
 
 

Delft University of Technology

Targeted Attack on GPT-Neo for the SATML Language Model Data Extraction Challenge
[PRESENTATION]

Al-Kaswan, A.; Izadi, M.; van Deursen, A.

Publication date
2023
Document Version
Final published version
Citation (APA)
Al-Kaswan, A., Izadi, M., & van Deursen, A. (2023). Targeted Attack on GPT-Neo for the SATML Language
Model Data Extraction Challenge [PRESENTATION]. 1st IEEE Conference on Secure and Trustworthy
Machine Learning, Raleigh, United States.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



Targeted Attack on GPT-Neo for the SATML
Language Model Data Extraction Challenge

Ali Al-Kaswan
Delft University of Technology

Delft, The Netherlands
a.al-kaswan@tudelft.nl

Maliheh Izadi
Delft University of Technology

Delft, The Netherlands
m.izadi@tudelft.nl

Arie van Deursen
Delft University of Technology

Delft, The Netherlands
arie.vandeursen@tudelft.nl

Abstract—Previous work has shown that Large Language
Models are susceptible to so-called data extraction attacks. This
allows an attacker to extract a sample that was contained in
the training data, which has massive privacy implications. The
construction of data extraction attacks is challenging, current
attacks are quite inefficient, and there exists a significant gap
in the extraction capabilities of untargeted attacks and memo-
rization. Thus, targeted attacks are proposed, which identify if
a given sample from the training data, is extractable from a
model. In this work, we apply a targeted data extraction attack
to the SATML2023 Language Model Training Data Extraction
Challenge.1 We apply a two-step approach. In the first step, we
maximise the recall of the model and are able to extract the
suffix for 69% of the samples. In the second step, we use a
classifier-based Membership Inference Attack on the generations.
Our AutoSklearn classifier achieves a precision of 0.841. The full
approach reaches a score of 0.405 recall at a 10% false positive
rate, which is an improvement of 34% over the baseline of 0.301.

Index Terms—Data Extraction, Targeted Attacks, Language
Models, GPT-Neo, Challenge

I. INTRODUCTION

Language Models have recently become popular due to their
ability to generate natural text and have been applied in various
fields, such as Software Engineering [1, 2]. However, neural
language models trained on sensitive datasets have been shown
to memorize parts of their training data [3–5]. With a data
extraction attack, an adversary can recover individual training
examples from the model’s training dataset.

The ability to extract training data has massive privacy
implications. Models which are trained using private datasets
might be exposing their records. Models trained using publicly
mined data might be violating the contextual integrity of the
data of internet users [3]. Recent work has found that devel-
oping robust attacks to extract training data is challenging.

In this work, we focus on targeted attacks. We use the Lan-
guage Model Training Data Extraction Challenge, to develop
our attack. The benchmark provides a prefix of 50 tokens
from the training data, we are tasked with predicting the next
50 tokens (suffix). The targeted model is GPT-Neo with 1.3
billion parameters [6].

We propose a two-stage attack strategy shown in Figure 1.
In the first stage, the model is prompted to predict multiple

1Language Models Training Data Extraction Challenge: https://github.com/
google-research/lm-extraction-benchmark

suffixes for the given prefix. In this step, we optimise for the
recall of the model, i.e., for how many prefixes a correct suffix
is generated.

In the second step, we make use of a Membership Inference
Attack to select the correct suffix from the set of candidates. In
this case, precision is more important. We find that contrastive
search is the best decoding strategy to generate as many correct
candidate suffixes as possible. We design a successful attack
based on a binary classifier (based on AutoSklearn) to classify
the candidate suffixes. With our attack, we are able to achieve
a recall of 0.405 at a 10% false positive rate, which is a 34%
improvement over the baseline of 0.301.

II. MEMBERSHIP INFERENCE ATTACK SECURITY GAME

In this section, we define a black-box membership inference
attack using a security game inspired by Carlini et al. [4].

Given a challenger C and an adversary A , the game is
defined as follows:

1) The challenger samples a dataset D ⊂ D and trains a
model Mθ ← TrainingM (D) on the sampled dataset

2) C samples a bit b← {0, 1}. If b = 0, C selects a training
point x ∈ D, otherwise C selects a training point x ∈
((D ∪ D)− (D ∩ D)). The point is then provided to A .

3) A is allowed query access to the model Mθ and may
perform any other polynomial time operations.

4) A outputs his prediction bit b̂← {0, 1}
5) If b̂ = b, A wins, otherwise C wins.

In other words, the challenger randomly samples a subset D
from the dataset D and trains a model Mθ on the subset. The
adversary is then tasked with distinguishing samples that are
and are not contained in the training data subset. Note that the
adversary does not have access to the underlying distribution
of the data, and neither does the adversary have access to
the base model M , which makes training shadow models
impossible. These limitations on the adversary also loosen the
constraints on the model M , which can be trained from scratch
in step (1). Other attacks [7] require a functional base model
M which is further fine-tuned on D.

mailto:a.al-kaswan@tudelft.nl
mailto:m.izadi@tudelft.nl
mailto:arie.vandeursen@tudelft.nl
https://github.com/google-research/lm-extraction-benchmark
https://github.com/google-research/lm-extraction-benchmark


Prefixes
p1
p2
. . .
pn

GPT-Neo

Suffixes
s1,1

s1,2

s1,3

s2,1

s2,2
...

sn,m−1

sn,m

MIA

Suffixes
s2,2

s1,3
. . .

sn,m−1

Fig. 1: An overview of the complete attack; From left to
right, the prefixes are used by the GPT-Neo model to generate
multiple suffixes per prefix, a MIA is then applied to select
the presumed correct suffixes ordered by confidence.

III. EXPERIMENTAL SETUP

A. Overview

We show an overview of our attack in Figure 1.
a) Generation step: We use the GPT-Neo model to

generate suffixes for a given prefix. In the first step of the
attack, we aim to increase the recall of the attack. We can
generate multiple predictions per prefix, which will be filtered
in the next step.

It might be enticing to simply increase the number of
predictions per prefix to get a higher chance of finding the
right suffix. Doing this would increase the attack time and,
more importantly, the number of errors in the MIA step. In
the relative error-sensitive evaluation setting, this would be
inadvisable.

b) MIA step: In this step, we must infer which generated
suffixes are members of the training data. In this step, we
optimise for precision. For the sake of simplicity, we only
select one sample per prefix. We also order the samples in
descending order of confidence, such that the samples which
are most probable to be correct are pushed up to the top.
The metric we used to measure the performance of this step,
and the total attack is the recall at a 10% false positive rate.
Concretely, this means that we count the number of correct
predictions in the ordered output and stop counting when we
count 10% errors.

B. Dataset

The provided dataset consists of 15K samples. Each sample
consists of a prefix and a suffix, both are 50 tokens long. The
prefix prepended to the suffix is a 100-token sample from the
Pile [8], an 800GB text dataset used to train GPT-Neo. The
authors of the benchmark selected the samples such that for a
given prefix, there is only a single unique suffix contained in
the Pile [8].

As suggested by the authors of the benchmark, we use the
first 14K samples to train and we isolate the last 1K samples
for internal testing. Once we have obtained our solution we
can test it with an additional 1K-sample validation set.

Strategy Settings Generations Recall

Greedy p=1,k=10 10 0.50

Contrastive a=0.6,k=4 1 0.28
a=0.6,k=4 10 0.58
a=0.6,k=2 10 0.52
a=0.9,k=4 10 0.49
a=0.2,k=4 10 0.48
a=0.9,k=10 10 0.46
a=0.6,k=4 100 0.69

Beam beam=50 3 0.57
beam=10 10 0.67
beam=25 25 0.53

TABLE I: Recall per decoding strategy for 100 prefixes

IV. RESULTS

A. Generation Strategies

Table I shows the results for the different generation strate-
gies. We ran the GPT-Neo model with different decoding
settings on 100 prefixes. We prompt the model to generate
several different generations per prefix.

We used the Greedy, Contrastive, and Beam decoding
strategies. We first ran the different generation strategies to
generate 10 generations per prefix, on the standard settings.
We found that contrastive search obtains the highest recall of
the tested stratagems.

Further testing with different settings for penalty alpha and
top k, shows that the standard settings have the highest recall
for ten generations.

Furthermore, we found that the recall of beam search
decreased once we increased the beam size above 10 beams.
Overall, we found beam search with a sufficiently large beam
size to compete with Contrastive search to be too slow and
memory intensive to use.

Finally, we use GPT-Neo with the best generation strategy,
namely, contrastive search α = 0.6, k = 4 with 100 genera-
tions per prefix and plot the rank of the correct prediction in
Figure 2. The generations are ranked by the model loss on
the generation. Note, that we omit the prefixes for which the
model was unable to generate the correct prefix. This figure
shows that if the correct prefix is available, it is usually the one
with the lowest loss. The remaining challenge is to distinguish
between the prefixes which have and the prefixes which do not
have a correct suffix associated with them.

B. Classification MIA

We train several classifiers on the task of distinguishing
between members and non-members. We first use GPT-Neo
with the best generation strategy, namely, contrastive search
α = 0.6, k = 4 with 100 generations per prefix. We apply
this to the entire dataset of 15K prefixes. We apply a filter
and only consider the samples with the lowest loss for each
prefix, we found that this improves the attack, and reduces the
computational costs. We split the data and use the first 14K
as training data and the last 1K as a test set. The recall of
the generation step on the test set was 0.669, which is in line

2



0 20 40 60 80 100
Rank of correct prediction

0

1000

2000

3000

4000

5000

6000

7000

Fig. 2: Rank of correct prediction (if exists)

with our previous findings. After filtering this was reduced to
0.498.

We use the Sklearn [9] implementation of the standard
classifiers. The classifiers were trained until convergence. The
AutoSklearn [10] classifier was trained for 10 minutes, 60
seconds per model, with 16 threads. For tokenization, we
use the standard Sklearn TF-IDF pipeline and the Sentence-
Transformers package with the ’all-mpnet-base-v2’ model. We
chose this model because it is the highest-performing one in
the sentence embedding benchmark. 2

Besides the prefix and generated suffix, we also include the
number of unique generations produced by the model (count),
as well as the model loss as features. We plot the permutation
importance of the different features to our AutoSklearn model
performance in Figure 3. We found that the loss is by far the
most important feature, while the textual features do contribute
to the performance, their importance is limited. Finally, the
number of distinct generations has a minimal contribution to
the performance.

We tested Logistic Regression, Stochastic Gradient Descent
with both Huber and perceptron losses, Support Vector Ma-
chines, Gaussian Naive Bayes, and Gradient Boost models.

To get the final output of the attack, we simply sort the
samples by the probability estimate of the model. For the
models that cannot calculate a probability estimate, we apply
a filter to remove the predicted non-members and we order
the samples by the loss.

To score the solutions, we opted to use precision as this
attack values a low false positive rate. Furthermore, we also
calculate the final accuracy of the attack through the precision
at a 10% false positive rate. Note that, the maximum achiev-
able score is limited by the recall of the previous step, namely
a recall of 498 at a 10% false positive rate.

2Sentence Embedding Benchmark: https://www.sbert.net/docs/pretrained
models.html

Loss Generated Suffix Prefix Count
Feature

0.00

0.05

0.10

0.15

0.20

0.25

Pe
rm

ut
at

io
n 

im
po

rta
nc

e

Fig. 3: Permutation importance of features

Feature Extraction Strategy Precision R@10%FPR

Baseline - - 0.301

AutoSklean - 0.841 0.405

TF-IDF Log Reg 0.808 0.397
SGD huber 0.520 0.097
SGD perceptron 0.784 0.302
SVM 0.639 0.279
GaussianNB 0.599 0.273
Gradient Boost 0.766 0.365

S-Transformers Log Reg 0.780 0.345
SGD huber 0.466 0.279
SGD perceptron 0.602 0.280
SVM 0.498 0.126
GaussianNB 0.608 0.231
Gradient Boost 0.776 0.359
AutoSklearn 0.807 0.397

TABLE II: Precision and overall attack score on test set

AutoSklearn, with its automatic feature extraction pipeline,
performs best. We found that further increasing the training
time, does not improve the models’ performance. We found
that halving the training time, gave a slight decrease in
performance. The actual convergence point lies somewhere
between 5 and 10 minutes. Furthermore, all of the models
in the constructed ensemble are Gradient Boost models.

The second best is a tie between logistic Regression with
TF-IDF and AutoSklearn with Sentence-Transformers. Note
that while AutoSklearn takes around 10 minutes to train,
Logistic Regression only takes around three seconds.

We further found that the Sentence-Transformers embed-
dings are of a much lower dimensionality than TF-IDF (768
vs 28182). We were therefore unable to load the TF-IDF
embeddings into AutoSklearn. This reduction greatly speeds
up the training process, but the models perform slightly
worse. This small difference can be explained by the fact that
Sentence-Transformers are Deep-Learning based embedding
models, which take the semantic meaning of a sentence in
mind, while TF-IDF is a simple statistical method.

3

https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html


0 1
Predicted label

0

1

Tr
ue

 la
be

l
391 87

77 445

100

150

200

250

300

350

400

Fig. 4: Confusion matrix of validation set

C. Validation Scores

We finally run the trained AutoSklearn model on the vali-
dation set provided by the organizers. The final score on the
validation set is a recall of 0.413 at a 10% false positive rate.
Figure 4 shows the confusion matrix on the validation set,
which shows that the model is quite balanced in its predictions,
and does not heavily favour precision or recall while achieving
high accuracy.

V. DISCUSSION

The proposed attack is relatively quick to run, as it does not
require any type of fine-tuning or prompt-tuning. The slowest
aspect of the attack is the generation step, to generate 100
candidate samples for 1K prefixes, we require around 1 hour
on an Nvidia RTX 3080, the MIA itself runs in a few seconds.
This is around the same speed as the baseline attack.

With our classification-based membership inference attack,
we seem to have relatively high precision. We believe that we
are approaching the limit set by the generation step. Recall
that after generating and filtering, we only extracted the correct
suffix for 49.8% of the samples. This indicates that there is
still much room for improvement in the generation step of
our proposed attack. We only investigated different decoding
strategies and did not alter the prefixes. Prompt engineering or
prefix-tuning might increase the recall of the generation step
and therefore the score of the entire attack.

Another possible improvement is to introduce more features
into the classifier. Instead of using a different method to
create an embedding for the textual features, we can use the
embedding vector produced by the GPT-Neo model, this would
however turn the attack into a white-box variant.

VI. CONCLUSION

To conclude, we proposed a novel two-phased attack strat-
egy. In the first step, we find the best decoding strategy to
maximise the recall of the attack. In the second step, we
use a binary classifier to select the best suffix. Our approach
was able to show an improvement of 34% over the baseline

score with minimal additional runtime requirements over the
provided baseline.

REFERENCES

[1] A. Al-Kaswan, T. Ahmed, M. Izadi, A. A. Sawant,
P. Devanbu, and A. van Deursen, “Extending source code
pre-trained language models to summarise decompiled
binaries,” in Proceedings of the 30th IEEE International
Conference on Software Analysis, Evolution and Reengi-
neering (SANER), 2023.

[2] M. Izadi, R. Gismondi, and G. Gousios, “Codefill: Multi-
token code completion by jointly learning from structure
and naming sequences,” in Proceedings of the 44th In-
ternational Conference on Software Engineering (ICSE).
ACM, 2022, p. 401–412.

[3] N. Carlini, F. Tramer, E. Wallace, M. Jagielski,
A. Herbert-Voss, K. Lee, A. Roberts, T. Brown, D. Song,
U. Erlingsson et al., “Extracting training data from large
language models,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 2633–2650.

[4] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and
F. Tramer, “Membership inference attacks from first
principles,” in 2022 IEEE Symposium on Security and
Privacy (SP). IEEE, 2022, pp. 1897–1914.

[5] H. Hu, Z. Salcic, L. Sun, G. Dobbie, P. S. Yu, and
X. Zhang, “Membership inference attacks on machine
learning: A survey,” ACM Computing Surveys (CSUR),
vol. 54, no. 11s, pp. 1–37, 2022.

[6] S. Black, L. Gao, P. Wang, C. Leahy, and
S. Biderman, “GPT-Neo: Large Scale Autoregressive
Language Modeling with Mesh-Tensorflow,” Mar.
2021, If you use this software, please cite
it using these metadata. [Online]. Available:
https://doi.org/10.5281/zenodo.5297715

[7] F. Mireshghallah, K. Goyal, A. Uniyal, T. Berg-
Kirkpatrick, and R. Shokri, “Quantifying privacy risks
of masked language models using membership inference
attacks,” arXiv preprint arXiv:2203.03929, 2022.

[8] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe,
C. Foster, J. Phang, H. He, A. Thite, N. Nabeshima,
S. Presser, and C. Leahy, “The Pile: An 800gb dataset
of diverse text for language modeling,” arXiv preprint
arXiv:2101.00027, 2020.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[10] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and
F. Hutter, “Auto-sklearn 2.0: The next generation,” arXiv
preprint arXiv:2007.04074, vol. 24, 2020.

4

https://doi.org/10.5281/zenodo.5297715

	Introduction
	Membership Inference Attack Security Game
	Experimental Setup
	Overview
	Dataset

	Results
	Generation Strategies
	Classification MIA
	Validation Scores

	Discussion
	Conclusion

