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Abstract—In recent years, Spin Waves (SWs) have emerged as
a promising CMOS alternative technology, and SW interference-
based majority gates have been proposed and experimentally
realized. In this paper, we pursue a different computation avenue
and introduce a SW device able to evaluate 2x2 2D convolu-
tion, which is a fundamental element for the implementation
of Convolutional Neural Networks (CNNs). Assuming that the
window pixels are P = [pi, p2; p3, pa] and the kernel is
K = [k1, k23 k3, k4] we introduce a device which evaluates
the convolution result Z?:lpik'i within the SW domain by
leveraging SWs inherent mechanisms, i.e., information encoding
in SW amplitude and phase, SW amplitude decay due to Gilbert
damping, SW interference. After introducing the SW device
structure we demonstrate its proper behaviour by means of
micromagnetic simulations. We also present power consumption,
area, and delay estimates and argue that due to the fact that our
proposal does not rely on standard adders and multipliers, it can
substantially outperform traditional CMOS-based convolution
implementations.

I. INTRODUCTION

Over the past decades, numerous scientific and technologi-
cal domains have experienced significant theoretical and exper-
imental progress. One of those fields that have demonstrated
great potential is spintronics [1]-[3], which is considered
a promising avenue for extending or complementing, and
eventually replacing, Complementary Metal-Oxide Semicon-
ductor (CMOS) [4], [5] technology. A promising pathway for
ultra-low-power spintronics computation involves embracing
the propagating disturbances in the ordering of a magnetic
material, known as Spin Waves (SWs), as data carriers [6],
[7]. Their unique properties, e.g., frequency range from GHz
to THz, wavelengths down to the atomic scale, pronounced
non-linear and non-reciprocal phenomena, low-energy data
transport and processing [8]-[10], offer a variety of advan-
tages towards building SW based nanotechnologies. As such,
SWs provide the means for interference-based computation
and exhibit substantial potential for enabling ultra-low power
computation [11]-[13].

While many ways to let SW carry information exist, state-
of-the-art SW-based computing relies on relative phase-based
information encoding: a relative phase of 0° (i.e., a spin
wave in phase with a reference) refers to a logic 0 and a
relative phase of 180° corresponds to a logic 1. By encoding
information in phase difference and allowing an odd number of
the same wavelength (\) and amplitude SWs to propagate into
the same waveguide, a majority voting can be implemented

(in phase SWs interfere constructively and out of phase SWs
destructively). This principle stands behind the implementation
of the 3-input Majority Gate (M AJ3) [14], [15], whose output
value is determined by the phase difference of the SW resulted
from the interference of the 3 SW inputs. Given that M AJ3
and Inverter (/ NV), realized by simply repositioning the gate
output reading transducer (antenna) to i% and hence changing
the phase difference of the signal, form a universal gate set,
any Boolean circuit can be implemented by means of SWs
interaction. However, while M A.J3 gates have been practically
demonstrated in the nm range [16] many hurdles exist on
the road from SW gate to circuit, e.g., gate cascading [17],
[18] and fan-out achievement [19], [20], which for the time
being preclude the design and practical implementation of
functionally significant circuits within the SW domain, thus
the full utilization of the ultra-low-power potential of the SW-
based computing paradigm.

On the other hand, spintronics have also been utilized
for neuromorphic computing, which seeks to emulate, in
hardware, the way the human brain processes data and makes
decisions. Recent advancements in this field have been driven
by spintronic-specific phenomena, including domain walls,
skyrmions, and other magnetic effects [21], [22]. Specifically,
SWs have played a key role in advancing neuromorphic
computing, contributing to the implementation of Deep Neural
Network (DNN) architectures, e.g., multilayer [23], convolu-
tional [24], and recurrent networks [25].

Inspired by these recent advancements, in this paper, we
focus on a special DNN class, Convolutional Neural Networks
(CNN:ss), and investigate SW technology’s potential to speed up
convolution calculations. We propose a 2x2 2D convolution
accelerator device that leverages SWs intrinsic properties to
evaluate the required multiplications and additions by means
of SWs interferences. We rely on a mix (amplitude and relative
phase) encoding for input data representation and make use of
SW amplitude attenuation [8], [18], [26] to represent the kernel
values. We design, verify, and prove the correct behaviour of
the 2x2 2D convolution block by means of micromagnetic
simulations. By relying on SW-specific properties, we achieve
increased computation efficiency and reduced hardware com-
plexity as we eliminate the need for adders and multipliers,
components critical for the proper functionality of a CMOS
implementation of a convolution block counterpart.

This paper is organized as follows: In Section II, we
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present the theory of convolution computation in deep neural
networks. In Section III, we introduce the concept of the
SW-based convolution device and its verification, and in
Section IV, we discuss the results and implications of our
proposal. We conclude the paper with a few remarks and by
outlining potential future research avenues.

II. CONVOLUTION THEORY

Convolutional Neural Networks (CNNs) are the backbone
of modern DNNs [27] due to their efficiency in feature extrac-
tion from datasets. Their applications [28] range from image
and video recognition to natural language processing models,
rendering their optimization and accuracy critical to the field.
In image processing, 2D convolution layers (Conv2D) are
utilized to extract image features, e.g., object edges, based on
predefined kernels, each emphasizing a specific feature. The
output features are then passed to the following DNN layers,
possibly other Conv2D layers, until the final output layer is
reached and the CNN decision is issued.

For the 2D convolution of an image, a specific process is re-
peated across each color channel over the entire image matrix,
where a kernel window passes along it to extract features. The
values, or weights, of the kernel window determine the output
of the 2D convolution, examples of which include blurring of
the image, edge detection, and many more. Initially, a pixel
window with a size equal to the kernel window is selected
in the image matrix. Each color value in the pixel window is
then multiplied by the respective kernel weight and summed
up with the rest according to Equation (1) by means of 9
multiplications and 8 additions.

Pixels Kernel

P1 P2 D3 ki k2 ks )

Pa D5 De ki ks kel =>,pi-ki

Pr P8 D9 kr ks ko

The accumulated value becomes the new color value of the

convoluted image matrix pixel, as depicted in Figure 1. This
single process is repeated for all the pixels of the original
image matrix, with the kernel window gliding along it from
left to right and top to bottom. The new matrix has reduced
dimensionsand contains the extracted features based on the
nature of the utilized kernel.

Fig. 1. Image Convolution Process

As suggested by Figure 1, the convolution process requires
a number of Equation (1) not data-dependent weighted sum

evaluations, which can be performed in parallel. From the
other point of view, larger kernels are of interest as they
are more powerful and can diminish the number of CNN
convolution stages. As previously mentioned, for a 3 x3 kernel,
9 multiplications and 8 additions are needed, while for larger
kernel sizes, the requirements increase significantly — for
instance, a 5x5 kernel necessitates 25 multiplications and 24
additions. Thus, the availability of fast, low-cost multipliers
and adders is essential for CNN implementations’ perfor-
mance. In the next section, we introduce a device able to
evaluate weighted sums by means of SW interactions.

III. SW BASED CONVOLUTION

The main idea behind our proposal is to compute the con-
volution result (the weighted sum) by exploiting the intrinsic
SW properties instead of by means of conventional adders
and multipliers. For the sake of simplicity, we utilize a 2 x 2
kernel as a discussion vehicle to introduce the approach, but
our proposal can be extended to accommodate larger kernel
sizes. As graphically depicted in Figure 2, we make use
of a magnetic conduit and generate 4 SWs with amplitudes
a; X p;,t = 1,4 by means of RF transducers (antennas)
located at w; o k;,¢ = 1,4 away from the device output O.
While the SWs travel from their generation point towards the
output O, their amplitudes are diminished due to waveguide
material-dependent Gilbert damping [8], [26] and interact
constructively/destructively if in phase/out of phase. Thus, by
choosing a; and w; that properly reflect the image and kernel
values, the SW detectable at O represents the convolution
result S°° | a;w;.

Fig. 2. 2x2 2D Convolution SW Device

To implement the proposed concept, particular attention
should be directed towards embedding input/color values, p;,
and kernel weights, k;, into SW amplitudes, a;, and distances,
w;, respectively. Encoding pixel color values is achieved by
modulating the generation fields’ strengths across the antennas,
which control the initial SW amplitude. For instance, an input
value of 1 corresponds to 1mT, 2 to 2mT, and so on. It
is essential to note that the field strengths should remain
moderate, with the upper limit varying depending on the
device configuration, to prevent spin flipping, as this would
disrupt the sine-like SW motion. To link antenna distances to
the output port to the kernel weights, we need to conduct a
simulation where a single RF transducer is placed on top of
the magnetic conduit, capturing amplitude decay as the wave
travels along it. This simulation enables the construction of
an attenuation profile, an example of which is presented in
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Ay,
i

Figure 3, reporting amplitude ratios —-=, where Ay and A,
represent the SW amplitude at the antenna region and at a
distance w; = ¢ X A, ¢ being an integer, from it. These am-
plitude reduction ratios define the available values for kernel
weight selection. Negative kernel weights are implemented
by adjusting the respective input antenna’s phase from 0° to
180°, thus switching interference at O from constructive to
destructive. Therefore, by placing the 4 antennas at specific
distances from the output port, each input can be effectively
multiplied (reduced) by its respective kernel weight, producing
the weighted terms, a;w; = p;k;, at O, whose interference
yields the final result.

Ao

Antenna

Sw Amplitude (a.u.)

200 400 600 800 1000
Distance (nm)

Fig. 3. SW Amplitude Decay

We verify the proposed concept by means of mumax® [29]
micromagnetic simulations. Firstly, we derive the dispersion
relation, presented in Figure 4, for a waveguide with the
dimensions and properties indicated in Table I. We selected
CoFeB as waveguide material due to its relatively high damp-
ing parameter, «, which induces faster SW amplitude decay
and results in a compact device. Naturally, the dispersion
relation will change if the material properties or waveguide
parameters are modified, affecting the propagation character-
istics of spin waves. Therefore, a thorough investigation of the
dispersion relation is essential before the actual implementa-
tion to ensure the desired device performance.

Fig. 4. Dispersion Relation

TABLE I
SIMULATION PARAMETERS

L w T M Aex [e] Bext Kanis
200nm  20nm  1.2MAm~—' 18pJm~! 4x1073 60mT 09MJm—3

20 um

From the obtained dispersion relation, we chose the exci-
tation frequency for the SWs at f = 8 GHz, which results
in a wavelength, A = 500 nm. By placing and exciting only
one antenna, we obtain the amplitude attenuation profile as
described above, presented in Figure 5, and thus the available
values for the kernel weights selection.

0.003

—— SW propagation

Ay Antenna

0.002

x 4o
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X 3662
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T0X 1922
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~0.003
-10.
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Fig. 5. SW Amplitude Attenuation Profile

We test three convolution cases, detailed in Table II, using
randomly selected kernel values from the attenuation profile
and varying input values to simulate different scenarios. We
positioned antennas at the required distances from the output
port per the attenuation profile, with field strength and SW
phase adjusted to match the input values.

TABLE 11
MICROMAGNETIC SIMULATIONS CONVOLUTION EXAMPLES

Case # Pixel Window Kernel Window Ground Truth
w1 o[ ] e- 0 [A B] aee
N I I S
s = [ % O] k- BT 0 [0 0] o

Based on the simulation results, we derive the output sig-
nals’ time-dependent propagation for each case, as illustrated
in Figure 6, to calculate the amplitude ratio of each signal
over the reference one, when a field of 1 mT is utilized for
SW excitation, and hence the result of the convolution. In
Table III, we present the ground truth of the convolution com-
putations, the obtained values from our simulations, and each
case’s respective absolute and relative errors. The proposed
SW convolution device provides an average relative error of
4.45%, which is a level of accuracy often acceptable in neural
networks where perfect precision is not always required. Thus,
micromagnetic simulations confirm the proper operation of the
proposed SW 2x2 convolution block.

TABLE III
SIMULATION RESULTS AND ERRORS

Example # Ground Truth  Obtained Result Absolute Error  Relative Error (%)
Example 1 3.5365 3.6791 0.1426 4.03
Example 2 0.6465 0.6753 0.0288 4.45
Example 3 -0.87405 -0.9167 0.04265 4.88
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Fig. 6. 2x2 Convolution Block Output Temporal Behavior

IV. RESULTS & IMPLICATIONS

Following the successful verification of the proposed device,
it is of interest to evaluate its cost and performance. The
proposed SW device comprises a magnetic conduit for SWs
propagation, 4 RF antennas, 1 Readout port, and external
CMOS circuitry to generate RF signals for the antennas
(based on image input values) and read the convolution result.
As the design of the CMOS circuit is outside the paper’s
scope, we cannot precisely evaluate the area, delay, and power
consumption of the proposed device. However, we can do
some estimates by considering that the SW generator (Mag-
netoelectric (ME) cell transducer) exhibits a delay of 0.42ns
and consumes 14.4 aJ while the SW reading consumes 2.7 fJ
and introduces a delay of 0.03 ns [30], [31]. The convolution
gate delay is determined by SW generation delay, the time it
takes to the most faraway SW to reach O, which in our case
is 8ns, and the SW reading, and sums up to 8.45ns. Based
on these, the power consumption of the device is 0.3263 pyW
and the area, which is determined by the dimensions of the
magnetic conduit, amounts to 4 um?.

On the other hand, a CMOS-based convolution device
counterpart requires at least 1 multiplier and 1 adder, or 4
multipliers and 3 adders for fast evaluation. The area, delay,
and power consumption of those arithmetic units depend on
the format and precision required for image and kernel values
representation, but they are obviously complex blocks. Exam-
ining the single-precision floating-point (SP FP) format for
data encoding, metrics for both multiplier and adder compo-
nents can be evaluated. For the multiplier, [32] reports a delay
of 9.71ns, a power consumption of 2055.7uW, and an area
of 7997.3 um? for a precise SP FP multiplier in 45 nm CMOS
technology. Regarding the adder, [33] provides metric values
for both accurate and approximate adder configurations. For
precise computations, we reference the exact adder block in the
same CMOS technology, which consumes 1027 pW, exhibits
a delay of 2.827 ns and occupies an area of 2415.72 um?. Uti-
lizing the accelerated evaluation of convolution computation
results in a total power consumption of 11303.8 uW, a delay
of 15.364ns, and an area footprint of 39 236.36 um?.

Based on the comparative analysis presented in Table IV, we

conclude that our device demonstrates superior performance
across all evaluated metrics relative to its CMOS counterpart.
This advantage is particularly pronounced in terms of area
and power consumption, where the values for our device are
rendered nearly negligible in comparison.

TABLE IV
COMPARISON OF CONVOLUTION BLOCK IN CMOS AND SW DOMAINS

Technology Topology Power (uWW)  Area (um?) Delay (ns)
CMOS 4x MUL + 3 x ADD 11303.8 39236.36 15.364
SW 4 X RF +1x SW Read 0.3263 4 8.45

Extending the comparison to parallel computing further
accentuates the advantages of our device. In such settings,
multiple device instances are employed to simultaneously
compute different parts of the final result. For the CMOS-
based device, utilizing n instances would necessitate n x 4
multipliers and n x 3 adders. Considering the metrics for power
consumption, delay, and area presented above for a single
instance of the 2 technologies, our device presents a significant
advantage. The configuration in both domains, CMOS and SW,
for parallel computing, is depicted in Figure 7.

CMOS Domain SW Domain
ki Bikia Paku Dake ik Dukia Dyl D
P P2
Pia ki Pia ki
ki ki
Cip et G
Ko Ko
P2t k2o P22 k12
P22 P23
€ €2
N N

Fig. 7. SW vs CMOS Parallel 2 x 2 Convolution

V. CONCLUSION

In this paper, we initially discussed the theory and applica-
tions of convolution computation within state-of-the-art DNNs,
emphasizing the extensive utilization of multipliers and adders.
Subsequently, we proposed a novel SW-based convolution
block that leverages the unique SW properties to perform con-
volution computation without relying on conventional adder
and multiplication mechanisms. After we introduced the SW
device, we validated its correct behavior by means of micro-
magnetic simulations. We concluded by comparing our device
with its CMOS counterpart in terms of power consumption,
area, and delay and argued that by not relying on standard
adders and multipliers, it is very compact, consumes almost
negligible power, and can substantially outperform traditional
CMOS-based convolution implementations.
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