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ABSTRACT

Laminated composites is a material that is rapidly being adapted in the aircraft industry and new joining
techniques are being researched for new structural designs. One such technique is adhesive bonding, which
can result in decreased weight, fuel saving and improved strength of aircraft components. Robust strength
and failure analysis methods are required to assess new designs beforehand. One of these methods is co-
hesive zone modelling. Cohesive zone modelling is a technique based on cohesive forces and energy within
a material or interface region which keeps material together. Damage can be tracked progressively along a
region with cohesive elements and damage propagation can be monitored in a structure. This thesis work
relies on cohesive zone modelling to monitor damage propagation of the bondline and in between plies of
simple bonded joints, together with progressive failure criteria to assess any failure within the plies of a joint.

A composite Cracked Lap Shear (CLS) specimen was tested with results of a possible crack jump from
bondline to adherend. The objective of this thesis was to assess and recreate damage propagation and the
possibility of a jump of damage growth from bondline to adherend in the CLS specimen. This was done by us-
ing cohesive zone modelling and progressive failure criteria with the finite element package MSC.Mentat and
its solver MSC.Marc. A validation with another test report on mixed-mode bending and interlaminar failure
was performed using a cohesive zone model with the settings MSC.Marc has to offer. This wielded accurate
results in terms of loading and damage. With the aid of this validation, the options within the cohesive zone
model which had the best results in the validation were used for simulations of the CLS specimen. Cohesive
zone elements representing the bondline and the adhesive within the laminate adherends in the CLS model
are used to assess cohesive and interlaminar failure, while progressive failure criteria are used to assess in-
tralaminar failure. The results of the current simulation setups were unsatisfying as the failure load and strain
results had large errors. Further detailed analyses will be needed to recreate the multiple failure modes in the
CLS specimen in MSC.Marc with acceptable results. On the other hand, the thesis has proven that MSC.Marc
and its own cohesive zone model perform well enough for mixed-mode bending and interlaminar failure in
simple geometries.
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1
INTRODUCTION

1.1. BACKGROUND

In recent years, composite material is being applied more extensively in the aerospace industry. The Airbus
Group company currently applies composite material in the design and manufacture of aircraft components,
and it is seeing an increased use in fuselage design. The main reasons for the application of this material, is
that they are capable of supporting large loads, are lightweight and are more reliable with a longer lifespan
than other traditional metallic materials. In turn, this reduces aircraft maintenance, costs, and frequency of
inspections during service.

The increased application of composite material calls for efficient and robust joining techniques when
designing new primary structures as well as performing repairs. Currently, conventional mechanical fasten-
ing, such as riveting and bolting, is the favoured joining technique for primary composite structures. This
traditional joining technique usually results in the cutting and interruptions of fibres and thus introduces
large stress concentrations, reducing structural integrity. An alternative joining technique would be adhesive
bonding for primary composite structures, which reduces detrimental stress concentrations by better load
and stress distributions along its area [15] and without the need of fibre cuts meant for fastener holes. This
can result that bonded joints can be stronger than the ultimate strength of many metals that are in com-
mon use for aircraft construction today. Rivet- and bolt-free joining would also considerably contribute to
weight and cost reduction of primary aerospace structures. Still, this alternative joining technique suffers
from certification issues and airworthiness requirements regarding undetectability of manufacturing flaws
within adhesively bonded structures, which does not provide absolute assurance of bond integrity and could
lead to premature failure of purely bonded joints. This is the main reason why mechanical fastening is still
preferred over adhesive bonding.

While improvements and developments on manufacturing processes and non-destructive techniques for
weak bond inspection are being made, it remains desirable to look into the implementation of adhesive
bonding as the joining technique in primary composite structures, due to its advantages over conventional
mechanical fastening. The Boltless Assembling of Primary Aerospace Composite Structures (BOPACS) project
selects target applications that are commonly used in today’s primary aerospace structures where adhesive
bonding might advantageously replace the conventional riveting and fastening. While BOPACS is not fo-
cussing on improvement of manufacturing processes and non-destructive inspection techniques, it instead
proposes a different road map to certification and requirement fulfilment by developing Means of Comply
based on:

• Thorough research, beyond the state of the art, into crack growth and disbond extension mechanisms
in adhesively bonded joints.

• Research and development on different categories of crack stopping design features to prevent or arrest
crack growth and ultimately failure of joints.

BOPACS considers this topic to be breakthrough technology: the features mentioned above secure structural
integrity of the bond line in bonded joints throughout the entire service life. There are still several issues and
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2 1. INTRODUCTION

topics that are unresolved within the research of BOPACS. The thesis will concentrate on a topic within the
first point mentioned in the road map.

One of the main research fields of BOPACS is failure in adhesively bonded joints. In order to understand and
improve adhesively bonded joints, damage and failure in these structures must first be understood. Failure
in bonded joints can been classified in three basic categories [16]:

1. Failure within one of the adherends that is technically outside the joint
2. Failure throughout the adhesive layer, also known as cohesive failure
3. Failure at the interface between the adhesive and one of the adherend, also known as adhesive failure

The first option is the ideal form of failure, which proves that the joint has given its maximum performance
and had not failed. It is desirable to have only the first option as failure, since it may reduce the testing
required for structural certification. Currently, research is put into understanding and preventing cohesive
and adhesive failure, in order to perfect the bond line itself and prevent it from failing as much as possible.

Next to the possibility of failure within joints, be it in the bond line itself or in the interface, failure can
also occur in the adherends near the bond line. The most common damage type in composite structures
and laminates is delamination, due to relatively weak interlaminar strengths [17]. Delamination is the pro-
cess whereby the laminate layers within composites separate. Global structural failure from delamination is
usually attributed to the evolution of damage, referred to as crack growth, created in local zones in the struc-
ture. In these local zones, micro-cracks and voids may grow in size and result into macroscopic cracks, which
eventually will lead to global failure.

Most contemporary methods to investigate debonding and delamination come from a fracture mechanics
point of view, which incorporates damage evolution on a micro scale. Within fracture mechanics, many tech-
niques and methods are used to determine crack growth, with different failure criteria. Methods based on
Linear Elastic Fracture Mechanics (LEFM) has proven to be effective once non-linearities can be neglected.
In the case that non-linearities cannot be neglected, well-known techniques in elastic-plastic fracture me-
chanics, such as the J-integral method and Virtual Crack Closure Technique, are used. But these well-proven
methods have their shortcomings. For instance, LEFM needs the presence of an initial crack before it is ap-
plicable and is dependent on the size of the non-linear zone ahead of the crack tip. The other techniques like
VCCT and J-integral method have encountered difficulties when used in finite element codes [5].

To overcome the limitations of the previously mentioned methods, cohesive zone modelling (CZM) is
proposed to simulate and analyse damage initiation and propagation in bonded joints and their laminates.
The concept dates back to the previous century, when it was introduced by Dugdale and Barenblatt in the
sixties [18, 19]. In their models, the concept of a yield stress was introduced, a thin plastic zone is generated
in front of the notch and that cohesive forces are present to solve the problem of equilibrium in elastic bodies
with cracks. It was subsequently improved by Hillerborg in a modified model with the concept of tensile
strength, initiation of new cracks and allowing existing cracks to grow [20].

BOPACS uses a building block approach as in Figure 1.1 and is performing tests on coupon level to understand
composite bonded joints. One of their aims is recreating these joints and there experiments in finite element
packages with accurate results. Recent Cracked Lapped Shear (CLS) tests in BOPACS have given results that
were unexpected. In some cases, the CLS specimen showed initial cohesive failure in the bondline which was
expected, but then abruptly stopped and failure was continued by only delamination or intralaminar failure
in the adherend. The crack, or damage propagation was thus shifted from the bondline to inbetween lami-
nates in one of the adherend. It is still unknown how this jump occurred, even with the aid of NDTs. A possible
and probable explanation behind this damage propagation jump is the influence of the 90° ply, which is the
weakest ply when it comes to Mode I fracture due to its low matrix tensile strength, and the direct influence of
first ply next to the bondline showing intralaminar failure. A closer inspection on this phenomenon is wanted
to fully understand if and why the jump occurs, what parameters are of major influence in this and how to
model and simulate this phenomenon is a finite element package with the aid of CZM. The objective of this
thesis will concentrate on this.

For the Defence and Space department, a subdivision of Airbus Group and the provider of the Eurofighter, it
is of high interest to investigate the use of CZM in structural analysis in adhesively bonded assemblies and
repairs, and in the design and creation of crack stopping features. It can be of use for military and civil aircraft
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Figure 1.1: Building block approach in the aircraft industry.

that Airbus Group offers in the competitive aircraft industry. Currently, Airbus Group resides over a licence
for the commercial finite element analysis tool MSC.Mentat, a pre- and postprocessing tool, and its solver
MSC.Marc, which has the possibility to analyse and solve simulations using CZM.

1.2. OBJECTIVE AND APPROACH

The objective of the research work in this thesis is the validation and evaluation of the capabilities to predict
failure loads, damage onset and damage growth with cohesive zone modelling in composite bonded joints
on coupon level using the finite element package MSC.Marc. To do this, three research questions are devised
to understand the problem that occurred in the CLS specimen that BOPACS is currently researching and how
to recreate this problem accurately to make future predictions on varying material properties:

• First research question: What parameters and material properties of a cohesive model are of influence
in damage onset and growth?

– Determine the influence of the critical energy release rate.
– Determine the influence of the maximum traction allowed of the adhesive.

• Second research question: Is ply failure or delamination present and does this failure cause damage
growth to physically jump from the bondline to the adherend in the CLS specimen?

– If there is a jump in damage growth, what cohesive parameters are of influence to prevent or
induce this?

• Third research question: How accurate can you model (the jump of) damage growth progressively of a
coupon level test specimen in the finite element package MSC.Marc?

– Determine the accuracy of the solver’s own cohesive zone model.
– Determine the accuracy of the progressive failure within the adherends of the CLS specimen.

To help answer the above questions and have a background understanding on the subject, the thesis covers
a general review on bonded joints and failure analysis approaches, the main theoretical and analysis aspects
of CZM and variable mode ratio testing in a literature review study. Validation tests will be performed with
MSC.Mentat and MSC.Marc on coupon level first and compared to previously performed experiments from a
test report. This is done to become familiar with the package and to make sure it’s compatible for simulating
3D variable mode ratio tests with CZM. With these validation tests, the parameter settings and options of
MSC.Mentat will also be explored and evaluated for optimal use in the CLS experiment.
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For the first question, a fundamental understanding of cohesive zone models is needed which then can
be applied to the simulations. The literature review will help a lot in this.

For the second and last question, the modelling options such as progressive failure criteria and cohesive
zone elements will be explored to optimally simulate the real life CLS specimen and experiment in MSC.Marc.
The matter whether failure in one of the plies is of influence on a potential jump will be explored via this. An
optimal model which gives the best results will be designed for this. For the last question, the accuracy can
be determined by the use of a cohesive zone model and failure criteria in the simulations and by relating the
results to the real life experiment.

1.3. OUTLINE

The research was started by performing a preliminary literature study on the subject of adhesively bonded
joints and failure analyses. In Chapter 2, a small study concerning the basic understanding of adhesively
bonded joints has been performed and a general study has been performed on failure analyses, in partic-
ular why CZM was chosen. In Chapter 3, an extended study has been performed on CZM, regarding theo-
ries and the implementation in MSC.Marc. A validation of MSC.Marc’s home settings and options was per-
formed in Chapter 4 on a mixed-mode bending test based on another research paper to assess the accuracy
of MSC.Marc’s settings to that of analytical and experimental results and what difficulties were encountered.
Chapter 5 covers the CLS experiment and simulations and their results.

Both Chapter 4 and Chapter 5 are built in the same manner. The first section is an explanation on the
experiment performed and the experimental results are shown. The following sections describe the models
and simulation setups that are to be run within MSC.Marc. In the last section of those chapters, an evaluation
follows, detailing the results and showing a discussion about the outcome of the simulations and what it
means for the research questions.

Using the evaluation sections of Chapter 4 and Chapter 5 results in Chapter 6, which ultimately provides
the conclusions to this research. In this chapter, the three previously formulated research questions are an-
swered, followed by recommendations on future research on this topic.



2
LITERATURE RESEARCH

A literature research was conducted prior to the evaluation of the main subject, to get a better understanding
of bonded joints and the theories behind failure analysis, and why cohesive zone modelling was chosen as the
method of analysing damage propagation. Chapter 2.1 is dedicated to some general information regarding
bonded joints, their designs and their advantages and disadvantages over mechanical fasteners. Chapter 2.2
explains the failure modes of bonded joints. Chapter 2.3 explains the most well-known methods for crack
analyses and an argumentation why continuum damage mechanics and CZM are used in this thesis. Chap-
ter 2.4 then explains the theories behind several failure criteria that will be used, and their implementation in
MSC.Marc.

2.1. ADHESIVELY BONDED JOINTS

2.1.1. JOINT DESIGN AND TYPES

Figure 2.1: Overview of common bonded joints. Taken from ESA [1], Zwinderman [2].

There are many joint designs that are used. Each has certain characteristics coming with the design to cope
with a type of load case. Single-lap joints for instance are easy to produce, to inspect, and to analyse. Double-
lap joints are more resistant to peel stresses. Corner and T-joints are also common, for example in aircraft

5
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tails. The CLS specimen that is evaluated later on is a single-sided bonded doubler. An overview of common
bonded joints can be found in Figure 2.1. The strength of a bonded joint is dependent on several important
properties. The adhesive and adherend thickness are often of crucial importance. For adherend thickness,
there is a critical thickness dependant on the load case to make sure that failure should or should not occur
in the adherend part of the bonded joint, which would not lead or lead to failure in the adhesive [21]. For
adhesive thickness, experimental results have made manufacturers recommend a thickness range between
0.1 − 0.2 mm for maximum joint strength [4]. Experimental results depict a contradiction with analytical
results, derived from analytical methods such as Goland-Reissner’s and Hart-Smith’s, whereby increasing ad-
hesive thickness gives lower failure loads, which wasn’t expected [22]. This is due to stress singularities at the
interface corners of the adhesive and adherend which are caused by the mismatch in stiffness due to material
discontinuity. These singularities indicate that the stress has an infinite value according to continuum me-
chanics. A typical stress distribution for single-lap joints as in Figure 2.2 shows the spikes at the ends of the
adhesive using analytical methods.

Figure 2.2: A stress distribution curve using analytical methods for different overlap lengths in a single lap joint. Stress peaks at the ends
decrease the longer the overlap length becomes. Taken from Kelly [3].

The stress singularities can be reduced and minimised by the addition of taper or rounding of both adhesive
and adherends, but still cannot be fully removed. Studies have concentrated on this tapering with results that
a small taper angle and large roundings can reduce stress significantly at the end of the adhesive [23, 24], see
Figure 2.5. A few examples of tapered joint designs are given in Figure 2.3 and locations of stress singularities
even in tapered joints in Figure 2.4.

Figure 2.3: Different types of tapered ends to reduce stress peaks. Taken from Gleich et al. [4].

When composite laminate adherends are used, design should incorporate effective fibre orientation due to
the differing strength properties of each different orientated ply for a given load case. Often the shear load
transfer in the main load direction is engineered to coincide with the fibre orientation of the first ply in a
unidirectional laminate, due to the suitable strength properties. A weak ply in a laminate is often the 90° ply
because of its low tensile and shear strength and strain to failure of the resin-to-fibre interface within the
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(a) Strength of stress peaks in a square
edge.

(b) Strength of stress peaks in a small spew
fillet.

(c) Strength of stress peaks in a full spew
fillet.

Figure 2.4: Generalised depictions of stress peaks at adhesive and adherend interfaces at the joint end, denoted by strength presence.
Taken from da Silva and Campilho [5].

(a) Influence of tapered ends. Taken from Dawood [23]. (b) Influence of rounded ends. Taken from Zhao et al. [24].

Figure 2.5: Tapers and roundings at joint ends and their influences on stress peaks and distribution. Smaller angled tapers result in
lower stresses throughout the joint and larger roundings result in a more spread out stress distribution at the joint ends.

structure. It is also the case that the matrix resin strength properties are significantly lower than those of the
adhesive. It is therefore desirable to minimise usage of 90° plies in order to obtain a specific bonded joint
with predictable and reproducible strength, since these plies cause a weakness in strength in bonded joints,
which could lead to early failure in the composite adherend. Ultimately, this means that it is preferred to have
a cohesive failure rather than an adherend failure for composite bonded joints [1]. Figure 2.6 depicts a series
of fibre orientation choices for several joint design subjected to shear loads.

2.1.2. ADVANTAGES AND DISADVANTAGES

To chose between adhesive bonded joints and mechanically fastened ones comes alot of advantages and
disadvantages. Mechanical fasteners are still widely used in aircraft production, even though they carry large
disadvantages like introducing stress concentrations around the fastener holes which can initiate cracks and
lead to failure. Yet they also have advantages which justify their usage. A list of advantages and disadvantage
for mechanical fastened joints is given as follows in Table 2.1.

With the current increase of composite material being used in aircraft, the disadvantages on mechanical
fastening are more evident in this type of material. According to research, a 60% decrease of the in-plane
properties of laminated composite structures takes place when fasteners are used as the joining method in
joints [25]. Therefore, it is highly desirable to incorporate adhesive bonding as fasteners and their holes are
not present and thus do not reduce the strength of a composite structure. There are more numerous advan-
tages to bonded joints, but also disadvantages. A summary of advantages and disadvantages for adhesively
bonded joints can also be found in Table 2.1.

For both mechanically fastened and adhesively bonded joints, many advantages and disadvantages have to
be taken into account. Yet experience has shown that adhesive bonding for laminated composite joints has
proven to be above all stronger, lighter and cheaper than their mechanically fastened counterpart [1, 15, 25].
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Figure 2.6: Correct and incorrect designs of composite bonded joints with optimal fibre orientation depending on different shear and
tensile loads. Taken from ESA [1].

Advantages: Disadvantages:

Mechanical fasteners

• No special surface preparation needed
• Strength not affected by thermal cycling or

high humidity
• Presents no ususual inspection problems for

joint quality
• Can be quickly and easily disassembled and

reassembled, without destruction of the ad-
herends

• Weakening of the composite adherends due
to holes

• Stress concentrations near holes which can
initiate failure

• Not generally as strong as bonded joints un-
less joining thick laminates

• Fasteners increase the overall weight
• Protruding fasteners can disrupt aerodynam-

ics surfaces

Adhesive bonding

• Reduced average stress and stress concentra-
tion due to more equal load distribution over
its area

• No machining on adherends
• Weight addition is minimum with only adhe-

sives
• Bonded joints show less permanent set after

first loading
• Smooth aerodynamic surfaces remain
• Good elevated temperature creep resistance
• Creates integrally sealed joints with low sen-

sitivity to crack propagation
• Large areas of bonded joints cost less than

mechanical fastened joints
• Corrosive resistant
• Enables the assembly of dissimilar materials

prone to galvanic corrosion

• Difficulty with accurate non-destructive test-
ing

• Impurities or non-uniformity of composite
adherend and bondline material can give in-
accurate strengths

• Careful design needed for peel loadings
• Special surface preparation needed on ad-

herends for adhesives
• Permanent, allowing for no or very difficult

disassembling
• Patch repairs are difficult
• Accurate mating and fit of adherends needed
• Thermal cycling and high humidity can affect

strength

Table 2.1: Advantages and disadvantages of mechanical fasteners [1].
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2.1.3. GENERAL ANALYTICAL METHODS OF SINGLE-LAP JOINTS

The single-lap joint is often taken as its the easiest and simplest joint. Many researchers have created analyt-
ical equations based on the single-lap joint that incorporate certain properties like material linearity, type of
adherends, stress etc. to study and understand the forces and stresses in a single-lap joint. An overview can
be found in Table 2.2.

Table 2.2: Overview of popular analytical methods for forces and stresses in a 2D single-lap joint. Taken from da Silva et al. [14].

The methods in Table 2.2 are only meant for single-lap joints. Bonded joints are so complex and unique,
that there are no general analytical equations and equations that are able to give the full stress distributions
throughout the full joint thickness. Calculations further on in this thesis, in particular for the CLS specimen,
will thus be trusted to the finite element package MSC.Marc.

2.2. FAILURE MODES WITHIN BONDED JOINTS

A bonded joint can fail in many ways. In general, as noted in Chapter 1, failure in bonded joints is often placed
in three categories: cohesive, adhesive and adherend failures.

2.2.1. COHESIVE FAILURE

Cohesive failure takes place within the adhesive, with clear presence of adhesive on both adherends once
fractured. Cohesive failure often occurs with shear load, although peel stresses or a combination of may also
result in cohesive failure. Poor joint design such as insufficient overlap length is a typical cause for cohesive
failure. Excessive porosity can also result in cohesive failure [16].

(a) Cohesive failure modes according to ASTM [26]. (b) Cohesive failure modes according to Heslehurst and
Hart-Smith [27].

Figure 2.7: Cohesive failure modes in bonded joints.
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Figure 2.7 gives two interpretations of cohesive failure modes within composite bonded joints. ASTM [26] ap-
proaches the failure modes as it would look like after testing while Heslehurst and Hart-Smith [27] approaches
failure modes more based on the load cases.

2.2.2. ADHESIVE FAILURE

Adhesive failure takes place on the interface of the adherend and adhesive. Adhesive failure is often com-
monly called disbonding. Common causes are improper manufactured and contaminated surfaces, surfaces
that are not properly resistant to hydration and adhesive curing that took place before the bonding. A mixed
failure mode of adhesive and cohesive failure can occur. Such a mix is still classified as an adhesive failure
when the adherend surface is visible and the adhesive fractured close to the surface. Figure 2.8 gives two inter-
pretations of cohesive and adherend failure modes within composite bonded joints. ASTM [26] approaches
the failure modes as it would look like after testing while Heslehurst and Hart-Smith [27] approaches failure
modes more based on the load cases.

(a) Adhesive failure modes according to ASTM [26]. (b) Adhesive failure modes according to Heslehurst and Hart-Smith [27].

Figure 2.8: Adhesive failure modes in bonded joints.

2.2.3. ADHEREND FAILURE

Adherend failure takes place anywhere in the adherend of the bonded joint. A common cause for adherend
failure would be faulty ply matrices or improper curing of plies. Figure 2.9 gives two interpretations of ad-
herend failure modes within composite bonded joints. ASTM [26] approaches the failure modes as it would
look like after testing while Heslehurst and Hart-Smith [27] approaches failure modes more based on the load
cases.

(a) Adherend failure modes according to ASTM [26].

(b) Adherend failure modes according to Heslehurst and Hart-Smith [27].

Figure 2.9: Adherend failure modes in bonded joints.

For composite adherends, there are multiple failure modes to be taken into account due to the complexity of
composite materials [26–28]. There exist three special types of failure modes in the adherends: interlaminar
failure, intralaminar failure and fibre failure. Interlaminar failure happens between plies, intralaminar failure
within plies and failure directly in the fibres of the plies. Interlaminar failure is delamination, which is sep-
aration at the interface between plies. For fibre and intralaminar failure, there are five types of fracture that
have been recognized [6, 29]:

• Tensile fiber fracture
• Compressive fiber fracture, also known as kinking
• Tensile matrix failure
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• Compressive matrix failure
• Shear matrix failure

A visualisation and overview of these fractures can be found in Figure 2.10 and Table 2.3.

Figure 2.10: Overview of failure modes within composite material. Fracture resistance denotion (R), fibre failure (F F ) or inter fibre
failure (I F F ), normal fracture (N F ) or shear fracture (SF ), tension (t ) or compression (c) and parallel (∥) or perpendicular (⊥) loading to

fibres. See Table 2.3 for a tabular overview. Taken from Cuntze [6].

Failure Mode Driving failure stress Stress type Fracture Resistance

Tensile fiber fracture (FF1) σ1 N F∥ R t
∥

Compressive fiber fracture (FF2) −σ1 SF∥ Rc
∥

Tensile matrix failure (IFF1) σ2 N F⊥ R t
⊥

Compressive matrix failure (IFF2) σ2 SF⊥ Rc
⊥

Shear matrix failure (IFF3) −τ21, τ23 SF∥⊥,SF⊥⊥ R∥⊥,R⊥⊥

Table 2.3: Tabular overview of Figure 2.10.

2.3. APPROACHES TO CRACK FAILURE ANALYSES

When it comes to failure, cracks are the most common defects in joints and composite laminates. They cause
fracture, delamination and debonding. The emphasis in this literature research is put on crack failure in and
around an adhesively bonded joint. Research on cracks have been extensive and have resulted in many mod-
els and failure criteria. Finite element methods have become the preferred method for analysis on bonded
joints. Several reasons for this include that joint rotation and plasticity in both adherend and adhesive are
easier to treat with the finite element method [30]. There are four well-known approaches to failure analysis
that are based on finite element method: continuum mechanics, fracture mechanics, extended finite element
method and damage mechanics [5]. A brief general description on the four most popular methods is given
together with the advantages and disadvantages they bring.

2.3.1. CONTINUUM MECHANICS

The most common and well-known approach for material failure analysis is via continuum mechanics. Ap-
proaches based on continuum mechanics use the maximum values of stress, strain or strain energy resulting
from finite element analyses, against a chosen failure criterion which uses the critical values of the material
and indicates if a material has failed. Examples of such failure criteria are Von Mises and Drucker-Prager.
Using continuum mechanics in failure analysis has proven successful and are still used today, although it has
a shortcomings when applied to bonded joints.
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Within cracks, a stress discontinuity exist at the beginning of the crack tip. Figure 2.11a shows a model
with a crack tip in a planar plate problem, derived from a continuum mechanics approach. In reality, the
y-stresses at the crack tip are actually finite instead of infinite as derived by continuum mechanics. Further
along the crack towards the end, the y-stresses are zero, due to free surfaces where crack propagation has
already occurred. This creates a discontinuity between the head of the crack and the remaining crack length.
In both case of Figure 2.11a and Figure 2.11b, the stresses are required to be continuous, and so the stresses at
the crack tip are not defined, being infinite. This is called a singularity. These singularities are always present
in crack angles smaller than 180 degrees [31]. A singularity is also presented between two bonded materials,
with a stress jump at the interface, as in Figure 2.11b.

(a) Stress singularity at a crack tip.
(b) Stress discontinuity at a material interface, such as an adherend

and adhesive interface.

Figure 2.11: Stress singularities at crack tips and material interfaces. Taken from da Silva and Campilho [5].

Due to the singularity of stress at re-entrant corners of joints, the stresses depend on the mesh size and the
proximity of the stress taken to the singularities, so care must be taken when using critical maximum values
as failure criteria, such as maximum principal stresses. Using these stresses as a criterion is often applied to
brittle materials [32, 33]. Several models have had some success with predicting failure. Clarke and McGregor
[34] used maximum principal stress as a failure criterion, relating it to the maximum uniaxial stress in bulk
adhesives over a certain length normal to the direction of the maximum principal stresses. Shear stresses
are also often used as failure criteria and to predict joint strength [35–37]. Using shear stresses as criteria
has its limitations. It ignores normal stresses and overestimates the joint strength, and articles have shown
that the criterion is only valid for brittle adhesives and short overlaps [14, 38]. Clarke and McGregor [39]
used critical peel stress at a certain distance from the stress singularity as a failure criterion in mixed-mode
loading. The drawback was that the distance from the singularity differed in mixed-mode loading due to the
constant change in plastic zone size. The stress based criteria don’t have any physical justification when it
comes to critical distances from the stress singularities and are largely dependent on mesh sizes and other
physical parameters such as adhesive thickness and adherend rounding.

Stress based criteria are suitable for brittle materials, but not for ductile materials because joints can still
sustain large loads during adhesive yielding. So for ductile materials, strain based failure criteria are used,
with much success [15, 30, 40, 41]. The drawback with this type of criteria suffers from the same effects as
stress based criteria.

Other failure criteria include the use of plastic energy density in the plastic part of deformation, which is
based on total strain energy. Total strain energy takes account for all stress and strain components. Using an
average plastic energy density as failure criteria has shown promising results for ductile adhesives [24, 42].
Other special criteria have been developed for specific situation, for example very ductile adhesives which
caused severe yielding before failure. These are again limited to ductile adhesives and to lap joints [32, 39].
Yield criteria such as Von Mises’ criterion have also been used as a failure criterion, although this is more
applicable to material failure than strength failure and disbonding in joints.

The criteria based on the continuum approach are best limited to continuous structures only. They have
difficulty when defects such as cracks or multiple materials are present like in bonded joints, due to stresses
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and strains not being well defined at singular points.

2.3.2. FRACTURE MECHANICS

Because of the stress discontinuity in cracks and re-entrant corners, continuum mechanics is not a suitable
approach as this approach requires that the structure and its material should be continuous. The stress singu-
larity in the continuum mechanics approach results in infinity, which is physically not true. To still effectively
study crack propagation and failure, studies were dedicated to this and the field of fracture mechanics was in-
troduced. Fracture mechanics can be divided in Linear Elastic Fracture Mechanics (LEFM) and Elasto-Plastic
Fracture Mechanics (EPFM). LEFM neglects non-linearity while EPFM takes non-linearity and plasticity into
account.

Linear Elastic Fracture Mechanics
LEFM was the first introduced form of fracture mechanics and is still used today. As the name suggests, it
assumes linear elastic behaviour in brittle materials up till the point of failure and uses simple failure criteria
to indicate crack growth once reached, such as Griffith’s criterion and Irwin’s modification of Griffith’s cri-
terion [43]. Irwin also followed with a method to predict fracture initiation with a so-called stress intensity
factor [44], which is based on the stress field of the crack tip within a radius and involves a small surrounding
volume of the crack tip, and was widely adapted. A disadvantage when using the stress intensity factor is that
the factor itself is not easily determinable when cracks grow near or at an interface. To counter this, methods
were introduced using the strain energy release rate and critical value of fracture toughness and applied to
laminates or bonded joints [45–48]. Another method that was to improve the use of stress intensity factors
was the generalised stress intensity factor. This improved version was able to predict damage initiation for
bonded joints at interface corners [49, 50] and for a variety of adhesive thickness [4]. These methods work
well enough for standard simple joints, although they are questionable for more complex geometries and
joints. Even though LEFM has its limits, it still has success the aircraft industry, where the damage tolerance
design concept, which is based on linear elastic fracture mechanics, is widely used.

Elasto-Plastic Fracture Mechanics
LEFM is not applicable for ductile material as these materials tend to plastically deform before fracturing
and thus rendering the assumption of linearity untrue. To analyse ductile material, or material subject to
plastic deformation before failure, EPFM was introduced. The first theories to incorporate plasticity in crack
behaviour were using the crack tip opening displacement as an important parameter and a plastic radial or
spherical zone which incorporated the crack [51]. Modifications and improvements were made to improve
the method by correcting the actual crack length, plastic zone and assumption that the stress is not singular
at the boundaries but zero [18]. Although the method took care of the stress singularity, a strain singularity is
still invoked for ductile materials.

A breakthrough was made within non-linear fracture mechanics with the introduction of the J-integral [52].
The J-integral is used as an energy contour line integral, and the independent integral path can be used to
travel from one crack surface to another and encloses the crack tip. In each point of the contour, it calculates
the current specific elastic energy stress and strain states. Due to the path independency of the integral, the
contour can be chosen as circular and can be related to the stress intensity factor and the energy release rate,
which then can be used in failure criteria. A simple visualisation of the J-integral can be found in Figure 2.12.

A modified version of the J-integral is the Hutchinson, Rice and Rosengren solution, applied to mate-
rial that behave according to the Ramberg-Osgood relation [53, 54]. The J-integral has given good results in
cracked bonded joints [55–57], although the J-integral comes with disadvantages. Even though the integral
itself is path-independent, it is limited by joint geometry. The development of the plastic zone field is limited
by the adherends and the interfaces, seeing as the adhesive is often very thin in bonded joints. This ultimately
makes the fracture toughness dependent of the geometry of the joint and interface length [58]. Because of
this, the integral must be extrapolated against interface length whereby a mesh refinement is required, which
increases computational time. Also, since the adherends are close to each other because of the thin bond-
line, the interference of the closely situated singular sources in each adherend cause difficulty for numerical
extrapolation. If a contour included both adherends, problems in accuracy will arise because the interfering
singular sources will offset each other. These problems result in the J-integral being unsuitable as a strength
criterion in uncracked bonded joints with ductile adhesives. An initial crack tip should be present in the
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Figure 2.12: Contour of the J-integral around a crack tip. The contour encloses the crack tip where plasticity occurs.

structure if J-integral is used. Aside from this, the J-integral also has some issues when applied in finite ele-
ment codes regarding crack propagation. Nodal variable and topological information from the nodes ahead
and behind the crack front are required for the calculation of fracture parameters, such as the energy release
rates or stress factors, and these calculations can be difficult when these codes are applied to progressive
crack propagation [13].

Another method that is popular to use in fracture mechanics is the Virtual Crack Closure Technique (VCCT).
It is based on the assumption that when a crack extends, the energy that was released during this is also the
virtual work required to close the crack back to its original state [7]. It works with energy release rates and its
critical value, or fracture toughness, which once reached indicates crack propagation by splitting coincident
nodes, see Figure 2.13. VCCT uses nodal forces and displacements in a finite element model to calculate the
current energy release rate for a particular mode, which is thus the same energy or work that is required to
close the crack tip. The sum of all current energy release rates is the total energy release rate. Once the total
energy release rate is equal to the critical energy release rate, crack propagation has occurred. A drawback
of the method is that it assumes that nodal forces at nodes along a crack tip path are equal, which makes
that crack initiation and propagation of short crack cannot be predicted [59]. It also suffers from the same
drawbacks as the J-integral when implemented and used in finite element tools.

Figure 2.13: Depiction of the virtual crack closure technique. Left figure depicts a global system while the right figure shows the local
system where the virtual work takes place. Taken from Krueger [7].

2.3.3. EXTENDED FINITE ELEMENT METHOD

A very recent development that has taken place in the field of crack propagation is the use of extended fi-
nite element method (XFEM) for modelling crack growth. Although the first theories of XFEM were intro-
duced in 1999 [60], it is now gradually being adopted in finite element tools. Since its introduction, it has
been improved over the years to accommodate 3D damage simulation [61], intersecting cracks with multiple
branches [62], improvement to basis function to incorporate singularities in EPFM [63], crack propagation in



2.3. APPROACHES TO CRACK FAILURE ANALYSES 15

concrete [64], frictional contact modelling [65, 66], incorporating geometrical non-linearities [67] and fatigue
applications in pure modes [68].

XFEM applies an initial linear elastic behaviour in the materials. For damage initiation and propagation,
it uses criteria and damage laws respectively, which in turn are based on bulk strength values of materials
and strain, between the real nodes and so-called phantom nodes of cracked elements. The damage initiation
criteria can be based on principal stresses or strains, while the damage laws can be based on averaged fracture
toughnesses, or energy release rates in this case, in finite regions following a linear or exponential behaviour.
Once damage initiation occurs, so-called phantom nodes that were constrained to existing nodes start to
separate, subdividing the elements that are cut by a crack and simulating separation between two newly
created subelements. The phantom and real node then follow a damage law up until damage propagation.
This technique ensures that cracks don’t require a predefined path. Thus, XFEM has the major advantage
that it can grow arbitrary cracks on its own without any crack tip or predefined crack path and does not
require remeshing for crack propagation because of the averaging of the fracture toughness [69]. XFEM can
be readily implemented in standard finite elements via the introduction of local enrichment functions for
nodal displacements close to the crack to allow damage propagation and separation.

Because of XFEM being a fairly new concept, especially in finite element tools, not many applications
and simulations have been performed regarding XFEM and bonded joints. Campilho et al. [70] ran two DCB
simulations with XFEM to model and analyse crack propagation in 2D, in the finite element tool Abaqus.
One DCB test involved steel adherends with a brittle adhesive inbetween, the other carbon-epoxy adherends
with a ductile adhesive inbetween. Both tests had a crack tip with predefined crack path along the bond
line and used a triangular shaped damage law to simulate damage initiation and propagation. The DCB
testing is commonly performed to analyse pure tensile loading, also called pure mode I loading. Results were
based on load-displacement curves and were found to have a good approximation in comparison with the
experimental tests.

Another 2D simulation by Campilho et al. [71] on single and double lapped joints with aluminium ad-
herends, a brittle adhesive and a range of overlap lengths. It used a principal strain failure criterion for dam-
age initiation and estimation of crack growth direction. These tests were performed to analyse the tensile and
shear load capabilities. Results showed that damage propagated towards and eventually in the aluminium ad-
herend due to the corresponding direction of principal strains at the crack tip. This behaviour in the type of
adherend is not supposed to reflect the experiments, and therefore damage propagation along the bond line
was deemed unfeasible with XFEM by the authors. The reason behind this is that the XFEM algorithm will
always search for maximum stresses or stress around the crack tip, giving the possibility for cracks to prop-
agate in any adjacent element, regardless of bond line or material restriction. Another problem with these
tests is that the use of one maximum principal strain criterion is only valid for brittle adhesives, as ductile ad-
hesives deform plastically before damage propagation. Another issue was that the type of damage initiation
criterion is subjected to mesh sensitivity as well. In the end, the result produced fair estimations compared
to the experimental data.

Although XFEM has some major advantages, its current drawbacks can be problematic. The current im-
plementation of XFEM in finite element tools such as Abaqus limits the use of the method. Damage in bonded
joints differs from standard bulk material due to geometry, multiple materials and interfaces between mate-
rials. Due to XFEM’s algorithm in tools like Abaqus and its reliance on one maximum principal stress and
strain criterion, it is not possible to analyse mixed-mode loading for tensile and shear properties properly.
The other downside was the current implementation which bases crack propagation on the failure criteria
in any element around the crack tip, regardless of interface or material, that can give unfeasible results. This
brings another problem, that when there is no initial crack, XFEM tends to find the maxima in any part of the
structure, be it adherend or adhesive, to start a crack based on solely one single criterion. Even if XFEM was
only restricted in the adhesive material, cracking still initiates orthogonally to the direction of the principal
stresses or strains, which automatically specifies the direction of crack propagation. This works fine in situ-
ations like the DCB tests, but in bonded joints like lap joints, the crack will run up to the adherend interface
and will halt crack propagation, as seen in Campilho et al. [71]. As it stands currently, XFEM methods are
limited in finite element tools for multi material structures.

2.3.4. DAMAGE MECHANICS

Failure of a material or cracks can also be perceived as damage in a material: creation and growth of mi-
crovoids and microcracks which are discontinuities in a medium considered as continuous on a macro scale
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[72]. Damage mechanics follow cracks, or damage, progressively in a finite region, starting at an arbitrary
point or a pre-defined crack, up to complete structural failure. This technique monitors and allows damage
growth progressively while taking continuous stiffness degradation into account, from damage initiation till
propagation [28, 72–74]. Damage models incorporate a so-called damage variable D or tensor D, which de-
creases the stiffness properties in elements. These damage variables and tensor, or collectively called damage
laws, can be expressed in many ways and be dependent on a variety of material properties such as moduli,
strain, strain rates, stresses, Poisson ratios and more [72]. Damage laws are often expressed as ratios to in-
dicate damage in the element, ranging from [0,1] with 0 indicating no damage and 1 full damage and thus
failure, reducing the stiffness properties to zero. Continuum damage mechanics can be seen as damage vari-
ables incorporated in continuum mechanics approaches. These mechanics can thus also use failure criteria
such as Tsai-Wu, Puck or Hashin combined with damage laws.

A unique damage model is cohesive zone modelling. It can be divided into two approaches: local and con-
tinuum approach. In the local approach, damage in a finite element region is confined to a zero volume or
zero surface area, which allows simulation of interfacial failure between materials in 3D or 2D respectively. In
the continuum approach, the damage is modelled over a finite element region, non-zero volume or surface
area elements. The elements used in both approaches that are subjected to damage mechanics can use the
theories of Dugdale, Barenblatt and Hillerborg [18–20], and are called cohesive elements. CZM works with
the strain energy release rate, which acts as the fracture toughness, and the cohesive traction in an element
as a function of the relative displacement of opposing nodes. This function is called a constitutive relation,
or separation-traction law, whereby the area of the function is the fracture toughness. The traction law starts
with reversible or elastic behaviour, allowing no penalty to its stiffness for unloading and reloading, and after
the maximum traction has been reached it shows irreversible or softening behaviour, lowering the stiffness
for unloading and reloading after the maximum traction. A critical value for the fracture toughness is as-
signed, and once reached, indicates that the cohesive zone has reached full damage and is destroyed, and
damage propagation occurs. The theory of CZM will be explained more in detail in Chapter 3.

CZM has started to become a favoured method in predicting static or fatigue damage and damage prop-
agation, especially since the recent advances in finite element codes. Since the early nineties, the first ap-
plications of CZM were done in a local approach in brittle materials [75, 76]. The first applications of CZM
on composites were performed in the last decade around the turn of the new millennia, with the advances
in finite element software packages contributing a major part around half the decade [77–81]. CZM and its
implementation in finite element codes have since then proven to be a successful new way of monitoring
and analysing damage growth in bonded joints [79, 82–86]. It is versatile in both local and continuum ap-
proaches. Several examples are the ability to analyse delamination in a local approach [59, 87, 88], and bond
line fracture in a continuum approach [11, 89, 90].

The benefits of CZM are numerous. CZM incorporates damage initiation and propagation in the same
model, making it easy to analyse damage tolerances and strength altogether in one model [59, 87]. It follows
damage progressively in an element, allowing a detailed capture of the damage evolution and the amount of
damage an element has undergone up to its complete failure [5, 91]. The separation-traction law is simple
in nature and has reversible and irreversible behaviour, allowing damage in non-destroyed elements to be
retained during cyclic loading [11]. Due to the nature of damage mechanics and cohesive elements, CZM
does not need an initial crack for damage propagation in a region. A crack in CZM can start arbitrarily within
a region or on an interface. This means that a crack path does not necessarily have to be predefined, multiple
crack paths can occur and uncracked structures can be analysed [92].

Drawbacks of CZM are its sensitivity to mesh sizes, which trades accuracy for additional computational
time. The finer a mesh of a structures, the more accurate one can pinpoint where damage can originate and
will propagate to. Another drawback are the traction laws which CZM is dependent on. Some traction laws
are more suitable for ductile or materials, others for composites, and others for particular failure modes.

2.3.5. COMPARISON SUMMARY AND CHOICE

A comparison summary between the failure analysis approaches can be made and is found in Table 2.4. With
the aid of Table 2.4, the choice has fallen on CZM to approach damage propagation in the bondline and de-
lamination within the adherends in the CLS specimen. To approach the failure modes and ultimately damage
propagation in the plies itself, progressive failure criteria based within continuum damage mechanics will be
chosen to indicate whether there is intralaminar or fibre failure. The reason why failure criteria are used for



2.3. APPROACHES TO CRACK FAILURE ANALYSES 17

intralaminar and fibre failure is because of the multiple failure modes that can occur; there are failure criteria
which have the ability to distinguish fibre and matrix failure within composites. CZM and their corresponding
element types and material in MSC.Marc cannot support the possible complex failure modes in composite
plies.

Table 2.4: Comparison table for the different failure analysis approaches and their advantages and disadvantages.

Advantages: Disadvantages:

Continuum Mechanics approach:

• Simple and easy to use criteria
• Very suitable for brittle materials
• Less information needed for criteria due to

dependency on one or few parameters

• Not suitable for discontinuous structures
• Not suitable for ductile materials
• Sensitive to stress singularities
• Can be inaccurate and give overestimation

due to use of only one or few variables
• Mesh sensitive, which can increase computa-

tional time for accuracy
• Can’t grow cracks without an initial crack tip

Fracture Mechanics approach:

• Can be used for brittle and ductile materials,
e.g. LEFM and EPFM

• Suitable for multiple material structures like
joints

• Good accuracy

• Limited by joint geometry
• Does not take care of strain singularity in duc-

tile materials
• Mesh sensitive, which can increase computa-

tional time for accuracy
• Multiple singular sources close to each other

can cause difficulty
• Difficult numerical implementation for pro-

gressive crack propagation in finite element
packages

• Can’t grow cracks without an initial crack tip

XFEM approach:

• Can be used for brittle and ductile materials,
e.g. LEFM and EPFM

• Can incorporate singularities
• Good accuracy
• Can grow cracks without an initial crack tip
• Doesn’t require remeshing for increased ac-

curacy

• XFEM is not yet well implemented and very
limited in finite element packages

• Mesh sensitive, which can increase computa-
tional time for accuracy

• Current criteria don’t distinguish between dif-
ferent materials or region, which can result in
unfeasible crack paths and origins

Damage mechanics approach:

• Can be used for brittle and ductile materials
• Good accuracy
• Can grow cracks without an initial crack tip
• Can monitor crack propagation progressively

for any element
• Can be applied as bulk or interface elements
• Reversible and irreversible behaviour taken

into account

• Mesh sensitive, which can increase computa-
tional time for accuracy

• CZM: Traction laws dependent on material
types and failure modes
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2.4. ANALYSIS OF FAILURE MODES

To examine the failure modes that occur in the CLS specimen, several methods are chosen. For cohesive and
adhesive failure, CZM is chosen. This method is explained in detail in Chapter 3. For adherend failure, failure
criteria in continuum damage mechanics are chosen. The theory behind several of these criteria will be
explained in Chapter 2.4.1. The implementation of these criteria in MSC.Marc is explained in Chapter 2.4.2.

2.4.1. FAILURE CRITERIA

The failure modes encountered in composites were previously described as interlaminar failure, intralaminar
failure and fibre failure. For intralaminar and fibre failure, failure criteria will be the preferred method to
appropriately distinguish the type of failure. Failure criteria that can distinguish tensile and compressive fibre
fracture and tensile and compressive matrix failure should be used to assess the CLS specimen on its failure
modes. A selection has been made on several failure criteria, based on the World-Wide Failure Exercises
(WWFE) [93, 94] and research extensions [95, 96]. Within the WWFE, the Puck failure criterion demonstrated
as one of the most reliable with good results, with Hashin and Tsai-Wu failure criteria having above average
results. These failure criteria will be used in the CLS specimen to assess the intralaminar and fibre failure
modes. They will be explained in this section.
Several recurring material properties are frequently used within these criteria. These are listed in Table 2.5.

Material Property Description

x, y , z Global coordinate system with x being fibre direction
XT Tensile strength of ply in fibre direction
XC Compressive strength of ply in fibre direction

YT , ZT Tensile strength of ply in matrix direction
YC , ZC Compressive strength of ply in matrix direction

S12 In-plane shear strength of ply
S23 Transverse shear strength of ply

Table 2.5: Recurring material properties in failure criteria discussed in the remainder of this thesis.

Tsai-Wu
A well known failure criterion used for failure analysis in composites is the Tsai-Wu criterion [97], as seen
in Eq. 2.1. It uses linear and quadratic polynomial terms of in-plane stress components, combining fibre
and matrix failure modes in one equation. The use of only one equation has the advantage of having lower
computational times for failure analyses.

fiσi + fi jσiσ j = 1 for i , j = 1, ...,6 (2.1)
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The linear shear terms are reduced to zero because of symmetry in orthotropic material and the shear
strength being independent of the sign in shear stress and like-wise the shear-normal coupling terms are not
present due to the multiplying coefficients to these terms can be shown to vanish [28, 97], e.g. f4 and f14

etc. are obsolete. Shear strengths are all uncoupled as well for orthotropic materials, which reduces f45 and
similar terms to zero [97].
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Hashin
Hashin and Rotem [98] proposed a criterion for unidirectional fibre composites in terms of quadratic stress
polynomials. Hashin assumes four failure modes to be analysed: tensile fibre mode, compressive fiber mode,
tensile matrix mode and compressive matrix node, with each mode being assigned a failure criterion, respec-
tively Eq. 2.2 - Eq. 2.5.
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With initial success, an improvement was made later on the failure modes for fibre tension and matrix
compression [99]. It is based on stress invariants for transversely isotropic symmetry, making the assumption
of the cross-sectional plane within a unidirectional fibre composite isotropic. The improved criteria can be
found as Eq. 2.6 - Eq. 2.9
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Puck
The Puck failure criterion works with an action plane to distinguish several matrix failure modes next to fibre
failure modes [8]. This action plane occurs at a so-called failure, or fracture, plane angle θ f p . It represents the
angle at which its stress plane θ exhibits the global maximum of risk of fracture. The action plane is shown in
Figure 2.14, together with the transformed coordinate system to the failure plane angle.

With the transformation of the coordinate system, transformation rules for the stresses are also introduced.
The state of plane stresses are transformed according to Eq. 2.10 to stresses on the failure plane.

σ11 =σ11

σn =σ22cos2θ

τnt =−σ22si nθcosθ

τn1 = τ21cosθ

(2.10)

The fibre failure modes are seen in Eq. 2.11 and Eq. 2.12 and are independent on the failure plane.

σ11

XT
= 1 for σ11 > 0 (2.11)

σ11

XC
= 1 for σ11 < 0 (2.12)

Puck’s inter fibre, or matrix, fracture modes are represented by three different modes, denoted A, B and C.
Mode A and B are a result from tensile and compressive matrix and shear fracture, whilst Mode C is a result
from in-plane shear and compressive matrix fracture. All three modes can be divided in the fracture envelope
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Figure 2.14: 3D coordinate system (x1, x2, x3) of UD composite element, with fibre direction x1, laminate mid-surface x2 and thickness
direction x3. Rotation failure plane angle θ f p results in coordinate system (x1, xn , xt ), with fibre direction x1, normal direction to

failure plane xn and tangential direction to failure plane xt . Normal stresses σi i are noted as σi and shear stress σi j as τi j . Taken from
Puck and Schürmann [8].

Figure 2.15: Fracture envelope for Puck’s matrix failure modes A, B and C, depicting the different fracture resistances and positions of
the failure modes on the stress coordinate system. Taken from Puck and Schürmann [8].
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of Puck, see Figure 2.15. Mode A describes a plane stress (σ22,σ21) condition, with σ22 ≥ 0, rendering the
fracture with a failure plane angle θ f p = 0° [8]. The failure criterion for Mode A is expressed in Eq. 2.13. Mode
B describes the same plane stress condition, but with σ22 < 0, rendering only a part of the fracture envelope
with a failure plane angle θ f p = 0°. The failure criterion for Mode B is expressed in Eq. 2.14.
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with p(+)
⊥∥ being the slope of the (σn ,τn1) fracture envelope at σn = 0 for σn ≥ 0 and p(−)

⊥∥ being the slope of
the (σn ,τn1) fracture envelope at σn = 0 for σn ≤ 0.

Fracture tests with uniaxial transverse compressive loads have often shown fracture angles around θ f p =
±45°, which may lead to the remainder of the fracture envelope in Figure 2.15, where σ22 < 0 and θ f p 6= 0°and
thus failure Mode C. To find θ f p , the risk of fracture value can be used. The risk of fracture is expressed as
the angle-dependent effort fE (θ) for a any given stress state for -90°≤ θ ≤+90°. The angle-dependent effort
fE (θ) is a reciprocal value of the so-called reserve factor fr (θ), with fr (θ f p ) and fE (θ f p ) being the point where
fracture is expected. The reserve factor is in fact a factor all existing stresses have to be multiplied with in
order to achieve fracture. The maximum of fE (θ) can be calculated with its derivative, which then leads to the
failure plane angles θ f p , one being the trivial θ f p = 0°and the other being the unique solution. The unique
solution is seen as Eq. 2.15 and fE (θ f p ) in Eq. 2.16.

θ f p = ar ccos

√
fw S A

23

−σ22
(2.15)

fE
(
θ f p

)=
√√√√√(

σ12

S A
23

)2

+
(
σ23

S A
13

)2

+
(

p(−)
⊥∥

S A
12

)2

σ2
n +

(
p(−)
⊥∥

S A
12

)
σn (2.16)

fE
(
θ f p

)= fw = 1− σ11

σ11D
for σn < 0

with p(−)
⊥∥ being the slope of the (σn ,τn1) fracture envelope at σn = 0 for σn ≤ 0, weakening factor fw and

σ11D being the stress value for linear degradation: σ11D > 0 for σ11 > 0 and σ11D < 0 for σ11 < 0. A coupling
relation exists between the slopes of the fracture envelopes: This is expressed in Eq. 2.17.
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With the help of Eq. 2.15, the failure criterion for Mode C is expressed in Eq. 2.18.
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2.4.2. FAILURE CRITERIA IN MSC.MARC

Cassidian has a licence on the finite element package of the pre- and postprocessor MSC.Mentat and the
solver MSC.Marc. It is capable of handling non-linear similations and has the ability to implement failure
criteria in a progressive manner, to apply continuum damage mechanics. The criteria that are chosen for the
CLS specimen will be explained in short how they work in MSC.Marc, together with the progressive failure
mechanics behind them. For more information, see Marc 2010 Volume A: Theory and User Information [12].

Tsai-Wu Failure Criterion
Tsai-Wu is a failure criterion designed to attend to a more global form of failure. It does not make distinction
between different failure modes, yet has proven to be accurate when any form of failure occurs. Therefore,
Tsai-Wu only has one failure index, which is seen in
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with maximum allowable stresses in tension X t , Yt , Zt and compression Xc , Yc , Zc in 1-, 2- and 3-direction
respectively, shear stresses σi j , principal stresses σi , maximum allowable shear stresses Si j , failure index F
and interactive strength constants for the 12 F12, 23 F23, and 31 F13 plane.

The input parameters within MSC.Marc are the following, see also Figure C.5a:

• Max Tensile Stress X
• Max Compressive Stress X
• Max Tensile Stress Y
• Max Compressive Stress Y
• Max Tensile Stress Z
• Max Compressive Stress Z
• Max Shear Stress XY
• Max Shear Stress YZ
• Max Shear Stress ZX
• Failure Index. Default value is 1.
• Interactive Strength Tensor XY. Default value is 0.
• Interactive Strength Tensor YZ. Default value is 0.
• Interactive Strength Tensor ZX. Default value is 0.

Additional settings include:

• Progressive failure model: Selective Gradual Degradation, Selective Immediate Degradation and Origi-
nal Marc Method.

• Deactivation of elements upon failure for: fibre tension, fibre compression, matrix tension and matrix
compression.

Hashin Failure Criterion
The Hashin failure criterion is designed to distinguish fibre and matrix failure. Failure indices are imple-
mented to respond to tension and compressive fibre modes, respectively Eq. 2.20 and Eq. 2.21, and to tension
and compression matrix modes, respectively Eq. 2.22 and Eq. 2.23.
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with maximum allowable stresses in tension X t , Yt , Zt and compression Xc , Yc , Zc in 1-, 2- and 3-direction
respectively, shear stresses σi j , principal stresses σi and maximum allowable shear stresses Si j .

The input parameters within MSC.Marc are the following, see also Figure C.5c:

• Max Fibre Tension
• Max Fibre Compression
• Max Matrix Tension
• Max Matrix Compression
• Layer Shear Strength
• Transverse Shear Strength
• Slope P12C of Fracture Envelope
• Slope P12T of Fracture Envelope
• Slope P23C of Fracture Envelope
• Slope P23T of Fracture Envelope
• Residual Stiffness Factor. Default value is 0.01.
• Matrix Compression Factor. Default value is 0.
• Shear Stiffness Factor. Default value is 0.
• E33 Reduction from Fibre Failure Factor. Default value is 0.
• Shear Reduction from Fibre Failure Factor. Default value is 0.

Additional settings include:

• Progressive failure: the use of the Residual Stiffness, Matrix Compression, Shear Stiffness, E33 Reduction
from Fibre Failure and Shear Reduction from Fibre Failure factors.

• Progressive failure model: Selective Gradual Degradation, Selective Immediate Degradation and Origi-
nal Marc Method.

• Deactivation of elements upon failure for: fibre tension, fibre compression, matrix tension and matrix
compression.

Puck Failure Criterion
The Puck failure criterion is designed to distinguish fibre and matrix failure. This criterion uses the concept
of a fracture failure angle. This angle represents the angle of the fracture that is made by matrix failure. The
angle is shown graphically in a coordinate system in Figure 2.16.

Failure indices are implemented to respond to tension and compressive fibre modes, respectively Eq. 2.24
and Eq. 2.25, and to plane stress cases, respectively Eq. 2.26, which is Mode A fracture, Eq. 2.27, which is
Mode B fracture, and Eq. 2.28, which is Mode C fracture.
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with
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and with maximum allowable stresses in tension X t , Yt and compression Xc , Yc in 1-, 2-direction respec-
tively, shear stresses σi j , principal stresses σi , maximum allowable shear stresses Si j , fracture failure angle
as in in Figure 2.16 and slope parameters of the failure envelop p12c , p12t , p23c and p23t . Eq. 2.31 is available
as a sixth failure index only in postprocessing.

Figure 2.16: Angle θ f p representation in Puck’s criterion in MSC.Marc.

The input parameters within MSC.Marc are the following, see also Figure C.5b:

• Max Fibre Tension
• Max Fibre Compression
• Max Matrix Tension
• Max Matrix Compression
• Layer Shear Strength
• Slope P12C of Fracture Envelope
• Slope P12T of Fracture Envelope
• Slope P23C of Fracture Envelope
• Slope P23T of Fracture Envelope
• Residual Stiffness Factor. Default value is 0.01.
• Matrix Compression Factor. Default value is 0.
• Shear Stiffness Factor. Default value is 0.
• E33 Reduction from Fibre Failure Factor. Default value is 0.
• Shear Reduction from Fibre Failure Factor. Default value is 0.

Additional settings include:

• Progressive failure: the use of the Residual Stiffness, Matrix Compression, Shear Stiffness, E33 Reduction
from Fibre Failure and Shear Reduction from Fibre Failure factors

• Progressive failure model: Selective Gradual Degradation, Selective Immediate Degradation and Origi-
nal Marc Method.

• Deactivation of elements upon failure for: fibre tension, fibre compression, matrix tension, matrix com-
pression (Mode B) and matrix compression (Mode C)

Progressive Failure
MSC.Marc has three types of progressive failure models that are maintained in the failure criteria. The type
that is chosen is a model that uses a selective degradation of the elastic and shear moduli. These moduli de-
crease gradually when failure occurs. When a failure index F I gets larger than one, so-called stiffness reduc-
tion factors ri are re-calculated to change the moduli in each increment. The relationship of a re-calculated
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modulus can be seen for all cases in Eq. 2.32. The smallest reduction factor is taken as the damage parameter
D = 1− ri , from 0 being no damage to 1−a1 being full damage.

E new
11 = r1E or i g

11 Gnew
12 = r4Gor i g

12

E new
22 = r2E or i g

22 Gnew
23 = r5Gor i g

23

E new
33 = r3E or i g

33 Gnew
31 = r6Gor i g

31

(2.32)

The Poisson ratios are scaled in the same way as the re-calculated shear moduli. For Hashin and Puck failure
criteria, distinctions are made between ri for fibre and matrix failure:

• r1 and r3 depend on the first and second failure index, signifying fibre failure. Uses the highest failure
index of the two.

• r2, r4, r5 and r6 depend on the third, fourth and fifth failure index, signifying matrix failure. Uses the
highest failure index of the three.

The default incremental change in stiffness reduction factors is noted in a general fashion for all ri in Eq. 2.33,
based on a failure index F I .

∆ri =−(
1−e1−F I ) if F I > 1 (2.33)

For Puck and Hashin failure criteria, Eq. 2.33 can be altered with the use and addition of five extra parameters:

a1 - Residual Stiffness factor: The moduli are never reduced to less than this value.

a2 - Matrix Compression factor: ∆r2 is able to reduce less due to matrix compression failure, resulting in
slower degrading for r2. Certain types of material have a slower degradation of stiffness in compression than
in tension [100]. This results in Eq. 2.34, with F IMC denoting the failure index used for matrix compression.
The higher index is used.

∆r2 =− (1−a2)
(
1−e1−F IMC

)
if F IMC > 1 (2.34)

a3 - Shear Stiffness factor: The shear stiffness G12, dependent on r4, has the possibility to reduce less than
matrix stiffness E22. This results in Eq. 2.35, with F IM denoting the failure index for matrix tensile or com-
pression failure. The higher index is used. a2 can also be taken into account for matrix compression failure,
and results in Eq. 2.36.

∆r4 =− (1−a3)
(
1−e1−F IM

)
if F IM > 1 (2.35)

∆r4 =− (1−a2) (1−a3)
(
1−e1−F IMC

)
if F IMC > 1 (2.36)

a4 - E33 Reduction from Fibre Failure factor: ∆r3 is able to reduce less due to fibre and matrix failure, resulting
in slower degrading for r3. This results in Eq. 2.37, with F IM denoting the failure index for matrix tensile or
compression failure and F IF denoting the failure index for fibre tensile or compression failure. The higher
index is used.

∆r3 =− (1−a4)
(
1−e1−F IF

)−a4
(
1−e1−F IM

)
if F IM ,F IF > 1 (2.37)

a5 - Shear Reduction from Fibre Failure factor: ∆r4,∆r5 and∆r6 are now able to reduce less due to fibre failure
as well, resulting in slower degrading for r4, r5 and r6. This reduction can be changed to vary linearly with
both fibre and matrix failure. This results in Eq. 2.38, with F IM denoting the failure index for matrix tensile
or compression failure and F IF denoting the failure index for fibre tensile or compression failure. The higher
index is used.

∆r4 =∆r5 =∆r6 =− (1−a5)
(
1−e1−F IM

)−a5
(
1−e1−F IF

)
if F IM ,F IF > 1 (2.38)
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Note that not using parameters a2 through a5 results in the usage of Eq. 2.33. The material also does not
’heal’; it will retain the degraded properties after unloading.

Two other models are also available regarding progressive failure: Selective Immediate Degradation and Orig-
inal Marc Method. Selective Immediate Degradation changes the stiffness values abruptly to the Residual
Stiffness factor when failure occurs. The Original Marc Method used the following for certain materials:

• For orthotropic materials, the moduli at the integration points are set to the smallest of the original
moduli, and the smallest to 10% of the original upon failure.

• For isotropic materials, the moduli are set to 10% of the original moduli upon failure.
• For material types that only require one modulus, the modulus is set to 10% of the original upon failure.

These remaining two progressive failure models will not be used since studies have shown a more gradual
degradation of stiffness properties in composites [100, 101].



3
COHESIVE ZONE MODELLING

Cohesive zone modelling will be used to analyse cohesive and adhesive failure in the debonding and de-
lamination in the remainder of the thesis. The analytical theories behind CZM are explained in Chapter 3.1,
which covers the fundamental understanding and the types of CZ models that are used today. As the solver
MSC.Marc is the only tool Cassidian has to solve non-linear CZM problems, Chapter 3.2 is dedicated to ex-
plain the theory behind the programme regarding CZM.

3.1. THEORY

CZM has been introduced in the early sixties as an effort to analyse damage under static loading beyond
the crack tip [18, 19]. CZM relates the relative displacement of two opposing associated points in a finite
region to the force per unit of area, also known as traction. In cohesive elements, the relative displacement
is often expressed as changes in surface normals and the traction as a function of the displacement with a
stiffness tensor. Cohesive zone elements do not necessarily have to represent any physical material, yet they
still describe the cohesive forces that exists when material elements separate from each other. Cohesive zone
elements can also be modelled with an initial zero-thickness. This means that they can be used as a bulk
element or as an interface element between bulk elements. A more fundamental background will be given on
cohesive elements, relating to their traction forces and displacements. A simple illustration on the cohesive
elements and forces can be found in Figure 3.1. CZM projects all damage mechanisms in and around a crack
tip, leading to a constitutive relation, or cohesive zone law. There are many ways to define the criteria and
laws for a cohesive zone model: the most common will be briefly discussed. The different load cases, or
fracture modes, will also be discussed.

3.1.1. TRACTION LAWS

A cohesive zone law, also known as a traction-separation law, describes the constitutive behaviour between
the relative displacement δ between two points and traction T as a curve. There are many varieties of traction
laws, with the majority of them being piece-wise linear or non-linear and continuous or discontinuous.

A traction law can be divided into two parts. The first part is the interval between zero displacement and
traction up till the damage initiation criterion. The damage initiation criterion is where maximum traction of
a mode at a certain displacement occurs. The interval can be seen as an initial stiffness which the structure
possesses. The damage initiation criterion is described as the maximum traction Tmax or the displacement
at the maximum traction δc of a pure mode, based on known material properties. Once the damage initi-
ation criterion has been reached and displacement increases, damage starts to occur and the initial elastic
behaviour disappears, and the behaviour goes into the second part of the traction law. This part is the inter-
val between the damage initiation criterion and the damage propagation criterion. The damage propagation
criterion is described as a critical energy release rate Gc . The energy release rate, often called cohesive energy,
is in fact the area between the traction law curve and y = 0, governed by the simple integral for a pure mode

27



28 3. COHESIVE ZONE MODELLING

Figure 3.1: Simple illustrations of a cohesive zone element resembling a simplified spring-damper configuration and the deformation of
a cohesive zone element. Taken from Kregting [9] and Bosch et al. [10].

fracture i :

Gi =
∫

Ti dδi (3.1)

Gc,i =
∫ Ti→0

0
Ti dδi (3.2)

with boundary conditions:

dGi

dδi
|δi=δc,i = 0 (3.3)

Ti (δc,i ) = Tm,i (3.4)

and critical energy release rate Gc , max traction Tm , energy release rate G and opening displacement δ. The
critical energy release rate is often based on pure mode fracture, such as tension or shear. When the critical
energy release rate is reached, it coincides with zero or near-zero traction. By then, full damage has been
achieved, the cohesive zone disappears and crack growth occurs, hence the traction being reduced to zero
as no cohesive forces are available to keep the material together. For a pre-determined crack path that has
been designated as a cohesive zone, every opposing point or node pair along the interface or bulk material
will find itself at a certain point on the traction law, depending on the relative displacement between the
opposing points. Figure 3.2 illustrates these positions of random opposing point or node pairs along the
cohesive zone in the traction law.

The first part up to damage initiation shows reversible behaviour, e.g. it can be seen as elastic behaviour.
The second part from damage initiation to propagation shows irreversible behaviour, subjecting the cohe-
sive zone to different behaviour under loading-unloading cycles and consequently to forced discontinuity.
This behaviour can come in two forms: elastically and plastically damaged reloading. Elastically damaged
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Figure 3.2: Position of relative displacement between opposing point pairs of a loaded bonded joint in the traction law. Example of a
bonded joints in continuum approach. Taken from Khoramishad et al. [11].

reloading behaviour incorporates stiffness degradation of the cohesive zone, weakening the zone for repeated
loading and unloading in a linear behaviour to and from the origin of the traction law. Plastically damaged
reloading behaviour is reminiscent to material yielding in metals for the 0.2% strain proof: it retains the initial
stiffness from the origin [91]. Figure 3.3 illustrates this in a traction law. In many papers, experiments and
finite element packages, elastically damaged reloading behaviour is considered.

(a) Elastically damaged behaviour (1) in the reversible part and
plastically damaged behaviour (2) in the irreversible part of a

bilinear traction law.

(b) Reversible behaviour up to the critical opening displacement
showing elasticity and irreversible behaviour with elastic (full line)

and plastic (dotted line) damaged reloading between the critical
and maximum opening displacement.

Figure 3.3: Reversible and irreversible behaviour and the effect of elastic and plastic loading and reloading.
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The damage variable can be applied within traction laws. The damage remains zero in the part with reversible
behaviour, see Figure 3.3, or in other words, until the damage initiation criterion δc or Tmax . Within the
irreversible damaged part, damage starts to become non-zero and increases till the value of 1, indicating
damage propagation and thus failure in the element. The damage law can be expressed in many forms to
attain a damage model. To relate to Figure 3.3 and a more general form for other traction laws, a damage
variable can be set up as a scalar function ranging from 0 to 1, see Eq. 3.5.

D (δ) = G (δ)−Gδ=δc

Gc −Gδ=δc

(3.5)

Most common used traction laws in literature and experimental validation are the bilinear law, the trape-
zoidal law and the exponential law [102]. The selection of traction law is dependent on the type of experiment,
geometry and material. A bilinear model is often preferred for brittle materials and delamination [59], which
offers a good compromise between numerical performance, computational cost and accuracy of results. For
ductile adhesives, a trapezoidal law is preferred [103]. In simple coupon tests like a double cantilever beam
test, the exponential law offers the most accurate results at the expense of computational cost [102].

Bilinear Law
The bilinear, or triangular, traction law is a popular choice because of its simplicity. The bilinear law was
redesigned from a simple rigid linear softening relationship to include an initial stiffness [76, 104]. The shape
as it suggests is triangular and the function is piece-wise linear and discontinuous. It is described by the
following uncoupled relation:

Ti =



Tm,i

δc,i
δi if 0 ≤ δi ≤ δc,i

Tm,i

δc,i −δm,i
(δi −δm,i ) if δc,i < δi ≤ δm,i

0 if δi > δm,i

(3.6)

with max traction Tm , max and critical displacementδm andδc and relative displacementδ. Using Eq. 3.2,
the energy release rate and critical energy release rate can also be calculated:

Gi =



1

2

Tm,i

δc,i
δ2

i if 0 ≤ δi ≤ δc,i

1

2
Tm,i

(
δc,i + (δm,i −δc,i )+ (δi −δm,i )2

δc,i −δm,i

)
if δc,i < δi ≤ δm,i

1

2
Tm,iδm,i if δi > δm,i

(3.7)

Gc = 1

2
Tm,iδm,i (3.8)

Due to the amount of unknown parameters, the initial stiffness Tm/δc is often chosen and described
as a very high value to assume a stiff connection between an opposing point or node pair before damage
occurs. This is called the penalty stiffness K , and is usually around a value of 106 N /mm3, which was proven
successfully in Gonçalves et al. [105] and Camanho et al. [106]. The shape of the bilinear law can be seen in
Figure 3.4.

Trapezoidal Law
Another often used model is the trapezoidal law. This function is also piece-wise linear and discontinuous.
Tvergaard and Hutchinson [107] introduced it first. It is described by the following uncoupled relation for
fracture mode i :
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Figure 3.4: An example of a bilinear traction law. Code found in Appendix D.

Figure 3.5: An example of a trapezoidal traction law. Code found in Appendix D.
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Ti =



Tm,i

δcI ,i
δi if 0 ≤ δi ≤ δcI ,i

Tm,i if δcI ,i < δi ≤ δcI I ,i

Tm,i

δcI I ,i −δm,i
(δi −δm,i ) if δcI I ,i < δi ≤ δm,i

0 if δi > δm,i

(3.9)

with max traction Tm , max and critical displacements δm , δcI and δcI I and relative displacement δ. Using
Eq. 3.2, the energy release rate and critical energy release rate can also be calculated:

Gi =



1

2

Tm,i

δc,i
δ2

i if 0 ≤ δi ≤ δc,i

Tm,i

(
1

2
δcI ,i + (δi −δcI ,i )

)
if δcI ,i < δi ≤ δcI I ,i

1

2
Tm,i

(
δcI ,i +2(δi −δcI ,i )+ (δm,i −δcI I ,i )+ (δi −δm,i )

δcI I ,i −δm,i

)
if δcI I ,i < δi ≤ δm,i

1

2
Tm,i

(
δcI ,i +2(δcI I ,i −δcI ,i )+ (δm,i −δcI I ,i )

)
if δi > δm,i

(3.10)

Gc = 1

2

Tm,i

δm,i
(3.11)

The shape of the trapezoidal law can be seen in Figure 3.5.

Exponential Law
The exponential law is also used often. This function is continuous and smooth. It was first introduced by Xu
and Needleman [75].

Figure 3.6: An example of an exponential traction law. Code found in Appendix D.

Their relation includes coupling and calculates directly with the energy release rates, equalising modes II and
III:
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TI =Gc,I
δI

δ2
c,I

e
−
δI

δc,I (3.12)

TI I =Gc,I I
δI I

δ2
c,I I

e
−

(
δI I

δc,I I

)2

(3.13)

with:

Gc,I = eTm,Iδc,I (3.14)

Gc,I I =
√

1

2
eTm,I Iδc,I I (3.15)

with max traction Tm , critical energy release rates Gc , critical opening displacement δc , traction T and
opening displacement δ.

The shape of the exponential law can be seen in Figure 3.6.

3.1.2. COHESIVE ZONE ELEMENTS

As previously mentioned, a cohesive zone elements can be modelled as a flat interface element, having no
volume in 3D or no surface in 2D, or bulk element, having a finite volume in 3D or finite surface in 2D. As a flat
interface element, they are still modelled as a 3D eight-noded element in 3D or as a 2D four-noded element in
2D for example. A cohesive zone element can be approach analytically and be related to its traction, volume
and body forces [10]. The weak form of the weighted residual integral of the equilibrium equation can be
formulated as follows: ∫

V
(∇w)c : S dV =

∫
V

w ·q dV +
∫

A
w · t d A ∀ w(x) (3.16)

with gradient operator ∇, stress tensor S body forces q, boundary traction t and arbitrary continuous
weighing function w. The left side of Eq. 3.16 represents the internal force which expresses the virtual work
of the internal stresses and the cohesive tractions, while the right side represent the external forces on the
element. Together with Gauss’ theorem and the relation t = S ·n, Eq. 3.16 can be rewritten to:

fi (w,S) = fe
(
w,t,q

) ∀ w (3.17)

Figure 3.7: A 3D cohesive zone element in a reference and local coordinate system.

Using a 3D reference e and local coordinate system
[
η,ξ

]
with range [−1 1] and traction T which connects

original opposing points P and Q in the deformed state, see Figure 3.7, the internal forces can be expressed
as:

fi =
∫

A
∆w ·σ d A (3.18)



34 3. COHESIVE ZONE MODELLING

fi =
∫

A0

∆w ·T d A0 (3.19)

with Cauchy traction vector σ and first Piola-Kirchhoff traction vector T. Eq. 3.18 refers to the deformed
state and Eq. 3.19 to the undeformed state. The weighing function w is chosen to be a function of the local
coordinate η, and together with traction T can result into:

f˜i = A0

4

∫ 1

−1

∫ 1

−1
P T N T (

ξ,η
)

T˜ (
ξ,η

)
dξ dη (3.20)

with an operator matrix P = [−I 12 I 12

]
, I 12 being a 12 × 12 unity matrix and matrix N containing the

interpolation functions:

N T (
ξ,η

)=
ψ1 0 0 ψ2 0 0 ψ3 0 0 ψ4 0 0

0 ψ1 0 0 ψ2 0 0 ψ3 0 0 ψ4 0
0 0 ψ1 0 0 ψ2 0 0 ψ3 0 0 ψ4

 (3.21)

where the shape functions ψi are associated with points A, B, C, and D in Figure 3.7:

ψ1 = 1
4 (1−ξ)

(
1−η)

ψ2 = 1
4 (1+ξ)

(
1−η)

ψ3 = 1
4 (1+ξ)

(
1+η)

ψ4 = 1
4 (1−ξ)

(
1+η) (3.22)

With an iterative procedure, one can approximate the integral in Eq. 3.20 and create the incremental value
of the internal forces and element stiffness matrix:

f˜∗
i = A0

4

4∑
i=1

[
P T N T (

ξ,η
)

T˜∗ (
ξ,η

)]i
(3.23)

K ∗ = A0

4

4∑
i=1

[
P T N T (

ξ,η
)

M
(
ξ,η

)
N

(
ξ,η

)
P

]i
(3.24)

with cohesive tangent operator M . This leads up to the iterative equation:

K ∗δu˜ = f˜e − f˜∗
i (3.25)

Eq. 3.25 can then be used in an iterative increment scheme like Newton-Raphson.

3.1.3. FRACTURE MODES

Traction occurs in normal and shear direction. Tensile stresses occur in mode I delamination, and shear
stresses occur in mode II and mode III delamination. Figure 3.8 shows the different modes that are distin-
guished in pure form.

Figure 3.8: The three different fracture modes: tensile (Mode I), shear (Mode II) and tear (Mode III).

Mixed-mode loading is a combination of normal, shear and tear loading. Relations between the different
modes can be found within a traction law. Most models which describe the behaviour between modes are
often based on Ye’s criterion, which is a quadratic interaction, relating to damage initiation:
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(
TI

Tm,I

)2

+
(

TI I

Tm,I I

)2

+
(

TI I I

Tm,I I I

)2

= 1 (3.26)

with max tractions and tractions for all modes Tm and T .
The energy release rate for mixed-mode is often described as a function of the pure mode energy release

rates and is used as the damage propagation criterion. A popular criterion for calculating the energy release
rates and subsequent failure criterion in mixed-mode loading is the power law criterion, shown in Eq. 3.27,
but also other criteria have been used depending on the material [78], such as the Benzeggagh and Kenane
criterion, as shown in Eq. 3.28:

Power Law:

(
G I

Gc,I

)m

+
(

G I I

Gc,I I

)n

+
(

G I I I

Gc,I I I

)p

= 1 (3.27)

Benzeggagh and Kenane:
G I +G I I +G I I I

Gc,I + (Gc,I I −Gc,I )

(
G I I +G I I I

G I +G I I +G I I I

)η = 1 (3.28)

with energy release rates G and critical energy release rates Gc for modes I, II and III and empirical factor
parameters m, n, p and η.

Figure 3.9: 3D view of a mixed-mode exponential traction law based on Ye’s criterion. Any moment in mixed-mode loading can be
traced to a point on the surface of the 3D graph. Code found in Appendix D.

Using one of these relations that describe mixed-mode behaviour, for example Ye’s criterion and the Power
Law, one can visualise the mixed-mode response as a 3D surface graph, encompassing any mixed-mode
ratio of loading between pure mode I and pure mode II, see Figure 3.9. On curve anywhere on this surface
represents a mixed-mode traction law.
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3.1.4. INFLUENCES ON A COHESIVE ZONE MODEL

So what can influence a cohesive zone model? Using the theories noted in the previous subsections, one can
sum up the properties which have a big impact upon crack propagation.
Firstly, the traction law is a big influence. It determines the behaviour of how a cohesive element should
behave: an elastic first part and plastic second part. It also indicated the impact of traction on the element.
For example, a trapezoidal law compared to an exponential law has the ability to sustain a large traction for
a significant longer amount of displacement. This has its advantages [103], and its situational in terms of
material properties.
Second, the maximum traction has a large influence. It controls the slope of traction in the irreversible part
since it will need to compensate of the fixed critical energy release rate, which was the area under a traction
law and subsequently the amount of energy a CZE needs to get fully damaged. This makes a requirement
for the type of adhesive, brittle or ductile. The critical opening displacement increases in a decreasing Tm ,
requiring a physically larger distance between nodes for a CZE to initiate damage. See Figure 3.10a for an
example.

(a) Influence of a maximum traction on an exponential law. The
critical opening displacement increases when the maximum

traction decreases.

(b) Influence of a critical energy release rate on an exponential law.
The critical opening displacement increases when the critical

energy release rate also increases.

Figure 3.10: Influence of maximum traction and critical energy release rate.

Thirdly, the critical opening displacement and the critical energy release rate play a significant role if the ini-
tial stiffness and thus reversible part of the cohesive element: is it more stiff or more elastic? A decrease in
critical energy release rate automatically decreases the critical opening displacement, without a change in
max traction. This results in steeper or gradual decay of a CZE and physically requires a smaller distance be-
tween nodes for a CZE to initiate damage. An increase in critical energy release rate would require a physically
larger opening displacement to fully damage a CZE. The effect of having a large critical opening displacement
may have its advantages in fatigue loading.
Another parameter that seems be of influence are the shear components of the critical energy release rate and
max traction. This relates to mixed-mode loading and how well a traction law will perform in it. Several crite-
ria relating to mixed-mode ratios were already explained in the previous chapter. Some adhesives have better
shear properties while some have better tensile properties. The adhesive used in the CLS specimen for the
bondline for example has a lower max shear traction than tensile traction, while it’s the opposite way around
for the adhesive in the laminates. This can give completely opposite mixed-mode cohesive zone models, and
may be crucial in determining what failure may occur first.

3.2. MSC.MARC

MSC.Marc is capable of handling non-linear similations and also has the ability to implement CZM. The
theory behind CZM is explained in Chapter 3.2.1. A small explanation of the input parameters follows in
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Chapter 3.2.2.

3.2.1. THEORY

The CZM algorithm in MSC.Marc is based on the tractions being a function of the relative displacements
of the top and bottom edges or surfaces of a 2D or 3D element respectively. See Figure 3.11. The relative
displacements are divided into a normal and two shear direction. Each relative displacement is expressed
in the distance between the centres of the top and bottom element faces or edges. The effective opening
displacement is then expressed as a simple Pythagorean relation:

δn = utop
1 −ubot tom

1 (3.29a)

δs = utop
2 −ubot tom

2 (3.29b)

δt = utop
3 −ubot tom

3 (3.29c)

δ=
√
δ2

n +δ2
s +δ2

t (3.29d)

Figure 3.11: 3D interface element with a reference system based on an integration point. Taken from Marc 2010 Volume A: Theory and
User Information [12].

with displacements u, relative displacements in normal δn , shear δs and tear δt . Compressive loading is also
taken into account. The normal component of Eq. 3.29d is changed to the following for compressive loading,
so loading still remains physically possible and realistic:

δ=
√

[max(δn ,0)]2 +δ2
s +δ2

t (3.30)

The cohesive zone element is be able to withstand compressive loading since interpenetration is prohib-
ited in MSC.Marc, although it is possible to make the stiffness in compression a function of the corresponding
(negative) opening displacement.

The effective traction is expressed as a function of the effective relative displacement. The effective trac-
tion is also characterised by having a reversible behaviour before and an irreversible behaviour after the crit-
ical effective opening displacement δc . The irreversible behaviour in postprocessing is characterised by an
increasing damage law value from 0, being damage initiation, to 1, being damage propagation. The dam-
age law is according to Eq. 3.5. The damage law value can be used as a postprocessing parameter. MSC.Marc
adopts elastically damaged reloading behaviour, e.g. when reloading, it uses a newly calculated stiffness from
the origin to the last point the element was on the traction law.

MSC.Marc has three built-in traction laws to choose from: bilinear, exponential and linear-exponential.
They are governed by the following functions respectively:

Bilinear: T =



2Gc

δm

δ

δc
if 0 ≤ δ≤ δc

2Gc

δm

δm −δ
δm −δc

if δc < δ≤ δm

0 if δ> δm

(3.31)
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Exponential: T = Gc
δ

δ2
c

e−δ/δc (3.32)

Linear-Exponential: T =


2Gc

δm

δ

δc
if 0 ≤ δ≤ δc

2qGc

δc (q +2)
eq(1−δ/δc ) if δ> δc

(3.33)

with traction T , effective relative displacement δ, critical energy release rate Gc , critical opening displace-
ment δc , maximum effective opening displacement δm for the bilinear model and exponential decay factor
q for the linear-exponential model. A general depiction can be found in Figure 3.12. Note the irreversible
behaviour and initial stiffness change after the critical opening displacement has been reached, for cyclic
loading.

Figure 3.12: MSC.Marc’s three built-in traction laws: Bilinear (left), exponential (middle), linear-exponential (right).

The critical opening displacement can be calculated from the critical energy release rate and the maximum
traction for Mode I fracture, which are known material properties for a composite structure or adhesive bond
line.

Mixed-mode fractures are also taken into account in the software package. Mode II and III are both treated
as a shear stress and are treated the same way with a traction law. A normal to shear traction ratio and Mode I
to Mode II energy release rate ratio govern a mixed-mode fracture automatically for any arbitrary simulation.
The ratio is based in a similar way as in Camacho and Ortiz [76]. MSC.Marc actually approaches fracture
analysis in every simulation as mixed-mode: it depends on the definition and modelling of the loading which
determines to what mode or combination the fracture is related to. The relation between normal and shear
is the following for traction and energy release rate respectively:

TI I =β1TI (3.34)

Gc,I I =β2Gc,I (3.35)

with shear traction TI I , normal traction TI , normal-shear stress ratioβ1, energy release rate in shear direc-
tion Gc,I I , energy release rate in normal direction Gc,I and normal-shear energy release ratio β2. Figure 3.13
shows an example with β1 = 0.6 and β2 = 0.9, illustrating the difference between pure Mode I and pure Mode
II. The relation between normal and shear traction gives the following 3D interpretation of mixed mode frac-
ture, see Figure 3.14.

Damping can be introduced as viscous energy dissipation. Damping can help the convergence rate in the
simulation and prevent instability. The viscous contribution term that is added is governed by the following
equation:

T vi s = ζTc δ̇

δ̇r
(3.36)
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Figure 3.13: Example of MSC.Marc’s built in mixed-mode calculation between pure Modes I and II for an exponential traction law. Code
found in Appendix D.

Figure 3.14: 3D view of a mixed-mode exponential traction law based on MSC.Marc’s algorithm. The relations β1 and β2 are highlighted
as red arrows to distinguish their influence in the mixed-mode surface graph. Code found in Appendix D.
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with viscous traction contribution T vi s , maximum traction tc , viscous energy factor ζ, effective opening
displacement rate δ̇ and reference value of effective opening displacement rate δ̇0.

3.2.2. INPUT

MSC.Marc needs input parameters to model the cohesive zone elements. A cohesive material and geomet-
ric property have to be assigned to an element of correct class and type. Element classes include triangular
and quad elements for 2D and pentahedron and hexahedron elements for 3D, with various multiple noded
element types. A geometric property is directly linked to the modelled element, and for cohesive elements
contain the thickness direction and what integration points need to be taken. Two types of integration points
for the integration scheme can be chosen from: Gaussian points resulting in a Gauss integration scheme or
the nodes directly which result in a Newton-Cotes integration scheme, as seen in the GUI window in Fig-
ure C.1a.

A material property for the cohesive zone elements needs to be assigned also. The following parameters
are required for a cohesive material property as seen in the GUI window in Figure C.1b:

• Traction law: bilinear, exponential, linear-exponential law.
• Secant or tangent solving method of stiffness matrix.
• Critical energy release rate Gc,I for Mode I.
• Critical opening displacement δc for Mode I.
• Maximum opening displacement δm for Mode I, only for bilinear law.
• Exponential decay factor q for Mode I, only for linear-exponential law.
• Shear to normal stress ratio β1, as indicated in Eq. 3.34.
• Shear to normal energy release ratio β2, as indicated in Eq. 3.35.
• Stiffening factor for compression. Default value is 0.
• Optional input: viscous energy factor for damping ζ.
• Optional input: reference value of effective opening displacement rate δ̇0.
• Optional input: deactivate fully damaged elements so they will not partake in any structural analysis in

the simulation further, but will remain in the post file. Left unchecked means that CZE will still partake
in the analyses despite their damage level.

• Optional input: remove deactivated fully damaged elements so they will not partake in the simulation
further, and will be removed from the post file the instance full damage has been attained.

An error will appear if a cohesive zone element has not yet been assigned a geometric and material property
and a simulation is run. For further information regarding the input commands and code structure of the
CZM of MSC.Marc, see Marc 2010 Volume C: Program Input [108].
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VALIDATION OF MSC.MARC

A quick validation is performed with MSC.Marc to see how accurate the options and settings regarding CZM
within MSC.Marc are. The already performed experiment by Turon et al. [13] and its load-displacement re-
sults will be used to compare to the ones from the MSC.Marc simulations. Also, stress and strain properties
will be explored within the cohesive zone elements to understand the behaviour. The experiment and sim-
ulation done in Turon et al. [13] was a mixed-mode bending (MMB) test reproduced in the finite element
package Abaqus, using a custom made algorithm for the cohesive zone model. The mode-I/II ratios tested in
the MMB tests are 0%, 20%, 50%, 80% and 100%, with 0% signifying pure tensile loading and 100% pure shear
loading. Chapter 4.1 will summarise Turon’s experiment and his model. Chapter 4.2 will explore simple 2D
models of the MMB tests while Chapter 4.3 will explore 3D models. Additionally in Chapter 4.3, extra sim-
ulations will be carried out to mark the influence of different time steps, critical energy release rates Gc and
maximum tractions Tm . In both sections, several options and settings found within the default MSC.Marc
cohesive zone models will also be explored, and all simulation results will be evaluated in Chapter 4.4. Stress,
strain and damage properties of a cohesive element will be evaluated in Chapter 4.4 as well. Finally, a discus-
sion on the outcome of the simulations follows together with a decision on what MSC.Marc options to use for
further research in this document.

4.1. TURON’S MODEL

4.1.1. TURON’S MODEL PROPERTIES

Within the simulations of Turon et al. [13], user-defined algorithms were used for solving the stiffness matrix
equation and for traction laws. The traction law was bilinear, similar to the one in Ch. 3.1.1. The damage
propagation criterion is based on Benzeggagh and Kenane, Eq. 3.28, while the damage initiation criterion is
calculated with a penalty stiffness K and the critical energy release rate Gc , whereby for an arbitrary fracture
mode, a user-defined relation is formed which is slightly more accurate than Ye’s criterion:

T 2
m = T 2

m,I +
(
τ2

c,shear −T 2
m,I

)
[B ]η (4.1)

δ2
c = δ2

c,I +
(
δ2

c,shear −δ2
c,I

)
[B ]η (4.2)

[B ] = G I I +G I I I

G I +G I I +G I I I
= Gshear

GT
(4.3)

with η= 2.284. More information regarding the theory behind Turon’s mathematical models and relations
can be found in Turon et al. [13], Turon [59], Turon et al. [81].
Turon compared his simulation with load-displacement curves to the real experiment, which used the MMB
test method as in Figure 4.1. The MMB test setup is able to reproduce any variable fracture mode ratio test
from 0% being pure tensile to 100% being pure shear. A 0% fracture mode is consistent to a standard double
cantilever beam (DCB) or a pure Mode I test, while a 100% fracture mode is consistent to an end notch flexure
(ENF) or pure Mode II test.

41
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(a) DCB or pure Mode I test setup. (b) Mixed-mode test setup. (c) ENF or pure Mode II test setup.

Figure 4.1: MMB test setups. Taken from Turon et al. [13].

The specimen is a unidirectional AS4/PEEK carbon-fibre reinforced composite, comprising of the follow-
ing dimensions and properties found in Table 4.1. The fibres are conveniently aligned along the length x of
the adherends.

Length x Width y Thickness 2z
102 mm 25.4 mm 2 x 1.56 mm

E11 E22 = E33 G12 =G13 G23 ν12 = ν13

122.7 GPa 10.1 GPa 5.5 GPa 3.7 GPa 0.25

ν23 Gc,I Gc,I I Tm,I Tm,I I = Tm,I I I

0.45 0.969 kJ/m2 1.719 kJ/m2 80 MPa 100 MPa

Table 4.1: Tabular overview of material properties of Turon’s specimen.

A specimen or model consists of three parts: two adherends and a bondline. The adherends are mod-
elled as 3D solids and the bondline as 3D flat interface elements, as in a local approach. The adherends are
modelled as 150 elements in length x, four elements in the width y and one element in thickness z. An initial
crack length a0 has been taken into consideration to make the crack more manageable and predictable. The
bondline is modelled in a similar way as the adherends up to the a0. The a0 region is modelled as dummy
cohesive elements with no strength properties, only being present for the user-defined algorithm while re-
gion a contains the material properties as in Table 4.1. Figure 4.2 mirrors a simplified drawing of the MMB
specimen. There are five specimens subjected to tests from pure Mode I to pure Mode II. All specimens are
of same length x, width y and thickness 2z but with different initial crack lengths a0 and critical energy rates
Gc with respect to their fracture mode ratio G I I /GT . An overview of the five specimens concerning the latter
two properties can be found in Table 4.2.

Figure 4.2: Simplified model of MMB specimen with length x, width y , total thickness 2z, adhesive region a and initial crack region a0.

G I I /GT 0% 20% 50% 80% 100%
Gc [kJ/m2] 0.969 1.103 1.131 1.376 1.719

a0 [mm] 32.9 33.7 34.1 31.4 39.2
a [mm] 69.1 68.3 67.9 70.6 62.8

Table 4.2: Tabular overview of specimen properties per fracture mode ratio; 0% denoting pure Mode I and 100% pure Mode II.
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4.1.2. TURON’S LOAD-DISPLACEMENT RESULTS

Turon compared the load results of the simulation to the real experiment using an error based on load differ-
ence percentage as in Eq. 4.4. An overview of the top loads in each experiment can be found in Table 4.3, with
a graphical comparison in Figure 4.3. The 20% ratio test scores the largest deviation from the real experiment,
which is expected [78].

Er r or = FPr edi cted −FE xper i ment al

FE xper i ment al
·100% (4.4)

G I I /GT Predicted [N ] Experimental [N ] Error (%)
0% 152.4 147.5 3.4

20% 99.3 108.1 -8.1
50% 263.9 275.3 -4.2
80% 496.9 518.7 -4.2

100% 697.1 748.4 -6.9

Table 4.3: Numerical and experimental results for the five setups. Taken from Turon et al. [13].

Figure 4.3: Graphical overview of numerical and experimental results of all five setups. Taken from Turon et al. [13].
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4.2. 2D MSC.MARC MODELS

4.2.1. MODEL PROPERTIES

The first models to be created and tested are 2D ones due to their simplicity and very short calculation times.
For all models the following can be assumed:

• Dimensions and material properties according to Table 4.1 and Table 4.2.
• The models work in a coordinate system where the x-axis is the length and the y-axis the thickness of the

specimen. The width is in-plane and is utilised as a fixed value when defining the geometry properties.
• Adherends consisting of 150 by 1 quadrilateral four-noded 2D elements with orthogonal material prop-

erties.
• Bondline consisting of quadrilateral four-noded interface, or cohesive, elements with zero initial thick-

ness, filling the region a according to Figure 4.2 while a0 remains empty to simulate the initial crack.
Contact bodies with touch properties are established to prevent accidental intertwining of adherend
elements.

• MSC.Marc’s exponential law is used, as it is dependent on the least amount of input parameters and its
good spread of accuracy and computational time [102].

• A normal-to-plane thickness value for both adherend and bondline geometric properties of 25.4 mm is
used.

• All models use a fixed time-step of 0.01 seconds in a total simulation time of 1 second for their pre-
scribed displacement.

• The value for Residual Force Tolerance is decreased to 0.01 instead of the default value 0.1 for better
accuracy. See Figure C.4.

• Remaining default options of MSC.Marc are used.

Concerning the element characteristics, one is referred to Table A.1. The conversion of the given material
properties to input parameters can be seen in Table 4.4. The conversion on the given bondline properties
to input parameters can be seen in Table 4.5. The conversion in MSC.Marc is done according to the input
parameter windows as in Figure C.2 and Figure C.1a.

Property Value Equivalent
property

MSC.Marc

Value
MSC.Marc

Comment

E11 122.7 GPa E1 122700
E22 10.1 GPa E2 10100
E33 10.1 GPa E3 10100
ν12 0.25 ν12 0.25
ν23 0.45 ν23 0.45
ν13 0.25 ν31 0.020579 Use orthotropic relation E11ν31 = E33ν13.
G12 5.5 GPa G12 5500
G23 3.7 GPa G23 3700
G13 5.5 GPa G31 5500 Use orthotropic relation G13 =G31.

Table 4.4: Adherend material property conversion to MSC.Marc. See Figure C.2 for the GUI input view.

In the MSC.Marc simulations, various options within the cohesive properties will be explored to deter-
mine what CZM settings to use best for the CLS specimen. The following options will be tested:

• Stiffness matrix solving method: Secant or tangent
• Integration point location scheme: Gaussian or Newton-Cotes
• Viscous damping
• Fully damaged CZE: Keep or Deactivate

For the theory behind the working of the stiffness matrix solving methods or the integration schemes,
one is refered to Marc 2010 Volume A: Theory and User Information [12]. The simulations with the different
options for each of the five fracture modes can be found in Table 4.6.
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Property Value Equivalent property
MSC.Marc

Value
MSC.Marc

Comment

Gc,I 0.969 kJ/m2 Cohesive Energy Gc 0.969
Gc,I I 1.719 kJ/m2 Shear/Normal Coefficients:

Cohesive Energy β2

1.77399 Use Eq. 3.35.

Tm,I 80 MPa Critical Opening
Displacement δc

0.004456 Use Eq. 3.32.

Tm,I I 100 MPa Shear/Normal Coefficients:
Maximum Stress β1

1.25 Use Eq. 3.34.

Tm,I I I 100 MPa Shear/Normal Coefficients:
Maximum Stress β1

1.25 Use Eq. 3.34.

- - Stiffening Factor in
Compression

1 Default value.

Table 4.5: Bondline material property conversion to MSC.Marc. See Figure C.1a for the GUI input view.

Sim Integration Scheme Stiffness Matrix Method CZE Deactivated/Kept Viscosity Factor

1 Gaussian Secant Kept -
2 Gaussian Secant Deactivated -
3 Gaussian Tangent Kept -
4 Gaussian Tangent Deactivated -
5 Newton-Cotes Secant Kept -
6 Newton-Cotes Secant Deactivated -
7 Newton-Cotes Tangent Kept -
8 Newton-Cotes Tangent Deactivated -
9 Gaussian Tangent Deactivated 0.05

10 Gaussian Tangent Deactivated 0.01
11 Gaussian Tangent Deactivated 0.005
12 Gaussian Tangent Deactivated 0.001
13 Gaussian Tangent Deactivated 0.0005
14 Gaussian Tangent Deactivated 0.0001

Table 4.6: Simulation setup for 2D and 3D models.
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Mixed-mode ratio: 0%
In the 0% fracture mode, or DCB mode, the model has certain constraints on several nodes. A full model view
can be seen in Figure 4.4a. On the far bottom right corner, the node is constrained and fixed in the first and
second degree of freedom (DOF), which correspond to x- and y-direction, as can be seen in Figure 4.4b. The
prescribed displacement in the y-direction is placed on the upper right corner node and is constrained and
fixed in the x-direction as in Figure 4.4c. The prescribed displacement is 7 mm upwards in the y-direction.

(a) Complete view of 2D model with prescribed displacement on far right top node.

(b) Bottom right node fixed in x- and y-direction. (c) Top right node with prescribed displacement.

Figure 4.4: MSC.Marc model of the 0% fracture mode, or DCB, setup.

Mixed-mode ratio: 20%, 50% and 80%
For the 20%, 50% and 80%, special links must be added to the model to simulate the correct amount of tensile
pulling at the far right end and the shear effect in the middle. A rigid ’lever’ is modelled for this, which uses
rigid links and bars relating a given amount of DOFs of a single node to another node. In this case, the cen-
tre top node and top right corner node of the specimen are dependent on the displacement of the lever. To
distinguish the different fracture mode ratios, the length of the lever c as in Figure 4.1 is recalculated and re-
modelled. Explanation and calculations behind the rigid links and modelling of can be found in Appendix A.2.
An example of the lever can be found in Figure 4.5a for the 50% mode ratio model. Constraints are placed on
both bottom ends: The right bottom corner node is fixed in x- and y-direction as in Figure 4.5c and the left
bottom corner node is fixed in y-direction as in Figure 4.5b. The prescribed displacement in the y-direction is
placed on the node which symbolises the lever end as in Figure 4.5a. The prescribed displacement is 12 mm
downwards in the y-direction for the 20% mode ratio and 7 mm downwards in the y-direction for the 50% and
80% mode ratio.
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(a) Complete view of 2D model with prescribed displacement on the lever (red) for the 50% ratio setup.

(b) Bottom left node fixed in the y-direction. (c) Bottom right node fixed in x- and y-direction.

Figure 4.5: MSC.Marc model of the 50% fracture mode setup. Lever length c differs for 20% and 80% fracture mode ratios.
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Mixed-mode ratio: 100%
For the 100% ratio mode, or ENF mode, the constraints are simple. Constraints are placed on both bottom
ends: The right bottom corner node is fixed in x- and y-direction as in Figure 4.6b and the left bottom corner
node is fixed in y-direction as in Figure 4.6c. The prescribed displacement in the y-direction is placed on the
centre top node as in Figure 4.6a. The prescribed displacement is 5 mm downwards in the y-direction.

(a) Complete view of 2D model with prescribed displacement on the middle top node.

(b) Bottom right node fixed in x- and y-direction. (c) Bottom left node fixed in the y-direction.

Figure 4.6: MSC.Marc model of the 100% fracture mode, or ENF, setup.

4.3. 3D MODELS

4.3.1. MODEL PROPERTIES

For all 3D models, the following can be assumed.

• Dimensions and material properties according to Table 4.1 and Table 4.2.
• The models work in a coordinate system where the x-axis is the length, y-axis the width and z-axis the

thickness of the specimen.
• Adherends consisting of 150 by 4 by 1 hexagonal eight-noded 3D elements with orthotropic material

properties.
• Bondline consisting of hexagonal eight-noded interface, or cohesive, elements with zero initial thick-

ness, filling the region a according to Figure 4.2 with four elements in width while a0 remains empty to
simulate the initial crack.

• MSC.Marc’s exponential law is used, as it is dependent on the least amount of input parameters and its
good spread of accuracy and computational time [102].
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• All models in the simulation setup of Table 4.6 use a simulation time of 1 second, but have the simula-
tion split in two parts: first part has a fixed time-step of 0.02 and the second part a fixed time-step of
0.005 for more accuracy. The different time steps are done since for the first few millimeters of loading
the specimen acts linear and just before point of failure it acts non-linear. This non-linear part needs
a small time step to be able to get accurate results. The time step for the both parts are also the same
ones used in Turon [59]. Length of parts varies per model.

• The value for Residual Force Tolerance is decreased to 0.01 instead of the default value 0.1 for better
accuracy and the option of Non-Positive Definite matrix in the solution control is checked to solve
non-positive definite systems which could halt the simulations.. See Figure C.3 and Figure C.4.

• Remaining default options of MSC.Marc are used.

Concerning the 3D element characteristics, one is referred again to Table A.1. As with the 3D models,
the conversion of the given material properties to input parameters can be seen in Table 4.4, and for the
conversion on the given bondline properties to input parameters, Table 4.5. The 3D models will follow the
same set of simulations as in Table 4.6 and also additional ones in Table 4.7. The extra simulations carried out
in Table 4.7 are performed to distinguish a time step, Gc and Tm influence. Simulations 15 through 18 will be
performed for all mode ratios while 19 through 34 only for the 0% and 100% mode ratios to assess the direct
influence in pure mode I and II on the maximum load required to damage the MMB specimen.

Sim Time Step Size [s] Gc,I [k J/m2] Gc,I I [k J/m2] Tm,I [MPa] Tm,I I [MPa]

15 0.05 0.969 1.719 80 100
16 0.01 0.969 1.719 80 100
17 0.005 0.969 1.719 80 100
18 0.001 0.969 1.719 80 100
19 0.0005 0.969 1.719 80 100
20 0.0001 0.969 1.719 80 100
21 0.001 0.500 1.719 80 100
22 0.001 1.000 1.719 80 100
23 0.001 1.500 1.719 80 100
24 0.001 2.000 1.719 80 100
25 0.001 0.969 1.250 80 100
26 0.001 0.969 1.750 80 100
27 0.001 0.969 2.250 80 100
28 0.001 0.969 2.750 80 100
29 0.001 0.969 1.719 60 100
30 0.001 0.969 1.719 80 100
31 0.001 0.969 1.719 100 100
32 0.001 0.969 1.719 120 100
33 0.001 0.969 1.719 80 80
34 0.001 0.969 1.719 80 100
35 0.001 0.969 1.719 80 120
36 0.001 0.969 1.719 80 140

Table 4.7: Additional simulation setup for 3D models. These simulations all use one fixed time step size as noted, Gaussian integration
scheme, tangent stiffness matrix solving method, deactivated CZE and no viscosity.

Mixed-mode ratio: 0%
For the 3D model, it has certain extra constraints on several nodes compared to its 2D counterpart. A full view
of the model can be found in Figure 4.7a. On the far bottom corner nodes at the start of the initial crack, all
are constrained and fixed in the first, second and third DOF, which correspond to x-, y- and z-direction, as can
be seen in Figure 4.7b. The prescribed displacement in the z-direction is placed on the middle upper node at
the start of the initial crack and is constrained and fixed in the x- and y-direction as in Figure 4.7c. To keep
consistent to the test setup, its neighbouring nodes along the width are linked in z-direction so they follow
the point of loading in the z-direction. The prescribed displacement is 7 mm upwards in the z-direction. The
displacement is split in two parts: the first part up to 40% of the load with a time-step of 0.02 seconds and the
second part from 40% of the load with a time-step of 0.005 seconds.
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(a) Complete view of 3D model with prescribed displacement at the start of the initial crack. Red line indicates nodes that have tied
DOF to the load node.

(b) Bottom corner nodes at start of initial crack fixed in x-, y- and
z-direction.

(c) Top middle node with prescribed displacement with
neighbouring nodes linked in z-direction.

Figure 4.7: MSC.Marc model of the 0% fracture mode, or DCB, setup.
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Mixed-mode ratio: 20%, 50% and 80%
For the 20%, 50% and 80% in 3D models, the rigid lever concept is maintained. In this case, the centre top
node in the middle and top middle corner node at the start of the crack on the specimen are dependent on the
displacement of the lever, which is modelled with rigid links and bars. Their neighbouring nodes along the
width of the specimen are linked to the centre nodes in the z-direction. To distinguish the different fracture
mode ratios, the length of the lever c as in Figure 4.1 is recalculated and remodelled. Explanation and calcu-
lations behind the rigid links and bars and modelling of can be found in Appendix A.2. Constraints are placed
on both bottom corner ends: The bottom corner nodes at the crack start are fixed in x-, y- and z-direction as
in Figure 4.8b and the opposite bottom corner nodes are fixed in z-direction as in Figure 4.8c. The prescribed
displacement in z-direction is placed on the node which symbolises the lever end as in Figure 4.8a. The pre-
scribed displacement is 12 mm downwards in the z-direction for the 20% mode ratio and 7 mm downwards
in the z-direction for the 50% and 80% mode ratio. The displacement for the 20%, 50% and 80% mode ratio
is split in two parts: the first part up to 66% of the load with a time-step of 0.02 seconds and the second part
from 66% of the load with a time-step of 0.005 seconds.

(a) Complete view of 3D model with prescribed displacement on the lever (red) for 50% ratio. Red line on the specimen indicates nodes
that have tied DOF to the centre nodes.

(b) Bottom corner nodes at start of initial crack fixed in x-, y- and
z-direction.

(c) Bottom corner nodes opposite of initial crack fixed in
z-direction.

Figure 4.8: MSC.Marc model of the 50% fracture mode setup. Lever length c differs for 20% and 80% fracture mode ratios.

Mixed-mode ratio: 100%
For the 100% ratio mode in 3D, the constraints are similar to the 20%, 50% and 80% modes. Constraints
are placed on both bottom corner ends: The bottom corner nodes at the crack start are fixed in x-, y- and
z-direction as in Figure 4.9b and the opposite bottom corner nodes are fixed in z-direction as in Figure 4.9c.
The prescribed displacement in z-direction is placed on the center top node in the middle of the specimen’s
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length, with its neighbouring nodes along the width linked to the load node in the z-direction as in Figure 4.9a.
The prescribed displacement is 5 mm downwards in the z-direction. The displacement is split in two parts:
the first part up to 40% of the load with a time-step of 0.02 seconds and the second part from 40% of the load
with a time-step of 0.005 seconds.

(a) Complete view of 2D model with prescribed displacement in the middle. Red line indicates nodes that have tied DOF to the load
node.

(b) Bottom right node fixed in x- and y-direction. (c) Bottom left node fixed in the y-direction.

Figure 4.9: MSC.Marc model of the 100% fracture mode, or ENF, setup.

4.4. EVALUATION

A short evaluation on the behaviour of the cohesive zone elements is given. The results from the simulations
will be used to analyse the different options MSC.Marc has to offer on cohesive geometry and material prop-
erties and the cohesive zone elements. Additionally, a discussion on the outcome of the simulations will be
made. All simulations were performed with the software and hardware listed in Appendix F.

4.4.1. LOAD-DISPLACEMENT RESULTS

The load displacement of the 2D and 3D results for the different options and setting the models have accord-
ing to Table 4.6 will be listed here. A decision to what options to use for the CLS specimen will based on these
results.

Mixed-mode ratio: 0%
For the 0% fracture mode simulations, the 2D model results can be found in Table A.3, Figure A.4 and Fig-
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ure A.5. All 2D models seem to reach their maximum loads sooner than the real experiment, although the
maximum loads that used a Gaussian integration scheme come closer to the real experimental maximum
load than the ones that used a Newton-Cotes integration scheme or even Turon’s model. The option to keep
or deactivate cohesive zone elements seem to have no effect on the results, even hardly in computational
time. A secant method for solving the stiffness matrix seems to have a large overshoot for Newton-Cotes
integration schemes, resulting in a large max load error.

For the 3D models, the results can be found in Table A.4, Figure A.6 and Figure A.7. All 3D models seem
to reach their maximum loads sooner than the real experiment. The option to keep or deactivate cohesive
zone elements seem to have no effect on the results, even hardly in computational time. The load error is
slightly more accurate than Turon’s. Computational times are of the same magnitude and near each other.
The accuracy remains fairly consistent amongst all model settings. The viscosity factor has a large influence
as well. Large values tend to be highly inaccurate, such as the value in model 9 and 10. A value around
0.005 and 0.001 seems to be well suited to smooth out the oscillations and have a better accuracy and reduce
computational time. A deformed shape of the simulation can be found in Figure A.3a.

Mixed-mode ratio: 20%, 50% and 80%
For the 20% fracture mode simulations, the 2D model results can be found in Table A.6, Figure A.11 and
Figure A.12. All models seem to reach their maximum loads later than the real experiment, with the maxi-
mum loads having a high deviation from the real experiment maximum load, which was to be expected [78].
The ones with the Gaussian schemes seems to have a much longer computational time than the ones with
a Newton-Cotes scheme, but atleast finish the simulation: all models with either Newton-Cotes and/or se-
cant seem to suffer too many cutbacks and end their simulations prematurely. Again, the option to keep or
deactivate cohesive zone elements seem to have no effect on the results.

For the 3D models, the results can be found in Table A.7, Figure A.13 and Figure A.14. Also here the models
seem to reach their maximum loads later than the real experiment, with the maximum loads having a high
deviation from the real experiment maximum load, although the load errors are more close to each other and
Turon’s model than they were in the 2D models. The difference in computational time between the different
integration schemes, as in the 2D models, seems to have vanished. Again, the option to keep or deactivate
cohesive zone elements seem to have no effect on the results. The viscosity factor has a large influence again.
Several of the larger values, models 9 through 11, don’t seem to reach a maximum for its prescribed displace-
ment. A value around 0.005 and 0.001 seems to be well suited to smooth out the oscillations and reduce
computational time. A deformed shape of the simulation can be found in Figure A.3b.

For the 50% fracture mode simulations, the 2D model results can be found in Table A.9, Figure A.16 and
Figure A.17. All models seem to reach their maximum loads later than the real experiment, with the maxi-
mum loads of models using Newton-Cotes schemes with a secant solving method deviating the most, also
computational-wise. Gaussian schemes give the most accurate results with only small load errors, although
the initial loading stiffness deviates from the real experiment. Again, the option to keep or deactivate cohesive
zone elements seem to have no effect on the results.

For the 3D models, the results can be found in Table A.10, Figure A.18 and Figure A.19. Most models suffer
to many time step cutbacks and the simulations halt prematurely. Models using Newton-Cotes schemes with
a secant solving method seem to deviate the most and ending prematurely. Gaussian schemes give the most
accurate results, with the tangent solving method having the best computational time. Again, the option to
keep or deactivate cohesive zone elements seem to have no effect on the results. Also here the load errors
are small for the Gaussian schemes. For the viscosity factor, several of the larger values, models 9 through 11,
don’t seem to reach a maximum for its prescribed displacement. A value below 0.0005 seems to be well suited
to smooth out the oscillations and reduce computational time. A deformed shape of the simulation can be
found in Figure A.3c.

As for the 80% fracture mode simulations, the 2D model results can be found in Table A.12, Figure A.21 and
Figure A.22. Almost all models, 1 through 8, seem to have near-identical results, with the Gaussian scheme
using a tangent solving method having the advantage of lower computational time. Again, the option to keep
or deactivate cohesive zone elements seem to have no effect on the results. All model settings have an error
close to each other and is slightly less accurate than Turon’s model.

As for the 3D models, the results can be found in Table A.13, Figure A.23 and Figure A.24. Also here, all
models, 1 through 8, are close together, with the Gaussian scheme using a tangent solving method having
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the advantage of lower computational time. Models with the secant solving method have very high compu-
tational time and have larger errors. Again, the option to keep or deactivate cohesive zone elements seem to
have no effect on the results. The load errors for the Gaussian schemes are nearly the same as those found in
the 2D models. For the viscosity factor, several of the larger values, such as models 9 and 10, seem to devi-
ate heavily from the real experiment and don’t reach their maximum within the prescribed displacement. A
value below 0.001 seems to be well suited to smooth out the oscillations, have a better accuracy and reduce
computational time. A deformed shape of the simulation can be found in Figure A.3d.

Mixed-mode ratio: 100%
As for the 100% fracture mode simulations, the 2D model results can be found in Table A.15, Figure A.26
and Figure A.27. Almost all models, 1 through 8, seem to have near-identical results, and again models with
the Gaussian scheme using a tangent solving method having a major advantage of low computational time.
Again, the option to keep or deactivate cohesive zone elements seem to have no effect on the results. The
load errors are all close to each other, and slightly better than Turon’s model.

As for the 3D models, the results can be found in Table A.16, Figure A.28 and Figure A.29. Also here, all
models, 1 through 8, have near same results, and again models with the Gaussian scheme have the advantage
of lower computational time and tend to be the most accurate. Again, the option to keep or deactivate cohe-
sive zone elements seem to have nearly no effect on the results. The load errors for the Gaussian schemes are
lower than its 2D counterparts and Turon’s Model. For the viscosity factor, for large values such as model 9, it
seems to deviate heavily from the real experiment. A value below 0.01 seems to be well suited for a better ac-
curacy in terms of maximum load and a decrease in computational time. A deformed shape of the simulation
can be found in Figure A.3e.

4.4.2. DAMAGE AND TRACTION RESULTS

The damage levels in the CZE element can be followed within the postprocessor. Taking one of the 2D models
as example, it is seen that damaged CZE have the damage value of 1, see Figure 4.10. Subsequently, all strain
increases are halted and stresses are reduced to zero. Because MSC.Marc calculates the traction separately
and is combined with to a global output of stress parameters for a node or element, it is difficult to assess the
traction quality of a CZE. There is also no separate output parameter regarding only the traction that comes
from the CZE. The best way to assess how much failure a CZE has is by damage level as in Figure 4.10, with
the additional aid of visually removing the CZE in the postprocessor.

To be able to see the traction behaviour of the CZE element, one can model only the CZE and prescribe it
a force or displacement. A single CZE with the same properties as in Table 4.5 is prescribed a small displace-
ment good enough to ’destroy’ the element in a tensile loading, or mode I loading. A damage value output
and traction output are given in Figure 4.11. In this CZE simulation, the CZE is eliminated completely once it
has reached a damage level of 0.99 for the exponential traction law.

(a) Close-up damaged CZE. Yellow indicates an element having a damage value of 1, resulting
in the deactivation of that element.

Figure 4.10: Damage levels in first CZEs.
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(b) Close-up of first CZE getting damaged.

Figure 4.10: Damage levels in first CZE (cont.).

It thus has a tolerance of 0.01 since the exponential law in theory never reaches zero traction, which should
denote the the CZE has debonded from it neighbouring material. The traction law is well represented as its
maximum of 80 MPa on the critical opening displacement. Note that the damage output only increases once
the critical opening displacement has been reached, see also Figure 4.11.

(a) Traction output of a cohesive zone element.

(b) Close-up of traction law. The critical opening displacment of 0.004456 mm with a traction
of ±80 MPa is evident.

Figure 4.11: Damage and traction in a CZE.



56 4. VALIDATION OF MSC.MARC

(c) Damage output with a tolerance of 0.01 damage value.

(d) Traction law scaled to damage law. Note the start of damage only at the critical opening
displacement.

Figure 4.11: Damage and traction in a CZE (cont.).

4.4.3. TIME STEP DEPENDENCY RESULTS

A range of time steps was considered from simulations 15 through 20 in Table 4.7. The results for the 0% ratio
can be found in Table A.5 and Figure A.8, for the 20% ratio in Table A.8 and Figure A.15, for the 50% ratio in
Table A.11 and Figure A.20, for the 80% in Table A.14 and Figure A.25 and for the 100% ratio in Table A.17 and
Figure A.30.
For all ratios, a large step size is unwanted since it can be inaccurate and miss the maximum load, like the
0.05 s time step. A step size of magnitude 10-3 is accurate enough compared to a magnitude lower, and saves
more computational time.

4.4.4. RANGE OF DIFFERENT Gc AND Tm RESULTS

A range of critical energy release rates was simulated for the 0 and 100% ratios. The results can be found in
Table A.5 and Table A.17, along with paring graphs Figure A.9, Figure A.10, Figure A.31 and Figure A.32.
For the 0% ratio, a significant change can be witnessed in the altering of its Gc,I property and to a lesser extent
its Tm,I property. An increasing maximum load is needed the higher these properties become. Alterations in
Gc,I I and Tm,I I have no effect, which is logical for this type of bending.

For the 100% ratio, a significant change can be witnessed in the range of its Gc,I I property and to a lesser
extent in its Tm,I I property. An increasing maximum load is needed the higher these properties becoming. As
with the 0% ratio, this was expected since these two properties are directly related to this pure mode bending.
Alterations in Gc,I and Tm,I have no effect as expected again.
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4.4.5. DISCUSSION

The results from the validation with Turon’s work give promise. The results from the different critical energy
release rates and maximum traction show that there is indeed an influence, mainly in different failure loads
as would be expected. This was expected since these two properties are directly related to pure mode bending
and the formulas of the traction laws as given in Chapter 3. Another observation is that the stiffness remains
the same in the range of different Gc and Tm , although the traction law used in the CZE changes in shape
and thus also the stiffness of the CZE. This keeping of linear behaviour could be attributed to the adherend
properties which are also decisive in the stiffness of the structure and the fact that the minute difference in
stiffnesses and critical opening displacements of the traction law happens on a micro scale. This could be
neglected against the much larger stiffness of the adherends. The Gc is of larger influence than Tm due to
the area a CZE needs to cover to get fully damaged. A larger area under the traction law requires a larger
critical opening displacement to ensure damage initiation. Ultimately, a larger area also requires a larger
physical displacement in the end to fully damage a CZE compared to a change in Tm , which in terms requires
only a larger load on the structure itself to initiate damage. This was also clearly related to Figure 3.10a and
Figure 3.10b. This information can be used to answer the first research question in Chapter 6.

The best errors were kept in a order of magnitude 100 with certain CZM options used. This leads to the use
of a CZM with a Gaussian integration scheme and a tangent solving method for the CLS specimen. Secant
solving methods are to be avoided due to large errors and overshoots of failure loads. Newton-Cotes inte-
gration schemes are also avoided because of the many cutbacks and premature endings of simulations. The
deactivation of CZE has no influence on the load-displacement and damage results. Nevertheless, for the
CLS specimen a choice is made to deactivate the elements for the bondline and between the laminates once
they are fully damaged. This is close to what physically happens: pure interfacial seperation, meaning that
the adhesive is destroyed or split and not physically contributing to the structural loading. The CLS specimen
is also mostly based on shear loading; it will be hard to set a viscosity factor for the simulations. For a 50%
mode ratio a factor of 0.0005 would suffice, while for a 100% mode ratio a factor of 0.01 would suffice and a
factor between 0.01 and 0.005 would already be disastrous for a 50% and 80% mode ratio. The range to choose
from is still very large and can have large consequences. For the time steps, accuracy and computational time
need to be taken into account. The trade-off for a higher accuracy is a longer computational time and shorter
computational times often result in lower accuracy. Comparing this to Turon’s work, a time step equal of the
same magnitude suffices for the MMB tests. This however, does not mean it would suffice for the CLS speci-
men due to the different dimensions of the specimen, mesh sizes and the presence of a bond line. Therefore,
a separate time step study should be performed for the CLS specimen to see what magnitude would suffice
and also would not be computationally too expensive.

Regarding Turon’s results, it appears that his user-defined CZE has the advantage of predicting the displace-
ment at the failure load very near to the one of the real experiment. The same goes for the initial stiffness until
the model begins to fail. His maximum loads are often close or better than the loads predicted by MSC.Marc.
To compensate for the initial stiffness, one can use a finer mesh or time step in MSC.Marc at the cost of com-
putational time. Another alternative is to recreate the CZE model of Turon, or to create one’s own user-defined
CZE model, but this is out of the scope of this thesis work due to financial and time constraints.

CZM options for CLS Specimen
Using the previous discussion, a summary of what options to be used for the cohesive properties for the
exponential traction law in the CLS simulations can be made.

The integration scheme to be used is the Gaussian scheme. In all simulations with exception of the 2D
20% mixed-mode models, the Gaussian scheme is the most accurate with the lowest computational time.

The stiffness matrix solving method to be used is the tangent method. Especially combined with the
Gaussian integration scheme, the tangent solving method has the lowest computational times.

The option whether to keep cohesive zone elements in the structural analysis or to deactivate them has
no distinguishable results. Still, the option to deactivate them is chosen to simulate the real life situation
as much as possible. Additionally, for the bondline in the CLS specimen, the elements are removed from
postprocessing to have a better view of the deformation.

Finally, no viscosity factor will be used unless there would be convergence problems within the simula-
tions.





5
CRACKED LAP SHEAR TEST AND

SIMULATION

The CLS experiment together with its simulation is the main subject of the thesis. Progressive failure criteria
and cohesive zone modelling will be used in the CLS simulations to detect damage initiation and growth.
A real CLS specimen was tested at the site in Manching, where the CLS specimen is based on. A detailed
description of the specimen is given in Ch. 5.1. What is suspected in the CLS specimen is a cohesive or
adhesive failure, with the possibility of adherend failure as was described in Chapter 2.2. The CLS specimen
has strain gauges attached to extract results, also noted in Ch. 5.1. The FE model of the CLS specimen will be
explained in Ch. 5.2. These results of the real experiment and the simulations are listed and will be compared
with the simulations in Ch. 5.3. A discussion then follows on the outcome of the simulations.

5.1. CLS SPECIMEN

An explanation on the real life specimen is given, together with the results from the strain gauges, which will
be compared eventually to the simulation results.

5.1.1. PROPERTIES

A CLS specimen consists of mainly out of three parts: the strap, the lap and the bondline. Figure 5.1 shows
a simple drawing of the CLS specimen with its laminates and Figure 5.2 shows the real life CLS specimen. In
the case of the tested specimen, an additional part is added, called the foot, for clamping reasons. The initial
crack a0 is modelled as a so-called trigger, which is a saw-like pattern of bondline adhesive in the a0 reason,
to guide the crack more steadily and gradually as previous experiments have suffered from sudden and quick
crack propagation which lead to faulty and unreliable results.

Figure 5.1: Simple drawing of CLS specimen, with strap (1), bondlines (2), lap (3), foot (4), clamps (5), strain gauges (6) and trigger (7).

The technical drawing of the tested CLS specimen can be found in Appendix B.2. The CLS specimen that is
tested has the following dimensions in Table 5.1, using the same coordinate system as in Chapter 4.

Material
The material of the laminates is the composite CFRP prepreg Hexcel IM7/8552 and the adhesive used for the
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Figure 5.2: Real life specimen with strain gauges (orange), bottom view. Foot is located on the right, and two of the three strain gauges
can be seen.

Part of Model Length x
[mm]

Width y
[mm]

Thickness
z [mm]

Comment

Strap 275 50 3
Lap 175 50 3
Bondline (Strap - Lap) 175 50 0.3 Bondline between strap and lap
Bondline (Trigger) 10 50 0.3 Signifies initial crack
Bondline (Strap - Foot) 50 50 0.3 Bondline between strap and foot
Foot 50 50 3

Table 5.1: Dimensions of CLS specimen components. Technical drawing of the specimen can be found in Appendix B.2.

Property Value

E11 160000 MPa
E22 9000 MPa
E33 9000 MPa
ν12 0.32
ν23 0.4
ν13 0.32
G12 4500 MPa
G23 3215 MPa
G13 4500 MPa

Property Value

Tensile Strength F11,t 2500 MPa
Compression Strength F11,c 2000 MPa
Tensile Strength F22,t 65 MPa
Compression Strength F22,c 285 MPa
Shear Strength in-plane τ12 85 MPa
Shear Strength transverse τ23, τ13 50 MPa

Table 5.2: Laminate material properties. Taken from Figure B.4.

Property Value

Gc,I 0.26477 kJ/m2

Gc,I I 0.6911 kJ/m2

Tensile Strength F22,t , Tm,I 65 MPa
Shear Strength 0° ILS, Tm,I I 120 MPa
Shear Strength 0° ILS, Tm,I I I 120 MPa

(a) Laminate cohesive material properties.

Property Value

Gc,I 0.328 kJ/m2

Gc,I I 0.5 kJ/m2

Tm,I 64 MPa
Tm,I I 35 MPa
Tm,I I I 35 MPa

(b) Bondline material properties.

Table 5.3: Cohesive material properties.



5.1. CLS SPECIMEN 61

bondline is "Mojo-Mix", which is a mixture of 80% Henkel Hysol EA9395 and 20% Henkel Hysol EA9696. All
laminates, strap, lap and foot, consist out of 24 plies of each 0.125 mm thick. The stacking sequence of the
plies in the composite laminates is ((0/45/90/135)3)s . The material properties of the laminates are given as
follows in Table 5.2 and Table 5.3a and the material properties of the bondline is given in Table 5.3b. Using
the cohesive properties, one can set up the mixed-mode behaviour of the two adhesives. The mixed mode
behaviour in an exponential traction law can be found in Figure 5.3. With taking a look at the traction laws
with the properties, there can be made the assumption that cohesive failure in the bondline would occur
sooner than interlaminar failure in the strap or lap due to a higher maximum shear traction of the laminate
adhesive.

(a) Traction law of the bondline. Note that the adhesive has a higher
tensile maximum than shear maximum.

(b) Traction law of the laminate adhesive. Note that the adhesive
has a higher shear maximum than tensile maximum.

Figure 5.3: Traction laws of the cohesive properties of the adhesives. Note that the laminate adhesive is stronger in both modes than the
bondline adhesive.

Gauges
The CLS specimen also has three strain gauges attached to it: Two on the strap, one on the lap. All strain
gauges were placed in the middle of the width. The locations are highlighted in Figure 5.1 and Figure 5.4. The
exact centre locations of the gauges can be found in the technical drawing, Appendix B.2. The strain gauges
are of type "LY11-6/120", and are 6 mm in length by 2.8 mm in width. The strain gauges are supposed to
measure the strain ε11, which is in the length direction x of the specimen. The gauges are branded as "Strap
Top", "Strap Bottom" and "Lap" gauge.

Figure 5.4: Simplified drawing of CLS specimen with strain gauges: strap top gauge (1), strap bottom gauge (2) and lap gauge (3).

5.1.2. EXPERIMENT RESULTS

Strain Gauges
The CLS specimen has three strain gauges to extract results from during the loading. This is to track the strain
in the x direction. At a certain point, the force was also measured against the current strain: this can be found
in Table 5.4. The graphic result of the data of all gauges are found in Figure 5.5a. The specimen ultimately
fails at 55 kN.
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Load Strap Top Gauge Strap Bottom Lap Gauge

Measured Strain [µε] 25.6 kN 2222 3000 364

Table 5.4: Strain gauge results at 25.6 kN.

(a) Strain-time curve of the three gauges. (b) Load-time curve of experiment.

Figure 5.5: Real life CLS experiment results, retrieved with data from the strain gauges and the loading mechanism.

Force load
The CLS specimen had its driving force of the clamp measured as well against the displacement of the ma-
chine. With some fitting and interpolation with the strain curves, the displacement, which was deemed un-
reliable, has been converted to the load time. The conversion is found in Appendix D. The graphic result of
the force load can be found in Figure 5.5b.

5.2. CLS SPECIMEN IN MSC.MARC

An explanation on the model and its properties will be given, as well as the setup of simulations.

5.2.1. FE MODEL

There are is a single FE model that will be worked with. The lap and foot will be modelled as one region, con-
sisting of composite solid elements of 2.5 by 2.5 by 3 mm. The bondline will be modelled as another region,
consisting of cohesive zone elements of 2.5 by 2.5 by 0.3 mm, as in the continuum approach described in
Ch. 2.3. The strap will be split up into five regions: one region contains the first 20 plies and the other regions
will be single plies, e.g. the remaining four close to the bondline for there was reason to believe that one of
these four plies would fail. This means that the region with 20 plies, or ’bulk’ region, will consist of 2.5 by
2.5 by 2.5 mm composite solid elements and the single ply region composite solid elements will consist of
2.5 by 2.5 by 0.125 mm. The lap and bulk region can be defined as a composite multi-ply region, defining an
x number of orientated plies in the thickness direction within the material property of the region, which in
turn can be assigned to an element. This can be seen in Figure B.3. The single plies that will be modelled
separately, from bondline to bulk region, are the 0°, 45°, 90° and 135° plies. Between the single plies and the
bulk region, layers of CZE are implemented, each 2.5 by 2.5 by 0 mm, as in the local approach, to distinguish
and catch delamination between the plies. Figure 5.6a shows the complete model and Figure 5.6b the dif-
ferent modelled regions that represent the laminates, plies and bondline. For further information regarding
element attributed, see Table B.1.

The CZE within the laminates have a zero thickness and will be modelled in between the single ply re-
gions and bulk region, meaning that there will be four layers of CZE in the strap throughout its entire length.
Figure 5.7 highlights the present CZE within the strap in a modified view.
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Figure 5.6: Model views of the CLS specimen.

(a) Complete view of 3D model. The left end of the specimen in this picture is the ’strap-lap’ end (1), while the right end of the specimen
is the ’strap-foot’ end (2).

(b) Close-up side view of strap-lap end. All different regions of plies and adhesive can be found. The region known as ’top_bulk’
contains the remaining 20 plies of the upper adherend and the region known as ’bottom’ contains all plies of the lap adherend. CZE in

between plies are not visible since they have zero thickness and are labelled ’plyCZ’.
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Figure 5.7: View of strap with reduced element size to highlight the CZE (blue) between the plies and bulk region (purple) in the strap
adherend.

Constraints
The constraints to be applied will be as realistic as possible to simulate the clamps like in Figure 5.1. This is
done by constraining the first, second and third DOF of all outer surface nodes up to 50 mm of the strap to
a master node on both ends. The master nodes are located on the exact centre top node within the 50 mm
area of both strap ends as in Figure 5.8. Of the lap and foot end, the first DOF of all outer surface nodes up to
50 mm are also constrained to the master nodes located on the strap. Coincidently, this contains the entire
foot. The constraining is done with the aid of links, which tie DOFs. The strap-lap end is fixed, meaning a
prescribed displacement of zero for all outer surface nodes of the strap within 50 mm of the end. The strap-
foot end has the displacement load. The lap and foot nodes that are tied still have the freedom to move in the
y- and z-direction to compensate for the Poisson ratio.

(a) Constraints on the strap-lap end, only the outer surface nodes
up to 50 mm. Red circled nodes (1) mark first and third DOFs tied
to the master node. Black circled nodes (2) mark the first DOF tied

to the master node.

(b) Constraints on the strap-foot end, only the outer surface nodes
up to 50 mm. Red circled nodes (1) mark first and third DOFs tied
to the master node. Black circled nodes mark (2) the first DOF tied

to the master node.

Figure 5.8: Close-up side view of constraints on both ends.
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Load
The ’load’ is a prescribed displacement of 1.25 mm over 1 second, being pulled from the strap-foot end in
the length x direction. Figure 5.8 shows the constraints on both ends. The prescribed displacement is split
into three parts. The first part is from 0 to 2% of the load, with a time step of 5.10−4 seconds. This is done
to take possible non-linearities into account at the beginning of the simulation due to bending and tension
coupling. The second part is from 2% to 30% of the load, with a time step of 5.10−3. This coarse time step is
taken since this part is linear because of no failure occurring, and to save computational time. The third part
is from 30% to 100% of the load, with a time step of 5.10−4 seconds. This is done because of the non-linearity
during failure, and a smaller time-step would produce more accurate results. A time step evaluation for the
CLS model was done in Appendix B.2.

Contact bodies
For contact bodies, there are three bodies defined: entirety of the strap, lap and foot, and the bondline. This
is done because of the trigger, which nodes do not coincide with the nodes of the 0° ply or the lap, see Fig-
ure 5.9. The bondline is therefore ’glued’ on the other two contact bodies using the glue contact option which
automatically adds rigid constraints between the opposite nodes of a common interface region. The contact
table can be found in Figure B.1.

Figure 5.9: View of trigger resting on lap. Strap is made invisible. Note that the trigger symbolises the initial crack region a0.

5.2.2. MATERIAL AND GEOMETRIC PROPERTIES

The material properties of the laminates are given as follows in Table 5.5 and Table 5.7 and the material prop-
erties of the bondline is given in Table 5.8, together with their conversion to MSC.Marc input parameters. The
failure criteria properties are given in Table 5.6 together with their conversion to MSC.Marc input parameters.
The composite material property has the input parameters used from Table 5.5 with the enabling of the failure
criteria Tsai-Wu, Puck or Hashin, see also Figure C.5 for a GUI view of the input parameters. The cohesive ma-
terial properties for the laminates and bondline use the exponential law and have a tangent solving method
with deactivated elements for the interlaminar CZE and bondline CZE and with removal of fully damaged
bondline CZE from postprocessing. It uses the input parameters from Table 5.7 and Table 5.8. Also, no vis-
cosity factor is assigned. It further has the input parameters as in Table 5.5.
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Property Value Equivalent
property

MSC.Marc

Value
MSC.Marc

Comment

E11 160000 MPa E1 160000
E22 9000 MPa E2 9000
E33 9000 MPa E3 9000
ν12 0.32 ν12 0.32
ν23 0.4 ν23 0.4
ν13 0.32 ν31 0.018 Use orthotropic relation E11ν31 = E33ν13.
G12 4500 MPa G12 4500
G23 3215 MPa G23 3215
G13 4500 MPa G31 4500 Use orthotropic relation G13 =G31.

Table 5.5: Laminate material property conversion to MSC.Marc. Taken from Figure B.4. See Figure C.2 for the GUI input parameters and
view.

Property Value Equivalent property
MSC.Marc

Value
MSC.Marc

Comment

Tensile Strength
F11,t

2500 MPa Max Fiber Tension / Max
Tensile Stress X

2500 Equal to XT from Table 2.5.
Used in all failure criteria.

Compression
Strength F11,c

2000 MPa Max Fiber Compression /
Max Compressive Stress X

2000 Equal to XC from Table 2.5.
Used in all failure criteria.

Tensile Strength
F22,t

65 MPa Max Matrix Tension / Max
Tensile Stress Y & Z

65 Equal to YT and YC from
Table 2.5. Used in all failure
criteria.

Compression
Strength F22,c

285 MPa Max Matrix Compression /
Max Compressive Stress Y

& Z

285 Equal to YC and ZC from
Table 2.5. Used in all failure
criteria.

Shear Strength
in-plane τ12

85 MPa Layer Shear Strength / Max
Shear Stress XY

85 Equal to S12 from Table 2.5.
Used in all failure criteria.

Shear Strength
transverse τ23,
τ13

50 MPa Transverse Shear Strength /
Max Shear Stress YZ & ZX

50 Equal to S23 and S13 from
Table 2.5. Used in Hashin
and Tsai-Wu failure crite-
rion.

Slope of Fracture
Envelope p(−)

⊥∥
- Slope P12C of Fracture

Envelope
0.35 Rule of thumb. Used in

Puck failure criterion.

Slope of Fracture
Envelope p(+)

⊥∥
- Slope P12T of Fracture

Envelope
0.3 Rule of thumb. Used in

Puck failure criterion.

Slope of Fracture
Envelope p(−)

⊥⊥
- Slope P23C of Fracture

Envelope
0.25 Rule of thumb. Used in

Puck failure criterion.
Slope of Fracture
Envelope p(+)

⊥⊥
- Slope P23T of Fracture

Envelope
0.25 Rule of thumb. Used in

Puck failure criterion.

Table 5.6: Laminate failure criteria conversion to MSC.Marc. Taken from Figure B.4. See Figure C.5a, Figure C.5b and Figure C.5c for the
GUI input parameters and view. All other input parameters are with default value.
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Property Value Equivalent property
MSC.Marc

Value
MSC.Marc

Comment

Gc,I 0.26477 kJ/m2 Cohesive Energy Gc 0.26477
Gc,I I 0.6911 kJ/m2 Shear/Normal Coefficients:

Cohesive Energy β2

2.6102 Use Eq. 3.35.

Tensile Strength
F22,t , Tm,I

65 MPa Critical Opening
Displacement δc

0.0014985 Use Eq. 3.32.

Shear Strength
0° ILS, Tm,I I

120 MPa Shear/Normal Coefficients:
Maximum Stress β1

1.84615 Use Eq. 3.34.

Shear Strength
0° ILS, Tm,I I I

120 MPa Shear/Normal Coefficients:
Maximum Stress β1

1.84615 Use Eq. 3.34.

Table 5.7: Laminate cohesive material property conversion to MSC.Marc. See Figure C.1a for the GUI view. All other input parameters
are with default value.

Property Value Equivalent property
MSC.Marc

Value
MSC.Marc

Comment

Gc,I 0.328 kJ/m2 Cohesive Energy Gc 0.328
Gc,I I 0.5 kJ/m2 Shear/Normal Coefficients:

Cohesive Energy β2

1.52439 Use Eq. 3.35.

Tm,I 64 MPa Critical Opening
Displacement δc

0.0018854 Use Eq. 3.32.

Tm,I I 35 MPa Shear/Normal Coefficients:
Maximum Stress β1

0.546875 Use Eq. 3.34.

Tm,I I I 35 MPa Shear/Normal Coefficients:
Maximum Stress β1

0.546875 Use Eq. 3.34.

Table 5.8: Bondline material property conversion to MSC.Marc. See Figure C.1a for the GUI input view. All other input parameters are
with default value.

As for the geometric properties, the 3D composite geometric property uses classical laminate theory for
analysing multi-orientated plies and the 3D cohesive geometric properties use a Gaussian integration scheme
as determined in the previous chapter.

5.2.3. SIMULATIONS

A set of simulations is run, as in Table 5.9. They all share the same model, although they differ in what failure
criteria is used.

Sim Failure Criterion

1 None
2 Tsai-Wu
3 Hashin
4 Puck

Table 5.9: Simulation setup for CLS model.

All simulations now have the following in common:

• Dimensions and material properties according to Table 5.5, Table 5.6, Table 5.7 and Table 5.8.
• The model works in a coordinate system where the x-axis is the length, y-axis the width and z-axis the

thickness of the specimen.
• Cohesive properties: MSC.Marc’s exponential law, Gaussian integration scheme, tangent solving method,

deactivate CZE once full damaged and removal of bondline CZE from postprocessing.
• Classical laminate theory enabled in the composite geometric property.
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• All simulations use a simulation time of 1 second, but have the simulation split in three parts: first part
up to 2% of the load, or 0.025 mm, consists of a time step of 5.10−4 s, the second part goes from 2% to
30% of the load, or from 0.025 to 0.375 mm, with a time step of 5.10−3 s and the third part goes from
30% to 100% s, or from 0.375 to 1.25 mm, with a time step of 5.10−4 s for more accuracy. This is due
to non-linearity occurring near the moment of failure. A time step evaluation has been performed and
can be found in Appendix B.2.

• The value for Residual Force Tolerance is decreased to 0.01 instead of the default value 0.1 for better
accuracy and the option of Non-Positive Definite matrix in the solution control is checked to solve
non-positive definite systems which could halt the simulations. See Figure C.3 and Figure C.4.

• Remaining default options of MSC.Marc are used.

5.3. EVALUATION

The CLS specimen had three strain gauges on it. With the real life results, the simulation results can be
compared. Next to that, a look at the damage levels in the single plies and CZE inbetween will be looked
at to assess any damage in the strap. The computational times are noted in Table 5.10. All simulations were
performed with the software and hardware listed in Appendix F.

Sim Failure Criterion Comp. Time [s]

1 None 42412
2 Tsai-Wu 45246
3 Hashin 44974
4 Puck 56236

Table 5.10: Simulation times for CLS model.

It seems that the Puck failure criterion takes the most time to solve the analysis, which may be contributed
by the amount of failure indices and calculations it has. The deformed shape can be witnessed in Figure B.6
from different angles. For all models, the deformed shape is identical by shape: the bondline has disappeared
completely.

5.3.1. STRAIN AND FAILURE LOAD RESULTS

The strain results of the four models can be viewed with curves and data points. The strains of the nodes
that were on the designated area of a gauge were averaged all together and this strain result is the output and
compared with the real strain results. The results can be found in Table 5.11. The failure load is either based
on the moment the main part of the bondline without trigger starts to fail, a cohesive element in between the
plies fails or a ply that reaches full failure via the criteria; in this case, the main part of the bondline. The result
can be found in Table 5.12.

Sim Failure Strap Top Gauge Strap Bottom Gauge Lap Gauge Comp.
Criterion [µε] Error % [µε] Error % [µε] Error % Time [s]

Real CLS - 2222 - 3000 - 364 - -
1 None 2926 31.7 2891 -3.5 434 19.4 42412
2 Tsai-Wu 2926 31.7 2891 -3.5 434 19.4 45246
3 Hashin 2926 31.7 2891 -3.5 434 19.4 44974
4 Puck 2926 31.7 2891 -3.5 434 19.4 56236

Table 5.11: Strain gauge results of the simulations at 25.6 kN, compared to the experiment results.

The strain and load results are largely off. The CLS models had a much earlier failure than the real model.
The bondline failed much sooner in the simulation than in real life. Since the data point is still in the linear
loading part, all models despite their failure criterion have the same strains and load failure. A graph of the
strain versus load of the Puck model can be found in Figure 5.10. All the strain, load and strain-load graphs
of the other simulations can be found in Figure B.7, Figure B.8, Figure B.9 and Figure B.10. Even after the
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Sim Failure
Criterion

Failure
Load [N ]

Load
Error [%]

Comp.
Time [s]

Real CLS - 55000 - -
1 None 28641 48 42412
2 Tsai-Wu 28641 48 45246
3 Hashin 28641 48 44974
4 Puck 28641 48 56236

Table 5.12: Failure load results of the simulations, compared to the experiment results.

Figure 5.10: Strain-Load results of Puck model. The drop in strain of the lap gauge indicates the failure load.

cohesive failure, the graphs still largely coincide. This means that only cohesive failure should have occurred,
for if complete ply failure would occur, there would be a difference in in the models with the failure criteria.
A comparison between the strain-load graphs with the real experiment strain gauge results can be found in
Figure B.11.

5.3.2. DAMAGE RESULTS

To be able to fully conclude that cohesive failure was the first failure to take place, a look can be taken at how
far the single plies were damaged for interlaminar, intralaminar or fibre failure modes on the moment that
damage of the bondline started to propagate. In the first simulation, no failure criteria was used, so no ply
damages can be analysed. For all the other simulations, the damage can be monitored at the moment the
real bondline starts failing, which is at simulation time t = 0.3395 s. The damage is coupled to the reduction
factors and failure indices of the failure criteria, as explained in Ch. 2.4.2. A table is set up with all the largest
failure indices in each ply for each model to see what type of failure is the driving factor, see Table 5.13. The
plies have suffered no damage at all at this time step, meaning that the failure occurring is not intralaminar.
To see if interlaminar failure has occurred, the damage levels of the CZE between the plies can be analysed.
For this time step, no damage was found in the CZE between the plies, ruling out interlaminar failure. The
failure criteria Hashin and Puck point out that the plies are showing signs of tensile matrix failure at this stage,
with no lasting damage.

A damage comparison can also be made if the failure would indeed occur at 55 kN just like in the experiment,
to see whether or not damage occurred in the plies at that moment. The time step at which the load force was
55 kN is at t = 0.9245 s. A second table is set up with all the largest failure indices in each ply for each model
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Sim Failure
Criterion

Ply Largest FI
Value

FI No. in
MSC.Marc

Type of Failure

2 Tsai-Wu 0° ply 0.5266 1 Not distinguishable
2 Tsai-Wu 45° ply 0.2811 1 Not distinguishable
2 Tsai-Wu 90° ply 0.4117 1 Not distinguishable
2 Tsai-Wu 135° ply 0.3963 1 Not distinguishable
3 Hashin 0° ply 0.2126 3 Tensile Matrix Failure
3 Hashin 45° ply 0.1811 3 Tensile Matrix Failure
3 Hashin 90° ply 0.2852 3 Tensile Matrix Failure
3 Hashin 135° ply 0.2453 3 Tensile Matrix Failure
4 Puck 0° ply 0.4480 3 Tensile Matrix Failure
4 Puck 45° ply 0.2977 3 Tensile Matrix Failure
4 Puck 90° ply 0.3817 3 Tensile Matrix Failure
4 Puck 135° ply 0.3210 3 Tensile Matrix Failure

Table 5.13: Failure indices of single modelled plies as taken at increment where bondline failure occurred first (t = 0.3395 s) (FI = Failure
Index).

to see what type of failure is the driving factor and to see how far damaged the ply is. The results can be found
in Table 5.14. In all cases, the damage is either non-existent or not significant enough to cause intralaminar
failure at 55 kN. For all plies excluding the 0° ply, tensile matrix failure seems to be occurring and for the 0° ply
tensile fibre failure. For interlaminar failure, the damage levels in the CZE are again near zero, indicating no
interlaminar failure.

Sim Failure
Criterion

Ply Largest FI
Value

FI No. in
MSC.Marc

Damage
Value

Type of Failure

2 Tsai-Wu 0° ply 0.3932 1 0.2088 Not distinguishable
2 Tsai-Wu 45° ply 0.5020 1 0.0989 Not distinguishable
2 Tsai-Wu 90° ply 0.5296 1 0.3373 Not distinguishable
2 Tsai-Wu 135° ply 0.5606 1 0.2777 Not distinguishable
3 Hashin 0° ply 0.1924 1 0.0000 Tensile Fibre Failure
3 Hashin 45° ply 0.2989 3 0.0000 Tensile Matrix Failure
3 Hashin 90° ply 0.5630 3 0.1567 Tensile Matrix Failure
3 Hashin 135° ply 0.4747 3 0.0000 Tensile Matrix Failure
4 Puck 0° ply 0.3959 1 0.0000 Tensile Fibre Failure
4 Puck 45° ply 0.3702 3 0.0000 Tensile Matrix Failure
4 Puck 90° ply 0.5250 3 0.0249 Tensile Matrix Failure
4 Puck 135° ply 0.4302 3 0.0000 Tensile Matrix Failure

Table 5.14: Damage levels of single modelled plies as taken at increment where F = 55000 N (t = 0.9245 s) (FI = Failure Index).

The Tsai-Wu model is starting to show signs of damage in most plies at the moment of initial bondline failure.
Failure indices have moderate value at the spot where the bondline is supposed to fail, yet remain below 1
with no damage value, indicating no intralaminar failure. Sadly, no distinction can be made between the
different failure modes. Figure B.12 displays the highest failure indices for each ply at t = 0.3395 s. At F =
55000N , or t = 0.9245 s, it seems that the 90° ply has started to show damage. The highest damage and failure
indices levels at t = 0.9245 s can be found in Figure B.18, Figure B.13 and Table 5.14. The 45° and 135° ply seem
to have some slight damage spread out over the structure, yet all plies indicate no full intralaminar failure.

For the Hashin model, there doesn’t appear to be any damage in the plies at t = 0.3395 s, the moment
the bondline starts damage propagation. Figure B.14 displays the highest failure indices levels for each ply
at t = 0.3395 s, where tensile matrix failure seems to be the acting failure type. The largest failure index
still remains below 1 with no damage values in the plies, meaning that no intralaminar failure occurred. For
t = 0.9245 s, it seems that the expectation of the 90° ply being the most damaged is once again confirmed. The
damage is of tensile matrix failure mode. The other plies show no signs of damage. Figure B.19, Figure B.15
and Table 5.14 displays the highest damage and failure indices levels for each ply at t = 0.9245 s.
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For the Puck model, all plies have no damage at t = 0.3395 s. Figure B.16 displays the highest failure
indices levels for each ply at t = 0.3395 s, with all plies appearing to go for tensile matrix failure mode. Also
with Puck’s criterion, the largest failure index remains below 1 with no damage value in all plies, indicating
no intralaminar failure. At t = 0.9245 s the 90° ply remains the largest damaged ply in tensile matrix failure
mode. The suspicion of a weakening 90° ply is once again confirmed. Figure B.17, Figure B.20 and Table 5.14
displays the highest failure indices and damage levels for each ply at t = 0.3395 s.

The results have led for all models zero damage in the CZE and ply elements at t = 0.3395 s and zero
damage in the CZE and slight damage in the ply elements at t = 0.9245 s. This means that no interlaminar or
intralaminar failure occurred, and that the only failure that has been truly present in the model, was cohesive
failure.

5.3.3. DISCUSSION

The remaining two research questions could now be answered as well with the aid of the CLS simulation
results. These results have large errors on two of the three strain gauges and on the failure load. The only
failure present was cohesive failure when also inter- or intralaminar failure was expected. This brings doubt
in MSC.Marc’s ability to accurately analyse combined failure modes. Several possibilities and factors can be
mentioned for the inaccuracies.

The first would be wrong material properties and specimen build. During this thesis work, it has occurred
numerous times that either the material properties of both adhesive and adherends were wrong and subse-
quently corrected, the lay-up and number of the plies were actually different, or that the entire dimensions
of the specimen were different, meaning that the wrong specimen has been used. Deducing with the knowl-
edge about cohesive zone modelling, were it that the bondline was in fact stronger, i.e. higher critical energy
release rate and/or maximum traction in shear, there may have been the possibility of pre-emptive tensile
matrix or even tensile fibre and interlaminar failure before complete cohesive failure in the bondline. In this
case, most likely there would have been a jump in damage growth due to the progressive failure occurring
in the strap and subsequently weakening it, allowing for stress discontinuities and concentrations, and thus
damaging the strap ultimately before complete failure of the entire bondline. The same could also be said
if the cohesive properties of the laminate adhesives were to be lower. This could be a way also to induce a
damage growth jump from adhesive to adherend.

A second possibility would be the choice of solid elements. The single ply regions have a bad aspect ratio
when it comes to solid element types dimension wise. This may yield inaccurate results, longer computa-
tional time and even errors. Yet in turn, many previous BOPACS project members have worked with similar
mesh sizes on different studies like crack-stopping bonded joints, which had accurate results. These other
studies did not use CZM but different failure criteria.

Another explanation would be the use of MSC.Marc’s CZM with a continuum approach, i.e. using the CZM
on cohesive zone elements with a finite thickness such as the bondline. Certain studies already have shown
that the continuum approach is possible [11, 89, 90] and the lead developer of MSC.Marc had personally
assured that a continuum approach can be used for small thicknesses. It could be an option to evaluate the
continuum approach within a separate small study using a single lap joint for example, to confirm the ability
to use this approach for MSC.Marc and to what range of thickness it remains reliable.

Another reason would be the cohesive zone model used, although this can be countered by the fact that
MSC.Marc’s exponential traction law performed well enough for the simple tests of Turon, and it would be
highly unlikely for such a large error to occur only thanks to the cohesive model.

Another possibility would be the density of the mesh, which may be too coarse for this problem, although
other BOPACS project members have used similar, larger and even solid element sizes for this problem.

Boundary conditions within the model can also be a factor, although they were adapted as realistic as
possible compared to the real experiment. A follow-up on this research may keep a study in mind regarding
different boundary conditions to assert and distinguish any large differences between boundary conditions.

What would have been a better experimental setup, was to test only the strap for static loading first and
then the CLS specimen. This way the progressive failure criteria can be tested separately in order to assert
their accuracy within MSC.Marc, and to confirm whether or not the right material properties and boundary
conditions are used.





6
CONCLUSION AND RECOMMENDATIONS

Now that the validation with Turon’s work and the CLS specimen results have been processed and discussed,
one can form the conclusion to the research question invoked in Chapter 1. The conclusion of this thesis is
followed in Ch. 6.1. Several recommendations on this thesis work are given in Ch. 6.2.

6.1. CONCLUSION

The objective of this thesis work was guided with three questions which can now be answered thanks to the
research performed. The first research question was as follows:

• What parameters and material properties of a cohesive model are of influence in damage onset and
growth?

– Determine the influence of the critical energy release rate.
– Determine the influence of the maximum traction allowed of the adhesive.

With a fixed maximum traction, an increase in the critical energy release rate can make the damage initi-
ation till propagation more gradual instead of sudden within the traction models for a traction law. A single
CZE will then need a larger critical opening displacement and thus has a larger failure load, as seen in Fig-
ure 3.10b and Chapter 4.4.

With a fixed critical energy release rate, an increase in the maximum traction can in fact reduce the critical
opening displacement needed as seen in Figure 3.10a. In turn, it makes the CZE stiffer and requires a larger
failure load to start damaging the element. This is seen in Chapter 4.4.

Increasing critical energy release rate has a larger influence than the increase of maximum traction. This
is due to the fact that traction law with a larger critical energy release rate has more area to cover and to fully
damage a CZE, which is also related to the opening displacement between modes. This means that a larger
gap is necessary to fully damage a CZE. This is confirmed in Chapter 3.1.4 and Chapter 4.4.4.

The second research question was as follows:

• Is ply failure or delamination present and does this failure cause damage growth to physically jump
from the bondline to the adherend in the CLS specimen?

– If there is a jump in damage growth, what cohesive parameters are of influence to prevent or
induce this?

In the current simulations of the CLS specimen, no ply failure or delamination took place. The entire
bondline is the first to fail, resulting in the CLS specimen being subjected to a cohesive failure. This is thanks
to the low strength properties of the bondline material compared to the adhesive in the laminates.

To induce a jump in damage growth from adhesive to adherend, the critical energy release rates or maxi-
mum traction for shear mode of the bondline must be higher in order to let delamination occur during bond-
line failure, which causes a shift in damage growth. An alternative is that the rates and maximum traction for
shear mode of the laminate adhesives must be lower to achieve the same result.
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The third research question was as follows:

• How accurate can you model (the jump of) damage growth progressively of a coupon level test speci-
men in the finite element package MSC.Marc?

– Determine the accuracy of the solver’s own cohesive zone model.
– Determine the accuracy of the progressive failure within the adherends of the CLS specimen.

The exponential law using a Gaussian integration scheme together with a tangent stiffness matrix solving
method yields the most accurate results for damage onset and growth in mixed-mode experiments and in-
terlaminar failure, as proven in Chapter 4. The validation based on Turon [59] wields accurate results, with
most errors being kept under |10%| together with good computational times.

The CLS simulation results are not accurate enough to represent a feasible reconstruction of the CLS
experiment. The largest errors are of magnitude 101 percentage. Analysing interlaminar failure in simple
coupon level specimens yields good results, while analysing combined failure modes with the aid of progres-
sive failure criteria in the CLS specimen is inaccurate for the current simulation setups. Cohesive failure is the
only failure present in the simulations. With no real adherend failure occurring, the accuracy of progressive
failure analysis for composite plies alone remains inconclusive.

6.2. RECOMMENDATIONS

The outlook of this research work and subject remains that an accurate way will be presented to simulate the
CLS specimen. Despite this setback, for Airbus Group cohesive zone modelling still remains in interest due
to successful application to simple coupon and delamination tests and new ways are now being explored and
used to accurately assess this problem before moving on to real aircraft components. For example, currently,
a new study has been connected to this thesis work by another person to continue the work on the CLS
specimen with extensive use of shell elements.

Several recommendations and possible future research on this topic can be given in light of improving
the subject and future work. The obstacles faced during the duration of this research made many of the
possible options highlighted in this section not possible due to time constraints and technicalities. Specific
recommendations on when using MSC.Marc can be found in Appendix E to help other people get over the
primary ’teething troubles’. What follows now is a list of recommendation which may improve the research
on CLS specimen and any future works afterwards.

Benchmarking with denser mesh and smaller time steps
An option to improve the work in this thesis is to benchmark and test the density of the mesh together with
lower time-steps. Taking a denser mesh is common to increase accuracy, and so are lower time steps. This is
a costly recommendation though, since this increases computational time incredibly.

Continuum approach
As previously mentioned, it may be worth performing a study around the continuum approach with MSC.Marc.
This could be done to see up to what thickness cohesive zone elements are truly reliable for the CZM in
MSC.Marc.

Shell elements
The use of shell elements is an obvious one. A similar study was started by another person at a late stadium of
this research work and is still currently being performed. The use of shell elements could significantly reduce
the wall time of the simulations and could even be more accurate considering that the thickness of single
modelled plies are very suitable for shells in finite element analysis. Another recommendation that can be
combined with the use of shell elements is the remodelling of every ply in the strap. This may be tedious and
computationally hard work, but it may yield accurate results.

User-Defined Cohesive Zone Elements
Because of the limitation to MSC.Marc’s home setting and CZE options, one can opt to applying a user-
defined cohesive zone model. Turon [59] applied a user-defined model with the help of the Benzeggagh
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and Kenane criterion, Eq. 3.28. His model proved to be even more accurate than MSC.Marc’s exponential as
was proven in Chapter 4. A similar study can be performed by making an even more accurate cohesive zone
model in Python language and applying it in MSC.Marc, and to test it on the CLS specimen.

P-FEM Analysis
Another study that is being performed at the Defence and Space department of Airbus Group is P-FEM based
analysis. P-FEM uses polynomials in shape functions to solve finite element analysis. Increasing the polyno-
mial levels in the shape functions results in better accuracy while the elements stay the same size, meaning
that more complex stress states can be analysed. Adapting P-FEM is already being done for coupon level
based structures with the help of the P-FEM package StressCheck. StressCheck is still under development
and does not support cohesive zone elements. It may take some time before it is applicable to many and all
forms of structure, although it remains a future study for P-FEM to be tested on the CLS specimen with CZE.

Element and sub-component level structures
Advancement to element and even to sub-component level structures is a possible future study regarding
adhesive bonded joints. The CLS specimen is a coupon level based structure which requires an extensive
amount of understanding before moving onto complexer structures. Still, proper modelling techniques and
preferably a standardised modelling methodology for FE analyses with composite adhesive bonded joints
should be researched before one can validate and simulate sub-component level structures.





A
MSC.MARC VALIDATION WITH TURON’S

EXPERIMENT

A.1. FULL DETAILS MODELLING

Information regarding element types and sizes can be found in Table A.1.

Models Part of
Model

Element Size No. Ele-
ments

Element
Type

Element Class

All 2D MMB Models Adherend 0.68 by 1.56 300 3 Quad 4 - Plane Stress
Full Integration

2D 0% Model Adhesive 0.68 by 0 102 186 Quad 4 - Interface
2D 20% Model Adhesive 0.68 by 0 101 186 Quad 4 - Interface
2D 50% Model Adhesive 0.68 by 0 101 186 Quad 4 - Interface
2D 80% Model Adhesive 0.68 by 0 118 186 Quad 4 - Interface
2D 100% Model Adhesive 0.68 by 0 92 186 Quad 4 - Interface
All 3D MMB Models Adherend 0.68 by 6.35 by 1.56 1200 117 Hex 8 - Red. Integra-

tion type
3D 0% Model Adhesive 0.68 by 6.35 by 0 408 188 Hex 8 - Interface
3D 20% Model Adhesive 0.68 by 6.35 by 0 404 188 Hex 8 - Interface
3D 50% Model Adhesive 0.68 by 6.35 by 0 404 188 Hex 8 - Interface
3D 80% Model Adhesive 0.68 by 6.35 by 0 416 188 Hex 8 - Interface
3D 100% Model Adhesive 0.68 by 6.35 by 0 368 188 Hex 8 - Interface

Table A.1: Element information.

Contact body used with default setting to compensate for intertwining of elements, see contact table in
Table A.1.

Figure A.1: Contact Table Properties for 2D and 3D models.

77



78 A. MSC.MARC VALIDATION WITH TURON’S EXPERIMENT

Nodal ties type 2 for 2D models and type 3 for 3D models and RBE2’s used for both models to simulate
rigid lever, see Ch. A.2.

A.2. RIGID LEVER FOR MMB SIMULATION

An explanation is given here for the analysis theory behind the mixed-mode ratio calculation and how to
attain a certain mixed-mode ratio. An explanation regarding the modelling of the rigid lever is also given.

A.2.1. ANALYSIS

A formula can be set up to calculate the lever length c, as in Figure 4.1. A mode mixity ratio κ can be set up as
a function of energy release rates of mode I and II:

κ= G I I

G I +G I I
∴

G I

G I I
= 1−κ

κ
(A.1)

Using a relation from Reeder and Crews [46]:

G I

G I I
= 4

3
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)2

forc ≥ l

3
(A.2)

with half the length of the specimen l and lever length c, one can combine both Eq. A.1 and Eq. A.2 to
form:

c =
l

(
1

2

√
3

(
1−κ
κ

)
+1

)

3− 1

2

√
3

(
1−κ
κ

) (A.3)

Using the mixed-mode ratios, the lever lengths can be calculated, see Table A.2.

G I I /GT 20% 50% 80%
κ 0.2 0.5 0.8

c [mm] 109.89 44.60 28.47

Table A.2: Tabular overview of lever length c per fracture mode ratio.

A.2.2. MODELLING

The modelling of the lever is done via links and a rigid bar. A visual explanation follows with the use of
Figure A.2. The node that has the prescribed displacement, in the grey circle, is going to be called load node.
The two nodes that are encircled by a red circle, are ’tied’ to the load node, which is ’retained’, to form a rigid
structure. This is done with the option RBE2, under ’Links’ tab in the GUI of MSC.Marc. Meanwhile, the
nodes encircled by the green circles are linked to the red circle nodes and are tied in the z-direction, e.g. the
green circle nodes are constrained to follow the red circle nodes in the z-direction.
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Figure A.2: Rigid lever as in the 50% mode ratio simulations. Grey circle (1) is the node with displacement. Blue circles (2) are nodes that
are tied. Green circles (3) are nodes that share DOF. The red lines on the model are nodes that are tied by DOF to the middle nodes.

A.3. TABLES AND FIGURES OF RESULTS
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(a) Deformed shape of the 0% ratio. Bended adherends (purple) and bondline (blue).

(b) Deformed shape of the 20% ratio. Bended adherends (purple) and bondline (blue).

(c) Deformed shape of the 50% ratio. Bended adherends (purple) and bondline (blue).

(d) Deformed shape of the 80% ratio. Bended adherends (purple) and bondline (blue).

(e) Deformed shape of the 100% ratio. Bended adherends (purple) and bondline (blue).

Figure A.3: 3D models in deformed shape.
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Sim Integ.
Scheme

Stiffness
Mtx.

Method

CZE De-
act./Kept

Visc.
Factor

Max.
Load
[N ]

Exp.
Load
[N ]

Error
[%]

Comp.
Time

[s]

Turon G T - - 152.4 147.5 3.32 -
1 G S K - 146.4 147.5 -0.75 43
2 G S D - 146.4 147.5 -0.75 43
3 G T K - 146.4 147.5 -0.75 42
4 G T D - 146.4 147.5 -0.75 52
5 NC S K - 182.8 147.5 23.93 39
6 NC S D - 182.8 147.5 23.93 36
7 NC T K - 105 147.5 -28.81 43
8 NC T D - 105 147.5 -28.81 44
9 G T D 0.05 (N/A) 147.5 - 15

10 G T D 0.01 173.1 147.5 17.36 17
11 G T D 0.005 158.7 147.5 7.59 18
12 G T D 0.001 148.3 147.5 0.54 22
13 G T D 0.0005 146.5 147.5 -0.68 24
14 G T D 0.0001 146.4 147.5 -0.75 34

Table A.3: Results from the 0% fracture mode ratio for 2D simulations 1 through 14 with varying cohesive zone model settings.

(a) Load-Displacement graph of 2D simulations 1 and 2. (b) Load-Displacement graph of 2D simulations 3 and 4.

(c) Load-Displacement graph of 2D simulations 5 and 6. (d) Load-Displacement graph of 2D simulations 7 and 8.

Figure A.4: Results of the 0% fracture mode setup for 2D simulations 1 through 8 with varying cohesive zone model settings.
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(a) Load-Displacement graph of 2D simulations 1 through 8.

(b) Load-Displacement graph of 2D simulations 9 through 14: Viscosity factor results.

Figure A.5: Results of the 0% fracture mode setup for 2D simulations 1 through 14.
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Sim Integ.
Scheme

Stiffness
Mtx.

Method

CZE De-
act./Kept

Visc.
Factor

Max.
Load
[N ]

Exp.
Load
[N ]

Error
[%]

Comp.
Time

[s]

Turon G T - - 152.4 147.5 3.32 -
1 G S K - 143.8 147.5 -2.51 362
2 G S D - 143.8 147.5 -2.51 365
3 G T K - 143.9 147.5 -2.44 345
4 G T D - 143.9 147.5 -2.44 319
5 NC S K - 144.5 147.5 -2.03 303
6 NC S D - 144.5 147.5 -2.03 306
7 NC T K - 144.5 147.5 -2.03 318
8 NC T D - 144.5 147.5 -2.03 322
9 G T D 0.05 - 147.5 - 131

10 G T D 0.01 165.9 147.5 12.47 157
11 G T D 0.005 153.8 147.5 4.27 173
12 G T D 0.001 144.9 147.5 -1.76 222
13 G T D 0.0005 144.7 147.5 -1.90 235
14 G T D 0.0001 143.9 147.5 -2.44 288

Table A.4: Results from the 0% fracture mode ratio for 3D simulations 1 through 14 with varying cohesive zone model settings.

(a) Load-Displacement graph of 3D simulations 1 and 2. (b) Load-Displacement graph of 3D simulations 3 and 4.

(c) Load-Displacement graph of 3D simulations 5 and 6. (d) Load-Displacement graph of 3D simulations 7 and 8.

Figure A.6: Results of the 0% fracture mode setup for 3D simulations 1 through 8 with varying cohesive zone model settings.
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(a) Load-Displacement graph of 3D simulations 1 through 8.

(b) Load-Displacement graph of 3D simulations 9 through 14: Viscosity factor results.

Figure A.7: Results of the 0% fracture mode setup for 3D simulations 1 through 14 with varying cohesive zone model settings.
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Sim Time Step
Size [s]

Gc,I

[k J/m2]
Gc,I I

[k J/m2]
Tm,I

[MPa]
Tm,I I

[MPa]
Max.
Load
[N ]

Exp.
Load
[N ]

Error
[%]

Comp.
Time

[s]

Turon 0.005 0.969 1.719 80 100 152.4 147.5 3.32 -
15 0.05 0.969 1.719 80 100 140.8 147.5 -4.54 96
16 0.01 0.969 1.719 80 100 143.9 147.5 -2.44 216
17 0.005 0.969 1.719 80 100 143.8 147.5 -2.51 248
18 0.001 0.969 1.719 80 100 144.0 147.5 -2.37 497
19 0.0005 0.969 1.719 80 100 144.1 147.5 -2.31 774
20 0.0001 0.969 1.719 80 100 144.1 147.5 -2.31 3132
21 0.001 0.500 1.719 80 100 111.1 147.5 -24.68 1932
22 0.001 1.000 1.719 80 100 145.8 147.5 -1.15 536
23 0.001 1.500 1.719 80 100 172.5 147.5 16.95 406
24 0.001 2.000 1.719 80 100 197.7 147.5 34.03 593
25 0.001 0.969 1.250 80 100 144 147.5 -2.37 604
26 0.001 0.969 1.750 80 100 144 147.5 -2.37 540
27 0.001 0.969 2.250 80 100 144 147.5 -2.37 528
28 0.001 0.969 2.750 80 100 144 147.5 -2.37 556
29 0.001 0.969 1.719 60 100 137.5 147.5 -6.78 498
30 0.001 0.969 1.719 80 100 144 147.5 -2.37 502
31 0.001 0.969 1.719 100 100 151.3 147.5 2.58 876
32 0.001 0.969 1.719 120 100 159.4 147.5 8.07 609
33 0.001 0.969 1.719 80 80 144 147.5 -2.37 533
34 0.001 0.969 1.719 80 100 144 147.5 -2.37 551
35 0.001 0.969 1.719 80 120 144 147.5 -2.37 575
36 0.001 0.969 1.719 80 140 144 147.5 -2.37 521

Table A.5: Results from the 0% fracture mode ratio for 3D simulations 15 through 36 with varying time step sizes, Gc,I , Gc,I I , Tm,I and
Tm,I I .

Figure A.8: Results from the 0% fracture mode for 3D simulations 15 through 20 with varying time step sizes.



86 A. MSC.MARC VALIDATION WITH TURON’S EXPERIMENT

(a) Load-Displacement graph of 3D simulations 21 through 24.

(b) Load-Displacement graph of 3D simulations 25 through 28.

Figure A.9: Results of the 0% fracture mode setup for 3D simulations 21 through 28 with varying Gc,I and Gc,I I .
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(a) Load-Displacement graph of 3D simulations 29 through 32.

(b) Load-Displacement graph of 3D simulations 33 through 36.

Figure A.10: Results of the 0% fracture mode setup for 3D simulations 29 through 36 with varying Tm,I and Tm,I I .
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Sim Integ.
Scheme

Stiffness
Mtx.

Method

CZE De-
act./Kept

Visc.
Factor

Max.
Load
[N ]

Exp.
Load
[N ]

Error
[%]

Comp.
Time

[s]

Turon G T - - 99.3 108.1 -8.14 -
1 G S K - 101.5 108.1 -6.11 336
2 G S D - 101.5 108.1 -6.11 336
3 G T K - 96.7 108.1 -10.55 343
4 G T D - 96.7 108.1 -10.55 349
5 NC S K - 119.4 108.1 10.45 72
6 NC S D - 119.4 108.1 10.45 73
7 NC T K - 116.3 108.1 7.59 84
8 NC T D - 116.3 108.1 7.59 83
9 G T D 0.05 (N/A) 108.1 - 438

10 G T D 0.01 (N/A) 108.1 - 8
11 G T D 0.005 (N/A) 108.1 - 12
12 G T D 0.001 101.7 108.1 -5.92 40
13 G T D 0.0005 100.6 108.1 -6.94 63
14 G T D 0.0001 99.9 108.1 -7.59 123

Table A.6: Results from the 20% fracture mode ratio for 2D simulations 1 through 14 with varying cohesive zone model settings.

(a) Load-Displacement graph of 2D simulations 1 and 2. (b) Load-Displacement graph of 2D simulations 3 and 4.

(c) Load-Displacement graph of 2D simulations 5 and 6. (d) Load-Displacement graph of 2D simulations 7 and 8.

Figure A.11: Results of the 20% fracture mode setup for 2D simulations 1 through 8 with varying cohesive zone model settings.
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(a) Load-Displacement graph of 2D simulations 1 through 8.

(b) Load-Displacement graph of 2D simulations 9 through 14: Viscosity factor results.

Figure A.12: Results of the 20% fracture mode setup for 2D simulations 1 through 14 with varying cohesive zone model settings.
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Sim Integ.
Scheme

Stiffness
Mtx.

Method

CZE De-
act./Kept

Visc.
Factor

Max.
Load
[N ]

Exp.
Load
[N ]

Error
[%]

Comp.
Time

[s]

Turon G T - - 99.3 108.1 -8.14 -
1 G S K - 97.8 108.1 -9.53 465
2 G S D - 97.8 108.1 -9.53 468
3 G T K - 97.8 108.1 -9.53 370
4 G T D - 97.8 108.1 -9.53 346
5 NC S K - 98.4 108.1 -8.97 416
6 NC S D - 99.2 108.1 -8.23 420
7 NC T K - 94.1 108.1 -12.95 452
8 NC T D - 94.1 108.1 -12.95 451
9 G T D 0.05 118 108.1 9.25 129

10 G T D 0.01 113.9 108.1 5.37 132
11 G T D 0.005 109.9 108.1 1.67 137
12 G T D 0.001 99.7 108.1 -7.77 176
13 G T D 0.0005 98.3 108.1 -9.07 195
14 G T D 0.0001 97.8 108.1 -9.53 236

Table A.7: Results from the 20% fracture mode ratio for 3D simulations 1 through 14 with varying cohesive zone model settings.

(a) Load-Displacement graph of 3D simulations 1 and 2. (b) Load-Displacement graph of 3D simulations 3 and 4.

(c) Load-Displacement graph of 3D simulations 5 and 6. (d) Load-Displacement graph of 3D simulations 7 and 8.

Figure A.13: Results of the 20% fracture mode setup for 3D simulations 1 through 8 with varying cohesive zone model settings.
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(a) Load-Displacement graph of 3D simulations 1 through 8.

(b) Load-Displacement graph of 3D simulations 9 through 14: Viscosity factor results.

Figure A.14: Results of the 20% fracture mode setup for 3D simulations 1 through 14 with varying cohesive zone model settings.
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Sim Time Step
Size [s]

Gc,I

[k J/m2]
Gc,I I

[k J/m2]
Tm,I

[MPa]
Tm,I I

[MPa]
Max.
Load
[N ]

Exp.
Load
[N ]

Error
[%]

Comp.
Time

[s]

Turon 0.005 0.969 1.719 80 100 99.3 108.1 -8.14 -
15 0.05 0.969 1.719 80 100 96.4 108.1 -10.82 378
16 0.01 0.969 1.719 80 100 97.8 108.1 -9.53 215
17 0.005 0.969 1.719 80 100 97.8 108.1 -9.53 306
18 0.001 0.969 1.719 80 100 97.9 108.1 -9.44 591
19 0.0005 0.969 1.719 80 100 97.9 108.1 -9.44 904
20 0.0001 0.969 1.719 80 100 97.9 108.1 -9.44 3487

Table A.8: Results from the 20% fracture mode ratio for 3D simulations 15 through 20 with varying time step sizes.

Figure A.15: Results from the 20% fracture mode for 3D simulations 15 through 20 with varying time step sizes.
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Sim Integ.
Scheme

Stiffness
Mtx.

Method

CZE De-
act./Kept

Visc.
Factor

Max.
Load
[N ]

Exp.
Load
[N ]

Error
[%]

Comp.
Time

[s]

Turon G T - - 263.9 275.3 -4.2 -
1 G S K - 277.9 275.3 0.94 354
2 G S D - 277.9 275.3 0.94 362
3 G T K - 277.9 275.3 0.94 371
4 G T D - 277.9 275.3 0.94 372
5 NC S K - 295.4 275.3 7.30 524
6 NC S D - 295.4 275.3 7.30 520
7 NC T K - 295.5 275.3 7.34 338
8 NC T D - 295.5 275.3 7.34 335
9 G T D 0.05 344.5 275.3 25.14 8

10 G T D 0.01 334.5 275.3 21.50 11
11 G T D 0.005 325.7 275.3 18.31 15
12 G T D 0.001 290.6 275.3 5.56 42
13 G T D 0.0005 283.5 275.3 2.98 70
14 G T D 0.0001 278.8 275.3 1.27 179

Table A.9: Results from the 50% fracture mode ratio for 2D simulations 1 through 14 with varying cohesive zone model settings.

(a) Load-Displacement graph of 2D simulations 1 and 2. (b) Load-Displacement graph of 2D simulations 3 and 4.

(c) Load-Displacement graph of 2D simulations 5 and 6. (d) Load-Displacement graph of 2D simulations 7 and 8.

Figure A.16: Results of the 50% fracture mode setup for 2D simulations 1 through 8 with varying cohesive zone model settings.
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(a) Load-Displacement graph of 2D simulations 1 through 8.

(b) Load-Displacement graph of 2D simulations 9 through 14: Viscosity factor results.

Figure A.17: Results of the 50% fracture mode setup for 2D simulations 1 through 14 with varying cohesive zone model settings.
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Sim Integ.
Scheme

Stiffness
Mtx.

Method

CZE De-
act./Kept

Visc.
Factor

Max.
Load
[N ]

Exp.
Load
[N ]

Error
[%]

Comp.
Time

[s]

Turon G T - - 263.9 275.3 -4.2 -
1 G S K - 275.8 275.3 0.18 376
2 G S D - 275.8 275.3 0.18 375
3 G T K - 276.2 275.3 0.33 209
4 G T D - 276.2 275.3 0.33 213
5 NC S K - 293.4 275.3 6.57 373
6 NC S D - 293.4 275.3 6.57 373
7 NC T K - 281.3 275.3 2.18 420
8 NC T D - 281.3 275.3 2.18 419
9 G T D 0.05 284.9 275.3 3.49 113

10 G T D 0.01 327.7 275.3 19.03 111
11 G T D 0.005 315.9 275.3 14.75 125
12 G T D 0.001 287.3 275.3 4.36 134
13 G T D 0.0005 281 275.3 2.07 143
14 G T D 0.0001 276 275.3 0.25 203

Table A.10: Results from the 50% fracture mode ratio for 3D simulations 1 through 14 with varying cohesive zone model settings.

(a) Load-Displacement graph of 3D simulations 1 and 2. (b) Load-Displacement graph of 3D simulations 3 and 4.

(c) Load-Displacement graph of 3D simulations 5 and 6. (d) Load-Displacement graph of 3D simulations 7 and 8.

Figure A.18: Results of the 50% fracture mode setup for 3D simulations 1 through 8 with varying cohesive zone model settings.
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(a) Load-Displacement graph of 3D simulations 1 through 8.

(b) Load-Displacement graph of 3D simulations 9 through 14: Viscosity factor results.

Figure A.19: Results of the 50% fracture mode setup for 3D simulations 1 through 14 with varying cohesive zone model settings.
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Sim Time Step
Size [s]

Gc,I

[k J/m2]
Gc,I I

[k J/m2]
Tm,I

[MPa]
Tm,I I

[MPa]
Max.
Load
[N ]

Exp.
Load
[N ]

Error
[%]

Comp.
Time

[s]

Turon 0.005 0.969 1.719 80 100 263.9 275.3 -4.2 -
15 0.05 0.969 1.719 80 100 271.8 275.3 -1.27 73
16 0.01 0.969 1.719 80 100 274.8 275.3 -0.18 146
17 0.005 0.969 1.719 80 100 275.8 275.3 0.18 192
18 0.001 0.969 1.719 80 100 276.7 275.3 0.51 441
19 0.0005 0.969 1.719 80 100 277.0 275.3 0.62 757
20 0.0001 0.969 1.719 80 100 276.1 275.3 0.29 3435

Table A.11: Results from the 50% fracture mode ratio for 3D simulations 15 through 20 with varying time step sizes.

Figure A.20: Results from the 50% fracture mode for 3D simulations 15 through 20 with varying time step sizes.
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Sim Integ.
Scheme

Stiffness
Mtx.

Method

CZE De-
act./Kept

Visc.
Factor

Max.
Load
[N ]

Exp.
Load
[N ]

Error
[%]

Comp.
Time

[s]

Turon G T - - 496.9 518.7 -4.20 -
1 G S K - 490.6 518.7 -5.42 347
2 G S D - 490.6 518.7 -5.42 334
3 G T K - 490.2 518.7 -5.49 274
4 G T D - 490.2 518.7 -5.49 274
5 NC S K - 489.4 518.7 -5.65 354
6 NC S D - 489.4 518.7 -5.65 355
7 NC T K - 489.3 518.7 -5.67 372
8 NC T D - 489.3 518.7 -5.67 372
9 G T D 0.05 - 518.7 - 5

10 G T D 0.01 - 518.7 - 9
11 G T D 0.005 575.8 518.7 11.01 13
12 G T D 0.001 512.7 518.7 -1.16 35
13 G T D 0.0005 501.7 518.7 -3.28 61
14 G T D 0.0001 492.8 518.7 -4.99 151

Table A.12: Results from the 80% fracture mode ratio for 2D simulations 1 through 14 with varying cohesive zone model settings.

(a) Load-Displacement graph of 2D simulations 1 and 2. (b) Load-Displacement graph of 2D simulations 3 and 4.

(c) Load-Displacement graph of 2D simulations 5 and 6. (d) Load-Displacement graph of 2D simulations 7 and 8.

Figure A.21: Results of the 80% fracture mode setup for 2D simulations 1 through 8 with varying cohesive zone model settings.
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(a) Load-Displacement graph of 2D simulations 1 through 8.

(b) Load-Displacement graph of 2D simulations 9 through 14: Viscosity factor results.

Figure A.22: Results of the 80% fracture mode setup for 2D simulations 1 through 14 with varying cohesive zone model settings.
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Sim Integ.
Scheme

Stiffness
Mtx.

Method

CZE De-
act./Kept

Visc.
Factor

Max.
Load
[N ]

Exp.
Load
[N ]

Error
[%]

Comp.
Time

[s]

Turon G T - - 496.9 518.7 -4.20 -
1 G S K - 490.7 518.7 -5.40 1531
2 G S D - 490.7 518.7 -5.40 1520
3 G T K - 491.6 518.7 -5.22 243
4 G T D - 491.6 518.7 -5.22 243
5 NC S K - 485.7 518.7 6.36 357
6 NC S D - 485.7 518.7 6.36 371
7 NC T K - 470.8 518.7 9.23 466
8 NC T D - 470.8 518.7 9.23 411
9 G T D 0.05 - 518.7 - 125

10 G T D 0.01 - 518.7 - 133
11 G T D 0.005 563.1 518.7 8.56 145
12 G T D 0.001 508.3 518.7 -2.01 172
13 G T D 0.0005 499 518.7 -3.80 179
14 G T D 0.0001 492.1 518.7 -5.13 202

Table A.13: Results from the 80% fracture mode ratio for 3D simulations 1 through 14 with varying cohesive zone model settings.

(a) Load-Displacement graph of 3D simulations 1 and 2. (b) Load-Displacement graph of 3D simulations 3 and 4.

(c) Load-Displacement graph of 3D simulations 5 and 6. (d) Load-Displacement graph of 3D simulations 7 and 8.

Figure A.23: Results of the 80% fracture mode setup for 3D simulations 1 through 8 with varying cohesive zone model settings.
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(a) Load-Displacement graph of 3D simulations 1 through 8.

(b) Load-Displacement graph of 3D simulations 9 through 14: Viscosity factor results.

Figure A.24: Results of the 80% fracture mode setup for 3D simulations 1 through 14 with varying cohesive zone model settings.
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Sim Time Step
Size [s]

Gc,I

[k J/m2]
Gc,I I

[k J/m2]
Tm,I

[MPa]
Tm,I I

[MPa]
Max.
Load
[N ]

Exp.
Load
[N ]

Error
[%]

Comp.
Time

[s]

Turon 0.005 0.969 1.719 80 100 496.9 518.7 -4.20 -
15 0.05 0.969 1.719 80 100 479.8 518.7 -7.50 67
16 0.01 0.969 1.719 80 100 489.7 518.7 -5.59 149
17 0.005 0.969 1.719 80 100 490.7 518.7 -5.40 208
18 0.001 0.969 1.719 80 100 491.4 518.7 -5.26 484
19 0.0005 0.969 1.719 80 100 491.8 518.7 -5.19 788
20 0.0001 0.969 1.719 80 100 489.6 518.7 -5.61 3452

Table A.14: Results from the 80% fracture mode ratio for 3D simulations 15 through 20.

Figure A.25: Results from the 80% fracture mode for 3D simulations 15 through 20 with varying time step sizes.
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Sim Integ.
Scheme

Stiffness
Mtx.

Method

CZE De-
act./Kept

Visc.
Factor

Max.
Load
[N ]

Exp.
Load
[N ]

Error
[%]

Comp.
Time

[s]

Turon G T - - 697.1 748.4 -6.9 -
1 G S K - 710.6 748.4 -5.05 155
2 G S D - 710.6 748.4 -5.05 150
3 G T K - 710.6 748.4 -5.05 17
4 G T D - 710.6 748.4 -5.05 19
5 NC S K - 709.2 748.4 -5.24 153
6 NC S D - 709.2 748.4 -5.24 157
7 NC T K - 709.7 748.4 -5.17 19
8 NC T D - 709.7 748.4 -5.17 21
9 G T D 0.05 - 748.4 - 16

10 G T D 0.01 829.6 748.4 10.85 16
11 G T D 0.005 773.1 748.4 3.30 15
12 G T D 0.001 721 748.4 -3.66 19
13 G T D 0.0005 715.9 748.4 -4.34 20
14 G T D 0.0001 711.5 748.4 -4.93 21

Table A.15: Results from the 100% fracture mode ratio for 2D simulations 1 through 14 with varying cohesive zone model settings.

(a) Load-Displacement graph of 2D simulations 1 and 2. (b) Load-Displacement graph of 2D simulations 3 and 4.

(c) Load-Displacement graph of 2D simulations 5 and 6. (d) Load-Displacement graph of 2D simulations 7 and 8.

Figure A.26: Results of the 100% fracture mode setup for 2D simulations 1 through 8 with varying cohesive zone model settings.
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(a) Load-Displacement graph of 2D simulations 1 through 8.

(b) Load-Displacement graph of 2D simulations 9 through 14: Viscosity factor results.

Figure A.27: Results of the 100% fracture mode setup for 2D simulations 1 through 14 with varying cohesive zone model settings.
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Sim Integ.
Scheme

Stiffness
Mtx.

Method

CZE De-
act./Kept

Visc.
Factor

Max.
Load
[N ]

Exp.
Load
[N ]

Error
[%]

Comp.
Time

[s]

Turon G T - - 697.1 748.4 -6.9 -
1 G S K - 713.3 748.4 -4.69 478
2 G S D - 713.3 748.4 -4.69 477
3 G T K - 714.6 748.4 -4.52 341
4 G T D - 714.6 748.4 -4.52 297
5 NC S K - 699.5 748.4 -6.53 558
6 NC S D - 699.5 748.4 -6.53 565
7 NC T K - 700 748.4 -6.47 292
8 NC T D - 700 748.4 -6.47 296
9 G T D 0.05 851.4 748.4 13.76 278

10 G T D 0.01 741.4 748.4 -0.94 345
11 G T D 0.005 726.3 748.4 -2.95 345
12 G T D 0.001 716.2 748.4 -4.30 258
13 G T D 0.0005 714.9 748.4 -4.48 260
14 G T D 0.0001 714 748.4 -4.60 269

Table A.16: Results from the 100% fracture mode ratio for 3D simulations 1 through 14 with varying cohesive zone model settings.

(a) Load-Displacement graph of 3D simulations 1 and 2. (b) Load-Displacement graph of 3D simulations 3 and 4.

(c) Load-Displacement graph of 3D simulations 5 and 6. (d) Load-Displacement graph of 3D simulations 7 and 8.

Figure A.28: Results of the 100% fracture mode setup for 3D simulations 1 through 8 with varying cohesive zone model settings.
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(a) Load-Displacement graph of 3D simulations 1 through 8.

(b) Load-Displacement graph of 3D simulations 9 through 14: Viscosity factor results.

Figure A.29: Results of the 100% fracture mode setup for 3D simulations 1 through 14 with varying cohesive zone model settings.
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Sim Time Step
Size [s]

Gc,I

[k J/m2]
Gc,I I

[k J/m2]
Tm,I

[MPa]
Tm,I I

[MPa]
Max.
Load
[N ]

Exp.
Load
[N ]

Error
[%]

Comp.
Time

[s]

Turon 0.005 0.969 1.719 80 100 697.1 748.4 -6.9 -
15 0.05 0.969 1.719 80 100 712.4 748.4 -4.81 69
16 0.01 0.969 1.719 80 100 713.5 748.4 -4.66 166
17 0.005 0.969 1.719 80 100 712.7 748.4 -4.77 243
18 0.001 0.969 1.719 80 100 712.5 748.4 -4.80 1325
19 0.0005 0.969 1.719 80 100 708.6 748.4 -5.32 3655
20 0.0001 0.969 1.719 80 100 708.1 748.4 -5.38 19600
21 0.001 0.500 1.719 80 100 709.9 748.4 -5.14 1340
22 0.001 1.000 1.719 80 100 712.5 748.4 -4.80 1306
23 0.001 1.500 1.719 80 100 710 748.4 -5.13 1279
24 0.001 2.000 1.719 80 100 710.8 748.4 -5.02 1316
25 0.001 0.969 1.250 80 100 614.7 748.4 -17.86 1271
26 0.001 0.969 1.750 80 100 715.4 748.4 -4.41 1308
27 0.001 0.969 2.250 80 100 866.8 748.4 15.82 1030
28 0.001 0.969 2.750 80 100 906.8 748.4 21.17 1083
29 0.001 0.969 1.719 60 100 711.1 748.4 -4.98 1257
30 0.001 0.969 1.719 80 100 712.5 748.4 -4.80 1241
31 0.001 0.969 1.719 100 100 710.1 748.4 -5.12 1344
32 0.001 0.969 1.719 120 100 710.5 748.4 -5.06 1226
33 0.001 0.969 1.719 80 80 697.5 748.4 -6.80 1266
34 0.001 0.969 1.719 80 100 712.5 748.4 -4.80 1240
35 0.001 0.969 1.719 80 120 720.6 748.4 -3.71 1313
36 0.001 0.969 1.719 80 140 728.9 748.4 -2.61 1346

Table A.17: Results from the 100% fracture mode ratio for 3D simulations 15 through 36 with varying time step sizes, Gc,I , Gc,I I , Tm,I
and Tm,I I .

Figure A.30: Results from the 100% fracture mode for 3D simulations 15 through 20 with varying time step sizes.
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(a) Load-Displacement graph of 3D simulations 21 through 24.

(b) Load-Displacement graph of 3D simulations 25 through 28.

Figure A.31: Results of the 100% fracture mode setup for 3D simulations 21 through 28 with varying Gc,I and Gc,I I .
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(a) Load-Displacement graph of 3D simulations 29 through 32.

(b) Load-Displacement graph of 3D simulations 33 through 36.

Figure A.32: Results of the 100% fracture mode setup for 3D simulations 29 through 36 with varying Tm,I and Tm,I I .
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CLS MODEL & SIMULATIONS

B.1. FULL DETAILS MODELLING

Information regarding element types and sizes can be found in Table B.1.

Models Part of Model/Region Element Size No. Ele-
ments

Element
Type

Element Class

CLS Strap (bulk) 2.5 by 2.5 by 2.5 149 Hex 8 - Composite
CLS Strap (single ply) 2.5 by 2.5 by 0.125 2200 149 Hex 8 - Composite
CLS Lap 2.5 by 2.5 by 3 1400 149 Hex 8 - Composite
CLS Foot 2.5 by 2.5 by 3 400 149 Hex 8 - Composite
CLS Bondline Main Part 2.5 by 2.5 by 0.3 1320 188 Hex 8 - Interface
CLS Bondline Trigger Part 2.5 by 0.0625 by 0.3 80 192 Penta 6 - Interface
CLS Bondline Foot Part 2.5 by 0.0625 by 0.3 400 192 Hex 8 - Interface
CLS Interlaminar Adhesive 2.5 by 2.5 by 0 2200 188 Hex 8 - Interface

Table B.1: Element information.

The contact table for the contact conditions is found in Figure B.1.

Figure B.1: Contact table for CLS specimen.

Technical drawing as in Figure B.2.
Figure B.3 shows a multi ply region definition as in MSC.Marc, used for the bulk and lap region which

models an element to have multiple plies within instead of having separate multiple ply layers.
Material and failure properties as given in Figure B.4.

B.2. TIME STEP EVALUATION

A time step evaluation is held to assess what time step will be used in the main simulation of the CLS speci-
men. The simulations have a displacement of 2.5 mm over a total of 1 second. The model is the same model
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Figure B.2: Technical drawing of CLS specimen.
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Figure B.3: Material property defining of a composite region.

as in Table B.1. Table B.2 shows the simulations with different time step sizes and their wall times that were
needed to complete them.

Sim Time Step Size [ms] Time Step # Wall Time [s]

1 10 10 679
2 1 100 4710
3 0.5 200 8548
4 0.2 500 17740
5 0.1 1000 30953
6 0.05 2000 52230

Table B.2: Simulation setup for CLS model.

Figure B.5 shows the results of the different time steps used. There is a significant difference in what time
step is used. For the first part, the linear part, the time step sizes don’t seem to make a difference. This is
useful since the use of a large time step has a lower wall time, which can speed up the simulation. For the
non-linear part though, the smaller the time step gets the more accurate the results become by converging at
a certain point. The drawback is the very large wall times of the small time steps. This way, a trade-off has to
be made: a small enough time step size with reasonable accuracy and a long wall time or a very small time
step size with great accuracy at the cost of nearly a full day’s worth.

It was chosen to take a time step size of 0.05 ms for non-linear parts and not smaller, to compensate for
an even larger wall time.

B.3. FIGURES OF RESULTS
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(a) Material properties.

(b) Failure strengths.

Figure B.4: Properties of the laminates of the CLS specimen.
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Figure B.5: Comparison of time step sizes.
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(a) Side view. Note the disappearance of the entire bondline.

(b) Close-up of deformed shape.

(c) Strap made invisible. Note the disappearance of the entire bondline.

(d) Damage results for the 135° ply.

Figure B.6: First few CZE disappearing, or failing, in the bondline.
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(a) Strain results.

(b) Load results.

(c) Strain-Load results.

Figure B.7: The strain and load results of the simulation without failure criteria.
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(a) Strain results.

(b) Load results.

(c) Strain-Load results.

Figure B.8: The strain and load results of the simulation with Tsai-Wu failure criterion.
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(a) Strain results.

(b) Load results.

(c) Strain-Load results.

Figure B.9: The strain and load results of the simulation with Hashin failure criterion.
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(a) Strain results.

(b) Load results.

(c) Strain-Load results.

Figure B.10: The strain and load results of the simulation with Puck failure criterion.
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(a) Strain results.

(b) Load results.

(c) Strain-Load results.

Figure B.11: The strain and load results at the gauges for all models and real CLS.



122 B. CLS MODEL & SIMULATIONS

(a) Failure index results for the 0° ply.

(b) Failure index results for the 45° ply.

(c) Failure index results for the 90° ply.

(d) Failure index results for the 135° ply.

Figure B.12: The highest failure index results in the single ply region of the Tsai-Wu model at F = 25.6kN (t = 0.3395).
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(a) Failure index results for the 0° ply.

(b) Failure index results for the 45° ply.

(c) Failure index results for the 90° ply.

(d) Failure index results for the 135° ply.

Figure B.13: The highest failure index results in the single ply region of the Tsai-Wu model at F = 55kN (t = 0.9245).
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(a) Failure index results for the 0° ply.

(b) Failure index results for the 45° ply.

(c) Failure index results for the 90° ply.

(d) Failure index results for the 135° ply.

Figure B.14: The highest failure index results in the single ply region of the Hashin model at F = 25.6kN (t = 0.3395).
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(a) Failure index results for the 0° ply.

(b) Failure index results for the 45° ply.

(c) Failure index results for the 90° ply.

(d) Failure index results for the 135° ply.

Figure B.15: The highest failure index results in the single ply region of the Puck model at F = 55kN (t = 0.9245).
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(a) Failure index results for the 0° ply.

(b) Failure index results for the 45° ply.

(c) Failure index results for the 90° ply.

(d) Failure index results for the 135° ply.

Figure B.16: The highest failure index results in the single ply region of the Puck model at F = 25.6kN (t = 0.3395).
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(a) Failure index results for the 0° ply.

(b) Failure index results for the 45° ply.

(c) Failure index results for the 90° ply.

(d) Failure index results for the 135° ply.

Figure B.17: The highest failure index results in the single ply region of the Puck model at F = 55kN (t = 0.9245).
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(a) Damage results for the 0° ply.

(b) Damage results for the 45° ply.

(c) Damage results for the 90° ply.

(d) Damage results for the 135° ply.

Figure B.18: The highest damage results in the single ply region of the Tsai-Wu model at F = 55kN (t = 0.9245).
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(a) Damage results for the 0° ply.

(b) Damage results for the 45° ply.

(c) Damage results for the 90° ply.

(d) Damage results for the 135° ply.

Figure B.19: The highest damage results in the single ply region of the Puck model at F = 55kN (t = 0.9245).
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(a) Damage results for the 0° ply.

(b) Damage results for the 45° ply.

(c) Damage results for the 90° ply.

(d) Damage results for the 135° ply.

Figure B.20: The highest damage results in the single ply region of the Puck model at F = 55kN (t = 0.9245).



C
GUI OF MSC.MARC WINDOWS AND

OPTIONS

Here several GUI windows of options in MSC.Marc can be found for user’s ease to understand and visualise
the input windows.
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(a) Geometric property window for cohesive elements.

(b) Material property window for cohesive elements.

Figure C.1: Mentat GUI windows for defining cohesive properties.
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Figure C.2: Material property window for solids in Mentat.

Figure C.3: Loadcase property with solution control.
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Figure C.4: Loadcase property with convergence testing.

(a) Tsai-Wu failure criteria window under ’Damage Effects’ in the ’Structural’ window of the material property for solids, with input
parameters.
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(b) Puck failure criteria window under ’Damage Effects’ in the ’Structural’ window of the material property for solids, with input
parameters.

(c) Hashin failure criteria window under ’Damage Effects’ in the ’Structural’ window of the material property for solids, with input
parameters.

Figure C.5: Failure criteria options.





D
MATLAB CODES

In this appendix one can find the MatLab codes used in this thesis work.
Traction laws used for Ch. 3.1.1:

1 %% Bilinear, trapezoidal, exponential traction laws
2

3 clear all
4 clc
5 close all
6

7 % Properties law
8 GcI = 1;
9 tc = 1;

10 dcEXP = GcI/(exp(1)*tc);
11

12 GcI2 = 0.75;
13 tc2 = 1;
14 dcEXP2 = GcI2/(exp(1)*tc2);
15

16 GcI3 = 0.5;
17 tc3 = 1;
18 dcEXP3 = GcI3/(exp(1)*tc3);
19

20 GcI4 = 0.25;
21 tc4 = 1;
22 dcEXP4 = GcI4/(exp(1)*tc4);
23

24 % Pure modes EXP
25 dn = [0:0.001:5];
26 zerodn = zeros(1, length(dn));
27 ntract = GcI.*dn/dcEXP^2.*exp(−dn/dcEXP);
28 ntract2 = GcI2.*dn/dcEXP2^2.*exp(−dn/dcEXP2);
29 ntract3 = GcI3.*dn/dcEXP3^2.*exp(−dn/dcEXP3);
30 ntract4 = GcI4.*dn/dcEXP4^2.*exp(−dn/dcEXP4);
31

32 figure(1)
33 hold on
34 area(dn,ntract,'Facecolor',[0 1 1])
35 plot(dcEXP,tc,'o','MarkerSize',7,'MarkerFaceColor','k','MarkerEdgeColor','k')
36 ylim([0 1.25])
37 xlabel('\∆ (mm)')
38 ylabel('T (N/mm^2)')
39 text(0.5,0.2,'G_c')
40 text((dcEXP),(tc+0.05),'[\∆_c,T_{max}]')
41 plot([0 dcEXP],[tc tc],'−−k',[dcEXP dcEXP],[0 tc],'−−k')
42 title('Exponential Law')
43

44 figure(8)
45 hold on
46 p1 = area(dn,ntract,'Facecolor',[0 1 1])
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47 plot(dcEXP,tc,'o','MarkerSize',7,'MarkerFaceColor','k','MarkerEdgeColor','k')
48 p2 = area(dn,ntract2,'Facecolor',[0 1 0.8])
49 plot(dcEXP2,tc2,'o','MarkerSize',7,'MarkerFaceColor','k','MarkerEdgeColor','k')
50 p3 = area(dn,ntract3,'Facecolor',[0 1 0.6])
51 plot(dcEXP3,tc3,'o','MarkerSize',7,'MarkerFaceColor','k','MarkerEdgeColor','k')
52 p4 = area(dn,ntract4,'Facecolor',[0 1 0.4])
53 plot(dcEXP4,tc4,'o','MarkerSize',7,'MarkerFaceColor','k','MarkerEdgeColor','k')
54 ylim([0 1.5])
55 xlabel('\∆ (mm)')
56 ylabel('T (N/mm^2)')
57 text(0.5,0.3,'G_c')
58 text((dcEXP),(tc+0.05),'[\∆_c,T_{max}]')
59 plot([0 dcEXP],[tc tc],'−−k',[dcEXP dcEXP],[0 tc],'−−k')
60 % legend([p1 p2 p3 p4],{'Max T_{max} = 1 (N/mm^2)','Max T_{max} = 0.75 (N/mm^2)',...
61 % 'Max T_{max} = 0.5 (N/mm^2)','Max T_{max} = 0.25 (N/mm^2)'})
62 legend([p1 p2 p3 p4],{'G_c = 1 (N/mm^2)','G_c = 0.75 (N/mm^2)',...
63 'G_c = 0.5 (N/mm^2)','G_c = 0.25 (N/mm^2)'})
64 title('Exponential Law with different max tractions')
65 %%
66 % Pure modes BIL
67 dmnormalBIL = 2*GcI/tc;
68 dcnormalBIL = 0.5;
69 dn1 = [0:0.001:dcnormalBIL];
70 ntract1 = 2*GcI/dmnormalBIL.*dn1/dcnormalBIL;
71 dn2 = [dcnormalBIL:0.001:dmnormalBIL];
72 ntract2 = 2*GcI/dmnormalBIL.*((dmnormalBIL−dn2)/(dmnormalBIL−dcnormalBIL));
73

74 figure(2)
75 hold on
76 area([dn1 dn2],[ntract1 ntract2],'Facecolor',[0 1 1])
77 plot(dcnormalBIL,tc,'o','MarkerSize',7,'MarkerFaceColor','k','MarkerEdgeColor','k')
78 plot([0 dcnormalBIL],[tc tc],'−−k',[dcnormalBIL dcnormalBIL],[0 tc],'−−k')
79 ylim([0 1.25])
80 xlabel('\∆ (mm)')
81 ylabel('T (N/mm^2)')
82 text(0.8,0.2,'G_c')
83 text((dcnormalBIL),(tc+0.05),'[\∆_c,T_{max}]')
84 title('Bilinear Law')
85

86 figure(5)
87 hold on
88 area([dn1],[ntract1],'Facecolor',[0 1 1])
89 area([dn2],[ntract2],'Facecolor',[0 0 1])
90 plot(dcnormalBIL,tc,'o','MarkerSize',7,'MarkerFaceColor','k','MarkerEdgeColor','k')
91 plot([0 dcnormalBIL],[tc tc],'−−k',[dcnormalBIL dcnormalBIL],[0 tc],'−−k')
92 ylim([0 1.25])
93 xlabel('\∆ (mm)')
94 ylabel('T (N/mm^2)')
95 text(0.3,0.2,'(1)')
96 text(0.8,0.2,'(2)')
97 text((dcnormalBIL),(tc+0.05),'[\∆_c,T_{max}]')
98 title('Bilinear Law')
99

100 figure(6)
101 hold on
102 plot([dn1 dn2],[ntract1 ntract2],'b','linewidth',2)
103 plot(dcnormalBIL,tc,'o','MarkerSize',7,'MarkerFaceColor','k','MarkerEdgeColor','k')
104 plot([0 dcnormalBIL],[tc tc],'−−k',[dcnormalBIL dcnormalBIL],[0 tc],'−−k')
105 ylim([0 1.25])
106 xlabel('\∆ (mm)')
107 ylabel('T (N/mm^2)')
108 text(0.3,0.2,'(1)')
109 text(0.8,0.2,'(2)')
110 text((dcnormalBIL),(tc+0.05),'[\∆_c,T_{max}]')
111 title('Bilinear Law')
112

113 % Pure modes Trap
114 dcnormalTRAP1 = 0.5;
115 dcnormalTRAP2 = 0.95;
116 dmnormalTRAP = ...

2*(GcI−1/2*dcnormalTRAP1−(dcnormalTRAP2−dcnormalTRAP1)*tc)/tc+dcnormalTRAP2;
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117 dn4 = [0:0.001:dcnormalTRAP1];
118 ntract4 = 2*(GcI)/dmnormalBIL.*dn4/dcnormalTRAP1;
119 dn5 = [dcnormalTRAP1:0.001:dcnormalTRAP2];
120 ntract5 = dn5./dn5 * tc
121 dn6 = [dcnormalTRAP2:0.001:dmnormalTRAP];
122 %ntract3 = 2*(GcI)/dmnormalTRAP.*((dmnormalTRAP−dn3)/(dmnormalTRAP−dcnormalTRAP2));
123 ntract3 = (−tc/(dmnormalTRAP−dcnormalTRAP2))*...
124 dn6−dmnormalTRAP.*(−tc/(dmnormalTRAP−dcnormalTRAP2));
125 title('Trapezoidal Law')
126

127 figure(3)
128 %plot(dn4,ntract4,'b',dn5,ntract5,'b',dn6,ntract3,'b')
129 hold on
130 area([dn4 dn5 dn6],[ntract4 ntract5 ntract3],'Facecolor',[0 1 1])
131 plot([dcnormalTRAP1 dcnormalTRAP2],[tc tc],'o','MarkerSize',7,...
132 'MarkerFaceColor','k','MarkerEdgeColor','k')
133 plot([0 dcnormalTRAP2],[tc tc],'−−k',[dcnormalTRAP1 dcnormalTRAP1],...
134 [0 tc],'−−k',[dcnormalTRAP2 dcnormalTRAP2],[0 tc],'−−k')
135 ylim([0 1.25])
136 xlabel('\∆ (mm)')
137 ylabel('T (N/mm^2)')
138 text(0.75,0.2,'G_c')
139 text((dcnormalTRAP1),(tc+0.05),'[\∆_{c1},T_{max}]')
140 text((dcnormalTRAP2),(tc+0.05),'[\∆_{c2},T_{max}]')
141 title('Trapezoidal Law')
142

143 figure(4)
144 hold on
145 plot(dn,ntract,'b','linewidth',2)
146 plot([dn1 dn2],[ntract1 ntract2],'r','linewidth',2)
147 plot(dn4,ntract4,'g',dn5,ntract5,'g',dn6,ntract3,'g','linewidth',2)
148 plot([0 dcnormalTRAP2],[tc tc],'−−k')
149 ylim([0 1.25])
150 xlabel('\∆ (mm)')
151 ylabel('T (N/mm^2)')
152 text((dcnormalTRAP2+0.1),(tc),'T_{max}')
153 legend('Exponential law','Bilinear law','Trapezoidal law')
154

155 % figure(5)
156 % hold on
157 % area(dn,ntract,'Facecolor',[0 1 1])
158 % area([dn1 dn2],[ntract1 ntract2],'Facecolor',[0 1 1])
159 % area([dn4 dn5 dn6],[ntract4 ntract5 ntract6],'Facecolor',[0 1 1])
160 % ylim([0 1.25])
161 % xlabel('\∆ (mm)')
162 % ylabel('T (N/mm^2)')
163

164 %%
165 clc
166 clear all
167 close all
168 % Properties law
169 GcI = 1;
170 tc = 1;
171 dcEXP = GcI/(exp(1)*tc);
172 beta1 = 0.6
173 beta2 = 0.9
174 tcshear = tc*beta1;
175 GcII = GcI*beta2;
176 dcEXPshear = GcII/(exp(1)*tcshear);
177

178 % Pure modes EXP
179 dn = [0:0.001:5];
180 zerodn = zeros(1, length(dn));
181 ntract = GcI.*dn/dcEXP^2.*exp(−dn/dcEXP);
182 stract = GcII.*dn/dcEXPshear^2.*exp(−dn/dcEXPshear);
183

184 figure(1)
185 hold on
186 area(dn,ntract,'Facecolor',[0 1 1])
187 area(dn,stract,'Facecolor',[0 0 1])
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188 legend('Pure mode 1','Pure mode 2')
189 plot(dcEXP,tc,'o','MarkerSize',7,'MarkerFaceColor','k','MarkerEdgeColor','k')
190 plot(dcEXPshear,tcshear,'o','MarkerSize',7,'MarkerFaceColor','k','MarkerEdgeColor','k')
191 ylim([0 1.25])
192 xlabel('\∆ (mm)')
193 ylabel('T (N/mm^2)')
194 text(0.4,0.8,'G_{c,I}')
195 text(0.9,0.2,'G_{c,II}')
196 text((dcEXP),(tc+0.05),'[\∆_{c,I},T_{max,I}]')
197 text((dcEXPshear),(tcshear+0.05),'[\∆_{c,II},T_{max,II}]')
198 plot([0 dcEXP],[tc tc],'−−k',[dcEXP dcEXP],[0 tc],'−−k')
199 plot([0 dcEXPshear],[tcshear tcshear],'−−k',[dcEXPshear dcEXPshear],[0 tcshear],'−−k')
200 title('Exponential Law with \beta_1 = 0.6 and \beta_2 = 0.9')

3D exponential traction law with mixed-mode surface, used in Ch. 3.1.3 and Ch. 5.2:

1 %% How the mixed mode works in MARC − Exp
2

3 clear all
4 close all
5 clc
6

7 % Properties law − You can change these 4 first ones for additional effects!
8 GcI = 0.32;
9 %dcnormal = 2.5;

10 beta2 = 0.5/0.32; % ratio normal−to−shear energy (Gii = beta2*Gi)
11 normal_crit = 64 %GcI/(exp(1)*dcnormal); % max normal stress
12 beta1 = 35/64; % ratio normal−to−shear stress (tau = beta1*sigma)
13

14 dcnormal = GcI/(exp(1)*normal_crit);
15 shear_crit = normal_crit*beta1; % max shear stress
16 GcII = GcI*beta2;
17 dcshear = GcII/(exp(1)*shear_crit); % dependent on ratio
18

19 radius = dcnormal; % crit opening displacemnt (of fracture stress) based on normal stress
20 xCenter = 0;
21 yCenter = 0;
22 theta = 0:0.005:1/2*pi;
23

24 % dc line with ratio change
25 x = radius * cos(theta) + xCenter; % normal crit displacement
26 y = dcshear * sin(theta) + yCenter; % sqrt(beta)*shear crit displacement
27 z = (shear_crit − normal_crit)/dcshear*y+normal_crit; % max traction
28

29 % Pure modes
30 dn = [0:0.0004:.02];
31 ds = [0:0.0004:.025];
32 zerodn = zeros(1, length(dn));
33 zerods = zeros(1, length(ds));
34 ntract = GcI.*dn/dcnormal^2.*exp(−dn/dcnormal);
35 stract = GcII.*ds/dcshear^2.*exp(−ds/dcshear);
36

37 % Mixed mode graph based on orthogonality xy−plane
38 n = 120;
39 m1x = dn;
40 alpha = y(n)/x(n);
41 m1y = alpha*dn;
42 if GcI < GcII
43 Gcm = sin(atan(alpha))*(GcII−GcI)+GcI
44 else
45 Gcm = GcI − sin(atan(alpha))*(GcI−GcII)
46 end
47 m1c = Gcm/(exp(1)*z(n));
48 m1v = sqrt(m1x.^2+m1y.^2);
49 mtract1 = Gcm.*m1v/(m1c)^2.*exp(−m1v/m1c);
50

51 % 3D meshed
52 dN = [0:0.0004:.02];
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53 dS = [0:0.0004:.025];
54 [X,Y] = meshgrid(dN,dS);
55 MX = X;
56 ALPHA = Y ./ X;
57 MY = ALPHA .* X;
58 R = (dcshear*dcnormal)./sqrt((dcshear.*cos(atan(ALPHA))).^2+(dcnormal.*...
59 sin(atan(ALPHA))).^2); %varying radius ellipse of COD for mixed mode
60 YC = sin(atan(ALPHA)).*R;
61 Z = (shear_crit − normal_crit)./dcshear.*YC+normal_crit; % max traction
62 if GcI < GcII
63 GcM = sin(atan(ALPHA))*(GcII−GcI)+GcI
64 else
65 GcM = GcI − sin(atan(ALPHA))*(GcI−GcII)
66 end
67 MC = GcM ./(exp(1).*Z); % crit displ
68 MV = sqrt(X.^2+(Y).^2); % displ
69 MTRACT = GcM .* MV./(MC).^2.*exp(−MV./MC);
70

71 figure(1)
72 hold on
73 plot(y, z);
74 plot([0],[normal_crit],'ko','Markersize',7,'MarkerFaceColor','k','MarkerEdgeColor','k')
75 text([0],[normal_crit+1],'[\∆_{n,c},T_{n,max}]')
76 plot(y(end),z(end),'ko','Markersize',7,'MarkerFaceColor','k','MarkerEdgeColor','k')
77 text(y(end),[z(end)+1],'[\∆_{s,c},T_{s,max}]')
78 f1 = plot(ds,stract,'r−−')%,'colorspec',[0 0 0.5],'LineWidth',1);
79 plot([0 dcshear],[shear_crit shear_crit],'−−k',[dcshear dcshear],[0 shear_crit],'−−k')
80 text(5,2,'G_{cII}')
81 axis square;
82 xlim([0 20]);
83 ylim([0 20]);
84 grid on;
85 xlabel('Shear displacement \∆_s')
86 ylabel('Traction T')
87 legend('Linear relation between max traction Mode I and II','Pure mode II response')
88 title('Linear relation between maximum traction Pure Mode I and II, on the plane ...

[\∆_s;T]')
89

90 grey = [0.5 0.5 0.5];
91 figure(2)
92 hold on
93 p3 = plot3(x, y, z,'Color',grey) %,'LineStyle','−−','LineWidth',2);
94 fill3([dn dn(end)],[zerodn 0],[ntract 0],grey);
95 fill3([zerods 0],[ds ds(end)],[stract 0],grey);
96 fill3([m1x m1x(end)],[m1y m1y(end)],[mtract1 0],'y');
97 xlim([0 20]);
98 ylim([0 25]);
99 zlim([0 10]);

100 grid on;
101 xlabel('normal displ')
102 ylabel('shear displ')
103 zlabel('traction')
104

105 figure(3)
106 hold on
107 set(gca,'FontSize',12)
108 p3 = plot3(x, y, z,'Color',grey) %,'LineStyle','−−','LineWidth',2);
109 f1 = fill3([dn dn(end)],[zerodn 0],[ntract 0],grey,'LineWidth',1)%,'colorspec',[0 0 ...

0.5],'LineWidth',1);
110 f2 = fill3([zerods 0],[ds ds(end)],[stract 0],grey,'LineWidth',1);
111 f3 = fill3([m1x m1x(end)],[m1y m1y(end)],[mtract1 0],'c','LineWidth',1.5);
112 s = surf(X,Y,MTRACT)
113 plot3([0 0 0],[dcshear dcshear 0],[0 shear_crit shear_crit],'k−−','LineWidth',1.5)
114 plot3([dcnormal dcnormal 0],[0 0 0],[0 normal_crit normal_crit],'k−−','LineWidth',1.5)
115 plot3([dcnormal],[0],[normal_crit],'ko','Markersize',7,'MarkerFaceColor','k',...
116 'MarkerEdgeColor','k')
117 plot3([0],[dcshear],[shear_crit],'ko','Markersize',7,'MarkerFaceColor','k',...
118 'MarkerEdgeColor','k')
119 text([dcnormal],[0],[normal_crit+1],'[\∆_{n,c},T_{n,max}]')
120 text([0],[dcshear],[shear_crit+1],'[\∆_{s,c},T_{s,max}]')
121 xlim([0 0.02]);
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122 ylim([0 0.025]);
123 zlim([0 65]);
124 zlim([0 125]);
125 grid on;
126 xlabel('\∆_n[mm]')
127 ylabel('\∆_s [mm]')
128 zlabel('traction T [N/mm^2]')
129 %title('Mixed−mode response for \beta_1=0.75 and \beta_2=1.0')
130 title('Mixed−mode response for the bondline')
131 view(115,30)
132 set(s,'facecolor','yellow','FaceAlpha',0.75,'edgealpha',0.1)
133

134

135 % figure(4)
136 % hold on
137 % f1 = area(dn,ntract)%,'colorspec',[0 0 0.5],'LineWidth',1);
138 % plot([0 dcnormal],[normal_crit normal_crit],'−−k',[dcnormal dcnormal],[0 ...

normal_crit],'−−k')
139 % set(f1,'facecolor','c')
140 % xlim([0 20]);
141 % ylim([0 10]);
142 % grid on;
143 % text(dcnormal,(normal_crit+0.5),'[\∆_{c,normal},T_{max,normal}]',...
144 % 'BackgroundColor',[1 1 1])
145 % xlabel('\∆_n')
146 % ylabel('traction T')
147 % title('Pure mode I response for \beta_1=0.75 and \beta_2=1.0')
148 % text(4,2,'G_{cI}')
149 %
150 % figure(5)
151 % hold on
152 % f1 = area(ds,stract)%,'colorspec',[0 0 0.5],'LineWidth',1);
153 % plot([0 dcshear],[shear_crit shear_crit],'−−k',[dcshear dcshear],[0 shear_crit],'−−k')
154 % set(f1,'facecolor','c')
155 % text(dcshear,(shear_crit+0.5),'[\∆_{c,shear},T_{max,shear}]',...
156 % 'BackgroundColor',[1 1 1])
157 % xlim([0 25]);
158 % ylim([0 10]);
159 % grid on;
160 % xlabel('\∆_s')
161 % ylabel('traction T')
162 % title('Pure mode II response for \beta_1=0.75 and \beta_2=1.0')
163 % text(5,2,'G_{cII}')
164 %
165 % figure(6)
166 % hold on
167 % f1 = plot(dn,ntract,'linewidth',2)%,'colorspec',[0 0 0.5],'LineWidth',1);
168 % xlim([0 25]);
169 % ylim([0 10]);
170 % grid on;
171 % xlabel('\∆_n')
172 % ylabel('traction T')
173 % title('Pure mode I response')

Code for creating recreating the data points from the real experiment strain gauge results and how to inter-
polate the load to even equalised point by time.

1 % Strain gauge data to graph conversion
2

3 clc
4 clear all
5 close all
6

7 % Test
8 Test = importdata('Testgauge.txt')
9

10 figure(1)
11 hold on
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12 plot(Test(:,1),Test(:,2),'r')
13 xlabel('Time [s]')
14 ylabel('Strain [\mum/mm]')
15 title('Strain Gauge Test')
16

17

18 MeasuredStrain = importdata('converterStrain−time.txt');
19 figure(2)
20 hold on
21 set(gca,'FontSize',12)
22 plot(MeasuredStrain(:,1),MeasuredStrain(:,2),'r','Linewidth',2.5)
23 plot(MeasuredStrain(:,1),MeasuredStrain(:,3),'b','Linewidth',2.5)
24 plot(MeasuredStrain(:,1),MeasuredStrain(:,4),'g','Linewidth',2.5)
25 legend('Strap top','Strap bottom','Lap bottom')
26 xlabel('Time [s]')
27 ylabel('Strain [\mum/mm]')
28 grid on
29 title('Measured Strains')
30

31 MeasuredForce2 = importdata('converterForce−time.txt');
32 MeasuredForce2(:,1) = MeasuredForce2(:,1)./(2/60);
33 figure(3)
34 hold on
35 set(gca,'FontSize',12)
36 plot(MeasuredForce2(:,1),MeasuredForce2(:,2),'r')
37 legend('Machine displacement against force')
38 xlabel('Time [s]')
39 ylabel('Load [N]')
40 grid on
41 title('Measured Load Force')
42

43 MeasuredForce = importdata('converterForce−time.txt');
44 MeasuredForce(:,1) = MeasuredForce(:,1)./(2/60); % convert to seconds
45 % scale for strain results :
46 for i = 1:length(MeasuredForce(5919:end,1))
47 MeasuredForce(5918+i,1) = ...

MeasuredForce(5918+i,1)+i/length(MeasuredForce(5919:9617,1))*4.46;
48 end
49 for i = 1:length(MeasuredForce(1:5917,1))
50 MeasuredForce(i,1) = MeasuredForce(i,1)−(length(MeasuredForce(1:5917,1))−i+1) ...
51 length(MeasuredForce(5919:9617,1))*4.46;
52 end
53 MeasuredForce(:,1) = MeasuredForce(:,1)+23.08; % scale for strain results
54 MeasuredForce(1:6,2) = mean(MeasuredForce(1:6,2)); % average values at multiple same ...

time results
55 MeasuredForce(1:5,:) = []; % remove same valued rows
56 MeasuredForce(2:19,2) = mean(MeasuredForce(2:19,2));% average values at multiple same ...

time results
57 MeasuredForce(2:18,:) = []; % remove same valued rows
58 MeasuredForce(16064:end,:) = []; % remove excess rows
59 MeasuredForceq(:,1) = 0.02:0.02:400;
60 MeasuredForceq(:,2) = ...

interp1(MeasuredForce(:,1),MeasuredForce(:,2),MeasuredForceq(:,1),'linear');
61 A = find(MeasuredStrain(:,1) == 400)
62 MeasuredStrainq = MeasuredStrain(1:A,:);
63

64 figure(4)
65 hold on
66 set(gca,'FontSize',12)
67 %plot(MeasuredForce(:,1),MeasuredForce(:,2),'r')
68 plot(MeasuredForceq(:,1),MeasuredForceq(:,2),'b','Linewidth',2.5)
69 legend('Converted force load results against time')
70 xlabel('Time [s]')
71 ylabel('Load [N]')
72 grid on
73 title('Measured Load Force')
74

75 figure(5)
76 hold on
77 set(gca,'FontSize',12)
78 p1 = plot(MeasuredForceq(1:12548,2),MeasuredStrainq(1:12548,2),'r','Linewidth',2.5)
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79 p12 = plot(MeasuredForceq([12548 12560],2),MeasuredStrainq([12548 ...
12560],2),'r','Linewidth',2.5)

80 p2 = ...
plot(MeasuredForceq(12560:16066,2),MeasuredStrainq(12560:16066,2),'r','Linewidth',2.5)

81 p3 = plot(MeasuredForceq(1:12548,2),MeasuredStrainq(1:12548,3),'b','Linewidth',2.5)
82 p34 = plot(MeasuredForceq([12548 12560],2),MeasuredStrainq([12548 ...

12560],3),'b','Linewidth',2.5)
83 p4 = ...

plot(MeasuredForceq(12560:16066,2),MeasuredStrainq(12560:16066,3),'b','Linewidth',2.5)
84 p5 = plot(MeasuredForceq(1:12548,2),MeasuredStrainq(1:12548,4),'g','Linewidth',2.5)
85 p56 = plot(MeasuredForceq([12548 12560],2),MeasuredStrainq([12548 ...

12560],4),'g','Linewidth',2.5)
86 p6 = ...

plot(MeasuredForceq(12560:16066,2),MeasuredStrainq(12560:16066,4),'g','Linewidth',2.5)
87 legend([p1 p3 p5],{'Strap top','Strap bottom','Lap bottom'})
88 xlabel('Load [N]')
89 ylabel('Strain [\mum/mm]')
90 axis([0 80000 0 8000])
91 grid on
92 title('Measured Strains against Load')
93

94

95

96

97

98 %%
99 % Strain gauge data to graph conversion

100

101 clc
102 clear all
103 close all
104

105

106 DEStrainStrapTop = importdata('DE_strain_strap_top.txt');
107 DETime = DEStrainStrapTop(:,1);
108 DEStrainStrapBottom = importdata('DE_strain_strap_bottom.txt'); % Bottom is lap−side
109 DEStrainLap = importdata('DE_strain_lap.txt');
110

111 figure(2)
112 hold on
113 set(gca,'FontSize',12)
114 plot(DETime,DEStrainStrapTop(:,2),'r','Linewidth',2.5)
115 plot(DETime,DEStrainStrapBottom(:,2),'b','Linewidth',2.5)
116 plot(DETime,DEStrainLap(:,2),'g','Linewidth',2.5)
117 legend('Strap top','Strap bottom','Lap')
118 xlabel('Time [s]')
119 ylabel('Strain [\mum/mm]')
120 grid on
121 title('Measured Strains at strap and lap gauges for model with no failure criterion')
122

123 DEForce = importdata('DE_load.txt');
124 figure(3)
125 hold on
126 set(gca,'FontSize',12)
127 plot(DETime,DEForce(:,2),'r','Linewidth',2.5)
128 legend('Load time against force at load.')
129 xlabel('Time [s]')
130 ylabel('Load [N]')
131 grid on
132 title('Measured Load Force for model with no failure criterion')
133

134 figure(4)
135 hold on
136 set(gca,'FontSize',12)
137 plot(DEForce(:,2),DEStrainStrapTop(:,2),'r','Linewidth',2.5)
138 plot(DEForce(:,2),DEStrainStrapBottom(:,2),'b','Linewidth',2.5)
139 plot(DEForce(:,2),DEStrainLap(:,2),'g','Linewidth',2.5)
140 legend('Strap top','Strap bottom','Lap')
141 xlabel('Load [N]')
142 ylabel('Strain [\mum/mm]')
143 grid on
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144 title('Load Force−Strain curve with no failure criterion')





E
RECOMMENDATIONS FOR WHEN USING

MSC.MARC

Many problems arose during this thesis work. Most of them were based around getting to know and to work
with the finite element package MSC.Marc, which costed a severe amount of time. What follows is a list of
recommendations to prevent any of the problems that were once encountered, and to save alot of time.

When should you use MSC.Marc?

• For solving analyses of structures with cohesive zone modelling
• For solving analyses of structures with the aid of progressive failure
• For coupon level based structures

Modelling with MSC.Marc

• It is able to import several file types, including ACIS, IGES, STL, Nastran Bulk Data, Patran and other.
Experience has learned that it is paired with many importing errors though, so its safer to model within
MSC.Mentat, the default pre- and postprocessing program.

• It is possible to model the geometry and elements in another FE or modelling program, although im-
porting can be dangerous since MSC.Marc imports all settings which may not be default setting ac-
cording to MSC.Marc. Patran geometry imports seem to work.

• Keep attention to what exact input parameter is asked for i.e. a material property. ν31 6= ν13 and a
calculation should be made before hand to use the correct input parameter.

• If one encounters limitations of several options due to licensing problems, find a way to circumvent
this. I.e. to create solid elements, one can first created a surface mesh, and use the ’Expand’ command
to expand the surface mesh to a 3D solid mesh. Creating CZE in a local approach, e.g. zero thickness,
can be tedious and arduous. There are three ways to create CZE:

– What’s recommendable if you want to create 2D or 3D CZE, is to create a surface or solid first,
assign them cohesive element type and other properties, and use the ’Move’ command to forcibly
move to nodes to coincide with each other.

– Similar to the previous option, one can also first create a curve or surface and use the ’Expand’
command with thickness 0, automatically creating a planar or solid element with thickness 0.

– Another, more practical, way is to use the ’Matching Boundaries’ option, where one can select a
plane in or between an element region and create CZE directly inbetween those elements on the
specified plane.

– Another option is to use the ’Delamination’ option to create CZE ’on the fly’ during an analysis.
This has the advantage of having lesser elements in the model, although it can get confusing once
you want to visualise and analyse certain element groups, since these newly created CZE are not
assigned to an element set. Another disadvantage is that the CZE are activated by another crite-
rion, which use is blackbox and currently still unknown.
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• Create element sets while in preprocessing, because in postprocessing there is no way to save element
sets and retain them for all increments. This is very useful for when checking certain layers and ele-
ment groups in postprocessing. To define a flat CZE set, reduce the element size in ’View’>’Plot Con-
trol’>’Element Settings’ to get a reduced view of element, making flat CZE easier to select.

• Contact bodies need to be defined delicately. For unknown reason, MSC.Marc assigns a priority order
based on what contact body was defined first. The former created contact body acts as a slave contact
body for all other defined bodies beneath in the list. Using the ’Glued’ contact option makes the first
created contact bodies follow the rest, and not vice versa. Example: if the bondline in the CLS specimen
was defined as the third contact body instead of the first, incoincidental nodes would not follow the lap
and strap nodes and element surface.

Solving with MSC.Marc

• If one has a simulation with a large model and a large amount of increments, loading and retrieving
of results can be arduous and the amount of space taken up on the hard drive incredibly large. To
reduce this, make MSC.Marc only get a result every x increment during the analysis. To do this, go to
Jobs>Properties>Job Results and within this window is a smaller window which says ’Post File’ with
the option ’Increment Frequency’. This option enables MSC.Marc to collect at store data during the
analysis at the given frequency, reducing the amount of increments saved and saving space and result
loading times.

• Never, ever, use another preprocessing programme with using MSC.Marc as a solver. Often the default
settings within other preprocessing FE packages are completely different from MSC.Mentat, which may
lead to faulty simulation results or even none at all.

• It was recommended by Per Nordlund, lead designer of MSC.Marc, to use a residual force convergency
of a factor 10 less, e.g. 0.01, instead of 0.1, as Dr. Nordlund deems this as not accurate enough.

• The default setting within defining loadcases are still alright to use.
• Make sure to select what postprocessing parameters need to be retrieved. Once a simulation has started

and results are in, there is no way to retrieve a parameter which was not selected in the ’Job Results’
window unless by restarting the simulation with the parameter selected. For composite plies, make
sure to select the ’List’ option next to the input parameter in the ’Select Element Quantities’ window
(the default option is ’Default’), and select which ply results must be taken. For example, if you want
the results of ply 1 and 24, type [1 24] in the field next to it, without the brackets.

Postprocessing with MSC.Marc

• If one needs to average, sum or subtract nodal information from each other, it is best to use MSC.Mentat.
MSC.Marc’s postprocessing program has the advantage of using functions for multiple curves, like av-
eraging, multiplying, adding etc.

• Use MSC.Mentat to quickly extract simple data like load-displacement curves. One can also quickly
create graphs with different nodal values from different nodes with each other, i.e. the displacement of
node 3 on the x-axis againt the strain of node 1 on the y-axis.

• Checking the ’Damage’ parameter needs to be done with ’Nodal Averaging’ off and extrapolation option
’Translate’, found in ’Settings’.

• MSC.Marc only retrieves nodal information, no element information. One can use HyperWorks for
element information extraction, but HyperWorks has been unable to collect 3D CZE information. The
reason for this is that Altair, HyperWorks’ head company, has MSC.Marc on a low priority list, resulting
in less updates and support for MSC.Marc results.

• Models with large elements can be problematic when retrieving results: use MSC.Mentat’s option to
retrieve only a set of increments to save loading time.
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The software used to perform this thesis are the following:

• Texmaker 4.0.4 LATEX Editor, compiled with Qt 5.1.0 and Poppler 0.22.5. Copyright (c) 2003-2013 by
Pascal Brachet

• Typesetting system MiKTeX

• Marc Mentat 2012.1.0 (64bit). Copyright (c) 1994-2014 by MSC.Software Corporation

• HyperView, Altair HyperWorks Version 12.0 (64bit). Copyright (c) 1986-2014 by Altair Engineering Inc.

• MatLab 2011b (7.13.0.564) (64bit). Copyright (c) 1984-2011 by The MathWorks Inc.

• Mendeley Desktop Version 1.10.1. Copyright (c) 2008-2013 by Mendeley Ltd.

• MS Paint

• Windows 7 Professional 64bit, Service Pack 1. Copyright (c) 2009 by MicroSoft Corporation.

The hardware used to perform this thesis and all the simulations are the following:

• CPU: AMD Phenom(tm) II X4 965 Processor, 3.40 GHz

• RAM: 4,00 GB

• GPU: NVIDIA GeForce 8800 GT

• MB: ACPI x64
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