with pixels of similar
high values, they will not be discarded.

Another post-processing filter, not included in the StereoBM function parameters, is the Left-
Right consistency check. Here, a disparity image is created from the point of view of both cameras.
If the disparity values for the same pixel differ between the images by more than a predefined thresh-
old, the disparity values are either set to zero or another predefined value. This consistency check is
useful for identifying occlusions (Lyrakis, 2019).

Setyawan et al. (2018) use another post-processing filter: a semi-global weighted least squares
filter. The method shows good results in their paper, where it was tested on images with low vari-
ance noise. It does not present any results on images with large noise values which creates speckles.
Since it roughly averages the values around the noise it is expected that this method will incorrectly
increase the pixel values in the neighbourhood of the noisy pixel.

To conclude, all of these filters try to solve different types of the previously mentioned challenges
for the creation of a disparity map. It cannot be said with certainty that one will be better than the
other. Therefore, a careful parameter tuning of each of the filters will need to be performed to draw
conclusions on their performance. Here, a multi-objective optimisation approach is needed, since
the performance can be translated into three components: How good are the estimates? How many
pixels obtain disparity values? And how fast can these computations be performed? More of this is
discussed in section 5.1.

1.4. Uncertainty
Parameter selection of the previously mentioned filters is a time-consuming process, and the ideal
parameters are different depending on the environment. Therefore, we could use an uncertainty
prediction, where the uncertainty is "the expected value of the error between disparity estimation
and actual disparity" (Lyrakis, 2019). 13 different features, including matching costs and disparity
values, were used to obtain an estimate for this uncertainty. Some of these features are representa-
tive for the amount of texture, or noise for example. This resulted in a Decision Tree (DT), trained on
the KITTI dataset, with Grid Search finding the best hyperparameters. The uncertainty values are
used to filter the disparity map, and also to check the (un)certainty of collisions and obstacle-free
escape points. A more detailed explanation is given in section 4.4. Using uncertainty maps gives
more correct collision warnings (True Positives) than the classical BM or SGBM methods (Lyrakis,
2019).

Although this method is created to avoid parameter selection of the previously mentioned fil-
ters, still careful hyperparameter selection is a must for the DT. The images from KITTI focus on
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autonomous driving, meaning that many will include a low-texture asphalt road. Drones are able
to fly above a higher variety of services, therefore the DT would need to be trained again, using a
dataset which includes a larger variety of images. Obtaining and training on such a dataset is a very
time consuming approach, and the large variety within the dataset could cause a low performance
estimator.

Instead of using all 13 features mentioned by Lyrakis (2019), a method to avoid retraining of
the DT could be to simply take one feature, and base the estimation of the uncertainty on that.
For example feature 11, representing the smoothness by looking at the average disparity difference
between the current pixel and the pixels in its neighbourhood. In the KITTI dataset used, this fea-
ture had a Pearson correlation of 0.81 and a Spearman correlation of 0.74 with the disparity error.
These correlations look at the linear and monotonic relationship between the variables respectively
(Lyrakis, 2019). Using only feature 11 to create the uncertainty map may not give the best possible
estimate, but it could be a satisfactory approximation. An approach for testing these hypotheses is
provided in section 5.1.

1.5. Drone’s dimensions
The drone is wider than the base of its cameras. In other words, given the disparity image from the
stereo camera, a path planning algorithm could plan an obstacle-free path according to the cam-
eras, yet the drone would still crash due to its propellers. This section will explain a configuration-
space (c-space) expansion, along with some preliminary results.

1.5.1. C-space expansion
The drone’s dimensions need to be taken into account, either when creating the disparity maps or
when planning the path. The first option can be done with low computational costs and little mem-
ory, and has been implemented by Matthies et al. (2014), where the obstacles are expanded into
disparity space. In short, obstacles near the drone will appear slightly larger since the drone needs
to make a larger turn around it, such that the propellers will not hit the obstacle.

Figure 1.8: Drone’s dimensions sketch (adapted from Matthies et al., 2014)

A sketch of the method is shown in Figure 1.8. This is a top view of the situation, where x denotes
the direction straight ahead, and y is east of the drone. The bottom dot is the drone itself, and the
dot in the middle of the circle is a pixel where the drone has encountered an obstacle. The circle
drawn here is the 2D representation of the sphere that is created around this pixel, with a predefined
expansion radius. This sphere creates the buffer around the obstacle that is needed for the drone
to safely move around it. In the next step, a red line is constructed which represents the rectangle
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that covers the complete area of the sphere from the camera’s point of view. In fact, it will cover
slightly more than the sphere would, since the correct approach would be to use ellipses. However,
the rectangle method only needs an operation in horizontal and vertical direction, which results in
a lower computational cost (Matthies et al., 2014).

1.5.2. Preliminary results
Figure 1.9 shows how this c-space expansion looks on a disparity image. Figure 1.9(a) is a dispar-
ity image of a nearby tree, with some of its branches, as well as some other trees in the distance.
Figure 1.9(b) shows the result after expanding all the pixels. The tree looks wider and the branches
cover a larger area. This was expected since the drone is not able to fly close to the original tree nor
through the branches.

The only downside is that generating the c-space expansion takes a couple of seconds on a
256x144 image, even with the recommended look-up tables of the original paper (Matthies et al.,
2014). However, the original paper implemented the method in C/C++, and the larger runtime in
Python was not representative for the one in C/C++. Unfortunately, some testing will need to be
done in Python as well, so if this problem remains, it is possible to perform the c-space expansion
only on a selection of pixels. Figure 1.9(c) shows the result after applying the expansion to only 1/25
of all pixels. It only looks at every 5th column and row. This creates a slightly more inaccurate dis-
parity image, but allows for real-time implementation in Python. Another option would be to alter
the clockspeed of the simulation software used.

((a)) Disparity image tree ((b)) C-space expansion ((c)) C-space expansion (1/25)

Figure 1.9: Disparity image along with its c-space expansion

1.6. Discussion
The distance measurement sensor that will be used is a stereo camera, since the environment is as-
sumed outside and during daylight, hence it has enough texture. Methods that use sound or radio
waves tend to have difficulties with curved boundaries, and are bulky compared to the stereo cam-
era.

The two cameras allow quick depth perception by comparing the two images through a local
dense approach called BM. BM is preferred over SGBM since it does not produce as many outliers
in low-textured areas like the sky, plus it performs faster calculations. BM compares two aggrega-
tion windows between the two images based on pixel intensity, and returns a value resulting from an
evaluation metric. SAD is expected to yield the fastest calculations due to its simplicity, compared
to other metrics like NCC, SSD, RT and CT. Testing this is left for further thesis work. It could be that
the differences in pixel intensities between the two images is too large for correct matching due to
radiometric differences or reflections. In that case, a BM implementation using BT or MI will need
to be tested, since they perform better under these circumstances.

Regarding the filters, the combination of parameters yielding the best results needs to be found.
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The performance can be expressed by the quality of the estimates, the amount of estimates and the
time it takes to calculate them. The filters that will be considered are: texture, uniqueness ratio and
speckle filter, as well as an Left-Right consistency check.

If, after careful tuning of these parameters, the disparity image remains noisy, the uncertainty
map will be created. Two methods were proposed: the first one is to train a DT on a new dataset,
which includes a larger variery of images. The second option is to base the calculation of the un-
certainty on one feature only, which is the average disparity difference between a pixel and its sur-
roundings.

Lastly, the drone’s dimensions are taken into account by expanding in disparity space. Every
pixel is translated into its world coordinates, and a sphere of a predefined radius is drawn around it.
Next, a rectangle is drawn between the drone and the circle, which covers the area of this circle. In
this way, the drone can be modelled as a point and it can safely choose a pixel with a small disparity
value to travel to.



2
Environment Representation

In this chapter, methods to store information about the environment will be discussed. The previ-
ous chapter has shown methods on how to create disparity maps, which can be used to build maps,
where both obstacles and the workspace can have their own representation. Such a map is built up
from multiple local percepts over time, where a local percept is a disparity image captured by the
stereo camera at one time instant. If the map has been built completely, and the position of all the
obstacles is known, this map is called a global map.

2.1. Obstacle representation
Figure 2.1 shows a comparison between a true disparity image, and the disparity image obtained
from the Block Matching algorithm. Here, the drone flew through a forest and encountered a tree.
The BM parameters still need to be tuned to obtain better results than shown in Figure 2.1(b). Sup-
pose that improving the parameters leads to a result closer to Figure 2.1(a). This image can either be
used directly for planning the next waypoint, or to start building a map of the environment, which
is then used to plan the next waypoint.

((a)) True disparity image ((b)) Block Matching result

Figure 2.1: Differences between the true disparity and stereo camera disparity calculation

The different types of maps can be divided into three classes: Image space maps, discretised
space maps and continuous space maps (van Dijk, 2020). The image space maps use one image
only, and plan a next waypoint using the information of the depth of each pixel. Since it does
not build a map using multiple measurements, it is considered a mapless method in this study.
Discretised- and continuous space maps build a 3D map, using the information obtained through
multiple images. The advantageous of such a map is that the drone is less likely to get stuck in local
minima, since it memorises what the environment looks like and how it can get out or avoid them.
The disadvantage of these maps are the extra computational expenses that are paired with it.

2.1.1. Discretised space
In a discretised space map, the environment is divided into many cells, and each cell is checked for
obstacle presence. These cells can by either shaped by a grid, or a cell tree. These methods are also
referred to as occupancy grids. A grid uses cells of identical size, as shown in Figure 2.2(a), and the
performance is dependent on the size of these cells. The smaller the cells, the more precise it can
model the environment, but the more computationally demanding the calculations become. Fur-
thermore, larger cells are sensitive to noisy data, since they will be marked as occupied if only one
data point falls within. A cell tree uses different sizes for the cells, as shown in Figure 2.2(b). If there
is no obstacle present, cell tree uses relatively large cells. When an obstacle is present, these cells
are divided into 4 smaller cells to highlight details. This process can be repeated multiple times.

49
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Figure 2.2 shows the 2D top view representation for simplicity. The map is extended into 3D in a
similar way.

((a)) Grid ((b)) Cell tree

Figure 2.2: Obstacle representations in discretised space (adapted from Shin and Chae (2020))

2.1.2. Continuous space
Continuous space maps do not divide the environment into a grid of cells, but assign coordinates
to the location of obstacles. The typical form of this is a point cloud, which is a large collection of
all the 3D points found where an obstacle is present, as shown in Figure 2.3. Since, geometrically
speaking, points do not have a volume, small spheres need to be drawn around the points to allow
path planning algorithms to avoid them.

Figure 2.3: Obstacle representation: Point cloud

Since point clouds have a high computational complexity (van Dijk, 2020), it might be wiser to
locate the boundaries of an obstacle and represent those in a map. There are different approaches
for this. Obstacles can be approximated by spheres, as shown in Figure 2.4(a). This will introduce an
extra safety margin around the obstacles. However, this might not be necessary if the disparity space
expansion from section 1.5 is used. The boundaries could also be represented using polyhedrons,
as shown in Figure 2.4(b). This method creates a polyhedron from multiple polygons, which are
straight line surfaces. Instead of using straight line surfaces, Constructive Solid Geometry (CSG)
uses a combination of shapes to represent the obstacles, as shown in Figure 2.4(c). Furthermore, the
boundaries of an obstacle can be represented by their vertices and links, as shown in Figure 2.4(d).

2.1.3. Discussion
These are all the different obstacle representations that will be used for the workspace representa-
tions in the next section. The end of that section will provide a short discussion on which types are
favourable over others, and if it is worth diving deeper into path planning algorithms that use these
types of representations.
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((a)) Circle approximation ((b)) Polygonal approximation ((c)) CSG

((d)) Boundary representation

Figure 2.4: Obstacle representations in continuous space (adapted from Shin and Chae (2020))

2.2. Workspace representation
The workspace is defined by the reachable configuration space, where the configuration space is
the space of all possible configurations that the drone can achieve (Lynch, 2017). This section will
discuss different workspace representations. The mapping of the workspace is assumed to be per-
formed over multiple measurements. This yields two different possibilities: creating a discretised
space map or a continuous space map.

2.2.1. Discretised space
When using occupancy grids for obstacle representation, a similar representation is given to the
workspace, as shown in Figure 2.5(a). Every cell is checked for obstacle presence, meaning that the
cells that do not contain obstacles can be seen as the configuration space. For the grid representa-
tion, the cell size is known beforehand and does not need to be changed. A disadvantage is that there
will always be a trade-off between computational expenses and ability to represent the workspace
in detail. Therefore, a larger volume stored for the workspace can not be used with a high accuracy
(Dubey et al., 2017), unless computational expenses are allowed to increase. Perrollaz et al. (2012)
used such occupancy grids to plan an obstacle-free path for a vehicle on the road. Since cars are
unlikely to drastically change in altitude, only 1.8 m of height was included in the grid, as well as a
depth and width of 20 m. Their method runs on average in 150 ms, on a 3.4 GHz processor with 8
GB RAM. Since the drone has less than half of that processing power, and it needs more than 1.8 m
of height difference to be included in the grid, this method is computationally too expensive, since
it will result in only a few fps.

The cell tree method tries to improve computational expenses, by only assigning smaller cells in
areas where detailed information is necessary, as shown in Figure 2.5(b). This results in fewer cells,
hence fewer path possibilities, making it easier for path planning algorithms. The stereo camera has
good ability to see distances far ahead, but it tends to be noisy. The noise will unnecessarily break
up many of the large cells into smaller cells. Therefore, the fact that the camera can see depth far
away is not utilised to its potential.
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Other than grid based and cell tree occupancy grids, the workspace can be divided into cells
using exact cell decomposition, as shown in Figure 2.5(c) (Patle et al., 2019). Here, the workspace is
divided into multiple cuboids stacked behind each other from the drone’s view. In case of obstacle
presence within a cell, it is divided into smaller polyhedral cells.

A cell without an obstacle is called a pure cell. Concatenating adjacent pure cells leads to a path
from initial to target position. The disadvantage of occupancy grids is that every cell needs to be
constantly checked for obstacle presence. This lead to a high computational complexity (van Dijk,
2020). Compared to a continuous space map, the number of feasible paths is only reduced if the
possible waypoints are discretised. Else, the drone would still be able to fly anywhere within a cell.
However, even if the waypoints are discretised, for example to the centre of each cell, the planned
path jumps from the centre of one cell to another, causing unnecessary movement.

((a)) Grid ((b)) Cell tree ((c)) Exact CD

Figure 2.5: Discretised workspace representations (adapted from Patle et al. (2019))

2.2.2. Continuous space
In the continuous space map, the obstacles can be represented by either a point cloud or a boundary
representation. Initially the workspace will consist of all possible coordinates that do not include the
coordinates of the obstacles. This means that the obstacle-free part of the map is simply an empty
space. One possibility is to leave it as an empty space and perform path planning, another is to
generate nodes and links inside this space to create a large roadmap. This roadmap will consist of
many 1D lines, and can be created in different ways.

Empty continuous space
After obtaining the obstacle representation, no computation is necessary to build this workspace
representation. The downside is that there are infinitely many possible paths within this large
obstacle-free space, since any coordinate can be part of the path. Therefore, the necessary path
planning algorithm might require more computation, compared to other workspace representa-
tions.

Roadmap continuous space
The workspace can also be represented using nodes and links, also referred to as the Roadmap,
Retraction, Skeleton, or Highway approach (Masehian and Sedighizadeh, 2007). Using nodes and
links, the number of possible configurations is reduced to a network of lines, restricting the drone’s
motion. Having a more restricted motion space will result in a lower computational cost, since fewer
configurations are being considered. However, some roadmaps might require to be smoothed, since
the drone is not able to follow the straight line segments perfectly (Shin and Chae, 2020). It can fly
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Figure 2.6: Empty continuous workspace (adapted from Patle et al. (2019))

past the nodes within a certain radius, but if the next link is a tight turn, the drone might hit an ob-
stacle if it flies a small distance farther by taking a wider turn. Furthermore, the fact that not every
coordinate can be traversed anymore might lead to paths that are not globally optimal. There are
different methods for deciding where to locate the nodes and links in the workspace, of which the
following five will be discussed: Visibility Graph, CEG, Voronoi Diagram, PRM and RRT.

Visibility Graph: Figure 2.7(a) shows the Visibility Graph (VG) method. Here, links are used to
connect the mutually visible vertices of the obstacles with each other, as well as with the initial and
target position. This will create a large network of possible obstacle-free paths. In 2D the method
seems rather straightforward, but in 3D with local perception some implications arise. For example,
it is difficult to select the corner of an obstacle if the obstacle is a tree and you only see the front part
of it. Furthermore, the back side of the obstacle is not visible to the drone unless it turns around,
so it is difficult to select a vertex which can be connected to other obstacles farther away. Also, this
method travels from obstacle corner to obstacle corner, which is not necessarily the most direct
path to the target.

((a)) Visibility graph ((b)) Convex-Edges-Graph

Figure 2.7: Workspace roadmaps visibility graph and CEG (adapted from Patle et al. (2019))

Convex-Edges-Graph: Whereas VG looks at combining obstacle vertices, the Convex-Edges-
Graph (CEG) only looks at the obstacle which blocks the direct path to the target, as shown in Fig-
ure 2.7(b). It draws its nodes anywhere along the obstacle boundary. For simplicity, the figure only
shows the side edges. After, it creates links from the drone’s current position towards these nodes.
The difficulty here lies in the tracking of the obstacle boundary, but the advantage is that the path is
shorter than for the VG. This is because the drone does not have to travel to the vertex of an obstacle,
but can pass it anywhere along the boundary. CEG has only been applied for reactive approaches
(Kamon et al., 1999). In other words, the node selection was based on the current best solution, not
taking into account other obstacles. The advantage is that no graph search algorithm is necessary
in this reactive approach.
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Voronoi Diagram: To include a safety margin from the obstacles, the Voronoi Diagram (VD)
was introduced (Patle et al., 2019). It is shown in Figure 2.8(a). The links drawn in the graph have an
equal distance to the obstacles around it. This means that if the drone moves along this line, it will
keep maximum possible distance from the obstacles and boundary of the map, since the obstacles
outside the map are unknown. There are also rectilinear voronoi diagrams, used for path planning
in only 8 directions (Masehian and Sedighizadeh, 2007). A disadvantage of the VD is that the chosen
route has a large deviation from the global optimum, since it follows these equidistant lines.

((a)) Voronoi diagram ((b)) PRM

Figure 2.8: Workspace roadmaps Voronoi diagram and PRM (adapted from Shin and Chae (2020))

PRM: The next option, shown in Figure 2.8(b), shows the Probabilistic RoadMap (PRM). Nodes
are constructed randomly throughout the obstacle-free space and are connected using a local plan-
ner when the distance between them is smaller than a certain metric (Kavraki et al., 1996). The
local planner checks a number of equally spaced coordinates between the two vertices and if none
result in a collision, the path is considered obstacle-free. The nodes are clustered into connected
components. To prevent infinite connected components, a new randomly generated vertex is not
connected to another vertex if they share the same connected component (Kavraki et al., 1996). This
also avoids unnecessary computations (Karaman and Frazzoli, 2011). The algorithm ends once the
desired number of nodes is reached. PRM is probabilistically complete, but not asymptotically op-
timal: as the number of nodes approaches infinity, the probability that the method finds a path, if
one exists, approaches 1, but it will not necessarily give the optimal path (Karaman and Frazzoli,
2011).

The simplified PRM (sPRM) includes the initial location of the robot as a vertex, and allows for
a link between nodes that have the same connected component. This results in an asymptotically
optimal algorithm, but it comes at a computational cost. Furthermore, there are different PRM ver-
sions based on the choices made when selecting new connections (Karaman and Frazzoli, 2011).
The k-nearest PRM (K-PRM), as the name implies, chooses the k-nearest neighbouring vertices to
the one being considered. The value for k can be chosen by the user, but for any k the method
is not asymptotically optimal. Variable-radius PRM decreases the radius used when searching for
new vertices as the total number of vertices increases. In this way, first the so-called highways are
created to travel across the map quickly, followed by the smaller roads to find the exact location of
the target. PRM* also makes use of this variable-radius, and combines it with the property of sPRM
that allows links between all vertices. Since PRM* has many edges, it will create smooths paths, but
it is computationally more expensive. Lazy PRM* decreases the computational expenses, by only
activating the local planner on nodes and edges that are part of the current best solution, found by
node-based algorithm A* (Lundin and Dath, 2018). Other extensions of PRM exist, but the main
takeaway is that PRM generates nodes randomly and tries to link them together.

The advantage of PRM is that the generation of nodes is fast, since there is no need to place
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nodes exactly on obstacle boundaries or equidistant lines. PRM can generate short paths, with
lower memory requirements than RRT (Lundin and Dath, 2018). RRT will be explained in the next
paragraph. Lazy PRM* only uses half of the memory that PRM uses, and produces similar paths.
However, PRM also has a few disadvantages. Firstly, PRM produces many different possible paths,
but does not choose one. A graph search algorithm is needed to plan a path. Heuristic algorithms
like A* are able to do so fast, so this is not a large problem (Hart et al., 1968). Secondly, since the
map is constantly being updated with incoming information about new obstacles, the graph search
algorithm needs to be rerun constantly. Now, with the arrival of D* Lite this disadvantage has been
mitigated, since many pre-calculated paths are stored in memory, and only the links that changed
weight are updated (Karur et al., 2021). But thirdly, the random generation of points results in a path
that is likely to not represent global optimum. Fourthly, when traversing from one point to another,
the direction of the drone is constantly changing. Ideally, the drone should rotate as little as possible
to obtain images that are in the direction of flight. Furthermore, movement should be limited since
there is no visual perception to the side of the drone.

RRT: Lastly, RRT generates a slightly different roadmap from PRM. When a new random node
is generated, it is simply connected to the nearest node only. There is no need to check for con-
nected components of other nodes. This means that, once a node is within a certain threshold from
the target position, there is only one path possible, starting from the initial position. Therefore, no
node-based path planning (graph search) algorithm is required to search the nodes, and RRT can
be regarded as both a workspace representation and a map-based path planning algorithm. This is
a large advantage over PRM, which needs to rerun a graph search algorithm whenever new infor-
mation about the environment becomes available. An example of an RRT construction is shown in
Figure 2.9.

Figure 2.9: Example of RRT construction (LaValle et al., 1998)

Even though the roadmap creation is different, RRT has similar characteristics to PRM: it is prob-
abilistically complete, and not asymptotically optimal (Karaman and Frazzoli, 2011). Furthermore,
since RRT only looks at one connection with another node, non-holonomic and kinodynamic con-
straints can be introduced (LaValle et al., 1998). The randomly generated node attempts to connect
to the nearest node. If this connection is not possible, due to either obstacle presence or other con-
straints, a new node is generated on the line between the nearest node and the random node. This
calculation of this new node is done by a so called state transition equation, which is a differential
equation which includes current state and inputs. It can be solved with either Euler integration or
Runge-Kutta for example. PRM has no such possibility, since one node is sometimes connected to
multiple other nodes, making it impossible to account for these constraints from multiple direc-
tions.

Another advantage is that the generation of random nodes is heavily biased towards the un-
explored region, which results in a uniform coverage of the workspace (Lundin and Dath, 2018).
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However, a disadvantage is that the method can get trapped in environments where there is only
a small opening to pass through (Karaman and Frazzoli, 2011). This is a similar problem for PRM,
since both methods generate nodes randomly, and the chance that one node perfectly finds a tiny
opening in between obstacles is small. For example, RRT and PRM would have trouble finding a
way out of a wasp catcher, which is an object designed for easy entry but difficult escape.

Dynamic Domain RRT thought of a way to get out of these small openings, by assigning a max-
imum radius for the connection to another node (L. Yang et al., 2016). New nodes can only be
connected if they are located within radius r from a nearby node. Thus, the process of generating
random nodes is repeated until a node lies within this radius of another node (Yershova et al., 2005).
If the connection succeeds, then the value of r is set to infinity. Once a connection fails, the radius
will be set to a default value r . In the example of the wasp catcher, more nodes and links will be
created inside. This will increase the chance that a node is created near the opening, which will
increase the change that it connects to a node outside of it. The downside is that the path will not
necessarily be optimal, nor smooth. Furthermore, in outdoor navigation the chance that the drone
will get trapped in these wasp catcher-like situations is small.

Another disadvantage of RRT, similar to PRM, is that the generated roadmap will consist of many
short path sections, resulting in a drone which is constantly changing direction. To improve the re-
sult quality, RRT* was introduced (Karaman and Frazzoli, 2011). To explain how RRT* works, first
Rapidly-exploring Random Graph (RRG) needs to be explained. The difference between RRG and
RRT is that RRG does not stop after finding a connection with the nearest node, but tries to connect
to any other node within radius r . Thus, RRG and RRT have the same vertices, but the connections
in RRT are a subset of the connections in RRG. The size of r decreases with increasing amount of
generated nodes. The extra connections in RRG compared to RRT causes the graph to be undirected,
meaning that it might contain cycles. This will create a complex roadmap that has multiple paths
from initial to target position, like PRM. Now, RRT* tries to find the most promising connections
within RRG (Karaman and Frazzoli, 2011). For every node, it only keeps the link which provides a
path to initial position with the smallest distance travelled. This creates a directed graph, since all
the longer paths are discarded from memory. Unlike RRT, RRT* is asymptotically optimal, and it has
the same complexity in time and space.

These sampling based methods are powerful since they are able to find paths through cluttered,
maze-like, environments. RRT* produces more optimal paths in terms of deviation from nominal
path than PRM, but it comes at a computational cost. RRT* tends to quickly take up more than
200 MB RAM, even in simple environments (Lundin and Dath, 2018). But the main disadvantage
for these sampling based methods is that the nodes are generated randomly, and are unlikely to
represent global optimum. This is only the case for RRT* when the number of nodes reaches infin-
ity. A probabilistic method would be good for a maze-like situation, where small openings need to
be found far away from the drone. However, these maze-like situations are not very representative
for outdoor environments like a forest or a neighbourhood, where the advantages of probabilistic
methods are not utilised to its potential.

2.2.3. Discussion
Table 2.1 summarises the advantages and disadvantages of the different environment representa-
tions mentioned in the paragraphs above. Firstly, the empty workspace representation does not
alter any of the workspace after the obstacles have been represented. This saves some computation
compared to the other methods, but a path planning algorithm might have more trouble finding a
path, since there are infinitely many. To examine this, the next chapter will discuss some common
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path planning algorithms used in this type of map.

Table 2.1: Comparing the different workspace representations mentioned above

Advantages Disadvantages
Empty • Only obstacle representation • Infinitely many feasible paths
Occupancy • Less memory needed than point cloud • Computationally expensive

• Ability to connect adjacent free cells • Number of feasible paths not reduced
Grid • Cell size known • Performance depends on cell size
Cell tree • Fewer cells than grid • Sensitive to noise
CD • Fewer cells than cell tree • Harder to locate
Roadmap • Workspace reduced to 1D lines • Requires memory storage

• Travels from obstacle to obstacle
VG • Fewer nodes than PRM, RRT • Need to find obstacle borders
CEG • Shorter paths than VG • Need to find obstacle borders
VD • Safety margin from obstacles • Need to find obstacle borders

• Larger deviation from nominal path
PRM • Fast and memory is minimal • Randomness of nodes is suboptimal

• Gets stuck with small openings
RRT • Creates one path to target • Randomness of nodes is suboptimal

• Introduces nonholonomic constraints • Gets stuck with small opening

Secondly, the occupancy grids require more computation, since every pixel’s world coordinate
is checked in which cell they are located. The advantage is that many individual points can be rep-
resented by one large cell, which decreases the required memory. CD has the disadvantage that the
obstacle contours need to be tracked precisely before the cell can be drawn. Since the incoming
data is noisy, this will be a difficult process and the grid or cell tree methods will be preferred. The
cell tree method will most probably have fewer cells than the grid method, but extra bytes need to
be included to define the current size of the cells. Even if the total required memory is less than the
grid method, extra computations are needed to find out whether or not the cells should be split into
smaller cells. Lastly, the occupancy grids do not take great advantage of the fact that a stereo camera
can see large depths, due to the sensitiveness of the noise.

Thirdly, the roadmaps require more computation than both other methods, but the result is that
the workspace is reduced to a network of 1D lines. The CEG, VG and VD all need to precisely track
obstacle borders, which is difficult in noisy data. However, their nodes are placed in a logical way,
and not through random node generation as in PRM and RRT. VD creates a path with a large devi-
ation from the nominal path, since it tries to go around obstacle with the largest margin possible.
To limit the deviation, either VG or CEG is preferred. When comparing these two, CEG finds shorter
paths than VG. They use the same principle of connecting obstacles, but CEG uses the nodes that
have the smallest deviation from the nominal path. When comparing the two probabilistic meth-
ods, RRT uses a factor 1.4 more memory on average than PRM (Lundin and Dath, 2018). However, it
finds a solution most of the time in the order of a few hundreds of a second, while PRM needs tens
of seconds and sometimes even a second. Another advantage of RRT is that the drone’s dynamics
can be taken into account in the generation of the RRT graph. However, RRT is not asymptotically
optimal and RRT* is computationally expensive. These methods show their potential in a maze-like
environment, but in an outdoor environment it is preferred to choose waypoints that are not ran-
domly generated, since the escape points can be seen from the current point of view in most cases.

In conclusion, empty workspaces are computationally cheap compared to the others and are in-
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teresting for path planning purposes. These can consist of either point clouds or, ideally, boundary
representations. Occupancy grids are computationally expensive and are more sensitive to noise,
since one noisy data point can mark a complete cell as occupied. Regarding roadmaps, CEG seemed
the most promising. However, the performance of this algorithm also depends on the quality of the
disparity image. The same goes for the boundary representations for the empty workspaces. The
discussion on CEG and image noise will be continued in subsection 4.3.3.



3
Map-based path planning

This section holds path planning algorithms which use maps to create a path. Graph searching
algorithms will not be discussed in detail since the previous chapter concluded that RRT will be
favoured over PRM, and even RRT is unlikely to be chosen as the best algorithm due to its genera-
tion of random waypoints. Furthermore, CEG was preferred over VG and VD, and the best node for
CEG can be calculated using a cost function. The remaining map-based path planning algorithms
can be divided into two categories: optimisation under constraints and potential field methods.
These methods can be used for the empty workspaces discussed before. Any promising algorithms
that use global maps will need a discussion on whether it is possible and advantageous to run these
algorithm on local maps.

Machine learning methods will be discussed in chapter 4, since they are mostly limited to reac-
tive approaches in the literature, with or without a target location. The existing machine learning
methods are either not applicable because they focus on graph searching methods (e.g. Chen and
Chiu, 2015)), or are computationally expensive.

Before discussing the different path planning algorithms, a comment has to be made about the
missing common benchmark to evaluate these algorithms (van Dijk, 2020, Goerzen et al., 2010,
Lyrakis, 2019). Many authors create their own testing environment and demonstrate the perfor-
mance of their algorithm. Lately, efforts have been made to produce these types of benchmarks
(e.g. Nous et al., 2016). However, the path planning algorithms discussed in this literature study
do not use this evaluation metric and due to time constraints it is not possible to implement and
evaluate every single algorithm. In the rest of this study, the path planning algorithms will be com-
pared based on their relative computational expenses and performance. Here, performance can for
example be translated into path length, probability of collision or the tendency to get stuck in local
minima. Later, in section 5.6, it will be explained how the performance evaluation metrics used by
Nous et al. (2016) will be used to evaluate the proposed algorithm.

3.1. Optimisation under constraints
The goal of these algorithms is to plan an optimised path from initial to target position, while tak-
ing certain constraints into account. These can be dynamic constraints which restrict movement
of the drone, or constraints including the location of obstacles which need to be avoided. The
purpose of this cost function could be to minimise distance travelled or energy consumed (Mase-
hian and Sedighizadeh, 2007). Using optimisation methods, an optimal solution is obtained for this
cost function. This section holds the following methods: mathematical programming, curve based,
gradient-based search, heuristic and meta-heuristic algorithms.

3.1.1. Mathematical Programming
In mathematical programming, kinematic constraints model the environment, and dynamic con-
straints model the robot. These dynamic constraints normally satisfy velocity and acceleration
bounds, but can also be lower level, like torque constraints on the propellers. Mathematical pro-
gramming uses the empty workspace, where obstacles are represented using the boundary repre-
sentation for the obstacles. The planned path consists of straight line segments between the nodes.
Most methods use either splines or polynomial approximations to calculate the actual trajectories
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of the drone.

K. Culligan et al. (2007) have been successful in testing their variable time-step Mixed Integer
Linear Programming (MILP) method in an indoor environment. Their method is based on a paper
that uses an iterative MILP, which tries to find a path without including obstacle knowledge, and
only after that it checks whether the planned path has hit an obstacle. If it does, the path is re-
planned, and after a few iterations the obstacle-free path is found. The variable time step means
that waypoints nearby are calculated with a small time-step difference, and it increases towards far-
ther away points. This is in line with the available information about the environment, which is
better near the drone. The solution is calculated within a second on a 2 GHz processor, with 1 GB
RAM (K. F. Culligan, 2006).

The authors are able to perform linear programming, since all of their obstacles are assumed
to be box-shaped. This means that their constraints are as simple as: x should be larger than or
equal to value a, and x should be smaller than or equal to value b, and similarly for y and z. For
multiple obstacles, multiple constraints can be added in a similar fashion. For other convex shapes
it should still be possible to write their constraints in terms of x, y and z, but for concave obstacles
the MILP method does not hold. This means that for obstacles like a tree, where the top part is wide
and the bottom part is thin, this method will not work. To counteract this problem, an obstacle (e.g.
a tree) could be divided into two box shaped obstacles for the top and bottom. However, an extra
algorithm would be needed to divide all concave obstacles into multiple boxes. Also, there would
be a trade-off for deciding how many boxes per obstacle are allowed. More boxes can approximate
the obstacle closely, but increases the computation needed for the MILP constraints. Fewer boxes
might still allow for a fast algorithm, but will define some of the obstacle-free space as occupied.
Even though MILP is an optimisation technique, due to the mentioned implementation difficulties
the algorithm is likely to plan paths with a larger deviation from obstacles due to the concave obsta-
cle approach, leading to a longer path.

Miller et al. (2011) have found a way to find a path locally using a mathematical programming
method called Binary Integer Programming (BIP) (Wu et al., 2019). The method is designed for a
UAV to avoid threats. These threats may include missiles, detection by enemy sensors or obstacle
collision. A Boundary Value Problem (BVP) is formed to calculate the optimal path. However, in 3D
cluttered environments the number of constraints increases rapidly, which results in this being a
computationally expensive algorithm (L. Yang et al., 2016).

According to L. Yang et al. (2016), five different papers attempted to improve the high time com-
plexity in 3D. Two of these use a fleet of drones which interact with each other, hence not applicable
to this study. The third paper avoids obstacles using MILP (Richards and How, 2002). However, this
paper was published 5 years before the previously mentioned variable time-step MILP and does not
improve on any high time complexity. Furthermore, it only deals with rectangular obstacles in 2D.
The paper uses a 1 GHz processor with 256 MB RAM. For a relative simple environment with three
rectangular obstacles within the next 10 meters, the algorithm takes 11 seconds on average, with
outliers up to 68 seconds. Hence, this algorithm is not a viable option for a small drone.

The fourth paper introduced several techniques to limit the computational effort of MILP, such
as a receding horizon framework and multiple timescales (Ma and Miller, 2006). With receding hori-
zon, the next waypoint is moved closer than the target position, to reduce the computations needed.
Furthermore, there are two timescales: a long and a short one. The long timescale plans the path
broadly for the next 10 time steps at 0.5 second intervals, and the short timescale plans the path
precisely for the next 10 time steps at 0.2 second intervals. The paper calculates the long timescale
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on a 1.8 GHz processor, in the order of 1 second. The short timescale is run on a 200 MHz processor,
in the order of 5 seconds. This means that it takes 5 seconds to calculate the detailed path that will
be flown in the next 2 seconds. The paper mentions that, although it does not meet the required
time, it is "only" one order of magnitude away. The drone used in this study has a processor of 1.34
GHz, which would need to be used for both the short and long timescale, which will likely not result
in more than 1 fps on the drone.

The fifth used Binary Integer Programming (BIP) and create a 3D Delaunay triangulation of a
part of the configuration space with multiple obstacles (Masehian and Habibi, 2007). An example of
3D Delaunay triangulation is shown in Figure 3.1, which divides the workspace into tetrahedrons. A
tetrahedron is a polyhedron with 4 faces. The tetrahedrons inside the obstacles are removed from
the set of all tetrahedrons, and a path is planned using the free tetrahedrons that are left in the set.
The method is promising when using a global map, since solutions are found in a few hundreds of
a second. Since it is difficult to precisely track the corners of obstacles, for local maps it is hard to
define the location of the tetrahedrons. This method could be used for occupancy grids, but then
the resulting path would be a zigzag of 90 degree turns through space, and the algorithm will not
have any benefit over probabilistic roadmaps or trees.

((a)) Workspace example ((b)) 3D Delaunay Triangulation

Figure 3.1: 3D Delaunay Triangulation of the workspace (Masehian and Habibi, 2007)

3.1.2. Curve based
Curve based algorithms use polynomial equations to plan a path, taking into account constraints
for kinematics, safety and optimum path. The difference with Mathematical Programming is that
for curve based algorithms the paths are based on polynomial equations, while for mathematical
these are straight line segments, followed by a smoothing algorithm which can curve based, splines
and the like.

The curve based algorithms started with Dubins car (LaValle, 2006). A car has a minimal turning
radius which has to be taken into account in path planning. This means that all segments of the
path from initial to target position have a minimal turning radius, such that the car can execute the
path. The idea has been further expanded for drones, by including altitude and wind, as well as
clothoid arcs to create smoother paths (Triharminto et al., 2013). A clothoid is similar to an arc, but
the radius of curvature changes linearly along its length. The term is sometimes referred to as Cornu
Spiral or Euler Spiral (Dai and Cochran, 2009). Triharminto et al. (2013) also mention Phytagorian
Hodograph (PH), which is a similar method to Dubins. A PH curve makes use of hodographs to
describe the velocity. The useful property of these functions is that they can easily be integrated to
obtain path length, which can be used to evaluate the performance of the algorithm.
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The curve based algorithms have two applications. The first one is path planning from initial
position to target, and the second one is to smooth the paths produced by other algorithms. Due
to their simplicity, Dubins method is the current most used method to smooth a path. It can for
example take turning radius and rate of climb limitations into account (De Filippis et al., 2012).

A disadvantage for the curve based algorithms is that they are created for static environments,
and have difficulty adapting to dynamic environments (Triharminto et al., 2013). Due to their high
time complexity, they are not considered as a viable option. Perhaps in a later stage they can be
applied to smooth the path generated by another algorithm, but splines are also a cheap option.

3.1.3. Gradient-based search algorithms
Gradient-based search methods are optimisation techniques that use the gradient of the current so-
lution to find the direction in which better solutions might be. Examples are the bisection method,
Newton’s method, golden section search, Frank-Wolfe and Sequential Unconstrained Minimization
Technique (SUMT) (Hillier and Liebermann, 2014). In map-based path planning, it can defined how
good the path is in terms of a cost function, yet the cost function can not be evaluated for a certain
path to obtain a gradient.

However, these gradient-based methods can be used for solving for a system with non-holonomic
constraints (Divelbiss and Wen, 1993). Inequality constraints were introduced that reduce all paths
from initial to target position to the feasible paths, based on kinematic constraints. The authors de-
fined a constraint equation that is a non-linear function of the control inputs, for which an optimum
is found using Newton’s method. Solving these equations using gradient-based search is a compu-
tationally expensive process, and therefore the paper assumes an environment where the obstacles
are known.

To improve on the path length, Duleba and Sasiadek, 2003 extends the previous method by in-
cluding an energy term which needs to be optimised. This energy term is related to the energy
needed to control the robot, and is a complex function which looks at the energy of the harmonics
of the trajectories which are represented in Fourier basis. Unfortunately this method only shows the
theoretical approach and does not perform experiments. Moreover, the method is in 2D and it does
not even avoid obstacles. It is only able to calculate a trajectory from point A to B, and mentions
that the previously mentioned paper is able to avoid obstacles, so an extension to the current paper
is to include that. However, the previous algorithm was already computationally expensive by itself,
hence the combination will not give a faster solution. Furthermore, for these gradient-based search
algorithms it is possible that they end up at a local optima (Duleba and Sasiadek, 2003). The next
section on heuristic algorithms try to include methods that avoid these local optima, and improve
the computational efficiency.

3.1.4. Heuristic algorithms
Heuristic methods are methods that try to discover the optimum by trial and error. Here, global
optima are not always guaranteed, but the solutions are found quickly and can be of good quality.
Examples of heuristic methods are A*, Nelder-Mead, machine learning and fuzzy logic. The latter
two are discussed in chapter 4, since they are generally used as mapless path planning algorithms.

The A* algorithm is used to find the shortest path in roadmaps (Hart et al., 1968). In addition to
the well cited Dijkstra algorithm (Dijkstra et al., 1959), A* adds a heuristic estimation for the cost of
an arc. In an addition to the original weight of the arc to a node, a cost estimation from that node to
the target node is included in the function. This particular example of a heuristic method can in fact
guarantee an optimal path from initial to target node. However, as stated at the start of this chapter,
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neither PRM nor visibility graph will be used, so no graph searching algorithm will be necessary.

The Nelder-Mead method, also called the downhill simplex method, is an optimisation tech-
nique that does not require the gradient of a function. For an n-dimensional problem, it creates a
simplex with (n+1) vertices (Nelder and Mead, 1965). For example, for a 2D problem, it uses a sim-
plex with 3 vertices, which is a triangle. This means that the method will evaluate the function at
the three vertices of the triangle. The initial location of this triangle in the data is important for the
final result. To find a more optimal solution, the method will flip the triangle over the side which
connects the two best solutions, in the hope to find a better solution on the other side. Depending
on how good this next corner point is, the triangle can reshape or flip in other directions. In path
planning terms, a solution can represent a path, which has obtained a value through a cost function.
If two paths are good, and one path is bad, the algorithm is interested in finding a path that is nearer
to the two good solutions. The disadvantage of this method is that it also tends to get stuck in local
optima, since the triangle will decrease in size once one of the corners gets close to a local optima.

3.1.5. Meta-heuristic algorithms
Meta-heuristic algorithms are optimisation algorithms which try to find a balance between looking
for better solutions in the local area, and looking for other global solutions at random. In this way,
they minimise the chance of getting trapped in local optima. The term meta-heuristic means "be-
yond heuristic" (X.-S. Yang, 2010a).

The optimisation problem that these meta-heuristic algorithms try to solve is the same as for the
previous optimisation under constraints methods: find the path with the lowest cost function value
from initial to target position, while keeping into account kinematic and dynamic constraints. The
kinematic constraints mean that the drone needs to avoid obstacles, and the dynamic constraints
make sure that the path is within the drone’s velocity and acceleration limits. These algorithms have
different metaphors to represent the path: It can be a chromosome, an ant in a colony, a particle in
a swarm, a bee in a bee colony, and so forth. Each metaphor holds the information of the path that
has been planned from the initial to the current position. A cost function gives a value to the chro-
mosome, the ant, the particle and the bee. The difference with mathematical programming is that
these methods try to find the shortest path iteratively, rather than minimising a certain cost func-
tion mathematically.

A well known example of a meta-heuristic algorithm is Tabu Search (TS). It memorises the pre-
viously selected solutions in a Tabu list, which means that it is forbidden to choose them again
(Hillier and Liebermann, 2014). These solutions can be local optima. The method allows for a step
in the direction of a worse path, so that it has more chance in finding global optima somewhere else.

A subcategory of the meta-heuristic algorithms are the nature-inspired meta-heuristic algo-
rithms. These algorithms try to mimic biological, physical or sociological processes, which can be
used to find the previously mentioned balance. For example, Simulated Annealing (SA) looks at the
physical annealing process of metal or glass. First the material is melted at high temperatures, after
which it is slowly cooled down until it reaches a desirable state. In path optimisation language, it
means that the chance to select a new path randomly is high at the start, and slowly decreases. In
this way, the chance to avoid local optima and end up at the global optima is increased. When the
temperature is low, a new path will only be chosen when it proves to be better (Hillier and Lieber-
mann, 2014).

Since animal behaviour is studied in large scale in the field of path planning, a separate sub-
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category of the nature-inspired meta-heuristic algorithms has been created: bio-inspired meta-
heuristic algorithms. These algorithms try to mimic the biological and sociological processes of
animals and insects, and are referred to as Evolutionary Algorithms (EA). These EA may look at how
animals or insects behave regarding the paths they take from their nests to a food source, and how
these paths are optimised throughout time using communication.

For clarification, Figure 3.2 shows the subcategories in blue, and some example algorithms in
grey. Each column of blue boxes represents a deeper level of subcategory.

Figure 3.2: Subcategories of meta-heuristic algorithms

Some examples of EAs will be given below. They are also referred to as "Natural optimisation
algorithms" (Haupt and Ellen Haupt, 2004). Also the definition of a memetic algorithm is included.
A short conclusion on these meta-heuristic algorithms is provided at the end of this section.

Evolutionary Algorithms
In this section, the most popular EAs are highlighted. This selection is based on the frequency at
which they are mentioned in the literature. The algorithms contain general optimisation methods
and can be applied to path planning. A short explanation for each EA is given, where the link is
made between the biological or sociological process and path planning.

• Genetic Algorithm (GA). Each path is represented by a chromosome, and this chromosome
has a certain fitness value based on a cost function (Zhao et al., 2018). The fitter chromosomes
are used for creating the next generation, where mutations and random chance changes their
properties. (example by Samadi and Othman, 2013)

• Ant Colony Optimisation (ACO). Each path is represented by the path that an ant walks from
its nest to a food source (L. Yang et al., 2016). On their walk, ants release a trail of a chemical
factor called pheromone. This trail can be sensed by other ants and degrades over time. A
shorter path can be travelled more often in the same time period than a longer path, hence
the shorter path will contain a thicker trail of pheromone and will be followed by the other
ants.

• Particle Swarm Optimisation (PSO). Each path is represented by a particle, which again rep-
resents a bird in a large swarm of birds. The birds fly from their nest to a food source, and their
performance is being tracked (Kennedy and Eberhart, 1995). Each particle knows its own best
location, as well as the swarm’s best location (Zhao et al., 2018). The next iteration for a path
takes into account these two locations, as well as its own velocity.

• Differential Evolution (DE). Each path is represented by a vector, and this method has similar
properties to GA in the sense that it likes to use the terms population initialisation, mutation,
crossover and selection (Storn and Price, 1997). However, it is all a bit more mathematically
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complex, and even though it uses terms like mutation, it is a differential mutation with math-
ematics behind it which are far from something that looks like mutation. Larger vectors are
used to explore the free space quickly, followed by smaller vectors to find the target precisely.

• Firefly Algorithm (FA). Each path is represented by a firefly, where the brightness of the firefly
depends on a cost function (Gandomi et al., 2011). They send signals using flashing patterns.
All fireflies are attracted to each other, and the attractiveness depends on the brightness and
distance between the fireflies. Thus, when a firefly represents a short path, the cost function
will be low, its brightness will be high and it will attract many other fireflies to join him in that
direction.

• Bacterial Foraging Optimisation (BFO). Each path is represented by a bacterium, which can
inform other bacteria if they are in a nutrient area or if they are in the lesser nutrient area
through signals (Passino, 2002). Bacteria with enough food can split into 2 parts, and the
ones without will die. This means that the local search around short paths is encouraged, and
longer paths are discarded.

• Artificial Bee Colony (ABC). Each path is represented by a bee, which tries to find a food
source (Karaboga, 2005). If a food source is found, they send more of their fellow bees there,
which implies the local search near a short path. After some time, the food source is empty
and the bees will look for another food source. The short paths belonging to all food sources
are remembered.

• Cuckoo Search (CS). Each path is represented by an egg laid by a cuckoo. The cuckoos place
their eggs in nests of other birds, which are often from other species (X.-S. Yang and Deb,
2009). If the egg represents a short path, the egg will create new generations, meaning that
there will be a local search around this short path. The forming of new generations depends
on both a cost function and random luck: if the host bird decides to throw the egg out of the
nest, the path that was being considered is removed from memory.

• Bat Algorithm (BA). Each path is represented by a bat, which can communicate to other bats
using echolocation (X.-S. Yang, 2010b). If a bat represents a short path, it will signal that to the
other bats. The method is comparable to PSO, but the local search is improved by changing
the rate and loudness of the echolocation.

• Harmony Search (HS). Each path is represented by an instrument, or a chord, and all paths
currently stored in memory form the harmony. The method is based on the improvisation of
music players (Geem et al., 2001). There are three different ways to obtain a new path for in
the harmony. Firstly, it can be assigned randomly. Secondly, it can be assigned out of memory,
where good values are stored. Thirdly, the value looks at values close to the previous value.

• Invasive Weed Optimisation (IWO). Each path is represented by individual weeds, spreading
through a field (Mehrabian and Lucas, 2006). The number of seeds that an individual can
produce depends on a fitness function: A high fitness results in a high seed production and a
low fitness results in a low seed production. The seeds will fall near the parent with a standard
deviation, allowing for local search. An individual with a high fitness can be seen as a path
with low value for the cost function.

A Memetic Algorithm (MA) makes use of multiple EAs, or combines EAs with other algorithms,
with specific attention to the population-based metods (Moscato et al., 2004). MAs were introduced
to address the drawback of EAs of getting stuck in local optima. An example of this is the Shuffled
Frog Leaping Algorithm (SFLA). SFLA combines PSO with Shuffled Complex Evolution (SCE) (Eu-
suff and Lansey, 2003). It uses PSO to search for local optima, and SCE to combine the information
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from all the searches to get to a global optima. SCE is an optimisation method created by Duan
et al. (1993) to reach global optima, by combining multiple methods that have shown to be able to
converge to global optima.

More meta-heuristic bio-inspired path planning algorithms based on metaphors can be found
in the literature, but they all stem from the same principle: Look at biological behaviour, try to
mimic that using an algorithm and apply it to path planning. Unfortunately, meta-heuristic bio-
inspired algorithms are prone to get stuck in local optima (Mac et al., 2016). Despite their initial
popularity, the most common bio-inspired algorithms were barely mentioned in scientific papers
published after 2014 (Zhao et al., 2018). Furthermore, these algorithms mainly focus on optimis-
ing the current best solution, which takes many iterations and is computationally expensive (Tri-
harminto et al., 2013). For every iteration, a new path needs to be generated and sent through a
cost function. The drone is not able to see behind obstacles, therefore it is expected that these algo-
rithms need to be rerun often, since new information might consists of additional obstacles in the
way.

3.2. Potential Fields
The next algorithms described make use of a potential field within the map to plan a path from
initial to target position. The target sends out an attractive force to the drone, while the obstacles
give a repulsive force. The resultant of these forces defines the direction of travel. The first method
discussed is the Virtual Force Field, followed by the Vector Field Histogram.

3.2.1. Virtual Force Field
The idea behind the potential fields method was first mentioned by Khatib and Mampey (1978),
and later extended and implemented on a robot with actual sensing capabilities by Borenstein and
Koren (1989), and they named it the Virtual Force Field (VFF) method. In their paper, the authors
use a grid map to represent the environment. This process is called tessellation (Radmanesh et al.,
2018). The center of each cell in the grid is used for the calculations. Here, obstacles are represented
using certainty grids, where a higher cell value means a higher certainty of obstacle presence. The
higher the certainty, the higher the repulsive forces towards the robot. This method could also be
applied to empty workspaces with point clouds or other obstacle representations (e.g. by Kaldestad
et al., 2014). The VFF method works as long as the obstacles are sending out some form of repulsive
force to the drone.

The authors found four significant drawbacks of the VFF method, which are independent on
the implementation (Koren, Borenstein, et al., 1991). Firstly, the most cited drawback, the robot is
prone to get stuck in local minima. Secondly, VFF has difficulties travelling through obstacles close
together, for example the posts of a door. Thirdly, the robot oscillates when an obstacle suddenly
pushes the robot away from the target. Fourthly, the robot oscillates when travelling through nar-
row passages. The authors mention that many other papers on this topic focus mainly on simula-
tion results, and do not take these unsolvable implementation problems into account. Some papers
use real robots, but move them at slow travelling speeds which hide these drawbacks. Hence, the
authors stepped away from the PF method and turned to the Vector Field Histogram method (VFH).

However, since the creation of the VFH method in 1990, many other papers have tried to over-
come the previously mentioned drawbacks of VFF. For example, Sfeir et al. (2011) solves for draw-
backs two, three and four, by introducing a new repelling and rotational force. These rotational
forces steer the robot around an obstacle, instead of away from it. Still, they can not mathematically
proof that the robot will not get stuck in local minima. Kim (2009) thought of a method that lets the
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robot know when it is in a local minima, so that it can apply a different strategy to find its way out.
This happens when four conditions are satisfied: the resultant force equals zero, two or more ob-
stacles cause this, the goal is not reached, and the location of the robot not changing. Their method
works in simulation, but has not been tested in real life. A similar approach was implemented by
Antich and Ortiz (2005), who performs an obstacle boundary-following technique to escape local
minima. The virtual obstacle approach also helps to get the robot out, by generating a virtual obsta-
cle on the location of the local minima, so that the robot is repelled from here (Lee and Park, 2003).
However, all three methods do not avoid getting trapped in local minima, they only tell the robot
how to get out once it is in. Normally, one of the advantages of a mapping is that the robot should
be able to avoid local minima. With the mapping that potential field uses, memory is being wasted
since it does not avoid local minima any better than a mapless (reactive) method would. The differ-
ent strategies used here to get out of local minima could still be used in a reactive approach. This
will be discussed in section 5.2.

3.2.2. Vector Field Histogram
Borenstein and Koren (1990) proposed the Vector Field Histogram (VFH) method, which can be
used by a robot to avoid obstacles at high speeds and move through narrow corridors. In the origi-
nal paper, the environment is divided into equal cells which form a grid, and every cell is assigned a
certainty value. However, this method could also be applied to empty workspaces with point clouds
or other obstacle representations. Furthermore, the grid is in 2D, hence it does not suffer as much
from the computational expenses as the 3D grid map does. Figure 3.3 shows what the VFH method
looks like when dividing the active grid into 16 sectors of equal angle. Note that this figure is simply
used as an example, since the actual paper uses 24 sectors. To obtain the polar graph on the right,
the method needs to find in which direction the obstacles are present, for which vectors are used.
The magnitude of a vector is a function of the distance of the obstacle, as well as the certainty value.
The direction of the vector is the angle between the obstacle and the positive x axis, so the angle
is defined similar to the unit circle. In this way, all sectors obtain a value for the likelihood of an
obstacle being present. Sectors in the polar graph which have a value under a certain threshold are
considered as free sectors. The free sector closest to the target direction is chosen.

Figure 3.3: VFH method (Jahanshahi and Sari, 2018)

The authors expanded on their idea by incorporating the robot size, among with its kinematic
constraints in VFH+ (Ulrich and Borenstein, 1998). VFH+ introduces the binarised polar histogram.
In this histogram, sectors with values under a certain threshold A are given a 0, and sectors above
a certain threshold B are given a 1. When a sector value is between A and B, the previous iteration
is used. Furthermore, in the real world the robot is not able to move in every direction as indicated
in Figure 3.3. For example, to move to the left, first a turn with a certain radius has to be initiated
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until the desired heading angle is obtained. During this turn the robot might hit obstacles that were
not foreseen. Hence, sectors which seemed promising, but will result in hitting an obstacle dur-
ing the turn are also blocked in the so-called masked polar histogram. Lastly, a new cost function
is defined for choosing a sector. It is a function of the distance to the target, as well as the distance
to that sector due to the orientation of the robot and the distance to the target of the previous sector.

Two years later the authors expanded further by including future prediction in their method,
now called VFH* (Ulrich and Borenstein, 2000). It looks at all free sectors individually and predicts
future positions based on choosing a free sector. After creating a tree of possible directions, the A*
algorithm is applied to find the shortest path. The methods assumes 360 degrees SONAR readings,
but could still work with a smaller FoV, since the most interesting directions lay in the direction of
the target. A disadvantage is that the method is designed for a two dimensional problem, where a
polar histogram is created for the top view. Creating a polar histogram for every small angle of pitch
will yield many graphs, many possible directions and many cost function evaluations. In 2D, the
method is already computationally expensive, making real-time applications difficult (Samir, 2014).

A solution for the 3D problem could be to design a reactive VFH approach, where the grid is not
applied to the top view, but to the disparity image of the drone. Then, every cell needs to be checked
for certainty values and the best cell according to the cost function is chosen. However, with noisy
disparity images, these cells need to be small to prevent a large number of false positives. Further-
more, these certainty values are calculated using the Carnegie-Mellon University (CMU) method
(Borenstein and Koren, 1990), which require the robot to remain stationary while taking multiple
sensor readings. Fortunately, a faster approach has been performed by Lyrakis (2019), since a drone
travels fast and should not stop for sensor readings. Instead of assigning the certainty of obstacle
presence, it assigns the uncertainty of the disparity values to each cell, which has been discussed in
section 1.4.

3.3. Discussion
This chapter on map-based path planning has presented two different categories: optimisation un-
der constraints and potential field methods. Optimisation under constraints was divided over five
subsections, and the potential field methods were captured by the VFF and VFH.

Regarding optimisation under constraints, and more particularly, mathematical programming:
methods using MILP or BIP either require much computation, or precise maps where the complete
environment has been partitioned into tetrahedrons. Curve based algorithms also have a high time
complexity, and are mainly used when global maps are available. Gradient-based search algorithms
are not very common in path planning, since they tend to find local optimal solutions. Heuristic
algorithms try to find the global optima quicker by introducing a heuristic, but still these algorithms
are prone to yield local optima. Meta-heuristic algorithms try to minimise the chance of getting a
local optima, which comes at a computational cost. Each iteration needs to generate a path and
evaluate it with a cost function. Since information about the environment is constantly updated,
this makes it an expensive local approach.

The VFF method is prone to get trapped in local minima, or at least get caught in it for a short
time period. Also extensions on this method exhibit similar problems. A reactive approach would
be a cheaper solution, while having the same challenges. The VFH seems promising in 2D, but
yields implementation difficulties in 3D. A solution could be to perform VFH as a reactive method,
and use the uncertainty of the disparity values, much like the approach presented by Lyrakis (2019),
presented in section 1.4.
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While building maps can be helpful for avoiding local minima and obtaining global optima, it can
be a computationally expensive process. Furthermore, a map would create most extra added value
if the drone flies through the same area multiple times and remembers previously seen obstacles.
If the drone is travelling through the local areas quickly without coming back, the added value is
limited. Looking at Figure 4.1, the grid map does not contain any extra information to what the
stereo camera can see. Taking either one of the two possible routes can be done with a simpler algo-
rithm, then to first create a grid map and use a path searching algorithm. Maps are in favour when
the drone needs to find its way out of a local minima, or when it is stuck in a large maze with only
one way out. Since maze-type environments are unlikely in outdoor situations, a reactive mapless
approach might be enough for path planning. Local minima would need to be escaped or avoided
using different modes during flight, as will be explained in section 5.2.

Figure 4.1: Local grid map

For a reactive approach, the local percept is used as environmental representation. This is also
referred to as an image space map (van Dijk, 2020). An example is shown in Figure 4.2(a), where
the resulting disparity image produced by the stereo camera is shown. The information stored in
this image is used to build the previously mentioned maps, but could also be used directly for path
planning. The task is as simple as selecting a pixel, but the question is: which one? Realistically, due
to stereo matching challenges, the disparity image will contain more noise than shown here.

The disparity image could be used to track the edges of the obstacles, as shown in Figure 4.2(b).
This form of ray tracing can be extended to 3D, where the boundaries of the obstacles are traced,
in a similar fashion to CEG. Using this method, only a few possible heading angle ranges are given
to the drone. However, the process of finding these boundaries might be a difficult process due to
noise.

This chapter will present multiple mapless path planning algorithms, along with their advan-
tages and disadvantages and will discuss their findings at the end. The methods discussed are fuzzy
logic, machine learning and bug algorithms, which can all be related to bio-inspired algorithms,
since they try to mimic human or animal behaviour.

4.1. Fuzzy Logic
Fuzzy Logic (FL), introduced by Zadeh (1965), tries to mimic human "if-then" reasoning when faced
with incomplete knowledge. Since humans are able to navigate without any direct calculations, it
is interesting to study this field. It is used for situations when the information is vague, or unclear,
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((a)) Disparity image
((b)) Ray tacing (adapted from Patle

et al. (2019))

Figure 4.2: Path planning in image space

hence the term fuzzy. The information is first sent through a fuzzification layer. After, the "if-then"
rules are applied and a defuzzifier is used to give an output value (Patle et al., 2019). FL can be used
for making decisions, but also for control and pattern recognition. It is a popular method since it
gives insights into the reason behind the choices made.

FL can be categorised under bio-inspired algorithms, since it tries to mimic humans. The most
common implementation of FL algorithms is mapless, where it uses range sensor data to obtain
input. For example, Pandey et al. (2014) created a fuzzy logic controller for their two-wheeled robot
to avoid obstacles. Their range sensor readings are categorised under either close, medium or far
away, based on predefined thresholds. These categories cause the input data to be fuzzy, since
none of them can tell exactly where the obstacles are. A large look-up table was created with ac-
tions that need to be taken under certain conditions of the range sensor. Another paper used FL to
steer a quadrotor around obstacles, using 12 sensors for omni-directional sensing (Wahyunggoro,
Cahyadi, et al., 2016. These sensor readings are compared to each other, and the result of the fuzzi-
fication layer is that the results only know if they are larger or smaller than other sensor readings.
Using comparison operators, the method gives a heading angle for the drone as output.

The disadvantage of these methods is that every possible action needs to be included in some
sort of a look-up table of if-then rules. For the two-wheeled robot the inputs are obstacle distance
on the front, left and right side, and the outputs are the motor speed for the left and right wheel
separately (Pandey et al., 2014). This already gives a table of 27 fuzzy rules. For a drone, it is not as
simple as turning one propeller faster or slower. It will need outputs for yaw, pitch and roll, as well
as accelerate or decelerate. To avoid this becoming a large list, the quad-copter paper discretised
the output in heading angles of 45 degrees. Being limited by these 45 degrees will result in a sub-
optimal path. Also, their FL method needs an additional potential field method to steer the drone
to the target. Furthermore, their method is applied in 2D, since the altitude of the drone is assumed
constant. In 3D, more sensor data needs to be used as input, since now also the height and altitude
of obstacles needs to be taken into account. Let’s assume that the sensor now reads in 9 directions,
in a grid from top left to bottom right. The if-then list expands with power 3, meaning that for 3
inputs it contains 27 rows, and for 9 inputs it contains 729 rows. Moreover, FL is not always able to
apply the best rules to a particular situation. It is a difficult process to select the necessary rules that
include every possible situation (Zhao et al., 2018).

According to Zhao et al. (2018), methods based on GA and FL are the most used algorithms for
online path planning. However, the main contribution to that is that the method used to be ex-
tremely popular in the past. Since 2012, FL has been hardly ever mentioned in the literature on
path planning algorithms. Since it is a difficult process to select the appropriate rules, FL is often
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integrated with a neural network. In this way, the human reasoning is combined with the learning
ability that a neural network has. This results in a neural network that gets the sensor data readings
and target direction as input, and gives, for example, steering angles as output (Mohanty and Parhi,
2013). The look-up table of FL has therefore been replaced by the nodes and weights of the network,
that try to map the input to the appropriate output. The combination of the two give better results
than using the individual algorithms, but it comes at a computational cost (Mac et al., 2016). An ex-
ample is the Adaptive Neuro-Fuzzy Inference System (ANFIS), which uses a 6 layer neural network
and gives a steering angle as output (Singh et al., 2009). But even after extensive training and careful
hyperparameter tuning, the path that this methods chooses is still sub-optimal. The planned path
sometimes even heads straight towards an obstacle, before taking the same path back. Since it is
preferred to have a predictable method that takes logical steps, and can explain why it takes certain
steps, neuro-fuzzy methods will not be used.

4.2. Machine Learning
Machine learning methods can be used for robot path planning in three different ways. Firstly, it
can be used for building a map. For example, Luo and Yang (2008) build a 2D map for a cleaning
robot, which is interested in a complete coverage of the available area. The map is divided into
small squares and triangles to make sure that all the area is covered. The authors call their method
real-time, yet are not confident enough to mention anything about their run times or robot speed.
Furthermore, since building maps with machine learning mostly focuses on full coverage meth-
ods, it will not be used in this study. Secondly, machine learning methods can be used for reactive
avoidance. This means that the target location is not given as an input, and the only goal is to not
hit obstacles. Since the task in this study is to find a path to the target, the third machine learning
method is preferred, which finds a path to the target while avoiding obstacles. The rest of this sec-
tion will discuss machine learning-based path planning methods.

Machine learning algorithms can be subdivided into three types of learning: Supervised, unsu-
pervised and reinforcement learning (Brownlee, 2019). Supervised learning algorithms learn from
many samples, where the input is mapped onto a desired output. Unsupervised learning does not
have these examples, and is normally used to cluster data. It can look for similarities in the data
and summarise it. Reinforcement learning is not given a large set of data either. Instead, it is given
rewards or punishments for performing actions in certain states. It remembers the action it took for
a state, and if it was punished, it will try something different next time.

Artificial neural networks are a common feature of machine learning algorithms. A neural net-
work can be seen as a bio-inspired algorithm, since it mimics the neural activity of the brain. The
structure of the network can be defined by the user. Many nodes are interconnected, each with its
own weight, passing on information to an activation function. The output state can be a heading
angle, or a velocity for example. A neural network is able to generalise well and can learn complex
and non-linear relations within the information presented (Patle et al., 2019).

4.2.1. Supervised Learning
Supervised learning algorithms are common for path planning. For example, S. X. Yang and Meng
(2000) use a neural network approach to guide their robot through a dynamic environment with a
moving target. In a static environment they obtain the global optimum solution. Disadvantage is
that the method assumes a constant speed for both the robot, which is not representative for real
life situations (Mac et al., 2016). A few years later, Janglová (2004) came up with a method that uses
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two neural networks: one to find the obstacle free space, and one to find the path within this space.
The first network uses the information given by the distance sensors and the second network uses
the output of the first network, as well as the direction of the target as input. Main disadvantage
is that a lot of human intervention was needed during the training process to help the robot learn
to take the correct path and many samples were needed to train the network. To limit the amount
of training samples, Singh and Parhi (2011) thought of training their neural network on 200 typical
scenarios only. There are four inputs to the network: obstacle distance on the left, front and right,
as well as the heading angle of the target position. With less computation time, the algorithm is able
to find a path to the target in a unknown environment (Mac et al., 2016). It should be said that the
range sensors only have a range of 25 cm, and the robot moves at a maximum speed of 0.5 m/s, so
the algorithm does not get large amounts of data and uses roughly half a second to safely plan a path.

In a more recent example, Tai et al. (2016) created a deep network that is able to translate a
depth image into a steering angle. However, deep neural networks are not ideal for systems that
require low computation. The paper used their method in a 2D environment, and on average the
algorithm took 0.25 sec to generate output. In 3D this computational time is expected to increase
rapidly, since the degrees of freedom go from 3 to 6. Since the depth images will contain noise, the
calculations must be performed quickly to obtain certainty about a particular direction. Therefore
the deep neural networks will not be suitable.

The list of supervised path planning algorithms can be extended, but the main drawbacks re-
main. In general, supervised learning algorithms need many samples plus a large variety within this
data (Mac et al., 2016). Another possibility is a self-supervised learning algorithm, which creates the
data while it is learning from it. However, that would only solve for the time consuming data collec-
tion step. The output of these algorithms will remain unpredictable, and global optimal solutions
cannot be guaranteed (Mac et al., 2016).

4.2.2. Unsupervised Learning
Unsupervised learning algorithms are not common in path planning applications. Since they are
not told what is right and wrong, it is difficult, if not impossible, to create a path from initial to
target position. There are instances where authors tried to apply it directly for reactive path plan-
ning. For example, Hirose et al. (2017) use unsupervised learning to check the incoming images for
last-minute obstacle collision, on a robot with one camera. This is redundant, since a drone with a
stereo camera can already obtain this type of information. Normally, unsupervised learning is used
to cluster data, or to find points of interest within the data. These type of algorithms need to be
combined with another algorithm to plan a path, leading to higher computational expenses.

As a sidenote, a paper by Muniz et al. (1995) claims that it performs unsupervised learning, while
in fact it performs reinforcement learning.

4.2.3. Reinforcement Learning
One type not yet discussed is reinforcement learning. This type tries to learn the best actions to
be taken under certain situations, saved as states. Q-learning is a subset of reinforcement learning,
which is of particular interest because it does not need to remember a model of the environment,
but simply remembers what actions need to be taken for the states. However, for an unknown,
three-dimensional environment the number of states quickly approaches infinity. To solve this, a
smart way to reduce the states had to be introduced. For example, Jaradat et al. (2011) thought of
mimicking human reasoning when faced with an unknown environment: the human does not care
about its own location as much as the relative distance to the obstacles. It managed to decrease the
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states to a couple of heading directions and train the model on those. After careful tuning, it took
75 different training scenarios to obtain a 98% success rate on reaching the target position. Still it is
unclear what happened in the 2% where it did not meet the target. This percentage increased with
an increasing number of obstacles. When there would be 13 obstacles, this would have increased
to 24.4% of not achieving the target position. Since these methods require a lot of training, and still
show unpredictable behaviour, they are not considered suitable for this study.

4.3. Bug Algorithms
Bug algorithms look at the behaviour of bugs, and can therefore be considered a bio-inspired al-
gorithm. They perform path planning in unknown environments, where the direction to the target
position is known. Furthermore, they require little computation due to their simple reasoning in
finding a way to the target. The bug algorithm can be divided into two categories: angle-bugs and
M-line bugs, which can be seen in Figure 4.3 (K. N. McGuire et al., 2019). Their names originate from
the choice of path when leaving an obstacle. Some of these use range sensors to steer the robot in a
different direction, before it has been in contact with the obstacle. These can be classified under the
subcategory of range-bugs. The bug algorithm family was the first to guarantee global convergence
for path planning in an unknown environment, in 1986 (Ng, 2010).

Figure 4.3: Classifying Bug algorithms (K. N. McGuire et al., 2019)

The following six assumptions hold for bug algorithms: First, the geometry and position of ob-
stacles are unknown. Second, every obstacle has a finite area it covers. Third, the robot is considered
a point object. Fourth, the location of the target and the objects do not change. Fifth, the robot has
perfect localisation property and sixth, it has perfect sensors. The first assumption is in line with
this study. For the second, even though it might cover a finite area, it could still block the complete



74 4. Mapless path planning

FoV. The third is covered by the c-space expansion, explained in section 1.5. The fourth assumption
holds since this study considers only static obstacles. The fifth holds since the drone has GPS data
available. The sixth does not hold, since the stereo camera produces noisy disparity images. Ap-
proaches to reduce the noise are discussed in section 5.1.

Before going into the different types of bug algorithms, the very first bug algorithm will be ex-
plained. In Bug1, the robot is able to travel towards the target, and along obstacle boundaries
(Lumelsky and Stepanov, 1986). Once it senses an obstacle with its contact sensor, it defines a hit
point. From there, it will perform a full revolution around the obstacle, while trying to find the point
with the smallest distance towards the target. After returning to the hit point, the robot will return to
the point that is closest to the target, via the shortest route. The method is non-heuristic, since a cer-
tain worst case path length is guaranteed (Sankaranarayanar and Vidyasagar, 1990). The advantage
of bug1 is that it guarantees to reach its target, The disadvantage is that the chosen path is rather
long, since the robot performs a revolution around every encountered obstacle. Furthermore, Bug1
does not work for dimensions greater than 2 (Sankaranarayanar and Vidyasagar, 1990).

4.3.1. M-line bug algorithms
An M-line, or main line, is a virtual line between the initial and target position, and was introduced
by Bug2 (Lumelsky and Stepanov, 1986). Once the robot meets an obstacle, it will move along the
obstacle boundary until a point on the virtual line is met. From there, the robot will continue its
way towards the target. Where Bug1 is more conservative, Bug2 is more aggressive and can be more
efficient, however the distance for Bug2 can also be larger when start and target points are placed
in a nontrivial way (Lumelsky and Stepanov, 1986). An alternative method created by Noborio et al.
(1997) changes Bug2 by providing a random selection of turn, instead of a constant left or right turn
when hitting an obstacle. The difference is small, but the authors claim that on average the algo-
rithm performs better.

Alg1 modifies the constant turn version of Bug2 (Sankaranarayanan and Vidyasagar, 1990). Once
it encounters a point that it has already visited, and therefore also the boundary behind it, it changes
direction and tries to find a new leave point closer to the target. Although it has a higher bound, it
is faster on average. The worst case path of Alg1 cannot be improved any further, when using the
M-line method. Rev1 is based on Alg1 and allows for an alternative switching between left and right
turns (Horiuchi and Noborio, 2001). Some simulations results show that it can produce shorter
paths, but there is no mathematical proof of this.

The authors of VisBug take most of their inspiration from their previously created algorithm
Bug2 (Lumelsky and Skewis, 1988). In addition, it has local sensing information from a stereo cam-
era or a range sensor, hence the term vision is abbreviated in the name. It can guide the robot
through shorter paths by cutting corners, meaning that if the robot sees that it will hit an obstacle
soon, it can already start turning to the edge of the obstacle. Visbug-21 is claimed to be never out-
performed by Bug2. The sensors scan a limited area, which is computationally more efficient than
scanning 360 degrees. The VisBug-22 algorithm has a more opportunistic approach. It can devi-
ate from the path that Bug2 would tell it to take by making use of promising opportunities. These
opportunities can be paths that first lead back to the M-line, before heading towards the target po-
sition. The paths are normally shorter than Bug2, but better performance can not be guaranteed for
VisBug-22.

The main disadvantage of these M-line bug algorithms is that they have to return to the M-
line every time they pass an obstacle. Even with some visual feedback, the method tends to take
unnecessary turns. Another approach would be to directly head towards the target position once an
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obstacle is cleared. This idea is adopted by the angle bug algorithms.

4.3.2. Angle bug algorithms

The angle bug algorithms leave the obstacle boundary once they see that the path towards the tar-
get is clear. The first algorithm to be discussed, Com, got its name from being a "common sense
algorithm", since it makes sense to go straight to the target when possible (Sankaranarayanar and
Vidyasagar, 1990). It performs less boundary following, relieving some of the work of the contact
sensors. The disadvantages are that it can sometimes create extremely long paths for simple envi-
ronments, caused by drifting to infinity or getting stuck in a loop. The first is addressed by Comr,
which only leaves an obstacle boundary when this leave point is within a disc. This disc is drawn
around the target, and its radius is equal to the previously best visited location’s distance to the tar-
get. The second is addressed by Com1, which added another rule: the distance from the leave point
to the target must be smaller than the distance of x to the target, for all x visited by the robot prior to
the leave point. An infinite loop can now only occur if the target is trapped by a boundary.

One of the disadvantages of Com1 is that, in some environments, it tends to visit previously
visited path many times more. Alg2 prevents this by reversing the direction of travel once it encoun-
ters a previously visited hit or leave point. Bug algorithm Gen is a generalised version of Alg2, which
does not necessarily use the euclidian metric, but any metric for distance (Sankaranarayanar and
Vidyasagar, 1990). Furthermore, Rev2 is comparable to Rev1, but now it is applied to Alg2, meaning:
the direction of turns is alternated (Horiuchi and Noborio, 2001). Again, no mathematical proof on
better performance is given but simulations show that it has the capability of outperforming Alg2.

The last angle bug algorithm without a range sensor is HD-I, together with a small improvement
which resulted in Ave, and DistBug. Noborio et al. (1999) created HD-I, which is a mix between the
Best-First (BF) and Class 1 algorithm. Class 1 is an algorithm that the author has claimed to be his
own work, yet it is an exact replica of the Com1 algorithm, which was released two years before Class
1 (Noborio, 1992). Furthermore, BF is an algorithm that searches the best options within a graph. A*
is an example of such an algorithm. Ave is an extension of HD-I, which uses the previously visited
nodes to decide which boundary following direction is best. A year later, the same author created
NH-I and NH-II (Noborio et al., 2000). NH-I is similar to HD-I, but heuristic methods are introduced
in both BF and Class 1. NH-II is a combination of Depth-First and Class I. However, section 2.2
concluded that roadmaps like PRM will not be used since other methods are preferred, so none of
these algorithms will be used.

4.3.3. Range bug algorithms

Figure 4.3, created by K. N. McGuire et al. (2019), shows a small mistake: DistBug does in fact use
range sensor data to plan its path, and should be inside of the green area (Kamon and Rivlin, 1997).
While following the boundary of an obstacle, it checks whether the direction of the target position
is obstacle free. In addition, they use local information to choose for either a left or right turn and
they bound the search area to further improve performance. The method is robust to noise in the
distance measurements and has been tested on real robots. It was mentioned that the implemen-
tation was easier than VisBug, since DistBug uses the range data directly instead of first modeling
the local environment. Its performance is comparable to Alg1 and Com1, but for relatively simple
environments, DistBug has greater performance. The remaining disadvantage is that it still adheres
to boundary following.
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TangentBug
TangentBug is another bug algorithm, created by the same authors as DistBug. In fact, it was pub-
lished a year earlier. It uses range sensors to obtain information about the distance and heading
of the obstacles ahead. If the path towards the target has obstacles, the robot will choose the path
where the distance from the current to the target position is the smallest (Kamon et al., 1998). Global
convergence is guaranteed, since it has a theoretical worst case path length. Once a loop is encoun-
tered, TangentBug will switch to boundary following mode to prevent making the same mistake
twice (Ng, 2010). The algorithm uses a local tangent graph, which is a simpler form of the visibility
graph as shown in Figure 4.4. It only contains the lines that mark the edges of the obstacles. The
authors tested TangentBug against Visbug, and over 900 runs TangentBug was a factor 3 better on
average. These runs included convex-shaped obstacles, mazes and indoor office-like environments.

((a)) Visibility graph ((b)) Local Tangent Graph (LTG)

Figure 4.4: Visibility graph versus LTG (adapted from Patle et al. (2019))

A disadvantage of this algorithm is the computational power required. The robot uses 16 sonar
sensors and 16 infrared range sensor, each with 22.5 degrees of resolution. Creating a 360 degrees
LTG is computationally heavy in real-time (Q.-l. Xu, 2014). Another disadvantage is that the method
is applied in 2D, whereas path planning for drones will require 3D.

EgressBug
EgressBug claims to have better performance in path planning than both Bug2 and TangentBug
(Guruprasad, 2011). The paper states that TangentBug can enter an infinite loop in a nontrivial en-
vironment. Once such a loop is encountered, TangentBug concludes that the target is unreachable.
EgressBug improves on this by letting the robot know once it has performed a loop. It then will
change the direction of the wall following mode to egress (or: leave) the loop, in a similar fashion to
Alg1 and Alg2. Due to its drawbacks, TangentBug will not be used. However, in case the chosen algo-
rithm performs some kind of wall-following manoeuvre, EgressBug shows that it is wise to change
the direction of travel once the robot has encountered a loop. On the other hand, loops are highly
unlikely in 3D since the drone also has the possibility to change altitude.

InsertBug
InsertBug also builds on the idea of TangentBug, but places the waypoints at a safe distance from an
obstacle’s boundary to prevent collisions (Q.-L. Xu and Tang, 2013). However, when implementing
a disparity space expansion, as explained in section 1.5, this safety distance from obstacle bound-
aries is already taken care of. Furthermore, InsertBug uses a vector notation to describe the planned
paths, which makes the path easier to follow and is computationally lighter, according to the au-
thors. However, their method is mostly computationally lighter since it scans 180 degrees, compared
to the 360 degrees of TangentBug. Furthermore, every new waypoint has a minimum distance from
the previous, whereas TangentBug is constantly looking for better waypoints every time it obtains
more range information. Their implementation of TangentBug is also questionable, since they state
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that the algorithm has a range sensor of 300 pixels, yet it still behaves almost like a contact sensor
version, where it only changes direction after it has been in contact with the obstacle. The benefit
of the vector notation is that the difference between two waypoints can be described in terms of a
rotation angle and movement distance, creating simple commands that can be send to the drone to
follow the path. However, the simulation software used for this study, discussed in section 5.4, uses
the carrot following algorithm to get to its waypoints. Therefore, the exact navigation commands
are already dealt with.

RandomBug
Since the influence of InsertBug in the world of bug algorithms was minimal, being cited by only 4
different researchers over the past 9 years, the same author tried again with a different algorithm 2
years later: RandomBug. As the name might have suggested, it creates multiple random waypoints
once it encounters an obstacle, and chooses the best one (Q.-l. Xu, 2014). The best waypoint can
for example be defined as being the closest to the target position. Since a safety margin is taken
into account upon selecting a new waypoint, it is similar to InsertBug. A disadvantage is that the
constant generation of random waypoints causes the path to consist of many, arguably unnecessary,
sharp turns. The advantages that the author mentions are similar to InsertBug: the vector form is
good, it requires a smaller storage space and keeps a safe distance to obstacles. However the path
lengths are worse than TangentBug, and also worse than InsertBug. Being cited by only 2 different
researches this time, it can be concluded that also RandomBug will not be the chosen algorithm.

Wedgebug
Laubach and Burdick (1999) address the drawback of computational expenses of the TangentBug
algorithm. This was a result from the limitation of the planetary rover they wanted to use it for. The
rover has limited range sensing, and can only detect obstacles within a small wedge, formed by the
FoV and the range. They use a local version of the local tangent graph. The local tangent graph is
called local since it only measures obstacles nearby, and the local version of it means that it only
senses in a small FoV. If an obstacle is blocking the view of the complete wedge, the robot scans
another wedge in an adjacent direction by turning the robot. Wedgebug tries to limit the amount
of necessary scans, to avoid unnecessary robot movement. The algorithm is a promising candidate
for the path planning algorithm to be used on a drone. The challenge that remains is extending this
2D algorithm into 3D.

3DBug
3DBug extends TangentBug into 3D, by defining a new, efficient data structure called the Convex
Edges Graph (CEG) (Kamon et al., 1999). The CEG also has been discussed in section 2.2. It stores
the convex hull of obstacle edges, as well as the current and target position. It plans the path around
these obstacles by setting waypoints, called focus points F . The algorithm can obtain the global op-
timum for relatively simple environments. They categorised the algorithm under the bug algorithm
family, since it uses local sensor data directly, without losing the guarantee of global convergence.
In 3DBug, the next set of possible waypoints are connected to only one obstacle. Compared to the
visibility graph, this is more memory efficient, since the visibility graph tries to connect all vertices
with each other. The authors simulated both options and found that 3DBug needed 3.3 nodes on
average from initial to target position, while the visibility graph needed 32.4 nodes on average. Fur-
thermore, the compact data structure is able to represent a certain 3D environment with 7 obstacles
in 7 nodes and 9 edges, while the numbers for the visibility graph are 620 and 118912 respectively.
Another advantage for 3DBug is the simplicity of deciding unreachability of a target. It explores the
surface of one obstacle, while an A* algorithm in a visibility graph would need to search through all
possible nodes before concluding unreachability.
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The algorithm makes a number of assumptions to get to its results. First, it assumes that all
obstacles in the environment can be modelled as polyhedral obstacles. Second, a perfect range
sensor with no maximum range is used. Third, the range sensor can sense in all directions. Fourth,
the range data, which includes both vertices and edges, is perfectly translated into 3D coordinates.
The second, third and fourth do not hold, since the range data contains noise, has a small FoV as
well as a limited range. Furthermore, the noise makes it difficult to detect the precise contours of an
obstacle, breaking assumption one. Fortunately, an algorithm similar to 3DBug has been developed
that is able to cope with these limitations. Instead of finding obstacle boundaries, it finds escape
point boundaries. These are the boundaries between areas with obstacles, and areas without. The
algorithm will be discussed in the next section.

the first to guarantee global convergence for path planning i

4.4. Obstacle avoidance using uncertainty maps
The idea behind uncertainty maps has been sketched in section 1.4. The uncertainty values are used
to filter the disparity map, to check the (un)certainty of collisions and to check the (un)certainty of
the obstacle-free escape points. This section explains the process of finding these escape points, as
well as selecting the best one. This results in local path planning in image space.

Escape points are essentially obstacle-free image pixels. To clarify, escape points are only calcu-
lated once the drone realises it is close to colliding with an obstacle. The Moore-Neighbor Tracing
algorithm is used to find these points, because of its efficiency compared to Square Tracing algo-
rithm, Radial Sweep, Theo Pavlidis algorithm and Dr Kovalevsky algorithm (Lyrakis, 2019). Its aver-
age runtime is 0.1 msec on a 1241x376 disparity image. An example is shown in Figure 4.5, where
Figure 4.5(a) shows the disparity image after the c-space expansion, and Figure 4.5(b) shows the
escape points with the dark red boundary (Lyrakis, 2019).

((a)) C-space disparity image ((b)) Escape points (dark red)

Figure 4.5: Escape point selection from disparity image (Lyrakis, 2019)

The selection procedure of the best pixel was done according to the cost function shown in
Equation 4.1 (Lyrakis, 2019). Here, wi represents weights and d the distances. The subscript cp
refers to the distance to the escape point, g is the distance from the escape point to the goal, pp
is the distance between the escape point and the previously calculated escape point. Lastly, cer t
refers to the average uncertainty of the pixels neighbouring the escape point. The runtime needed to
calculate the escape point with the lowest cost takes 0.22 msec on average for the 1241x376 disparity
image.

Cost (p) = w1 ∗dcp +w2 ∗dg +w3 ∗dpp +w4 ∗ cer tp (4.1)

The benefit of this method compared to 3DBug is that it does not necessarily need to track the
complete obstacle boundary of the obstacle in front of the drone, it only tracks the boundaries which
are of interest for planning new escape points. Furthermore, it is not necessary for obstacles to be
represented as polyhedral objects, which makes the method more realistic and faster. Even if the
uncertainty map would get rid of most of the noise in the disparity image presented for 3DBug, ob-
stacle boundaries would still be hard to find since they are incomplete or inconsistent. For example,
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after the c-space expansion, some pixels of nearby obstacles expand more than others due to small
errors, as shown by the pole on the right in Figure 4.5.

4.5. Discussion
This chapter has presented multiple mapless path planning algorithms, along with their advantages,
disadvantages and perhaps opportunities. It has been concluded that Fuzzy Logic is not chosen,
due to the difficulties in selecting the best rules for particular situations and in designing rules that
include every imaginable situation.

Machine learning has numerous disadvantages. Firstly, supervised learning requires many sam-
ples, plus a wide variety within the data. Furthermore, these algorithms remain unpredictable and
global optima cannot be guaranteed. Secondly, unsupervised learning is only used to find patterns
in the data, after which another path planning algorithm is still required to actually plan the path,
increasing the computation. Thirdly, reinforcement learning will not be used, since even after care-
ful tuning of the parameters, the algorithm still shows unpredictable behaviour.

Afterwards, this chapter dove into the world of bug algorithms, which were categorised under
M-line-, angle- and range bug algorithms. The range bugs were the most interesting, since they
do not adhere to following boundaries as much as the others. In particular, the computationally
efficient implementation of TangentBug presented by the WedgeBug algorithm seemed a good op-
portunity. A 3D implementation of TangentBug was performed by 3DBug. Combining WedgeBug
and 3DBug into a 3D local planning algorithm with limited sensor range and limited FoV looked
promising. However, the assumption that all obstacles can be modelled as polyhedral obstacles is
quite tricky in noisy image conditions.

To avoid finding all these obstacle boundaries, Lyrakis (2019) looks for escape points using a
Moore-Neighbour Tracing algorithm. The best escape point is then chosen according to a cost func-
tion, and all of this happens in less than half a millisecond for a 1241x376 disparity image. The only
challenges that remain are finding parameters for BM which result in the best disparity maps, avoid-
ing local minima and checking the path for the drone’s dynamic constraints. These are explained in
section 5.1, section 5.2 and section 5.3.
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Implementation

This chapter touches upon some of the subjects which were not discussed in detail before. This
includes how to find the best parameters for the BM algorithm, how to avoid local minima and how
to smooth the path. Furthermore, this chapter presents the method in which the resulting algorithm
can be tested.

5.1. Selecting BM parameters
As discussed in section 1.3, BM comes with a set of parameters that can tune the disparity map. The
parameters of interest for tuning are: SADWindowSize, numDisparities, textureThreshold, unique-
nessRatio, speckleRange and speckleWindowSize. If any improvement is noticed by changing any
of the other parameters, they will be included as well (i.e. preFilterType, preFilterSize, preFilterCap,
minDisparity, roi1, roi2, disp12MaxDiff and dispType). As discussed in section 1.6, if the disparity
image remains noisy after tuning the parameters, the uncertainty map will be created.

5.1.1. Optimisation method
Now, is it possible to avoid manually changing every single parameter and writing down perfor-
mance results to find the optimal combination? Luckily, yes. Optimisation algorithms exist that
can give an insight into the pareto-front of multiple objective functions. Since it is tricky to assign
a weight factor representing the relative importance of objective functions, NSGA-III takes into ac-
count all of the objective functions and finds non-dominated solutions. A non-dominated solution
is a solution that is not dominated by any other solution. When comparing two solutions, the per-
formance of one is said to dominate the other one if the values of all objective functions are at least
equal, and one is larger (Deb and Jain, 2013).

The performance of the disparity image can be tested by the number of pixels that have an error
greater than 2 pixels, or the amount of pixels that are given a value, or the time it takes to run the
algorithm with the current parameters. The power of NSGA-III is that outperforms other optimisa-
tion methods when the number of objective functions increases, to between 3 and 15. Furthermore,
the solutions are in some sense connected to a set of equally spaced reference points. This prevents
all solutions from moving to a local/global optimum, and maintains the spread in the solutions that
is desired for representing a pareto-front.

5.1.2. Preliminary results
To test the performance of the NSGA-III algorithm for this study, a small example was used. Here,
only two parameters were being given as input: SADWindowSize and textureThreshold. Three ob-
jective functions were created: px2_perc refers to the amount of pixels that have a disparity error of
2 pixels or smaller, values_perc refers to the amount of pixel values and time_taken measures the
runtime for the set of parameters. The objective function px2_perc has been chosen to represent
errors of 2 and smaller (instead of 3 and larger) to allow for better connection with the reference
points. The results are shown in Figure 5.1. Note that the axes are scaled to be consistent with the
reference points used, so the values in the graph don’t represent the real values. For completeness,
they can be transformed to their true values using Equation 5.1, Equation 5.2 and Equation 5.3. The
values used in these equations result from the attempt to spread the population data between 0 and
1 on the different axes.

px2_per c_tr ue[−] = px2_per c

5
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values_per c_tr ue[−] = values_per c ·0.7 (5.2)
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Figure 5.1: NSGA-III preliminary results for finding BM parameters

The orange dots represent the reference points used in the optimisation. The blue dots repre-
sent the population of 92 members, after going through 20 generations. Each member consists of
an array of 2 values: one for the SADWindowSize and one for the textureThreshold. The number
of members roughly equals the number of reference points, as recommended by the original pa-
per (Deb and Jain, 2013). The number of generations in the paper is 400. Here, 20 is used since it
gives a quick indication of how the algorithm performs, and the most optimal solution is not yet
the main objective. Finding optimal parameters for population size, number of generations and
crossover/mutation probabilities is left for further thesis work. For this, the Grid Search tuning al-
gorithm used by Lyrakis to find the best hyperparameters can be used.

When the number of pixels that are given a value (values_perc) increases, the number of pixels
with a disparity error of 2 or smaller decreases (px2_perc). In other words: the more values being
estimated, the more mistakes being made. Another observation is that the more values being es-
timated, the more time it takes to run. To give an insight into these population members, two are
highlighted: Point 1 (green) belongs to the member with the highest values_perc value, and Point 2
(red) belongs to the member which is the median from all values_perc. For this preliminary study,
the disparity image of only one stereo image was calculated. The left grayscale image of a stereo pair
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is shown in Figure 5.2(a), and its corresponding true disparity image is shown in Figure 5.2(b). Point
1 and 2 are taken as an example. The pareto-front allows the user to decide the ideal combination
of different objective function values.

((a)) Left image of stereo pair ((b)) True disparity image

Figure 5.2: The left image together with its disparity image

Table 5.1 shows the parameter values of the two points, as well as the resulting objective func-
tion values. The disparity images created by the parameters of Point 1 and Point 2 are shown in
Figure 5.3(a) and Figure 5.3(b) respectively. The parameters belonging to population member Point
1 generate a disparity image where many pixels are given a value, although the pixels with errors
equal to or smaller than 2 drops to 92.3%. The parameters of point 2 only create 16 % of pixel values,
but they perform slightly better: 97.5%.

Table 5.1: Parameters and results for Point 1 and 2

SADWindowSize textureThreshold px2_perc values_perc time_taken
Point 1 11 21 92.3 [%] 61.8 [%] 0.986 [ms]
Point 2 13 3970 97.5 [%] 16.0 [%] 0.723 [ms]

As a sidenote, BM will always create a black frame around the disparity image. Most of the left
column is due to the numDisparities. The value used here is 32. Since the algorithm looks for pixel
disparities between 0 and 31 pixels, it is not able to draw any conclusions about the first 31 pixels,
since it is not possible to examine their complete range of possible disparities. The rest of the frame
equals half the SADWindowSize, rounded down. This is because the block scans through the image,
and assigns values to the central cell. This means that for a SADWindowSize of 11 (Point 1), it is not
able to give values to any of the outer five row and columns, since the complete block is not defined
in that area. Hence, for a SADWindowSize of 11 the maximum attainable percentage for a 256x144
image is 78.2%. For a SADWindowSize of 13 (Point 2) this drops to 76.3%.

((a)) Point 1 ((b)) Point 2

Figure 5.3: Disparity images created through BM using both points’ parameters
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What is left for further thesis work is to include more BM parameters into the NSGA-III optimi-
sation algorithm, and decide which solution in the pareto-front will be the preferred solution.

5.2. Avoiding local minima
Since the mapless method by Lyrakis (2019) is chosen, the famous problem of local minima needs to
be addressed. To clarify, with a local minima it is meant that the drone is stuck in a position which
is not the target. For example, with potential field methods it might happen that the cumulative
repulsive force vector of the obstacles is equal and opposite to the attractive force vector from the
target. The net force is zero and the drone might think that it has arrived at the target position.

While avoiding local minima sounds ideal, it is not very realistic. Since a local approach is used,
the drone will not be able to spot a local minima before it has entered it. Solving for local minima
has been of particular interest for potential field methods, since this was one of their main draw-
backs. Some solutions discussed in subsection 3.2.1 included rotational forces, virtual obstacles,
virtual targets and boundary following. The main idea is that the robot entered a different mode,
once it has realised that it was stuck in a local minima.

Since the PF method itself is not used, virtual obstacles will not be considered, also since a newly
generated obstacle nearby the drone will block the complete FoV due to the c-space expansion.
However, the idea behind the other three options could still be implemented.

Instead of a virtual target, a new waypoint could be set on one of the already visited GPS loca-
tions, to review the decision taken a few steps ago. In addition, it is already known that the path
from current location to the previous is safe, so the drone could even fly backwards while keeping
a forward view, trying to find better escape points. The rotational forces could be translated into a
rotational movement of the drone. There are two possibilities for this. Lyrakis (2019) chose the sim-
ple method, which included the yawing motion of a stationary drone, which allowed for safe further
scanning of the environment. Another option is to fly the drone in spirals, which allows it to move
up or down. These spirals are necessary since the drone does not know what is directly above or be-
low. Boundary following methods performed in the literature are on 2D maps. A similar approach
can be designed for 3D, where the drone can also move up or down while following the boundary, a
bit like the spiralling approach.

The exact implementation and the discovery of possible advantages and disadvantages is left for
further thesis work.

5.3. Path smoothing
Every time an escape point is selected, the drone changes its attitude and heads towards this point.
Due to the dynamics of the drone, there is a small delay and the drone does not exactly follow the
straight line segment between the escape point and the location of the drone at the time where this
escape point was calculated. In the worst case scenario, this deviation is large enough to cause an
obstacle collision.

In subsection 3.1.2, some curve based path-smoothing algorithms were discussed. The most
used one is Dubins method due to its simplicity, and it can take turning radius and rate of climb
into account. Another cheap option that is worth researching is the use of splines. Splines are
functions dedicated to a small section of a curve (in this case: the path). Each point on the resulting
Dubins curve or spline can then be checked for obstacle collision. An overview of other popular
path smoothing techniques is presented by Ravankar et al. (2018). Since the importance of path
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smoothing is yet unknown, the exact implementation is left for further thesis work.

5.4. AirSim
The open-source simulator used is developed by Microsoft and is called AirSim: Aerial Informatics
and Robotics Simulation 1. The simulator is meant for AI research and is built on Unreal Engine
to generate different environments. One of the outdoor environments created by AirSim is a for-
est. This will give the algorithm relatively simple obstacles to avoid, yet it should watch out for low
hanging branches and leaves. Once the drone is able to successfully avoid obstacles in this forest,
other environments could be put to the test as well.

5.5. Real drone
Once the algorithm successfully avoids obstacles in the simulated environments, it can be put to the
test on an actual drone. The simulation uses Python APIs to communicate with the drone. On the
real drone the C/C++ programming language is used, hence the Python code must be translated.

5.6. Performance evaluation
As stated in the introduction of chapter 3, there is no common benchmark for evaluating path plan-
ning algorithms. To address this problem, Nous et al. (2016) created metric for both detection and
avoidance performances. To obtain level playground for all the possible simulation environments,
they are described using quantitative metrics.

5.6.1. Detection
The performance of the detection algorithm is dependent on the environment. Obstacles can only
be detected under certain conditions. The environmental quantitative metrics used here are dis-
tance, reflectivity, illumination, texture and transparency. It is possible to find bounds for these
metrics in which obstacles are detected well. Since reflectivity and transparency cause problems,
no matter what stereo algorithm is chosen (Lyrakis, 2019), they will not be used for evaluating the
proposed algorithm. Furthermore, chapter stated that the environment is assumed to be well illu-
minated and textured. Therefore, the main interest in this study is the distance metric.

To calculate the performance of detection, depth estimations can be compared to true depth
values in simulation for a range of distances. This comparison can consist of average error and
variance. A threshold for allowable error can be set to obtain the operational conditions in which
the detection method can be used.

5.6.2. Avoidance
The performance of the avoidance algorithm is also dependent on the environment. Examples used
by Nous et al. (2016) are traversability, collision state percentage and average avoidance length. The
first is related to the obstacle density, the second to the workspace (or: achievable states) and the
third to the relative size of the obstacles to the drone. Since the simulated environment used is a
forest, different sections of the forest can be used to obtain a range of values for the metrics.

The bounds on the quantitative environmental metrics can be found by calculating the perfor-
mance of the avoidance algorithm for different values. The performance will be quantified by the
success rate and the path optimality (Nous et al., 2016).

1https://microsoft.github.io/AirSim/
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Conclusion

This report has presented a rich history of path planning for robots, and has been applied to path
planning for drones where possible. A computationally cheap sense and avoid algorithm eliminates
the need for heavy sensing equipment and large on-board computers. The search for a high perfor-
mance distance measurement sensor led to a stereo camera, which answers research question 1. It
has relatively low computational requirements, and it has good accuracy since the outdoor environ-
ment is highly textured. The drone’s dimensions are included in the disparity map through obstacle
expansion in disparity space.

The purpose of research question 2 was to address the trade-off between keeping computa-
tional expenses low and avoiding obstacles, as well as avoiding local minima and finding paths that
resemble global optimal solutions. Research question 3 also plays a particularly interesting role in
this: is it necessary to create a map of the environment? The quick answer to this is "no", since
mapless path planning algorithms exist. But, since these reactive methods tend to suffer from local
minima and local optima, perhaps a computationally cheap map could improve on that. Storing
obstacles as polyhedral objects made mappings relatively cheap. These could be used for either a
roadmap-like Convex-Edges-Graph, or simply an empty workspace. However, practical implemen-
tations arise since the disparity images are noisy. Because of this, the obstacles will not have clear
boundaries and polyhedral objects that represent these obstacles will need many faces if they were
to be drawn accurately, increasing the computation.

These practical implementations are not the only downside of map-based path planning algo-
rithms. Assuming there is a way to approximate obstacles as polyhedral, there are two main ap-
proaches: optimisation under constraints and potential field methods. The first has relatively high
computational requirements, while still being vulnerable to local optima. The second tends to get
stuck in local minima, even though it spent computational resources on building a map. Although
the first is less likely to get caught by local minima, these situations are often caused by obstacles
that are located in a nontrivial way. Since it is unlikely that these situations happen often, a mapless
path planning algorithm is chosen.

Once the drone gets close to an obstacle, it will calculate a new waypoint according to a cost
function formulated by Lyrakis (2019). This function finds the locally best solution. Finding se-
quential locally best solutions will result in the global optimal solution. This is not true when local
minima are encountered, for which a different flight mode will need to be used. The available liter-
ature on this topic is limited, but either spiralling, boundary following or returning to a previously
visited GPS point are possible solutions. These options will need to be evaluated in further thesis
work. Furthermore, parameters for creating the disparity image will need to be optimised. In the
end, the algorithm will be evaluated using the metrics used by Nous et al. (2016). The depth esti-
mates will be compared to true depth values, and the avoidance strategy will be tested for a range
of values for obstacle density and size.

The algorithm will be tested in the open-source simulator AirSim, where outdoor scenes can be
simulated. These tests can conclude whether any post-smoothing of the planned path is necessary.
If time allows, once the algorithm has been tested in numerous simulations, it can be tested on a
real drone. Once those tests are passed, a 3D obstacle avoidance algorithm has been successfully
implemented, which can navigate a drone from outdoor GPS coordinate A to B, while staying close
to its nominal path and keeping computational expenses low.
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