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SUMMARY / SAMENVATTING

SUMMARY

Superconducting qubits have seen a tremendous progress in the last two decades, and yet
they remain unable to extract quantum advantage for application scenarios. While algorithms
like Shor’'s demonstrate quantum advantage in theory, they do not seem to fit modern noisy
quantum processors. Then, in order to achieve quantum advantage either modern quantum
processors catch up to their expected behaviour, or modern algorithms are tailored to fit the
expected behaviour of modern chips.

This thesis focuses on the second approach, which is to explore the implementation of
algorithms on modern quantum processors. Along all these implementations, we study the
errors that cause these algorithms to derail from their ideal results. We attempt to understand,
quantify and control these errors, in the hope that this provides useful insights into how to
design algorithms for the modern hardware.

This thesis starts by introducing the topic of superconducting quantum processors and
modern algorithms in the first two chapters. Then we move onto the three experiments, one
chapter each, detailing our findings.

The first experiment cover an digital-analog implementation of a quantum simulation of
light-matter interaction. We present the implementation that makes use of both digital (gates)
and analog (evolution) blocks. The accuracy of the Trotterization technique is studied in detalil,
as well as the capability to study the photon population in the resonator. We manage to
implement up to 90 Trotter steps and reproduce the behaviour in the ultra-strong coupling
regime.

The second experiment presents an error mitigation technique, on an application of great
interest to the field (molecular simulations). This application is a fully digital one, within the hot
topic of variational algorithms for ground-state preparation. The mitigation technique, which
is an invention of our own team (see referenced theoretical works) manages to reduce the
algorithm error over an order of magnitude. In order to demonstrate this level of control, we
quantify the error through accurate simulations of the quantum process and independent
quantification of the parameters involved.

The third experiment presents another variational algorithm, this time to produce thermal
states rather than ground states. Again, we pursue a detailed study of the many error mecha-
nisms involved, in order to quantify and match the results obtained. We go beyond incoherent
errors and add a coherent error mechanism common to our hardware architecture, the resid-
ual ZZ coupling.

Finally, we reflect on the final chapters about how to continue towards implementations
that make the most out of modern, noisy, hardware.

Xl
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SAMENVATTING

Supergeleidende qubits hebben de afgelopen twintig jaar een enorme vooruitgang geboekt,
en toch zijn ze nog steeds niet in staat om kwantumvoordeel te behalen voor toepassingss-
cenario’s. Hoewel algoritmen zoals die van Shor in theorie een kwantumvoordeel aantonen,
lijken ze niet te passen in moderne luidruchtige kwantumprocessors. Om vervolgens kwan-
tumvoordeel te behalen, halen moderne kwantumprocessors hun verwachte gedrag in, of
worden moderne algoritmen op maat gemaakt om te passen bij het verwachte gedrag van
moderne chips.

Dit proefschrift richt zich op de tweede benadering, namelijk het onderzoeken van de
implementatie van algoritmen op moderne kwantumprocessors. Bij al deze implementaties
bestuderen we de fouten die ervoor zorgen dat deze algoritmen hun ideale resultaten niet
behalen. We proberen deze fouten te begrijpen, kwantificeren en beheersen, in de hoop dat
dit nuttige inzichten oplevert in hoe algoritmen voor de moderne hardware kunnen worden
ontworpen.

Dit proefschrift begint met de introductie van het onderwerp supergeleidende kwantumpro-
cessors en moderne algoritmen in de eerste twee hoofdstukken. Daarna gaan we verder
met de drie experimenten, elk één hoofdstuk, waarin onze bevindingen gedetailleerd worden
beschreven.

Het eerste experiment omvat een digitaal-analoge implementatie van een kwantumsim-
ulatie van licht-materie-interactie. We presenteren de implementatie die gebruik maakt van
zowel digitale (poorten) als analoge (evolutie) blokken. De nauwkeurigheid van de Trotterization-
techniek wordt in detail bestudeerd, evenals de mogelijkheid om de fotonenpopulatie in de
resonator te bestuderen. We slagen erin om tot 90 Trotter-stappen te implementeren en het
gedrag te reproduceren in het ultrasterke koppelingsregime.

Het tweede experiment presenteert een techniek voor het beperken van fouten, op een
toepassing die van groot belang is voor het veld (moleculaire simulaties). Deze applicatie
is volledig digitaal en valt binnen het populaire onderwerp van variatie-algoritmen voor de
voorbereiding van de grondtoestand. De mitigatietechniek, een uitvinding van ons eigen team
(zie theoretische werken waarnaar wordt verwezen), slaagt erin de algoritmefout over een
orde van grootte te verminderen. Om dit niveau van controle aan te tonen, kwantificeren we
de fout door middel van nauwkeurige simulaties van het kwantumproces en onafhankelijke
kwantificering van de betrokken parameters.

Het derde experiment presenteert een ander variatiealgoritme, dit keer om thermische
toestanden te produceren in plaats van grondtoestanden. Ook hier voeren we een gede-
tailleerde studie uit van de vele betrokken foutmechanismen, om de verkregen resultaten te
kwantificeren en te matchen. We gaan verder dan incoherente fouten en voegen een co-
herent foutmechanisme toe dat gebruikelijk is in onze hardwarearchitectuur: de resterende
ZZ-koppeling.

Ten slotte reflecteren we op de laatste hoofdstukken over hoe verder te gaan in de richting
van implementaties die het meeste uit moderne, luidruchtige hardware halen.



INTRODUCTION

Life is not about waiting for the storm to pass. It is about learning to dance in the rain

Author disputed, commonly attributed to either Mahatma Gandhi or Vivian Greene.

1.1 Quantum computers: the idea

The first mention of quantum computing was made by R. Feynman in a very conceptual fash-
ion [1]. His core idea was to propose that ultimately, to board the complexities of simulating
quantum systems, it would be best to have another quantum system which we control. That
gave rise to the idea of expanding classical computation with devices that are governed by
quantum mechanics.

But what is quantum mechanics and what can it offer to computation devices? The first
part of this question is something that appears much clearer than the second. Quantum
mechanics is the physical theory modern scientists use to model and understand phenom-
ena like the atomic orbitals, which could not be properly explained with previous theories
(we call this classical physics). It was introduced in the early XX century by Bohr, Einstein,
Schroedinger, Heisenberg and many more physicists [2], nowadays celebrities of the field.
The core concept was that of representing particles by a wave function | (t)> instead by
vectorial coordinates for space and velocity X (t), v (t) as in classical mechanics. The Lan-
grangian and Hamiltonians are extended into operators acting on the wave functions repre-
senting the states. Schroedinger’s biggest contribution was the equation (which carries his
name) under which the Hamiltonian operator A (t) dictates the dynamics of a system via
differential equations:

in|y (1)) = A(£) ¥ (1)) (1.1)

Typically, systems are modelled by writing a Hamiltonian in classical mechanics terms,
and then quantizing by what is called first (or second) quantization. However, quantum me-
chanics brought about the possibility to model degrees of freedom without a classical coun-
terpart: spin systems. Along with such systems, quantum mechanics brings several concepts
that do not appear in classical mechanics: superposition, entanglement and collapse of the
wave function by measurement. Wave functions can be the sum of several different states,
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with complex values as pre-factors, and we call this a superposition state. The system is,
until other event changes it, simultaneously in every state of the superposition. This leads
to entanglement, which is a quality of states where subparts of the system are correlated in
a non-trivial way. For example, a superposition that contains all states where spins A and B
point in the same direction is an entangled one. This correlation can give rise to unexpected
effects, which puzzled Einstein and other scientists [3], motivating them to question the va-
lidity of quantum mechanics. Finally, and maybe the weirdest feature of all: the collapse of
the wave function. Measuring involves a target quantity like energy or position, represented
by an operator M. The quantum state of the measured system needs to be thought of in the
measured operator’s eigenbasis. Upon measurement, this state collapses, randomly select-
ing only one of the eigenstates in the superposition and returning as a measured value the
eigenvalue associated. The probability of the state collapsing onto each eigenvalue is de-
termined by the pre-factors absolute value squared. Naturally, this imposes a normalization
constraint to ensure probabilities add up to 100 %. This is the mechanism that allowed Bohr
to explain the energy levels in the atom. The strangeness of this effect is the stochasticity.
The outcome of measurement is not deterministic anymore, but stochastic.

The three features above mentioned are the main ones expected to give quantum com-
puters an advantage over classical ones. The first step is using them to extend the concept
of bits to a quantum level: qubits. While bits are typically electrical circuits designed to have
two different voltage states (0 or 1), qubits are quantum systems which can be in two different
quantum states called |0) and |1). As quantum mechanics allows, qubits can be not only in
each one of these states, but also in a superposition of both. This introduces a first idea of
advantage: the possibility to compute different bit strings simultaneously. Another advantage
is that of entanglement, which can produce high correlation between the state of two qubits.

All this train of thought is interesting but lacks concreteness so far. Perhaps the best exam-
ple of a concrete quantum algorithm is one of the first to come: Shor’s algorithm. Published in
1995 by Peter Shor[4], this procedure manages to find the period of periodic functions, allow-
ing to factorize numbers into their prime factors more efficiently than classical algorithms. If
quantum computers were to meet its requirements, this algorithm would break most publickey
cryptography used nowadays, compromising even the security of online banking.

Although nowadays quantum computers are not big enough to run Shor’s algorithm at
a useful level, its existence shows that quantum computers can be programmed to produce
a quantum advantage, at least in theory. Ever since, many more algorithms have appeared,
and this is an active area of research. A fairly complete list of proposed algorithms can be
found in [5].

More precise things can be said about the challenges real quantum computers have to
implement algorithms. It starts with the fact that concepts and operations that we take for
granted in classical bits need considerably more effort to be delivered with qubits. Basic
things like initializing a qubit in the state |0), changing a state with an operation and mea-
suring qubits to assign them a state, are operations that have to be benchmarked, demon-
strating control over the quantum system implementing the processor. Such was the idea of
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Di Vincenzo, who formalized the requirements in 2000, in a set now known as Di Vincenzo
criteria [6].

This set of requirements sets a blueprint or checklist that any technology attempting to
implement quantum processors should demonstrate. Amongst the most promising technolo-
gies fulfilling said criteria, the most prominent nowadays are those implementing qubits with
superconducting circuits,trapped ions and spin degrees of freedom.

1.2 Transmon qubits

In this thesis we focus on a specific case of superconducting qubits: transmons. Their ini-
tial design, named Cooper-Pair Box (CPB) [7], introduced a resonant element, defined by a
capacitor and a non-linear superconducting inductor called Josephson Junction [8, 9]. Such
system can be designed into several regimes [10], making different uses of the charge and
magnetic degrees of freedom to encode, control and readout the state of the qubit with elec-
tromagnetic fields. While a big first step, these designs suffered from many loss mechanisms
that deteriorate the state of the qubits namely dephasing and energy relaxation. Dephasing
occurs due to noise along the several parameters that couple these qubits to the environment
and is quantified by the characteristic time at which the loss of phase occurs. Energy relax-
ation occurs when the qubit spontaneously emits an excitation to the environment. This was
further improved by Cavity QED [11, 12], where a resonating cavity regulates the relaxation
events via the Purcell effect [13, 14]. Quantum coherence of the system’s states is affected
by several mechanisms that enforce fluctuations on the system frequency: quasiparticle fluc-
tuations [15], photons in the resonator [16] and l/f flux noise [17].

The transmon qubit [18] is a design that reduces the dephasing impact of charge noise by
making the frequency charge insensitive. This is accomplished by making the qubit’s Joseph-
son energy, EJ , 30 50 times larger than its charging energy, EC. Transmons have shown
a rapid growth since their introduction in 2007, and progressed fulfilling all the Di Vincenzo
criteria [19-22].

Ever since all the DiVincenzo criteria were met by demonstrating a two-qubit gate, the
natural continuation to implement computations has been attempted [22]. In spite of a con-
tinuous improvement in coherence and relaxation times [23], errors occurring (mainly due to
dephasing and relaxation) remain the biggest impediment to scaling these efforts in terms
of qubit count. To that extent, there exist several efforts ever since pushing for the imple-
mentation of error correction codes to overcome these problems [24-27]. However, these
efforts seem several years away from delivering logical protected qubits, capable of running
algorithms in a fault-tolerant way. In spite of this immediate impediment, there is no obvious
reason why errors could not be circumvented, and several teams focus their efforts into ex-
ploring this avenue by implementing algorithms without logical qubits [28—-31]. The present
thesis details our efforts in that direction.

Within the field of quantum algorithms, the first interesting implementing were quantum
simulations. By quantum simualtions, one means the reproduction of a quantum system char-
acteristics, via the implementation of certain operations in a controlled quantum processor.
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This splits into two big families of quantum simulations: firstly those that emulate the target
system, by enforcing upon the qubits (or other processor components) a Hamiltonian that
mimics the one of the target system; secondly, those that encode the problem in a digital
domain using the qubits, in analogy to binary representations in classical computation, and
solve the problem by the action of several gates involving one or several qubits. The first group
is called analog quantum simulations and the second is called digital quantum simulations,
in clear analogy to analog and digital logic in classical computation.

This thesis has focused in digital quantum simulations, with a special case being that of
Chapter 3, where one of our gates is motivated in an analog implementation of the target
system. Quantum systems can be solved both in time or frequency domains, as the interest-
ing quantities might be the dynamics or rather the spectrum of the target system. Following
that idea, digital quantum simulations can be subdivided into two big groups: those that aim
at solving the dynamics of a target quantum system, and those that aim at solving the spec-
trum. One of the first applications found for quantum computers was that of Trotterization,
which allows to digitally implement the evolution under a target Hamiltonian. This remains
the most prominent approach to the subgroup of time-domain solutions. Also related, the
algorithm called Quantum Phase Estimation uses Trotterized evolution to obtain the target
system spectrum from the phase acquired by the evolution of eigenstates

In parallel to the start of this thesis, a new family of algorithms was introduced: varia-
tional algorithms. Their main feature was to bring complexity by parameterizing the quantum
circuits, which were optimized to a target solution afterwards, via a classical optimization rou-
tine. Their first applications focused on obtaining ground states, as convergence was easily
guaranteed via the Variational Principle of quantum mechanics. This family of algorithms is
called Variational Quantum Eigensolvers (VQE). However, such paradigm was understood to
be more general, as it simply parameterizes a target state and interprets it via some mapping
linking measurements to the quantity of interest. Another quite general family of variational
algorithms, also used to simulate quantum states, is that of Quantum Alternating Operator
Ansatz (QAOA). For QAOA algorithms, the circuit is built as repeated layers, alternating the
implementation of target operators with certain parameterization. While there are many more
algorithms, the ones mentioned here are amongst the most studied in the literature and cor-
respond to those included in the results of this thesis.

1.3 Thesis overview

The epigraph of this chapter is a motivational quote, reflecting that circumstances are non-
optimal a lot times, but that one should live and progress disregarding them. Quantum com-
puters were a theorist dream for several decades until the developments of the last twenty
years gave us working prototypes. However, there is still, as the proverb says, rain: Modern
processors are incapable, in terms of size and errors, of running the dream algorithms of Shor
or Grover. My motivation for the works of this thesis has been, as the proverb recommends,
to dance under the rain: to attempt the execution of algorithms and face the many challenges
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encountered to make the most out of them. The following chapters of this thesis present the
various shots at it conducted in our lab at QuTech, TU Delft.

In Chapter 2 (Chapter 2) we present the basic concepts of transmon qubits, their physical
description and the several approximations involved. We progress along the various control
concepts (readout, single- and two-qubit gates and tomography), and board the noise mech-
anisms that affect and determine the performance of transmon devices. We finally introduce
quantum algorithms and the three specific cases run in the following chapters of the thesis.

In Chapter 3 (Chapter 3) we use a device with two transmons and three resonators to sim-
ulate the dynamics of light-matter coupling in a high coupling regime, known as Ultra-Strong
Coupling (USC). We present a scheme of Trotterized evolution capable of simulating both the
atomic and cavity degrees of freedom. Implementing up to 90 trotter steps, we validate the ex-
pected excitation number violations of USC as well as the entangled nature of its eigenstates.

In Chapter 4 (Chapter 4) we conceive and present a technique to mitigate the effect of
several noise mechanisms. We implement it on the simulation of the ground state of a H2
molecule and improve its performance by an order of magnitude.

In Chapter 5 (Chapter 5) we use four transmons in a seven-qubit processor, to produce
Gibbs states with a variational approach. In order to do this, we implement a trick that allows
the production, with purely unitary control, of mixed states in a controllable fashion, therefore
representing finite-temperature physics.

In Chapter 6 (Chapter 6) we briefly discuss the key lessons gathered from the experi-
ments reported and | offer my view on the outlook of digital quantum simulations.







CONTROL AND SIGNALS FOR ALGORITHM EXECUTION

In order to understand the quantum algorithms presented in the coming chapters, one must
introduce first the necessary concepts. In this chapter, we introduce the transmon qubit and
the regime in which it operates. Then we move on to the control operations (single- and multi-
qubit gates as well as readout and state reconstruction). Next we cover briefly the dominating
noise sources introducing errors in Transmon operations. Finally we introduce the algorithms
that will be studied in the coming chapters.
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2.1 The Transmon qubit

The works in this thesis make use of several transmon qubits. The transmon is one of the
simplest and most used qubits in quantum computing. It consists of a superconducting capac-
itor in parallel with a Josephson Junction (JJ), designed within a specific parameter regime
that makes it charge insensitive. In the following paragraphs, we introduce the many aspects
necessary to understand the next chapters.

The physical implementation of the Transmon qubit consists of superconducting leads
defining capacitor islands, and a JJ connecting the superconducting leads [Figure 2.1(a)]. In
the devices used in this thesis, the superconducting materials are NbTiN for every structure,
except the JJs which are made of Al and Aluminum Oxide. Since the JJ is a non-linear
inductor, we can model the Transmon qubit as a non-linear LC resonant circuit, consisting
of a capacitance Cy in parallel with the non-linear inductor. The capacitance here is Cy =
Cs + Cyj + Cg, where Cs is the shunting capacitance, C  is the capacitance of the JJ,
and Cg is the coupling capacitance of the circuit with the ground plane. We can write a
Hamiltonian for the charges (Cooper pairs) in this system as [18]

H=4Ec (A—ng)? — Ejcosd, 2.1)

where Ec = e2/2Cz is the charging energy, E j is the Josephson energy, 7 is the Cooper-
pair imbalance between the islands, ¢ the superconducting phase across the islands and
conjugated variable to A, and finally ng is an offset gate charge that fluctuates according to
the environment.

The Transmon is a variation of the Cooper-pair Box (CPB) [7], where parameters E ; and
E ¢ are chosen to minimize the system dependence on ng. The CPB resonant frequency
is strongly dependent on ng, whose fluctuations contribute to diminish the coherence times
(~ 0.5 ps [32]). By choosing a ratio E—é ~ 50, the frequency dependence with ng di-
minishes [Figure 2.1(c-d)]. This choice of regime also has an impact on the qubit anhar-
monicity, which is a key requirement to independently address the energy levels of the struc-
ture. Specifically, defining anharmonicity « as the difference between the two first transitions
a = Ejp — Ep1, it scales with E—é asasa ~ — (E—é) 71/2. Commonly, and in this thesis
as well, Transmon qubits are designed to have an anharmonicity % of ~ —300 MHz and a
ratio g—é in the range 40 — 50. For this, we target E—ﬁc in the range 250 — 350 MHz and %
in the range of 8 — 20 GHz.

Finally, transmons can be made tunable in frequency by replacing the JJ for two of them in
parallel. Such structure is called a Superconducting QUantum Interference Device (SQUID).
The name points to the fact that the superconducting phases in the SQUID loop interfere with
the flux threading through it. Placing a current nearby the SQUID loop, we can control with
it the magnetic flux threading the SQUID and therefore the effective inductance. With this
mechanism we can tune the qubit frequency accordingly. The effective Josephson Energy
E ; of a SQUID loop with two junctions is given by:

TP e o TP
cos <%)H \/l+d tan <¢0> (2.2)

Ej=(Ej,+EJg)
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Figure 2.1: The Transmon qubit. (a) Optical micrograph of a Transmon qubit, defined by a
shunting interdigitated capacitor and a SQUID loop (top of the capacitor). The qubit couples
capacitively to a CPW resonator on its bottom-right end. A flux-bias line couples inductivelly
to the SQUID loop on the top. All the surfaces are made of NbTiN on top of a Si substrate,
except for the JJs and airbridges (stitch-like structures on top of CPW lines), which are made
of Al. (b) SEM picture of a similar device centered on the SQUID loop. The JJs are evaporated
on top of the square pattern defining the SQUID. The flux-bias line is placed assymetrically,
in order for its current to affect the magnetic flux threading inside the SQUID loop. (c-d) The
first three energy levels of a transmon qubit for Ehg = 1 GHz and (c) Ehl = 1 GHz, (d)
Eﬁi = 10 GHz and (e) Eﬁi = 50 GHz. As E ;/E( increases, the spectrum dependence
on ng decreases exponentially. The qubit transitions frequencies are set by the difference
between these energy levels.
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where ® is the magnetic flux threading the SQUID loop, £, E ; are the respective values

E, —E
for each JJ, and the asymetry d = M. This dependance takes the effective E ; of
EjptEig J

our circuit from a maximum of E;, + E 5 at ® = 0 to a minimum of |[E;, — E | at
® = ®(/2, where P is the flux quantum. This in turns determines the qubit frequency wq

hwg =~ \/8E (®) Ec — Ec. (2.3)

2.2 The coupling in the dispersive regime

via the equation:

In order to readout the state of the qubit, we make use of a harmonic oscillator, modeled with
the Hamiltonian

1
Hyeso = hwy (2 + aTa) . (2.4)

The operators al (a) are the standard creation (annihilation) operators of quantum me-
chanics and w, is the resonant frequency of the circuit. For a harmonic oscillator, its energy
levels are equally spaced by hw,. The excitation subspace spanned by the creation and an-
nihilation operators is denoted as |n,), and represents the photons stored in the resonant
system. The number of photons in the system is modeled with the operator n, = afa.

The harmonic oscillator is physically implemented via Coplanar Waveguides (CPW). A
CPW consists of a central conductor, surrounded by a ground plane on each side. The di-
mensions and distance between these planes defines the capacitance per unit-length ¢ of
such a waveguide, as well as its inductance per unit length /. These two parameters define
the impedance of the circuit, Z = \@ We make a CPW resonant by enforcing boundary
conditions on its edges: A short imposes zero electric field, while an open imposes zero
current [33]. While total capacitance C, of the CPW is defined by its geometry (length), its
inductance L, is defined by both a geometric component Lz and a kinetic component L

(known as kinetic inductance [34]). Finally, the resonant frequency is given by w, = \/LIT
r-r

These two components (Transmon and CPW resonator) are coupled capacitively. The
term in the Hamiltonian can be modeled with the Quantum Rabi Model [35] as

HE upl. = P (a + aT) (et +07), (2.5)

where al and o are the creation operators for resonator and qubit excitation, and a and
o~ are their respective anhilation counterparts. Following some approximations [18], for the
transmon qubit we have g = 2%1 / g—‘(‘;’: We simplify this model further by using the rotating-

wave approximation (RWA) and obtaining
Heoupl. = hig <a+a + a‘aT> . (2.6)

The approximated Hamiltonian Hcoyp1. has a symmetry that Hf;up

serves the number of excitations in the system. Specifically, it only allows creation of a photon
via afo™ which in turn anihilates a qubit excitation. The opposite happens with the second

L does not: It con-

term of the coupling Hamiltonian. When the coupling is not small compared to the detuning
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A = (wr — wq), this approximation is no longer valid, and we call this the Ultra-strong cou-
pling regime (USC). Typically, we work with couplings on the order of 50 — 100MHz and
detunings |A|/2m > 1GHz, which results well within this approximation. However, we ex-
plore the USC in further details, via a quantum simulation, in Chapter 3 of this thesis.

Using the the diagonal base |j) for the transmon qubit, we have the Hamiltonian for the
full system as

H= f;ij L) <j|+flwraTa +h , (2.7)
J

> gijalli) (i + 1+hec.
i

where the coupling scales as g; j = g{i[A |/ + 1).

By limiting ourselves to the subspace of the two lowest-energy states of the Transmon,
we finally obtain a subspace of two levels that we can refer to as qubit. In that subspace, the
JC Hamiltonian is written as:

H= —h%az + ﬁwrafa + hg (a_aT + a+a) i (2.8)

For detunings much larger than the coupling, g << |Al, the dispersive approximation is

valid for this Hamiltonian, allowing yet another simplification, obtaining the so-called disper-
sive model:
“q t z,t
H= —Fl70'z + hwra'a 4+ hyxo“ala, (2.9)

where x is called the dispersive shift and it is x = ﬁ up to first order of |§T| . As the
coupling from Equation (2.7) scales with the photon number n, these approximations will
break when a high-enough number of photons is present. A critical photon number n¢j; can
be defined [36] as

AZ

Nerit = @ (2.10)

While this sets an upper limit in the number of photons necessary to break the first-order
approximation for the dispersive limit, there still remains another possibility where the res-
onator inherits enough non-linearity from the qubit. When the resonator frequency is moved
by more than a linewidth k, a second critical photon number can be defined as nk following
(36]
kA
x>
The coupling term can be grouped into either the qubit or the resonator terms, and in-

ne = (2.11)

terpreted as a dispersive shift in the frequency, quantified by x. While grouping x in to the
resonator, we obtain a frequency shift dependent on the qubit state. We make use of this as a
readout mechanism, where we associate a change in the resonant frequency of the harmonic
oscillator to a change in the qubit state. This is called dispersive readout.

This term can be also interpreted as a qubit frequency shift, dependent on the number of
photons in the resonator i, = ala. This effect is called the Stark shift [37]. Converselly, this
term can be used to measure the number of photons in the resonator indirectly by measuring
the qubit frequency. Such a scheme is proposed and implemented in Chapter 3 of this thesis.



12 2. CONTROL AND SIGNALS FOR ALGORITHM EXECUTION

2.3 The dispersive readout

In order to read the qubit state, we take advantage of the dispersive shift on the resonator.
A microwave signal is sent and collected at either another or the same input port. The reso-
nance, whose frequency depends on the qubit state affects both the transmission and phase
of the collected output signal [Figure 2.2]. The input tone needs to be below both n.i; and n
so that the dispersive Hamiltonian model is valid. The output tone is collected with acquisition
hardware, which samples it with a fixed rate, resulting in a read-out trace S (t) of voltage as
a function of time.

Each trace contains the information of a single shot at the qubit readout. The readout
procedure continues with a recipe to assign a corresponding qubit state |0) or |1) to each
traced obtained. We start by in integrating the trace as a function of time, with a weight
function w (t).

1 Tint
Vit = — S(t)w(t)dt, (2.12)

Tint Jt=0
where Tin¢ is the iintegration duration. The weight function acts as a filter, perhaps the most
simple case being w (t) = cos (wt), which only computes signals at frequency w. Both
S and w are phasors, with In-phase and Quadrature components, to be treated as complex
numbers, and consecuently Vi, is too. The readout procedure uses Vi, to assign the state,
relying on our capability of discerning between the probability distribution of the integrated
signal for each qubit state Vint,|0> and \/int"1>. There exists an optimal choice w (t) =
Sj1y (t) — S0y (t) that makes Vint real, and maximizes its ability to discern between S,y
and 5|0>. Under this choice, the probability distributions for Vint,|0) and Vint,|1> can be seen
in a one-dimensional plot, and have a gaussian profile [Figure 2.2]. The state is assigned
by implementing a threshold in voltage, separating the voltage in sides above or below the

threshold, correspondiing to |0) and |1).

We evaluate the performance of the readout procedure by preparing both |0) and |1),
and collecting the statistics. The average assignment fidelity of the procedure is defined as

€0+ €1
-
where g and g1 are the probabilities of mistakenly assigning |0) and |1), respectively. As
gaussians have an infinite tail, there is always some overlap between both distributions, caus-

Fa=1 (2.13)

ing a minimal missasignment probability. By looking at the cumulative distribution functions
(CDF) [Figure 2.2], one can identify the fidelity F = 2F, — 1 and these probabilities from
comparing moving the distributions further appart. One can do this by integrating the signal
for a longer period Tjnt. However, this cannot be done infinitely as other errors occur.

There are three main types of physical effects that complicate the simple picture explained
above: thermal excitations, energy relaxation and induced transitions. The first one, thermal
excitations, is a direct consequence of the system not being at 0 K. From thermodynamics,
one can model the state of such two-level system as a thermal state, with a population on the

first eigenstate given by
1

1P — =
L) P

(2.14)
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where | V) is the qubit state, |1) its first eigenstate, kg is the Boltzmann constant and T the
qubit temperature. The effect of this consideration is directly observable [Figure 2.2] while
measuring the gaussian distributions for Vi;: there is a second small gaussian distribution
for |0) centered around Vi |1)-

The second physical effect, energy relaxation, occurs spontaneously. The qubit, after be-
ing prepared in |1) randomly losses its energy via the emission of a photon to the environ-
ment. This is suppresed by the coupling g to the resonator and its linewidth k, and this is
known as the Purcell effect. The modelling of this error mechanism is explained further in
section 2.8.1. This effect causes the analog and opposite symptom of thermal excitations:
the readout signal for |1) exhibits a small gaussian distribution right below the main |0) gaus-
sian distribution.

Finally, while using photons to probe the qubit states, one might mediate transitions be-
tween [38] the states in its multi-level spectrum. We minimize this effect by keeping the read-
out power as low as possible.

With the above three mechanisms in mind, a trade-off appears: the faster we readout,
the less separated the gaussian distributions will be. At the same time, the longer we read
out, the more the state |1) will relax into |0). To quantify this, one can model the signal to
noise ratio following [39]. Experimentally, we sweep the measurement power P and the inte-
gration length T, to obtain the parameters for best fidelity 5. As the resonator frequency
is slightly dependent on the photon number, a readout frequency sweep also results useful
for maximizing JFj.

2.4 Qubit states and gates

Qubits states belong in two-dimensional Hilbert spaces, and after taking into consideration
the normalization and global-phase constraints one can write any general qubit state as

|W (6, $)) = cos0|0) + e®sinB[1) . (2.15)

This parametrization comes in very handy when trying to visualize the qubit state. The
reader might find an immediate analogy with the surface of a unit radius sphere, 8, ¢ being the
polar and azimuthal angles, respectively. This sphere analogy is a key concept allowing intu-
itive understanding and representing qubit states, and is called Bloch sphere [Figure 2.3(a)].

Since we have already covered readout of a qubit state, the next necessary tool is opera-
tions that change the state of one or several qubits. Those operations are called gates, and
implemented by turning on specific Hamiltonian terms ":/gate’ and allowing for the unitary

evolution U = e_'.t"'lgate/r7 to implement the desired change on the qubit state.

Another core concept with respect to quantum computing gates is that of a universal set
of gates. This is: a set of gates out of which we can compile any desired unitary action on
the state. There is not only one, but several such sets, for example that made of H, S, T
and CNOT gates, known as the Clifford-T group. The first three gates change the state of a
single qubit, while the latter is a two-qubit gate.

Single-qubit gates can be understood very intuitively from the Bloch sphere as a map
between its states. However, not all opereations are allowed, for example reflections of states
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Figure 2.2: Readout control (a) Average assignment fidelity 5 as a function of readout
pulse duration T for different readout pulse amplitudes A. F, increases monotonically as
amplitude or pulse improve, until a point of maximal fidelity where JF, starts worsening with
increasing T (see yellow curve) (b) Average assignment fidelity /5 as a function of readout
pulse frequency for different readout pulse amplitudes A. F, is maximal around a specific
frequency. (c) Histograms for the signal V; ,; integrated after preparing the qubit in the states
|0) and |1). Solid lines correspond to gaussians fit centered at voltage Vo and V for each
state.

against a certain plane are not valid operations. Rigurously, the set of valid operations is the
mathematical group SU(2), and has the geometrical interpretation of being all the rotations
over the Bloch sphere. This is why, when speaking about single-qubit gates, we will refer to
them in terms of the axis and angle of the rotation they describe [Figure 2.3(b-c)]. Mathemat-
ically, This can be parameterized as

N cosf/2 —iesin6/2 A
0,¢,2) = ; ; =Z4-Xo-Z 2.1
vi.¢.) <—ie’¢sin9/2 e/A¢) cos /2 $ 70N (216)

where 8, ¢, \ are the Euler angles defining the rotation along the Z-X-Z basis. This consid-
eration simplifies further the problem of single-qubit operations: any list of rotations, however
long, amounts to the action of just one effective rotation. This is mathematically supported in
the fact that SU(2) is a group, and the product of its elements is just another element within
the group.

The next step in qubit control are two-qubit gates: operators that act on the state of two
qubits. While simply combining simultaneous single-qubit operations is a valid two-qubit oper-
ation, it still does not give us full control over two-qubit states. One can show that single-qubit
rotations do not change the entanglement of a two qubit state [2]. Therefore, if we want to
change the entanglement of the state, we need to make use of other operators. The most
commonly found two-qubit gate in textbooks is the Controlled-NOT gate or CNOT. This
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Figure 2.3: Bloch sphere. (a) State representation on the Bloch sphere.The eigenstates
for each basis are shown: |0),|0) (green), |[+),|—) (red) and |+i),|—i) (blue). (b) Visual
example of the states spanned while rotatingRx (6) (red) and Rz (¢) (blue). A rotation
around the X axis (red vector) of an angle 6, starting from |0) spans the red points. A rotation

around the Z axis (blue vector) of an angle ¢, starting from |+) spans the blue points

gate takes one of the qubits as a control, and only acts with a NOT gate ()A<7r) on the second
qubit (target) for the states where the control qubit is in the state |1> One can represent this
operator as

1 0 0 0

cnoT= |01 00 , (2.17)
0 0 01
0 010

where the matrix is defined in the computational basis {|00) , [01) , |10), |11)}. The control
qubit here is the most-significant one (left-most), and the target the least-significant one (right-
most). However, in superconducting qubits it is more common to perform a similar type of gate
called Controlled-Z or CZ. It is analogous to the above, but instead of a NOT = )A<7T gate, a
ZT is performed on the target qubit. This gate has an immediate connection to the CNOT,
as it is the same controlled rotation, but along the Z axis instead of the X axis. Therefore,
one can easily link both gates by a basis change (using an H gate) from X to Z on the
control qubit

CNOT = H CZ HT. (2.18)
This formula holds if we use \A/w/g instead of H, or any other rotation that takes the Z axis

onto the X one. This formula is relevant, as it links the most used two-qubit gate in textoooks
and theory with gates that are native to transmon architectures: CZ and \A/,r /2-
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2.5 Single-qubit gates

Transmons support two main types of single-qubit gates: microwave XY gates and flux Z-
gates. The first ones are accomplished by applying an electromagnetic pulse in the vicinity
of the transmon capacitor. When the electromagnetic field has the right frequency fiwg, it
provides the necessary energy to trigger the transition from |0) to |1). We implement this
in pulses in a scheme called DRAG [40]. Specifically, these pulses are shaped in time as a
gaussian function, whose area directly controls how much of the |0) state is transfered to
the |1) state. The DRAG scheme adds an extra component: The derivative of the gaussian
pulse, on the other quadrature of the electromagnetic phasor, scaled by a DRAG coefficient.
This coefficient can be empirically adjusted to minimize the undesired frequency components
of the pulse that introduce phase errors, and additionally trigger transitions on the higher
transmons levels. Specifically, it is of key interest to minimize the undesired transition from
|1) to |2) known as leakage.

DRAG pulses implement a family of unitaries describing rotations of angle 6 around an
axis at the equator of the Bloch sphere ¢ parameterized by Equation (2.16) as
0(0, é, X = —¢), where 6 defines the angular aperture and ¢ the equatorial axis § =
cos ¢>)A( + sin ¢\A/ of the rotation. The phase ¢ is physically implemented by controlling the
phase of the phasor that describes the microwave pulse.

We tune these gates by choosing a determined gate duration. Specifically, we implement
the gaussian up to a range of +20, setting a duration of 40. We then calibrate the pulse
amplitude necessary for a complete transfer from |0) to |1), which is called a m—pulse am-
plitude, as it reflects a rotation of 6 = 7 around any equatorial axis. We then scale this
amplitude proportionally to obtain the desired 6. As said above, ¢ is controlled with the pulse
phase. We also make a sweep of DRAG coefficients to minimize phase error and leakage.
For this purpose we use a calibration routine called AlIXY [20].

Transmon qubits also have a mechanism for implementing rotations around the Z axis.
By changing the flux threading through the qubit SQUID loop, we can move its frequency for
a certain period of time t. The population of the |1) state evolves now in a different dynamic
frame, detuned from the reference frame by A (t). The accumulated effect of this along time
results in a dynamic phase ¢ = fot A (t) dt for the state |1). This corresponds to a rotation
of angular aperture ¢ around the Z axis and is represented by the unitary

R i¢/2 0
Uz (¢) = (e 0 e_,-¢/2) : (2.19)

2.6 Two-qubit gates

Two-qubit gates are implemented by coupling pairs of qubits, and they provide us access
to entanglement. Generating entanglement requires the action of a two-body Hamiltonian
term, coupling both qubits. There exist several ways of doing this: direct capacitance between
qubits [41], mediated via a third component like a resonator [22] or another transmon [42, 43]
for instance. In the following chapters we make use of CPW resonators, capacitively coupled



2.6. TWO-QUBIT GATES 17

—— Jo1)  —— |10) —— |02) —— |11} —— |20)
14 T T T ~ 11, T T T T
@] = 1o )
<
E’ 10.5 \
g
— =)
= & 10.0 L ' :
<3 ' 0.25 0.26 0.27 0.28
= Reduced flux (@)
g
& 8r 1 -
: ST
~ 9 5.2 A
£50
]
=
g 4.8F
1 1 1 E 1 1 1
%40 0.1 0.2 0.3 0.29 0.30 0.31

Reduced flux (®g) Reduced flux (@)

Figure 2.4: Two Qubit gates. (a) Spectrum for two transmons at typical frequencies (5 GHz
and 6.6 GHz), with Ec = 300 MHz, connected to a common bus with qubit-qubit coupling
J1 = 30 MHz. (b) Zoom in on the avoided crossing of levels |20) and |11), working area
of the CZ gate. (c) Zoom in on the avoided crossing of levels |01) and |10), working area of

the v/ ISWAP gate.

at each end to a transmon qubit.

A system of two multi-level transmons coupled to a common resonator (commonly refered
to as a bus) is described by the Tavis-Cummings Hamiltonian [44]:

N N
H=weala+ Y [ Y wi 1)y Ule+ (aT+a) > giklidg klg |, (220)
gelL2] \J=0 jk=0

where wc is the bare bus frequency, wgfj is the transition energy between states 0 and j
for transmon g and gj is the qubit-cavity couplings. Such a Hamiltonian couples the energy
levels of the qubits, giving rise to avoided crossings between them. Figure 2.4 depicts the
energy levels of two transmons as a function of the flux applied to one of the qubits. As levels
are coupled they do not cross each other, mixing into eigenvectors with a superposition of
both levels at the would-be crossing point. This provides a direct mechanism to implement
two-qubit gates, by pulsing the qubits to an interaction zone. The system there evolves under
the action of the coupling Hamiltonian, which defines a different basis. There are two main
examples of this: the crossing of |01) and |01), and the crossing of |11) and |20), giving rise
to two different two-qubit gates.

The crossing of |01) and |01) gives rise to a coupling Hamiltonian term of the form [45]

H=/ (ag_l)a(_z) + a(_l)crf)> , (2.21)
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where J1 = % is the effective qubit-qubit coupling, g; the coupling between

qubit / and the bus resonator and A; = w; — wy, the detuning between the frequencies of
qubit / and the bus resonator. The evolution operator for this coupling Hamiltonian is

1 0 0 0
0 cos(Jit) isin(J1t) O
Uy (t) = .
1 (8) 0 isin(Jit) cos(J1t) O’ (e.22)
0 0 0 1

and at the time t = 7 /(4J1), U, (t = m/(4J1)) implements the operator for an v/iSWAP
gate. This is fully entangling gate that takes |01) and | 10) respectively into the odd Bell states
|WH) and [W). In Chapter 4 we implement the operator from Equation (2.22) to generate
moderate to full entanglement starting from |01), in order to solve the ground state of an Ho
molecule.

The second two-qubit gate we cover is the controlled-phase gate or CZ. This is a far more
adopted gate in the context of transmon architectures [46], as it has a very simple connections
to the gate CNOT = HCZH, commonly used in theory approaches to formulate algorithms.
This gate is implemented by bringing into resonance the levels |11) and |20). The operator
acts exactly the same as in the v/ iISWAP gate, but as |20) is outside of the computational
subspace, we need to expand our basis to include it [|00) , [01) , |10), |11}, |20)]:

1 0 0 0 0
010 0 0
Uy(t)=1]10 0 1 0 0 (2.28)
0 0 0 «cos(Jot) isin(Jot)
0 0 0 isin(Jat) cos(Jat)
Here, the coupling that sets the gate speed limit is labeled Jp & (ﬁglgizz(fﬁffAn), and

detunings A now refer to the frequencies of the levels involved (|11) , |20)). Note the appear-
ance of a factor multiplying g1, as the coupling between the higher level (|2)) of the transmon
with the bus is increased by ~ /2. At t = 7/ J» we obtain a CZ gate. This was first imple-
mented in reference [22] and has since been pushed forward by several efforts [47—49].

A topic of major concern for the performance of this gate is that of leakage out of the
computational subspace: population remaining on the |20) as a result of the process. A first
approach to minimize the impact of this introduced the parameterization of pulses in an adia-
batic fashion, minimizing diabatic transitions [47]. Further works [48] extended the adiabatic
pulses introducing a net-zero approach to mitigate distortion effects on the flux control line
and include a built-in echo mechanism. The net-zero scheme destructively interferes the
leakage ocurring at each half of the gate, minimizing its impact even more.

In Chapter 5 we make use of CZ gates in the net-zero style [48] in order to simulate
finite-temperature states on an Ising chain.
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2.7 Tomography

Characterizing a quantum state is not a trivial task. Consider the quantum state of a single
qubit, following Equation (2.15) we need two parameters 6, ¢ to describe it. But a measure-
ment only yields us one value, stochastically, according to the probability amplitudes of the
state. This is solved by repeating the experiment several times and computing a mean from
the collected statistics.

However, a problem remains: a measurement mz, along the Z basis, will only gain us
knowledge of 6 according to mz = (cos 9)2. In order to gain knowledge about the degree of
freedom ¢, we need to perform a different measurement, one along the X basis (or any other
axis in the equatorial plane of the Bloch sphere). Instead of rotating the axis of our readout
(which couples to o), we counter-rotate the axis of our qubit. For the example at hand, a
measurement along the X axis, consider a rotation on the Bloch Sphere that takes the X
axis onto the Z axis. Then whatever we measure as (Z) will correspond to (X) of the state
before this rotation was introduced. We can then easily get ¢ from fx = (cos ¢)2.

From the above simple example, one can derive a further intuition: as quantum states
scale, they span more and more degrees of freedom. To properly derive them from measure-
ments, one needs not a single one, but rather a set of measurements along different bases
that provide the data required to derive the state compatible with the experimental observa-
tions. Such a procedure is called Quantum State Tomography (QST) and the rotations used
to change basis prior to measurement are called tomographic pre-rotations. As Quantum
State Tomography forces the state to collapse via its measurement, it is typically the last part
of a quantum circuit.

Since Quantum State Tomography aims at assigning a quantum state based on a set of
measurements, it turns important that we address states in a more realistic way: by using
the density matrix formalism and allowing for states to not be pure. As a hermitian unit-trace
operator, p can be expressed in that vector space, along the basis of Pauli operators P =
[1.%,7,2] as

p="> Tr(6p)5. (2.24)
6eP
Under this more general description for mixed states, measurements along a specific basis
get described by
iy, = Tr (/\?IRprRb) , (2.25)

where M is the measurement operator, and Ry, the tomographic pre-rotation. For transmons,
the most basic modelling for Mis the Z opeator of the qubit being measured. However, this
does not consider crosstalk (sensing other qubit states via this readout). We detail a more
comprehensive model for M in Chapters 4 and 5.

Solving QST consists in assigning a state p, consistent with the datapoints measured
for several bases and Equation (2.25). The simplest way is to solve the linear system of
equations. We cover the details of this procedure are covered in Chapters 4 and 5.
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2.8 Typical noise mechanisms

While Quantum Computing models can look simple, reality deviates significantly when con-
sidering noise mechanisms. These are undesired phyisical effects that alter the qubit state
configuring a state error. Noise mechanisms are separated into coherent and incoherent
ones.

Coherent noise mechanisms are those which can be modelled with a unitary operator,
mapping pure states into other (undesired) pure states. An example of such error is a resid-
ual ZZ coupling, where a parasitic undesired coupling between two qubits continuosly adds
a coherent phase to their |11) state, much like a slow and always-on CZ gate.

Incoherent noise mechanisms are those which produce a detriment in the state purity, tak-
ing an initial pure state into mixed ones. To model them with a unitary evolution, one needs to
address the environmental degrees of freedom that take the coherence away from the qubit.
Instead, itis a common practice to model them with a Linbladian formalism of superoperators.
An example of such error mechanisms is the qubit relaxation, also refered to as T7.

2.8.1 Relaxation and dephasing times

For Transmon qubits the dominant coherence loss mechanisms are relaxation and dephasing.
To model and understand these effects, we make use of the Pauli Transfer Matrix (PTM)
formalism [2]. As in the tomography section, we model the state by its coefficients P; in the
bases of the Pauli set. Then, to model an operation over a state a PTM A (P;) is defined,
acting on the state as

|
(Ra)i,j = 5T [Pin (F)] (2.26)

where Ry is a linear map acting on the P; vectors within the Pauli-set subspace.
Following the above framework, we define the PTM for the relaxation of a single qubit as

10 0 0
0 vI=p O 0

R, = , 2.27

n=lo o T-p 0 (27)
p 0 0 1-p

where p is the probability of a relaxation event. We experimentally quantify this via a T1
experiment, where the qubit is prepared in |1) and measured after a certain wait time T
which is moved along the experiment. Stochastically, the qubit spontaneously decays from
|1) to |0) emitting a photon with the respective energy fiwg, in what we define as an relax-
ation event. As the experiment is repeated for different wait times, the increased probability

of decay events produces an exponential decay, with characteristic time T7 related to p by
p=1—et/T,
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Similarly, the qubit dephasing is modelled as

1 0 0 0
0 1-p 0 0
Ry, = , 2.28
s 1o 0 1-p 0 (2.28)
0 0 0 1

where in turn, we define the characteristic time T¢ p=1-— eft/Tqb. This is characterized

via a Ramsey experiment, where the excitation is put along the X axis, initially preparing

the qubit in the state |+), and (also after the wait time T) returning it to the Z axis for mea-

surement. To be more precise, the Ramsey experiment measures a characteristic time T2*,
- 1 _ 1 1

combining the effects of both 71 and Ty as T T, + 277

2.8.2 Thermal population

Transmons do not reach absolute zero temperature but rather a small finite one. While typical
dilution refrigerators can reach 10 —20 mK, this temperature is measured at the fridge plates,
and not exactly at the qubits position. Because of this finite temperature, the qubit will not be
at its ground state |0) but at a thermal state, corresponding to the Boltzman distribution over
all its possible states, as quantified by Equation (2.14). The undesired thermal population at
|1) is refered to as thermal excitation, and acts as an error mechanism for any algorithm that
relies on the qubit being initialized in the |0) state. We can characterize this paying special
attention to the readout characterization experiment of single shots as shown in Figure 2.2(a).

This problem can be actively avoided by initialization by measurement, where before run-
ning the algorithm/circuit of interest, the qubit is measured. Then, we can either post-select
the data where the qubit started at |0) or actively perform a reset operation (7 pulse) before
the algorithm. One can also address this problem passively, by designing algorithms that are
robust to thermal excitations. We show a procedure like this on Chapter 4.

2.8.3 Leakage

Transmons are not two-level systems, they are multi-level systems where we make use of only
the two lowest energy levels |0) , |1). This implies an important worry, which is to monitor that
our operations do not transfer some of the populations to other energy levels, escaping the
computational subspace.

The most relevant state is |2) because of its spectral proximity to the computational sub-
space (|0),

1)). On one hand, its transition frequency w12 sits very close to the qubit transi-
tion frequency wg1, and the single-qubit microwave pulses occur at wg1. On the other hand,
when performing two-qubit gates, we bring the second-excited state levels closer in frequency
to the computational level |11). This becomes extreme on CZ gates, where |02) is brought
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into resonance with |11).

A way to address this is by actively measuring the |2) state. Then, Randomized Bench-
marking protocols can tell us the average rate at which the operation in question (either single-
or two-qubit gate) leaks to the second-excited state.

2.8.4 Residual ZZ coupling

The residual ZZ coupling is an undesired effect of coupling the qubits. When coupling qubits
one has to consider the on/off ratio of this coupling with whatever turning knob is provided. In
this thesis, we make use of transmons coupled via CPW resonators. The controlling knob to
turn on and off this interaction is the qubit frequency, controlled by the flux threading through
its flux-bias line. However, as the qubits are not infinitely detuned from each other at their
flux sweetspot, there is still a residual effect of this coupling. While designed to be small, a
mistargeting in qubit frequency or capacitive couplings can significantly alter this effect.
This effect is modeled by the Hamiltonian:

HZZZCi,j‘11> <11|:C,"J'(II—IZ—ZI+ZZ), (2.29)

where ¢; ; = is the residual coupling strength (expression up to second order in gz/A).
J

2.9 Quantum Algorithms

Now that we can operate qubits, the question arises of what exactly do we want to do and
how can we use this to compute something interesting. In this thesis we explore the usage
of algorithms to simulate other systems with our quantum computer. However, we do this
in three different ways: Trotterized Evolution, Variational Quantum Eigensolvers (VQE) and
Quantum Alternating Operator Ansatz (QAOA).

2.9.1 Trotterized Evolution

A typical problem is that of simulating the action of a certain Hamiltonian H on the state | V)
of a system. If we define a mapping between the states in the system of interest and our
qubits, we can as well do it for H and an equivalent unitary U in the qubit space. Finally, we
can implement U in the qubit system, therefore simulating the system of interest.

A common challenge to implement the unitary H is that it often appears defined as a
multi-term equation similar to H = Hp + Hpg. While typically terms H4 and Hpg have a
simple correspondence to available qubit operations, the propagation operator e itH/M ig
not a commutative operation. This makes the implementation of H not straightforward as

e~ tH/h o o=itHa/he—itHp /T tor any arbitrary A,B. To circumvent this one can make
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use of the Trotter-Susuki expansion formula. For that, we start from the Baker-Campbell-
Hausdorff formula which states that

log e3Ae8B — 6(A+B)+£[A B]+ﬁ A, [A B]]fg [B,[A, B]]+O (54) (2.30)
2 - 20" 1207 T

where the brackets denote the quantum commutator operation. For small d, this expression
can be approximated to first order, yielding the Trotter-Suzuki approximation

S(A+B) Jim [e‘“‘e‘“ﬂ +0 (62) , (2.31)

with an error given by the first commutator term % [A, B]. Furthermore, this approximation
is exact for commuting operators A and B. Note that, if needed, one can push further the
order of the approximation.

With the above expansion, and provided we can implement the individual terms H 4 and
Hp, one can in principle simulate any given system on our qubit platform. We explore this
algorithm in an experimental setting on Chapter 3 for the specific case of the Rabi model in
an ultra-strong coupling regime.

2.9.2 \Variational Quantum Eigensolvers

A challenging problem in classical computing that may benefit from quantum computers is
that of obtaining the eigenvalues of a system. Classical algorithms for diagonalization of an
M x M matrix scale as O (/\/I3). While this might seem efficient as it is polynomial, when one
considers Hilbert spaces, M = 2N with N the number of qubits, therefore being exponential
on N. The same occurs while considering molecular orbitals instead of qubits: the size of
the Hilbert space, spanned by the orbital bases, grows exponentially with N. The idea of
Variational Quantum Eigensolvers (VQE) is to encode such systems (molecules) into the
qubit Hilbert space, and use the quantum processor to solve the spectrum of the system with
its various couplings (off-diagonal terms).

The key ingredient that guarantees the (ideal) success of VQEs is the variational principle
of quantum mechanics. It states that given a parameterized family of states ’\Il (5) > the
energy of any of these states is bounded by the ground state Eq of the Hamiltonian:

(v (5) I ‘\u (é’)> > Ey V6. (2.32)

This equation can be phrased in a simple way: the ground state of a Hamiltonian is the lowest
energy of any state, and any combination of eigenvectors (arbitrary physical state) will not be
able to violate that. For VQEs, this works as a guarantee, that disregarding the parameters
6 that control the production of states ‘\U (5) > the most one can do is get closer to the
ground state energy from above.

The VQE algorithms are built around this principle as follows: One first encodes the Hamil-
tonian of interest (e.g. the molecule one) in the qubit Hilbert space, determining a map be-
tween target Hamiltonian terms, and those terms written in the Pauli basis of the qubit Hilbert
space. Then one runs a circuit, where its gates implement the control parameters 0. Finally,
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one measures the necessary elements (qubit correlators) in the Paui basis, necesary to re-
construct the target Hamiltonian via the map. By doing this, one can obtain an experimental
estimation for Equation (2.32). One can then close the loop by letting a classical optimization
algorithm minimize (W (5) |H|W (9)) obtaining the best approximation to the ground state
possible within the given parameterization.

As an example, let us consider the case of the H> molecule. Mapping the molecular or-
bitals starts from a basis definition, which then needs to be integrated over its spatial degrees
of freedom and mapped onto the qubit space [50]. This needs to be done while enforcing
anti-commutation rules for fermions, not enforced in our qubit subspace [51]. The procedure
is nowadays automated and available from open-source software [52]. When mapping the
molecular orbitals of H> onto two-qubits one obtains the Hamiltonian

HH2 = hrll + hz1ZI + hizI1Z + hxx XX + hyyYY + hz7ZZ,

where the the factors h; are the result of the integrations explained above, and queried from
Open Fermion [52]. This specific case, being the minimal example of VQE algorithms applied
to quantum chemistry has been extensively studied with superconducting qubits [30, 31, 53]
as well as other systems like photonics and trapped ions [54, 55]. In this case, the Bravy-
Kitaev transformation used encodes the presence of one electron into the bonding and anti-
bonding orbitals into the states |01) and |10). This specific property gives rise to a symmetry:
the solution for an electron in the Hy molecule needs to be within the specific subspace in
question. The knowledge of such a symmetry may assist in the experimental implementation
of the algorithm: specific symmetry-respecting gates might be used [56], and it might be used
to mitigate some errors [57]. In Chapter 4 we experimentally demonstrate the technique pro-
posed in Ref. [57] improving by over one order of magnitude the accuracy of the results. Such
symmetry succesfully explains not only the improvements in our results [58] but also those
obtained via Quantum Subspace Expansion [59].

2.9.3 Quantum Approximate Optimization Algorithm

The Quantum Approximate Optimization Algorithm (QAOA) is another variational approach
to solving problems with a quantum computer [60]. Its formulation starts from the adiabatic
theorem, which poses that the state of a quantum system under perturbation will remain in
its instantaneous eigenstate superposition, provided the time scale of the evolution is slow
enough.

This means that we start from a Hamiltonian H, varying in time from Hyp = H (t = 0)
and eigenbasis ‘\UJQ> to Hr = H(t = T) with eigenbasis ‘\Iljf> The intuitive idea behind
the adiabatic principle is that if we manage to change the Hamiltonian very slowly, popula-
tions for each eigenstate should smoothly change from the initial to the final basis. As states
might cross along the time trajectory, guaranteeing this is not straightforward and involves an
additional requirement [61]: i) that the eigenstates /, j keep a minimal distance

€ij = min_(Ei — Ej).
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along the adiabatic trajectory and that ii) this is much bigger [62] than the derivative of the
Hamiltonian element linking both

dH

gij= (Wi ()l W (1)),

max
0<t<T
obtaining € ; << gfj-

To link this with the original formulation of QAOA [60] we need to identify the initial hamil-
tonian as Hp, and the final Hamiltonian as Hp. The first one is refered to as the mixing
Hamiltonian, typically chosen as the transverse field model Hp = Zjl-vqu Xj. The latter is
called phase Hamiltonian, and encodes the cost function f as Hp |j) = f(j) |). Finally, one
needs to parameterize H (t, 5) slowly going from Hy; to Hp, as parameterized by 6. This

—iTH(t,§)

takes the ground state |W3) to a final state )\IJ (t, §>> =e |WS). Following the

adiabatic principle, and provided we have satisfied the ’\U (t, 5) > approximates the ground
state of Hp, minimizing the eigenvalue f. The variational approach to this is to optimize with
a classical algorithm the controls g for which f is minimized.

A first approach could be to trotterize the evolution of a Hamiltonian similar to H =
(1—1t/T)Hp + (t/T) Hp. However, this is not necessarily the optimal trajectory. One
can take another approach [63], by using Pontryagin’s principle [64]: For the alternating appli-
cation of terms like e_io‘HM, e_i'YHP, the optimal choice for the control parameters is either
the minimum or maximum values possible for a, <y. This principle is commonly refered to as
the bang-bang principle as it causes the evolution to maximally apply each Hamiltonian term
after the other, obtaining:

T
’\U (t, §)> _ (ﬂ eiatHMei’YtHP> “"8> , (2.33)
t=0

The reason why this formulation is more interesting than that of simply trotterizing an
explicit parameterization is that it only relies on the bang-bang principle, and does not require
the system to remain on the ground state for all t. Furthermore, parameters 0 have been
unfolded into two sets &, ¥, not necesarily constraint by the time-parameterization of H (t),
and independent of each other at every time step t.

Recent results have shown applications of QAOA algorithms for several graph problems [43,
65] as well as magnetic systems [66]. In Chapter 5 of this thesis we use transmons to imple-
ment a QAOA algorithm for the simulation of finite-temperature Gibbs states on a spin chain.






EXPERIMENTALLY SIMULATING THE DYNAMICS OF QUANTUM
LIGHT AND MATTER AT DEEP-STRONG COUPLING

The quantum Rabi model describing the fundamental interaction between light and matter is
a cornerstone of quantum physics. It predicts exotic phenomena like quantum phase transi-
tions and ground-state entanglement in ultrastrong and deep-strong coupling regimes, where
coupling strengths are comparable to or larger than subsystem energies. Demonstrating dy-
namics remains an outstanding challenge, the few experiments reaching these regimes be-
ing limited to spectroscopy. Here, we employ a circuit quantum-electrodynamics chip with
moderate coupling between a resonator and transmon qubit to realise accurate digital quan-
tum simulation of deep-strong coupling dynamics. We advance the state of the art in solid-
state digital quantum simulation by using up to 90 second-order Trotter steps and probing
both subsystems in a combined Hilbert space dimension ~ 80, demonstrating characteristic
Schrédinger-cat like entanglement and large photon build-up. Our approach will enable ex-
ploration of extreme coupling regimes and quantum phase transitions, and demonstrates a
clear first step towards larger complexities such as in the Dicke model.

This chapter has been published in Nature Communications 8, 1715 (2017) [67].

27
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3.1 Introduction

Targetted digital quantum simulations [68] are likely to provide the first demonstrations of
quantum advantage for small-scale quantum computers, with applications in fields such as
quantum chemistry [30, 69] and condensed-matter physics [28, 70-72]. In a digital quantum
simulator, sequences of discrete interaction components synthesise the evolution of an ar-
tificial Hamiltonian, allowing access to more exotic dynamics than the simulator can realise
naturally. Systems involving ultrastrong light-matter interactions raise significant challenges
for both theoretical analysis [36, 73—77] and experimental study [78], making them ripe can-
didates for exploration via quantum simulation.

Ultrastrong coupling (USC) [73] of light and matter has been achieved in a range of
physical systems, including circuit quantum electrodynamics (cQED) [79-81], semiconductor
quantum-well systems [82], terahertz electron cyclotron transitions [83—85] and photochromic
molecules [86]. Some experiments have demonstrated spectroscopic signatures deep into
USC [80, 81, 84] where the coupling-to-frequency ratio g/w 2 1 (at so-called deep-strong

coupling, or DSC [87]), but a dynamical signature has only been measured at g /w ~ 0.09 [85].

The standard quantum Rabi model (QRM) [36] describes the coupling of a two-level atom
(energy ﬁw(?) to a quantum harmonic field mode (energy ﬁwf{) by a field-dipole interaction
(energy th):

Hr _ g Rt R + o

=, 0ztuwralatg (a+aT> (6T +07), (3.1)
where a = /n|n—1) (n| and 6~ = |g) (e| are annihilation operators for field mode and
atom, respectively (with creation operators af and o), and 0 7 = |g) (g| — |e) (e] is the

Pauli z-basis operator. Under small coupling (gR < wg, wﬁ), this reduces to the Jaynes-

Cummings (JC) model via the rotating-wave approximation:

H w
%C = —Tqaz—kwrafa—i—g (ao+ +aTa_) , (3.2)
which contains only the excitation-number-conserving interaction terms, ac™ and alo—,

and has an exact solution. In the USC regime (gR ~ wg, wﬁ), however, the excitation-

nonconserving terms ac ~ and af o cannot be neglected and only total parity [ 2 > (=)
is conserved [87]. Without the strong symmetry of number conservation, the full QRM be-
comes difficult to solve [74], predicting phenomena such as ground-state entanglement and
large ground-state photon populations which have not yet been observed experimentally. The-
ory suggests that simulations of the quantum Rabi model (QRM) could explore widely varied
coupling regimes in architectures like cQED [88—90], cold atoms [91] and trapped ions [92].
Simulated QRM dynamics have been observed in restricted regimes in trapped ions, includ-
ing the Dirac equation (er:0, w(?;éO) [93, 94] and coupling only (er:0, wE:O) [95, 96]
regimes. A classical analog simulation of evolution in a restricted subspace of the QRM has
been performed in photonic waveguide systems [87, 97].

Here, we implement an accurate experimental simulation of quantum Rabi model dynam-
ics well into the deep-strong coupling regime using a cQED quantum simulator with only
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moderate atom-cavity coupling. To achieve this, we implement a digital protocol [88] with up
to 90 second-order Trotter steps. In particular, we significantly extend the protocol by devel-
oping a phase-controlled method for tuning the target system parameters which allows us
to explore a wide range of relative coupling strengths with high precision. Combining this
control with versatile measurements of atom, cavity and joint system properties, we carry out
a comprehensive study of quantum Rabi dynamics from ultrastrong to extreme deep-strong
coupling. We first investigate the restricted case with zero atomic frequency (wg = 0) to
demonstrate key signatures verifying the simulation of deep-strong coupling. These include
the characteristic collapses and revivals in both atom and cavity parities, coherent oscilla-
tions in cavity population reaching large photon numbers, and opposing cavity phase-space
trajectories. We then show that the simulated deep-strong coupling leads to conditional non-
classical Schrédinger cat states in the cavity, which verifies the presence of the atom-cavity
entanglement arising from coherent deep-strong coupling dynamics. Finally, we study deep-
strong coupling dynamics for several nonzero values of atomic frequency (gR/w!qq 2 1). This
shows that our simulation is able to access the full complexity of the quantum Rabi model,
and allows us to develop a heuristic understanding of the expected dynamics in terms of a
competition between deep-strong coupling and Jaynes-Cummings dynamics.

3.2 Resulis

3.2.1 Digital quantum Rabi simulator with phase-controlled tuning

Deep-strong coupling dynamics can produce nontrivial quantum states and significant build-
up of photon numbers [87]. Many characteristic dynamical features of DSC can already be
seen in the degenerate-qubit limit wg = 0. Here, the interaction-picture Hamiltonian

. R . R
HR, int = o x (ﬁgRe_”"r ta+ hghelwr taT> (3.3)

is a coherent drive on the oscillator mode, with an amplitude j:gRe’.“Bt conditioned on the
o x basis state of the atom (o x = ot + o is the Pauli x-basis operator). The condi-
tional coupling j:gR coherently displaces the field, but in a continuously rotating direction
given by elvr £ creating two diametrically opposite circular trajectories in phase space [see
later in Fig. 3.4(a), final panel]. Relating the diameter and circumference of these trajectories,
TOmax = dTR, with field displacement rate &« = gR and period TR = 27r/wﬁ, gives a
maximum amplitude axmax = 2r set by the relative coupling ratio r = gR/wlﬁ. Figure 3.2(a)
illustrates the atomic and photonic parity dynamics (o z and Y_,(—1)" |n) (n|, respectively)
for characteristic coupling regimes, starting in an eigenstate of the uncoupled system, |e>q &®
|0)r. Because this is a superposition of the o x eigenstates |+)q ~ |g)q=%|e)q. evolution
gives rise to an atom-field entangled state (Bell-cat state) [98], |+, +a>q, r+ |-, —a)q, r.
For r < 1, the two trajectories remain virtually indistinguishable, giving evolution closely ap-
proximating simple JC dynamics with an atom-field detuning equal to wﬁ [cf. Supplementary
Note 7]. As r increases, the curves start distorting from the sinusoidal JC exchange oscilla-

tions (USC regime), until reaching DSC (r 2 1), where the parities exhibit a characteristic
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Figure 3.1: Digital-analog quantum Rabi simulation using phase-controlled parameter
tuning. (a) Parity dynamics of the ideal quantum Rabi model in the degenerate-qubit case
(wqR = 0) for qubit (green) and resonator (red) in coupling regimes: r = gR/wrR = 0.1
(dotted), 0.5 (dashed) and 1.0 (solid). In this example, g was chosen to match the experi-
mentally observed value of g/2m = 1.79 MHz. (b) Two-transmon, three-resonator cQED
chip (detailed description in Supplementary Notes 2 and 3). (c) Sequence schematic for
second-order Trotterisation. The rotating frame defining the simulated resonator frequency
(wr) is controlled via the QR bit-flip pulse phases. (d) Example simplified experimental pulse
sequence for 5 Trotter steps followed by a photon parity measurement.

Gaussian-shaped “collapse”, followed by flat plateaus and periodic revivals at multiples of TR,
The cross-over between these dynamical regimes is related to the maximum distinguishability
of the two coherent states of the field. When the paths separate completely, the qubit appears
to be in a mixed state, with parity 0.5.

Our circuit QED Rabi simulator uses a hybrid digital-analog encoding of the atom and
field mode, respectively, in a transmon qubit (QR) [18] and a coplanar waveguide resonator
(RR) (energies hwq and hwr) [device shown in Fig. 3.2(b)]. Because the transmon is only
weakly anharmonic (o.)g_1 —wa_z < w8_1 ), directly increasing the qubit-resonator coupling
g leads to a breakdown in its qubit behaviour at small r, and full circuit quantization shows that
DSC cannot be reached for any circuit parameters [99]. Instead, building on the proposal in
Ref. [88], we perform a digital simulation of the QRM for arbitrarily large r using a coupling in
the manifestly non-USC regime (r < 10~3). The full Rabi Hamiltonian can be decomposed
into two JC-like interactions [88]:

R R R A
Hr(g" wr wg) = Hyc(g Ar, AY) + Hagc(g, wr, 487°),

where Hpjc = o xH o x contains only counter-rotating interaction terms, and the
effective Rabi parameters gR = g, wﬁ = 2Ar and wg{ = Aq = Aéc — Aé‘JC are
not related to the natural circuit frequencies, but defined relative to a nearby rotating frame
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(A = w — wRF), and can be arbitrarily small. Using the standard method of Trotteriza-
tion [68], Rabi dynamics can therefore be simulated into the DSC regime by decreasing
Ay and Aq. Figure 3.2(c) illustrates the second-order Trotter step used here [see Meth-
ods and Supplementary Note 9]. An asymmetric transmon with two flux-insensitive “sweet”
spots [18] is driven and measured at its lower sweet spot (5.452 GHz) far below the res-
onator (6.381 GHz), with digital 7 pulses being interleaved with short analog JC interaction
blocks applied by fast frequency-tuning flux pulses [22]. [See Supplementary Note 3 and
Supplementary Table 1 for details of the experimental scheme and Supplementary Note 4
for details of how the flux-pulse distortion compensations are calibrated.] Experimentally, a
rotating frame is usually defined by the frequency of a drive tone. Here, the choice of rotating
frame specifies the required rotation axis of the 7 pulses which create the AJC interaction.
By appropriately updating the pulse phases, which are controlled with high precision, we can
therefore arbitrarily select the rotating frame detuning from the resonator, even though these
pulses are applied far from both resonator and rotating frame [see Methods].

Numerical modelling of the digital Rabi protocol highlighted several challenges for de-
vice design and fabrication [Supplementary Note 2]. Most significantly, due to practical flux-
pulsing bandwidths which limit the shortest achievable Trotter step, it is challenging to digi-
tise fast compared with the dynamics. Reaching acceptably low Trotter error in interesting
regimes of r therefore required small qubit-resonator coupling (here, g /27 = 1.95 MHz).
This also placed constraints on other device parameters, including coherence (for long sim-
ulation times), flux-tuning precision and qubit-resonator frequency targetting (due to a very
narrow resonance). An extra qubit Qyy was strongly and dispersively coupled to RR to probe
the intraresonator quantum state via its photon-dependent frequency shift (—1.26 MHz per
photon) using pulse sequences based on Ramsey interferometry. We used Qyy to implement
a range of photon measurements: average photon number with a controllable dynamic range
(number meter), average photon parity [100, 101] (parity meter) and, combining parity mea-
surements with coherent field displacements through an external input coupler, direct Wigner
tomography of the resonator. [Full details of the operating principles and calibrations of these
different photon measurements are provided in Supplementary Notes 5 and 6.] Qubits were
driven and measured through dedicated read-out resonators. A full description of the experi-
mental setup is provided in Supplementary Note 1.

3.2.2 Comparing qubit and resonator parity dynamics

We first experimentally simulate the QRM for the degenerate-qubit case over a wide range of
r, covering the USC and DSC regimes from r ~ 0.3 to r — oo (Fig. 3.2). We use 60 Trotter
steps to simulate 1.2 us of dynamics (gt = 4.68m) and measure either qubit or photon
parity after each step. (Simulations start in the state |1)q ® |0)r for all results in the main text,
but Supplementary Note 8 shows that the features of DSC dynamics are observed also for
|0)q ® |0)r.) A simplified pulse sequence is illustrated in Fig. 3.2(d). The qubit and photon
parity dynamics [Fig. 3.2(e, g)] show very similar qualitative behaviour, consistent with parity
conservation. At all large couplings, the measurements exhibit the Gaussian-shaped parity
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Figure 3.2: Qubit and resonator parity dynamics of the quantum Rabi model in the
degenerate-qubit case. Measured dynamical landscapes for (a) qubit and (b) photon parity
dynamics for a broad range of parameters up to 60 Trotter steps, with the extreme DSC
regime in the centre decreasing to weaker USC near the edges. The data show clear
Gaussian-shaped collapses for all r, along with the characteristic plateaus of DSC. Qubit
revivals are observed up to r ~ 0.8, while photon parity shows clear revivals up to r ~ 1.8.
Vertical line cuts for (c) qubit and (d) photon parity are plotted for evenly spaced wﬁ/gR
between the red and blue dashed lines in (a) and (b), respectively. For r 2 1.5, some devia-
tion from the expected revival time in the photon parity results from a small residual Kerr-type
nonlinearity in the resonator [see also Supplementary Fig. 9] and is correlated with significant
photon populations. Arrows in (c) and (d) show expected revival times for each slice. In this
and following figures, coupling ratios were calculated using the observed simulated coupling
of g/2m = 1.79 MHz.

collapse (set by the simulated gR) and flat plateau which is a key signature of DSC dynam-
ics. Fitting the initial qubit data points, we calculate an average gR ~ 27 x 1.79 MHz,
slightly lower than the expected gR = g ~ 27 x 1.95 MHz determined from independent
spectroscopy and vacuum Rabi oscillations. This is consistent with a small residual flux-pulse
distortion and provides the best estimate for the simulated gR achieved in these experiments.
The revival periods TR are in excellent agreement with the predictions of USC Rabi dynamics
(dashed curves), and strikingly different from those predicted for a pure Jaynes-Cummings
interaction with the equivalent qubit-resonator detuning (T‘JC =2m//4g2 + A?q—r) (dot-
ted curves) [Supplementary Note 7].

From the observation of parity revivals, combined with the simulated gR, we can estimate
the range of r reached in these simulations. ForgR/27r = 1.79 MHz and r = 1 (archetypal
DSC), the expected revival time is 0.56 us. Line cuts for the qubit parity dynamics [Fig. 3.2(f)]
show revivals beyond 0.4 us (r ~ 0.7). Photon parity revivals, however, persist beyond
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1.0 ps (r ~ 1.8). This difference again results from photon decay, as shown by excellent
agreement with numerical modelling which includes cavity decay but no other decoherence
(not shown). Photon decay becomes increasingly critical at larger couplings, because even
a single decay destroys the qubit-resonator entanglement, and losing a photon becomes in-
creasingly likely for larger photon numbers. The qubit parity revivals rely on entanglement
being maintained. This is supported by measurements of reduced qubit entropy, which show
that the qubit state collapses to the mixed state, before displaying a revival in purity [Supple-
mentary Note 11]. The resonator parity dynamics, however, are more robust to decay and
provide a more direct measure of DSC dynamics. Photon parity collapses and revivals prove
the field undergoes large-amplitude excursions through phase space even during a single
cycle of the resonator period. The difference between qubit and photon parity dynamics is a
quantitative signature of break-down in parity conservation, caused by resonator decay.

3.2.3 Resonator photon-number dynamics

We next directly explore the build-up of large photon populations (Fig. 3.3), another feature
of DSC dynamics that contrasts strikingly with the excitation-conserving dynamics expected
under weak coupling. Using a Ramsey pulse sequence with small separation T, the excitation
probability in Qyy becomes a measure of average photon number in the resonator [Supple-
mentary Note 5]. The dynamic range and sensitivity of this number meter are controlled via
T [Figs 3.3(a, b)]. Measured with a linear range of ~ 0-8 photons [Fig. 3.3(c)], the resonator
displays the complementary build-up of photons which causes the collapse of qubit and pho-
ton parity, clearly demonstrating the violation of number conservation expected for the QRM.
As with photon parity, clear oscillations can be seen out to r ~ 1.8 [Fig. 3.3(e)]. The large
central feature appears to deviate from the expected trend, but is in fact due to photon num-
ber exceeding the dynamic range of the number meter. To explore this region further, we
extended the linear range to ~ 0-20 photons using a number meter with a non-centred refo-
cussing pulse [Fig. 3.3(d)] and simulated up to 90 Trotter steps (gt = 7.07), allowing photon
oscillations beyond 1.5 s to be observed. This range operated at the limits of approximately
uniform driving given the bandwidth of the 12 ns (40) QW pulses. At r = 2, the photon dy-
namics in Figs 3.3(c) and (d) are clearly skewed, causing the observed oscillations to deviate
from the expected revival period TR (also observable in the photon parity [Fig. 3.2(g)]. This
results from a residual Kerr nonlinearity in Ry inherited from the dispersively coupled ancilla
qubit [102].

Exploring the resonator oscillations more quantitatively, the maximum photon number in
each vertical (constant-r) slice [Fig. 3.3(f)] compares well with the expected ideal behaviour.
The discrepancy between the two curves in the overlapping region results from bandwidth
limitations in the high-dynamic-range (HDR) number meter and the limits in linearity of the
number-to-probability mapping for Qyy. Because of the sinusoidal conversion, the calibrated
value at either end of the range compressed slightly towards the centre from the real photon
number. The measurement saturates at the highest r even for the HDR meter, suggesting
that we observe more than 30 photons (average) building up in the resonator for the strongest
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DSC regions. Given the Poissonian statistics expected for coherent states, this accesses a
resonator subspace of dimension ~ 40 (i.e., a subspace larger than that of 5 qubits). This
ability to access large Hilbert spaces with a simple system is an advantage of the analog
resonator encoding.

3.2.4 Resonator phase-space dynamics

Combining the parity measurement with coherent displacements from an external drive al-
lows observation of resonator phase-space dynamics using direct Wigner tomography [100,
101]. Figure 3.4(a) shows unconditional maximum-likelihood tomograms [ignoring the state of
QR; see Methods] measured after each Trotter step with r ~ 0.9 [full movie available in Sup-
plementary Movie 1], with the full trajectory obtained from two-dimensional double-Gaussian
fits of the raw data. The resonator state displays the clear signatures of DSC dynamics, first
separating into two distinct Gaussian (coherent-state) peaks which follow opposite circular
trajectories before re-coalescing at the origin. The peaks do not return perfectly to the origin
because of photon decay, in agreement with a numerical simulation at gR/27r = 1.79 which
includes T1’ r = 3.b us (green curves).

3.2.5 Demonstrating qubit-resonator entanglement

By capturing the complete resonator quantum state, the Wigner function also enables the
demonstration of coherence in DSC dynamics, by contrast with photon parity and number
measurements, which are largely insensitive to coherence. Observing this requires correlat-
ing the resonator and qubit states, because the coherence is stored in entanglement. We did
this in two ways. First, we measured the Wigner function after 10 Trotter steps for r ~ 0.9 with
QR initialised in states |g), |e), |+) and |—) [Figs 3.4(b—e)]. This showed that the resonator
and qubit were correlated, consistent with the expected Bell-cat entanglement. Second, we
ran the simulation for r ~ 0.9 and 2.1 (8 Trotter steps) with the qubit prepared in the excited

state, conditioning the Qyy measurement on the state of QR in the o z basis (Fig. 3.5). For
the expected Bell-cat state, an outcome of |g (e)) for QR leaves the resonator in an odd
(even) Schrédinger cat state (o) F |—a)). Numerical modelling shows that only in the DSC
regime is negativity in the Wigner function observed for both QR measurement outcomes.
The negative regions observed in all the Wigner functions demonstrate nonclassicality for all
resonator cat states, which arises from coherence in the underlying Bell-cat entanglement.
Reduced visibility is again caused primarily by photon decay, but also by single-shot read-
out infidelity (here, ~ 85-90%) and experimental drift over the long measurements. These
different measurements provide clear evidence of qubit-resonator entanglement arising from
coherent DSC dynamics.

3.2.6 Quantum Rabi dynamics in the nondegenerate-qubit case

Finally, by detuning the qubit frequency during the AJC half of the Trotter steps [Fig. 3.2(c)], we
also experimentally simulate dynamics for the nondegenerate-qubit case of the QRM for ef-
fective qubit frequencies gR/wg{ ~ 4,2 and 1 (Fig. 3.6). Deviation from the degenerate-qubit
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case occurs primarily when wﬁ < wé‘ [103] and these regimes access the full complexity of
QRM dynamics. To develop a rough intuition for the expected dynamics, we overlay the plot-
ted landscapes with the expected revival times for both pure degenerate-qubit QRM dynamics
and pure nondegenerate-qubit Jaynes-Cummings (exchange) dynamics (centred around the
effective qubit frequency). This illustrates that the ideal dynamics (no decay) [Fig. 3.6(right)]
can be thought of as a competition between the two cases. As qubit frequency increases,
standard Jaynes-Cummings dynamics begin to emerge, with qubit population oscillations
(and increasingly pronounced positive-parity regions) appearing in the collapse-revival dy-
namics characteristic of the DSC regime. This interpretation and trend become clearer for
qubit frequencies wqR larger than the coupling gR, where the standard Jaynes-Cummings
exchange dynamics start to dominate [numerical modelling shown for gR/w§ ~ 0.48 in
Supplementary Fig. 12). The measured dynamics [Fig. 3.6(left)] capture many features of
the ideal case [Fig. 3.6(right)], even up to r > 1. Numerical modelling of the digital QRM
simulation including the measured T1, r [Fig. 3.6(centre)] confirms that simulation fidelity is
primarily limited by resonator decay.

3.3 Discussion

Demonstrating stabilisation by decreasing step sizes will be an important part of validating
the behaviour of future complex digital simulators achieving quantum advantage [104]. In
Supplementary Notes 9 and 10, we showed that using second-order Trotterisation and de-
creasing the Trotter step size both significantly improved performance. This indicates that
the simulation is not limited by an error-per-gate noise floor as in previous cQED simula-
tions [28], and enables us to linearly increase the number of Trotter steps for increasing sim-
ulated time, rather than keeping the number fixed [28, 30, 72]. This is an important step
towards the quadratic scaling needed for universal quantum simulation [68]. In combination,
these achievements advance solid-state quantum simulators based on cQED to a digital per-
formance previously attained only in trapped-ion systems [71].

Interestingly, a QRM simulator even has some direct advantages over natural USC sys-
tems. Although large couplings can lead to ground-state entanglement and significant ground-
state photon populations, these potentially interesting ground states are not readily acces-
sible in natural USC systems [78, 99, 105] without the ability to rapidly (nonadiabatically)
tune or switch off the ultrastrong coupling. In systems where the coupling reaches many
gigahertz, tuning system parameters on this timescale represents a significant technical chal-
lenge [80, 81]. In our simulator, however, cavity photons are always real (not virtual), de-
tectable and usable, and it is straightforward to nonadiabatically tune system parameters to
implement quantum quenches [106]. This makes a cQED chip with natural JC interactions
an ideal platform to explore the preparation of interesting ground states in future experiments.
The challenge is that the simulator decay processes differ from those in a natural USC sys-
tem and do not move the system towards the USC ground state [75]. This highlights the need
to improve T1, ¢ so that photon decay does not limit the dynamics. It should be possible to
improve T1, ¢ ten-fold using novel processing methods [107]. However, an interesting next
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step will be to determine the effective USC decay resulting from simulator-frame resonator
decay.

Finally, the phase technique we have developed to define a rotating frame via single-
qubit pulses introduces a precise and flexible paradigm for engineering artificial Hamiltonians
which can be applied across architectures such as trapped ions and cold atoms [71, 91,
92]. In combination with the number of Trotter steps demonstrated, the technique will allow
accurate simulation of the time-dependent Hamiltonians [28, 71, 108] required to perform
adiabatic preparation of USC ground states. It is therefore ideally suited for exploring novel
quantum phase transitions relying on extreme coupling regimes recently identified for the
QRM [91, 109, 110]. Further, by extending to small-scale Dicke-model systems [88, 90], it
will avoid the problem of additional nonlinear evolution terms [90] which have been suggested
to prevent the onset of a long-predicted superradiant phase transition in a range of physical
systems [76, 77, 99, 111].

3.4 Methods
3.4.1 Phase-controlled Trotterisation of the quantum Rabi model

In the digital QRM simulation proposed in Ref. [88], the effective parameters of the simulated
Rabi Hamiltonian are gR =g, wﬁ = 2Arand wc'? = A‘(JqC—AéJC, where Ar = wr—wRE
and Aq = wq — wRF are defined relative to a rotating frame. This rotating frame is essential
to reaching DSC with weakly anharmonic transmon qubits, by allowing us to tune the simu-
lated wﬁ and wg. Typically, the frequency of a rotating frame is set by a physical generator
or drive signal that defines a rotation or a measurement basis. In the digital simulation, the
rotating frame is still abstract, since no drive is used to induce an interaction. Here, we de-
scribe a method we have developed for controlling the frequency of the rotating frame which
is simple, high-resolution and flexible.

The basic intuition is that the bit flips in Ref. [88], which convert every second JC interac-
tion into an effective AJC interaction, are the only concrete operations which take place in the
otherwise abstract rotating frame. In any Trotter step, the frequency of the rotating frame is
therefore defined by the rotation axes of the bit-flip pulses (i.e., the absolute pulse phase), but
these flips are driven by microwave pulses at a frequency far (~ 1 GHz) below the resonator,
at the qubit’s bottom sweet spot. Nevertheless, while the drive generator’s phase continuously
and rapidly rotates relative to the resonator, the drive pulses can be effectively locked to the
resonator frequency by discretely updating the pulse phase at each pulse. This is achieved by
advancing the phase of each pulse by an amount proportional to the elapsed time between
pulses. An arbitrary offset frequency from the resonator is then straightforwardly achieved
by correcting this phase advance by an amount proportional to the Trotter step size. Inter-
estingly, in the scheme of Ref. [88], because the simulated resonator frequency (but not the
qubit frequency) is sensitive to the absolute detuning from the rotating frame, this effective
qubit offset frequency tunes the frequency of the resonator (but not the qubit).

We now derive the analytical relation between the bit-flip pulse phases and the rotating-
frame frequency in the simulation. We start by writing down the full Trotter step and then
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derive the effective Hamiltonian implemented by this step given the lowest-order Trotter ap-
proximation. The symmetric, second-order Trotter step for the digital QRM simulation is:

1 1
U (1) = Ul (7) Unuc (7) U (7)., 3.4)
where U (7) = exp(—iH g T/h) and an arbitrary AJC step
—iH )T
Upyc (1) = Rg, () exp (F;JC> Rg, (), (8.5)

is defined by the phases used to set the rotation axes ¢1 2 of the bit flips R¢ (7). Writing
the JC Hamiltonian in the rotating frame of the resonator, and using the identity Ry () =

R, (¢) Rx (77) Rz (*45) =R, (2¢) ox =0xR; (*24’)’ gives:

Upyc (1) = Rz (2¢2) 0 x exp [—qu_rTO' z/2 —ie (80'+-|-8T0'_):| o xRz (—2¢1),

exp (i¢xoz/2) exp(—iAdo z/2), 3.
= exp (—iA¢o z/2) exp |iAg—rTo 2 /2 — i€ (aa_e_id’z —|—aT0+e’-¢2)} (3.9)
exp (—iA¢o 7/2), (3.10)

where ¢ = g7, ¢y = ¢1 + ¢2, Ap = ¢o — b1, Agr = AP — AR, and we

have set Aagr = 0. Equation (3.10) is reached by noting that e —/¢x? 2/25+itro2/2 —
otetids,

Next, noting that A¢ = wwﬁr L lifr < l/wﬁ, and providing the Trotter conditions
€ = g7 < land Ag—7 < 1 are fulfilled, we can combine exponentials in Eq. (3.10) using
a Trotter approximation to give:

Upyc (1) = exp {—iAd)o z+ iDgrTo z/2 — i€ (aa_e_i¢z+afa+e"¢z>} . (3.11)
Combining the JC and AJC steps with a further Trotter approximation then gives the full Trotter
step

. a' . _ _ i .
U;r (1) =~ exp {1 (—20¢ + Ag—rT) 72 —ie (aa+ +alo™ 4ac"e ¥x ¢ aTa+e’¢2>} :
(3.12)

So far, we have considered arbitrary ¢; and ¢»>. In the experiment, however, we keep A¢
constant for all sequential pairs of bit flips. Specifically, for the nth Trotter step, the two phases
are ¢1 = ¢o + (2n—2) A¢ and ¢o = ¢o + (2n—1) A¢, where the choice of g has no
effect on the dynamics. Setting ¢g = 3A¢/2 gives ¢y = 4nA¢, and the nth Trotter step
can be rewritten in terms of a frequency wg = 2A¢/T and a simulated time t, = nT:

Ué{n) (1) =exp {i (—wo + Ag-r) T%Z —ie (aoJr +ale™ + ac e 12wotn 4 aTaJre’Q“’Ot"ﬂ .
(3.13)
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which corresponds to an effective Hamiltonian:

H o ; ;

Teff = (wo — Agr) 72 +g (aoJr +alo™ + ag— e 2w0t 4 aT0+e’2“’0t) . (3.14)
Until this point, the calculation has been carried out with both qubit and resonator in a frame
rotating with the resonator. We now transform Heg¢ into a rotating frame where both qubit and
resonator are rotating at frequency (—wp), i.e., with Hg = —hwg (—0 z/2+ aTa>, giving
a new effective Hamiltonian:

H,
TEﬁ — _Aq_r%+wOaTa+g<a+aT) (0++0_) ) (3.15)

This completes the mapping of the phase-controlled Trotterisation into the form of a simu-
lated Rabi Hamiltonian and we can now identify the effective simulated parameters gR =g,
wg = Aq_r and wﬁ = wp = 2A¢/T. Note that the final frame transformation takes place
in the simulated Hilbert space, i.e., with frequency wq defined relative to simulated time. Con-
sequently, the frequency of the abstract rotating frame in Ref. [88], defined in the laboratory
reference frame of the cQED simulator, is less by a factor 2, i.e., wrr = wo/2.

Here, we have shown how to engineer a virtual rotating frame by applying virtual phase
corrections via updating the rotation axis of subsequent drive pulses [112] in the stroboscopic
context of Trotterised digital quantum simulations. This technique should be broadly applica-
ble in the context of Trotterised quantum simulations, although some details or interpretation
may vary depending on the specific simulation. For example, it could be applied virtually un-
modified to implement the digital Ising model simulations with interacting spins from Ref. [72],
where phase gates were instead implemented via physical detunings of the qubits (as also
done in [71]). More generally, in Trotterised dynamics, a continuous frequency detuning is
to lowest order identical to a discrete phase gate applied in each Trotter step. In any case
where a gate is implemented using an exchange-type interaction, frequency detunings can
therefore be effectively transferred between different circuit elements and mapped onto the
most easily controllable element. This turns the theoretical aide of moving between interac-
tion pictures into a concrete experimental tool. If the Trotter step also includes single element
control pulses, then these can often be modified to also incorporate the phase gate. If this
option is not available [e.g., see the digital Jaynes-Cummings simulation in Supplementary
Note 7] then the phase correction can still be implemented directly. In our case, a simulated
frequency detuning was applied to a resonator (which was not easily tunable) by virtually
applying a discrete phase update to the qubit via the drive phase of the bit-flip pulses.

3.4.2 Trotter step

For a second-order Trotter step with simulated time 7, the Trotter step consists of 3 flux
pulses (T/2, T and 7/2) and 2 single-qubit rotations with buffers separating the different
gates. Adjacent /2 flux pulses from neighbouring Trotter steps are implemented as a sin-
gle flux pulse of length 7. Each flux pulse was followed by a 5 ns phase-compensation flux
pulse [Supplementary Note 7]. For most of the data presented in this work, the simulated
T = 20 ns. The qubit drive pulses on QR were 16 ns total duration (40) and the pulses
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buffers were 10 ns. The total Trotter step for 7 = 20 ns was therefore Tgiep = 122 ns. In ad-
dition to the drive-pulse phase advance required to define wﬁ, another linear phase advance
AP = (wg“"e — wr)Tstep/2 is required to compensate the rapid rotation of the qubit drive
with respect to the resonator frequency.

3.4.3 Qubit control

Qubit rotations were implemented using DRAG pulses [21, 41], with a Gaussian envelope in
the X quadrature and a derivative-of-Gaussian envelope in the Y quadrature. The 4o pulse
durations were 16 ns for QR and 12 ns for Qyy. The performance of the Trotter sequences,
which contained up to 180 bit-flip pulses, was very sensitive to details of the QR pulse calibra-
tions. In particular, the drive amplitude was calibrated using a sequence of 50 7-pulse pairs
preceding a single /2 pulse. All parameters were typically calibrated just before launching a
long measurement. The drive amplitude was intermittently recalibrated during the scans. Be-
cause only 2 or 3 pulses were applied to Qyy for the photon measurements, it was optimised
using the AlIXY sequence [113] of 21 combinations of two o x and o y rotations (either /2
or ). The frequency of Qyy was regularly calibrated during photon measurements using
Ramsey sequences.

3.4.4 Wigner tomography reconstructions

Tomograms shown in Figs 3.4 and 3.5 are maximum likelihood reconstructions [114, 115]
of the resonator quantum state from direct Wigner tomography measurements [101]. The
Wigner function at a phase-space position « is:

W (@) = 27:[T1D1 (@) oD (@)] = 2T [Map] 3.16)

where py is the resonator density matrix, TT = 3, (—1)" |n) (n| is the photon parity opera-
tor and D («) is the coherent displacement operator. For each measured o, we calculated
My = D () TIDT (a) using an operator dimension much larger than the largest |c|2 in
the measured phase space, to avoid edge effects when calculating D (a). The My were
then truncated to a maximum photon number sufficient to capture all of the reconstructed
state, but small enough to allow fast reconstructions and ensure an informationally complete
set of operators (nmax = 12 and 8 for tomograms in Figs 3.4 and 3.5, respectively). The
maximum likelihood reconstruction was carried out using convex optimisation [116, 117]. In
Fig. 3.4, a systematic phase correction was applied to the density matrices to correct for a
miscalibration of the resonator drive phase used in the coherent displacement. Finally, the
reconstructed density matrix was then used to calculate the plotted Wigner functions.

3.5 Supplementary Notes

3.5.1 Supplementary Note 1: Experimental setup

The sample and low-temperature microwave components were mounted inside magnetic and
infrared radiation shielding consisting of two layers of cryogenic mu metal around a layer of
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aluminium, with an internal layer of copper foil coated in a mixture of silicon carbide and
Stycast (2850 FT) [118]. Microwave coaxial cables are connected to the PCB-mounted chip
via non-magnetic SMP connectors (Rosenberger).

The qubit drive and read-out tones are sent through two dedicated feedlines which are
connected via a short coaxial cable off-chip. The input line for the qubit drives is filtered
at the mixing chamber with 30 dB cold attenuation, a small home-built inline eccosorb fil-
ter and a 10 GHz low-pass filter (K& L 6L250-10000/T20000-0/0). [The resonator input line
filter is 8 GHz low-pass (K& L 6L250-8000/T18000-0/0).] The output line passes through
two 3 — 12 GHz isolators (Pamtech CWJ1019K) and a circulator (Quinstar CTH0408KCS)
mounted above the mixing chamber on the way to a 4 — 8 GHz cryogenic HEMT am-
plifier (Low-Noise Factory LNF-LNC4_8A), two room-temperature amplifiers (Miteq AFS3-
04000800-10-ULN, then AFS3-00101200-35-ULN-R), RF demodulation (Marki 0618LXP 1Q
mixer) and amplification, and finally digitised in a data acquisition card (AlazarTech ATS9870).
The flux-bias lines are filtered at the mixing chamber with 1.35 GHz low-pass filters (Minicir-
cuits VLFX-1350) followed by home-built eccosorb filters. All input lines are thermalised with
20 dB attenuators mounted at the 4 K plate. The microwave input lines and output line are
connected to the fridge through a DC block.

Qubit and resonator drive pulses are created via single-sideband modulation with 1Q mix-
ers and generated by two arbitrary waveform generators (AWGs; Tektronix AWG5014). We
use a 3—7 GHz IQ mixer (Marki 0307MXP) for the resonator and two custom-built 4-8.5 GHz
IQ mixers (QuTech Fic: DC-3.5 GHz IF bandwidth) for the qubit drives. The qubit drive
pulses were amplified by a high-power (35 dB) microwave amplifier (Minicircuits ZV-3W-183)
before passing through a 5.5 GHz low-pass filter (Minicircuits LFCN 5500+) to minimise am-
plifier noise at the readout resonator frequencies.

Most microwave units receive a 10 MHz reference from a microwave generator (Agilent
E8257D) via a home-built distribution unit. However, the generators used for driving QR and
RR (R&S SGS100A) synchronised directly via a 1 GHz reference. This was critical to achiev-
ing the phase stability required to measure RR Wigner functions during measurement runs
lasting up to 40 hours. The frequencies for these two generators were also always set to
a multiple of the trigger repetition rate (5 kHz), to ensure a stable phase relationship. For
phase-sensitive measurements, a 500 MHz scope (Rigol DS4034) monitored the relative
trigger timing between the master and slave AWGs to select consistent delay configurations
between the AWG outputs.

Home-built low-noise current sources mounted in a TU Delft IVVI-DAC2 rack provided
precision DC bias currents for flux tuning of the qubit frequencies. The DC bias for Qg was
combined with the amplified output of one channel of the master AWG (the same as used
for generating QR drive pulses) using a reactive bias tee (Minicircuits ZFBT-6GW-+). The flux
pulses from the AWG were amplified using a home-built 2 V/V flux-pulse amplifier.
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3.5.2 Supplementary Note 2: Device fabrication

The device was fabricated using a method similar to that of Ref. [119], but with several specific
improvements:

1. The transmon design includes a rounded spacing between the shunt capacitor plates
[Fig. 3.8(a)] to avoid the regions of high electric field which can increase sensitivity to
interface two-level fluctuators [120].

2. The flux-bias line was centred between the transmon capacitor plates to symmetrise
the capacitive coupling with the goal of decoupling the qubits from possible decay-
inducing effects of voltage noise fluctuations on the flux-bias lines.

3. As in our previous work [119], the transmon qubits were patterned with niobium ti-
tanium nitride (NbTiN) capacitor plates to further reduce susceptibility to noise from
two-level fluctuators. Prior to evaporation of the aluminium (Al) junction layers, a short
hydrogen-fluoride (HF) dip removed surface oxides to facilitate a good contact between
the evaporated Al and NbTiN thin film. To avoid contact problems caused by unwanted
etching into the silicon substrate during patterning of the NbTiN, we: 1) optimised the
reactive-ion etch (RIE) recipe and duration to minimise the substrate etch and eliminate
underetch (under the NbTiN); and 2) introduced a narrow bay in the NbTiN fingers at
the contact point to create a softer etch for more reliable contact [Fig. 3.8(c)].

4. The junction development process and double-angle evaporation parameters were op-
timised to improve the reliability of the very small junction sizes needed for the asym-
metric qubit [Fig. 3.8(b)].

3.5.3 Supplementary Note 3: Device operating parameters and qubit performance

Figure 3.9(a) shows the frequencies for the two qubits and three resonators on the device
as a function of the applied qubit flux in units of the flux quantum ®¢ = h/2e, along with
the operating points for both qubits during the quantum simulation experiments. Measured
device parameters are summarised in Tab. 3.1. Qubit 71, T§°h° and T3 decay times are
shown as a function of qubit frequency in Fig. 3.9(b,c,d).

At the operating point, the Rabi qubit QR was designed to sit below the resonator RR and
be pulsed up into resonance with it to avoid continually crossing the resonator with the QR’s
1-2 transition during the long flux-pulse sequence. Because of significant protocol times and
two operating points, an asymmetric qubit design with two flux-insensitive “sweet” spots was
used for QR [18], with drive pulses applied at its bottom sweet spot. The first-order flux in-
sensitivity at this point also mitigated some of the impact of rapid, long-range flux-pulsing on
the qubit pulse tuning. The maximum and minimum frequencies for QR in the final cooldown
were 6.670 GHz and 5.451 GHz, respectively.

The asymmetric design also minimised the stringent challenge of targetting the qubit fre-
quency to resonator closely on the scale of the very small coupling frequency. Ideally, the res-
onator would have been closer to the qubit top sweet spot to maximise phase coherence also
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Component Frequency domain Time domain
QR fmax 6.670GHz At operating point:
frin 5.451GHz T1 20—30 us
a (asymmetry) 0.68 dew 30— 60 us
Ec/2m —281 T3 20 —50 us
MHz
freadout 7.026 GHz
Sreadout/ 2T 43 MHz
RR f 6.381GHz T1r 3—4us
gr/2m (to QR) 1.92MHz gr/2m  1.95MHz
Xw/T (o Quy) —1.26 MHz
Qw fmax 5.653GHz At operating point:
fexp 5.003 GHz T1 30—40 us
Ec S— Tscho 5 7us
freadout 6.940GHz T3 1.5 -
1.8 us
Sreadout/ 2T 42 MHz At top sweet spot:
Tscho 30—60 ps
T 20 —50 us

Table 3.1: Measured device parameters and qubit and resonator performance. The coupling
strength between @R and RR was measured both by spectroscopy of the avoided crossing,
and time-domain measurement of the vacuum Rabi oscillation frequency. For both qubits,
Ramsey sequences measured at the sweet spots exhibited beating consistent with quasipar-
ticle tunnelling [15]. T2*s reported here were measured by fitting a decaying double sinusoid
to a long, beating Ramsey signal and represents the underlying coherence of the qubits. At
the operating point for Qyy far from the sweet spot, no beating was observed in the Ramsey

measurements.

during the interaction pulses. However, with the asymmetric design, the reduced flux gradient
relaxes this constraint. With an asymmetry parameter of o = (ET"**—E min)/(ET"**+Ey,
0.68, the Ramsey time T3 for @R did not typically drop below a few microseconds, even at
the positions with steepest flux gradient.

The asymmetry of QR was smaller than targetted, with the result that the bottom sweet
spot was also lower in frequency than intended. The ancilla qubit Qyy (a standard symmet-
ric transmon) was therefore operated around 650 MHz below its own maximum-frequency
sweet spot of 5.653 GHz. At this operating point, its T2* was typically > 1.5 us. Because
we were able to drive Qyy and achieve good photon-sensitive operation at this lower position,
we chose not to rapidly tune its frequency up to the sweet spot to perform the photon meter

measurements.

To identify the flux operating point that positioned QR precisely at the bottom sweet spot,
we applied the following procedure. We first decoupled the applied DC qubit fluxes, applying

min) ~
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the appropriate linear correction to compensate for flux cross-talk. Then, after positioning Qyy
roughly at its selected operating point, we applied a simple excitation swapping sequence for
QR with R with fixed swap time (near a full swap) and varying amplitudes of positively
and negatively directed pulses. Finally, we varied the applied flux on QR and identified the
operating point as the symmetric flux point where the qubit hit the resonance for positive
and negative pulses of equal amplitude. We were able to identify this point to 1 part in 5000.
Because the precise choice of operating frequency for Qyy was not critical, any slight shift in
frequency due to residual DC cross-talk remaining after the flux decoupling measurements
was unimportant.

3.5.4 Supplementary Note 4: Calibration of the flux distortions

Implementing the digital Trotterisation of the Rabi model proposed in Ref. [88] required tuning
the qubit frequency with a long series of square interaction pulses. To achieve this, it was
necessary to compensate for the filtering effects of electronics and microwave components
in the line (Fig. 3.7) [121]. One of the particular challenges of an experiment using a long train
(up to 10 ws) of very short pulses (10-20 ns) is that the system is sensitive to both short- and
long-time pulse distortions. These effects included the intrinsic bandwidth of the AWG and the
flux-pulse amplifier, the high-pass characteristics of the bias tee, a range of low-pass effects
including the Minicircuits and eccosorb filters and filtering from the skin effect of the coaxial
cabling, pulse bounces at impedance mismatches, as well as more intangible effects such as
transient decays in step responses. Subject to the system operating in a linear regime (e.g.,
the AWG operating in a comfortable amplitude range), this could be achieved by applying
predistortions to the target fluxing sequence.

Figure 3.10 illustrates the calibration process used in this experiment. Rather than build-
ing a single, comprehensive model for all flux distortions, we took a divide-and-conquer ap-
proach, applying a series of corrections to compensate individual effects. For processes out-
side the fridge, we calculated the required compensations by directly measuring the system
step response using a fast oscilloscope (R&S RTO1024, 10 Gs/s sampling rate and 2 GHz
bandwidth). We applied predistortion corrections sequentially, at each step correcting the
longest-time behaviour and zooming in to shorter time scales once the longer-time response
is successfully corrected. Once measuring through the fridge, we optimised on the shape
of the two-dimensional flux-pulse resonance, the so-called “chevron”. Again, we typically fo-
cussed initially on correcting the coarse features before zooming in to finer details.

The procedure we used to calculate the external corrections was:

« Sample a measured step response at a period 7: x[n] = x(nT).
« Construct the system impulse response function according to: h[n] = x[n] — x[n—1].

« Construct the system transfer matrix H from h[n] (H is a lower-triangular matrix with
h[j] in every position on the j lower diagonal).

- Invert H to find the transfer matrix of the so-called predistortion kernel and calculate
the step response of the predistortion kernel as Hu[n], where u[n] is the discrete
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Heaviside function. This numerical matrix inversion step limits the length of the step
response that can be treated in this way. The sampling period T is chosen to ensure
the sampled step response covers the region of interest.

+ Fit the numerically inverted kernel step response using a simple functional form which
can then be used to construct a high-resolution predistortion kernel (the impulse re-
sponse calculated as above from a high-resolution step response). The down-sampling
of the step response reduces the fit function dependence on high-frequency effects. For
each step, we varied the sampling period to check that the fit parameters were relatively
robust to details of the sampling.

Figure 3.10(a) shows the step response from the AWG measured after the home-built
flux-pulse amplifier (see Fig. 3.7), with a zoom into the top of the step in (b). In this case, the
longest-time response was actually an effectively linear ramp over the long step response.
Here, we used a slightly modified procedure to the one above, fitting a linear function directly
to the measured step response. Using Laplace transformations, it is possible to show that a
step response with a linear ramp, (1 + at) u(t), can be corrected using a predistortion ker-
nel with an exponentially decaying step response exp(—at) u(t). After this linear correction,
we then implemented a series of three corrections with “exponential-approach” predistortion
step responses of the form (1 + acexp(—t/7))u(t) with T values between 5 s and 500 ns
(various amplitudes), determined using the above procedure. Figure 3.10(c) shows the cor-
rected step function measured after applying the four initial corrections. The small but distinct
sawtooth structure in the otherwise flat step response is due to the vertical resolution of the
AWG.

After correcting for distortions from the AWG and flux-pulse amplifier, we measured the
step response after the bias tee, at the fridge input. Figures 3.10(d, e) show the measured
step response and sampled predistortional kernel step response calculated using the above
procedure (with 7 = 50 ns). The high-pass characteristics of a reactive bias tee’s RF input
naively predict a kernel step response with a full initial step followed by a continually increas-
ing linear voltage ramp. From Fig. 3.10(e), however, it is clear that the kernel step response
is not completely linear. We instead fit the step response to a quadratic form and proceed
as above. The step response measured after compensating for the bias tee is shown in
Fig. 3.10(f).

Inside the fridge, we calibrated the flux-pulse predistortions to optimize the shape of the
flux chevron [Figs 3.10(g—i)], which probes the excitation-swapping exchange interaction be-
tween qubit QR and resonator RR as a function of flux-pulse amplitude and interaction time.
When the qubit is exactly on resonance, the swapping interactions are expected to be slowest
and strongest. As it moves off resonance, the oscillations speed up and reduce in amplitude.
Interestingly, despite the good performance of the bias-tee correction when measured out-
side the fridge, the chevron measured with the same corrections [Fig. 3.10(g)] showed a
clear ramp in the start of the interaction signal (the lateral skew), consistent with an under-
compensated bias tee. We do not understand the cause of this discrepancy, but corrected it
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empirically by adjusting the linear coefficient of the bias-tee correction. The chevron mea-
sured after optimising this correction (final linear coefficient corresponded to a time con-
stant 7 = 9.7 ws) showed the characteristic asymmetric signature of low-pass filtering
from the skin effect [Fig. 3.10(h)]. This was corrected by applying a kernel numerically cal-
culated from a step response of the form (1 — erf(ay gHz/214/t + 1)) u(t) [122], using
a1 gHz = 1.7 dB. Finally, we implemented another series of exponential-approach kernels
with values of T between 1500 ns and 30 ns, to achieve the result in Fig. 3.10(i).

3.5.5 Supplementary Note 5: Calibration of the photon meters

Using a photon meter based on a Ramsey sequence’s sensitivity to qubit frequency and
Qw’s dispersive frequency dependence on resonator photon number allows detection of av-
erage photon number with controllable sensitivity and dynamic range. Suppose the resonator
is in the state ¢ = Zj a;|j). To implement the photon meter, we apply a Ramsey pair of
7 /2 pulses with pulse separation T on Qyy at a frequency Q\% = Q\(}V — d2x, correspond-
ing to the dth photon peak. Different photon-number frequency components accrue different
phases during the variable delay between pulses, given by 8; = (j—d) 2. By driving first
around o x and then around o y, the dth photon term ends up on the equator of the Bloch
sphere. Measuring the excitation of Qyy then gives a measurement probability

e ‘aj|2 :
pW:Z 5 (1+sin6;).
J

Provided T is chosen such that OJ- is small for all photon components j present in the photon
state,

=
I

1+ (—d)2xrley |,
J

= %(1+2XT(5_ d)).

Increasing T therefore increases the sensitivity of measured probability to average photon
number, but decreases the accessible range of photon numbers for which the linearity con-
dition sin OJ- ~ GJ- holds. An accurate calibration of the photon meter also requires an ac-
curate calibration of the single-photon dispersive frequency shift 2x and Qyy’s zero-photon
frequency (which determines Q\‘jv). Here, we describe a self-consistent calibration of our
photon meters which does not rely on quantities derived from other measurements, such as
spectroscopy, and relies primarily on knowing drive-pulse frequencies, probably the most ac-
curate control parameter we have in the experiment. At each stage, we first calibrate Qyy’s
zero-photon frequency using a standard Ramsey sequence. With the performance of Qyy at
the operating point (dephasing time T2* ~ 1.5 us), we routinely achieved frequency accuracy
better than 10 kHz.

To calibrate the single-photon dispersive shift [sequence shown in Fig. 3.11(a)], a cal-
ibrated SWAP pulse on QR transfers an excitation into Ry, before the resonator photon
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number is probed via Q. The single-photon excitation in RR dispersively shifts the fre-
quency of Qyy by 2x. Driving Qyy at the calibrated zero-photon frequency around ¢ x and
then o y, the correct parity condition corresponds to the point where the curve crosses 0.5
excitation probability [Fig. 3.11(d): 383 ns wait time]. This measurement is robust to both the
relatively short resonator photon decay time T1, r ~ 3.5us and the short dephasing time of
Qy at its operating point (T ~ 1.5-1.8 us at ~ —650 MHz detuned from its top sweet
spot), because these processes both reduce the visibility of the curve, but not the oscillation
period, and therefore do not affect the value of the crossing point. The zero-photon frequency
calibration is the main limitation, because that calibration limits the accuracy with which the
crossing point represents the correct delay time between 7 /2 pulses.

The wait time identified above specifies the time between the end of the first pulse and
the beginning of the second required to realise a photon parity measurement, but this does
not account for the finite pulse duration. To calibrate the effective value of T, we fix the pulse
separation and sweep the frequency of the Qyy drive generator this time without loading any
photons into the resonator [Fig. 3.11(b)]. For a pulse separation of 383 ns, the effective T
is ~ 398 ns [Fig. 3.11(e)]. Note that the difference here is not quite the same as the drive
pulse width used in the experiment (40 = 12 ns). This value of T is related to the dispersive
shift of RR on Qyy in the usual way: 7 = 7 /2, giving 2x/2m = —1.26MHz. Note that,
when used directly as a parity meter, the read-out of Qyy was calibrated using a parity pulse
pair either with the usual phase on the second pulse, or a phase shifted by 7 radians. This
accounted for the reduced parity visibility from the short T2* of Qyy at its operating point
and helped to track any fluctuations in the correct parity extremes as a result of drift in qubit
frequency and T

Figures 2(a, b) show the pulse sequences for two different photon meters used in the
experiment, one with the standard Ramsey sequence [calibrations in Figs 3.11(f, g)] and one
an unbalanced “echo™like sequence with an off-centre refocussing pulse (calibrations not
shown). The mapping between average photon number and qubit excitation is approximately
valid provided the phase advance/delay is less than 30 degrees, which corresponds to a qubit
excitation of 0.25. We select the appropriate Ramsey pulse separation by driving the qubit
at the frequency corresponding to the mid-point of the desired range (here, the 4-photon
position), calculated from the dispersive shift and the calibrated zero-photon frequency, and
choosing the separation which gives the target excitation probability of 0.25 [Fig. 3.11(f)], here
4 ns. The effective T was calibrated, as above, to be ~ 19 ns. Moving to the smaller T nec-
essary for a higher photon number dynamic range requires frequency refocussing. Ultimately,
the main limitation to the range achievable with such a photon meter is set by the bandwidth
of the drive pulse.

We used a photon number meter calibrated using the above procedure to follow the
excitation-swapping oscillations of a vacuum-Rabi exchange between QR and RR, plotted
as a function of the duration of the flux pulse on QR [Figure 3.11(h); sequence in Fig. 3.11(a)].
The drifting baseline results from pulsed flux cross-talk between @R and Qyy. To correct this,
we repeated the same measurement without initially exciting QR in order to avoid exciting
photons in RR [Fig. 3.11(c)]. This curve was compensated by adjusting the drive phase of
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the second Ramsey pulse in the photon meter (on Qyy), leading to the compensated mea-
surement in Fig. 3.11(j). To maximise the sensitivity of the cross-talk calibration, during the
calibration, Qyy can be driven at the zero-photon frequency, which then places the expected
“null” measurement result on the equator of the Bloch sphere. A modified version of this
procedure can be carried out for all flux-pulse sequences of interest. Note that cross-talk
compensation was also necessary to ensure an accurate calibration of the parity condition in
Fig. 3.11(d) above.

3.5.6 Supplementary Note 6: Calibration of Wigner tomography

We implement Wigner tomography using the direct method of Ref. [101]. After the algorithm
part of the pulse sequence [represented in Fig. 3.12(a) by a swap], a 50 ns square pulse ap-
plies a coherent displacement to the resonator photon state before the usual parity readout
pulses. The phase-sensitive resonator drive tone is created via single-sideband modulation in
an 1Q mixer. We calibrate the drive frequency and amplitude using the already calibrated pho-
ton meter (Figs 3.12(b, c), respectively). The drive amplitude is calibrated in the middle of the
linear range, where we expect the best performance. Figure 3.12(c) illustrates the breakdown
of the linear mapping between average photon number and Qyy excitation probability both
towards the edge of the linear regime and above the range, as the higher photon components
wrap around in phase. In the digital QRM simulation, for phase-sensitive Wigner tomograms
(e.g., Figs 3 and 4), it was critical to maintain phase stability between the drives on QR and
RR during the measurement. To achieve this, the two microwave generators were synchro-
nised using a 1 GHz reference, with frequencies set as a multiple of the 5 kHz experimental
repetition rate.

Figure 3.12 shows one- and two-dimensional Wigner tomograms of a zero-photon (d, e)
and one-photon (f, g) state (scaled in terms of photon parity). The maximum visibilities in
Figs 3.12(f, g) do not reach the expected values, because these tomograms were measured
without an accompanying full set of parity meter calibrations. However, the radial symmetry
observed in these tomograms demonstrates the correct behaviour of the coherent resonator
drive.

The curves in Figs 3.12(d, g) show fits to the data of a classical mixture of zero-photon and
one-photon Wigner function cross-sections, with a free x-axis scaling parameter has been
included in the fits. These fits demonstrate that the measured tomograms agree well with
theoretical expectations, subject to an x-axis scaling error of ~ 5%. That is, the fits indicate
that the amplitude calibrations result in a small systematic overestimate in displacement by
5%. This also agrees with two-dimensional double Gaussian fits of individual frames of the
unconditional Wigner movie in Fig. 3(a) of the main text, which give an average Gaussian
width @ = 0.526 4 0.003, compared with the expected value of 0.5.

3.5.7 Supplementary Note 7: Analog vs digital Jaynes-Cummings dynamics

Simple modelling of the Trotterised version of the full Rabi model shows that high-quality
simulations require both slow dynamics and short Trotter steps (i.e., fast flux pulsing). Such
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an experiment is sensitive to both short-time and long-time effects in the flux-pulse shaping.
A simpler experiment which verifies the performance of this flux pulsing is to implement a
digital simulation of the standard Jaynes-Cummings (JC) interaction underlying the standard
excitation-swapping experiments demonstrated with single flux pulses (Fig. 3.10).

In the standard continuous-wave (single-pulse) version of a JC excitation-swapping in-
teraction, resonance between the qubit and resonator frequencies gives rise to maximum
visibility oscillations of the excitation moving between the two components. When detuned,
the different phases accrued by the qubit and resonator during the interaction decrease the
oscillation visibility, while increasing the oscillation frequency. This gives rise to the character-
istic shape of the flux chevron. Significant care is required, however, to accurately reproduce
the (analog) JC interaction with a digital pulse train.

Figures 3.13(a, b) show analog and digital versions of the JC interaction (viewed through
the qubit excitation) under otherwise identical conditions. The digital chevron shows a series
of resonances which do not appear in analog measurements (not shown), and there is also
no chevron visible at the natural resonance condition around 2.45 Vpp.

The new features relate to the extra “interaction off” times in the digital version. The reg-
ular spacing between neighbouring satellite resonances is around 50MHz (after converting
AWG amplitude to qubit frequency), which is the inverse pulse duration. During the interaction
time, the qubit-resonator relative phase evolves as expected. However, in the “off” time be-
tween interaction pulses, the qubit accrues phase at a different rate, and will hence not have
the required phase at the beginning of the next pulse for the interaction to pick up where
it left off at the end of the previous pulse. Therefore, the necessary condition for observing
a chevron feature at exactly the position of the natural resonance is that the qubit phase
accrued (relative to the resonator) during the “off” time should be a multiple of 27. The obser-
vation of multiple satellite resonances is a form of digital aliasing, where the interaction will
build up constructively from pulse to pulse provided the relative phase accrued between qubit
and resonator during the “on” time of the pulse again differs only by an integer multiple of 2.
However, this is an aliasing of the dynamics itself, not just an aliasing of the measurement,
which could also occur in natural continuous-wave (CW) chevrons and would never lead to
the observation of extra satellite peaks.

This pulsed interaction can also be viewed as a Trotterised simulation of the CW inter-
action. While successive interaction pulses obviously commute with each other, they do not
necessarily commute with the “off” pulses. The condition on qubit-resonator phase during the
“off” pulse can be understood as the condition where the Trotter error vanishes, because the
Hamiltonian term resulting from the qubit detuning coincides with the identity. The satellites
arise because the phase contribution from the qubit detuning in the “on” pulse is identical if
the frequency change matches a multiple of 27 phase.

To compensate for the phase error accrued in the qubit during the “off” pulses, we apply
a 5 ns compensation flux pulse between interaction pulses. Using the flux-pulse amplitude
which corresponds to the centre of the CW chevron, the amplitude of the compensation pulse
was swept to identify the correct compensation point. In this way, very good agreement was
achieved between the digital JC dynamics and the traditional analog version [Figs 3.13(d—
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i)]. The main differences are a slightly reduced visibility because of the increased experi-
ment time, and a slighly lower effective coupling frequency (g/2m ~ 1.8MHz, instead of
~ 1.95MHz). The latter most likely arises from residual short-time pulse imperfections which
do not contribute significantly to the long interactions in the analog form.

3.5.8 Supplementary Note 8: Trotter simulation with excited and ground initial states

In the degenerate-qubit case, when understood in terms of the cavity trajectories in phase
space, it is clear that the structure of the dynamics of the full Rabi model with USC should
not depend on whether the qubit starts in the ground or excited state. This contrasts with
the JC interaction, where the |g, 0) state is decoupled from the rest of the system and the
system will only undergo nontrivial dynamics if an initial excitation is loaded in the system.
Indeed, in a natural USC system, if it were possible to turn the coupling on and off rapidly,
it would be extremely interesting to watch an uncoupled-system ground state evolve into a
state with excitations in the qubit and cavity. In this digital simulation, however, this is less
satisfying, since the protocol in any case involves regularly injecting excitation into the sys-
tem in the form of qubit flipping pulses. Most of the results reported here therefore take the
more conservative position of initialising the system with an excitation, with the motivation
that observing a difference between the simulated dynamics and what would be expected in
a weak-coupling scenario could then only result from the simulated counter-rotating terms.
Although there were some stability issues during the measurement with ground-state initiali-
sation, there is nevertheless extremely good agreement between the two cases, for example
with the timing of the revivals in both cases agreeing with the theoretical predictions. For this
particular measurement of ground-state initialisation, qubit revivals are observed even out to
r= gR/wg‘ ~ 1.

3.5.9 Supplementary Note 9: Trotterisation performance vs Trotter order

As discussed already, initial modelling of a Trotterised Rabi simulation showed that unusually
low qubit-resonator coupling between QR and RR was required to be able to achieve rea-
sonable simulation fidelities given the hard bandwidth limitations of flux-based fast frequency
tuning. This, however, required longer experimental times for the simulations, which in turn
placed significant constraints on qubit and resonator coherence. Indeed, the shorter-than-
anticipated resonator coherence time proved to be the biggest limitation. As a result, it was
critical to use all available measures to minimize the Trotter error in our simulations, given the
limits on the shortest achievable Trotter step sizes.

The accuracy of the Trotter approximation is set by the amount of non-commutativity
between different components in the step [68]. While first-order Trotterisations [exp(A +
B) =~ exp(A) exp(B)] lead to Trotter errors that scale with single commutators (quadrati-
cally with simulation time), higher-order Trotterisations can be used to eliminate lower orders
of Trotter error. For example, the symmetry of a second-order Trotterisation [exp(A + B) ~
exp(A/2) exp(B) exp(A/2)] ensures that first-order error terms (related to single commu-
tators) cancel, pushing the largest Trotter error terms out to third order in simulation time. For
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two-part Hamiltonians, however, second-order Trotterisation in practice only involves modify-
ing the pulses in the first and last Trotter steps. All the results in the main text were obtained
using a second-order Trotterisation. The plots in Fig. 3.15 illustrate that this was absolutely
critical in order to extend the simulations deep into the ultrastrong coupling regime. The first-
order and second-order Trotterisation agree reasonably well at r < 0.5, but behave funda-
mental differently at the higher values. The first-order simulation starts to show qualitatively
different behaviour for relative coupling strengths r = 0.5. In particular, only in the second-
order case are the characteristic plateaus and revivals of the USC regime observable.

3.5.10 Supplementary Note 10: Trotterisation performance vs Trotter step size

As illustrated in Fig. 3.15, the effects of Trotter error are most visible in the high r regimes,
which is reasonable, considering that for low r, the Rabi model is well approximated by the
JC model where the excitation-nonconserving terms (non-commuting with the excitation-
conserving terms) do not play a significant role. This was also visible when studying the
performance of the simulation as a function of the Trotter step size.

Measurements and numerical simulations show significant reduction in Trotter error as the
number of Trotter steps over 1.2 us increased from 24 to 60. The Trotter error shows up in
two ways, namely the central features departing from the expected plateaus, and a tendency
for the dynamical landscape to “break apart”, even out into the lower coupling regimes. In the
measured results and the simulation with decay, the fine details do not appear as strongly,
but the effect appears to wash out the oscillation dynamics more rapidly. Only at the smallest
step size are these effects absent from the measured results, and in the ideal simulations
(without decoherence) there are even then central features which only disappear at a still
smaller 10 ns step size. The measured results agree very closely with the numerical Trotter
dynamics which include only the effect of photon decay, again highlighting that the primary
limiting factor in our experiments was T 1, r- Itis clear from these results that moving towards
the smallest possible Trotter steps will be a key challenge for reaching quantum supremacy
in complex quantum simulations.

3.5.11 Supplementary Note 11: Qubit entropy dynamics

In the Rabi model, as the resonator states separate, the qubit-resonator entanglement causes
the reduced qubit state to collapse towards the maximally mixed state. A revival occurs in the
qubit purity only if the underlying entanglement is still present when the resonator states re-
coalesce at the origin in phase space. While many possible uninteresting effects may cause
an initial collapse in qubit purity, a revival in purity is a signature of entanglement with another
system, in this case the resonator. After each Trotter step, a tomographically complete set of
measurements on QR was used to reconstruct its reduced state using maximum-likelihood
tomography. We use the von Neumann entropy to characterise the purity of the reduced qubit
state and observe revivals in qubit purity out to r > 0.8 [Fig. 3.17(a)], consistent with the
observed revivals in qubit parity. While the observed revivals shown in the slices [Fig. 3.17(b)]
appear smaller than the qubit parity revivals, in fact this is deceiving, resulting from the fact
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that purity (as with other entropy measures) is a quadratic function of the qubit population
difference. The inset shows that the background noise of this signal is small and that the
revivals are quite distinct. Moreover, plotting an appropriate square root of the entropy (not
shown) shows that the revivals are consistent with the qubit parity case.
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Figure 3.3: Photon number dynamics of the quantum Rabi model in the degenerate-
qubit case. (a, b) Average photon number is probed by applying Ramsey and echo-like
pulses to Qyy. The effective Ramsey pulse separation T determines the photon dynamic
range. Because of finite pulse widths, reaching the small 7 needed for high dynamic ranges
(b) requires an unbalanced “echo”-like sequence. (c, €) Measured photon number dynamics
up to 60 Trotter steps using a low-dynamic-range (LDR) photon number meter (7 ~ 18.7 ns)
with a linear range of ~ 0—8 photons [indicated by grey regions in (e)]. Large photon popu-
lations in the resonator highlight the non-conservation of excitation number in the quantum
Rabi model. The resonator displays clear oscillations up to r > 1.8 in good agreement with
the expected qubit revival times (dashed curves). The red feature in the middle reflects the
upper limit on the number meter’s dynamic range set by Qyy “population wrapping” at high
photon numbers. (d) Measured photon dynamics up to 90 Trotter steps using a high-dynamic-
range (HDR) number meter with 7 ~ 6.5 ns and a linear range of ~ 0-20 photons, allowing
observation of photon oscillations beyond 1.5 us of simulated time (more than 75 Trotter
steps). This data shows the effect of a residual Kerr nonlinearity at high values of r. (e) Line
slices are plotted for evenly spaced resonator-coupling frequency ratios between the red and
blue dashed lines shown in (c). Grey regions delineate the linear range of the number meter.
(f) Maximum measured average photon number for each value of r for both LDR and HDR
number meters.
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Figure 3.4: Photon dynamics in phase space in the DSC regime (degenerate-qubit case)
from maximum-likelihood Wigner tomography. (a) Selected frames from a “movie” (mea-
sured over ~ 40 hours) showing the phase-space evolution of the resonator reduced state for
r ~ 0.9 (frames labelled by Trotter step n and simulated time), with the final panel showing
the full trajectories determined from 2D double-Gaussian fits to the raw data [the full movie
is provided in the Supplementary Movie 1 of the published work). Plotted tomograms are
maximum-likelihood reconstructions of direct Wigner tomography measured data with a sys-
tematic phase correction [see Methods]. When the effective drive on the intracavity field cre-
ated by the Rabi interaction has a strength comparable to the resonator’s natural frequency
(i.e., gR ~ wqu), this drive is able to create a significant displacement of the cavity field before
the phase-space rotation caused by wﬁ brings the field back towards the origin. This effect
is observed clearly here in the creation of two well-resolved, rotating peaks and subsequent
re-coalescence which are characteristic signatures of DSC dynamics. Deviation from the
ideal circular trajectories (orange curves) arises from photon decay. The measured trajectory
shows excellent agreement with a numerical Trotter simulation ath/27r = 1.79 MHz which
includes resonator T 1 = 3.5 us (green curves). From the fits, we calculate an estimated
Wigner function width o = 0.526 4- 0.003, instead of the predicted 0.5, indicating a displace-
ment calibration error of ~ 5% [Supplementary Note 6]. Background noise arises from phase
instability of microwave sources and frequency stability of the Wigner qubit over the long mea-
surement. (b-e) Conditional phase-space evolution illustrated by the resonator Wigner func-
tion for different initial states of QR: (b) |0), (c) |1), (d) |[+) and (e) |—). The phase-space
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Figure 3.5: Nonclassical resonator cat states from conditioned DSC-driven entan-
glement (degenerate-qubit case). The plots show Wigner functions of nonclassical
Schrédinger cat states in the Rabi resonator, reconstructed from maximum-likelihood state
tomography for two different DSC coupling strengths with gR/wﬁ ~ 0.9 (top, n = 10 Trotter
steps) and gR/wﬁ ~ 2.1 (bottom, n = 8 Trotter steps), conditioned on measuring QR in
|0) (left) and |1) (right). The regions of negativity and visibility of several fringes between the
well-resolved coherent state peaks are clear signatures of nonclassicality in the Rabi field
mode and demonstrates the coherence and entanglement of the underlying qubit-resonator
state. Combined with the qubit conditioning shown in Fig. 3.4, observing clear cat states for

both outcomes of the QR measurement is a clear signature of coherent DSC dynamics.
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Figure 3.6: Measured and numerical quantum Rabi model qubit dynamics for nonde-
generate qubit frequency. The cases implemented are gR /wg ~ 4 (top), ~ 2 (middle)
and ~ 1 (bottom), with the plots showing measured qubit dynamics (left), numerically simu-
lated dynamics of a Trotterised QRM with the measured T1, r ~ 3.5 pus included (centre),
and ideal Rabi dynamics (right). The results illustrate that the nondegenerate-qubit dynamics
do not deviate significantly from the degenerate-qubit case in the regime where w,B > wg.
The measured dynamics exhibit many qualitative features in good agreement with the ideal
QRM and show excellent agreement with the numerical Trotter simulation with decay, indicat-
ing that the fidelity of the measured results to the ideal case is limited primarily by resonator
decay.
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Figure 3.7: Experimental schematic showing the connectivity of microwave electronics and
components in and outside the dilution refrigerator. The sample mounted below the mixing
chamber typically remained at around 30 mK. Qubit and resonator drive lines and flux-bias
lines were thermalised and attenuated at the 4 — K and 30 — mK stages and were low-pass
filtered before arriving at the sample. The qubits and resonator drive pulses were generated
by AWGs and 1Q mixers. Home-built low-noise current sources provided DC bias currents
for qubit frequency tuning, which were combined with fast frequency-tuning bias pulses us-
ing reactive bias tees. AWG markers provided the gating for pulse-modulated measurement
pulses.
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Figure 3.8: SEM images of a sister device with added false colour. (a) Rabi qubit (QR) with
coupling to the Rabi resonator (RR, above) and readout resonator (below), showing the cen-
tred flux-bias line and displaced SQUID loop. QR is coupled to RR near its shorted end in
order to achieve the required small coupling g. (b, c) Josephson junctions are contacted to
the NbTiN SQUID loop fingers using small bays to achieve better contact. In (b), it is possible
to see the large asymmetry in junction size, with a zoom on the small junction in (c).
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Figure 3.9: Schematic showing measured spectral arrangement for the digital Rabi quantum
simulator device and the qubit coherence times. (a) Measured data for the 0—1 transition of
the Rabi qubit QR (green curve) and the Wigner qubit Qyy (blue curve) are plotted as a func-
tion of applied flux in units of ®g. Also shown are the frequencies of the Rabi resonator Rg
(red: wr = 6.381GHz) and the readout resonators for QR (green dashed: ~ 7.03GHz) and
Qw (blue dashed: ~ 6.94GHz). The operating points of the qubits for the Trotter simulation
are given by the green and blue dotted lines for QR and Qyy, respectively. (b, ¢, d) Time con-
stants measured for QR (green) and Qyy (blue) for (b) T1, (c) T§Ch° and (d) T5. Note that,
at the sweet spots, measured qubit T2* times here are limited by slow frequency-switching
processes in the qubits such as quasiparticle tunnelling [15].
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Figure 3.10: Calibration of the flux distortions. (a,b) Step response of the amplified AWG flux
channel output with a zoom in (b), measured using a fast oscilloscope. (c) Corrected step
response achieved using one linear response correction and three exponential decay correc-
tions with parameters (T, o): (5.1us, 0.0012), (670ns, 0.015) and (520ns, -0.00037) (see text
for details). (d, e) Measured step response (d) and numerically calculated predistortion step
response (e) after the bias-tee. (f) Corrected step response achieved using a quadratic bias
tee correction (see text for details). (g) Distorted flux “chevron” measured with the corrections
applied in (e). (h) Dramatically improved chevron obtained after sweeping one parameter in
the bias-tee correction (that corresonding to the standard RC time constant). The asymmetric
signature observed here is characteristic of the low-pass filtering effect produced by the skin
effect in the coaxial cables. (i) A well-compensated chevron obtained after applying a correc-
tion for the skin effect and several more exponential decay corrections with (T, a): (350ns,
-0.0063), (600ns, -0.0037), (1500ns, -0.002), (100ns, -0.0017) and (30ns, 0.0036).




60 3. RABI MODEL

(a) Finding parity condition (b) Calibrating parity tau (c) Calibrating flux cross-talk
]' Prep. Parity pulses Msmt T ‘ Prep. Parity pulses Msmt T ‘ Prep. Parity pulses Msmt
@ @ o
° ° °
£ l | I £ | 4 = | 4
g- L] R | E- L] | ' g— LJ '
< variable delay < variable frequency <
Time — Time — Time —
Finding parity condition Callibrating parity tau
20 T; =1.488 £ 0.043601 s 2" @ M A, A A,
8os Qo8 ! % 7 R 2
g0 2 P PR I }
<] < ] )
a a 4 0 d 4 4 4 4 0
206 206 \ ] )y y . !
g ko o o
3 0 I M S S S G T SN S
Bo4 204 r PR LI { .
2 £ A\ LI L v 7
202 202{ Y4 o ' A~
] 2 Ly & o —e— measured values
S Y90 w [~ fit: effective tau = 397.73 ns
0.0 0.2 0.4 0.6 0.8 1.0 1.2 4.994 4.996 4.998 5.000 5.002 5.0C
Wait time (us) Wigner drive frequency (GHz)
Choosing photon meter range Calibrating photon meter tau
z 1.0 ® 51 0 @
o o
So08 So038
[ [
s =
206 206
s el
® %
go4 Bo4
S k]
= <
5 \\w 5 — ot
3 o " —e— measured values
E] 5 <" " -
<] 0.0 [«] 00 fit: effective tau = 18.72 ns
0.2 0.4 0.6 0.8 1.0 1.2 4.994 4996 4.998 5.000 5002 5.004 5.006 5.008 5.010
Wait time (us) Wigner drive frequency (GHz)
Excitation swapping with flux cross-talk Calibrating flux cross-talk without excitation Calibrated excitation swapping
5101 M 2101 m 21010
Es Es Es
c £ g
S 6 §6 56
2 2 2
a 4 a 4 a 4
1) [} [}
P M P W g2
o o 3
s s s
E) E T 0 I PN S o S gt
0.0 0.5 1.0 15 0.0 0.5 1.0 15 0.0 0.5 1.0 1.5
Wait time (ps) Wait time (ps) Wait time (ps)

Figure 3.11: Calibration of the photon meter. (a—c) Measurement sequences used for calibrat-
ing the parity meter, specifically: (a) the dispersive shift of Rg on Qyy, (b) the effective delay
time T corresponding to a particular pulse separation, and (c) high-frequency flux cross-talk
between flux pulses on QR and the flux offset of Qyy. (d) Calibrating the parity condition,
identified as the first crossing point of a Ramsey experiment with one photon in the resonator,
giving a pulse separation of 383 ns. (e) Calibrating the effective delay time 7 for a partic-
ular pulse separation. Using parity pulses separated by 383 ns, we calibrated the effective
separation T to be 398 ns, corresponding to a dispersive shift 2 /27 = —1.26 MHz. (f)
Configuring an average photon number meter for a specific dynamic range of 0—8 photons.
Driving at the midpoint of the 0—8 photon frequency range, the Ramsey pulse separation is
chosen to lie on the edge of the linear region. For 0—-8 photons, we chose to use a separation
of 4ns. (g) Calibrating the photon meter effective 7. Repeating the measurement described
in (e), the effective pulse delay for a 4 ns separation was ~ 19ns. Comparing the oscillation
period of the curves in (e) and (g) highlights the different sensitivity of the two photon meters.
(h—j) Calibrating high-frequency flux cross-talk. The flux cross-talk is calibrated by measuring
the photon meter without loading excitations into the resonator and corrected by adjusting
the phase of the second photon meter pulse.
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Figure 3.12: Calibration of Wigner tomography. (a) Pulse sequence used to make the dis-
placed photon parity measurement which provides a direct measurement of the Wigner func-
tion at a particular position in phase space. (b) This plot shows the response of RR to the
drive pulse as a function of drive frequency, as recorded by the Qyy photon meter, centred
at 6.3814 GHz, with a FWHM of ~ 21 MHz, in reasonable agreement with the 18 MHz
expected for a 50 ns square pulse. (c) The pulse displacement amplitude is also calibrated
using a low-dynamic-range photon meter with a linear range of 0—8 photons. We fit the data in
the centre of the linear range, where the photon meter mapping is most accurate, with a func-
tion of the form (n) = kpA2, finding ka = 9.10. (e, f) Measured direct Wigner tomograms
of zero-photon (e) and one-photon (f) states (one-photon state prepared using a calibrated
SWAP pulse between QR and RR). (d, g) Direct Wigner tomogram slices of zero-photon (d)
and one-photon (g) states measured using the full parity meter calibrations.
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Figure 3.13: Comparison of analog and digital versions of a Jaynes-Cummings interaction. (a)
Standard analog JC chevron showing the resonant excitation swapping between qubit and
resonator after the qubit is initialised in the excited state as a function of flux-pulse amplitude
(x axis) and duration (y axis) (qubit-resonator detuning and interaction time, respectively).
The x-axis location of the chevron (~ 2.445 Vpp) therefore defines the qubit-resonator on-
resonance condition. (b) Digital JC chevron (measured under otherwise identical conditions)
using a pulse duration of 20 ns showing a series of equally spaced resonances with different
apparent interaction strengths. (c) We scan amplitude of a 5 ns compensation flux pulse
to identify the value which enforces that the digital chevron is centred around the natural
resonance position. (d-f) Standard analog and (g-i) digital JC chevrons measured by probing:
(d, g) the excited state probability for QR, (e, h) the average photon number in Ry (linear
range 0-2 photons), and (f, i) the photon parity of RR.
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Figure 3.14: Comparison of the simulation between initialising in the excited (left) versus
the ground state (right). (a, b) These plots directly verify the symmetrical behaviour of the
simulated Rabi model. (c,d) Line slices are plotted at evenly spaced frequencies between the
red and blue dashed lines in (a, b). Arrows in (c, d) show the expected time for the first revival.
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Figure 3.15: Comparison of simulation performance for asymmetric, first-order (a—d) and sym-
metric, second-order (e—h) Trotterisation. (a, €) Pulse sequences for the first-order (a) and
second-order (e) Trotterisation. (b, f) Numerical simulations of the Trotterised Rabi model for
the ideal case with no decay. Note that the sharp features in the centre of the plots (deep in
the ultrastrong coupling regime) are not artifacts of the numerics, but Trotter error related to
the 20 ns step size (these features disappear for 10 ns pulses). (¢, g) Experimental quantum
simulations for first-order (c) and second-order (g) Trotterisation, showing very good agree-
ment with the numerical results in (b, f). (d, h) Vertical line slices are plotted for evenly spaced
resonator frequencies between the red and blue dashed lines in plots (c) and (g).
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Figure 3.16: Comparison of simulation performance for various Trotter step sizes, showing
measurements (left), numerical simulations with no decay (middle) and numerical simulations
with the measured T1, r = 3.5us: (a) 20 ns steps (60 Trotter steps), (b) 30 ns steps (40
Trotter steps), (c) 40 ns steps (30 Trotter steps) and (d) 50 ns steps (24 Trotter steps).
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Figure 3.17: Tomography of the reduced state of qubit QR as a function of simulation time and
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EXPERIMENTAL ERROR MITIGATION VIA SYMMETRY VERIFICATION
IN A VARIATIONAL QUANTUM EIGENSOLVER

Variational quantum eigensolvers offer a small-scale testbed to demonstrate the performance
of error mitigation techniques with low experimental overhead. We present successful error
mitigation by applying the recently proposed symmetry verification technique to the exper-
imental estimation of the ground-state energy and ground state of the hydrogen molecule.
A finely adjustable exchange interaction between two qubits in a circuit QED processor ef-
ficiently prepares variational ansatz states in the single-excitation subspace respecting the
parity symmetry of the qubit-mapped Hamiltonian. Symmetry verification improves the energy
and state estimates by mitigating the effects of qubit relaxation and residual qubit excitation,
which violate the symmetry. A full-density-matrix simulation matching the experiment dissects
the contribution of these mechanisms from other calibrated error sources. Enforcing positivity
of the measured density matrix via scalable convex optimization correlates the energy and
state estimate improvements when using symmetry verification, with interesting implications
for determining system properties beyond the ground-state energy.

This chapter has been published in Physical Review A 100, 010302 (2019) [58].
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68 4. SYMMETRY VERIFICATION

4.1 Introduction

Noisy intermediate-scale quantum (NISQ) devices [123], despite lacking layers of quantum er-
ror correction (QEC), may already be able to demonstrate quantum advantage over classical
computers for select problems [124, 125]. In particular, the hybrid quantum-classical varia-
tional quantum eigensolver (VQE) [54, 126] may have sufficiently low experimental require-
ments to allow estimation of ground-state energies of quantum systems that are difficult to
simulate purely classically [50, 127-129]. To date, VQEs have been used to study small exam-
ples of the electronic structure problem, such as H» [30, 31, 55, 56, 59, 130], HeH+ [54, 131],
LiH [31, 55, 130], and BeH> [31], as well as exciton systems [132], strongly correlated mag-
netic models [130], and the Schwinger model [133]. Although these experimental efforts have
achieved impressive coherent control of up to 20 qubits, the error in the resulting estimations
has remained relatively high due to performance limitations in the NISQ hardware. Conse-
quently, much focus has recently been placed on developing error mitigation techiques that
offer order-of-magnitude accuracy improvement without the costly overhead of full QEC. This
may be achieved by using known properties of the target state, e.g., by checking known
symmetries in a manner inspired by QEC stabilizer measurements [57, 134], or by expand-
ing around the experimentally-obtained state via a linear (or higher-order) response frame-
work [135]. The former, termed symmetry verification (SV), is of particular interest because it
is comparatively low-cost in terms of required hardware and additional measurements. Other
mitigation techniques require understanding the underlying error models of the quantum de-
vice, allowing for an extrapolation of the calculation to the zero-error limit [53, 136, 137], or
the summing of multiple calculations to probabilistically cancel errors [136, 138, 139].

In this Rapid Communication, we experimentally demonstrate the use of SV to reduce the
error of a VQE estimating the ground-state energy and the ground state of the H> molecule
by one order of magnitude on average across the bond-dissociation curve. Using two qubits
in a circuit QED processor, we prepare a variational ansatz state via an exchange gate that
finely controls the transfer of population within the single-excitation subspace while respecting
the underlying symmetry of the problem (odd two-qubit parity). We show that SV improves
the energy and state estimates by mitigating the effect of processes changing total excitation
number, specifically qubit relaxation and residual qubit excitation. We do this through a full
density-matrix simulation that matches the experimental energy and state errors with and
without SV, and then using this simulation to dissect the contribution of each error source.
Finally, we explore the limitations of SV arising from statistical measurement noise, and find
that enforcing the positivity of the fermionic 2-reduced density matrix ties the improvement in
energy estimation from SV to the improvement in ground-state fidelity (which was previously
not the case).

4.2 The Variational Eigensolver

A VQE algorithm [54, 126] approximates the ground state p(o) of a Hamiltonian H by a vari-
ational state p('a"")(G), with 6 a set of parameters that control the operation of a quantum
device. These parameters are tuned by a classical optimization routine to minimize the varia-
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=

tional energy E(8) = Tr[p("™)(8)H]. In practice, this is calculated by expanding p(r2) ()
and H over the N-qubit Pauli basis PN := {I, X, Y, Z}®N,

o 1 raw) , 2\ 5 ’ 5
p(raw)(e) _ SN Z pSS )(Q)P, H = Z hlgP, (4.1)
PepN PepN

(raw) , 7

where the Pauli coefficients are given by Pp () = Tr[/sp(’aw)]. The variational energy

may then be calculated as

E@g) = S o™ (@)hg. (4.2)
PepN

For example, consider the H> molecule studied in this work. Mapping the Hamiltonian of this
system (in the STO-3G basis) onto four qubits via the Bravyi-Kitaev transformation [140] and
then further reducing dimensions by projecting out two non-interacting qubits [30] gives

Auo =hpII+ hz1ZI + hi71Z
+ hxxXX + hyyYY + hz7ZZ, (4.3)

where coefficients h,g depend on the interatomic distance R. These coefficients may be
determined classically using the OpenFermion [52] and psi4 [141] packages. The Pauli coef-
ficients pgaw) of the density matrix p('aw) are extracted by repeated preparation and (partial)
tomographic measurements of the ansatz state. As one only needs those Pauli coefficients

(raw) . . I -
Pp with non-zero corresponding Hamiltonian coefficients h,s, one need not perform full

(raw) 'However, in a small-scale experiment, full state tomography of p('a"")

tomography of p
may still be feasible, and may provide useful information for the purposes of benchmarking.

In particular, the fidelity of p(ra"") to p(o),
plraw) _ Tr[p(raw)p(O)]’ (4.4)
is a more rigorous measure of the ability to prepare the ground state than the energy error,

AE(Y) — Ty Kp(raw) — p(0)> /:I} : (4.5)

Error mechanisms such as decoherence pull p('aw) away from p(o), decreasing F and in-
creasing AE.

4.3 Mitigation by Symmetry Verification

These errors may be mitigated by using internal symmetries SepN1

of the target problem,
such as parity checks [57, 134]. These checks project p('a"") to a symmetry verified matrix

p(SV) that lies in the <§> = s subspace of the symmetry. This projection could be performed

'As described in Refs. [57, 134], one does not require S to be a Pauli operator, however this makes the SV procedure
significantly simpler.
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via direct measurement of 5 on the quantum device, but one may instead extract the relevant
terms of the density matrix p(SV) in post-processing:

I
P = T (raw) (4.6)
1+ SPe

The right-hand side may be obtained by partial tomographic measurement of the ansatz state,
with at most twice the number of Pauli coefficients that need to be measured. This upper
bound is not always achieved. For example, the I:IH2 Hamiltonian has a § = ZZ symmetry,
which maps the non-zero Pauli terms in I‘:,H2 to other non-zero Pauli terms in I:IH2. Symme-
try verification in this problem then does not require any additional measurements to estimate
E(SV) beyond those already required to estimate E(raw)  Even when it does require addi-
tional measurements, SV remains attractive because it does not require additional quantum
hardware or knowledge of the underlying error model. One can show that the SV state p(SV)
may be equivalently obtained via a variant of the quantum subspace expansion (QSE) [135],
suggesting an alternative name of S-QSE [57].

One may further minimize the error in a quantum algorithm by tailoring the quantum cir-
cuit or the gates within. In a VQE, one wishes to choose a variational ansatz motivated by
the problem itself [30, 142] while minimizing the required quantum hardware [31]. To balance
these considerations, we suggest constructing an ansatz from an initial gate-set that is rele-
vant to the problem at hand. For example, in the electronic structure problem, the quantum
state is generally an eigenstate of the fermion number. When mapped onto qubits, this often
corresponds to a conservation of the total qubit excitation number. Gates such as single-qubit
Z rotations, two-qubit C-Phase [22], and two-qubit iISWAP [143] gates preserve this number,
making these gates a good universal gate set (within the target subspace [144]) for quantum
simulation of electronic structure. In the example of Ho, the total two-qubit parity (ZZ2) is
indeed conserved and the ground state at any R may be generated by applying to |01) or
|10) an exchange gate
1 0 0 0
0 cos® isinf O
0 isin@ cosf O
0 0 0 1

with R-dependent optimal exchange angle 8 and a follow-up phase correction on one qubit.

Ug = 4.7)

We now experimentally investigate the benefits of SV in the VQE of H> using two of
three transmon qubits in a circuit QED quantum processor (see details in Supplementary
Notes). The two qubits (Qp and Q1) are coupled by a common bus resonator, and have
dedicated microwave lines for single-qubit gating, flux bias lines for local and ns-scale con-
trol of their frequency, and dedicated readout resonators coupling to a common feedline for
independent readout by frequency multiplexing. We prepare the ansatz state with an efficient
circuit [Fig. 4.1(a)] that first excites Q1 with a 7 pulse to produce the state |10), and then
applies a square flux pulse of fixed duration and amplitude to Qg, bringing it into or near
resonance with Q1 to coherently exchange the excitation population. A plot of population ex-
change as a function of flux-pulse amplitude and duration [Fig. 4.1(b)] reveals the expected
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Figure 4.1: Quantum circuit and energy landscape of the variational eigensolver. (a) Quan-
tum circuit for generating and measuring the variational ansatz state. (b) Coherent excitation
exchange, produced as Qg is fluxed into resonance with Q1 by a square flux pulse of fixed
amplitude (x axis) and duration (y axis). The amplitude controls the frequency to which Qg
is pulsed (~ 1.428 V bringing it on resonance with Q1). (c) Zoom-in of (b) into the region
used in the experiment to control the exchange of population between Qg and Q1. Colored
lines illustrate the combinations of square-pulse amplitudes and duration used to achieve fine
adjustment of 6. (d) Excitation of Qg for the combinations of pulse amplitudes and duration
marked by colored lines in (c), showing the matching of the experimentally-defined 6 to the
target 6 defined in Eq. (4.7) (black dashed curve). Colors [matching (c)] correspond to pulse
duration. (e) Landscape of energies E('a"")(é, R) as a function of the experimentally-defined
] angle and the interatomic distance R.

chevron pattern that is the hallmark of coherent population exchange between the two qubits,
albeit with some asymmetry arising from the bandwidth limitation of the flux-control line. We
make use of the square-pulse duration (1 ns resolution) and amplitude (0.5 mV resolution)
as coarse and fine knobs, respectively, to control population exchange. We choose 1500
combinations of pulse duration and amplitude settings to parametrize an experimental knob
6 [Fig. 4.1(d)] capable of finely controlling population exchange like 8 in Eq. (4.7) over the
range [0, /4] [Fig. 4.1(c)]. The circuit concludes with simultaneous pre-rotation gates on
both qubits followed by simultaneous measurement of both qubits, in order to perform tomog-
raphy of the prepared ansatz state. To fully reconstruct the state, we use an overcomplete
set of 36 pre-rotation pairs and extract estimates of the average measurement for each qubit
as well as their shot-to-shot correlation using Nmeas Measurements per pre-rotation. Note
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while the flux pulse implements the exchange gate of Eq. (4.7) with additional single-qubit
phase rotations, the correction for these phase rotations can be performed virtually from the
fully-reconstructed state.

4.4 Results

We now optimize the VQE to approximate the ground-state energy and ground state of H».
At each chosen R, we employ the covariance matrix adaptation evolution strategy (CMA-ES)
optimization algorithm [145], using E(raw) a5 cost function and 6 as single variational pa-
rameter. The evolutionary strategy optimizes 6 over repeated generations of Npop = 10
samples of E(""‘W)(é), each calculated from a raw density matrix p(2") using linear inver-
sion of Nmeas = 103 2. Optimizations have a hard-stop criterium of [Fig. 4.2(a) inset] 20
generations (~ 2 hours). The converged state is finally reconstructed with greater precision,
using Nmeas = 10°. Figure 2 shows the resulting energy estimate for twelve values of R and
the reconstructed optimized state at three such distances. These tomographs show that the
optimal solutions are concentrated in the single-excitation subspace of the two qubits, with
two-qubit entanglement increasing as a function of R.

Performing the described symmetry verification procedure on the converged states shows
improvement across the entire bond-dissociation curve. To quantify the improvement, we fo-
cus on the energy error A E and the infidelity 1 — F to the true ground state, with and without
SV (Fig. 4.3). SV reduces the energy error by an average factor ~ 10 and reduces the infi-
delity by an average factor ~ 9. In order to quantitatively understand the limits of the VQE
optimization, and to clearly pinpoint the origin of the SV improvement, we simulate the ex-
periment via the density-matrix simulator quantumsim [146], using an error model built from
independently measured experimental parameters [147]. We build the error model incremen-
tally, progressively adding: optimization inaccuracy (the difference between the state ideally
produced by the converged 6 and the true ground state); dephasing on both qubits (quan-
tified by the measured Ramsey dephasing times T2*); relaxation on both qubits (quantified
by the measured relaxation times T7); residual qubit excitations (measured from single-shot
histograms with each qubit prepared in |0)); and increased dephasing of Qg during the ex-
change gate (quantified by its reduced T2* when tuned into the exchange interaction zone).
By plotting the errors from each increment of the model, we are able to dissect the observed
experimental error into its separate components without [Fig. 4.3(c)] and with [Fig. 4.3(b)] SV.
Measured temporal fluctuations of dephasing, relaxation and residual excitation are used to
obtain simulation error bars.

The simulation using the full error model shows fairly good matching with experiment for
both the ground-state energy error [Figs. 4.3(a,b)] and the state infidelity [Fig. 4.3(c)], without
and with SV. The error model dissection shows that the energy error when not using SV is
dominated by residual qubit excitations. This is remarkable as the calibrated residual excita-
tions are only 0.25% for Qg and 1.34% for @1 (see Supplementary Notes). The improvement

2We have chosen to reconstruct p("*) via linear inversion for the purposes of scalability; methods such as maximum-
likelihood estimation have a classical computation cost similar to that of solving the electronic structure problem itself,
which would negate a quantum speedup in future experiments.
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Figure 4.2: Convergence of the VQE algorithm. (a) Experimental VQE estimate of Ho ground-
state energy as a function of interatomic distance R. At each chosen R, we minimize the raw
energy E(raw) (blue data points) over the variational parameter 6 using the CMA-ES evolu-
tionary algorithm [145]. Applying SV to the converged solution (orange data points) lowers
the energy estimate towards the exact solution (dashed curve). Inset: A typical optimization
trace for the convergence of the energy estimate. (b-d) The reconstructed density matrices
of the converged states at (b) R = 0.25 A, (c) R = 0.80 A, and (d) R = 2.00 A, showing
that the converged states lie mostly in the single-excitation subspace, and that entanglement

increases with the interatomic distance R.
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from SV results from the mitigation of errors arising from these residual excitations and from
qubit relaxation. This is precisely as expected: these error mechanisms change total qubit
excitation number and violate the underlying ZZ symmetry. Using SV changes the dominant
error mechanism from residual qubit excitation to optimization inaccuracy, which is bounded
by the sampling noise during the optimization itself (where Nmeas = 103), rather than the
sampling noise from the final step (where Nmeas = 10°). This error could be reduced exper-
imentally by increasing Nmeas during the optimization, at the cost of increased convergence
time. The improvement in state infidelity by SV can be explained along similar lines. We ob-
serve some increased deviations between the observed and simulated state infidelity at large
R. We attribute these to limitations in our modeling of error during the exchange gate (whose
duration increases with R).

4.5 Physicality of the state reconstructed

VQEs rely on variational bounding to ensure that the obtained approximation to the ground-
state energy is accurate, but this is only guaranteed when the experimental results corre-
spond to a physical state. Our method for calculating the ground-state energy [Eq. (4.1)] in-
dependently estimates each Pauli coefficient of the density matrix with error o< N,;elas . Such
estimation cannot guarantee a set of Pauli coefficients that could have come from a positive
density matrix. This in turn breaks the variational lower bound on the energy estimate, and
increases the error in estimates of other properties of the true ground state [148, 149]. As

(raw)

experimental error is reduced, p tends towards a rank-1 density matrix, increasing its

chance of being unphysical [149]. Moreover, p(SV) is a lower-rank density matrix than p(ra"")
(being projected onto a subspace of the Hilbert space), which implies that unphysicality may

be enhanced by SV. The variance in a given term Pp post-SV can be calculated as

3Nmeas
Nmeas(1 + Tr[p('aw)g]) .

Var[p(ﬁsv)

| ~ (4.8)
SV has maximal impact on the quantum state precisely when this denominator is small, so
this represents a natural bound for the power of SV as an error mitigation strategy.

The effect of sampling noise may be mitigated somewhat by restricting the fermionic 2-
reduced density matrix to be positive (which may be completed in polynomial time) [148].
To investigate the effect of such mitigation, we bin the data used for final tomography of con-
verged states to construct 100 density matrices with Nmeas = 103 ateach R, thus increasing
the sampling noise by a factor of 10. We wish to study the relative improvement of SV in the
two figures of merit, which we quantify as

B |AE(I‘aW)|
" REGV)]

|1 _ F(raw)|

and MF = TR

Ul (4.9)

when physicality of the raw density matrices is enforced and not. To enforce physicality, we
employ a convex optimization routine to find the closest positive semidefinite matrix to the
experimentally measured p(”’“"’) (closest in the L2 norm sense on the space induced by the
the Pauli basis). We then apply symmetry verification to the post-processed density matrix.
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Figure 4.3: Impact of SV in ground-state energy and state fidelity, and dissected error budget.
(a) Experimental (solid circles) energy error A E without and with SV compared to the result
(empty circles and dashed line) of a full density-matrix simulation using the full error model.
The contributions from optimizer inaccuracy, qubit dephasing, qubit relaxation, residual qubit
excitations and increased Qg dephasing during the exchange gate are shown as shaded
regions for the case of no SV applied. Without SV, AE is clearly dominated by residual
qubit excitation. (b) Zoom-in on experimental and simulated A E with SV and corresponding
error budget. With SV, the effects of residual excitation and qubit relaxation are successfully
mitigated, as predicted in Ref. [57]. The remaining energy error is dominated by optimizer
inaccuracy. Simulation error bars are obtained by modelling measured fluctuations of T1, T2*,
and residual excitation. (c¢) Experimental (solid circles with error bars) infidelity to the true
ground state without and with SV compared to simulation using the full error model (empty
circles and dashed line). Error bars are propagated through the linear inversion procedure for
experiment and calculated from sampling noise for simulations. For simulations, error bars
are smaller than the markers.
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Figure 4.4: Constraining positivity with symmetry verification to mitigate the effect of sampling
noise. The experimental data from Fig. 4.3 is split into 100 sample simulations for each R,
increasing the sampling noise by a factor of 10 and making it comparable to other sources
of experimental error. For each sample, we plot (red) the relative energy error and infidelity
[Eq. (4.9)]. Values below 1 (dashed lines) indicate that SV has not provided an improvement,
as may be the case when the density matrix has negative eigenvalues. We restore the im-
provement from SV by constraining the positivity of the 2-reduced density matrix [148] (green).
Histograms on the top and right axes show the marginal distribution of the two scatter plots.
When the density matrices are constrained to be positive, we observe the points fall along the
line y = x (blue dashed line), indicating that SV improves both metrics by the same amount.

Figure 4.4 shows a scatter plot of ng and ng, and relative histograms of each. Without enforc-
ing physicality, SV makes no significant improvement to the state fidelity, although it almost
always improves the energy error. However, when positivity is enforced, SV greatly improves
the overlap with the true ground state. We also find that the improvement in the energy from
SV is equal to the improvement in fidelity when the starting state is physical, but is relatively
uncorrelated when the starting state is not. This makes sense, as the energy gain from SV
given a physical matrix comes directly from substituting higher energy states with density on
the ground state. It is unclear whether such a strong trend will continue in larger systems
without requiring too stringent a positivity constraint. As this is a four-orbital two-electron sys-
tem, enforcing the positivity of the 2-reduced density matrix enforces positivity on the entire
density matrix (which is exponentially difficult in the system size [150]). Testing this scalability
is a clear direction for future research 3.

3Note that, for this system, enforcing positivity of the 1-reduced density matrix corresponds to ensuring that all expecta-
tion values are bounded between —1 and 1, and so this does not provide any additional data.
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4.6 Summary and conclusions

In summary, we have experimentally demonstrated the use of SV to mitigate errors in the
VQE of H» with two transmon qubits. We implemented an efficient variational ansatz based
on an exchange gate producing finely adjustable population transfer in the single-excitation
subspace, respecting the ZZ symmetry of the H> Hamiltonian. Verification of this symmetry
reduced the error of the estimated ground-state energy and the ground state by one order of
magnitude on average over the full dissociation curve. A full density-matrix simulation of our
system allowed us to budget the contributions from known experimental error mechanisms.
We observe that SV mitigates the effect of processes that affect total qubit excitation number,
specifically qubit relaxation and residual excitation. Finally, we have investigated the effect of
reconstructing density matrices via linear tomographic inversion in the presence of sampling,
which voids the guarantee of positivity and in turn the guarantee that SV improves estimation
of the ground state. Intriguingly, we observe that when physicality is enforced, the reduction
in energy error from SV is directly linked to the increase in fidelity to the ground state. If this
observation extends to larger systems, a user can be confident that symmetry-verified Pauli
coefficients are accurate for calculations beyond the ground-state energy.

4.7 Supplementary Notes
4.7.1 Supplementary Note 1: Device fabrication

A high-resistivity intrinsic silicon wafer was cleaned with acetone and 2-isopropanol, and
stripped of native oxides using buffered oxide etch solution (BOE 7 : 1). The wafer was sub-
jected to HMDS vapor and sputtered with 200 nm of NbTiN followed by dicing into smaller
dies. The device plane was spun with a high-contrast positive tone resist and patterned us-
ing e-beam lithography. The exposed base layer was subtractively patterned using reactive
ion etching and the resist was stripped. This was followed by spinning of a bilayer resist for
fabrication of Josephson junctions by double-angle shadow evaporation. For the fabrication
of airbridges, a 6 wm thick e-beam resist was patterned and subjected to reflow. A 450 nm
thick layer of aluminum was deposited using an e-beam evaporator. The chip was diced and
wirebonded to a printed circuit board.

4.7.2 Supplementary Note 2: Experimental setup

The device was mounted on a copper sample holder attached to the mixing chamber of a
Leiden Cryogenics CF-650 dilution refrigerator with ~ 22 mK base temperature. For radia-
tion shielding, the cold finger was enclosed by a copper can coated with a mixture of Stycast
2850 and silicon carbide granules (15 to 1000 nm diameter) used for infrared absorption. To
shield against external magnetic fields, the can was enclosed by an aluminum can and two
Cryophy cans. Microwave lines were filtered using 60 dB of attenuation with both commer-
cial cryogenic attenuators and home-made Eccosorb filters for infrared absorption. Flux-bias
lines were also filtered using commercial low-pass filters and Eccosorb filters with a stronger
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absorption. Fast flux-pulses were coupled to the flux-bias lines via room-temperature bias
tees.

Amplification of the readout signal was done in three stages: first a TWPA (provided by
MIT-LL [151]) located at the mixing chamber plate, then a Low Noise Factory HEMT at the
4 K plate, and finally a Miteq amplifier at room temperature. The TWPA was mounted on a
separate sample holder with the same shielding layers as the device.

Room-temperature electronics used both commercial hardware and custom hardware de-
veloped in QuTech. Rhode & Schwarz SGS100 sources provided all microwave signals for
single-qubit gates and readout. The DC bias was provided by home-built current sources
(IVVI racks). QuTech arbitrary waveform generators (QWG) generated the modulation en-
velopes for single-qubit gates and the flux pulse for the exchange gate. A Zurich Instruments
UHFQA was used to perform independent readout of both qubits as well as their correla-
tion. QuTech mixers were used for frequency up- and down-conversion. The QuTech Central
Controller Light (CCL) coordinated the triggering of QWGs and UHFQA.

All measurements were controlled at the software level with qCoDeS [152] and Pyc-
QED [153] packages. The QuTech OpenQL compiler translated high-level Python code into
the eQASM code [154] forming the input to the CCL.

4.7.3 Supplementary Note 3: Measured device parameters

Qubit Q1 Qo
Readout resonator frequency (GHz) 8.0005 7.7377
Qubit sweetspot frequency (GHz) 5.1468 5.9207
T1 (us) 9.8+1.0 11.7+0.6
T3 (us) 9.0+1.3 173+1.0
Residual qubit excitation (%) 1.34£0.20 | 0.25+0.09
Single-qubit gate fidelity (%) 99.86 99.91
Coupling 2% (MHz) 20.9

Table 4.1: Measured device parameters. Resonator and qubit frequencies were measured by
spectroscopy, while relaxation and dephasing times, T1 and T2*, respectively, were measured
by standard time-domain experiments. Error bars on T7 and T2* correspond to the standard
deviation of 56 repeated measurements performed over a 24-hour period. See text for the
procedure used to quantify residual qubit excitations. Single-qubit gate fidelity was measured
by randomized benchmarking. The qubit-qubit coupling strength was measured both by spec-
troscopy and time-domain measurements.

We ran a series of characterization experiments to extract the device parameters needed
as inputs to the error model used in our density-matrix simulaiton. These are summarized in
Table 5.1. The qubit relaxation time 71 and dephasing time T2* for each qubit were measured
using standard time-domain sequences. The reduced dephasing time Tz*’red of Qg during

the exchange gate was measured by DC biasing Qg to 5.1468 GHz while DC biasing @1 suf-
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Figure 4.5: Device and wiring schematic. The 2 mm x 7 mm chip contains three Starmon [46]
qubits. Qubit pairs Qo-Q1 and Q1-Q2 are coupled by bus resonators. Qubits have dedicated
microwave drive lines, flux bias lines, and dispersively-coupled readout resonators. Read-
out resonators are coupled to a common feedline allowing independent qubit readout by fre-
quency multiplexing. See text for details of cryogenic system and wiring. In this experiment,
we only make use of Qg and Q1. The unused leftmost qubit, @2, is parked at its sweetspot
frequency (4.128 GHz) throughout.

ficiently far away from its sweetspot. We extract T2* red _ g 995 us from a standard Ramsey

time-domain experiment (Fig. 4.6). Single-qubit gate fidelity was extracted from randomized
benchmarking of each qubit separately.

We quantified residual qubit excitations from a subset of the measurement set used to
calibrate the measurement operators in the post-convergence tomographic reconstruction at
each value of R in Fig. 3 (see section below). The measurement set consists of 7 X 10° mea-
surements with the two qubits nominally prepared in each of the four computational states
|00), |01), |10), and |11). Since all homodyne voltage shots were stored (not just their av-
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Figure 4.6: Ramsey experiment with qubit Qo DC-flux biased to the frequency of the resonant
exchange interaction (5.1468 GHz, the Q1 sweetspot frequency), but with qubit Q1 biased
away to a lower frequency. The best fit value Té’"re = 0.995 us is used for modelling the

increased dephasing of Qg during the exchange gate.

erage), we could construct histograms of the measurements for |00) before 1-bit digitization.
The residual excitation was then extracted from a double Gaussian fit [Fig. 4.7(a-b)]. We per-
formed this procedure to extract residual qubit excitations for every data point in Fig. 4.7(c).

4.7.4 Supplementary Note 4: Pulses for gates

All single-qubit gates are performed with standard DRAG-type [41] microwave pulses of 12 ns
duration, resonant on the qubit transition. Gaussian in-phase and derivative-of-gaussian in-
quadrature envelopes correspond to 3 ns gaussian width. The gaussian envelope is offset to
ensure continuity at the start and end of the pulse.

The exchange gate is performed with a square pulse of fixed amplitude and duration. The
linear-dynamical distortions from the components in the flux-control line are compensated
by first measuring the step response and then defining pre-distortion filters to approach the
ideal step. This procedure is performed in two steps. First we address the components at
room temperature, and then those inside the dilution refrigerator.

The distortions caused by room-temperature components (mainly a bias tee) are mea-
sured (Fig. 4.8[a]) with a Rhode-Schwarz RTO1024 oscilloscope, with 2 Gs/s and 4 GHz
bandwidth. To improve the step response, we follow the procedure and models as explained
in the Supplementary Material of Ref. [67]. We iteratively fit simple models with few param-
eters to the measured step response. We then use the best estimate of these models to
compute the impulse response of the inverse filter. The pre-distortion filter convolves the
input with this computed impulse response.
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Using the pre-distortion correction for room-temperature components, we next measure
the distortions from components inside the dilution refrigerator (Fig. 4.8[c]) using the method
of Ref. [155]. For completeness, we briefly discuss the procedure here. We apply square
pulses of variable duration between the /2 pulses of a Ramsey sequence. This Ramsey
sequence allows us to extract the quantum phase acquired by the qubit as a function of
the pulse duration. Taking the derivative of this phase, we obtain the instantaneous detun-
ing of the qubit as a function of the pulse duration. Using the known dependence of qubit
frequency with flux amplitude, we can thus extract the voltage-to-flux step response. We fit
simple models with few parameters to the measured step response, and compute the impulse
response of the corresponding inverse filter. We convolve the computed impulse responses
of the inverting filters for distortions outside and inside the refrigerator to produce the impulse
response of the pre-distortion filter for the complete flux-control line.

The set of corrections summarized in Table 4.2 allow us to produce a net step response
accurate to 1% after 5 ns (Fig. 4.8[d]). As in Ref. [67], we mitigate the effect of residual
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Figure 4.7: Residual qubit excitations. Single-shot readout histograms for (a) @1 and (b) Qg
nominally prepared in |0) and |1). We extract a residual qubit excitation from the best-fit
double gaussian on the ground-state histogram (solid curves). (c) Residual excitations ex-
tracted from calibration data in the final, post-VQE-convergence in the dataset of Figs. 2 and
3 at each value of R. The average (standard deviation) of the residual excitation is 0.25%
(0.09%) for Qg and 1.34% (0.20%) for Q1.
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Model Step-response distortion Parameters
High-pass e tTu(t) T =409 pus

Exp. 1+ae t/7) u(t) a=0.13129 ; 7 = 15.027 us
Exp. 1+ ae t/7) u(t) a=0.99088 ; T = 6.408 us
Exp. 1+ aet/7) u(t) a=—0.0747 ;7 = 3.541 pus
Exp. 1+ae t/7) u(t) a=—0.0176 ;7 = 1.059 ps
Exp. 1+ aet/7) u(t) a=0.0659 ;7 = 21.7 ns.
Exp. 1+ae t/7) u(t) a=—0.0045;7 = 13.0ns.
Exp. 1+ae t/7) u(t) a=-0.015;7=3.0ns.

Bounce (14 a)u(t) — au
Bounce (14 a)u(t) — au

—7) a=0.02;7=150ns
—T) a=—-0.045;7=8.0ns

Table 4.2: Models used to match the step response of components outside (top) and inside
the refrigerator (model), and corresponding fit values (HPF = high-pass filter, Exp. = exponen-
tial approach, Bounce = transmission-line bounce). Here, u(t) is the Heaviside step function.

uncompensated long timescale distortions by adding negative copies of the applied flux pulse
at the end of each sequence (after measurement) to ensure zero net area.

4.7.5 Supplementary Note 5: Tomographic reconstruction and limitations

Tomographic reconstruction was performed with the same technique described in [156]. We
provide a brief description here for completeness. For each measurement channel (measure-
ment of @1, measurement of Qq, and their correlation), the average measurement outcome
is given by (m;) = Tr(M;p), with operator

M; = BiII + Bi,1Z + B 21 + B, 77, (4.10)
and real-valued coefficients ,BJ’ Single-shot measurements of Qg and Q1 are 1-bit digitized
before correlation and before averaging each of the three channels.

The simultaneously applied measurement pre-rotations Rg and R consist of the 36 pairs
created by drawing each rotation separately from the set {I, Xy, Xrj2: Yrj2: Xz /2, Y—'rr/Z}'
These measurement pre-rotations effectively change the measurement operator to

Mkl = Ty (Rk"'TI\Z,-Rk"> .

There are thus 108 linear equations (36 per channel) linking the averaged measurement to
the 15 nontrivial 2-qubit Pauli coefficients (we force (IT) = 1). We then extract the Pauli co-
efficients by performing least-squares linear inversion. Prior to the linear inversion, the mea-
surements are scaled to approximately match the noise in the three channels.

The coefficients /Sj’-' are obtained from standard calibration measurements. The two qubits
are nominally prepared in the four computational states and measured. In total, we perform
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7 x Nimeas measurements per computational state. The matrix relating the four measurement
averages of a channel to the coefficients has elements of the form (IT), +(IZ), +(ZI) and
:I:(ZAZ>. By taking into account the calibrated residual qubit excitations, which reduce the
magnitude of (IZ), (ZI), and (ZZ) from unity, we ensure that the coefficients ,BJ’f and thus
also the operator M; are not corrupted by residual excitation [157].
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Figure 4.8: (a) Measured (blue) voltage step response of room-temperature components
of the flux-control line, and fit model (orange) using the parameters on the top half of Ta-
ble 4.2. (b) Measured voltage-step response after applying the pre-distortion filter for room-
temperature components. (c¢) Measured (blue) flux-step response of the complete flux-control
line (using only pre-distortion filter for room-temperature components), and fit model (orange)
using the parameters on the lower half of Table 4.2. (d) Final voltage-to-flux step response of
the complete flux-control line using pre-distortion for both components outside and inside the
dilution refrigerator. The response is within 1% of the ideal step (green) after 5 ns.
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Figure 4.9: Minimal eigenvalue of density matrices obtained from linear tomographic recon-
struction with different Nineas. Here, the state preparation targets a Bell state using our vari-
ational ansatz (inset) with 6 = 7 /4 (producing a ViSWAP gate). Physicality constraints
on density matrices restrict their eigenvalues to be non-negative. We observe negative min-
imum eigenvalues over the entire range of Nmeas. A quantumsim simulation produces a
similar trend, asymptoting to a physical state by Nmeas ~ 50, 000.

Tomography by linear inversion does not ensure physicality of the reconstructed density
matrix. We investigate this effect by performing tomography with variable Nmeas on the state
produced by our ansatz with 8 = /4 and extracting the minimum eigenvalue of the recon-
structed density matrix (Fig. 4.9). A negative minimum eigenvalue manifests unphysicality
over the Nmeas range covered. Our quantumsim simulation produces a similar trend, asymp-
toting to a physical state by Nmeas = 5 X 10*. These observations led us to choose
Nmeas = 10° for the final state tomography post VQE convergence in Fig. 3, and to fur-
ther investigate (in Fig. 4) how unphysicality can violate the variational principle, producing
reductions in energy from imprecise state reconstruction rather than algorithmic precision.

4.7.6 Supplementary Note 6: Constraining the positivity of reduced density matrices

Testing whether a N-qubit density matrix p is positive is in general QMIA-hard [150]. However,
if we trace out all but a polynomial number of degrees of freedom of p, testing positivity of
the resulting reduced density matrix p('ed) is tractable on classical hardware, and obtaining
the closest nearby positive matrix is similarly so. This gives a set of necessary but insuffi-
cient physicality conditions for p, but enforcing k-local constraints (on a density matrix from a
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VQE) tends to be sufficient to variationally bound the resulting energies [148]. Following the
reduction, we write p('ed) as a vector over the Pauli basis,

(red) _ (red) 5
o Z pp P (4.11)
P
Then, we attempt to find the density matrix ﬁ(red) closest to p(red) in the L2-norm
(red) ~(red))2
> (ol = 55)", (4.12)
P
. . ~(red) ~(red) L L
subject to the conditions p > 0, and Py = 1. This gives a quadratic minimization

problem with cone inequality and linear equality constraints, which we solve using interior
point methods.

4.7.7 Supplementary Note 7: Theoretical modeling of the experiment

We use our full-density-matrix simulator quantumsim to model the experiment. The error
model takes as input parameters the measured values of T1, T2* and residual excitation
for both qubits, and Tz*']red for Qg. We also include the effect of fluctuations on the device
parameters by Monte Carlo sampling.

Numerical simulations

The simulations are performed by extracting the full-density-matrix p(Sim) at the end of the
circuit. We use the converged value of 6 ateach R to generate the quantum state and extract

the Pauli coefficients p(;'m)(é) = Tr[Pp(8™)]. We add sampling noise to each coefficient,
(S (1-p5™) / Neneas,
where Nmeas = 4 X 10°. Note that this is greater than the number of measurements per

drawn from a zero-mean Gaussian distribution with variance (1+p

tomographic prerotation in the experiment, as data from multiple tomographic prerotations is
used to estimate each Pauli coefficient. To account for fluctuations on the device parameters
T1, T3, and residual excitations, we average over 10* simulations for every R. For each sim-
ulation, we draw parameters from independent normal distributions using values in Table 5.1.
As the dephasing noise T5 depends on Tt,
1 1 1
sz* = E + ﬁ,

it is more appropriate to sample the pure dephasing rate T independently. We calculate

(4.13)

the Te mean and variance (7_'¢, Var[7_'¢]) from T3,
- 1
T = 1 1

Té“ 2T,

Var([Tq]
2T¢(T3)~2

(4.14)
Var[Tg] = T3(T5) 72| Var[T3] —

From the 10% simulations we obtain 95%-confidence error bars for AE and F as twice the
population standard deviation.
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Exchange gate

Due to quasi-static flux noise, the angle of the unitary exchange gate (Eq. 7) differs between
subsequent applications. Assuming that these fluctuations are fast on the scale of the 2 hour
optimization, this may be simulated by integrating over the range of applied gates, resulting
in an incoherent noise model. As the gate is not repeatedly applied during a single-shot
experiment, this incoherent approximation does not lead to an error in the final result. To
perform the integration, we convert our unitary Ug into a Pauli Transfer Matrix representation
(PTM) [158, 159]:

[Relij = %Tr[f’,-UgFA’jUg], P, P c PV, (4.15)
which may then be integrated over a probability distribution in the deviation § from the target
angle 6:

(Rlij = [ 8 p(8) [Raxsli (.16)
52

We choose for p(d) a Gaussian distribution: p(§) = e 202 In order to obtain the distribu-
tion width o2, we note that the same effect causes single-qubit dephasing of Qg when fluxed
to the exchange point when Q1 is fluxed away. We may thus estimate o as

tint

*,red
o2=1—-e 2", (4.17)

were tj,¢ is the exchange gate duration and T;’red the dephasing time of Qq at the exchange

point (with Q1 fluxed away). The final gate simulation also includes the effect of amplitude
damping on both qubits, and the dephasing of Q1 at the sweet spot as discrete error channels
of duration % on either side of the gate R.



VARIATIONAL PREPARATION OF FINITE-TEMPERATURE STATES ON
A QUANTUM COMPUTER

The preparation of thermal equilibrium states is important for the simulation of condensed-
matter and cosmology systems using a quantum computer. We present a method to prepare
such mixed states with unitary operators, and demonstrate this technique experimentally
using a gate-based quantum processor. Our method targets the generation of thermofield
double states using a hybrid quantum-classical variational approach motivated by quantum-
approximate optimization algorithms, without prior calculation of optimal variational parame-
ters by numerical simulation. The fidelity of generated states to the thermal-equilibrium state
smoothly varies from 99 to 75% between infinite and near-zero simulated temperature, in
quantitative agreement with numerical simulations of the noisy quantum processor with error
parameters drawn from experiment.1

"This chapter has been published in npj Quantum Information 7 130 (2021).
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5.1 Introduction

The potential for quantum computers to simulate other quantum mechanical systems is well
known [1], and the ability to represent the dynamical evolution of quantum many-body sys-
tems has been demonstrated [68]. However, the accuracy of these simulations depends on
efficient initial state preparation within the quantum computer. Much progress has been made
on the efficient preparation of non-trivial quantum states, including spin-squeezed states [160]
and entangled cat states [101]. Studying phenomena like high-temperature superconductiv-
ity [161] requires preparation of thermal equilibrium states, or Gibbs states. Producing mixed
states with unitary quantum operations and measurements is not straightforward, and has
only recently begun to be explored [162, 163]. In this work, we demonstrate the use of a vari-
ational quantum-classical algorithm to realize Gibbs states using (ideally unitary) gate control
on a transmon quantum processor.

Our approach is mediated by the generation of thermofield double (TFD) states, which
are pure states sharing entanglement between two identical quantum systems with the char-
acteristic that when one of the systems is considered independently (by tracing over the
other), the result is a mixed state representing equilibrium at a specific temperature. TFD
states are of interest not only in condensed matter physics but also for the study of black
holes [164, 165] and traversable wormholes [166, 167]. We use a variational protocol [168]
motivated by quantum-approximate optimization algorithms (QAOA) that relies on alternation
of unitary intra- and inter-system operations to control the effective temperature, eliminating
the need for a large external heat bath. Other methods have been studied for generation of
Gibbs states, such as quantum metropolis sampling [169] and imaginary time evolution us-
ing variational quantum simulation [170, 171]. However the advantage of QAOA compared
to these proposals is that the form of the ansatz is relatively straightforward and low-depth,
whereas the metropolis sampling involves phase estimation which leads to a high-depth cir-
cuit, and the imaginary time evolution proposal does not have a clear proposal for the form of
the ansatz. Recently, verification of TFD state preparation was demonstrated on a trapped-
ion quantum computer [162]. Our work experimentally demonstrates the generation of finite-
temperature states in a superconducting quantum computer by variational preparation of TFD
states in a hybrid quantum-classical manner.

5.2 Results
5.2.1 Theory

Consider a quantum system described by Hamiltonian H with eigenstates |j) and corre-
sponding eigenenergies Ej:

Hlj) = E;lj) . (5.1)

The Gibbs state pgipps Of the system is

PGibbs(B) = %Zexp (—BEj) i) Ul (5:2)
Jj
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where 8 = 1/kgT is the inverse temperature, kg is the Boltzmann constant, and

Z = Zexp (f,BEj) (5.3)
J

is the partition function. Except in the limit 8 — o0, the Gibbs state is a mixed state and
thus impossible to generate strictly through unitary evolution. To circumvent this, we define
the TFD state [168] on two identical systems A and B as

TED(B)) = > e (57) islia. 5.4

Tracing out either system yields the desired Gibbs state in the other.

To prepare the TFD states, we follow the variational protocol proposed by [168] and con-
sider two systems each of size n. In the first step of the procedure, the TFD state at § = 0
is generated by creating Bell pairs ‘¢j‘> = (|0)g; 10)a; + |1)g; [1) a;) //2 between cor-
responding qubits / in the two systems. Tracing out either system yields a maximally mixed
state on the other, and vice versa. The next steps to create the TFD state at finite tempera-
ture depend on the relevant Hamiltonian. Here, we choose the transverse field Ising model
in a one-dimensional chain of n spins [172], with n = 2 [??(a)]. We map spin up (down) to
the computational state |0) (|1)) of the corresponding transmon. The Hamiltonian describing
system Ais

Hp = ZZp + gXa, (5.5)

where ZZp = ZpoZa1, XA = Xaz+Xa1,and g is proportional to the transverse magnetic
field. The Hamiltonian for system B is the same. We focus on g = 1, where a phase transition
is expected in the transverse field Ising model at large n [173]. We use a QAOA-motivated
variational ansatz [168, 174], where intra-system evolution is interleaved with a Hamiltonian
enforcing interaction between the systems:

Hga = XXga + ZZBA., (5.6)

where XXga = XgaXa2 + Xg1Xa1, and analogously for ZZga. For single-step state
generation, the unitary operation describing the TFD protocol is

U (&,9) = Umnter (&) Uintra (7). (5.7)
where
Uintra () =exp [—iv2 (228 + ZZA) /2]
x exp [—i1 (X + Xa) /2],
Uinter(@) = exp (—ic2ZZpa /2) exp (—i1 XXpa/2) - (5.9)

(5.8)

The variational parameters 4 = (1,72), & = (a1, ) are optimized by the hybrid
classical-quantum algorithm to generate states closest to the ideal TFD states. A single step
of intra- and inter-system interaction
ideally produces the state |¢(&, 7)) = U (&, v) (’¢'3'> ® ‘¢1~'>) [175].
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The variational algorithm extracts the cost function after each state preparation. We en-
gineer a cost function C to be minimized when the generated state is closest to an ideal
TFD state [175]. Following recent work on the concentration of control parameters for QACA
[176, 177], we expect engineering the cost function based on the target state for small-sized
systems to lead to a general expression for the cost function of an arbitrary-sized system.
The engineered cost function is given by:

C(B) = (Xa) + (XB) + 1.57 ((ZZp) + (ZZ8))

— B71((XXA) + (ZZgA)). (610

We compare the performance of this engineered cost function C1 57 to that of the non-
optimized cost function C1_gg, using the reduction of infidelity to the Gibbs state as the ulti-
mate metric of success [see Supplementary Note 1]. The engineered cost function achieves
an average improvement of 54% across the B range covered ([10’2, 102] in units of 1/g),
as well as a maximum improvement of up to 98% for intermediate temperatures (8 ~ 1).
Our choice of the class of cost functions to optimize lets us trade off a slight decrease in
low-temperature performance with a significant increase in performance at intermediate tem-
peratures. See [175] for further details on the theory.

The quantum portion of the algorithm prepares the state according to a given set of angles
(&, ), performs the measurements, and returns these values to the classical portion. The
classical portion then evaluates the cost function according to the returned measurements,
performs classical optimization, generates and returns the next set of variational angles to
evaluate on the quantum portion.

5.2.2 Experiment

We implement the algorithm using four of seven transmons in a monolithic quantum pro-
cessor [?2?(a)]. The four transmons (labelled A1, Ay, B1, and B») have square connectivity
provided by coupling bus resonators, and are thus ideally suited for implementing the circuit
in 2?(b). Each transmon has a microwave-drive line for single-qubit gating, a flux-bias line
for two-qubit controlled-Z (CZ) gates, and a dispersively coupled resonator with dedicated
Purcell filter [26, 178]. The four transmons can be simultaneously and independently read
out by frequency multiplexing, using the common feedline connecting to all Purcell filters. All
transmons are biased to their flux-symmetry point (i.e., sweetspot [179]) using static flux bias
to counter residual offsets. Device details and a summary of measured transmon parameters
are provided in Supplementary Note 3. Details on the experimental setup can be found in
Supplementary Note 4.

In order to realize the theoretical circuit in ??(b), we first map it to the optimized depth-
13 equivalent circuit shown in ??(b), which conforms to the native gate set in our control
architecture. This gate set consists of arbitrary single-qubit rotations about any equatorial
axis of the Bloch sphere, and CZ gates between nearest-neighbor transmons. Conveniently,
all variational angles are mapped to either the axis or angle of single-qubit rotations. Further
details on the compilation steps are reported in Methods and Supplementary Note 2. Bases
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pre-rotations are added at the end of the circuit to first extract all the terms in the cost function
C and finally to perform two-qubit state tomography of each system.

Prior to implementing any variational optimizer, it is helpful to build a basic understanding
of the cost-function landscape. To this end, we investigate the cost function C at 8 = 0 using
two-dimensional cuts: we sweep ' while keeping & = 0 to study the effect of U ¢4 and vice
versa to study the effect of Ujpter. Note that owing to the B~157 divergence, the cost func-
tion reduces to —(Hga ) in the § = 0 limit. Consider first the landscape for an ideal quantum
processor, which is possible to compute for our system size. The 4 landscape at & = 0 is
m-periodic in both directions due to the invariance of |TFD(B = 0)) under bit-flip (X) and
phase-flip (Z) operations on all qubits. The cost function is minimized to —4 at even multi-
ples of /2 on 71 and y2: |[TFD(B = 0)) is a simultaneous eigenstate of XXgp and ZZga
with eigenvalue +2 due to the symmetry of the constituting Bell states ‘CDIJF> In turn, the cost

function is maximized to +4 at odd multiples of /2, at which the ‘CDIJF> are transformed to

singlets ‘\Il,_> = (|0)g; 1) a; — |1)g; 10) a;) //2. The & landscape at 4 = 0 is constant,
reflecting that |TFD(S = 0)) is a simultaneous eigenstate of XXga and ZZga and thus
also of any exponentiation of these operators. The corresponding experimental landscapes
show qualitatively similar behavior. The y landscape clearly shows the 7 periodicity with re-
spect to both angles, albeit with reduced contrast. The & landscape is not strictly constant,
showing weak structure particularly with respect to ap. These experimental deviations reflect
underlying errors in our noisy intermediate-scale quantum (NISQ) processor, which include
transmon decoherence, residual ZZ coupling at the bias point, and leakage during CZ gates.
We discuss these error sources in detail further below.

The task of the variational algorithm is to balance the mixture of the states at each £, in or-
der to generate the corresponding Gibbs state. Although thermal states are well understood,
it is challenging to accurately generate them in NISQ devices for studies of finite tempera-
ture systems. When working with small systems, it is possible and tempting to predetermine
the variational parameters at each 8 by a prior classical simulation and optimization for an
ideal or noisy quantum processor. We refer to this common practice [162, 180] as cheat-
ing, since this approach does not scale to larger problem sizes and skips the main quality
of variational algorithms: to arrive at the parameters variationally. Here, we avoid cheating
altogether by starting at 8 = 0, with initial guess the obvious optimal variational parameters
for an ideal processor (¥ = & = 0), and using the experimentally optimized (&, %) at the
last B as an initial guess when stepping £ in the range [0, 5] (in units of 1/g). This approach
only relies on the assumption that solutions (and their corresponding optimal variational an-
gles) vary smoothly with 5. At each B, we use the Gradient-Based Random-Tree optimizer
of the scikit-optimize [181] Python package to minimize C, using 4096 averages per tomo-
graphic pre-rotation necessary for the calculation of C. After 200 iterations, the optimization
is stopped. The best point is remeasured two times, each with 16384 averages per tomo-
graphic pre-rotation needed to perform two-qubit quantum state tomography of each system.
A new optimization is then started for the next B, using the previous solution as the initial
guess.
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To begin comparing the optimized states pgxp, produced in experiment to the target Gibbs
states pGibbs, We first visualize their density matrices (in the computational basis) for a sam-
pling of the B range covered (??). Starting from the maximally-mixed state II /4 at § = 0,
the Gibbs state monotonically develops coherences (off-diagonal terms) between all states
as f increases. Coherences between states of equal (opposite) parity have 0 (7r) phase
throughout. Populations (diagonal terms) monotonically decrease (increase) for even (odd)
parity states. By 8 = 5, the Gibbs state is very close to the pure state | 1) (T|, where
|T) ~ +/0.36 (]01) + |10)) — +/0.14 (|00) + |11)). The noted trends are reproduced in
PExp- However, the matching is evidently not perfect, and to address this we proceed to a

quantitative analysis.
We employ two metrics to quantify experimental performance: the fidelity F of pgyp to
PGibbs and the purity P of pgyp, given by

B 1/2 1/2
F= Tr( pGibbspExppGibbs> v (5.11)
pP= Tr(p%xp) . (5.12)

At B =0, F =99% and P = 0.262, revealing a very close match to the ideal maximally-
mixed state. However, F smoothly worsens with increasing 8, decreasingto 92% at § = 1
and 75% by B = 5. Simultaneously, P does not closely track the increase of purity of the
Gibbs state. By § = 5, the Gibbs state is nearly pure, but P peaks at 0.601.

In an effort to quantitatively explain these discrepancies, we perform a full density-matrix
simulation of a four-qutrit system using quantumsim [182]. Our simulation incrementally adds
calibrated errors for our NISQ processor, starting from an ideal processor (model 0): trans-
mon relaxation and dephasing times at the bias point (model 1), increased dephasing from
flux noise during CZ gates (model 2), crosstalk from residual ZZ coupling at the bias point
(model 3), and transmon leakage to the second-excited state during CZ gates (model 4). The
experimental input parameters for each increment and details of modeling are described in
Methods and Supplementary Notes 5-9. The added curves in ?? clearly show that model
4 quantitatively matches the observed dependence of F and P over the full 8 range, and
identifies leakage from CZ gates as the dominant error.

5.3 Discussion

The power of variational algorithms relies on their adaptability: the optimizer is meant to
find its way through the variational parameter space, adapting to mitigate coherent errors
as allowed by the chosen parametrization. For completeness, we compare in ?? the per-
formance achieved with our variational strategy to that achieved by cheating, i.e., using the
pre-calculated optimal (&, ) for an ideal processor. Our variational approach, whose sole
input is the obvious initial guess at § = 0, achieves comparable performance at all 8. This
aspect is crucial when considering the scaling with problem size, as classical pre-simulations
will require prohibitive resources beyond ~ 50 qubits, but variational optimizers would not.
Given the dominant role of leakage as the error source, which cannot be compensated by
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the chosen parametrization, it is unsurprising in hindsight that both approaches yield nearly
identical performance.

In summary, we have presented the generation of finite-temperature Gibbs states in a
quantum computer by variational targeting of TFD states in a hybrid quantum-classical man-
ner. The algorithm successfully prepares mixed states for the transverse field Ising model
with Gibbs-state fidelity ranging from 99% to 75% as f increases from 0 to 5/g. The loss
of fidelity with decreasing simulated temperature is quantitatively matched by a numerical
simulation with incremental error models based on experimental input parameters, which
identifies leakage in CZ gates as dominant. This work demonstrates the suitability of varia-
tional algorithms on NISQ processors for the study of finite-temperature problems of interest,
ranging from condensed-matter physics to cosmology. Our results also highlight the critical
importance of continuing to reduce leakage in two-qubit operations when employing weakly-
anharmonic multi-level systems such as the transmon.

During the preparation of this manuscript, we became aware of related experimental
work [180] on a trapped-ion system, applying a non-variationally prepared TFD state to the
calculation of a critical point.

5.4 Methods

5.4.1 Quantum Circuit

We map the theoretical circuit in ??(b) to an equivalent circuit conforming to the native gate
set in our control architecture and exploiting virtual Z-gate compilation [183] to minimize cir-
cuit depth. Single-qubit rotations Rxy (¢, 8), by arbitrary angle 6 around any equatorial axis
cos(¢)x + sin(¢)y on the Bloch sphere, are realized using 20 ns DRAG pulses [21, 41].
Two-qubit CZ gates are realized by baseband flux pulsing [22, 184] using the Net Zero
scheme [48? ], completing in 80 ns. In the optimized circuit [??(b)], CZ gates only appear
in pairs. These pairs are simultaneously executed and tuned as one block. Single-qubit rota-
tions R1-R4 are used to change the measurement bases, as required to measure C during
optimization and to perform two-qubit tomography [58] in each system to extract F and P.
A summary of single- and two-qubit gate performance [see Supplementary Note 5] and a
step-by-step derivation of the optimized circuit are provided [see Supplementary Note 2].

5.4.2 Modeling and Simulations

Noiseless simulations were performed prior to experiments, for verification of algorithm con-
vergence. During simulations, experimental conditions were maintained exactly for the algo-
rithm and the control software, while the outcome from readout hardware (Zurich Instruments
UHFQC) was replaced with a simulated readout [see Supplementary Note 10 for details].
The models used to simulate the performance of the algorithm are incremental: model k
contains all the noise mechanisms in model k — 1 plus one more, which we use for labeling in
??. Model 0 corresponds to an ideal quantum processor without any error. Model 1 adds the
measured relaxation and dephasing times measured for the four transmons at their bias point.
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These times are tabulated in Supplementary Table 1. Model 2 adds the increased dephasing
that flux-pulsed transmons experience during CZ gates. For this we extrapolate the echo
coherence time TfChO to the CZ flux-pulse amplitude using a 1/f noise model [185, 186]
with amplitude v/A = 1u®g. This noise model is implemented following [187]. Model 3 adds
the idling crosstalk due to residual ZZ coupling between transmons. This model expands
on the implementation of idling evolution used for coherence times: the circuit gates are
simulated to be instantaneous, and the idling evolution of the system is trotterized. In this
case, the residual ZZ coupling operator uses the measured residual ZZ coupling strengths
at the bias point [see Supplementary Note 6 for details]. Finally, model 4 adds leakage to
the CZ gates, based on randomized benchmarking with modifications to quantify leakage
[48, 119], and implemented in simulation using the procedure described in [187].

5.4.3 Leakage in Transmons

Leakage to transmon second-excited states is found essential to quantitatively match the
performance of the algorithm by simulation. To reach this conclusion it was necessary to thor-
oughly understand how leakage affects the two-qubit tomographic reconstruction procedure
employed. The readout calibration only considers computational states of the two transmons
involved. Moreover, basis pre-rotations only act on the qubit subspace, leaving the popula-
tion in leaked states unchanged. Using an overcomplete set of basis pre-rotations for state
tomography, comprising both positive (X, Y, Z) and negative (—X, —Y, —Z) bases for each
transmon, leads to the misdiagnosis of a leaked state as a maximally mixed state qubit state
for that transmon. See Supplementary Note 8 for further details.

5.5 Supplementary Notes
5.5.1 Supplementary Note 1: Optimization of the cost function

We optimize the cost function to maximize fidelity of the variationally-optimized state | (&, 7))
to the TFD state |TFD(B)) (assuming an ideal processor). We consider the class of cost
functions defined by

Ce(B) = Xa + XB +5(ZZp + ZZg) — B~ (XXBA + ZZBA). (5.13)

and perform nested optimization of parameter ¢ to minimize the infidelity of the variationally-
optimized state to the TFD state over a range of inverse temperatures

B:{lox/2:(er)A(—8§x§8)}. (5.14)

Here we use ideal TFD states to tailor the cost function for variational preparation of Gibbs
states [168, 175]. We define the minimization quantity of interest as

2(s)= > > I(TFD(B)|o|TFD(B)) — (W(s. B)loW(s. B))|,  (5.15)

BeB ocO
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where O is the set of operators

O = {XA, Ya, Za, XB) YB. ZB, XXA, YYA, ZZp, XXB, YYR, ZZ, XXBA, YYBA., ZZBA},
(5.16)

and |W(s, B)) is the state optimized using C¢ (). We find the minimum value of = at ¢ =
1.57 [see Figure 5.1(a)].

We compare the performance of the optimized cost function C1 57 to that used in prior
work, C1 g0, in two ways. First, we compare the simulated infidelity to the TFD state of states
optimized with both cost functions in the range B € [0.1, 10]. The optimized cost function
C1.57 performs better over the entire range. Finally, we compare the simulated fidelity F of
the reduced state of system A to the targeted Gibbs state. As shown in Figure 5.2, using
C1 57 significantly reduces the infidelity 1 — F for 8 < 3, We also observe that the purity of
the reduced state tracks that of the Gibbs state more closely when using C1 57.

@ 5 Ch
10k ™ ] g0 1
k]
8 { a
[T
[=
=z 6 o, o 1 21072 3
e, e >
4 "o, e 4 =
g = Ci57(B)
2 F 1 ‘E = Cro0(B)
1073 3
1.0 1.2 1.4 1.6 1.8 2.0 101 10° 10t
S Inverse temperature 8

Figure 5.1: Optimization of the cost function. (a) Plot of = versus . The minimum of = is
found near ¢ = 1.57, indicating the closest match between optimized states and ideal TFD
states across the range of 8 considered. (b) Simulated infidelity to the ideal TFD state of
states optimized using the cost function C1 g (blue) and the optimized cost function C1 57
(red).

5.5.2 Supplementary Note 2: Circuit compilation

In this section we present the step-by-step transformation of the circuit in Fig. 1(b) into the
equivalent circuit in Fig. 2(b) realizable with the native gate set in our control architecture.

Exponentiation of ZZ and XX : We first substitute the standard decomposition of the opera-
tions e ~19ZZ/2 gnd e ~1$XX/2 using controlled-NOT (CNOT) gates and single-qubit rotations,
shown in Figure 5.3. The decomposition of e 192Z/2 yses an initial CNOT to transfer the two-
qubit parity into the target qubit, followed by a rotation R z(¢) on this target qubit, and a final
CNOT inverting the parity. The decomposition of e i¢XX/2 simply dresses the transforma-
tions above by pre- and post-rotations transforming from the X basis to the Z basis and back,

respectively. The result of these substitutions is shown in Figure 5.4.
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Figure 5.2: Cost function performance comparison. (a) Simulated infidelity of the reduced
state of system A to the Gibbs state for states optimized using the cost function C1 gg (blue)
and the optimized cost function C1 57 (red). (b) Corresponding purity of the reduced state.
The purity of the Gibbs state is also shown for comparison (black).

(a)

(b) Ry
exp(—idZZ/2) = i i exp (—ipXX/2) = — i : i >
Rl-R 4R

Figure 5.3: Exponentiation of ZZ and XX. (a) Standard compilation of e~ i92Z/2
CNOT gates and single-qubit rotations. (b) Standard compilation of e i$XX/2
tional basis pre- and post-rotations.
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Figure 5.4: Compilation step 1. Depth-14 circuit obtained by replacing the ZZ and XX expo-
nentiation steps in Fig. 1(b) with the circuits of Figure 5.3.

Compilation using native gate set: The native gate set consists of single-qubit rotations of
the form Rxy (¢, #) and CZ gates. We compile every CNOT in Figure 5.4 as a circuit using na-
tive gates, shown in Figure 5.5. Note that Ry (6) = Rxy(90°, #). Using this replacement to-
gether with the identites Ry (—90°)Rz($)Ry(90°) = Rx(—¢) and
Ry (—=90°)Rx(#)Ry(90°) = Rz(¢) leads to the circuit in Figure 5.6.

Reduction of circuit depth: Exploiting the commutations in Figure 5.7 together with the iden-
tities Ry (—90°) = Ry (180°)Ry(90°) and Ry (180°)Rx (¢$)Ry (180°) = Rx(—¢), we
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-T2 w2
Ry Ry

Figure 5.5: Compilation of CNOT gate using native gates: one CZ sandwiched by single-qubit
rotations on the target qubit.

B, 10)-{RV [+ [R7HR [+[Rx |+ [RVs-[R|s{R |
B, 10)-{RV] 4Ry Hr{RCHHRY |

A, 10)-R] ) R

A, 0 FHEIRIAR TR

Figure 5.6: Compilation step 2. Depth-16 circuit obtained by replacing every CNOT in Fig-
ure 5.4 with the circuit of Figure 5.5 and using simple identities.

can bring two identical pairs of CZ gates back-to-back and cancel them out (since CZ is its
own inverse). This leads to the circuit in Figure 5.8.

n

V4

n n
Ry Ry

Figure 5.7: Commutation of Ry (180°) and CZ gates.

Elimination of Z rotations: All the Rz gates in Figure 5.8 can be propagated to the begin-
ning of the circuit using the commutation relation

Rz(a)Rxy(¢.0) = Rxy(¢ + a,0)Rz () (5.17)

and noting that Rz commutes with CZ. State |0) is an eigenstate of all Rz rotations, so we
can ignore all Rz gates at the start because they only produce a global phase. This action
leads to the final depth-11 circuit shown in Figure 5.9, which matches that of Fig. 2(b) upon
adding measurement pre-rotations and final measurements on all qubits.
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Figure 5.8: Compilation step 3. Depth-12 circuit obtained by applying the commutation rule
in Figure 5.7 and simple identities to the circuit of Figure 5.6.

B

 10){Ruzn f{Ruzn ] RE [+{RY” [o{RY
B, 10)-{Ry" (R I R:
A, 0)-[REZ, R, R JHRT
A, 10)-RZ 4RV ] IR'J” RCHRY

Figure 5.9: Compilation step 4. Depth-11 circuit obtained by propagating all R gates in
Figure 5.8 to the beginning of the circuit and then eliminating them.

5.5.3 Supplementary Note 3: Device and transmon parameters at bias point

Our experiment makes use of four transmons with square connectivity within a seven-transmon
processor. Figure 5.10 provides an optical image zoomed in to this transmon patch. Each

transmon has a flux-control line for two-qubit gating, a microwave-drive line for single-qubit

gating, and dispersively-coupled resonator with Purcell filter for readout [26, 178]. The readout-
resonator/Purcell-filter pair for By is visible at the center of this image. A vertically running

common feedline connects to all Purcell filters, enabling simultaneous readout of the four

transmons by frequency multiplexing. Air-bridge crossovers enable the routing of all input and

output lines to the edges of the chip, where they connect to a printed circuit board through

aluminum wirebonds. The four transmons are biased to their sweetspot using static flux bias

to counter any residual offset. Table 5.1 presents measured transmon parameters at this bias

point.

5.5.4 Supplementary Note 4: Experimental setup

The device was mounted on a copper sample holder attached to the mixing chamber of a
Bluefors XLD dilution refrigerator with 12 mK base temperature. For radiation shielding, the
cold finger was enclosed by a copper can coated with a mixture of Stycast 2850 and silicon
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— 500 pm

Figure 5.10: Optical image of the device, zoomed in to the four transmons used in the experi-
ment. Added false color highlights the transmon pair of system A (blue, A1, A2) the transmon
pair of system B (red, B1, B2), and the dedicated bus resonators used to achieve intra-system
(read and blue) and inter-system coupling (purple).

Transmon | B1 | Bo | A1 | As

Sweetspot frequency (GHz) 6.433 | 5.771 | 5.887 | 4.534
Relaxation time 71 (us) 32.1 | 40.7 | 64.0 | 337
Echo dephasing time T§Cho (ms) | 29.9 | 405 | 459 | 68.8
Readout frequency (GHz) 7.493 | 7.225 | 7.058 | 6.913
Average assignment fidelity (%) 96.5 | 96.5 | 97.0 | 93.8

Table 5.1: Summary of measured transmon parameters at bias point.

carbide granules (15—1000 nm diameter) used for infrared absorption. To shield against
external magnetic fields, the can was enclosed by an aluminum can and two Cryophy cans.
Microwave-drive lines were filtered using ~ 60 dB of attenuation with both commercial cryo-
genic attenuators and home-made Eccosorb filters for infrared absorption. Flux-control lines
were also filtered using commercial low-pass filters and Eccosorb filters with stronger absorp-
tion. Flux pulses for CZ gates were coupled to the flux-bias lines via room-temperature bias
tees. Amplification of the readout signal was done in three stages: a travelling-wave paramet-
ric amplifier (TWPA, provided by MIT-LL [151]) located at the mixing chamber plate, a Low
Noise Factory HEMT at the 4 K plate, and finally a Miteq amplifier at room temperature.
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Room-temperature electronics used both commercial hardware and custom hardware
developed in QuTech. Rohde & Schwarz SGS100 sources provided all microwave signals for
single-qubit gates and readout. Home-built current sources (IVVI racks) provided static flux
biasing. QuTech arbitrary waveform generators (QWG) generated the modulation envelopes
for single-qubit gates and a Zurich Instruments HDAWG-8 generated the flux pulses for CZ
gates. A Zurich Instruments UHFQA was used to perform independent readout of the four
qubits. QuTech mixers were used for all frequency up- and down-conversion. The QuTech
Central Controller (QCC) coordinated the triggering of the QWG, HDAWG-8 and UHFQA.
See Figure 5.11 for a wiring diagram of the experimental setup.

All measurements were controlled at the software level with QCoDeS [152] and Pyc-
QED [153] packages. The QuTech OpenQL compiler translated high-level Python code into
the eQASM code [154] forming the input to the QCC.

5.5.5 Supplementary Note 5: Gate performance

The gate set in our quantum processor consists of single-qubit rotations ny(¢, 9) and two-
qubit CZ gates. Single-qubit rotations are implemented as DRAG-type microwave pulses with
total duration 40 = 20 ns, where ¢ is the Gaussian width of the main-quadrature Gaussian
pulse envelope. We characterize single-qubit gate performance by single-qubit Clifford ran-
domized benchmarking (100 seeds per run) with modifications to detect leakage, keeping
all other qubits in |0). Two-qubit CZ gates are implemented using the Net Zero flux-pulsing
scheme, with strong pulses acquiring the conditional phase in 70 ns and weak pulses nulling
single-qubit phases in 10 ns. Intra-system and inter-system CZ gates were simultaneously
tuned in pairs (using conditional-oscillation experiments as in [48]) in order to reduce cir-
cuit depth. However, we characterize CZ gate performance individually using two-qubit inter-
leaved randomized benchmarking (100 seeds per run) with modifications to detect leakage,
keeping the other two qubits in |0). Figure 5.12 presents the extracted infidelity and leakage
for single-qubit gates (circles) and CZ gates (squares).

5.5.6 Supplementary Note 6: Residual ZZ coupling at bias point

Coupling between nearest-neighbor transmons in our device is realized using dedicated cou-
pling bus resonators. The non-tunability of these couplers leads to residual ZZ coupling
between the transmons at the bias point. We quantify the residual ZZ coupling between
every pair of transmons as the shift in frequency of one when the state of the other changes
from |0) to |1) [188]. We extract this frequency shift using the simple time-domain measure-
ment shown in Figure 5.13(a): we perform a standard echo experiment on one qubit (the
echo qubit), but add a 7 pulse on the other qubit (control qubit) halfway through the free-
evolution period simultaneous with the refocusing 7 pulse on the echo qubit. An example
measurement with B as the echo qubit and By as the control is shown in Figure 5.13(b).
The complete results for all Echo-qubit, control-qubit combinations are presented as a ma-
trix in Figure 5.13(c). We observe that the residual ZZ coupling is highest between B1 and
the mid-frequency qubits B> and A;. This is consistent with the higher (lower) absolute de-
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Figure 5.11: Fridge wiring and electronic setup.

tuning and the lower (higher) transverse coupling between Ay (B1) and the mid-frequency
transmons.

5.5.7 Supplementary Note 7: Measurement models, cost function evaluation, and two-
qubit state tomography

In this section we present detailed aspects of measurement as needed for evaluation of C
and for performing two-qubit state tomography. We begin by characterizing the fidelity and
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Figure 5.12: Single- and two-qubit gate performance. (a) Infidelity and (b) leakage of single-
qubit gates (circles) and CZ gates (squares), extracted by randomized benchamarking.
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Figure 5.13: Characterization of residual ZZ coupling. (a) Modified echo experiment to deter-
mine the shift in frequency of one qubit (echo qubit) when another (the control qubit) changes
state from |0) to |1). (b) Example data for pair B2 (echo) - By (control). (c) Table of extracted
frequency shifts for all pairs of echo and control qubits.

crosstalk of simultaneous single-qubit measurements using the cross-fideltiy matrix as de-
fined in [27]:

Fji =1 —Prob (ej\I;) — Prob (gj|7r,-) , (5.18)
where ¢; (gj) denotes the assignment of qubit j to the |1) (|0)) state, and 7; (I;) denotes
the preparation of qubit / in |1) (|0)). The measured cross-fidelity matrix for the four qubits is

shown in Figure 5.14. From diagonal element F;; we extract the average assignment fidelity
for qubit /, the latter given by 1/2 + F;;/2 and quoted in Table 5.1. The magnitude of the
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off-diagonal elements F;; with j # i quantifies readout crosstalk, and is below 2% for all
pairs. This low level of crosstalk justifies using the simple measurement models that we now
describe.

Classified qubit g;
By B, Ar Az

> o @
= N =

Prepared qubit, g;

>
Iy

Cross-measurement fidelity

80 90 100 -10 0 10

Figure 5.14: Measured readout cross-fidelity matrix.

5.5.8 Measurement models

The evaluation of the cost function and two-qubit state tomography require estimating the
expected value of single-qubit and two-qubit Pauli operators. We do so by least-squares linear
inversion of the experimental average of single-transmon measurements and two-transmon
correlation measurements.

When measuring transmon /, we 1-bit discretize the integrated analog signal for its read-
out channel at every shot, outputting m; = +1 when declaring the transmon in |0) and m; =

—1 when declared it in |1). The expected value of (m;) is given by m; = Tr (/\/I,-pEXp),

where the measurement operator (in view of the low crosstalk) is modelled as

M= cplki) (kil, (5.19)
k=0

where k denotes transmon excitation level, and ¢} € [—1,1] are real-valued coefficients.
Making use of the 1-qubit Pauli operators I; = |0;) (0;] + |1;) (1;| and Z; = |0;) (0;| —
|1;) (1;] and truncating to three transmon levels, we can rewrite the measurement operator
in the form

M; = ciI; + ch Z; + b 2) (24, (5.20)
also with real-valued c_}' and cé €[-1.1].

When correlating measurements on transmons / and j, we compute the product of the
1-bit discretized output for each transmon. The expected value of m;; = mj X mj is given by
<mj,-> =Tr (I\/IJ-,-pEXp), where the measurement operator (also in view of the low crosstalk)
is modelled as

M=y |liki) (likil (5.21)
k.l
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with real-valued coefficients c,’;( € [—1, 1]. Making use of the 2-qubit Pauli operators given
by tensor products, and again truncating to three transmon levels, we can rewrite the mea-
surement operator in the form

Mji =cpiLili + cp7 L Zi + g1 ZiIi + ¢ 7 2, Z; + cp [27)(2 | Tit

y . .. b 22)
&7 [2)(2] Zi + ehylj 120) (21l + €525 1200211 + 5 [2727) (2721

In experiment, we calibrate the coefficients CL and C;ZQ (P,Q € I, Z) by linear inver-
sion of the experimental average of single-transmon and correlation measurements with the
four transmons prepared in each of the 16 computational states (for which (P;) = +1 and
(Q;P;) = £1). We do not calibrate the coefficients cé', C‘élp Q’2 or 2'2

Measurement pre-rotations change the measurement operator as follows: Rx(180°) on
transmon | transforms Z; — —Z;; Rx(£90°) transforms Z; — =Y;; and Ry (490°)
transforms Z; — FX;. Pre-rotations do not transform the projectors |2;)(2;| as they only
act on the qubit subspace.

5.5.9 Cost function evaluation

To evaluate the cost function C, we must estimate the expected value of all single-qubit Pauli
operators X, the two intra-system two-qubit Pauli operators Z jZ i» and the inter-system two-
qubit Pauli operators X;X; and Z;Z; [the latter only between corresponding qubits in the
two systems (e.g., B1 and A1)]. We estimate these by linear inversion of the experimental
averages (based on 4096 measurements) of single-transmon and relevant correlation mea-
surements with the transmons measured in the bases specified in Table 5.2. As an example,
Figure 5.15 shows the raw data for the estimation of C with variational parameters (&, ) = 0.
Note that every evaluation of the cost function includes readout calibration measurements to
extract measurement-operator coefficients c,", and c’FfQ (PQeI 2).

Z basis measurements

X basis measurements

© 00 N OO O &~ W N = (H

+ZB2, +ZB1, +Zp2, +ZA1
+ZB2, +ZB1. +Zp2, —ZA1
+ZB2, +ZB1, —Zp2, +ZA1
+ZB2, —ZB1, +Zp2, +ZA1
—ZB2, +4B1, +Zp2, +ZA1
+ZB2, +ZB1, —Za2, —ZA1
—Zp2, —ZB1, +Zp2, +2Za1
+ZB2, —ZB1. +Zp2, —ZA1
—Zp2, +2ZB1, —Zp2, +Za1

+Xg2, +XB1, +Xa2, +Xa1
+Xg2, +XB1, +Xa2, —Xa1
+Xg2, +XB1, —Xa2, +Xa1
+XB2, —XB1, T Xa2, +Xa1
—XB2, +XB1, +Xa2, +Xa1
+XB2, +XB1, —Xa2, —Xa1
—Xg2, —XB1, +Xa2, +Xa1
+Xg2, —XB1, +Xa2, —Xa1
—XB2, +XB1, —Xa2, +Xa1

Table 5.2: List of the basis measurements used to evaluate all the terms in the cost function
C. The bases in the left column are used to estimate intra- and inter-system terms (Z;Z;),
while those on the right are used to extract single-qubit terms (X,-) and inter-system terms
(XjXi)-
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Figure 5.15: Example raw data for evaluating the cost function with variational angles
(&,9) = 0. Experimental average (from 4096 shots) of single-qubit and correlation mea-
surements for the 18 measurement bases in Table 5.1 and for calibration of the measurement
operators (following preparation of the 16 computational states of the four transmons). Panels
show the experimental averages of (a-d) single-transmon measurements, (e,h) intra-system
correlations and (f,g) inter-system correlations. (i) Bar graph of the experimental estimate of
the expected values of all terms in C, obtained by linear inversion on the measurement aver-
ages. For comparison, we also show are the expected valuees of all the terms for an ideal
processor.

5.5.10 Two-qubit state tomography

After optimization, we perform two-qubit state tomography of each system separately to as-
sess peformance. To do this, we obtain experimental averages (from 16394 shots) of single-
transmon and correlation measurements using an over-complete set of measurement bases.
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This set consists of the 36 bases obtained by using all combinations of bases for each trans-
mon i and j, drawn from the set {+X, +Y,+Z, —X, =Y, —Z}. The expectation values
of single-qubit and two-qubit Pauli operators are estimated by least-squares linear inversion.
Finally, these are used to construct

1
PExp = Z Iin + Z <Pi>esthPi + Z <Pj>estPin + Z <Q_/ >estQJ
PeX\Yy,zZ PeX\Yy,zZ P.QReEX)Y,Z
(5.23)

5.5.11 Supplementary Note 8: Impact of leakage on two-qubit tomography

Our linear inversion procedure for converting measurement averages into estimates of the
expected value of one- and two-qubit Pauli operators is only valid for (|/jk;) (/ik;|) = 0
whenever either k or | > 2, i.e., there is no leakage on either transmon. It is therefore essen-
tial, particularly for simulation model 4, to understand precisely how leakage in either or both
transmons infiltrates our extraction of the two-qubit density matrix pgyp.

First we consider the estimation of expected values of single-qubit Pauli operators {P;),
taking(Z;) as a concrete example. The expected value of all measurements on this transmon
for the basis combinations (6 in total) where this specific transmon is measured in the +Z
basis is:

(miH)y = clI) + ch(Z) + il2i)2i)). (5.24)

In turn, the expected value of all measurements on this transmon for the basis combinations
(6 in total) where this specific transmon is measured in the —Z basis is:

(m{)) = cH(I;) — cp(Zi) + ch{[2i) 2i]). (5.25)

Note that the contribution from the leakage term is unchanged because the pre-rotation (I;
or Rx(180°)) only acts on the qubit subspace. Our least-squares linear inversion of these
12 experimental averages to estimate (Z;) is

1 _
<Zi>est = 5 E mf+) - E:ﬁf ) : (5.26)
12¢5 m _

Clearly, owing to the balanced nature of this linear combination (all coefficients of equal mag-
nitude, 6 positive and 6 negative), this estimator is not biased by cé. In other words, the
average of (Z;)est is independent of the value of cé'.

Consider now the estimation of the expected value of two-qubit Pauli operators (Qj P;),
taking (XJ-Z,-> as a concrete example. There are four correlation measurements that contain
this term. For measurement bases +Xj and +Z;,

(m{FH)y :c}}<1-1,-> +d Lz + LX) + d"’ S(XZ) + cﬁ-(]2-><2-| I+

I
(129(21] Zi) + (I 1200 (211) + Sy (X5 120 (24]) + S [2720) (2,21 ).
(5.27)

2Z’
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For measurement bases +X; and —Z;,
- . .
(mi ) = I',<Ir> IALZ) + Gy XT) — (20 + |2><2}I

(2)(2)] Zi) + clolT; 12)(241) + plX; |2><2| + (12210252
(5.28)

22’

For measurement bases — X and +Z;,
(mi; ) :cﬁu-m + iy Zi) = FyXGT) - 7 (XZi) + )3 5+

JI
(20421 Zi) + Ty 120)(211) — Gp(X; |2><2| + b [2,2:)(2724]).
(5.29)

2Z’

Finally, for measurement bases —Xj and —Z;,
(m{=7) :c}}<1-1,-> — Lz — G + Xz + 2 ><2 | I;)—

JI
oL i120(2] Zi) + (I 20y (2il) = By (XG120) (24l) + i [272i) (2121])- ﬂ

(5.30)

Our least-squares linear inversion of these 4 experimental averages to estimate (XJ-Z;>

(XjZi)est =

Ji Ji mji mijj

;i (m(++) G 1 G (——)) _ (5.31)
V4
Clearly, owing to the balanced nature of this linear combination (all coefﬂcnents of equal mag-
nitude, 2 positive and 2 negative), this estimator is not biased by cé_,, S 7+ Cro» CIZZ’ and céz
In other words, the average of (XJ Z;)est is independent of the value of these coefficients.
We are finally in position to describe how leakage in the two-transmon system infiltrates
into our two-qubit tomographic reconstruction procedure. Evidently, the complete description
of the two-transmon system would be a two-qutrit density matrix poQutrit, but our procedure
returns a two-qubit density matrix pgxp. It is therefore key to understand how elements of
P2Qutrit are mapped onto pgy. Table 5.3 summarizes these mappings and Figure 5.16 illus-
trates them, including several examples. We have verified the mappings by exactly replicating
the tomographic procedure in our numerical simulation using quantumsim. To incorporate this
into the simulations, we have made use of the measurement coefficients ¢; experimentally
obtained. These leakage mappings have also been used when adding leakage in simulation
model 4.

5.5.12 Supplementary Note 9: Error model for numerical simulations

Our numerical simulations use the quantumsim [182] density-matrix simulator with the error
model described in the quantumsim_dclab subpackage.

Single-qubit gates are modeled as perfect rotations, sandwiched by two 10 ns idling
blocks. The idling model takes into account amplitude damping (71), phase damping (TeChO)
(noise model 1 of the main text), and residual ZZ crosstalk (noise model 3). To implement
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Elements of poQutrit ‘ Mapping onto pgyp

k) (1 k) k) (b k)
127) (1:2i) Ly ln
127, ki) (2j. il 31 |k (ki
127.2i) (2. 2i] any
All other elements 0

Table 5.3: Mapping of the elements of poQutrit 10 PExp by our two-qubit state tomography
procedure. Here, k, I, k', I' € {0, 1} denote computational (unleaked) states.

(a) True two-qutrit density matrix Reconstruction for two-qubit density matrix

00, HEHENE
orHECHNE
02

W EEEN 00 00 00,
10, AECHEHE

orEEENE| 1 o1 1 o1 A jorCm
NEELEE » lommmn| *72 |0 2 0 *Z [ocCm
;3 M EEEN 11 1 11 ]
21
22 u M No leakage Leakage on LSQ Leakage on MSQ M Leakage on both

(b) |=-) No leakage (©  |+i®leakageonlSQ ()  [%-i) LeakageonMSQ  (e)  |23) Leakage on both .

2

Phase
3

Figure 5.16: lllustration of the impact of leakage on two-qubit state tomography. (a) Mapping
of two-qutrit density matrix elements onto elements of the two-qubit density matrix pgy re-
turned by our tomographic reconstruction procedure. Elements in the qubit subspace (blue)
are mapped correctly. Elements corresponding to one transmon in the leaked state (orange
and green) are mapped onto a two-qubit state with the corresponding qubit fully mixed. The
state with leakage on both transmons (red) is mapped to the fully mixed two-qubit state. (b-
e) Example mappings for the states (b) |——), (c) |+, 2), (d) |2, —i), and (e) |22}, where
|-) = % (10) —[1)) and |£/) = % (10) £7[1)).

it, we first split the idling intervals into slices of 10 ns or less. These slides include amplitude
and phase damping. Between these slices, we add instantaneous two-qubit gates capturing
the residual coupling described by the Hamiltonian [188]:

H=¢;;|11) (11] = —%(1—2,——ZJ-+Z,-ZJ-). (5.32)
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The measurements of T1, TzeChO and ¢;; are detailed in previous sections.

The error model for CZ gates is described in detail in [187]. The dominant error sources
are identified to be leakage of the fluxed transmon to the second-excited state through the
|11) «» |02) channel and increased dephasing (reduced T2eCh°) due to the fact that the
fluxed transmon is pulsed away from the sweetspot. These two effects implement noise
models 4 and 2, respectively. The two-transmon process is modeled as instantaneous, and
sandwiched by two idling blocks of 35 ns with decreased T2eChO on the fluxed transmon.
Quasistatic flux noise is suppressed to first order in the Net Zero scheme and is therefore ne-
glected. Residual ZZ crosstalk is not inserted during idling for the transmon pair, because it
is absorbed by the gate calibration. The error model described in [187] allows for higher-order
leakage effects, e.g., so-called leakage conditional phases and leakage mobility. We do not
include these effects.

The simulation finishes by including the effect of leakage on the tomographic procedure
as discussed in Supplementary Note 8. The density matrix is obtained at the quitrit level,
and the correct mapping for the density-matrix elements is applied. We take special care to
use the experimental readout coefficients ¢; to model the readout signal for the simulated
density matrix, according to Equation (5.20) and Equation (5.21). The simulation produces
data for the same basis set as shown in Figure 5.15. Afterwards, the same tomographic
state reconstruction routine as in the experiment is applied to these data. in this way, noise
model 4 properly accounts for the imperfect reconstruction of leaked states, providing a fair
comparison to experiment.

5.5.13 Supplementary Note 10: Classical optimizer under ideal conditions

Our simulation efforts so far have addressed noise sources originating from physical effects
(e.g., qubit relaxation, dephasing, ZZ crosstalk, and leakage). It is important to also verify
that the classical optimizer does not limit the performance of the experiment. To this end, we
make use of the same optimization code [153] as in experiment while replacing qubit readout
data with simulated readout data for a noiseless quantum processor. In this way, we can es-
tablish the extent to which our classical optimization limits performance. We observe that the
achieved infidelity under these conditions [Figure 5.17(a)] is three orders of magnitude lower
than in the experiment. Furthermore, we observe that it closely follows the trend expected
from cost-function design [Figure 5.2(a)]. We therefore confirm that the addressed physical
noise sources dominate in experiment, while optimizer limitations would only become relevant
upon reducing infidelity by approximately three orders of magnitude.
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Figure 5.17: Test of the classical optimizer. By feeding simulated readout data for an ideal
processor (instead of actual measurements) into the software stack used to control our ex-
periment [153], we verify the limitations of the optimizer under the exact configuration and
conditions used in the experiment. Both figures include the curves from Fig. S3 (red) as refer-
ence. (a) Simulated infidelity (green) of the reduced state of system A to the Gibbs state after
optimization. (b) Corresponding purity of the reduced state (green). The purity of the Gibbs
state is also shown for comparison (black).
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6.1 Summary

During this thesis we have tried several runs at executing quantum algorithms on the avail-
able hardware. As expected from simulations, quantum mechanics (via several noise mech-
anisms) alters the performance of such algorithms and in many cases renders them useless.
Circumventing these errors is an unavoidable necessity in order to use quantum computers
without fault-tolerant codes. The experiments of Chapter 3,Chapter 4 and Chapter 5 allowed
for the build-up of simulation methods, capable of explaining and anticipating how theoretical
formulations for algorithms will behave (and possibly fail) because of the uncorrected errors
quantum processors posses. Not only we learned to predict such errors, but also to mitigate
them, introducing the Symmetry Verification technique. While using similar tools as stabiliz-
ers in surface codes, we avoided the prohibitive resources such codes would need, while still
mitigating certain errors.

Looking backwards, it is useful to reflect upon what would be interesting to do, if repeating
the experiment. For the case of Chapter 3, it would be of high interest to attempt the prepara-
tion of the system ground state, either by adiabatic preparation in a Trotterized way, or with a
QAOA approach. The later would be especially interesting, as the Trotterized evolution was
so carefully implemented, and would allow an interesting comparison to the performance of
repeated QAOA iterations. In the experiment of Chapter 4, it would certainly be better to use
Symmetry Verification directly on the optimization routine, instead of afterwards. Furthermore,
the Hydrogen case allows for the scaling of the register used for the algorithm, from 1 to at
least 4 qubits (and of course extendable to more). Such study was only very recently con-
ducted by the Google Team [43] [191]. Finally, for the experiment of Chapter 5, it would also
be very informative to understand how the application of several layers of the QAOA unitaries
improve the performance of the algorithm and its matching with our understanding of the
leading error mechanisms.

6.2 The promise of the variational approach

Another important topic to reflect upon is that this thesis contains two very different types
of quantum simulations in terms of the algorithmic strategy. On Chapter 3 we produced a
trotterized implementation of an atom-cavity system. While Trotterization is a very clear and
straight-forward method for implementing arbitrary Hamiltonians, it remains experimentally
challenging as its guarantees of performance are asymptotic, and push the coherence re-
quirements of the algorithm. Specifically in Chapter 3, we managed to produced qubits with
very competitive coherence at that point in time, and push the state of the art with 90 Trotter
steps. However, as system size increases the cost of every Trotter step does as well, making
it very difficult to scale up. On the other hand, around the time of this thesis, other family
of algorithms started taking attention from the community: the variational algorithms. The
idea was very well received because it was pragmatic: instead of focusing on circuit depths
state of the art could not afford, it focused on what could be done at the time. It managed
very well to minimize the set of concepts necessary to implement it: (i) a low-depth circuit
optimized by a classical code, (ii) a mapping between qubit states and solutions spaces and
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(iii) a target metric whose minimization converges to a solution of the given problem. These
set of concepts divided the algorithm in items to develop and improve upon independently.
Improving these items to the levels required for useful applications seem plausible in a much
shorter time-scale than pushing coherences by one or two orders of magnitude as required
for Trotterized algorithms.

While variational algorithms seem very promising and currently hold the lead towards
useful applications, it remains clear that more improvements are necessary for the several
items composing the algorithm. One of the most solid progresses so far has been the effort
of packages like OpenFermion [52], that automates the mapping of quantum chemistry prob-
lems onto Hamiltonians for N qubit processors. The Hidrogen molecule is a good example of
how by sacrificing simplicity of the cost function, one can reduce the qubits required from 4 to
even 1. This is achieved by, instead of directly representing one orbital per qubit, resorting to
fancier mapping techniques such as Bravyi-Kitaev one [51]. Furthermore, one can sacrifice
a bit more complexity by adding extra qubit dimensions with symmetries [57] or subspace
expansion terms [126]. Handling such a procedure is a bookkeeping task, which a layer of
software is ideally suited to perform. The further development of such software packages is
an ongoing effort, that will most certainly contribute to the first commercial attempts at using
quantum computers.

Another important feature is that of the ansatzes, and the gates composing them. While
transmon architectures already achieved universal gate-sets via CZ gates, further two-qubit
gates might be very helpful in reducing the necessary depth for certain unitaries. Specifically
in the context of quantum chemistry, swap-like gates provide (up to single-qubit phases) a na-
tive implementation of the population balance needed to solve between orbitals [56]. Recently,
the Google Team presented a continuos family of gates, parametrized with two degrees of
freedom and including both CZ and iISWAP gates [189]. As depth reduction directly affects
the impact on coherence, using such tricks to further reduce the depth can provide good
returns in terms of performance.

The methods by which we construct an ansatz were also pushed in the recent years. The
IBM team [31] introduced the concept of Hardware efficient ansatz, where instead of imple-
menting a theory-motivated circuit, one simply states the most general unitary possible within
the architecture. In the case of transmon architectures, it is a layer of single qubit gates, where
unitaries are totally arbitrary SU(2) ones implemented via virtual-Z compilation, followed by
a layer of the entangling gates available. In principle, as the gate-set is universal, this should
suffice to implement any unitary, provided enough depth is accessible. However, such a prag-
matic approach needs to be exercised with care: the excessive parametrization of such an
ansatz can lead to plateaus for the classical optimization of the parameters, stagnating the
variational process [142]. The matter of an optimal procedure to deciding which parameters
to include in the optimization and which not, remains an open question. It is my personal
view that, towards scaling up these algorithms, such a procedure will be necessary to avoid
stagnation via Baren plateaus.

In hindsight, all experiment chapters share a common insight: performance would have
been much worse, had it not been for inventive small tricks. The experiment of Chapter 3
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uses a second-order Trotterization, Chapter 4 introduced a brand new mitigation technique,
and Chapter 5 avoided the need of bath engineering for controlling mixture in states.

All of this tricks operate in the same essence as hacks in classical computation. A hack 1
occurs when a classical computing system is manipulated to perform a task B for which it was
not designed, instead of the task A it was designed for. In the case of quantum computers
it gets a complication: We design a quantum processor to do a task A, but it only manages
to produce a noisy implementation Ag. Our hacking task consists in making a task B, which
is closer to A than Ag, improving our performance. In Chapter 4 we realized a symmetry
dictating how the Hilbert space is used, and in Chapter 5 we artificially mixed a state by
erasing half of it. It is my personal view and conclusion that such hacks are going to be
necessary if we aim at squeezing the most we can out fo the computing power of pre-fault-
tolerant quantum processors.

Furthermore, it is my personal view that such tricks, along with the continuous improve-
ments on every aspect of variational approaches (mapping, ansatz, classical optimizers),
should allow us to implement useful applications. All this occurring much earlier than the
landmark of thousands of qubits that seems necessary to start having small quantum error
correction codes. | finish this thesis with high hopes of reading about useful applications for
quantum customers, running within the next 5 — 10 years.

6.3 A personal forecast

To conclude this thesis, | prefer to be more precise, and share in more detail what my vision
of such a near-future application looks like.

For starters, current efforts focus on cloud-based platforms granting access to the quan-
tum processors. Although | believe defence and military applications will rather keep their
own hardware, | find it hard to imagine this paradigm breaking apart. Secondly, the hardware
particularities: | believe features like specific gate-sets, compilation and transpilation tricks
and small architecture features will be an active competition ground for the several platforms
disputing the market. Offering gate-sets and tools that best implement the necessary con-
nectivities and unitaries will be a topic of importance for any quantum programmer deciding
which platform to use.

An integrating piece of software will be needed to orchestrate the several quantum pro-
gramming layers. While mappings are already quite solved by software like OpenFermion,
further layers of code will have to efficiently decide appropriate ansatzes solving the trade-off
to place parameters without running into the Barren plateau. Finally, some sort of error mitiga-
tion will need to be implemented, symmetry-based ones being currently the most promising
at the moment. Finally, the most likely applications seem to be in quantum chemistry and
logistics, where the degrees of freedom to model can be modest, but their correlation and
interdependence might profit from quantum processors. All this scheme, properly integrated
with an adequate engineering effort, seems to be today not only achievable, but a low-hanging
fruit ready to be pursued giving further impulse into the usage of quantum computers.

"While defining the term hack may require a much more detailed and exhaustive approach, the quick definition provided
here is enough for the purpose of the discussion at hand.
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