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Methods that fuse multiple localization microscopy images 
of a single structure can improve signal-to-noise ratio and 
resolution, but they generally suffer from template bias or 
sensitivity to registration errors. We present a template-free 
particle-fusion approach based on an all-to-all registration 
that provides robustness against individual misregistrations 
and underlabeling. We achieved 3.3-nm Fourier ring correla-
tion (FRC) image resolution by fusing 383 DNA origami nano-
structures with 80% labeling density, and 5.0-nm resolution 
for structures with 30% labeling density.

Single-molecule localization microscopy (SMLM) provides the 
ability to image well below the diffraction limit1. The resolution 
in the final reconstructed image is limited by localization uncer-
tainty and emitter density to about 20 nm (ref. 2). The fusion of 
multiple acquisitions into one hyper-resolved reconstruction can 
mitigate these limiting factors when many identical copies of the 
same structure (particle) can be imaged3,4. The final reconstruction 
has effectively many more localizations than each individual SMLM 
image, which results in a better signal-to-noise-ratio and thus bet-
ter resolution. This approach is similar to single-particle analy-
sis in cryo-electron microscopy (cryo-EM)5,6. A few studies have 
applied single-particle analysis to SMLM despite the fundamental 
differences in image formation between cryo-EM and SMLM4,7–10. 
Most important, fluorescent labeling is often incomplete, with only 
30–70% density of labeling (DOL) typically achieved11. Statistical 
variations in localization uncertainty, false positive localizations12,13 
and repeated localizations of the same fluorophore are additional 
complications not encountered in cryo-EM. Some methods for 
SMLM data fusion use a template3,4,8,14 for alignment, which carries 
the risk of generating a structure that is biased toward the template15. 
A template-free pyramid registration approach for SMLM datas-
ets14 registers N particles pairwise into N – 1 reconstructions, after 
which a second set of pairwise registrations reduces the number of 
reconstructions to N – 2, and so on. This method, like any iterative 
method of combining pairwise registrations, suffers from consider-
able sensitivity to registration errors in the initial step, which are 
propagated into subsequent phases of the procedure.

Here we present a particle-fusion approach that assumes no 
prior knowledge of the structure to be imaged (template-free), 
works directly on the localization data (including the uncertain-
ties) and is robust against registration errors and underlabeling. 
The key idea is to use an all-to-all registration procedure in which 
each particle is registered to all the others, implying N(N – 1)/2 pair 
registrations for N given particles. This generates the maximum 
amount of information that can be extracted from the alignment of 

N particles. Each pair registration results in an estimate of the rela-
tive orientation and position of the two particles. What is needed, 
however, are the N absolute orientations and positions of all par-
ticles. For this step we use a technique from the field of computer 
vision in which camera position and orientation are estimated from 
a sequence of images (‘structure from motion’)16. Lie-algebraic rep-
resentations of the transformation parameters (rotations and trans-
lations) are averaged in this technique, which provides robustness 
to outlier pair registrations (details in the Supplementary Material 
and the Methods). In this way, we make optimal use of the very 
large redundancy in the N(N – 1)/2 pair registration parameters 
and overcome the main flaw of any iterative registration method. A 
critical improvement over ref. 16 is the use of a sparsity-promoting 
L1 norm (Methods). The performance is further improved via self-
consistency. The found N absolute transformation parameters are 
used to retrodict the N(N – 1)/2 relative transformation parameters, 
which can then be compared with the values found from the all-to-
all registration. Registration pairs with a deviation in these relative 
transformation parameters that is too high (defined by a suitable 
threshold) are discarded before the second round of Lie-algebraic 
averaging. This removal of outlier registration pairs results in a 
reconstruction that is used in a final step as a data-driven model to 
bootstrap the registration process. This last step is especially effec-
tive for samples with low DOL.

The major drawback of all-to-all registration is the computa-
tional cost, which scales as N2 instead of as N for a template-based 
registration. Therefore, we devised a computationally efficient 
implementation of the registration algorithm. The starting point is 
the Bhattacharya cost function14:
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where the two particles t and m are represented by Kt and Km local-
izations, → → ∈x x R,t m

n are the localization coordinates of the two par-
ticles (where n is the number of spatial dimensions), RΣ Σ ∈ ×,t m

n n 
are the corresponding uncertainties of the form Σ σ σ= …diag( , , )n1

2 2 ,  
and → = →+ →M x Rx s( )  is the function that applies rotation (R) and 
translation (→s ) to position →x . This cost function has the advantage 
that it works directly on localization data, thereby eliminating the 
need for a pixelated representation of the SMLM data. Furthermore, 

Template-free 2D particle fusion in localization 
microscopy
Hamidreza  Heydarian   1, Florian Schueder2,3, Maximilian T. Strauss2,3, Ben van Werkhoven   4, 
Mohamadreza Fazel5, Keith A. Lidke   5, Ralf Jungmann   2,3, Sjoerd Stallinga1 and Bernd Rieger   1*

NATuRe MeTHoDS | VOL 15 | OCTOBER 2018 | 781–784 | www.nature.com/naturemethods 781

mailto:b.rieger@tudelft.nl
http://orcid.org/0000-0003-1341-3165
http://orcid.org/0000-0002-7508-3272
http://orcid.org/0000-0002-9328-4318
http://orcid.org/0000-0003-4607-3312
http://orcid.org/0000-0001-9215-9307
http://www.nature.com/naturemethods


Brief CommuniCation NAtuRe MethoDs

it can take into account (varying and anisotropic) localization 
uncertainties. To reduce the computational cost, we prealign the 
particles by using a fast Gaussian-mixture-model-based registration 

method17 (details in the Methods section). We further speed up the 
computation by implementing both the Gaussian mixture model 
and the Bhattacharya cost function evaluation on a GPU.
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Fig. 1 | Template-free 2D particle averaging for localization microscopy. a, Schematic representation of the DNA origami for a grid structure designed 
to carry 37 DNA-PAINT docking sites, generating the ‘TUD’ logo. Strands are color-coded to denote strand extensions. b, Regions of interest in a DNA-
PAINT SMLM image reconstructed from many particles. c,d, Magnified images of highlighted areas c and d in b depicting similar copies of the structure 
with different orientations. e, All-to-all registration schematic showing all N(N – 1)/2 pairwise registrations (red crosses). The N absolute registration 
parameters (translation and rotation) are robustly obtained from the redundant relative registration parameters. f, The final reconstruction resulting from 
fusion of 383 individual particles. g, The average FRC curve for the final reconstruction in f, showing an image resolution of 3.3 ±  0.3 nm (the red line 
indicates the intersection of the FRC curve with the threshold).
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Fig. 2 | Particle fusion for underlabeled datasets. a,b, Two example raw particles with 50% DOL. c–e, The evolving super-particle for the dataset 
with 50% DOL. All-to-all registration and averaging of 442 logos with 50% DOL resulted in the blurry reconstruction shown in c. This was improved 
by the removal of outlier registrations (d), and the resulting image was subsequently used as the data-driven model in an all-to-template registration 
(bootstrapping). The final reconstruction in e illustrates the super-particle with around 280,000 localizations. f, Reconstruction generated by EMAN.2 
software with 253 included particles and the minimum of three classes for the class averaging. g,h, Two example raw particles with 30% DOL. i–k, The 
evolving super-particle for the dataset with 30% DOL. Similar to c–e, each image depicts the output of a step in the particle-fusion pipeline. The final 
reconstruction in k is the result of fusion of 549 logos with around 250,000 localizations. l, Reconstruction generated by EMAN.2 software with 113 
included particles and the minimum of three classes for the class averaging. EMAN.2 did not produce any meaningful reconstruction for 30% DOL. In all 
of the reconstructions in each row, the number of localizations is the same except for the EMAN.2 images, where classification excludes 42% and 79% of 
the data for 50% and 30% DOL, respectively. Scale bar in h applies to a,b,g; scale bar in l applies to c–f and i–k.
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We tested our method on three different datasets with ~80%, 
~50% and ~30% DOL, respectively. The datasets contained 2D 
DNA origami nanostructures with 37 designed binding sites on a 
hexagonal grid with 5-nm spacing, arranged to display the letters 
TUD (Fig. 1a). We imaged these nanostructures with DNA-PAINT9 
(Methods) to obtain an SMLM image (Fig. 1b–d shows part of the 
full field of view). Manual segmentation of the 80% DOL dataset 
resulted in 383 instances of the imaged logos, which we fed into 
the all-to-all registration pipeline (Fig. 1e). The average number 
of localizations per particle was around 2,060, and the mean local-
ization uncertainty was 0.81 ±  0.26 nm. Figure 1f shows our final 
reconstruction, which has excellent correspondence to the designed 
origami (Supplementary Videos 1 and 2). The image resolution, 
quantified with the FRC value2, was 3.3 nm for the reconstruction 
(Fig. 1g), a value close to λ/175 (with λ =  580 nm as the fluorescence 
emission wavelength). The reconstruction quality for the outside of 
the origami was consistent with the low incorporation efficiency of 
strands on the outside of origamis observed previously18.

We further benchmarked the proposed particle-fusion algorithm 
with lower-DOL PAINT data. Figure 2 illustrates the evolution of 
the reconstruction through the different steps of the fusion pipe-
line. We obtained these images by fusing (manually segmented) 442  
(Fig. 2a–c and Supplementary Videos 3 and 4) and 549 (Fig. 2d–f 
and Supplementary Videos 5 and 6) TUD logos for the 50% and 30% 
DOL datasets, respectively. With an average number of localizations 
per particle of 630 and 453 for 50% and 30% DOL, respectively, we 

were able to reconstruct the logo, which was unrecognizable in the 
raw data (Fig. 2c,f and Supplementary Videos 4 and 6). The final 
reconstructions for 50% and 30% DOL data consisted of around 
280,000 and 250,000 localizations, respectively. The fusion of raw 
particles led to an FRC resolution of 3.5 nm and 5.0 nm for 50% and 
30% DOL, respectively. We also compared our approach with the 
very popular cryo-EM software package EMAN.25. Although the 
software-based reconstruction for 50% DOL was similar in visual 
appearance to that obtained via our approach, EMAN.2 did not pro-
duce any part of the logo for 30% DOL (Fig. 2f,l). The final recon-
struction quality in our method seemed to be limited by residual 
drift on the order of 1–2 nm, as assessed by visual comparison with 
simulated data (Supplementary Fig. 1). This was further supported 
by simulation results without drift (Supplementary Note 1 and 
Supplementary Fig. 2). In additional simulations we observed that 
average localization uncertainties larger than the binding-site dis-
tance resulted in unresolvable binding sites in the final reconstruc-
tion, even with perfect registration (Supplementary Fig. 3).

Although our particle-fusion method performed robustly even 
for low DOLs, it could not neutralize the effect of false positive 
localizations. We used conventional single-emitter fitting followed 
by localization filtering on the basis of the local sparsity of local-
ization events (details in the Methods; compare Supplementary 
Videos 1 and 2, as well as Supplementary Videos 7 and 8). As 
an alternative, methods that better handle spatially proximate 
emitters19 or that detect and remove false positives13 can be used 
(Supplementary Fig. 4).

In addition to the above PAINT data, we applied our method 
to experimental and simulated localization data that included 
bleaching, and therefore had a different statistical distribution of 
localization events per fluorophore20. We analyzed stochastic opti-
cal reconstruction microscopy (STORM) images acquired from 
the integral membrane protein gp210 in the nuclear pore complex 
(NPC; data described previously3), from which we manually seg-
mented 304 NPCs with an average of 313 localizations. Figure 3a 
shows our reconstruction, which reproduced the ring structure of 
the NPC without any prior assumptions. The ‘hot spot’ in Fig. 3a,b 
is a reconstruction artifact caused by the nonuniform distribution 
of localizations over the eight sites of each individual NPC. This 
statistical variation is enhanced during the registration step, as 
rings are most likely to be registered such that the sites with more 
than the average number of localizations become aligned. One can 
eliminate this artifact by taking into account the symmetry as prior 
knowledge (but not any other structural information). We ran-
domly added multiples of 2π /8 to the obtained absolute estimated 
rotation angles, which led to the uniform distribution depicted 
in Fig. 3c,d. Using EMAN.2, we obtained the averages shown in  
Fig. 3e,f, exhibiting a set of eight blobs with less visibility than 
achieved with our method, and showing the same hot spot artifact. 
We did not succeed in including the symmetry in EMAN.2, as there 
was no access to the estimated absolute angles and no way to explic-
itly impose the symmetry.

We also tested the applicability of our method to simulated 
STORM images (Supplementary Note 1). We generated TUD logos 
at 65% DOL with three different bleaching rates corresponding to 
average numbers of localizations per site of ~33, ~13 and ~7, respec-
tively. Our method successfully reconstructed the logo for all three 
sets, whereas EMAN.2 succeeded only at the lowest bleaching rate 
(Supplementary Fig. 5). We compared STORM with PAINT-type 
data, keeping the labeling density and average number of localiza-
tions per particle the same (Supplementary Fig. 6), and found that 
the STORM images required a higher labeling density for successful 
reconstruction (~50% DOL, compared with ~30% for PAINT). We 
attribute this to bleaching effects, which skew the distribution of 
localizations per binding site and thus effectively decrease the frac-
tion of sites with sufficiently high labeling density.
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Fig. 3 | Particle fusion with (direct) SToRM data for the NPC integral 
membrane protein gp210. a, Fusion of 304 NPCs by our method retrieved 
the eightfold symmetric ring structure without prior knowledge.  
b, Localization distribution over azimuthal angles of the reconstruction in 
a. c, Reconstruction after incorporation of the eightfold symmetry in the 
registration, which resolved the hot-spot artifact. d, Localization distribution 
over azimuthal angles of the reconstruction in c. e, Reconstruction by 
EMAN.2 resulted in 139 included particles (minimum of three classes 
for class averaging). f, Azimuthal intensity plot of e. In the EMAN.2 
reconstruction, the hot-spot artifact is present, and the visibility is worse 
than that achieved with our method. Scale bar in e applies to a,c.
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In summary, we have developed a template-free 2D particle-
fusion algorithm for SMLM data that is robust to poor experimen-
tal conditions. We benchmarked the performance on PAINT data, 
and achieved a resolution of 3.3 nm for 80%, 3.5 nm for 50% and 
5.0 nm for ~30% DOL. We successfully reconstructed an eight-
fold symmetric ring structure from STORM data without a pri-
ori structural information. The framework can be generalized to 
treat 3D data, as individual subcomponents of the pipeline are not 
restricted to 2D.

online content
Any methods, additional references, Nature Research reporting 
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Methods
Materials. Unmodified, dye-labeled and biotinylated DNA oligonucleotides were 
purchased from MWG Eurofins. Streptavidin was purchased from Invitrogen 
(S-888). BSA–biotin was obtained from Sigma-Aldrich (A8549). Coverslips 
were purchased from Marienfeld (18 ×  18 mm, #1.5; catalog number 0107032). 
Microscopy slides were ordered from Thermo Fisher Scientific (10756991). 
Double-sided adhesive tape was purchased from Scotch (665D). Epoxy glue was 
ordered from Toolcraft (TC-EPO5-24). M13mp18 scaffold was obtained from 
New England Biolabs (N4040s). Freeze ‘N Squeeze columns were ordered from 
Bio-Rad (7326165). Agarose was obtained from Biomol (01280.100). 50×  TAE 
buffer was ordered from Fluka Analytical (67996-10L-F). SYBR Safe DNA gel stain 
was purchased from Invitrogen (SS33102). DNA gel loading dye was ordered from 
Thermo Fisher Scientific (R06111). Protocatechuate 3,4-dioxygenase pseudomonas 
(PCD) (P8279), 3,4-dihydroxybenzoic acid (PCA) (37580-25G-F) and (+ –)- 
6-hydroxy-2,5,7,8-tetra-methylchromane-2-carboxzlic acid (Trolox) (238813-5G)  
were obtained from Sigma. 1 M Tris, pH 8.0 (AM9856), 1 M magnesium 
(AM9530G), 0.5 M EDTA, pH 8.0 (AM9261), and 5 M NaCl (AM9759) were 
obtained from Ambion. H2O (10977-035) was ordered from Gibco. Tween 20 was 
ordered from Sigma-Aldrich (p2287).

Microscopy setup. DNA-PAINT experiments were carried out on an inverted 
Nikon Ti-Eclipse microscope (Nikon Instruments) with the Perfect Focus 
System. For the experiment, an oil-immersion objective (Plan Apo 100× /1.49-
NA (numerical aperture); Nikon Instruments) was used. As the excitation laser, a 
561-nm (200 mW nominal; Coherent) was used. Excitation light was filtered with 
a laser clean-up filter (zet561/10× ; Chroma Technology Corp). As the dichroic, a 
laser dichroic mirror was used (zt561rdc; Chroma Technology Corp). Fluorescent 
light was spectrally filtered with an emission filter (et575lp, et600/50 m; Chroma 
Technology Corp) and imaged on a scientific complementary metal-oxide 
semiconductor (sCMOS) camera (Zyla 4.2; Andor Technologies).

DNA origami self-assembly. The DNA origami structures were formed in a 
one-pot reaction with a 50-μ l total volume containing 10 nM scaffold strand 
(M13mp18), 100 nM core staples, 1 μ M biotinylated staples and 1 µ M staples 
extended with DNA-PAINT docking sites for the 20-nm grid and 10-nm grid 
drift markers. For samples with the TUD logo at 80% DOL, we used a 1 μ M 
concentration of staples extended for DNA-PAINT. For 50% DOL of the TUD logo, 
we used a mixture of 0.8 µ M extended staples and 0.2 µ M not-extended staples. For 
30% DOL, we used a mixture of 0.6 µ M extended staples and 0.4 µ M not-extended 
staples. The folding buffer was 1×  TE buffer with 12.5 mM MgCl2. The structures 
were annealed using a thermal ramp. We incubated samples first for 5 min at 80 °C, 
then from 65 °C to 4 °C over the course of 3 h. After self-assembly, the structures 
were mixed with 1×  loading dye and then purified by agarose gel electrophoresis 
(1.5% agarose, 0.5×  TAE, 10 mM MgCl2, 1×  SYBR Safe) at 3 V/cm for 3 h. Gel bands 
were cut, crushed and filled into a Freeze ‘N Squeeze column and spun for 5 min at 
1,000g at 4 °C. As the DNA-PAINT docking site, we used a TT spacer followed by a 
9-nt 3′  extension (5′ -staple-TT-ATACATCTA-3′ ). The imager was the 9-nt reverse 
complement of the docking site with a Cy3b fluorescent molecule attached at the 3′  
end (5′ -TAGATGTAT-dye-3′ ).

Super-resolution DNA-PAINT imaging with DNA origami. For chamber 
preparation, a piece of coverslip (no. 1.5, 18 ×  18 mm2, ~0.17 mm thick) and a 
glass slide (3 ×  1 inch2, 1 mm thick) were held together by two strips of double-
sided tape to form a flow chamber with an inner volume of ~20 μ l. First, 20 μ l of 
biotin-labeled bovine albumin (1 mg/ml, dissolved in buffer A (10 mM Tris-HCl, 
pH 7.5, 100 mM NaCl, 0.05% Tween 20, pH 7.5)) was flowed into the chamber 
and incubated for 2 min. Then the chamber was washed with 40 μ l of buffer A. 
Second, 20 μ l of streptavidin (0.5 mg/ml, dissolved in buffer A) was flowed through 
the chamber and incubated for 2 min. Next, the chamber was washed with 40 μ l 
of buffer A and subsequently with 40 μ l of buffer B (5 mM Tris-HCl, pH 8, 10 mM 
MgCl2, 1 mM EDTA, 0.05% Tween 20, pH 8). Then ~100 pM TUD DNA origami 
structures, ~100 pM 10-nm grid DNA origami structures and ~200 pM 20-nm 
DNA origami structures were flowed into the chamber and allowed to bind for 
2 min. Afterward the chamber was washed with 40 μ l of buffer B. Finally, the 
imaging buffer with buffer B and 1×  Trolox, 1×  PCA and 1×  PCD9 with the Cy3b-
labeled imager strand was flowed into the chamber. The chamber was sealed with 
epoxy before subsequent imaging. For the 30% and 80% DOL experiments, we 
used an imager concentration of 1 nM. For the 50% DOL experiment, we used 
an imager concentration of 2 nM. At the end, we determined the actual labeling 
densities by counting the number of occupied sites on each particle and comparing 
it with the number of designed sites on the logo (37).

For all three experiments (80%, 50% and 30% DOL), an Andor Zyla  
4.2 with a readout bandwidth of 200 MHz at 16 bit was used. We applied  
2 ×  2 pixel binning, which resulted in an effective pixel size of 130 nm  
(taking the 100×  magnification of the microscope into account). The recorded  
field of view was 512 ×  512 pixels (66.5 ×  66.5 µ m). Acquisition frame rates of 
2.86 Hz for the 50% and 30% DOL cases and 3.33 Hz for the 80% DOL case  
were used over the course of 100,000 frames. The excitation intensity was 
~1.86 kW/cm2 at 561 nm at the sample plane.

Single-emitter and multi-emitter fitting of experimental data. Single-molecule 
reconstruction and drift correction were performed as described9. The average 
numbers of photons per localization event for 80%, 50% and 30% DOL were 
7.0 ×  104, 4.9 ×  104 and 5.3 ×  104, and the background photon counts per frame per 
pixel were 1.1 ×  103 for 80% and 50% and 0.9 ×  103 for 30%. Average uncertainties 
were 0.96 nm, 1.33 nm and 1.28 nm for the 80%, 50% and 30% DOL datasets, 
respectively. The uncertainties were estimated per localization from the data as 
previously reported21. We post-processed data by omitting localizations with 
localization uncertainties of more than 2 nm. To reduce the effect of false positive 
localization in single-emitter-fitted datasets, we filtered 80% and 50% DOL datasets 
before fusion. In each segmented particle, localizations were discarded if there were 
fewer than ten localizations in a circular neighborhood of radius r =  0.015 pixels 
around the localization of interest (Supplementary Fig. 7 describes the effects of 
filtering on the final reconstruction). The effect of false positives on the 30% DOL 
data was less serious because the probability of overlapping emission patterns was 
low in that dataset. Therefore, for single-emitter-fitted 30% DOL data, we did not 
filter the raw particles.

Multi-emitter fitting was performed in the following way. Sub-regions 
identified as containing TUD logos were selected from the raw data for multi-
emitter fitting. Each time frame in each TUD-containing sub-region was analyzed 
independently. We carried out multi-emitter fitting by finding the posterior 
probability distribution of the parameters θ α β γ= …x y I x y I{ , , , , , , , , , }N N N1 1 1  
using Markov chain Monte Carlo (MCMC), where xn, yn and In correspond to the 
location and intensity of the nth emitter, and α, β and γ parameterize a tilted-plane 
background model. The mean and s.d. of xn, yn were used for further analysis. We 
initialized the MCMC chain by first using a reversible-jump MCMC22 procedure 
to find the most probable number of emitters and their locations. We created the 
point spread function (PSF) model used in the fitting by localizing, shifting and 
averaging together more than 100 high-signal single-emitter events from the raw 
data. We created a 4×  sub-sampled PSF by padding the Fourier transform. The 
model of each single emitter was created by linear interpolation of the sub-sampled 
PSF and scaling by I. The xn, yn values were connected across time frames, and only 
binding events that spanned two or more frames were retained. False positive and 
large uncertainty localizations were removed from the data. A large uncertainty 
was defined as an s.d. larger than 0.0075 pixels. We removed false positives by 
keeping localizations if they had Nmin localizations within a distance D. For each 
dataset, we found Nmin and D by taking D as the median localization uncertainty 
(before thresholding) and Nmin as the median number of localizations within a 
distance D. On the basis of visual inspection of several origami structures, we then 
adjusted Nmin and D to minimize false localizations between docking stands while 
retaining as many localizations as possible. For 80%, 50% and 30% DOL labeling, 
the values used for Nmin and D were 10, 10 and 9 localizations within 0.0075, 0.008 
and 0.0095 pixels, respectively (pixel size: 130 nm).

The final distribution of localizations per particle (Supplementary Fig. 8) 
agreed qualitatively with the assessed DOL for the three datasets. The width of the 
distributions was an indication that the overall distribution was a convolution of 
the Poisson distribution of the number of localizations per binding site and the 
distribution of active binding sites according to the average DOL.

All-to-all registration. The developed particle-fusion algorithm consists of four 
main building blocks: (1) computation of the upper triangular matrix A that 
contains all relative registrations (Fig. 1e), which we call the all-to-all registration 
matrix; (2) calculation of the absolute orientations from these relative elements; (3) 
registration outlier removal; and (4) bootstrapping of the registrations.

Relative registrations. Each element of the matrix A is obtained through 
optimization of equation (1) in a coarse-to-fine manner. We aligned each pair 
of particles by using the Gaussian mixture model (GMM) registration method17 
with multiple initial angles. This provided us with a set of transformation 
parameters (rotation angle, translation vector), out of which we selected the set that 
maximized the Bhattacharya cost function as the final value for the set of relative 
transformation parameters for that pair. The GMM registration method minimizes 
the special case of the Bhattacharya cost function in which all localization 
uncertainties are equal:

∑ ∑ σ= −∥ − ∥
= =

→ →
D x M xexp( ( ) / 2 ) (2)
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t i m j
1 1
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2 2
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For this case, there exists an analytical approximation to the problem with only 
linear computational complexity17. Here, σ is a tuning parameter that is dataset 
specific and which we set empirically to 0.01 ×  l, where l is the camera pixel size in 
nanometers, for 80% and 50% DOL, and to 0.1 ×  l for 30% DOL experimental data. 
We optimized the GMM cost function by using the interior-point algorithm for 
multiple initial angles ranging from –π to π evenly spaced by π/4. The Bhattacharya 
cost function equation (1) is evaluated for each of the found local optima of the 
GMM cost function, and the set of transformation parameters with the optimum 
Bhattacharya cost function is finally selected. This procedure results in an all-to-
all registration matrix A with N(N – 1)/2 relative registration parameters. Each 

NATuRe MeTHoDS | www.nature.com/naturemethods

http://www.nature.com/naturemethods


Brief CommuniCation NAtuRe MethoDs

element aij, i,j ∈ … N{1, , }, ∀ j >  i, of this matrix is the set of estimated relative rigid 
transformation parameters Mij that aligns particle i to particle j:
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with Rij ∈SO n( )  and tij R∈ ×n 1 being the relative rotation matrix and the translation 
vector, respectively, in n spatial dimensions.

From relative to absolute transformation parameters. To properly align all particles 
without bias toward the final reconstruction, we need to estimate the absolute 
transformation parameters Mi for i =  1,… , N. The consistency equation that relates 
the relative parameters to absolute parameters is

= ∀ >−M M M j i, (4)ij j i
1

Direct linear numerical solution of equation (4) is difficult because the Mi contain 
a rotation matrix that is modulo 2π. To handle this problem, we use the (smooth) 
Lie-algebraic representation of the transformation16,23, which solves the following 
optimization problem instead:

∑ ρ
…

>
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(5)M M i j

i j

ij j i
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with distance function d(X, Y) =  ||log(YX–1)||F, with F denoting the Frobenius norm 
(square root of the sum of absolute squares of the elements of the matrix) and 
ρ(x) =  |x| the L1 loss function. The use of this norm makes the procedure robust to 
outliers24. This is important, as the registration can be trapped in a local minimum 
for nearly symmetric particles at 180° rotations. We solve the optimization problem 
in equation (5) by using an iterative gradient descent approach16,25. For our 2D 
geometry, we use as input a matrix with 4 ×  4 ×  N(N – 1)/2 elements that holds 
the N(N – 1)/2 stack of all the relative matrices Mij of size 4 ×  4 together with the 
indicator matrix of size 2 ×  N(N – 1)/2, which stores the correspondence indices  
of N(N – 1)/2 particle pairs.

Removal of outlier registrations via self-consistency. After the first round of Lie-
algebraic averaging, N sets of absolute transformation parameters are obtained. By 
plugging them into equation (4), one obtains N(N – 1)/2 relative transformation 
parameters M̂ij, which can differ from the parameters Mij estimated from the all-
to-all registration. It appears that these differences are mostly in the rotation rather 
than the translation; thus, we do this consistency check on the basis of ̂Rij only  
(or equivalently in 2D the angle αîj). Supplementary Fig. 9 shows the histograms of 
the quantity α α∣ ̂ − ∣ij ij  for different DOL. Next to the correct pair registrations (the 
central peak) there are clearly outliers. Furthermore, the outlier fraction increases 
when the DOL decreases. Removal of these outlier registrations is therefore 
mandatory. We implemented this by excluding registration pairs with α α ε∣ ̂ − ∣ >ij ij ,  
where ε is a threshold parameter, for a second round of Lie-algebraic averaging. 
Assuming that the all-to-all registration matrix A is a graph in which each matrix 
element Aij is an edge that connects node (particle) i to node j, we can perform the 
optimization as long as this graph is connected, that is, for every pair there is at 
least one path connecting them. Intuitively, the outlier-removal step is equivalent to 
optimization of this graph for the most consistent path through all the nodes. For 
very low DOL, most of these paths are inconsistent. Therefore, a smaller threshold 
results in a better reconstruction as long as the number of remaining new relative 
parameters is greater than N – 1. In this work, we set the threshold parameter ε =  5° 
because that is the smallest angle that still keeps the graph of all-to-all registration 
for the worst dataset (30% DOL) connected. This step does not remove particles 
from the fusion; it only filters the redundant set of registration parameters. The 
large fraction of outlier pair registrations is the reason that the redundancy of 
the all-to-all registration is needed to achieve a robust fusion pipeline, and why a 
pyramid registration would lead to an inferior reconstruction (because of the error 
propagation from the randomly picked wrong pair registrations at the bottom layer 
of the pyramid). It is worth mentioning that this step is actually a simplified variant 
of the RANSAC-based motion averaging scheme as detailed in ref. 25. We obtain, 
however, the absolute angles in step 2 by using all available relative angles instead 
of computing the initial absolute angles based on the minimum number of relative 

angles, that is, N – 1. This is especially important for very low DOL datasets, as 
the result of averaging only N – 1 random relative angles will be too corrupted to 
provide a good initial start for RANSAC.

Bootstrap registrations. The above steps are enough to provide a good 
reconstruction. It is, however, beneficial to use the outcome as a data-driven 
model/template to realign all individual particles to this model, that is, bootstrap 
the registrations25. The all-to-template registration, in this step, uses the 
registration of every single particle to a resampled version of the super-particle 
from step 3. The resampling is crucial, as the goal is to do the realignment on 
the basis of the most consistent localizations in the dense areas of the previous 
reconstruction. We randomly draw samples from the total set of localizations with 
a probability density function proportional to the density of localizations. We 
set the number of resampled localizations to 5,000 for the experimental data, as 
it represents about 2 particles for 80% DOL and 5–10 particles for 50% and 30% 
DOL, which already gives a good overall shape. This value must not be too large, 
as high values can lead to overfitting to noise (false positives in the data). For 
the 50% DOL dataset, we obtained a better reconstruction when we repeated the 
bootstrapping twice (Supplementary Fig. 10). It seems that after two iterations, the 
registration has converged. For 80% DOL, the reconstruction already converged 
at the first iteration, whereas for 30% DOL, the image got worse because of the 
two very dense areas. Finally, we registered each of the raw particles to the data-
generated template using the routine as described in step 1. We benchmarked the 
performance of our proposed registration method on simulated 100% DOL data 
for which we had the ground-truth registration parameters. Supplementary Fig. 11  
shows the histogram of the overall error between the final estimated angles and 
the ground truth from simulation. The histogram fits a normal distribution with 
an s.d. of 0.9°. Considering the dimensions of the origami, this error will result in a 
displacement of ± 0.55 nm at the edges of the logo in the worst case, indeed smaller 
than the minimum binding-site distance and approximately equal to the average 
localization uncertainty. The corresponding reconstruction in Supplementary  
Fig. 2g also indicates a perfect match with the origami design.

Computational complexity. We achieved a complete all-to-all registration of 383 
structures (resulting in ~73,000 pair registrations) of on average 2,060 localizations 
per origami (80% DOL) on four K40c Tesla cards on a 40 core server (Xeon E5-
2670v3) in 2 h, and in 40 h on a cheap GPU in a regular desktop PC (Quadro 
K620, 2 GB RAM, 8 core Xeon E5-1660v3). These run times correspond to the 
most computationally expensive dataset. However, in practice, for highly labeled 
data, averaging a small subset of registrations can yield a fast but high-quality 
reconstruction (Supplementary Video 9). Supplementary Fig. 12 shows the 
reconstruction of 80% DOL data with only ~2% of the registration pairs with a 
computational time of ~10 min.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. The software is available as Supplementary Software. 
Updated versions are free for download from https://github.com/imphys/smlm_
datafusion2d. The computational functions on the GPU were implemented and 
optimized with Kernel Tuner (https://zenodo.org/record/1220114).

Data availability
Localization data are available at https://doi.org/10.4121/uuid:0d42a28f-f625-41a3-
ba77-25e397685466.
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