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Abstract

R untime reconfigurable systems built upon devices with partial recon-
figuration can provide reduction in overall hardware area, power ef-
ficiency, and economic cost in addition to the performance improve-

ments due to better customization. However, the users of such systems have
to be able to afford some additional costs compared to hardwired application
specific circuits. More precisely reconfigurable devices have higher power
consumption, occupy larger silicon area and operate at lower speeds. Higher
power consumption requires additional packaging cost, shortens chip life-
times, requires expensive cooling systems, decreases system reliability and
prohibits battery operation. The less efficient usage of silicon real estate is
usually compensated by the runtime hardware reconfiguration and functional
units relocation. The available configuration data paths, however, have limited
bandwidth that introduces overheads that may eclipse the dynamic reconfigu-
ration benefits. In this dissertation, we address three major problems related
to hardware resources runtime management: efficient online hardware task
scheduling and placement, power consumption reduction and reconfiguration
overhead minimization. Since hardware tasks are allocated and deallocated
dynamically at runtime, the reconfigurable fabric can suffer of fragmentation.
This can lead to the undesirable situation that tasks cannot be allocated even
if there would be sufficient free area available. As a result, the overall sys-
tem performance is degraded. Therefore, efficient hardware management of
resources is very important. To manage hardware resources efficiently, we
propose novel online hardware task scheduling and placement algorithms on
partially reconfigurable devices with higher quality and faster execution com-
pared to related proposals. To cope with the high power consumption in field
programmable devices, we propose a novel logic element with lower power
consumption compared to current approaches. To reduce runtime overhead,
we augment the FPGA configuration circuit architecture and allow faster re-
configuration and relocation compared to current reconfigurable devices.
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1
Introduction

N owadays, digital electronic systems are used in a growing number of
real life applications. The most flexible and straight forward way to
implement such a system is to use a processor that is programmable

and can execute wide variety of applications. The hardware, a general-purpose
processor (GPP) in this case, is usually fixed/hardwired, whereas the software
ensures the computing system flexibility. Since such processors perform all
workloads using the same fixed hardware, it is too complex to make the hard-
ware design efficient for a wide range of applications. As a result, this ap-
proach cannot guarantee the best computational performance for all intended
workloads. Designing hardware devices for a particular single application, re-
ferred as Application-Specific Integrated Circuits (ASICs), provides a system
with the most efficient implementation for the given task, e.g., in terms of per-
formance but often area and/or power. Since this requires time consuming and
very costly design process along with expensive manufacturing processes, it
is typically not feasible in both: economic costs and time-to-market. This so-
lution, however, can become interesting when very high production volumes
are targeted. Another option that allows highly flexible as well as relatively
high performance computing systems is using reconfigurable devices, such as
FPGAs. This approach aims at the design space between the full custom ASIC
solution and the General-Purpose Processors. Often platforms of this type in-
tegrate reconfigurable fabric with general-purpose processors and sometimes
dedicated hardwired blocks. Since such platforms can be used to build arbi-
trary hardware by changing the hardware configuration, they provide a flexible
and at the same time relatively high performance solution by exploiting the in-
herent parallelism in hardware. Such systems where hardware can be changed
at runtime are referred as runtime reconfigurable systems. A system involving
partially reconfigurable (FPGA) device can change some parts during runtime
without interrupting the overall system operation [1, 83, 154]. For example,
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Radio Receiver

Video

Player

MP3 Player

User2

User3
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Figure 1.1: Running multiple applications concurrently on a partially reconfigurable
device

while user1 is watching her exciting film, user2 can use part of the unoccupied
hardware resources to enjoy listening to his favorite song without interrupting
other user tasks running (e.g., the task used by user3 to listen to her favorite
radio station) as illustrated in Figure 1.1. In this thesis, we target runtime re-
configurable systems that integrate tightly coupled general-purpose processor
and a reconfigurable device, e.g., FPGA. This chapter provides the overview
of the research presented in this dissertation. The main problems in runtime
reconfigurable systems, addressed in this dissertation, are introduced in Sec-
tion 1.1. In Section 1.2, we discuss briefly the main contributions of our work.
The overall organization of this dissertation is presented in Section 1.3.

1.1 Problem Overview

Current devices used in runtime reconfigurable systems have the ability to re-
configure parts of their hardware resources without interrupting the normal
operation of processing elements instantiated on the remaining fabric. Run
time configuration has been used in several application areas and implemen-
tations, e.g., network crossbar switches [2], image interpolation [3], video
coding [4], cryptography [5], neural network implementation [6], image pro-
cessing [7], image compression [8], filters [9], matrix multiplications [9], mo-
tion estimation [10], mechatronics [11], Viterbi decoding [12] [14], multime-
dia player [13], Department of Defense (DOD) systems [15], Reed-Solomon
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Coder/Decoder [16], among many others.

Exploiting partially reconfigurable devices for runtime reconfigurable systems
can offer reduction in hardware area [6] [3] [4] [5] [8] [9] [11] [13], power
consumption [5] [10] [12] [14] [61] [83] [84], economic cost [5], bitstream
size [15], and reconfiguration time [15] [16] [83] [154] in addition to perfor-
mance improvements [5] due to better resource customization. To make better
use of these benefits, one important problem that needs to be addressed is
hardware task scheduling and placement. Since hardware tasks are allocated
and deallocated dynamically at runtime, the reconfigurable fabric can suffer of
fragmentation. This can lead to undesirable situations where tasks cannot be
allocated even if there would be sufficient free area available. As a result, the
overall system performance will be penalized. Therefore, efficient hardware
management of resources is very important.

Hardware task scheduling and placement algorithms can be divided into two
main classes:offlineandonline. Offline assumes that all task properties (e.g.,
arrival times, task sizes, execution times, and reconfiguration times) are known
in advance. The offline version can then perform various optimizations before
the system is started. In general, the offline version has much longer time to
optimize system performance compared to the online version. However, the
offline approach is not applicable for systems where arriving tasks properties
are unknown beforehand. In such general-purpose systems, the online version
is the only possible alternative. In contrast to the offline approach, the online
version needs to take decisions at runtime; as a result, the algorithm execu-
tion time contributes to the overall application latency. Therefore, the goal of
the online scheduling and placement algorithms is not only to produce bet-
ter scheduling and placement quality, they also have to minimize the runtime
overhead. In this thesis, we focus on online scheduling and placement since we
strongly believe it represents a more genetic situation. The online algorithms
have to quickly find suitable hardware resources on the partially reconfigurable
device for the arriving hardware tasks. In cases when there are no available re-
sources for allocating the hardware task at its arrival time, the algorithms have
to schedule the task for future execution.

Field-Programmable Devices (FPDs) are integrated circuits that can be
(re)configured by their end users to implement various digital functions [17].
There are three FPD main categories: Simple Programmable Logic Devices
(SPLDs), Complex PLDs (CPLDs) and Field-Programmable Gate Arrays (FP-
GAs) [17]. The main difference between PLDs and FPGAs is in the avail-
able number of logic inputs and the available logic capacities. While FPGAs
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have much higher logic capacity (and flip-flop to logic ratio),CPLDs offer
more logic inputs. Advantages of using field-programmable devices (FPDs)
in runtime reconfigurable systems are instant manufacturing turnaround, re-
duced start-up costs, low financial risk, short time-to-market and easy design
changes [17]. However to get these benefits, the users need to pay additional
costs: higher power consumption (approximately 12x larger dynamic power),
larger silicon areas (40x more area required) and lower operating speeds (3.2x
slower), as compared to the ASICs [18]. Higher power consumption requires
expensive packaging [19] [20] [21], shortens chip life-times [19], asks for
costly cooling systems [19] [20] [21], decreases system reliability [21] and
prohibits battery operations [19] [20] [21]. Therefore, reducing the power con-
sumption of FPDs (CPLDs and FPGAs) is a critical issue.

An FPGA device can be used to build arbitrary hardware circuits (same as
any ASIC could implement) by reconfiguring and interconnecting its config-
urable logic elements (LEs) in different ways. Each LE contains a lookup
table (LUT) as a configurable combinational circuit and a flip-flop (FF) as a
storage element. A group of LEs forms configurable logic block (CLB). The
CLB is the basic logic element used by Xilinx FPGAs. A somehow similar
approach is used by Altera to organize LEs in clusters called logic array blocs
(LABs). The complexity of the FPGAs in terms of available CLBs or LABs
is growing very fast with the CMOS technology improvements and now al-
lows the implementation of complete systems. Modern FPGAs can be used
to implement circuits with complexity up to 474240 LUTs and 948480 FFs
as shown in Table 1.1. The FPGA device can be reconfigured by changing
the content of its configuration memory. The configuration memory content,
called bitstream (BS) can be up to 185 Mbits and has to be transported to the
FPGA internal memory using a dedicated configuration data path. Configu-
ration data paths have usually limited bandwidth, hence, the time needed to
send the configuration bits (calledreconfiguration time) can be up to 58 ms for
current technology with 32-bit wide configuration data path operating at 100
MHz. High reconfiguration time overhead can eclipse the benefits of dynam-
ically reconfigurable systems. Therefore, it is very important to address this
overhead. In addition, to use the FPGA resources more effectively and to cope
with FPGA area fragmentation during runtime, one needs to easily reorganize
the positions of running tasks, hence fast relocation is also necessary.

In this thesis, we assume pre-designed hardware tasks where for each task at
least two options for execution exist: as software task on general-purpose pro-
cessor or as hardware unit on the reconfigurable fabric. In the assumed system,
each task can arrive at any time and its properties are unknown to the sys-
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Table 1.1: Virtex FPGAs

FPGAs LUTs FFs Bitstream size(Mbits) Reconfiguration time(ms)
Virtex-4 178176 178176 51 16
Virtex-5 207360 207360 83 26
Virtex-6 474240 948480 185 58

tem beforehand. This models real situations in which the timewhen the user
requests system resources for his/her usage is unknown. As a result, the en-
visioned system has to provide support for runtime hardware tasks placement
and scheduling since this cannot be done statically at system design time. Sim-
ilar to other work (e.g., [22]- [53]), we assume that each hardware task requires
reconfigurable area with rectangular shape and can be placed at any location on
the reconfigurable device. Our task model includes all required reconfigurable
units and interconnect resources. Each hardware task is defined by three pa-
rameters: itsarea (width and height in terms of atomic reconfigurable units),
reconfiguration time, and itsexecution time(the latter two expressed in system
clock cycles).

The software tasks that are identified for hardware acceleration are first de-
signed using a hardware description language and after that are placed and
routed by commercial FPGA synthesis CAD tools to obtain functionally equiv-
alent modules that can replace their respective software versions. At this step
of the design process we can use the synthesis results to extract the task sizes
for the used FPGA fabric. The output of the synthesis is the configuration bit-
stream that should be loaded to the device using its integrated configuration
infrastructure. Therefore, starting from the task bitstream file, we can obtain
precisely its reconfiguration time on the targeted technology. The two key in-
gredients are the configuration data size (the bitstream length in number of
bits) and the throughput of the internal FPGA configuration circuit. As an ex-
ample, the Internal Configuration Access Port (ICAP) of Virtex 4 FPGAs from
Xilinx can transport 3200 million bits/second and will load a bitstream of size
51 Mbits in 15.9ms. The last parameter, the task execution time is specified by
the time needed to process a unit of data (referred as:Execution Time Per Unit
of Data, ETPUD) and the overall data size to be processed (i.e. how much data
need to be processed). Please note that for some applications, the task execu-
tion time is also dependent on the exact data content (e.g., as in the case of
Viterbi and Context-Adaptive Binary Arithmetic Coding (CABAC)). In such
applications, even when processing the same amount of data, the elapsed time
will be different when the input data content changes. To address data depen-
dent task execution times, we envision two solutions:worst case execution
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timescenario andnotification on task completionHW support.

In this thesis, we assume the worst case execution time scenario in which we
use the task execution time when processing the worst case input data content.
In such scenario, it is possible that the actual task completion can happen ear-
lier than the scheduled completion time resulting in idle times that can not be
used by the scheduler. In addition, such tasks will cause additional wasted area
that cannot be utilized immediately by other HW tasks. In such non-optimal
scenario, however, the overall computing system will operate correctly. Please
note that the chosen scenario is the worst case in respect to the proposed place-
ment and scheduling algorithms due to the introduced overheads in task exe-
cution time and wasted area. The second solution requires dedicated hardware
support for feedback signaling when the running tasks complete, however,
as mentioned earlier this can additionally improve the overall system perfor-
mance. Some existing systems already have the necessary ingredients required
to implement such support. For example, in the Molen architecture [203], the
sequencer is aware of the hardware (HW) task start and completion timing.
The only necessary extension in this case is to provide a way to pass this infor-
mation to the HW scheduler and make it aware of running tasks completion.
With this knowledge, the HW scheduler can make data content dependent tasks
scheduling more efficient. This approach is outside of the scope of this thesis
without loosing generality of our proposal. Even more the selected worst case
execution scenario is less beneficial for the scheduling and placement algo-
rithms presented in this thesis. We are strongly convinced that both types of
systems will be able to benefit from the proposed algorithms.

The assumed overall system model used in our study is depicted in Figure 1.2
consisting of two main devices: the general-purpose processor (GPP) and the
reconfigurable device (FPGA). All hardware task bitstream images are avail-
able in a repository resuming in the main memory (not explicitly shown on the
figure) and can be requested by any running application on the GPP by using a
dedicated operating system (OS) call. In response to such request, the OS will
invoke the Placer (P) to find the best location on the FPGA fabric for the re-
quested hardware task. Once appropriate location is found, the Translator will
resolve the coordinates by transforming the internal, technology independent
model representation to the corresponding low level commands specific for the
used FPGA device. The Loader reads the task configuration bitstream from the
repository and sends it to the internal configuration circuit, e.g., ICAP in case
of Xilinx, to partially reconfigure the FPGA at the specific physical location
provided by the Translator. After reconfiguring the FPGA fabric the requested
hardware task execution is started immediately to avoid idle hardware units on
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Figure 1.2: System Model (OS: operating system, P: placer, S: scheduler)

the reconfigurable fabric. For systems with combined Placer and Scheduler
(P+S), when the hardware area is fully occupied, the Scheduler (S) schedules
the task for future execution at predicted free area places at specific locations
and specific starting times. For systems with only Placer (P), in cases when no
hardware resources are available the corresponding task can be executed using
its software version with significant and often unpredictable execution time
penalty. The Loader can be implemented at either the general-purpose proces-
sor (GPP) as OS extension or in the Static Area of the FPGA. If the Loader is
implemented in the GPP, the communication between the Loader to the ICAP
is performed using the available off-chip connection. For implementations in
the FPGA, the Loader connects to the ICAP internally. Similar to [202], ded-
icated buses are used for the interconnect on chip. Those buses are located
at every row of the reconfigurable regions to allow data connections between
tasks (or tasks and I/Os) regardless of the particular task sizes.

To illustrate the above processes at different stages of the system design and
normal operation, we will use a simple example of hardware task creation as
depicted in Figure 1.3. The hardware task in our example is a simple finite im-
pulse response (FIR) filter. The task consumes input data from array A[i] and
produces output data stored in B[i], whereB[i] = C0∗A[i]+C1∗A[i +1]+
C2∗A[i +2]+C3∗A[i +3]+C4∗A[i +4] and all data elements are 32 bits
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Figure 1.3: System at Design Time

wide. The task implementation described using a hardware description lan-
guage (HDL) (FIR.vhd) is synthesized by commercial CAD tools that produce
the partial bitstream file (FIR.bit) along with the additional synthesis results for
that task. The bitstream contains the configuration data that should be loaded
into the configuration memory to instantiate the task at a certain location on
the FPGA fabric. The synthesis results are used to determine the rectangle area
consumed by the task in terms of configurable logic blocks (CLBs) specified
by the width and the height of the task. In our example, the FIR task width is 33
and the task height 32 CLBs for Xilinx Virtex-4 technology. Based on the syn-
thesis output we determine the tasks reconfiguration times. Please note, that in
a realistic scenario one additional design space exploration step can be added
to steer task shapes toward an optimal point. At such stage, both, task sizes
and reconfiguration times are predicted by using high-level models as the ones
described in [54] in order to perform quick simulation of the different cases
without the need of synthesizing all of the explored task variants. For example
in Virtex-4 FPGA technology from Xilinx, there are 22 frames per column and
each frame contains 1312 bits. Therefore one column uses22x1312 = 28864

bits. Since our FIR HW task requires 33 CLBs in 2 rows of 16 CLBs total-
ing in 32 CLBs, we obtain a bitstream with33x2x28864 = 1905024 bits.
Virtex-4 ICAP can send 32-bit data every 100 MHz clock cycle, hence, we
can estimate the reconfiguration time as1905024x10/32 = 595320 ns. Next,
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the FIR task is tested by the designer to determine how fast the input data can
be processed. For our example from Figure 1.3, the task needs 1415 cycles
to process 100, 32-bit input data elements at 11 ns clock period making its
ETPUD1415x11 = 15565 ns per 100, 32-bit unit data. Based on the above
ETPUD number, we can estimate the task execution time for various input data
sizes. In our example, there are 5000, 32-bit input data elements that have to
be processed by the FIR HW task. Therefore, the expected execution time of
our FIR task is(5000/100)x15565 = 778250 ns (778ms). The configuration
data and task specific information are merged together in what we call a Task
Configuration Microcode (TCM) block as shown in the upper part of Figure
1.3. TCM is pre-stored in memory at the Bitstream (BS) Address. The first
field, the BS length represents the size of the configuration data field. This
value is used by the Loader when the task is fetched from memory. The task
parameter address (TPA) is needed to define where the task input/output pa-
rameters are located. In Figure 1.3, the task parameters are the input and output
data locations, the number of data elements to be processed and the FIR filter
coefficients (C0-C4). The input data address gives the location where the data
to be processed remains. The location where the output data should be stored
is defined by the output data address.

During runtime, when the system needs to execute the FIR hardware task on
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the FPGA, the OS invokes the Placer (P) to find a location for it (shown as
example, in Figure 1.4). From the TCM the Placer gets the task properties
information: task width, task height, reconfiguration time, and its execution
time. Based on the current state of the used area model, the Placer searches for
the best location for the task. When the location is found (in this example:r ′

andc ′), the task is placed in the area model and its state is updated as shown
on the left side of the figure. The Translator converts this location into real
physical location on the targeted FPGA. In the bitstream file (FIR.bit), there
is information about the FPGA location where the HW task was pre-designed
(in this figure: r and c). By modifying this information at runtime, the Loader
partially reconfigures the FPGA through the ICAP (by using the technology
specific commands) at the location obtained from the Translator (r ′′ andc ′′

in this example). By decoupling our area model from the fine-grain details of
the physical FPGA fabric, we propose an FPGA technology independent envi-
ronment where different FPGA vendors, e.g., Xilinx, Altera, etc, can provide
their consumers with full access to partial reconfigurable resources without ex-
posing all of the proprietary details of the underlying bitstream formats. On
the other side, reconfigurable system designers can now focus on partial re-
configuration algorithms without having to bother with all low-level details of
a particular FPGA technology.

1.2 Research Questions and Main Contributions

As discussed in Section 1.1, efficient runtime reconfigurable systems manage-
ment has to cope with the three main challenges: minimal hardware use, min-
imal power consumption, and minimal reconfiguration overhead. In respect to
the above challenges the thesis at hand will provide an answer to the following
research questions:

1. How to improve area utilization, application execution time and algo-
rithm overhead of hardware task placement and scheduling approaches?

2. How to reduce the power consumption of reconfigurable devices by im-
proving their basic logic elements?

3. Can hardware task reconfiguration overhead be reduced by revisiting
the configuration infrastructure?

This dissertation elaborates on the above three questions critical for all modern
runtime partially reconfigurable systems. The work contained in this disserta-
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tion provides evidence that the aforementioned questions can be successfully
answered. More specifically, the main contributions of this thesis are:

1. Novel online hardware task scheduling and placement algorithms on
partially reconfigurable devices with higher quality and shorter algo-
rithm execution time compared to the state of the art;

2. A novel logic element for FPDs with reduced power consumption com-
pared to the industrial FPDs;

3. Low overhead FPGA configuration circuit architectural extensions to
shorten the reconfiguration and relocation times compared to current
high-end FPGA devices.

1.3 Dissertation Organization

This dissertation consists of the following chapters:

• Chapter 2 gives an overview of the state of the art in solving problems
in runtime reconfigurable systems. It presents a survey on existing on-
line hardware task scheduling and placement algorithms, techniques to
reduce power consumption in reconfigurable devices, and techniques to
reduce reconfiguration overhead in runtime reconfigurable systems.

• Chapter 3 introduces two novel algorithms to deal with online hardware
task placement problem in runtime reconfigurable systems on partially
reconfigurable devices. The first algorithm (Intelligent Merging) deals
with reducing algorithm execution time by avoiding unnecessary opera-
tions. The algorithm run up to 3x faster than related art with 0.89 % less
placement quality. The second one (Quad-Corner) is more challenging,
the aim is to discover a faster algorithm yet with a higher quality. The al-
gorithm not only has higher placement quality (78 % less penalty and 93
% less wasted area) than related art but also has lower runtime overhead.

• Chapter 4 presents two novel online hardware task scheduling and place-
ment algorithms on partially reconfigurable devices. The first algorithm
(Intelligent Stuffing) is designed for 1D area model. The algorithm out-
performs related art in terms of reduced total wasted area up to 89.7 %,
has 1.5 % shorter schedule time and 31.3 % shorter waiting time. The
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second one (3D Compaction) is proposed for 2D area model. The al-
gorithm has up to 4.8 % shorter schedule time, 75.1 % shorter waiting
time, and 22.9 % less wasted volume compared to related art.

• Chapter 5 describes a novel low power logic element (LE) for FPDs.
FPDs using our proposal consume 6-90 % less total power and run 2-33
% faster than FPDs using conventional LEs.

• Chapter 6 shows a novel configuration circuit architecture for fast recon-
figuration and relocation. The architecture can speedup reconfiguration
and relocation by 4x and 19.8x on average, respectively.

• Chapter 7 summarizes our findings and gives some suggestions for fu-
ture research directions.



2
Related Work

A s presented in Chapter 1, this dissertation targets three major prob-
lems in current runtime partially reconfigurable systems: online
hardware task scheduling and placement, power consumption, and

runtime reconfiguration overhead. Before presenting our proposal of how to
address these problems in more detail, in this chapter, we present related work
published by other researchers in their attempts to address the same problems.

This chapter is organized as follows. In Section 2.1, we discuss existing on-
line task placement algorithms for partially reconfigurable devices. Related
art regarding online task scheduling and placement is presented in Section 2.2.
This section is short because work in this area is quite recent. In Section 2.3,
we survey existing techniques for reducing power consumption in FPDs. Re-
lated work for reducing reconfiguration overhead is addressed in Section 2.4.
Finally, we conclude this chapter in Section 2.5.

2.1 Online Hardware Task Placement Algorithms

In [22], Bazargan et al. proposed two algorithms: Keeping All Maximal
Empty Rectangles (KAMER) and Keeping Non-overlapping Empty Rectan-
gles (KNER). An empty rectangle is a rectangle area that can be used to place
a task without overlapping to any running tasks on the FPGA. Such rectangle is
used to place each arriving task at runtime. The two algorithms (KAMER and
KNER) differ mainly in the way the empty rectangle is partitioned during task
placements as shown in Figure 2.1. If the rectangle cannot be expanded any-
more, the authors refer to it as a Maximal Empty Rectangle (MER); otherwise
they call it a Non-overlapping Empty Rectangle (NER). KAMER organizes
all MERs, whereas KNER manages all NERs. If there is an arriving task,
both algorithms search all empty rectangles (i.e. MERs for KAMER or NERs

13
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for KNER) to find a suitable one which can fit the arriving task based on one
of two-dimensional bin-packing heuristics: First Fit (FF), Best Fit (BF), and
Bottom-left (BL). In KNER, only the selected empty rectangle is split into two
smaller ones due to non-overlapping empty rectangles to decrease algorithm
execution time of KAMER. The splitting can be done in one of two differ-
ent ways: vertical split or horizontal split. For example, in Figure 2.1, the
KNER decides to do vertical split after placing task T1 and horizontal split af-
ter placing task T2. Every time the algorithm places the task, it performs split-
ting operation. If it just splits the empty rectangles and does not merge them,
FPGA will be partitioned into smaller and smaller of many empty rectangles.
This situation will make placement quality worse, so the algorithm needs to
do both merging and splitting operations. The split decision in KNER is made
by utilizing one of these heuristics: Shorter Segment (SSEG), Longer Seg-
ment (LSEG), Square Empty Rectangles (SQR), Large Square Empty Rect-
angles (LSQR), Large Empty Rectangles (LER), and Balanced Empty Rect-
angles (BER). Although the authors have proposed these heuristics to avoid
wrong splitting decisions, wrong decisions still cannot be totally avoided, low-
ering the placement quality of KNER. For example, in Figure 2.2, although the
FPGA has enough free area for a new incoming task, KNER rejects it due to
its incorrect splitting decision in the past.

T1 T1

T1
T2

T1
T2

a. KAMER b. KNER

MER

MER

MER

MER

MER

NER

NER

NER

NER

NER

Vertical

Split
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Split

Figure 2.1: KAMER vs KNER

In [23] and [24], Tabero et al. proposed a Vertex-list algorithm. Vertex List Set
(VLS) data structure is used that each of the lists describes the contour of each
unoccupied area fragment in the FPGA. The authors use bottom-left or top-
right heuristic for placing arriving tasks on vertexes. The VLS structure is a
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Figure 2.2: A rejection of an arriving task due to its previous wrong splitting decision

geometrical description of the whole FPGA free area perimeter. Instead of par-
titioning free areas as KAMER and KNER, the Vertex-list algorithm focuses
on the free area perimeter for placing an arriving task. The algorithm places
a task on one of the corners of this free area perimeter based on one of two
heuristics: 2D-adjacency-based and fragmentation-based. The 2D-adjacency-
based heuristic inserts the task on the vertex position that has the highest con-
tact level in space of the task to the running tasks and the FPGA boundary,
while the fragmentation-based heuristic inserts the task on the vertex position
that has the lowest fragmentation level. To enhance placement quality of their
Vertex-list algorithm, in [25], they proposed two new heuristics: 3D-adjacency
and Look-ahead 3D. In addition to the contact level in space, the 3D-adjacency
heuristic also computes the contact level in time to pack tasks in space and
time. In Look-ahead 3D heuristic, the 3D-adjacency value is computed not
only at current time but also at the future time when the next running task is
finished. After computing all the 3D-adjacency values, the task is placed at the
position with the highest 3D-adjacency value.

In [26] and [27], Steiger et al. and Walder et al. proposed an On The-Fly
(OTF) algorithm. As mentioned earlier, the wrong split decision can lower the
placement quality of KNER. To avoid such wrong decisions, they modified
KNER by delaying the split decision until a next arrived task placed on the
FPGA. However, for this modification, they need to resize several rectangles
on a task insertion.

In [28], Morandi et al. proposed a Routing Aware Linear Placer (RALP) algo-
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rithm. The algorithm is a modified version of KNER algorithm with an addi-
tional routing cost consideration between dependent tasks. Tasks are placed on
empty rectangles that have the least Manhattan distances between dependent
tasks to minimize routing cost. The algorithm can reduce routing cost com-
pared to KNER as reported in [28]. However, it has a lower placement quality
that KNER due to the negative impact of its routing consideration.

In [29], Ahmadinia et al. proposed a Horizontal Line (HL) algorithm to man-
age free space and the Clustering Based (CB) strategy to improve the place-
ment quality of their HL approach. Instead of managing a list of empty rect-
angles like in KAMER, KNER [22], and OTF [26] [27], HL uses exactly two
horizontal lines for placing the task; one above (top horizontal line) and one be-
low (bottom horizontal line) the placed tasks. In order to store information on
these horizontal lines, HL uses two separate linked-lists. HL is implemented
in such a way that hardware tasks are placed above the currently running tasks
as long as there is free space. Once there is no empty space found above the
running tasks, the new ones start to be placed below them and so on. The basic
idea of CB is to place all tasks with similar end times in the same strip such that
a large empty space will be created at a certain location at the end time. This
new empty space hopefully will be able to accommodate future larger tasks.
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Figure 2.3: Area matrix of the staircase algorithm

In [30] and [31], Handa et al. proposed the Staircase algorithm for finding
MERs. A 2D array, referred as area matrix, for modeling the FPGA surface
with each cell in the array representing a CLB is used. For example, an FPGA
(8x6 CLBs) with two running tasks (5x2 CLBs and 3x2 CLBs) is modeled
with an area matrix in Figure 2.3. Every CLB array cell in the free area con-
tains a positive number that gives the number of continuous empty cells in the
column above including the cell itself. Every cell in the occupied area holds a
negative number that represents the remaining width of the task measured on
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Figure 2.4: A staircase

the right side from that cell. The area matrix is used for constructing staircases
and finally these staircases are utilized for finding MERs. All the empty rect-
angles having same bottom right coordinate make a staircase as illustrated in
Figure 2.4. They only check maximal staircases for extracting MERs. After a
maximal staircase is detected, all the rectangles in the staircase can be checked
to see if they are MERs.
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Figure 2.5: Area matrix of SLA

In [32], Cui et al. proposed the Scan Line Algorithm (SLA) algorithm for
finding MERs. The authors use the same area matrix as the staircase algorithm
with a different encoding to represent the FPGA area. For example, an FPGA
(9x6 CLBs) with two running tasks (4x2 CLBs and 3x4 CLBs) is modeled with
an area matrix in Figure 2.5. Every free area CLB is represented by a positive
number that gives the number of continuous empty cells on left including that
cell as shown in Figure 2.5. Every occupied CLB is represented by a zero.
In SLA, the area matrix is used for finding Maximum Key Elements (MKEs)
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and finally these MKEs are scanned for finding all MERs. A key element
is an empty cell with an occupied cell as its right hand neighbor. A column
that contains one or more key elements is called as a scan line. A scan line is
partitioned into segments by valley points. A valley point is the element within
a scan line where values in the line starting to increase. Each segment has one
MKE which is the largest key element in the corresponding segment.

In [33], Xiao et al. discovered that the SLA algorithm can find empty rectan-
gles that are not MERs. To solve this problem, they proposed ESLA algorithm
in [33]. Before the algorithm scans each MKE for finding MERs, the algo-
rithm is instrumented with an ability to know a set of valid widths for that
corresponding MKE. By doing so, the algorithm only needs to scan an MKE
for those valid widths. To avoid duplicated scanning, the algorithm records a
set of scanned positions during each MKE scanning.
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Figure 2.6: Fragmentation matrix of CF

In [34], Cui et al. proposed the Cell Fragmentation (CF) algorithm for their on-
line placement algorithm. CF uses the SLA to find MERs and a Fragmentation
Matrix (FM) to represent the area of the FPGA. For example, an FPGA (7x6
CLBs) with two running tasks (3x2 CLBs and 3x4 CLBs) is modeled with a
fragmentation matrix in Figure 2.6. For empty cells, each cell is labeled by
the number of contiguous empty cells in horizontal, in vertical direction, and a
zero. For occupied cells, each cell is labeled by the number of contiguous oc-
cupied cells in horizontal, in vertical direction, and the finish time of the task.
In order to place a task on the FPGA, CF calculates the Time-Averaged Area
Fragmentation (TAAF) for all MERs that are large enough to accommodate
the task and then places the task into one of the MERs which has the largest
TAAF. The TAAF of a MER is the degree of impact of this MER on the overall
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degree of fragmentation. A MER with large TAAF means it has more impact
on the overall degree of fragmentation, that’s why CF places the arriving task
to a MER that has the largest TAAF.

In [35] and [36], Tomono et al. proposed an online FPGA algorithm that does
not only take into consideration the degree of fragmentation, but also the speed
of I/O communication computed based on the Manhattan distances. The aim
of their algorithm is to balance the degree of fragmentation and the speed of
I/O communication. They use the same area matrix data structure as used
by the Staircase algorithm with additional I/O communication constraints, so
they increase the degree of fragmentation in order to gain the speed of I/O
communication. Because of this additional consideration, they need to check
the status of each communication channel during staircase creation.

In [37] and [38], Ahmadinia et al. proposed the Nearest Possible Position
(NPP) algorithm. They manage the occupied space rather than the free space,
because the set of empty rectangles grows much faster than the set of placed
rectangles. The impossible placement region (IPR) of an arriving task relative
to a placed task is the region near the placed task where it is impossible to place
this arriving task without overlapping the placed task. The possible placement
region (PPR) is the area where it is possible to place the arriving task without
overlapping any placed tasks. In order to find the best position on the PPR
for placing an arriving task, they compute the routing cost based on Euclidean
distances and place an arriving task at the optimal point, where routing cost is
minimum. If they cannot find the optimal point on the PPR, they will find the
Nearest Possible Position (NPP) for placing the task.

In [39], Lu et al. proposed the Multi-Objective Hardware Placement (MOHP)
algorithm. The algorithm uses the VLS data structure adopted from [23] and
[24]. Incoming tasks are classified into three groups with different treatments.
The first group is for independent tasks that need to be executed urgently due
to short remaining time to the deadline. To handle tasks in this group, the
algorithm uses the FF heuristic for fast allocation. The second group is for
independent tasks that do not need urgent treatment. For this group, the algo-
rithm adopts a vertex-list approach from [23] and [24]. The third group is for
dependent tasks. In this group, the routing between dependent tasks needs to
be shortened. For that reason, the algorithm utilizes the NPP approach adopted
from [37] and [38] for tasks in this group.

In [40], Elbidweihy and Trahan proposed an online placement algorithm that
manages both Maximal Horizontal Strips (MHS) and Maximal Vertical Strips,
called the Maximal Horizontal and Vertical Strips (MHVS) algorithm. MHSs
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are rectangles generated by partitioning free area using topand bottom bound-
aries of running tasks; whereas MVSs are rectangles that result from free area
partitioning using left and right boundaries of running tasks. In this algorithm,
the first fit rectangle is used for placing an arriving task. The algorithm can
run faster compared to KAMER as reported in [40]. However, it has a lower
placement quality than KAMER.

In [41] and [42], Ahmadinia et al. proposed the Routing-Conscious Place-
ment(RCP). In order to reduce free-space management to a single point, they
expand inserted modules and concurrently shrink the FPGA area and an arriv-
ing task by half both in width and height. To choose the position for placing
an arriving task, they choose a position, such that the weighted communication
cost computed based on the Manhattan distances is minimized.

In [43], Köster et al. proposed a task placement algorithm for heterogeneous
reconfigurable architectures, TPHRA. The basic idea of this algorithm is to
avoid placing an arriving task with many feasible positions in areas that can be
used by tasks with few feasible positions whenever possible.

In [44], Ahmadinia and Teich proposed the Least Interference Fit (LIF) algo-
rithm. In order to reduce the reconfigurable overhead due to the limitation of
currently available FPGA technology in that time (column-wise reconfigurable
capability), LIF places tasks at the position where the tasks interfere with the
currently running tasks as little as possible.

T1

T2

T3

1/5
1/2
1/2
1/3

Figure 2.7: FAP

In [45], ElFarag et al. proposed the Fragmentation-Aware Placement (FAP)
algorithm. In this paper, they introduced a fragmentation metric that gives an
indication to the continuity of occupied (or free) space on the reconfigurable
device and not the amount of occupied (or free) space. The algorithm places
each arriving task on the location where the fragmentation metric is smallest.
All empty spaces have to be tested before it can select one that causes the
lowest fragmentation. Figure 2.7 shows how they compute the fragmentation
metric. There are three tasks (T1, T2, and T3) placed on a reconfigurable
device with size of 5x5 reconfigurable units. In the first row of reconfigurable
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device, there is one contiguous empty space that consists of five reconfigurable
units, therefore the fragmentation in this row is 1/5. Using similar way, the
total row fragmentation is((1/5) + (1/2) + (1/2) + (1/3)), while the total
column fragmentation is((1/1) + (1/1)+ (1/1) + (1/1)+ (1/4) + (1/4)).

2.2 Online Task Scheduling and Placement

In [46] and [47], Steiger et al. proposed the Horizon and Stuffing algorithms
both for 1D and 2D area models. The Horizon guarantees that arriving tasks
are only scheduled when they do not overlap in time or space with other sched-
uled tasks. The Stuffing schedules arriving tasks to arbitrary free areas that will
exist in the future by imitating future task terminations and starts. In these pa-
pers, the authors reported that the Stuffing algorithm outperforms the Horizon
algorithm in scheduling and placement quality.
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Figure 2.8: Stuffing vs Classified Stuffing

Discovered that the problem of the Stuffing that always places a task on the
leftmost of its free space as shown in Figure 2.8a, Chen and Hsiung in [48]
proposed their 1D Classified Stuffing. By classifying incoming tasks before
scheduling and placement, the 1D Classified Stuffing performs better than
the original 1D Stuffing. For example, because the Stuffing algorithm always
places tasks on the leftmost edge of the available area, it places tasks T1 and
T2 as shown in Figure 2.8a. These placements block task T3 to be scheduled
earlier. In this case, the Stuffing fails to place task T3 earlier. The main dif-
ference between the Classified Stuffing and the Stuffing is the classification of
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tasks. The Classified Stuffing can place a task on the leftmost or rightmost
of its free space based on the task Space Utilization Rate (SUR). SUR is the
ratio between the number of columns required by the task and its execution
time. High SUR tasks (SUR> 1) are placed starting from the leftmost avail-
able columns of the FPGA space, while low SUR tasks (SUR≤ 1) are placed
from the rightmost available columns. For this simple example, the Classified
Stuffing can recognize the difference between tasks T1 (high SUR task) and
T2 (low SUR task), so it places successfully tasks on different sides as shown
in Figure 2.8b. Therefore the task T3 can be scheduled earlier by the Classified
Stuffing, outperforming the Stuffing as reported in [48].

In [49], Marconi et al. proposed their 1D Intelligent Stuffing to solve the prob-
lems of both the 1D Stuffing and Classified Stuffing. The main difference
between their algorithm and the previous 1D algorithms is the additional align-
ment flag of each free segment. The flag determines the placement location of
the task within the corresponding free segment. By utilizing this flag, the 1D
Intelligent Stuffing outperforms the previously mentioned 1D algorithms.

In [50], Lu et al. introduced their 1D reuse and partial reuse (RPR). The algo-
rithm reuses already placed tasks to reduce reconfiguration time. As a result,
the RPR outperforms the 1D Stuffing.

In [51], Zhou et al. proposed their 2D Window-based Stuffing to tackle the
drawback of 2D Stuffing. By using time windows instead of the time events,
the 2D Window-based Stuffing outperforms previous 2D Stuffing. The draw-
back of their 2D Window-based Stuffing is its long execution time. To reduce
this runtime cost the authors proposed the Compact Reservation (CR) in [52].
The main idea of the CR is the computation of the earliest available time (EA)
matrix for every incoming task. That contains the earliest starting times for
scheduling and placing the arriving task. The CR outperforms the original 2D
Stuffing and their previous 2D Window-based Stuffing.

2.3 Low Power Techniques for Reconfigurable Devices

Modern FPGAs contain embedded hardware blocks, such as: multipliers,
DSPs, and memories. It is reported in [18] [61] that mapping designs to these
blocks can reduce power consumption. The design that uses hard blocks re-
quires less interconnection. As a result, static and dynamic power consump-
tions are reduced.

Adding programmable delay circuits into configurable logic blocks is reported
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in [68] to reduce power consumption in FPGAs. The generation of glitches
is avoided by aligning the arrival times of signals using the proposed pro-
grammable delay circuits. As a result, the glitched are reduced for minimizing
dynamic power consumption.

To reduce dynamic power consumption in FPGAs, circuits are pipelined in
[64] [65] [66]. This technique reduces the number of levels of the circuit be-
tween registers by dividing the circuit into stages. A circuit with lower levels
tends to produce fewer glitches. Since a circuit with fewer glitches consumes
less dynamic power, the power consumption is reduced.

Reducing power consumption in FPGAs by inserting negative edge triggered
flip-flops at the outputs of selected LUTs to block glitches for propagating
further is reported in [71]. Since the technique produces a circuit with fewer
gliches, the dynamic power consumption is reduced.

Retiming can be used to reduce dynamic power consumption in FPGAs [67].
The idea is to redistribute registers along a signal path without changing the
functionality of the circuit. By doing so, the logic between registers is mini-
mized, hence reducing glitches. As a result, the dynamic power consumption
is reduced.

The bit-widths of the internal signals of circuits can be optimized to reduce
dynamic power consumption. A circuit with shorter bit-widths consumes less
power. This approach applied in FPGAs is reported in [72] [73].

Clock gating is used to reduce dynamic power consumption by selectively
blocking the circuit local clock when no state or output transition takes place
as illustrated in Figure 2.9. The clock gating controller is needed for detect-
ing the conditions of the observed circuit. Based on these conditions, the
clock gating controller can know the exact time when it can stop clock sig-
nal to be transported to the specific circuit for power saving. It is used in
FPGAs [74] [75] [76] [77] [61] [78] [79] [80] and CPLDs [81]. This tech-
nique is supported by commercial CAD tools from Xilinx as reported in [77].
In [80], an asynchronous FPGA with clock gating is proposed.

Powering FPGAs with a variable supply voltage can also be used to reduce
power consumption [82]. This method is referred as dynamic voltage scal-
ing (DVS). Since there is a quadratic relationship between supply voltage and
dynamic power, reducing the voltage will significantly reduce the dynamic
power. Moreover, a cubic relationship between supply voltage and leakage
power reduces significantly the leakage power.

Modern FPGAs have the ability to reconfigure part of their resources with-



24 CHAPTER 2. RELATED WORK

Clock

Gating

Controller

Circuit with 

state or 

output transitions

Clock generator

Switch

Clock

Gating

Controller

Circuit without 

state or 

output transitions

Clock generator

Switch

a. Transporting clock signal for normal operation

b. Stop transporting clock signal for power saving

Figure 2.9: Clock gating

out interrupting the remaining resources at runtime. Hardware sharing can
be realized by utilizing this partial reconfiguration feature for power con-
sumption reduction. Power saving using this approach in FPGAs is reported
in [5] [10] [12] [14] [61] [83] [84].

Clock scaling is an approach to reduce power consumption by adjusting op-
erating clock frequency dynamically. Applying this approach in FPGAs is
reported in [85].

A lower threshold voltage transistor runs faster, but it consumes more power.
Multi-threshold voltage technique is to use higher threshold voltage transistors
on noncritical paths to reduce static power, and low threshold voltage transis-
tors on critical paths to maintain performance. This technique has been applied
in commercial FPGAs as reported in [61] [86].

A lower capacitive circuit consumes less dynamic power. One of the ways to
reduce capacitance is to use a low-k dielectric material. This technique is used
by commercial FPGAs as shown in [61] [86].

A simple way for static and dynamic power savings is to reduce the supply
voltage. Commercial FPGAs reported this in [61] [86].

Building circuits with bigger size lookup tables (LUTs) needs less interconnec-
tion between LUTs. As a result, interconnect power consumption is reduced.
This has triggered commercial FPGA vendors to use bigger size LUTs as re-
ported in [61] [63].

Power gating is a technique for reducing power consumption by temporarily
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turning off circuits that are not in use. It is applied in FPGAs[87] [88] [89]
[90] [91]. This technique is used in commercial products, such as: Atmel
PLDs [93], Altera CPLDs [94], Actel FPGAs [95], QuickLogic FPGAs [96],
Xilinx FPGAs [61] , Altera FPGAs [92]. In [88], an asynchronous FPGA with
autonomous fine-grain power gating is proposed. How to partition a design to
better benefit from power gating technique is reported in [91].

Conventional single-edge-triggered flip-flops respond only once per clock
pulse cycle. To reduce power consumption, a flip-flop that can respond to both
the positive and the negative edge of the clock pulse (double-edge-triggered
flip-flops) was proposed in [97]. This technique is used in Xilinx CPLDs to
reduce power consumption [98].

Since SRAM memory is volatile, SRAM-based FPGAs need to be reconfig-
ured before usage. This reconfiguration consumes power. In contrast, the
flash-based FPGAs (e.g. Actel FPGA [95]) that use non-volatile memory can
be operated directly without reconfiguration.

Powering FPGAs with two different supply voltages (dual-Vdd) can also re-
duce power consumption as reported in [20] [99] [100] [101] [102] [103].
It is to use lower supply voltages on noncritical paths to reduce power, and
higher supply voltages on critical paths to maintain performance. Algorithms
for Vdd assignment are presented in [101] [102]. [103] combines concurrently
this technique with retiming to better reduce power consumption in FPGAs.

Reordering input signals to LUTs can reduce dynamic power consumption in
FPGAs. By doing so, we can minimize the switching activity inside LUTs as
reported in [104]. Since power consumption depends linearly on the switching
activity, reducing this results in power consumption improvement.

Power consumption in FPGAs can be reduced by dividing a finite state ma-
chine (FSM) into two smaller sub-FSM using a probabilistic criterion [105].
The idea is to activate only one sub-FSM at a time, meanwhile the other is
disabled for power reduction. Choosing state encoding of FSM for power re-
duction in FPGAs is reported in [106] [107]. The idea is to minimize the bit
changes during state transitions for reducing switching activity, hence mini-
mizing the dynamic power consumption.

Using a diagonally symmetric interconnect pattern in Virtex-5 FPGAs can re-
duce the number of interconnect routing hops as reported in [108]. As a result,
the interconnect power consumption is reduced.

Since not all inputs of LUTs are used in real FPGA designs, leakage power can
be reduced by shutting off SRAM cells and transistors associated with unused
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LUT inputs as reported in [21].

Using LUTs able to operate in two different modes (high-performance and
low-power) reduces leakage power as reported in [109]. The idea is to use
some transistors for lowering supply voltage across input inverters of LUTs
during low power operation mode. Since not all LUTs need to be operated in
high-performance mode, the leakage power is reduced.

Resources used by tasks cannot be turned off after configuration, consuming
leakage power. Therefore, tasks need to be operated as soon as possible after
configuration in runtime systems using partially reconfigurable devices. This
technique for leakage power reduction in FPGAs is reported in [110].

Since leakage power in multiplexers is dependent on their input states, select-
ing polarities for logic signals (i.e. inverted or not) so that the multiplexers
are operated in low-leakage states in the majority of time can be used to re-
duce leakage power in FPGAs [111]. To reduce more leakage power, the work
in [111] is extended by [112]. In [112], not only polarity is considered to
achieve low leakage states, but also the order of input signals to LUTs is modi-
fied to have a better leakage power reduction. It is different from [104] that tar-
gets dynamic power, the work in [112] targets static power by reordering input
signals to LUTs. Since the leakage power is state dependent [113], changing
this state results leakage power reduction.

Redesigning routing switches can reduce the FPGA overall power consump-
tion. Routing switches that can operate in three different modes: high-speed,
low-power or sleep is reported in [114]. Using dual-Vdd-dual-Vt routing
switches for reducing interconnect power is presented in [115]. Applying dual-
vdd and power gating techniques for routing switches is proposed in [116].

During high-level synthesis(HLS), a circuit can be implemented by combining
functional units, such as: multipliers, adders, multiplexers, etc. Each func-
tional unit can be realized using one of varied implementations. Each imple-
mentation requires a certain area and runs at a specific speed with required
power consumption. To reduce power consumption, we need to choose the
best design for a given circuit that can meet the timing requirement with mini-
mal power. HLS algorithms for minimizing power consumption in FPGAs are
reported in [117] [118].

Logic synthesis in FPGAs is a process of transforming a given design (coded
in schematic or HDL) into a gate-level circuit. Considering switching activity
during logic synthesis for FPGAs to reduce power consumption is presented
in [119]. The idea is to minimize switching activity during logic synthesis. As
a result, the power consumption is reduced.
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Technology mapping in FPGAs is a process of transforming a given circuit
into a circuit that only consists of LUTs. The way we map circuits into FPGAs
can affect the power consumption. The algorithms to perform this process for
power reduction are presented in [120] [121] [122] [123] [124]. The main idea
is to pack nodes with high switching activity inside LUTs. By doing so, we
can minimize power needed to transport signals of nodes among LUTs. To bet-
ter estimate the switching activity, glitches are considered during technology
mapping in [70].

Transformation by changing the functionalities of LUTs with rerouting [125]
and without rerouting [126] can be used to reduce power consumption in FP-
GAs. [125] performs the transformation after technology mapping by reducing
switching densities of the outputs of the LUTs, whereas [126] transforms the
design after mapping, placement, and routing by considering switching activ-
ity and capacitance at the outputs of the LUTs.

Clustering logic blocks in FPGAs can affect reduction in power consumption.
Clustering reduces the usage of interconnect resources. As a result, it reduces
interconnect power. The optimal number of logic elements per cluster for
power reduction is 12 as reported in [127]. The way we cluster a circuit into an
FPGA can affect the power consumption. The clustering algorithms to reduce
power consumption are presented in [128] [129]. The main idea in [128] is to
minimize intercluster connections for reducing interconnection power. Clus-
tering for FPGAs with dual-Vdd is shown in [129]. Assigning noncritical paths
to clusters with low power supply voltage is the key idea of [129].

Placement algorithms to reduce power consumption in FPGAs are presented in
[130] [131] [132]. The main idea is to add estimated dynamic power into cost
function of the placement algorithms. As a result, dynamic power is reduced
during placement. A placement algorithm that takes into account the cost of
using clock network resources to reduce power consumed by clock network is
reported in [132].

Routing algorithms to reduce power consumption in FPGAs are reported in
[130] [69]. Assigning nodes with high switching activity to low-capacitance
routing resources is the main idea behind the routing algorithm for reducing
interconnect power in [130]. A routing that can balance arrival times of the
inputs of the same LUTs to reduce power consumption in FPGAs is proposed
in [69]. By doing so, the glitches are reduced. As a result, the dynamic power
consumption is minimized.

Combining power-aware technology-mapping, placement, and routing algo-
rithms to reduce FPGA power consumption is reported in [133].
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To reduce power during runtime reconfiguration, configuration memory with
two different types of memories [134] or runtime configurable memory with
two different modes [135] is proposed. One type(mode) is optimized for high
speed operation; whereas the other type(mode) is optimized for low power
operation. Tasks that do not require high speed reconfiguration can be recon-
figured to the low power one for power saving during reconfiguration.

Some signals in a digital circuit do not affect an output of the circuit for certain
conditions. Stopping these signals to flow to the circuit at those conditions for
dynamic power saving in FPGAs is reported in [136] [137].

Choosing the best operating mode for each memory on FPGAs based on prior
knowledge of its dead intervals is reported in [138] to reduce leakage power
consumption. The memory can be operated in three operating modes: active,
drowsy, and sleep. The sleep mode is a condition when the power supply is
disconnected to the memory; whereas the drowsy mode is a condition when
the memory is connected to a lower supply voltage. The idea is to operate
the memory based on its dead intervals. The memory with long/medium/short
dead interval is operated on sleep/drowsy/active mode.

Constraining designs to be implemented on the specific regions within the
FPGA to minimize power consumed by clock networks is reported in [139].
The idea is to place logic closer together for minimizing the clock network
usage. As a result, the FPGA power consumption is reduced.

Using nanoelectromechanical relays for programmable routing in FPGAs is
reported in [140] to reduce power consumption due to its zero leakage and
low on-resistance characteristics. Although it is more power efficient than the
conventional FPGA, it is not suitable for runtime reconfigurable systems due
to its large mechanical switching delay.

Older generation FPGAs use dual-oxide process technology: thick oxide tran-
sistors (slow transistors) for I/Os and thin oxide transistors (fast transistors) for
core. To reduce leakage power in FPGAs, triple-oxide process technology is
used in modern FPGAs (e.g. Virtex-4) [62] [61]. In these FPGAs, another type
of transistors with medium thickness oxide is dedicated for the configuration
memory and interconnect pass gates.

The leakage power consumed by an asymmetric SRAM cell depends on its
stored data. Since 87 % of the configuration memory cells in FPGAs store
logic zero in the real FPGA design [141], using asymmetric SRAM cells with
low leakage at logic zero for FPGAs to reduce leakage power consumed by
reconfiguration memory is reported in [141]. The idea is to select polarities
for logic signals (i.e. inverted or not) that can increase the number of zeros
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stored on the configuration memory. Since the number of zeros is increased,
the number of memory cell that operates at low leakage is increased. As a
result, the leakage power consumed by the reconfiguration memory is reduced.

To reduce interconnect power, low-voltage swing interconnects are applied for
FPGAs in [142] [143]. Since the dynamic power consumption is linearly pro-
portional to the voltage swing, interconnect power is reduced by minimizing
the voltage swing on interconnects. Because this technique degrades the per-
formance, in [142], the dual-edge triggered flip-flops are used to handle this
degradation. Applying low swing interconnects only on non-critical paths is
proposed in [143] to reduce the performance degradation of this technique.

2.4 Reconfiguration Overhead Reduction Techniques

One of the ways to alleviate the reconfiguration time penalty is to widen the
FPGA configuration data path as shown in the Xilinx FPGA evolution from
Virtex-II (8-bit configuration data path [156]) to Virtex-4 (32-bit configuration
data path [56]). Since the data path is wider, more configuration data can be
sent in each clock cycle. As a result, the configuration time is reduced.

Partially reconfigurable FPGAs can also be used to shorten the reconfiguration
times [1] [83] [15] [16] [154]. In this case, we do not need to reconfigure
the whole fabric when we want to change the systems, only part of systems
that needs to be changed is required for reconfiguration. The architecture of
partially reconfigurable FPGAs is shown in Figure 2.10a. The operation of this
FPGA is illustrated in Figure 2.10b. A frame of configuration data is loaded
serially into a shift register (Configuration Register (CR)) at times t=t1 to t=t5
as illustrated in Figure 2.10b. After the entire frame is loaded into CR, it is
temporarily transferred to a Shadow Register (SR) (Figure 2.10b at t=t6) so
that the CR is free to begin receiving the next frame of data. An address line
is used to transfer the data from the shadow register via the data lines into the
selected Configuration Memory (CM) cells as illustrated in Figure 2.10b at
t=t7. The Mask Register (MR) selects which memory cells receive the specific
configuration data values and which memory cells do not, thereby defining a
partial reconfiguration zone as shown in the same figure. As a consequence,
the configuration time is shortened.

To reduce reconfiguration overhead, configuration prefetching is proposed in
[157] [158]. The idea is to overlap reconfiguration with computation. Since
the reconfiguration can be done in background during computation, the recon-
figuration overhead is reduced by that overlapping time.
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Figure 2.10:A partially reconfigurable FPGA

Changing a pipeline circuit per stage incrementally instead of a whole circuit at
once is proposed in [159] [160] to reduce reconfiguration overhead. By doing
so, the current computation, the next computation, and the reconfiguration can
be taken place concurrently in different stages. As a result, the reconfiguration
overhead is reduced.

Using multi-context FPGAs is another way to deal with long reconfiguration
times as proposed by [162] and [163]. However,n-context FPGAs needn
times more SRAM memory for saving configuration data. When one context
is being reconfigured (passive context), the other context (active context) is
used to define the FPGA fabric current operation. As a result, the FPGA keeps
working during reconfiguration. The reconfiguration overhead in this case is
just the time needed for switching between two contexts, which is very short
and usually can be done in a single clock cycle.

Creating multi-channel configuration circuits to reconfigure FPGAs can also
be used to shorten reconfiguration time [56]. Since multiple parallel configu-
rations can be transferred, the reconfiguration overhead is reduced.

Bitstream compression has also been proposed to speedup reconfiguration
when the bottleneck is in transferring data from memory to the controller to
drive the configuration circuit (e.g. [164]- [170]). The basic idea is to reduce
the bitstream size by doing data compression, thus reducing the time for trans-
ferring the bitstream to controller. However, the maximal configuration speed
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is still limited by the maximum speed of the configuration circuit [165].

Minimizing addressing overhead is another way to reduce reconfiguration time
as reported in [171]. Since the address data are included in the bitstream,
reducing this overhead results in reduced bitstream size. As a consequence,
the reconfiguration time is reduced.

Since only configuration data that are different need to be altered in partially
reconfigurable FPGAs, maximizing common configuration data between suc-
cessive configurations can be used to reduce reconfiguration overhead as re-
ported in [172], [177], [180], [185], and [186]. This technique is called as
configuration reuse. The effect of circuit placement and configuration granu-
larity on this technique is reported in [173]. Combining configuration reuse
and configuration prefetching techniques to minimize reconfiguration time is
presented in [175]. Reusing previously communication infrastructure to mini-
mize reconfiguration overhead for task communications is proposed in [176].

Minimizing the number of required reconfigurations can be used to reduce
reconfiguration overhead. Some techniques based on this idea are presented as
follows. Loop transformations to maximize configuration reuse for reducing
the number of needed reconfigurations are presented in [181]. Replacement
policy to reduce the number of required reconfigurations is proposed in [161]
and [184]. Replacing least recently used tasks is proposed in [161]. Besides,
a credit-based replacement policy is also proposed in [161]. Every time a
currently placed task is reused, its credit is set to its size. The smallest credit
task is replaced if there is no room for incoming task. Replacing longest period
tasks is proposed as a replacement policy in [184].

Reusing statements inside an FPGA mapped loop before reconfiguring it for
the next statements proposed in [182] reduces the number of reconfigurations.
Changing the execution order of hardware tasks can also be used to reduce the
number of reconfigurations as reported in [183].

Minimizing the number of frames reduces bitstream size. As a result, the re-
configuration time is reduced. Some techniques based on this idea are pre-
sented as follows. Adding unused configuration frames into the cost function
during routing to minimize the number of used frames is proposed in [174].
The LUT input orders are permuted such a way that the changing memory bits
are located into some common frames is proposed in [178]. Placing the logic
elements into as few slice columns as possible is another solution to reduce
the number of frames [179]. Since the narrow implementations lead to a high
switch box and routing resource utilization, this idea can reduce performance
and increase power consumption as studied in [187].
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Since FPGAs are fine-grained reconfigurable devices, they require a large
amount of configuration bits. To reduce this configuration bits, many re-
searchers have an idea to use coarse-grained reconfigurable devices as re-
viewed in [188] which require less configuration bits but suffer from lower
flexibility. To reduce FPGA reconfiguration overhead, a coarse-grained recon-
figurable array, called as QUKU, is implemented on an FPGA in [189]. The
functionality of each element of the reconfigurable array and its interconnec-
tion can be reconfigured at very short time because it is coarse-grained. A
different coarse-grained array can be build for optimizing the array for a spe-
cific application. Because of less flexible, circuits with QUKU run slower than
circuits without QUKU as reported in [189].

To amortize reconfiguration overhead, in [190] [191] [192], the throughput of
data transferring from memory to the configuration circuit is maximized. Since
the data can be transferred faster, the circuit can work at its top speed which re-
duces reconfiguration time. However, again the maximum configuration speed
is still bounded by the configuration circuit bandwidth [165].

Preventing larger and frequently reconfigured hardwares to be reconfigured
is reported in [193] to reduce reconfiguration overhead. They used integer
linear programming to determine which hardware tasks that will be assigned as
fixed hardware tasks from all needed hardware tasks for a specific application
targeting a given FPGA. Since these hardware tasks are fixed at runtime, the
reconfiguration overhead for that application is reduced.

Merging multiple circuits into a larger and more general purpose circuit can re-
duce circuit area. Since circuit area determines its reconfiguration time, the re-
configuration time is reduced accordingly. This technique is reported in [194].

A two-level reconfiguration is proposed in [195]. In the first level, the con-
figurable memory cells that need to be reconfigured are linked together in a
chain; whereas the other cells that do not require reconfiguration are bypassed
in the chain to speedup reconfiguration. In the second level, the configuration
data are serially transferred to the chain to partially reconfigure the device.

A balanced binary tree structure is proposed in [196] for transferring configura-
tion data to a reconfigurable device. The reconfiguration is done in two stages.
The first stage is to prepare the structure for allowing fast reconfiguration with
minimum address information. The second stage then uses the prepared struc-
ture to transfer the configuration data to the reconfiguration memory. In [196],
the tree must be a balanced binary tree, this reduces flexibility of this pro-
posal. To have more flexibility, the new structure for partial reconfiguration is
proposed in [197] to allow unbalanced tree to be built in the device.
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2.5 Summary

In this chapter, we have presented a survey on existing online hardware task
scheduling and placement algorithms, techniques to reduce power consump-
tion in reconfigurable devices, and previous work on reducing reconfiguration
overhead in runtime reconfigurable systems.

Because the running time of online algorithms is considered as an overhead for
the overall execution time of applications, therefore not only placement qual-
ity but also the speed of the algorithm should be addressed. Many algorithms
have been proposed to deal with the scheduling and placement in runtime re-
configurable systems. However, none of them has a blocking-aware ability; the
existing algorithms have a tendency to block future tasks to be scheduled ear-
lier, referred as ”blocking-effect”. As a result, wasted area (volume), schedule
time, and waiting time will increase significantly. To cope with this prob-
lem, we propose two online placement algorithms in Chapter 3 and two online
scheduling and placement algorithms in Chapter 4.

Although many techniques have been proposed for power reduction in field-
programmable devices (FPDs), they are all based on conventional logic ele-
ments (LEs). In the conventional LE, the output of the combinational logic
(e.g. the lookup table (LUT) in many FPGAs) is connected to the input of the
storage element; while the D flip-flop (DFF) is always clocked even when it
is not necessary. Such unnecessary transitions waste power. To address this
problem, we propose a novel low power LE as presented in Chapter 5.

All presented solutions for reducing reconfiguration overhead have a common
characteristic that they do not directly target the configuration circuit architec-
ture which is the major contributor to the high reconfiguration cost. The high
reconfiguration times are due to the large amount of configuration bits sent
through a constrained data path. In order to alleviate this, we propose a novel
FPGA configuration circuit architecture to speedup bitstream (re)configuration
and relocation as shown in Chapter 6.





3
Online Hardware Task Placement

Algorithms

O nline hardware task placement algorithms are expected to find the
best location on a partially reconfigurable device for each arriving
task in the shortest time possible. This is due to the fact that the

execution time of the online placement algorithm is introducing an overhead
extending the overall execution time of the applications. As a result, execu-
tion speed and placement quality are two very important attributes of a good
online placement algorithm. Usually algorithms trade-off between placement
quality and execution speed. In general, high placement quality algorithms are
slow. On the other hand, fast algorithms have poor placement quality. Hence
discovering a high quality, fast placement strategy is challenging. To address
this challenge two novel solutions are proposed in this chapter.

First, we speedup existing algorithm while maintaining placement quality.
Bazargan’s algorithm [22] is used as a case study. Three techniques, referred
as Merging Only if Needed (MON), Partial Merging (PM) and Direct Combine
(DC) are proposed improve algorithm execution time. To preserve the place-
ment quality, one strategy, Combine Before Placing (CBP), is introduced. The
above techniques and strategy form the Intelligent Merging (IM) algorithm.

The second solution is to design a new, simpler algorithm with high placement
quality. As mentioned above an algorithm designer usually has to trade off
between placement quality and execution speed. To address this, we propose
the Quad-Corner (QC) algorithm which is a simple yet effective algorithm.

This chapter is organized as follows. Our Intelligent Merging algorithm is pro-
posed and evaluated against state of the art in Section 3.1. In Section 3.2, we
introduce our novel Quad-Corner algorithm and evaluate it. Finally, Section
3.3 ends with some conclusions.

35
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3.1 Intelligent Merging Algorithm

3.1.1 Basic Idea of the Intelligent Merging Strategy

The IM algorithm consists of three techniques (MON, PM, DC) and one strat-
egy (CBP). To reduce the algorithm execution time, IM is equipped with the
Merging Only if Needed (MON) technique that allows IM to merge blocks of
empty area only if there is no available block for the incoming task. To termi-
nate merging process earlier, IM is armed with Partial Merging (PM) technique
to give it an ability to merge only a subset of the available blocks. To further
reduce the algorithm execution time, IM can directly combine blocks using its
Direct Combine (DC) technique. To increase the placement quality, Combine
Before Placing (CBP) strategy always directly merges blocks to form a bigger
block before placing a task when possible.

3.1.2 The Merging Only if Needed Technique

Merging Only if Needed (MON) is a technique where Non-overlapping Empty
Rectangles (NERs) are merged only if there is no available NER for placing the
arriving task. By doing so we can save algorithm execution time (the original
Bazargan’s algorithm always merges NERs).

Figure 3.1 shows how our MON technique works. The top left corner of Figure
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Figure 3.1: MON technique

3.1 depicts the empty FPGA model (the beginning status) that consists of a sin-
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gle NER (NER A). If there is a new task (T1), the task is placed onthe bottom
left of NER A. This process produces two new NERs (B and C) as shown on
the top right of the same figure. The bottom left of Figure 3.1 shows the FPGA
area when task T1 is removed from the FPGA after completion, leaving one
new NER (NER D). In this situation, Bazargan’s algorithm works differently
as it would merge the NERs (NERs B, C, and D) into one single bigger NER
(NER A in our example). Hence Bazargan’s algorithm spends computational
time on (unnecessary) merging every time a task completes. In case of MON
when a new task (T2) arrives, it is placed on one of the available NERs (in
our example NER C) that has enough size to accommodate it. Reducing the
unnecessary merging is the key factor in our MON technique for improving
the Bazargan’s algorithm execution time.

3.1.3 The Partial Merging Technique

The Partial Merging (PM) technique allows our Intelligent Merging mecha-
nism to merge only a subset of the available NERs until there is enough free
space for the new task. We thus again save algorithm execution time by ter-
minating the merging process earlier. In Bazargan’s algorithm as mentioned
earlier all available NERs will be merged.

Figure 3.2 shows how our PM technique works. Top left of Figure 3.2 shows
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Figure 3.2: PM technique

how three tasks (tasks T1, T2, and T3) have been placed on the FPGA. Task



38 CHAPTER 3. ONLINE HARDWARE TASK PLACEMENT ALGORITHMS

T2 produces two NERs (NERs A and B), while task T3 produces another two
NERs (NERs C and D). The top right of Figure 3.2 shows the situation when
these three tasks are removed from the FPGA and three new NERs (NERs
E, F, and G) become available. Let us assume task T4 arrives and has to be
placed. At this point, there is no single NER available that can fit this new
task. In this case, IM needs to merge NERs and form a bigger NER for this
new task. In order to accommodate task T4 (bottom right of Figure 3.2), the
PM technique in our IM algorithm only needs to perform one merge operation
(NERs A, B, and E) and form a new bigger NER (NER H) (bottom left of
Figure 3.2). Again, Bazargan’s algorithm would perform additional merging.
More precisely, the merging of NERs A, B, and E, then merging C, F, and D,
and finally merging of all of them into one new bigger NER is required. In this
example, Bazargan’s algorithm needs three merging operations while our IM
needs only one. We call this technique alsomerge-on-demandwhich is the key
element of the proposed PM technique to reduce algorithm execution time.

3.1.4 Direct Combine and Combine Before Placing

The Direct Combine (DC) technique allows IM to combine NERs directly
without merging and splitting operations, thereby saving algorithm execution
time. Figure 3.3 shows how the proposed DC technique works.
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T1 C

D

E

F

Figure 3.3: DC technique

The top left of Figure 3.3 shows the beginning situation when a task T1 is
placed on the FPGA. This leads to two NERs (NERs A and B). The top right
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of Figure 3.3 shows the FPGA after T1 has been completed. The new NER
(NER C) is produced. Let us assume that task T2 arrives. At this point, all
NERs in this location are free, so it is possible to merge the NERs (NERs A,
B, and C) to form a new bigger NER (NER D) as in the Bazargan algorithm.
To decrease algorithm execution time, instead of merging (release memory)
and splitting (allocate memory) NERs, the DC technique directly combines
the NERs (NERs A, B, and C) to create a bigger NER (NER D) (bottom left of
Figure 3.3). The resulting NER can be used to place the new task (bottom right
of Figure 3.3). To increase the placement quality, the DC technique will always
directly combine NERs into a bigger NER before placing new tasks. We call
this Combine Before Placing (CBP) strategy. For example if the size of task T2
on Figure 3.3 is smaller than NER A, the DC technique will not directly place
the task on NER A. To prevent fragmentation, our DC technique will combine
these three empty NERs (NERs A, B, and C) before placing the task on this
newly formed NER. Therefore the CBP strategy decreases the fragmentation
of empty areas and increases the placement quality.

3.1.5 Intelligent Merging Algorithm

To speedup the execution time of Bazargan’s algorithm without loosing its
good placement quality, we propose to dynamically combine the above three
techniques (MON, PM, DC) and our CBP strategy for small to medium task
sizes. If the task is too large, the possibility that the task can be placed without
merging decreases, so in this case our techniques will not work. Therefore, IM
will conditionally activate our techniques and strategy based on the task sizes
as shown in Figure 3.4.

If the task is not too large (the task width≤ the task width threshold or the task
height≤ the task height threshold), IM will do CBP or MON (lines 2-6). If IM
fails to find placement after doing CBP or MON, IM will do PM (lines 7-10).
If IM also fails to find placement after doing PM, IM will reject the task. If
IM can find placement using CBP (line 4), IM will place the task using DC
placement (line 5). If IM can find placement using MON, IM will place the
task using normal placement (line 6).

If the task is too large, IM will do full merging before finding placement like
the original Bazargan’s algorithm (lines 11-15). If IM can find placement after
complete merging, IM will place the task using normal placement (line 14),
otherwise IM will reject the task (line 15).
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1. If (task width <= task width threshold) or (task height <= task height threshold)

{

2. Find placement without merging

3. If the placement is found

{

4. If CBP is possible

{

5. DC placement

}

else

{

6. Normal placement

}

}

else

{

7. Find placement with PM

8. If the placement is found

{

9. Normal placement

}

else

{

10. Reject the task

}

}

}

else

{

11. Total merging

12. Find placement

13. If the placement is found

{

14. Normal placement

}

else

{

15. Reject the task

}

}

CBP or MON

PM

Bazargan’s algorithm

Figure 3.4: Pseudocode of Intelligent Merging algorithm

3.1.6 Evaluation

Experimental Setup

We have constructed a discrete-time simulation framework in ANSI-C to eval-
uate the performance of the proposed techniques and algorithm and compare
it to related work. Our experiments have been conducted on a Pentium-IV
3.4 GHz work station. Each task is placed at its arrival time and in cases the
placement fails, it is assumed rejected. In other words, there is no-queue used
for the scheduling. Only one new task can arrive at each simulated time unit.
Furthermore, our scheduling scheme is non-preemptive – once a task is loaded
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onto the device it runs to completion.

We model an FPGA with size of 100x100 reconfigurable units and use tasks
with randomly generated sizes and life-times. To our best knowledge, there
are no standard benchmarks available to evaluate online placement algorithms.
Therefore, we generated our own synthetic benchmark sets. To closely ap-
proximate real-life scenarios, we generate randomly 13 task sets as depicted in
Table 3.1 ranging from short life-time tasks (50 time units) till long life-time
tasks (200 time units) and also from small size tasks (4 reconfigurable units) till
large size tasks (400 reconfigurable units). The last task set is a mixed task set
(MTS) of TS1 to TS12.Wmin, Wmax, Hmin, Hmax, Ltmin, andLtmaxdenote
minimum task width, maximum task width, minimum task height, maximum
task height, minimum life-time and maximum life-time respectively. Our task
sets consists of 1000 tasks with uniformly distributed life-times and task sizes.

Using our simulation framework, we compared our IM algorithm to
Bazargan’s proposal [22]. In this simulation, we set the task width thresh-
old=10 and the task height threshold=10 for our algorithm. For Bazargan’s al-
gorithm, we use the First Fit (FF) heuristic for choosing NERs and the Shorter
Segment (SSEG) heuristic for splitting decision, because these heuristics pro-
vide the best performance, as mentioned in [22].

Table 3.1: Simulated task sets (W:task width, H:task height, Lt:task life-time)

Task Set Wmin Wmax Hmin Hmax Ltmin Ltmax
TS1 2 5 2 5 50 100
TS2 2 5 2 5 100 150
TS3 2 5 2 5 150 200
TS4 5 10 5 10 50 100
TS5 5 10 5 10 100 150
TS6 5 10 5 10 150 200
TS7 10 15 10 15 50 100
TS8 10 15 10 15 100 150
TS9 10 15 10 15 150 200
TS10 15 20 15 20 50 100
TS11 15 20 15 20 100 150
TS12 15 20 15 20 150 200
MTS 2 20 2 20 50 200

Our study is based on evaluation of two performance parameters: the aver-
age percentage of accepted tasks (%) and the average algorithm execution
time(µs). A task is considered accepted if the algorithm can successfully find
a place for running that task on the reconfigurable device. The percentage of
accepted tasks is the ratio between the number of accepted tasks and the total
number of tasks. The execution time was obtained usinggettimeofday()func-
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tion that provides us with microseconds precision. We define the algorithm
execution time as the time used by the algorithm for a single task placement.
Good quality placement algorithms have higher percentage of accepted tasks
in general. The average percentage of accepted tasks represents the average
placement quality, while the average algorithm execution time is a metric for
the algorithm performance. The average values are obtained after 1000 algo-
rithm iterations for each task set.

To study the impact of the different techniques, we performed experiments
with five different cases:

• BFFSSEG: Bazargan’s algorithm using FF and SSEG heuristics [22];

• MON: algorithm using MON technique;

• MON+PM: algorithm using combination of MON and PM techniques;

• MON+PM+DC: combination of MON, PM, and DC techniques;

• IM: our Intelligent Merging algorithm.

Experimental Results

The average accepted tasks precentage for each task set is depicted in Figure
3.5. The effect of each technique on the number of accepted tasks is shown
in Figure 3.6. Positive values mean increase of the number of accepted tasks,
while negative values mean decrease in accepted tasks number. This figure is
obtained by comparing the results of the algorithm with and without applying
each proposed technique. The average algorithm execution time over 1000
runs for each task set is depicted in Figure 3.7. The effect of each technique
on the algorithm execution time is shown in Figure 3.8.

Effect of task size and life-time

As the task size increases, the average percentage of accepted tasks decreases
because it is more difficult to find available free space that can accommodate
the task. Longer task life-times decrease the average percentage of accepted
tasks, because the task will stay longer on the FPGA. It is thus more difficult
to find available free space that can accommodate other tasks.

Large tasks negatively influence the algorithm execution time. This is to be
expected, because when the task size is bigger, the possibility that the task
can be placed on one of the NERs or combined NERs on the FPGA without
merging decreases. A similar observation holds for the life-time of tasks where
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Figure 3.5: Average percentage of accepted tasks (%)

Figure 3.6: Effect of techniques on accepted tasks(%)

Figure 3.7: Average algorithm execution time(µs)

Figure 3.8: Effect of techniques on the algorithm execution time(%)
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the execution time is negatively influenced as tasks will staylonger on the
FPGA. Therefore the probability that subsequent tasks can be placed on one
of the NERs without merging becomes smaller.

Evaluation of algorithm using MON technique

The algorithm using the MON technique is up to 1.9 times faster than the
Bazargan’s algorithm due to intelligently avoiding full merging with similar
accepted task percentage. On average, the number of accepted tasks is reduced
by 0.95 %. However for the mixed task set, this is only 0.18 %.

Evaluation of algorithm using combination of MON and PM techniques

Among these algorithms, the algorithm using a combination of MON and PM
techniques (MON+PM) performs the best in terms of algorithm execution time
on average. The algorithm is up to 2.9 times faster than the Bazargan’s algo-
rithm with similar accepted tasks as the result of intelligently avoiding total
merging and exploiting its merge-on-demand capability. On the average, the
decrease of accepted tasks is 1.24 %. However for the mixed task set, the
decrease is only 0.36 %.

Evaluation of algorithm using combination of MON, PM, and DC techniques:

The algorithm using combination of MON, PM, and DC techniques
(MON+PM+DC) is up to 3 times faster than the Bazargan’s algorithm with
similar accepted tasks as the result of intelligently avoiding total merging and
exploiting its merge-on-demand and direct combine capability. On the aver-
age, the decreasing of accepted tasks is 0.95 %. However for mixed task set,
the decreasing is only 0.36 %.

Evaluation of IM algorithm

IM can effectively exploit the advantages of our three techniques especially
when the tasks are not too large, because the possibility that the tasks can be
placed without merging become large.

The IM algorithm is up to 3 times faster than the Bazargan’s algorithm with
similar accepted tasks by intelligently exploiting the proposed three tech-
niques. On the average, the decreasing of accepted tasks is 0.89 %. However
for the mixed task set, the decreasing is only 0.36 %.

On the basis of these results, we can state that our algorithm produces compa-
rable results as Bazargan with a slight minor difference for the worst case but
similar placement quality in the best case.

Effect of the MON technique

The MON technique can decrease the algorithm execution time for small task
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sets. When the tasks are small, the possibility that the taskscan be placed
on one of NERs without merging becomes bigger, so in this case MON can
prevent total merging effectively.

The MON technique decreases up to 47 % of the algorithm execution time
by intelligently avoiding total merging. On the average, the MON technique
decreases 0.95 % accepted tasks. However for the mixed task set, the decrease
in only 0.18 %.

Effect of the PM technique

The PM technique decreases the algorithm execution time up to 47.4 % due
to the merge-on-demand. On the average, the PM technique decreases 0.29 %
accepted tasks. However for the mixed task set, the decrease is only 0.18 %.

Effect of the DC technique

The DC technique decreases the algorithm execution time for sets with small
task sizes, as the possibility for task placement on one of the combined NERs
without merging increases. This improves the DC technique efficiency.

We see that the DC technique increases the number of accepted tasks for almost
all task sets except TS4 as the result of its CBP strategy.

The DC technique decreases up to 2.94 % algorithm execution time by intel-
ligently avoiding merging and splitting. On the average, the DC technique
decreases 0.29 % accepted tasks. However for the mixed task set, it does not
affect on accepted tasks.

3.2 Proposed Quad-Corner Algorithm

3.2.1 Basic Idea of Quad-Corner Strategy

The existing strategies tend to place arriving tasks concentrating on one corner
and (or) split free area into many small segments as shown in Figure 3.9a.
These can lead to the undesirable situation that a task cannot be allocated even
if there would be sufficient free area available. Because of these problems, task
T5 cannot be accommodated as shown in this motivating example in Figure
3.9a. As a consequence, the reconfigurable device is not well utilized (waste
of resources). Furthermore, task T5 has to wait for execution or to be executed
by the host processor due to this inefficient placement, hence the application
will be slowed down (performance degradation). To address these problems,
we spread hardware tasks close to the four corners of the devices as illustrated
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in Figure 3.9b. There are two main advantages of this strategyas shown in
Figure 3.9b: (1) it reserves a lot of free area in the middle of the device; (2) it
solves splitting free area problem. As a result, both the reconfigurable device
utilization and the system performance will be increased.

Figure 3.9: Basic idea of quad-corner strategy

3.2.2 Two-dimensional Reconfigurable Device

A two-dimensional reconfigurable device, denoted asRD(H,W), consists of
HxW homogeneous reconfigurable units arranged in a two-dimensional array
of heightH and widthW and an interconnect between the units. A reconfig-
urable unit in rowr and columnc is represented byru(r,c), for 0≤r≤H-1 and
0≤c≤W-1, with ru(0,0)as the upper left corner.

3.2.3 Task Types

To make the free area in the middle of the device as large as possible, we
force our algorithm to spread hardware tasks close to the four corners of the
devices. To support this idea, we define four ways of placing tasks: starting
from upper left corner, upper right corner, lower right corner, and lower left
corner. We divide tasks into four different task types (Figure 3.10): upper left
task (ULT), upper right task (URT), lower right task (LRT), and lower left task
(LLT). A THxTW task in a two-dimensional reconfigurable deviceRD(H,W)
is a group of reconfigurable units belonging toRD(H,W), with task heightTH
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and task widthTW, such that1≤TH≤H and1≤TW≤W. The task has an origin
reconfigurable unitORU=ru(OR,OC)and two alternative placement positions
for accommodating future tasks. The two alternative positions are ahorizontal
alternative position(HAP) and avertical alternative position(VAP) as origin
reconfigurable units for future tasks. OR and OC denote the origin row and
origin column respectively.

Figure 3.10:Examples of four task types and their alternative placement positions

3.2.4 Initial Placement Positions

To spread tasks to the corners for creating as large as possible free area in the
middle, we propose four initial placement positions for accommodating tasks
on an emptyWxH two-dimensional reconfigurable device: upper left task ini-
tial ULTI=ru(0,0) (for upper left tasks), upper right task initialURTI=ru(0,W-
1) (for upper right tasks), lower right task initialLRTI=ru(H-1,W-1)(for lower
right tasks), and lower left task initialLLTI=ru(H-1,0) (for lower left tasks).
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3.2.5 Data Structures

We use a 2D matrixRD(r,c) (RD matrix) to represent the FPGA area, defined
as:RD(r,c)=0 if RD(r,c) is not occupied (free) orRD(r,c)=1 if RD(r,c) is occu-
pied (used), where0≤r≤H-1, 0≤c≤W-1, andRD(0,0)is the element of upper
left corner.

During placement, the software implementation of the proposed algorithm
maintains four lists: an upper left task list (for storing upper left tasks), an
upper right task list (for storing upper right tasks), a lower right task list (for
storing lower right tasks), and a lower left task list (for storing lower left tasks).

3.2.6 Searching Sequences for Placement

To accommodate tasks, the algorithm needs to search four task lists as men-
tioned above. In order to pack tasks more compactly, the algorithm searches
placements in all different task lists based on the sizes of arriving tasks. There
are four different searching sequences for placement: upper left corner first
(for very large tasks), upper right corner first (for large tasks), lower right cor-
ner first (for medium size tasks), and lower left corner first (for small tasks).
The strategy tries to group tasks based on their sizes. This way, the algorithm
picks the corner which contains tasks that are similar in size as the task that
needs to be placed. For example, finding placements for very large tasks using
upper left corner first sequence are fastest. The reason for this is that the algo-
rithm finds a placement starting from the location where very large tasks were
mapped. This strategy can also increase the placement quality since we group
tasks based on their sizes for better compacting purposes. In this thesis, we
consider serial implementation of the list search. Since the four task lists can
work independently, searching task lists can be executed in parallel in a future
implementation.

3.2.7 The Algorithm

The pseudocode of the proposed Quad-Corner algorithm for allocation is
shown in Figure 3.11a. In line 1, the algorithm searches dynamically different
possible placements according to its size until it finds the appropriate place-
ment. This strategy reduces the algorithm execution time and at the same time
increases its placement quality by finding placements in the specific area and
placing tasks as close as to the specific group. If the algorithm finds the place-
ment position, it places the task starting from this position by updating the RD
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matrix (line 3) and adds the task to its corresponding task list (line 4). If the
algorithm cannot find the placement, it rejects the task (line 5).

1. Do searching sequences

for placement

2. If the placement is found

{

3. Place the task by      

updating RD matrix

4. Add the task to the

corresponding task list

}

5. Else reject the task

1. If the life-time of the 

task is zero

{

2. Delete the task 

from RD matrix

3. Delete the task from 

the corresponding 

task list

}

a. Allocation b. Deallocation

Figure 3.11: The pseudocode of QC strategy

The pseudocode of the proposed Quad-Corner algorithm for deallocation is
shown in Figure 3.11b. In line 1, the algorithm checks the life-time of the task.
If the life-time is zero (finished tasks), the algorithm deletes the task from RD
matrix (line 2) and its corresponding task list (line 3).

3.2.8 Evaluation

Experimental Setup

To evaluate the proposed algorithm, a discrete-time simulation framework was
constructed in C. The framework was compiled and run under Linux on a
Pentium-IV 3.4 GHz PC. Since the algorithms are online, the information
about new tasks is unknown until their arrival time. We assume that each task
should be placed at its arrival time and is rejected when it could not be placed.
If a task is rejected, the equivalent function should be executed in software by
the host processor and hence a penalty is incurred. We use task setREJECT to
represent tasks which are rejected from all task setTS . The volume of a task
ti that has a widthwi reconfigurable units, heighthi reconfigurable units and
life-time lti time units is defined asvi(ti) = wi.hi.lti . For simplicity but
without loss of generality, we assume the penalty to be linearly proportional
to the volume of the rejected task. Thepenalty ratiois the ratio between the
total volume of rejected tasks (

∑

∀ti∈REJECT

vi(ti)) and the total volume of all

tasks (
∑

∀ti∈TS

vi(ti)). When a task is rejected, the total free area in the recon-

figurable device is called the wasted area. Thewasted area ratiois the ratio
between the wasted area and the total area of the reconfigurable device. Gen-
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erally, algorithms with a higher placement quality will exhibit lower penalty
and wasted area ratios.

We evaluated the QC algorithm using real hardware tasks on a real FPGA.
We use the benchmark set from [54] (e.g. MDCT, matrix multiplication,
hamming code, sorting, FIR, ADPCM, etc) and use the DWARV [55] C-
to-VHDL compiler to translate the benchmarks to VHDL. The benchmarks
are synthesized with the Xilinx ISE 8.2.01iPR 5 tools [198] [199] targetting
Virtex-4 XC4VLX200 device with 116 columns and 192 rows of reconfig-
urable units. From these hardware implementations, we obtain the required
resources, the reconfiguration times and the execution times of the hardware
tasks. Some examples of implemented hardware tasks are shown in Table 3.2.
For example, the areaAi for function POWER obtained after synthesis is 444
CLBs. In [56], one Virtex-4 row has a height of 16 CLBs. By choosing two
rows for implementing this function, we obtainhi = 2x16 = 32 CLBs and
wi = ⌈Ai/hi ⌉ = ⌈444/32⌉ = 14 CLBs. The function needs 37 cycles with
11.671 ns clock period (85.68 MHz). Hence, we estimate the execution time
of 100 back-to-back operations to beeti = 37x11.671x100 = 43183 ns.
There are 22 frames per column and each frame contains 1312 bits. There-
fore one column needs22x1312 = 28864 bits. Since the function occupies 14
CLBs in 2 rows (32 CLBs), we obtain a bitstream with14x2x28864 = 808192

bits. Since ICAP can send 32 bits per clock cycle at 100 MHz, we estimate the
reconfiguration timerti = 808192x10/32 = 252560 ns. In the simulation,
we assume that the life-timelti is the sum of reconfiguration timerti and
execution timeeti . The hardware tasks are selected randomly from 37 imple-
mented hardware tasks. Every task set consists of 100 tasks, each of which has
a life-time and task size. Since we target runtime dynamic multitasking mul-
tiuser systems which hardware tasks can arrive any time, the arrival periods of
hardware tasks are randomly generated between 10µs to 20µs, 20µs to 30
µs, and 30µs to 40µs.

Table 3.2: Some examples of implemented hardware tasks (eti for 100 operations,
rti at 100 MHz)

No. Hardware Tasks wi(CLBs) hi(CLBs) eti(ns) rti(ns)

1 functionPOWER 14 32 43183 252560
2 adpcmdecode 10 32 770302 180400
3 adpcmencode 10 32 1031213 180400
4 FIR 33 32 1565980 595320
5 mdct bitreverse 32 64 449412 1136520
6 mmul 25 64 57278 892980
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Because our algorithm is a first fit (FF) heuristic algorithm that can find place-
ments for arriving tasks very fast, we compare the algorithm only with FF
heuristic algorithms which are faster than best fit (BF) heuristic algorithms.
To fairly evaluate the algorithms, we use the version of Bazargan’s algorithm
with the best placement quality, i.e. using the FF heuristic for choosing non-
overlapping empty rectangles (NERs) and the Shorter Segment (SSEG) heuris-
tic for splitting, as mentioned in [22]. In addition, we also compare the pro-
posed algorithm to Intelligent Merging (IM) algorithm (the faster modified
version of Bazargan’s algorithm).

Experimental Results

Results were obtained using the aforementioned discrete-time simulation
framework and by comparing the following algorithms: Bazargan’s (BFF-
SSEG) algorithm [22], Intelligent Merging (IM) algorithm, and Quad-Corner
(QC) algorithm as presented in Figure 3.12. Average numbers are obtained by
running the algorithms 10000 times for every task set.

A longer inter-task arrival period creates more possibilities for additional run-
ning tasks to be finished before the arrival of new tasks. As a consequence, the
penalty and wasted area are reduced as the inter-task arrival period increases.

Due to its on-demand merging, the IM algorithm runs faster than the
Bazargan’s algorithm with almost similar penalty ratio and wasted area ratio.
The Bazargan’s and IM algorithms do not perform well because of splitting
and fragmentation problems. Figure 3.12a shows that the QC reduces 78 %
penalty and 93 % wasted area of the other related approaches on average by
solving above problems.

The increase of the total number of running tasks creates more fragmentation
of the free area. As presented earlier, the algorithms that use splitting and
merging (Bazargan’s and IM algorithms) in managing free area need to merge
free area for accommodating arriving tasks. Therefore these algorithms need
more merging operations by the increase of the number of running tasks. As a
consequence, the algorithms (excluding the QC) run slower when the number
of running tasks increases. Therefore, QC is more scalable in terms of runtime
overhead than the other algorithms. By totally avoiding merging and its sim-
plicity, QC not only has better placement quality but also runs faster than the
other algorithms.

Besides comparing the performance of the algorithms using an original Virtex-
4 device (Original), we also measure the effect of doubling the width (Double
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Figure 3.12:Evaluation with real hardware tasks

Width), the height of FPGA (Double Height), and the reconfiguration speed
(Double Speed) as depicted in Figure 3.12c.

Expanding the size of the FPGA reduces the penalty and wasted area. The
reason is obvious that the larger the FPGA, the easier it is to accommodate
hardware tasks. As a consequence, the penalty and wasted area are decreased.

Speeding up the reconfiguration also reduces the wasted area and penalty ra-
tios. The reason is that the faster the reconfiguration affects on less life-time of
the tasks. As a result, the penalty and wasted area are dropped since the tasks
stay shorter on the FPGA.

The effect of doubling the width of FPGA is more beneficial than doubling
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the height. The reason is that the width of the original FPGA (Virtex-4
XC4VLX200) is smaller than its height. As a consequence, doubling the width
of the FPGA becomes more efficient.

Doubling the FPGA size improves placement performance more than doubling
the reconfiguration speed. The effect of reconfiguration speed improvement
also depends on the ratio between reconfiguration time and task execution
time. The above is in agreement with the trend observed in industry that puts
more pressure on increasing the FPGA area than on making the reconfiguration
circuit faster.
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Figure 3.13: FPGA technology impact on penalty (%) and wasted area (%)

The effect of FPGA sizes (double width, double height) and reconfiguration
speeds (2x , 4x, 8x, and 16x faster) on penalty and wasted area ratios (%)
compared to the baseline FPGA is shown on Figure 3.13. All algorithms can
benefit from bigger FPGAs or improved reconfiguration speeds (in both, time
and area). Our QC algorithm is significantly better and hence can not benefit
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much from either FPGA size or configuration speed improvements for the test
task sets. In a real system this will certainly change. These figures indicate
that placement quality can be improved by using a more efficient algorithm, a
faster reconfiguration circuit or a bigger size FPGA.

From the above we determine three ways to improve runtime reconfiguration
systems performance. The first solution is to utilize more efficient algorithms
to manage the reconfigurable resources. Therefore, it is important to study
how to manage these hardware resources. The second solution is to increase
the size of targeted FPGA. This solution is simple but will increase power
consumption. Therefore, when this path is chosen power consumption has to
be addressed. This finding triggers us to study techniques to reduce power
consumption in reconfiguration devices. The third solution is to speedup the
reconfiguration process requiring further study on its overhead reduction.

3.3 Summary

We proposed and evaluated two algorithms (Intelligent Merging and Quad-
Corner) for online placement of reconfigurable hardware tasks. The main dif-
ference between the Intelligent Merging (IM) algorithm and state of the art
is its ability to do on-demand merging. IM speeds up online placement algo-
rithms by 1.72x while loosing only 0.89 % in placement quality. Our Quad-
Corner (QC) algorithm differs from and related work by the quad-corner task
distribution and its dynamic searching sequences. Spreading hardware tasks to
the four corners of the devices, finding placements in the specific places, and
grouping tasks in free area based on their sizes are the main key features of
our proposed QC algorithm. Experiments with real hardware tasks on Virtex-4
show that the QC not only has 78 % less penalty and 93 % less wasted area
than the existing algorithms on average, but also has lower runtime overhead.

Note. The content of this chapter is based on the the following papers:

T. Marconi, Y. Lu, K.L.M. Bertels, G.N. Gaydadjiev, Intelligent Merging On-
line Task Placement Algorithm for Partial Reconfigurable Systems, Pro-
ceedings of Design, Automation and Test in Europe (DATE), March 2008.

T. Marconi, Y. Lu, K.L.M. Bertels, G.N. Gaydadjiev, A Novel Fast Online
Placement Algorithm on 2D Partially Reconfigurable Devices, Proceedings
of the International Conference on Field-Programmable Technology (FPT),
December 2009



4
Online Hardware Task Scheduling and

Placement Algorithms

T heonline hardware task scheduling and placement algorithms have to
find a block of hardware resources for running each arriving task on
a 2D partially reconfigurable device. When there are no available re-

sources for allocating the hardware task at its arrival time, the algorithms have
to schedule the task for future execution. Here, the algorithms need to find the
earliest starting time and free space for executing the task on the device in the
future. Since the algorithms need to take decisions at runtime; therefore, the
algorithm execution time is computed as an additional time for the overall ap-
plication time. As a result, the goal of the algorithms are not only to get better
scheduling and placement quality but also to have a low runtime overhead.

In this chapter, we propose two novel algorithms for dealing with online task
scheduling and placement. The first algorithm, Intelligent Stuffing, is pro-
posed for solving a number of shortcomings of existing algorithms for 1D area
model. The second algorithm, 3D Compaction (3DC), is designed for solv-
ing ”blocking-effect” in existing algorithms for 2D area model; the algorithms
tend to allocate tasks at positions where can block future tasks to be scheduled
earlier. A novel 3D total contiguous surface (3DTCS) heuristic is proposed for
equipping our scheduling and placement algorithm with blocking-awareness.

This chapter is organized as follows. Our Intelligent Stuffing algorithm for
online task scheduling and placement targeting 1D area model of partially re-
configurable devices is proposed and evaluated against related work in Section
4.1. In Section 4.2, we introduce our 3D Compaction algorithm targeting 2D
area model and then give its evaluation against related art. Finally, Section 4.3
ends with the conclusions.

55
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4.1 Intelligent Stuffing Algorithm for 1D Area Model

4.1.1 1D Area Scheduling and Placement Problems

Given a task set representing a multitasking application with their arrival times
ai , execution timesei and widthswi , online task scheduling and placement al-
gorithms targeting the 1D area model of partially reconfigurable devices have
to determine placements and starting times for the task set such as there are
no overlaps both in space and time among all tasks. The goals of the algo-
rithms are: a) to utilize effectively the available FPGA resources (referred as
minimize wasted area); b) to run the overall application on FPGA faster (min-
imize schedule time); c) to shorten waiting time of the tasks to be executed on
the FPGA (minimize response time) and d) to keep the runtime overhead low
(minimize the algorithm execution time).
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Figure 4.1: Performance parameters and previous algorithms

We define total wasted area as the overall number of space-time units that are
not utilized as shown in Figure 4.1(a). Total schedule time is the total number
of time units for the execution of all tasks. Response time is the difference
between starting and arrival times for each task (in time units). Total response
time is the sum of response times for all tasks. The overall algorithm execution
time is the cumulative time needed to schedule and place all the tasks.
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4.1.2 Intelligent Stuffing Algorithm Main Properties

In [46] [47], Steiger et al. proposed the Stuffing. It schedules tasks to arbitrary
free areas that will exist in the future, including areas that will be used later
by tasks currently in its reservation list. It always places a task on the leftmost
of its free space as shown on Figure 4.1(b). Because the Stuffing algorithm
always places tasks on the leftmost edge of the available area, it places tasks
T1 and T2 as shown on Figure 4.1(c). These placements block task T3 to be
scheduled earlier. In this case, it fails to place task T3 earlier.

In [48], Chen and Hsiung proposed the Classified Stuffing to solve the draw-
back of the Stuffing in case 1 (Figure 4.1(c)). The main difference between the
algorithm and the Stuffing is the classification of tasks. It can place a task on
the leftmost or rightmost of its free space based on the task Space Utilization
Rate (SUR). SUR is the ratio between the number of columns required by the
task and its execution time. High SUR tasks (SUR> 1) are placed starting
from the leftmost available columns of the FPGA space, while low SUR tasks
(SUR≤ 1) are placed from the rightmost available columns as shown in the
right of Figure 4.1(b). In case 1, it can recognize the difference between tasks
T1 (high SUR task) and T2 (low SUR task), so it places successfully tasks on
different placements. This makes task T3 earlier scheduling possible. However
in case 2 (Figure 4.1(d)), it fails to solve the problem of the Stuffing. Because
it does not recognize the difference between tasks T1 and T2 (both of the tasks
are low SUR tasks), it fails to place tasks on different placements. These place-
ments block task T3 to be scheduled earlier. Therefore in case 2, both of the
previous algorithms fail to schedule task T3 earlier. Total wasted area, total
schedule time, and total response time will increase as a consequence.

The main difference between our Intelligent Stuffing algorithm and previously
proposed algorithms is the additional alignment status of the free space seg-
ments and its handling. This status guides our algorithm to make the correct
decision on task placement position in order to maximize the free space area
and allow earlier placing of further tasks. In addition, our algorithm does not
need to compute SUR, therefore it runs faster than the Classified Stuffing.

4.1.3 The Proposed Algorithm

Our algorithm maintains two linked lists: a free space list (SL) and a task list
(TL). The SL contains all free spacesFSi with their previous pointersPPi ,
dimensions (CLi andCRi ), free timesFTi , alignment statusesASi and next
pointersNPi . The free time is the time when the corresponding free space can
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be used. The alignment status is a boolean determining the placement location
of the task (leftmost or rightmost) within this free space segment. The new list
entries of SL are inserted in order of increasing free times.

The TL stores all scheduled tasks with their previous pointersPPj , start times
STj , task dimensions (CLj , CRj ), task execution timesETj and next pointers
NPj . The start time is the time that the task initiates execution on the FPGA.
The column left (CLj ) and right (CRj ) determine the FPGA area that is used
by the task. The new list entries of TL are inserted in order of increasing of
start times.

Figure 4.2(a) (top) shows an empty FPGA and a leftmost alignment status is
defined, e.g., a new free space will be allocated at the leftmost position. At this
point, the free space list SL contains only a single free space (FS1) defined by
its leftmost column (CL1), its rightmost column (CR1) and free timeFT1.
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Figure 4.2: Our Intelligent Stuffing algorithm

When a new taskT1 arrives, the algorithm searches the free space list SL and
places it on the leftmost edge ofFS1 (according to its alignment status). This
action reduces the size ofFS1 as shown in the middle of Figure 4.2(a), toggles
the alignment status ofFS1 from leftmost to rightmost, and creates a new free
spaceFS2. FS2 has (CL2, CR2) dimension and its free time isFT2 and leftmost
alignment status.



4.1. INTELLIGENT STUFFING ALGORITHM FOR 1D AREA MODEL 59

Assume there is another taskT2 simultaneously arriving withT1 the free
space list SL will be processed again. Because the alignment status ofFS1

was changed to rightmost,T2 will be placed on rightmost edge ofFS1. This
action reduces theFS1 size as shown in Figure 4.2(a) (bottom) and again tog-
gles the alignment status ofFS1 to leftmost. The size ofFS2 is also adjusted
and a new free spaceFS3 (CL3,CR3) is created with free timeFT3 and leftmost
alignment status. By keeping tasksT1 andT2 on the edges, the largest space
possible is created, so future tasks can be scheduled earlier and we can address
the problem of previous algorithms for both case 1 and case 2 as shown in
Figure 4.2(b).

There are two operating modes:speedandquality. In the speed mode, the
algorithm execution time is more important than the quality of scheduling and
placement. While the quality mode is designed for higher utilization of the
resources. The pseudocode of our algorithm is presented in Figure 4.2(c).
When a new task arrives, our algorithm walks through the SL to find a first
fit free space avoiding conflicts with the scheduled tasks in the TL (line 1 to
11). The first fit free space has the earliest free time which enough columns of
reconfigurable units to fit the task.

If quality mode is chosen, lines 6 to 10 are executed for better quality (in
speed mode those lines are skipped to reduce the algorithm execution time). In
lines 6 to 8, a placement of the task at the opposite position to the alignment
status is attempted. This action increases the quality, but it requires additional
algorithm time. If the task still conflicts with the currently scheduled tasks in
the TL (line 9), the alignment status of the corresponding free space is set to
its initial condition (line 10).

In line 12, the first fit free space without conflicts with the TL list is found,
however this space may be wider than that the task requirements. The task
is placed on theFSi edge according to its alignment status. As mentioned
earlier, every placement changes the size and toggles the alignment status of
the used free space (line 13). This action can also affect the other free space
sizes (line 14) and adds a new free space in the SL (line 15) in addition to the
new scheduled task in the TL (line 16).
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4.1.4 Evaluation

Experimental Setup

We implemented four different algorithms (the Stuffing [46] [47] (STF), the
Classified Stuffing [48] (CTF) and our algorithm usingspeedmode (ISS) and
quality mode (ISQ)) in ANSI-C and run them on a Pentium-IV 3.4 GHz PC
using the same task sets. The simulated device consists of 96 columns to model
Xilinx XCV1000 (96x64 reconfigurable units). The task widths and execution
times of tasks are generated randomly in [1,96] columns of reconfigurable units
and [1,1000] time units. We generate randomly 20 tasks for each task set and
run all algorithms using 100,000 task sets. The evaluation is based on four
performance parameters: total wasted area (TWA), total schedule time (TST),
total response time (TRT), and total algorithm execution time (TAT) (µs).

Experimental Results

Table 4.1 shows that even inspeedmode our algorithm utilizes the FPGA bet-
ter, decreasing the wasted area compared to the Stuffing by 64.5 %. In addition,
it makes the overall application execution 1.1 % faster and has 17.4 % shorter
waiting time. Thespeedmode is not only faster than the Classified Stuffing (5
% shorter algorithm execution time) but also utilizes the FPGA more effective
by decreasing the wasted area by 53 %. Furthermore the application execution
is reduced by 0.7 % with 12.8 % shorter total waiting time.

Table 4.1:Obtained results using 100,000 task sets (TWA:total wasted area, TST:total
schedule time, TRT:total response time and TAT:total algorithm execution time)

Performance parameters STF CTF ISS ISQ
TWA(space-time units) 1035449499 783069435 367934139 106709691

TST(time units) 651128773 648499814 644175488 641454400
TRT(time units) 335229077 317655028 276949454 230250447

TAT(µs) 2076694 2184614 2074848 2168651

In quality mode the wasted area is decreased by 89.7 % compared to the Stuff-
ing with only 4.2 % algorithm execution time overhead (saving the alignment
status bit and finding alternative placements). Moreover it makes the applica-
tion running 1.5 % faster with 31.3 % shorter total waiting time. In respect to
the Classified Stuffing thequality mode is not only faster by 0.7 % in terms of
algorithm execution time but also decreases the FPGA wasted area by 86.4 %.
Additionally, the overall application execution time is reduced by 1.1 % with
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27.5 % better total waiting time.

4.2 Proposed 3D Compaction Algorithm for 2D Area
Model

4.2.1 Problem of Scheduling and Placement on 2D Area Model

Given a task set representing a multitasking application with their arrival times
ai , life-timeslti , widthswi and heightshi , online task scheduling and place-
ment algorithms targeting the 2D area model of partially reconfigurable de-
vices have to determine placements and starting times for the task set such that
there are no overlaps in space and time among all tasks. The goals of the al-
gorithms are: a) to utilize effectively the available FPGA resources (minimize
wasted volume); b) to accelerate the overall application on the FPGA (mini-
mize schedule time); c) to start executing arriving tasks on the FPGA earlier
(minimize waiting time) and d) to keep the runtime overhead low (minimize
the algorithm execution time).

Figure 4.3: Problem of scheduling and placement on 2D area model

We define the total wasted volume as the overall number of area-time units
that are not utilized as illustrated in Figure 4.3. Total schedule time is the total
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number of time units for the execution of all tasks. Waiting time is the dif-
ference between task starting and arrival times (in time units). The algorithm
execution time is the time needed to schedule and place the arriving task.

4.2.2 Blocking-Aware Algorithm Main Idea

Blocking-unaware algorithms do not consider whether future incoming tasks
will be blocked while deciding on the current task placement position. This
can be seen as if drivers parking their vehicles at completely random places and
hence preventing other drivers of parking their cars. Figure 4.4 (left) illustrates
the behavior of online scheduling and placement algorithms that do not have
blocking-awareness. In this simple example, task T3 is becoming an obstacle
for task T4 arriving after T3.

Figure 4.4: Basic idea of blocking-aware algorithm

To tackle this problem, we introduce an algorithm that can avoid placement
decisions that will become an obstacle for future HW tasks. By placing task
T3 to a different location as shown in Figure 4.4 (right), the proposed algorithm
can avoid task T3 to be an encumbrance for task T4 that can be started earlier
now. By this early scheduling T4 can finish its execution faster. To give the
algorithm the necessary knowledge to avoid such ”blocking-effect”, it places
tasks at locations as much as possible touching all prior tasks illustrated with
bold lines on the figure. In the next section, we will provide a more detail
explanation of this heuristic, termed 3D total contiguous surface (3DTCS).
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4.2.3 3D Total Contiguous Surface (3DTCS) Heuristic

A hardware task on a 2D partially reconfigurable device using 2D area model
can be illustrated as a 3D box. The first two dimensions are the required area
(wh) on the device for running the task. The other dimension is the time
dimension(t). To pack hardware tasks compactly during run time at the
earliest time, we propose a new heuristic, named 3D total contiguous surface
(3DTCS) heuristic.

Figure 4.5: 3D total contiguous surface (3DTCS) heuristic

The 3DTCS is the sum of all surfaces of an arriving task that is contacted with
the surfaces of other scheduled tasks as depicted in Figure 4.5. The 3DTCS
contains two components:

• the horizontal contiguous surfaces with previous scheduled tasks and
next scheduled tasks;

• the vertical contiguous surfaces with scheduled tasks and the FPGA
boundary.

In a simple example depicted in Figure 4.5, the horizontal contiguous surfaces
with a previous scheduled task (PST) A4 and with a next scheduled task (NST)
A3 in the figure give this heuristic an awareness on avoiding ”blocking-effect”;
while the other surfaces A1 and A2 (vertical contiguous surfaces) give this
heuristic to better pack tasks in time and space. As a result, the proposed
algorithm has a full 3D-view of the positions of all scheduled and placed tasks.
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Figure 4.6: Horizontal contiguous surfaces

Intuitively, a higher 3DTCS value will result in more compaction both in space
and time. This 3DTCS heuristic gives our proposed 3D compaction algorithm
with blocking-aware ability to pack tasks better as it has a more complete view
of all dimensions.

Figure 4.6(1)-(14) and Table 4.2 show all the placement positions and their
corresponding computations of horizontal contiguous surfaces. The arriving
task (AT), with widthw and heighth , has a bottom-left coordinate(x, y) as
shown in Figure 4.6(15). The arriving task can be contacted with the previ-
ous scheduled task (PST) and (or) the next scheduled task (NST) to produce
the horizontal contiguous surfaces. The scheduled task has a bottom-left co-
ordinate(x1, y1) and a top-right coordinate(x2, y2) as illustrated in Figure
4.6(16).

The arriving task can be contacted with scheduled tasks and (or) FPGA bound-
ary to produce the vertical contiguous surfaces. All placement positions of the
arriving task (AT) and their corresponding computations of vertical contigu-
ous surfaces with the scheduled task (ST) are shown in Figure 4.7(a) and Table
4.3. The arriving task with a life-timelt is started execution at timets ; the
finishing time of scheduled task is denoted astf . Computations of vertical
contiguous surfaces between the arriving task with the FPGA boundary are
illustrated in Figure 4.7(b) and formulated in Table 4.4.
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Table 4.2: Computations of horizontal contiguous surfaces for positions in Figure
4.6(1)-(14)

Positions Horizontal contiguous surfaces
(1) (x2 − x1 + 1)(y2 − y1 + 1)

(2) wh

(3) w(y + h − y1)

(4) (x + w − x1)h

(5) w(y2 − y + 1)

(6) (x2 − x + 1)h

(7) (x2 − x1 + 1)(y2 − y + 1)

(8) (x2 − x + 1)(y2 − y1 + 1)

(9) (x2 − x1 + 1)(y + h − y1)

(10) (x + w − x1)(y2 − y1 + 1)

(11) (x + w − x1)(y + h − y1)

(12) (x + w − x1)(y2 − y + 1)

(13) (x2 − x + 1)(y2 − y + 1)

(14) (x2 − x + 1)(y + h − y1)

Table 4.3: Computations of vertical contiguous surfaces with scheduled tasks for
positions in Figure 4.7(a)(1)-(16)

Positions Vertical contiguous surfaces with scheduled tasks
(1),(3) w.min(lt, (tf − ts))

(2),(4) h.min(lt, (tf − ts))

(5),(7) (x2 − x1 + 1).min(lt, (tf − ts))

(6),(8) (y2 − y1 + 1).min(lt, (tf − ts))

(9),(14) (x2 − x + 1).min(lt, (tf − ts))

(10),(13) (x + w − x1).min(lt, (tf − ts))

(11),(15) (y2 − y + 1).min(lt, (tf − ts))

(12),(16) (y + h − y1).min(lt, (tf − ts))

4.2.4 The 3D Compaction (3DC) Algorithm

Figure 4.8 shows the pseudocode for the proposed 3D Compaction (3DC).
The algorithm maintains two linked lists: the execution list and the reservation
list. The execution list saves the information of all currently running tasks
sorted in order of increasing finishing times; the reservation list contains the
information of all scheduled tasks sorted in order of increasing starting times.
The information stored in the lists are the bottom-left coordinate(x1, y1), the
top-right coordinate(x2, y2), the starting timets , the finishing timetf , the
task name, the next pointer, and the previous pointer.

In lines 1-13, the algorithm computes the starting time matrix (STM) with
respect to the arriving task areawh on the device areaWH . The algorithm
collects all possible positions that have enough space for the arriving task by
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(a)

(b)

Figure 4.7: Vertical contiguous surfaces with scheduled tasks (a) and the FPGA
boundary (b)

scanning the executing and reservation lists. The algorithm fills each element
of the STM with the arrival time of incoming taska (lines 1-3). The algorithm
updates groups of elements that are affected by all executing tasks in execution
list (lines 4-8) and by all scheduled tasks in reservation list (lines 9-13).

In line 14, the algorithm collects all the best positions (candidates) that have
the earliest starting time (the best starting time positions: the best positions in
terms of starting time) from the STM.

Since the algorithm not only wants to get the best position in terms of starting
time (time domain) but the best position in terms of space (space domain)
as well. To pack compactly tasks, we propose to use the 3DTCS heuristic as
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Table 4.4: Computations of vertical contiguous surfaces with the FPGA boundary for
positions in Figure 4.7(b)(1)-(8)

Positions Vertical contiguous surfaces with the FPGA boundary
(1)-(4) (w + h)lt

(5),(7) h.lt

(6),(8) w.lt

presented earlier. The algorithm computes the 3DTCS (line 16) using formulas
from Table 4.2 to Table 4.4 and chooses the best position from all the best
starting time positions. Hence, the algorithm does not need to compute the
3DTCS for all positions; it only computes the 3DTCS for the best positions
(candidates) (line 15). Intuitively, the highest 3DTCS value gives the best
position in terms of packing to avoid ”blocking-effect”.

Besides the 3DTCS heuristic, the algorithm also uses the sum of finishing time
difference (SFTD) heuristic for all scheduled tasks that vertically contacted
with the arriving task (referred as a VC set). The algorithm computes current
SFTD (c SFTD =

∑

∀tasks∈VC

|ts + lt − tf |) in line 17. The SFTD heuristic

gives our algorithm an ability to group tasks with similar finishing times to get
large free space during deallocations.

The algorithm chooses the position with the highest 3DTCS value and the
lowest SFTD value for allocating the arriving task (lines 18-27). Allocating the
arriving tasks at the highest 3DTCS compacts the tasks both in time and space;
while grouping tasks with similar finishing times creates more possibility to
produce larger free space during deallocations.

The algorithm allocates the incoming task when there is available space for the
task at its arrival time; otherwise, the algorithm needs to schedule the task for
future execution. If the arriving task can be allocated at its arrival time (line
28), it will be executed immediately and added in the execution list (line 29);
otherwise, it is inserted in the reservation list (line 30).

When the tasks in the reservation list are executed, they are removed from the
reservation list and added in the execution list. The finished tasks in the exe-
cution list are deleted after execution. These updating processes are executed
when the lists are not empty (lines 31-34).

The time complexity analysis of 3DC is presented in Table 4.5. In whichW , H ,
NET , NRT are the FPGA width and height, the number of executing tasks in the
execution list and the number of reserved tasks in the reservation list.
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14. collect all positions from STM that have the earliest starting time

15. for all above positions

{

16. c_3DTCS=compute 3D contact surfaces

17. c_SFTD=compute sum of finishing time difference

18. if (c_3DTCS>3DTCS_max AND c_SFTD<SFTD_min)

{

19. best_position=current position

20. 3DTCS_max=c_3DTCS

21. SFTD_min=c_SFTD

}

22. else if (c_3DTCS>3DTCS_max)

{

23. best_position=current position

24. 3DTCS_max=c_3DTCS

}

25. else if (c_3DTCS=3DTCS_max AND c_SFTD<SFTD_min)

{

26. best_position=current position

27. SFTD_min=c_SFTD

}

}

28. if best_starting_time=arrival time

{

29. add task to the execution list

}

else

{

30. add task to the reservation list

}

31. if  the reservation list is not empty

{

32. update reservation list

}

33. if  the execution list is not empty

{

34. update execution list

}

1. for (y=1;y<=H-h+1;y++)

{

2. for (x=1;x<=W-w+1;x++)

{

3. STM(x,y)=a

}

}

4. for all tasks in execution list

{

5. for (y=max(1,y
1
-h+1);y<=min(y

2
,H-h+1);y++)

{

6. for (x=max(1,x
1
-w+1);x<=min(x

2
,W-w+1);x++)

{

7. if (STM(x,y) < t
f
)

{

8. STM(x,y)=t
f

}

}

}

}

9. for all tasks in reservation list

{

10. for (y=max(1,y
1
-h+1);y<=min(y

2
,H-h+1);y++)

{

11. for (x=max(1,x
1
-w+1);x<=min(x

2
,W-w+1);x++)

{

12. if ((STM(x,y) < t
f
) AND (STM(x,y)+lt>t

s
))

{

13. STM(x,y)=t
f

}

}

}

}

Figure 4.8: Pseudocode of 3D Compaction algorithm

The main difference between our algorithm and existing algorithms is the pres-
ence of the 3D compaction ability. Because of this 3D compaction ability, our
algorithm can avoid ”blocking-effect”. In contrast, the existing algorithms do
not have the blocking-awareness. Some existing algorithms only have the 2D
compaction ability; instead, our algorithm has the 3D compaction ability to
compact tasks both in time and space domains. Besides, the algorithm also
has an ability to group tasks with similar finishing times to achieve larger
free space during deallocations. In the CR, every element of their EA ma-
trix is checked to know if it falls into the coverage rectangles of execution and
scheduling tasks for updating as shown in [52]. In contrast, our algorithm up-
dates the STM matrix in groups of elements affected by all executing (lines
5-6) and scheduled tasks (lines 10-11); the algorithm does not need to check
each element for updating. As a result, our algorithm computes starting times
faster than CR. Moreover, 3DC does not need to compute boundary values for
all reconfigurable units of its free space in the periphery reducing the runtime
overhead compared to CR as will be presented later.
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Table 4.5: Time complexity analysis of 3D Compaction algorithm

Lines Time Complexity
1-3 O (W ∗ H)

4-8 O (W ∗ H ∗ NET)

9-13 O (W ∗ H ∗ NRT)

14 O (W ∗ H)

15-27 O (W ∗ H ∗ max (NET, NRT ))

28-30 O (max (NET, NRT))

31-32 O (NRT)

33-34 O (NET)

Total O (W ∗ H ∗ max (NET, NRT ))

4.2.5 Evaluation

Experimental Setup

We have built a discrete-time simulation framework in C to evaluate the pro-
posed algorithm. The framework was compiled and run under Linux operating
system on a Pentium-IV3.4 GHz PC. To better evaluate the algorithm with
synthetic workloads, (1) we modeled realistic random hardware tasks to be ex-
ecuted on a realistic target device; (2) we evaluated the algorithm not only in
terms of scheduling and placement quality but also in terms of runtime over-
head. Since the algorithms are online, the information of arriving tasks is un-
known until their arrival times. We model a realistic FPGA with 116 columns
and 192 rows of reconfigurable units (Virtex-4 XC4VLX200).

Scheduling and Placement Quality using Synthetic Workloads

To model realistically the synthetic hardware tasks, we use the same realis-
tic hardware tasks from Chapter 3 to obtain the information of hardware task
size range as a reference for our random task set generator. The task widths
and heights are randomly generated in the range [7..45] reconfigurable units to
model hardware tasks between 49 and 2025 reconfigurable units to mimic the
results of synthesized hardware units. Every task set consists of 1000 tasks,
each of which has a life-time and task size. The life-times are randomly gen-
erated in [5..100] time units, while the intertask-arrival periods are randomly
chosen between one time unit and a specified maximum intertask-arrival pe-
riod. Total tasks per arrival are randomly generated in [1..15].

Our 3DC is designed for 2D area model. Therefore for fair comparison, we
only compare our algorithm with algorithms that support 2D area model. Since
the RPR [50], the Classified Stuffing [48], the Intelligent Stuffing were de-
signed only for 1D area model, we do not compare them with our 3DC.
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Since the Stuffing outperforms the Horizon as presented in [46], we do not
compare our algorithm to the Horizon. In [52], the CR outperforms the original
2D Stuffing [46] [47] and the 2D Window-based Stuffing [51]; therefore, we
only compare our algorithm to the CR.

To evaluate the 3DC, we have implemented three different algorithms: the
CR [52] using BL (Bottom-Left) scheme (CRBL), the CR [52] using BV
(Boundary Value) scheme [53] (CRBV), and our 3DC. The evaluation is based
on three performance parameters: total schedule time, waiting time, and total
wasted volume.

The CR does not have a blocking-awareness. Instead, our algorithm uses a 3D
compaction for avoiding ”blocking-effect”. As a consequence, our algorithm
has a better quality than the CR. The 3DC has up to 4.8 % shorter schedule
time, 38.4 % shorter waiting time, and 22.9 % less wasted volume compared
to the CR as shown in Figure 4.9.

The system idle time increases when the maximum inter-task arrival period
increases; as a result, the average total schedule time and the average wasted
volume increase.

The system is busier when the maximum inter-task arrival period decreases;
tasks arrive more frequently to the system. Hence, it is more difficult to sched-
ule tasks. Consequently, the average waiting time increases.

Scheduling and Placement Quality using Real Workloads

To evaluate the 3DC with real workloads, the same realistic hardware tasks
from Chapter 3 are used. In the simulation, we assume that the life-timelti is
the sum of reconfiguration timerti and execution timeeti . The experimental
results with real workloads are presented in Figure 4.10.

Figure 4.10 shows that the superiority of our algorithm is not only applicable
for synthetic tasks but also for real tasks. Evaluation with real tasks shows that
our algorithm has up to 4.6 % shorter schedule time, 75.1 % shorter waiting
time, and 9.9 % less wasted volume compared to the CR.

Algorithm Execution Time Results

To complete the evaluation, we also study the algorithm execution time since
the execution time of online task scheduling and placement is considered as an
overhead for the overall execution time of the applications. To show the effect
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Figure 4.9: Evaluation with synthetic workloads
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Figure 4.10:Evaluation with real workloads
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Figure 4.11:Evaluation of algorithm execution time

of total number of scheduled and running tasks as well as FPGA area, we do
simulation by changing these parameters as presented in Figure 4.11.

Figure 4.11 shows that our 3DC runs up to 133 times faster than the CR.
The speed up will be higher for more scheduled and running tasks as well
as for larger FPGA fabrics. Since the CR uses the boundary value heuristic for
searching placement, the CR needs to compute boundary values for all recon-
figurable units of its free space in the periphery. In contrast, our 3DC computes
the 3DTCS only in one step. Moreover, the updating is done per each element
of the matrix in the CR; each element is needed to be checked with all execut-
ing tasks and scheduled tasks. In contrast, our algorithm updates the matrix
in groups of elements located by all executing tasks and scheduled tasks; the
algorithm does not need to check each element for updating. As a result, our
3DC has less runtime overhead than the CR by avoiding the CR’s long bound-
ary value computation and speeding up the starting times computation.

More FPGA area creates additional area suitable for the arriving task (more
free volume) and more total number of scheduled and running tasks forces
algorithms to check more tasks; as a result, the algorithms need more time
to compute the matrix for finding starting time (all algorithms), all boundary
values for all more candidates (CR algorithm) and all 3DTCS for all more
candidates (3DC algorithm). Because of its long boundary value and matrix
computations, the CR execution time increases faster than our 3DC.
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4.3 Summary

In this chapter, we proposed two novel online HW task scheduling and place-
ment algorithms. The Intelligent Stuffing algorithm, designed for 1D area
model, and the 3D Compaction (3DC), aiming at the 2D area model.

The main difference between our Intelligent Stuffing algorithm and related art
is the additional alignment status of the free space segments and its handling.
This status allows our algorithm to maximize the free space ares making task
placement position decisions and allow earlier placing of further tasks. More-
over, the SUR computation is not needed making it faster than the Classified
Stuffing. Experimental results show that our Intelligent Stuffing outperforms
existing algorithms in terms of reduced total wasted area up to 89.7%, has 1.5
% shorter schedule time and 31.3% faster response time.

To avoid ”blocking-effect” we proposed a new 3DTCS heuristic in a novel
blocking-aware algorithm, 3D Compaction (3DC). The 3DC can place and
schedule tasks more compactly and is able to group similar finishing time tasks
to form larger free area. Since state of the art uses the boundary value heuristic
for searching suitable placement, it needs to compute the values for all recon-
figurable units of its free space in the periphery. In contrast, our 3DC computes
the 3DTCS in a single step. In addition, the updating is done per each element
of the matrix for finding starting time in the previous algorithm; each element
is checked with all executing and scheduled tasks. Our 3DC updates the matrix
in groups of elements located by all executing and scheduled tasks. The experi-
mental results show that the 3DC not only has better scheduling and placement
quality (up to 4.8 % shorter schedule time, 75.1 % shorter waiting time, and
22.9 % less wasted volume) but also has lower runtime overhead compared to
existing algorithms.

Note. The content of this chapter is based on the following papers:

T. Marconi, Y. Lu, K.L.M. Bertels, G. N. Gaydadjiev, Online Hardware
Task Scheduling and Placement Algorithm on Partially Reconfigurable
Devices, Proceedings of International Workshop on Applied Reconfigurable
Computing (ARC), March 2008.

T. Marconi, Y. Lu, K.L.M. Bertels, G. N. Gaydadjiev, 3D Compaction: a
Novel Blocking-aware Algorithm for Online Hardware Task Scheduling
and Placement on 2D Partially Reconfigurable Devices, Proceedings of
the International Symposium on Applied Reconfigurable Computing (ARC),
March 2010.



5
Low Power Logic Element for FPDs

A lthough various techniques have been proposed for power reduction
in field-programmable devices (FPDs), they are all based on conven-
tional logic elements (LEs). In the conventional LE, the output of

the combinational logic (e.g., the lookup table (LUT) in many PLDs and FP-
GAs) is connected to the input of the storage element; while the D flip-flop
(DFF) is always clocked even when not necessary. Such unnecessary transi-
tions waste power. To address this problem, we propose a novel low power LE
with reduced number of transitions. The differences between our LE and the
conventional LE are in the flip-flops type used and the internal LE organiza-
tion. Instead of using DFFs, we use T flip-flops with the T input permanently
connected to logic value one. Instead of connecting the output of the combi-
national logic to the FF input, we use it as the FF clock. The proposed LE is
evaluated using transistor-level circuit simulation in terms of power consump-
tion, performance, and area using the MCNC benchmark circuits. Besides, we
also evaluate our proposal using a real CAD tool and a real FPGA by forcing
the existing tool to implement circuits behaving like our proposed LE.

This chapter is organized as follows. The problem of FPD high power con-
sumption for runtime reconfigurable systems and our proposal are emphasized
in Section 5.1. In Section 5.2, we propose our low power LE to reduce power
consumption. Our proposal is evaluated against state of the art in Section 5.3.
Finally, Section 5.5 ends with the conclusions.

5.1 Introduction

Many techniques have been proposed for power reduction in FPDs. However,
all existing power reduction techniques target what we call a ”conventional
logic element”. This conventional logic element (LE) has been used by re-
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searchers of FPDs since it was patented by Birkaner and Chua in1978 [57].
Although FPDs have been improved significantly since the original proposal,
they still make use of a proposal dated 1978 that may need to be reconsid-
ered. The conventional LE contains the combinational logic (e.g., the lookup
table LUT in FPGAs) and the storage element (D flip-flop). The output of the
combinational logic is connected to the input of the storage element; the clock
input of D flip-flop (DFF) is connected to the clock signal. Since the DFF clock
input is connected directly to the clock signal, the DFF is always clocked even
when this is not needed. For example, whenD = Q , the DFF does not need
to be clocked. Such unnecessary transitions waste power in FPDs using the
conventional LEs. This is related to the fact that even low-power flip-flops
consume power during logic transition from zero-to-zero and from one-to-one
as shown in [201].

To solve this problem, we propose a novel LE for reduced FPDs power con-
sumption. The proposed LE can be used in any kinds of FPDs: Simple PLDs
(SPLDs), Complex PLDs (CPLDs) as well as Field-Programmable Gate Ar-
rays (FPGAs). The differences between our LE and the conventional pro-
posal are in the flip-flops type and the LE internal organization. Instead of
using D flip-flops, we use T flip-flops with T input permanently at logic one
(T=1). This is related to the fact that designing sequential circuits using TFFs
is more power efficient than DFFs as reported in [200]. The output of the
combinational logic in our case is connected to the clock input of the FF. As
a result, our LE is able to block unnecessary clock transitions without using
additional clock gating logic. Since unnecessary clock transitions are avoided,
the clock power is reduced. By avoiding unnecessary clock transitions, the
overall switching activity inside the LEs is also reduced. As a result, FPDs us-
ing the proposed LEs consume also less logic power (total power inside LEs)
compared to FPDs using conventional LEs. Because of the reduced activity,
the interconnect activity among LEs is also reduced. Our approach does not
require additional controller for gating clock activity and will potentially also
save power and area in respect to this.

In conventional LEs, the FF is clocked when the D input has a stable logic
value provided by the combinational logic and determined by the FF setup
time. In our LEs, since the T input of the FF is always in logic one, the FF
is always ready to be clocked. As a consequence, logic circuits implemented
using our LEs can be clocked faster than conventional LEs.

The Microelectronic Center of North Carolina (MCNC) benchmark circuits
[58] are used to evaluate both FPD types in 45 nm BSIM4 CMOS technology
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[60]. We use LTSPICE tools [59] for transistor-level circuitsimulations with
nominal supply voltage VDD of 1.2 V. The evaluation is performed in terms
of total power, logic power, clock power, interconnect power, dynamic power,
static power, speed, and LE area.

5.2 The Proposed Logic Element

The purpose of LEs in FPDs is to provide the basic programmable combina-
tional logic and storage elements used in digital systems. An LE contains a
combinational logic circuit generator (CLCG) and a storage element as shown
in Figure 5.1. The CLCG is used for the combinational function, while the
storage element is used for storing temporary results.

Combinational Logic 

Circuit Generator

(CLCG)

D Q

Clock

OutputInputs
.

.

.

Combinational Logic 

Circuit Generator

(CLCG)

T Q

Clock

Output

Inputs
.

.

.

1

(a) Conventional logic element

(b) Our logic element

DFF

TFF

Figure 5.1: Logic elements

In conventional LEs, the output of CLCG is connected to the input of the stor-
age element as illustrated in Figure 5.1(a). The storage element in the conven-
tional LE is a D Flip-flop (DFF). Since the clock input of DFF is connected to
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Figure 5.2: Basic operations of logic elements

the clock signal, the DFF is always clocked. When the D input of DFF has a
different value compared to its output Q (D 6= Q ), the DFF needs to be clocked
in order to update its state as presented in Figure 5.2(a). Otherwise, when
D = Q , the DFF does not need to be clocked. Such unnecessary transitions will
waste power in the conventional LEs.

To stop unnecessary clock transitions in conventional LEs, clock gating was
introduced in previous work [74], [75], and [76]. In clock gating, the clock
input of DFF is not anymore connected directly to the clock signal, but it is
controlled by the clock gating controller as shown in Figure 5.2(b). The clock
gating controller blocks the clock signal for reaching DFFs clock inputs when
the DFFs should not be clocked (D = Q ). As a result, the unnecessary clock
transitions can be avoided for power saving. The drawback of clock gating is
the need of additional controllers that consume additional area and power. To
reduce this overhead, the controller usually does not control an individual FF,
but it controls a group of FFs together. As a result, the clock gating cannot
block all of the unnecessary clock transitions.

To solve the above issues of conventional LEs, we propose a novel low power
LE depicted in Figure 5.1(b). The differences between our LE and the con-
ventional LE are in the type of FFs and the LE organization. Instead of using
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DFFs, we use T flip-flops (TFFs) with the T input kept at logic one. The output
of the CLCG is connected to the FF clock input. No clock signal is directly
connected to the TFF; the clock signal is connected to the TFF through the
CLCG when required. In FPGAs, CLCGs are implemented using LUTs. In
the case that one of the inputs of the LUT is used for feeding the clock signal,
the LUT capacity is effectively decreased. This will not be a problem, since
not all inputs of LUTs are used in real FPGA designs as reported in [21], we
can use these unused inputs for free to feed the clock signal.

The benefits of our LE are avoiding unnecessary clock transitions while omit-
ting the additional clock gating controller as shown in Figure 5.2(c). The
CLCG avoids clock transitions to be propagated to an individual FF when the
state of the FF will not change. As a result, the unnecessary clock transitions
are totally avoided at the level of individual FFs and hence dynamic power is
reduced. Additional power and area are also saved in comparison to the clock
gating approach, since the additional controller is not present.

Although not shown for simplicity in Figure 5.2, the present state and inputs
are used to generate the next state function in the conventional LE; while in our
circuit, the present state, inputs and clock signal are used to generate function
to control TFFs clocks. An a result, the way we design logic circuit will be
different compared to the conventional approach. In conventional circuits, the
data path, the control path, and the clock are separated. In our circuits, all these
paths are combined together into a single unified path.

Allowing faster clock rates than the conventional LEs is one additional advan-
tage of our proposal. The FF can be clocked properly if its input is stable at
least before its setup time. In conventional LE, the input value of the DFF
is not constant; it depends on the output of the connected CLCG. In our LE,
since the T input of the TFF is constant (T = 1), the TFF is always ready to be
clocked. As a consequence, logic circuits implemented using our LEs can be
clocked faster than logic circuits using conventional LEs.

The shortest possible clock timing diagrams for circuits using our LEs com-
pared to the conventional LEs are presented in Figure 5.3. Please note that
this experiment is used to investigate the differences in maximal clock rates
and is in disadvantage for our proposal since the longest propagation delay
of the first level DFF in Figure 5.3(a) istpdq(DFF) (the Data-to-Q propa-
gation delay). The CLCG (Our) in Figure 5.3(b) has the clock as an addi-
tional input. This, however, does not impact the first-to-second stage short-
est possible clock timing due to thetpcq(TFF) delay that has to be satis-
fied. Please also note that the clock signal of the first level TFF (A) is pro-
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Figure 5.3: Shortest clock timing of conventional (a) and our (b) logic elements
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duced by the previous level CLCG (Our) not shown on the figure for sim-
plicity. In the figure, tpcq(DFF) is the clock-to-Q propagation delay of
DFF; tpd(CLCG(Conv)) is the propagation delay of conventional CLCG;
tpd(CLCG(Our)) is the propagation delay of our CLCG;tsetup(DFF) is the
setup time of DFF;tpcq(TFF) is the clock-to-Q propagation delay of TFF.
From this figure, we can obtain the clock period of the circuit using conven-
tional LEs asTc(Conv) ≥tpcq(DFF)+tpd(CLCG(Conv))+tsetup(DFF) (1)
and the clock period of the circuit using our LEs asTc(Our) ≥tpcq(TFF) +
tpd(CLCG(Our)) (2). From (1) and (2), we can obtain the speedup

as SPEEDUP = Tc(Conv)
Tc(Our)

=
tpcq(DFF)+tpd (CLCG(Conv))+tsetup(DFF)

tpcq (TFF)+tpd(CLCG(Our))
(3). If

tpcq(DFF) = tpcq(TFF) andtpd(CLCG(Conv)) = tpd(CLCG(Our)), the

speedup becomesSPEEDUP = 1 +
tsetup(DFF)

tpcq(TFF)+tpd(CLCG)
(4).

If the input of circuit changes during clock at logic one, the possibility exists
that this input will generate glitches that can alternate the next stage TFF value.
To address this problem, we used pulsed clock signal. The width of the pulsed
clock signal is set to be the minimum pulsed clock width of correctly operating
TFF. In our experiments the pulse width was 0.1 ns. Since the pulsed clock
signal is narrow, the possibility that inputs change during clock at logic one is
reduced. In case this very low possibility happens, the width of pulses caused
by inputs during clock signal at logic one is always less than the width of the
original pulsed clock signal and will not change the state of the TFFs. As
a result, the circuit will keep working properly. Another way to handle this
clocking issue is to register/synchronize the input with clock signal before it
goes to the actual circuit. Since inputs are synchronized, the changing of input
during clock at logic one will be ignored by the circuit. However, this requires
additional logic area, latency and power overhead. For that reason, we choose
to use a narrow size pulsed clock approach in our proposal.

For exemplifying our proposal, we show here an example of how conventional
circuits are converted into circuits implemented according to our proposal. Let
us assume that we have a conventional circuit as illustrated in Figure 5.4(a)
and we want to convert this circuit to our circuit as shown in Figure 5.4(b). In
general, we use a simple formula when converting conventional circuits:

clocki(our) =

{

clocki(conv) if Qi(conv) 6= Di(conv)

0 if Qi(conv) = Di(conv)

where:
clocki(our): clock input of flip-flopi in our circuit;
clocki(conv): clock input of flip-flopi in conventional circuit;
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Figure 5.4: Simple circuit examples

Qi(conv): Q output of flip-flopi in conventional circuit;
Di(conv): D input of flip-flop i in conventional circuit.

Let us assume thatCLCG1(conv) has the true table as shown in Table 5.1. To
convertCLCG1(conv) to CLCG1(our), we can capture thatclock1(conv) =
clock , D1(conv) = n n10, Q1(conv) = n n21, and clock1(our) =

clock n n21. By applying the above formula for computingclocki(our),
we can obtain the true table ofCLCG1(our) for the logic function of
clock n n21 as shown in Table 5.2.

Table 5.1: The true table ofCLCG1(conv)

In 0 In 1 n n21 n n22 n n10
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

Table 5.2: The true table ofCLCG1(our)

In 0 In 1 n n21 n n22 clock n n21
0 0 0 0 0
0 0 0 1 clock
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 clock
0 1 1 1 clock
1 0 0 0 clock
1 0 0 1 clock
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 clock
1 1 1 1 clock
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5.3 Transistor-level Circuit Evaluation

5.3.1 Experimental Setup

To evaluate the proposed logic element (LE), transistor-level circuit simula-
tions were performed using LTSPICE tools [59] and 45 nm BSIM4 CMOS
device models [60] with nominal VDD of 1.2 V. Because we use transistor-
level simulation, all internal glitches are implicitly considered. The MCNC
benchmark circuits [58] were used for our study. Since our proposal is new, no
CAD tools (high level synthesis, technology mapping, place and route tools)
are available for targeting FPDs using the proposed LE. For that reason, we
performed all design transformations by hand. This is also why we did not
evaluate our proposal with all MCNC benchmark circuits; we only evaluated
the proposal with the circuits that were not too complex for manual LUT de-
sign as shown in Table 5.3. Since our proposal saves power for circuits with
storage elements, we selected the representative MCNC benchmark circuits.

Table 5.3: The MCNC benchmark circuits

Names Inputs Outputs States State transitions(STs) STs to same state
bbtas 2 2 6 24 10
dk27 1 2 7 14 0
lion 2 1 4 11 5
mc 3 5 4 10 5

shiftreg 1 1 8 16 2
tav 4 4 4 49 0

train4 2 1 4 14 7

Due to the fact that SRAM cell values remain constant after configuration (no
additional dynamic power) and there is no difference in the number of SRAM
cells for FPDs using the conventional and our LEs (same static power), we do
not model SRAM in our experiments. We connect the internal signals directly
to VDD or ground depending on the intended SRAM content. The simulated
nMOS and pMOS transistor dimensions were: Length (Ln = 45nm ) / Width
(Wn = 90nm ) andLp = 45nm / Wn = 270nm respectively. The selected ra-
tio between the nMOS and pMOS transistor widths (Wp

Wn
= 3) is to model the

worst case scenario in respect to our proposal when leakage power is consid-
ered. To accurately model LUTs, multiplexers, and routing circuits, we se-
lected transmission-gate based implementation as used by Xilinx commercial
FPGAs patented in [146]. In this experiment, we assume that unused resources
can be turned off to model power gating both for the conventional FPDs and
for our proposal.
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First, we created experimental circuits representing both for the conventional
and the proposed LEs. The experimental LEs are shown in Figure 5.5. In
this experiment, an additional AND gate for feeding clock signal was used to
make manual implementation of the MCNC circuits easier. An experimental
conventional LE consists of a 4-Input LUT, a DFF, and an output multiplexer
as illustrated in Figure 5.5(a); while our proposal is represented by a 4-Input
LUT, a TFF, an output multiplexer, and an AND gate as shown in Figure 5.5(b).
These two LE circuits were used for creating experimental FPD circuits. The
flip-flop circuits used for the simulation of the conventional LE and our LE are
shown in Figure 5.6 and Figure 5.7. For fair comparison, the only difference
between the flip-flop representing our proposal and the conventional flip-flop
is the feedback line from the inverted output to the D input. This feedback
line forces the flip-flop to behave as a T flip-flop with T input permanently
connected to a logic one value.

4-Input

LUT
D Q

Clock

Output

Inputs

T Q

Output

Clock

Inputs

1

(a) Conventional logic element

(b) Our logic element

DFF

TFF

4-Input

LUT

Figure 5.5: Logic elements used in our experiments

Next, the LE circuits were combined with interconnection components to cre-
ate complete FPD circuits. The interconnection circuits (fixed wires and pro-
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Figure 5.6: A flip-flop circuit used in conventional LE experiments

Figure 5.7: A flip-flop circuit used in the proposed LE experiments
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grammable switches) were used for connecting needed LE circuits which will
be used for creating benchmark circuits.

Finally, we implemented each MCNC benchmark circuit onto the FPDs us-
ing conventional LEs and our LEs. MCNC circuits described using Berkeley
Logic Interchange Format (BLIF) mapped for 4-input-LUT-based FPDs were
used for implementing circuits onto the FPD based on conventional LEs. We
manually implemented each MCNC benchmark circuit onto our FPD circuit.
In this step, we computed all of the functions needed for the LUTs in the
new LEs which are totally different from the functions of the conventional ap-
proach. Next, we placed the computed functions in LUTs of the FPD using the
proposed LEs and created the required interconnections for each MCNC cir-
cuit. The reconfigurations were done by modifying the contents of the 4-Input
LUTs, the output multiplexes, and the interconnect control signals.

Before we measured the needed performance parameters, all circuits have been
verified to make sure that our circuits perform the same function as the conven-
tional ones by using the same test vectors and the same simulation length. We
compared the simulation results of the two implementations. After adopting
the pulsed clock in our case, all circuits using our LEs worked properly. The
test vectors representing all possible input values combinations were used.

The benchmark circuits were simulated to obtain the needed performance pa-
rameters: power, speed, and area for each benchmark circuit. Area is in terms
of number of transistors required to implement the benchmark circuit using
FPD circuits. The breakdowns of total power which consists of logic power
(total power inside LEs), clock power, and interconnect power were also ob-
tained. To make our power study complete, we also analyzed the static and
dynamic power. The evaluation was conducted using 500 MHz clock speed
representative for the CMOS technology node assumed in our experiments.

5.3.2 Experimental Results

The experimental results in terms of power consumption for FPDs using both
conventional and proposed LEs are depicted in Table 5.4 and Table 5.5. The
power reduction results presented in Figure 5.8 were computed based on the
results from Table 5.4 and Table 5.5. Besides power evaluation, we also inves-
tigated the area overhead and the performance improvements of the FPD using
the proposed LEs as shown in Figure 5.9.



5.3. TRANSISTOR-LEVEL CIRCUIT EVALUATION 87

Table 5.4: Experimental results of Logic, Clock, and Interconnect Power (µW)

Logic Power Clock Power Interconnect Power
Benchmarks Conv Our Conv Our Conv Our

bbtas 11357 9925 2320 811 2394 1002
dk27 39105 37642 2320 891 4188 2649
lion 5943 4460 1515 540 1507 627
mc 28204 25913 1515 559 2282 1374

shiftreg 3361 2975 2317 804 2171 777
tav 40505 39480 1522 641 3886 2970

train4 5576 4287 1514 538 1475 586

Table 5.5: Experimental results of Dynamic, Static, and Total Power (µW)

Dynamic Power Static Power Total Power
Benchmarks Conv Our Conv Our Conv Our

bbtas 14461 9650 1610 2088 16071 11738
dk27 44166 39257 1447 1925 45613 41182
lion 8047 4390 918 1237 8965 5627
mc 30444 25970 1557 1876 32001 27846

shiftreg 6720 2948 1129 1608 7849 4556
tav 44034 40893 1879 2198 45913 43091

train4 7647 4174 918 1237 8565 5411
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Figure 5.8: Power Reduction (%)

Since the FPD using the proposed LEs avoids unnecessary clock transitions,
it consumes up to 65 % less clock power compared to the FPD using conven-
tional LEs as shown in Figure 5.8. By avoiding unnecessary clock transitions,
the activity inside the proposed LE is also reduced. As a result, the FPD using
proposed LEs has up to 25 % less logic power compared to the FPD using
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conventional LEs. Our approach also reduces the interconnect activity among
LEs resulting in up to 64 % lower interconnect power compared to the FPD
using conventional LEs.

The FPD using our proposal reduces up to 56 % dynamic power compared
to the FPD using conventional LEs by avoiding unnecessary activities: clock,
logic, and interconnect as presented in Figure 5.8. Since the proposed experi-
mental LE has an additional AND gate, the FPD has up to 42 % higher static
power as shown in Figure 5.8 and up to 7 % bigger area compared to the FPD
using conventional LEs as presented in Figure 5.9. Since not all inputs of LUTs
are used in real designs as reported in [21], we can use these unused inputs to
feed the clock signal. In this case, we can avoid the additional logic level (the
AND gate) for feeding the clock signal.
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Although the FPD using our LEs consumes more static power than the FPD
using conventional elements, the overall power consumption of the FPD using
our proposal is lower than the conventional one as shown in Figure 5.8. Since
the impact of increasing in static power is lower than the impact of reducing
the clock, logic, and interconnect powers, the FPD using our proposed LEs still
can reduce up to 42 % total power compared to the FPD using conventional
LEs as shown in Figure 5.8.

Circuits that do not change their internal state very often will avoid many clock
transitions and will be able to achieve more dynamic power reduction com-
pared to circuits that frequently change their states. As shown in Table 5.3,
the state of the storage elements in thedk27andtav benchmark circuits never
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remains the same. As a result, the total power reduction achieved for these
benchmark circuits is smaller compared to other benchmark circuits.

In the conventional LE, the DFF can be clocked by clock signal if only if the
D input is ready before the needed setup time for the FF to work properly. In
contrast, the TFF in our LE is always ready to receive clock signal since the
T input of its TFF is always ready at logic one. As a result, the FPD using
proposed LEs runs up to 33 % faster than the FPD using conventional LEs as
shown in Figure 5.9.

5.4 Evaluation using a Real CAD Tool on a Real FPGA

5.4.1 Experimental Setup

In this experiment, we force a CAD tool to implement each flip flop with a TFF
by proposing a new HDL coding style. To discuss the basic idea of the pro-
posed HDL coding style, an example of MCNC benchmark circuit in Berkeley
Logic Interchange Format (BLIF) [147] is presented on the left side of Figure
5.10. This simple example circuit (lion.blif) has two flip-flops (lines 4 and 5)
and three combinational logic functions (lines 6-8). Line 6 is the output func-
tion; while lines 7 and 8 are the next state functions. In conventional coding
style, each flip-flop is coded into one process as shown in the right side of
Figure 5.10. This process will generate a D flip-flop (DFF) with the D input
from the output of corresponding next state function (NSF) as shown in Figure
5.11(a). In this circuit, the output of each NSF is connected to the D input of
DFF. When the D input of DFF (in this figure, for example: nn10 and nn11)
has a different value compared to its Q output (D 6= Q ), the DFF needs to be
clocked for updating the storage data (in this figure, for example: nn21 and
n n22). Otherwise, when the D input has the same logic value as the Q output
(D = Q ), the DFF does not need to be clocked. However, since the clock input
of DFF is directly connected to the clock signal, the DFF is always clocked.
This unnecessary logic transition in this circuit wastes power.

To solve this issue, we propose a new coding style as shown in the right side of
Figure 5.12. Contrary to conventional coding style, in our approach, each flip-
flop is represented into two processes. The first process is used to implement
a T flip-flop (TFF) with T at logic one; while the second process is used to
create a function for feeding the clock input of the TFF. We call this function a
clock function (CF) as shown in the example of implemented circuit in Figure
5.11(b). The TFF is clocked when it is needed to update storage data (in this
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Figure 5.10: blif to conventional VHDL conversion (lion.blif to lionconv.vhd)
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Figure 5.11: lion benchmark example implemented using both coding styles
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Figure 5.12:blif to our VHDL file conversion (lion.blif to lionour.vhd)

simple example: nn21 and nn22); otherwise, it will not. In this simple circuit,
for example if present state of nn21 is different from next state of nn21, the
TFF will be clocked by clockn n21; otherwise, it will not to save power.

The experimental setup is shown in Figure 5.13. Each MCNC benchmark cir-
cuit [58] is converted into two VHDL files (conventional and our VHDL files)
to represent the two VHDL coding styles (conventional and our coding styles).
An example of blif file to conventional VHDL file conversion is presented in
Figure 5.10; while an example of blif file to our VHDL file conversion is pre-
sented in Figure 5.12.

Each VHDL file is compiled for Stratix EP1S10F484C5 using Compiler Tool
from Quartus II. In theVHDL conventional style the D flip-flops are directly
connected to the clock signal while in the proposed style the T flip-flops are
not. The area needed for implementing each circuit in terms of number of logic
elements (LEs) is reported by the Altera Compiler Tool. In the lion benchmark
example, both circuits (conventional and our) occupy 7 LEs. The TFF is im-
plemented using the LE with its registered output connected to its input data.

The waveform Editor from Quartus II is used to generate test vectors for each
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Figure 5.13: Experimental setup

benchmark circuit. Those vectors are applied to the implemented circuit using
Simulation Tool from Quartus II. Each circuit is verified by comparing the sim-
ulation results between the conventional and our circuits. This step is needed
to ensure that these two VHDL styles generate functionally correct circuits.

Besides generating simulation results, the Simulation Tool also generates the
signal activity file (SAF). To evaluate power consumption, the SAF file and the
implemented circuit from the previous step are fed into the Quartus II Power-
Play Power Analyzer Tool to obtain total, dynamic, and static power results.

To compare performance of the implemented circuits, the Timing Analyzer
from Quartus II is used. Our study focused on the maximum clock frequency.

5.4.2 Experimental Results

The experimental results of power consumption using a 50 MHz clock are
presented in Table 5.6. This table shows that our VHDL style can lead to
reduction in dynamic power and total power, but will not reduce static power.
Since our VHDL style can avoid unnecessary transitions by clocking flip-flops
only when needed, our VHDL style can lead to reduction in dynamic power
consumption (75 % on average) compared to conventional VHDL style. The
degree of power reduction depends on the nature of the circuit, circuits with
many unnecessary transitions can take more advantages of our style in terms of
power consumption. This 75 % dynamic power reduction results in only 15 %
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average total power consumption reduction at 50 MHz since thestatic power
is dominating. The static power reported by the tools for all of the investigated
circuits and both design styles was 187.5 mW.

Table 5.6: Experimental results of power consumption at 50 MHz

Circuits Dynamic power (mW) Total power (mW)
conv our reduction(%) conv our reduction(%)

lion 39.87 4.75 88.09 227.37 192.25 15.45
bbara 36.2 0.78 97.85 223.7 188.28 15.83
bbsse 39.58 6.43 83.75 227.08 193.93 14.6
s298 45.81 10.54 76.99 233.31 198.04 15.12
dk16 51.82 16.93 67.33 239.32 204.43 14.58
dk14 55.58 16.32 70.64 243.08 203.82 16.15
tbk 40.47 4.3 89.37 227.97 191.8 15.87

beecount 44.92 9.56 78.72 232.42 197.06 15.21
cse 41.96 6.48 84.56 229.46 193.98 15.46

s1494 71.73 27.17 62.12 259.23 214.67 17.19
ex1 48.71 16.81 65.49 236.21 204.31 13.5
keyb 41.09 5.21 87.32 228.59 192.71 15.7
planet 42.33 5.88 86.11 229.83 193.38 15.86
pma 89.47 53.51 40.19 276.97 241.01 12.98
s1 52.95 21.23 59.91 240.45 208.73 13.19

styr 66.53 31.55 52.58 254.03 219.05 13.77
s1488 63.96 30.37 52.52 251.46 217.87 13.36
sand 36.14 0.49 98.64 223.64 187.99 15.94

The experiment results of area and performance are presentedin Table 5.7.
This table shows that our style can also increase the performance of the circuits
by 7.6 % on average. This can be explained as following. Since we force CAD
tools to implement each flip-flop using a T flip-flop with the T input at logic
one in our VHDL style, the flip-flop is always ready to be clocked; it does not
need to respect the flip-flop setup time before it can be clocked. Since the setup
time is becoming far less significant compared to total longest path for circuits
with more logic level, the performance improvement is minimal.

The clock signal needs to be fed to LUTs before it reaches the flip-flops, our
style consumes on average 11 % more area compared to the conventional one
as shown in this table. If the clock signal can be fed to LUTs using unused
inputs, our style does not need additional LUTs for this purpose. As a result,
it will produce lower area overhead or even no area overhead as shown in
Table 5.7. In our experiment, we had considered this area overhead when we
evaluated power consumption and performance.

To investigate all implemented circuits further, we run them using different
clock frequencies: 100 MHz, 150 MHz, and 200 MHz. The results of this
experiment are presented in Table 5.8. Please note that some of the benchmarks



94 CHAPTER 5. LOW POWER LOGIC ELEMENT FOR FPDS

Table 5.7: Experimental results of area and maximum clock frequency

Circuits Area (#LEs) Maximum clock frequency(MHz)
conv our overhead(%) conv our improvement(%)

lion 7 7 0 437.06 467.07 6.87
bbara 25 29 16 305.44 340.02 11.32
bbsse 45 49 8.89 264.27 274.73 3.96
s298 740 903 22.03 93.82 95.27 1.55
dk16 85 86 1.18 219.97 226.3 2.88
dk14 28 37 32.14 276.78 331.79 19.87
tbk 69 78 13.04 139.14 153.82 10.55

beecount 11 16 45.45 367.92 390.63 6.17
cse 73 80 9.59 216.08 232.34 7.52

s1494 249 261 4.82 190.99 208.9 9.38
ex1 110 118 7.27 242.19 256.41 5.87
keyb 90 96 6.67 190.19 214.5 12.78
planet 215 231 7.44 188.82 210.7 11.59
pma 76 83 9.21 210.39 224.77 6.83
s1 140 146 4.29 117.04 120.44 2.9

styr 202 210 3.96 298.78 310.95 4.07
s1488 243 255 4.94 194.89 197.71 1.45
sand 205 213 3.9 180.08 199.48 10.77

Table 5.8: Power reduction at 100, 150, and 200 MHz

Circuits Dynamic power reduction (%) Total power reduction (%)
100 150 200 100 150 200

lion 88.09 88.09 88.09 26.28 34.31 40.49
bbara 97.85 97.85 97.85 27.26 35.89 42.64
bbsse 83.75 83.75 83.75 24.86 32.47 38.34
dk16 67.33 67.33 67.33 23.97 30.52 35.35
dk14 70.64 70.64 70.64 26.29 33.25 38.32
tbk 89.37 - - 26.95 - -

beecount 78.72 78.72 78.72 25.5 32.92 38.52
cse 84.56 84.56 84.56 26.14 33.97 39.94

s1494 62.12 62.12 - 26.93 33.2 -
ex1 65.49 65.49 65.49 22.39 28.68 33.37
keyb 87.32 87.32 - 26.61 34.64 -
planet 86.11 86.11 - 26.79 34.77 -
pma 40.19 40.19 40.19 19.63 23.66 26.37
s1 59.91 - - 21.62 - -

styr 52.58 52.58 52.58 21.82 27.11 30.85
s1488 52.52 52.52 - 21.3 26.56 -
sand 98.64 98.64 - 27.45 36.14 -
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did not synthesized at this frequency for both design styles (shown with a dash
sign in the table). Since static power, area, and performance are not affected by
changing the clock frequency, these tables only show dynamic power and total
power consumption results. From these tables, we can observe that dynamic
power consumption is linearly proportional to clock frequency. These tables
also show that our coding style can reduce total power consumption by 25
%, 32 %, and 36 % on average compared to conventional style at 100 MHz,
150 Mhz and 200 MHz respectively. Since dynamic power is higher when the
clock frequency is increased, the reduction of total power is also increased for
higher clock frequencies.
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Figure 5.14:Overall power (%) reduction versus number of circuits (#Circuits)

To study the effect of the number of circuits (#Circuits) at different clock fre-
quencies on total power reduction (%), we implement multiple circuits into
the FPGA and investigated the effect on overall power reduction as depicted in
Figure 5.14. More working circuits means additional dynamic power; the dy-
namic power becomes more dominant compared to static power. As a result,
our coding style reduces more total power when the number of circuits si-
multaneously implemented on the FPGA increases. This figure indicates that
our coding style can reduce total power by 16-65 % at 50 MHz. Total power
is significantly reduced at higher frequency, up to 90 % at 300 MHz. Total
power reduction saturates as shown in Figure 5.14. This effect is caused by the
constant static power contribution that will start dominating the total power
number when the number of implemented circuits increases.
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5.5 Summary

In this chapter, we have proposed a novel low power logic element (LE) to
replace the conventional structures in PLDs and FPGAs. Since unnecessary
clock transitions are avoided, the clock power is reduced. By avoiding unnec-
essary clock transitions, the activity inside the proposed LEs is also reduced.
As a result, the FPD using the proposed LEs consumes less logic power com-
pared to the FPD using conventional LEs. Because of activity reduction, the
LEs interconnect power is also reduced compared to the FPD using conven-
tional LEs. Moreover, since we do not need an additional controller to hold
clock activity, power and area are reduced in comparison to clock gating.

In our LE, since the T input of the FF is always in logic one, the FF is always
ready to be clocked. As a consequence, the FPD using our proposed LEs
not only consumes less total power by avoiding unnecessary activities: clock,
logic, and interconnect, but also runs faster compared to conventional LEs
because of its ”always ready” flip-flops.

We also evaluated the proposal using Altera Stratix EP1S10F484C5 and the
Quartus II Compiler Tool. To force the tool in implementing circuits according
to the proposed LE we used a dedicated coding style. We investigated the
gains in power consumption, circuit area and clock frequency. Our approach
reduces dynamic power by 75 % at 50MHz but only 15 % in average total
power consumption due to the significant contribution of static power.

Table 5.9: Comparison to clock gating solutions

Evaluation Our coding style solution Clock Gating solutions
[74] [75] [76]

Total power reduction 6 - 90 % 5 - 33 % 6.2 - 7.7 % 1.8 - 27.9 %
Performance 2-33 % faster Not available 0 - 2 % slower 1.1 % faster

Table 5.9 shows the comparison between our solution and clockgating solu-
tions [74] [75] [76]. Clock gating results are obtained from the original pa-
pers: [74], [75], and [76]. Unlike clock gating, our proposal does not need an
additional controller to stop clock propagation. As a consequence, the FPD us-
ing our proposed LEs not only consumes 6 - 90 % less total power by avoiding
unnecessary activities: clock, logic, and interconnect, but also it runs 5-33 %
faster than traditional clock gating designs. We could not directly compare the
area overhead since this information is not reported in the clock gating papers
considered. In our case the area overhead varies between 0 and 45 %.

Note. The content of this chapter is based on the the following papers:
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6
Improved Configuration Circuit

Architecture for FPGAs

L ong reconfiguration times form a major bottleneck in dynamic recon-
figurable systems. Many approaches have been proposed to address
this problem. However, improvements in the configuration circuit that

introduces this overhead are usually not considered. The high reconfigura-
tion times are due to the large amount of configuration bits sent through a
constrained data path. In order to alleviate this, we propose a novel FPGA
configuration circuit architecture to speedup bitstream (re)configuration and
relocation. Transporting only the data required for the configuration in flight
and avoiding external communication while relocating are two main ideas of
our proposal. By utilizing the MCNC benchmark set, the proposal is evaluated
against the state of the art approaches in terms of reconfiguration time, reloca-
tion time, and bitstream sizes. Moreover, the introduced hardware overhead to
support our proposed architecture is also studied.

This chapter is organized as follows. Problem of high reconfiguration overhead
in runtime reconfigurable systems is identified in Section 6.1. In Section 6.2,
we propose our idea to cope with this high reconfiguration overhead. The
proposal is evaluated against related art in Section 6.3. Finally, Section 6.4
ends with the conclusions.

6.1 Introduction

Modern FPGA devices support partial reconfiguration that allows runtime
changes of the system functionality. Various benefits can be achieved by ex-
ploiting this property, e.g., reduced power consumption, minimized hardware
cost, improved system performance, and more [83]. However, there is a prob-

99
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lem related to the reconfiguration time penalties that one hasto address in
order to fully benefit from the above. This problem is even more restrictive
for systems where reconfigurations occurs frequently. This high reconfigura-
tion time overheads can eclipse the overall benefits of FPGA based systems.
The major bottleneck is introduced by the configuration circuit since it needs
to transport large amounts of configuration data (bitstreams) using a limited
configuration data path. FPGAs being fine-grained reconfigurable devices, in
general require a large amount of configuration bits. In addition, the overall
FPGA sizes are also increasing very fast. As a result, the bitstream sizes are
growing. Furthermore, to cope with FPGA area fragmentation during runtime,
it is needed to efficiently reorganize the positions of the active hardware cores.
Such reorganizing process requires fast bitstream relocations.

To solve the above problems, in this chapter we propose a novel FPGA con-
figuration circuit architecture to speedup bitstream reconfiguration and relo-
cation. The proposal is evaluated using the Microelectronic Center of North
Carolina (MCNC) benchmark circuits [58]. Each benchmark circuit is trans-
lated to an equivalent VHDL code before synthesis, mapping, place, and route
onto a Xilinx Virtex-4 FPGA. We targeted XC4VLX200-10FF1513 device us-
ing Xilinx ISE 8.2.01i PR 5 tools. Based on the MCNC circuits, our proposal
is evaluated against the conventional Virtex-4 reconfiguration process. In terms
of relocation times, we compare against a system that modifies the reconfigura-
tion data before sending it to the FPGA configuration circuit during relocation
as proposed in [148]- [152]. We also investigate the bitstream size reduction
and the hardware overhead of our proposal. The required hardware to im-
plement our architecture is described in VHDL and verified using ModelSim
simulation. The verified hardware is synthesized in ASIC with 90 nm CMOS
technology using Cadence Encounter tools to obtain the hardware overhead
numbers. Considering the fact that no data is available about the exact size of
the Xilinx configuration circuit, we compare our proposal against the overall
Virtex-4 die size obtained from [153].

6.2 Configuration Circuit Architecture

In [154], Young et al. patented an architecture for FPGA partially reconfigura-
tion referred as the conventional FPGA/architecture in this chapter. The main
difference between our proposal (Figure 6.1(b)) and the conventional architec-
ture (Figure 6.1(a)) is the Barrel Shifter (BS). This additional component is
the key idea of our architecture that allows us to overcome the limitation of the
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(a) Conventional FPGA

(b) Our proposed FPGA

Figure 6.1: Architecture of the conventional FPGA versus our proposed FPGA

conventional architecture by avoiding shifting and transferring of unnecessary
configuration bits.

In the conventional FPGA as presented in [154], a frame of configuration data
is loaded serially into a shift register (Configuration Register (CR)) at times
t=t1 to t=t5 as illustrated in Figure 6.2(a). After the entire frame is loaded into
CR, it is temporarily transferred to a Shadow Register (SR) (Figure 6.2(a) at
t=t6) so that the CR is free to begin receiving the next frame of data. An address
line is used to transfer the data from the shadow register via the data lines
into the selected Configuration Memory (CM) cells as illustrated in Figure
6.2(a) at t=t7. The Mask Register (MR) selects which memory cells receive
the specific configuration data values and which do not. This defins a partial
reconfiguration zone as shown in the same figure. In this simple example,
we can see that although the reconfiguration circuit of the conventional FPGA
can partially reconfigure the selected FPGA area, the needed reconfiguration
time is still high. This reconfiguration time overhead is due to the shifting of
unneeded configuration data (dummy data) along with the needed one.

To overcome the above limitation of conventional FPGAs, we propose to em-
ploy a Barrel Shifter (BS) that can prevent of shifting and transferring unneces-
sary configuration data to CR as illustrated in Figure 6.1(b) and Figure 6.2(b).
BS is used to facilitate in transferring the needed configuration data from CR
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t=t1 t=t2 t=t3 t=t4 t=t5

t=t6 t=t7

t=t1 t=t2 t=t3 t=t4

(a) Conventional FPGA

(b) Our proposed FPGA

Figure 6.2: Reconfiguration steps of the conventional FPGA versus our proposed
FPGA

to a specific position in SR. In the proposed FPGA, only the needed configu-
ration data are loaded into CR as shown in Figure 6.2(b) at t=t1 to t2. After a
part of the entire frame (the needed configuration data) is shifted into CR, the
configuration data are temporarily transferred to SR through BS (Figure 6.2(b)
at t=t3). Finally, this configuration data are transferred to selected partial re-
configuration zone defined by MR as illustrated in Figure 6.2(b) at t=t4. Based
on this simple example, we can see that our proposed architecture only needs
4 steps instead of 7 steps present in the conventional FPGA in reconfiguring
the same partial reconfiguration area.

To support the mechanism of our proposed architecture in shifting configura-
tion data partially from CR register to a specific position in SR register through
Barrel Shifter (Figure 6.3), the proposed architecture needs the additional hard-
ware enclosed between the dashed lines in Figure 6.4. The hardware needs to
know how much configuration data should be shifted (Frame Height (FH)) and
how far the configuration data must be shifted (Frame Height Displacement
(FHD)). In order to control FH, we add Frame Height Counter (FHC), Frame
Height Register (FHR) and Comparator. This simple structure can control the
frame height by writing a specific FH value to FHR during the execution of a
set frame height command (FHR initialization). The value of FHC is increased
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every time the configuration data are shifted into the CR register. When the
FHC reaches the same value as FHR, the stop signal from this circuit prevents
CR shifting configuration data further. The frame height displacement is con-
trolled by setting the Frame Height Displacement Register (FHDR) using a set
height displacement command. This way, we can place the configuration data
to the right position into SR in order to partially reconfigure the FPGA with
minimal configuration time overhead.

Frame Height (FH)

CR BS SR

Frame Height Displacement 

(FHD)

Figure 6.3: Mechanism of our proposed architecture

Instead of including unnecessary dummy data in conventional bitstream for
reconfiguration (Figure 6.5(a)), our proposed architecture only includes the
required reconfiguration data in the bitstream (Figure 6.5(b)). This feature
reduces the configuration bitstream size, consequently it decreases the required
memory/hardware for storing the bitstream. In addition to setting the number
of frames and the start frame address, before we can write configuration data,
we have to set two additional parameters: frame height displacement and frame
height using the corresponding set height displacement (to initialize FHDR)
and set frame height (to initialize FHR) commands.

Although our proposal can be generally used for any partially reconfigurable
FPGAs, we use Virtex-4 [56] as our case study. There are 22 frames per Virtex-
4 CLB column and each frame contains 41 words = 41x32 = 1312 bits. There-
fore one column CLB needs 22x1312 = 28864 bits. Since one CLB column of
Virtex-4 FPGA consists of 16 CLBs, one CLB contains28864/16 = 1804
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Figure 6.4: Hardware overhead for supporting fast reconfiguration

bits. Based on these information and Figure 6.5, the reconfiguration bit-
stream size in number of bits for the conventional FPGA can be estimated
asRCBSSconv = (3 × 32) + (28864 × ⌈h/16⌉ × w). The factor (3x32) is
for set number of frames (32 bits), set start frame address (32 bits), and write
frame command (32 bits) as shown in Figure 6.5(a). Since the atomic re-
configuration unit in Virtex-4 is a frame, the⌈h/16⌉ is used in this equation.
The h and w are the core height and width in number of CLBs. Since the
atomic reconfiguration unit in our proposal is asingle CLB, reconfiguration
bitstream size in number of bits for our proposed architecture is estimated as
RCBSSour = (5×32)+(1804×h×w). The factor (5x32) is for set number of
frames (32 bits), set start frame address (32 bits), set height displacement (32
bits), set frame height (32 bits), and write frame command (32 bits) as shown in
Figure 6.5(b). Since Virtex-4 has 32-bit configuration data path, it can transfer
32 bits of data per clock cycle. As a result, the reconfiguration time in number
of clock cycles for the conventional architecture isRCTconv = RCBSSconv/32.
Using the same assumptions, the reconfiguration time in number of clock cy-
cles for our architecture isRCTour = RCBSSour/32.

In this chapter, we also propose a new specialized configuration command to
support core relocations. Instead of modifying target address and resending the
modified reconfiguration data in order to do relocation as proposed by several
authors (e.g. [148]- [152]) using the conventional FPGA (Figure 6.6(a)), using
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Figure 6.5: Bitstream for reconfiguration

the proposed relocation command provides with the opportunity to perform
relocation without resending the reconfiguration data since the reconfiguration
data are already in configuration memory (Figure 6.6(b)). To do relocation
efficiently, our proposed relocation command copies the relocatable core from
configuration memory to the shadow register and then directly writes it back
to the target location per frame basis as illustrated in Figure 6.6(b). This new
mechanism of relocation makes core relocation faster since we do not need to
resend configuration data outside of the FPGA device. This will significantly
reduce the configuration path utilization during relocation. Three additional
registers are needed to support fast relocation: source start frame address reg-
ister (SSFAR), target height displacement register (THDR), and source height
displacement register (SHDR). To facilitate fast relocation, we need to set ad-
ditional parameters:

• source start frame address byset source start frame addresscommand;

• target height displacement byset target height displacementcommand;

• source height displacement byset source height displacementcmd; and

• frame height using aset frame heightcommand.

Since the read back capability is already supported by the Virtex-4 devices, no
extra hardware is needed to read back configuration memory.
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Figure 6.6: Core relocation

Based on Virtex-4 FPGA information and Figure 6.7, the relocation bit-
stream size in number of bits for the conventional FPGA can be estimated
asRLBSSconv = (3 × 32) + (28864 × ⌈h/16⌉ × w) due to the need to re-
sending configuration bitstream. The factor (3x32) is for set number of frames
(32 bits), set target start frame address (32 bits), and write frame command
(32 bits) as shown in Figure 6.7(a). Since our architecture does not need to re-
send configuration bitstream during relocation, the relocation bitstream size in
number of bits for the our FPGA is constant (RLBSSour = 7× 32). The factor
(7x32) is for set six parameters (number of frames, target start frame address,
source start frame address, target height displacement, source height displace-
ment, frame height), and also for the relocation command as shown in Figure
6.7(b). Using 32-bit configuration data path, the relocation time in number
of clock cycles for the conventional architecture isRLTconv = RLBSSconv/32.
Since our proposed relocation command needs to read configuration memory
(assume one clock cycle) and write configuration memory (assume another
clock cycle) per frame for relocation and each CLB column has 22 frames,
the reconfiguration time in number of clock cycles for our architecture is
RLTour = (RLBSSour/32) + (2× 22× ⌈h/16⌉ × w).
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Figure 6.7: Bitstream for core relocation

6.3 Evaluation

To evaluate our proposed architecture, we used the Microelectronic Center
of North Carolina (MCNC) benchmark set from [58]. Each benchmark cir-
cuit was translated to an equivalent VHDL code before it was synthesized,
mapped, placed, and routed onto a Xilinx Virtex-4 FPGA with part number
XC4VLX200-10FF1513 using Xilinx ISE 8.2.01iPR 5 tools. Using these
FPGA-implemented MCNC circuits, the proposal was evaluated against the
conventional one (Virtex-4 in this case study) in terms of reconfiguration and
relocation times and the bitstream sizes.

We assume that the frame utilization (the ratio between number of required bits
in a frame and total number of bits in a frame) is equal to the logic utilization. It
is well-known that the wire utilization is much lower than the logic utilization.
Therefore we consider that the assumption is conservative in that actual frame
utilization is significantly lower than the logic utilization. Since square shape
circuit performs the best in terms of area and speed as shown in [155], each
benchmark circuit was implemented in a free square-shaped-area of the FPGA.

Table 6.1 shows the speedup (times) and bitstream size (BSS) reductions (in
%) of the proposed architecture compared to the conventional Xilinx architec-
ture in terms of both, reconfiguration and relocation times. From this table,
we can see that the proposed architecture has on average 4 times shorter re-
configuration times. The reconfiguration time reduction (state as speedup S
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Table 6.1: Speedup (S) (times) and bitstream size (BSS) reduction (R) (%) compared
to the conventional FPGA (h and w are in number of occupied CLBs)

Circuit h w RCT BSS RLT
Conv Our S Conv Our R(%) Conv Our S

s27 1 1 905 62 14.6 28960 1964 93.22 905 51 17.75
mult16b 2 2 1807 231 7.82 57824 7376 87.24 1807 95 19.02
s208.1

s344, s349 3 3 2709 513 5.28 86688 16396 81.09 2709 139 19.49
s526, s526n
s382, s386

s400, s420.1
s444, mm4a

s641
mult16a, s713 4 4 3611 907 3.98 115552 29024 74.88 3611 183 19.73
s510, s828.1
s820, mm9a 5 5 4513 1415 3.19 144416 45260 68.66 4513 227 19.88

s832
s1196, mm9b 6 6 5415 2035 2.66 173280 65104 62.43 5415 271 19.98

mult32a
s1488, s1494
sbc, s1423 7 7 6317 2768 2.28 202144 88556 56.19 6317 315 20.05

mm30a
s9234.1
s5378 9 9 8121 4572 1.78 259872 146284 43.71 8121 403 20.15
s298 10 10 9023 5643 1.6 288736 180560 37.47 9023 447 20.19
dsip 11 11 9925 6827 1.45 317600 218444 31.22 9925 491 20.21

bigkey 14 14 12631 11055 1.14 404192 353744 12.48 12631 623 20.27
clma 20 20 36083 22555 1.6 1154656 721760 37.49 36083 1767 20.42

s38584.1 24 24 43299 32477 1.33 1385568 1039264 24.99 43299 2119 20.43
s38417 25 25 45103 35240 1.28 1443296 1127660 21.87 45103 2207 20.44

in the table) can improve up to 14.6 times for small circuits (s27) since the
amount of dummy data increases when the circuit size is smaller. In this case,
the conventional architecture is very slow in reconfiguring the FPGA fabric,
while our proposal becomes very efficient since we do not need to transport
unneeded data. Moreover, the reconfiguration bitstream size is reduced by up
to 93.22 % compared to the conventional FPGA since we do not include any
dummy data in our bitstream file. Please note that s820 and s832 results are
almost similar although they represent two completely different designs. This
is due to their similar sizes when mapped to Xilinx FPGA and measured in
terms of used CLBs, which is the atomic measurement unit for our study.

Table 6.1 also shows that our proposal relocates cores faster than the conven-
tional architecture. On average, our proposal can do relocation 19.8 times
faster than the conventional FPGA by avoiding resending configuration data
during relocation using the proposed specialized relocation command.

Besides, the hardware overhead of our proposal was also evaluated as de-
picted in Table 6.2. The required hardwares to build our proposed architec-
ture was coded in VHDL and verified using ModelSim simulation. Since the
compared FPGA (Virtex-4) was implemented using 90 nm technology, to be
fair in comparison, the verified hardware was also implemented in ASIC with
90 nm CMOS technology using Cadence Encounter tools to obtain our hard-
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Table 6.2: Area overhead

Modules Area(µm 2)
Barrel Shifter (BS) 61881

Comparator 450
Frame Height Displacement Register(FHDR) 1092

Frame Height Counter (FHC) 1650
Frame Height Register (FHR) 1092

Source Start Frame Address Register (SSFAR) 1092
Target Height Displacement Register (THDR) 1092
Source Height Displacement Register (SHDR) 1092

Total Area Overhead 69441

ware overhead. To compare our proposal against Virtex-4 in terms of area, the
estimated die size of Virtex-4 FPGA was obtained from [153]. Considering
the area(=735mm2) of the targeted Virtex-4 FPGA device (Estimated die size
from [153]), the area overhead of the architecture is very small. The total area
overhead is only 0.009 % of the Virtex-4 area.

6.4 Summary

In this chapter, we have introduced a novel configuration circuit architecture
for partially reconfigurable FPGAs, that supports faster bitstream reconfigu-
ration and relocation. More precisely, our proposal is 4x faster during recon-
figuration of the MCNC benchmark circuits compared to Xilinx Virtex-4. In
addition, the area overhead of the proposed architecture is only 0.009 % of the
overall Virtex-4 area. For fast 2D relocation, we proposed a new specialized
command in the configuration protocol. With this new command, hardware
core relocation is facilitated without resending configuration data externally.
Our experimental results show that our architecture is 19.8x faster during relo-
cation compared to the current state the art (Virtex-4). Moreover, the bitstream
sizes of the investigated MCNC benchmarks are reduced by 65 % on average
when our approach is applied.

Note. The content of this chapter is based on the the following paper:

T. Marconi, J.Y. Hur, K.L.M. Bertels, G. N. Gaydadjiev, A Novel Configu-
ration Circuit Architecture to Speedup Reconfiguration and Relocation
for Partially Reconfigurable Devices, Proceedings of IEEE Symposium on
Application Specific Processors (SASP), June 2010.





7
Conclusions and Future Work

I n this dissertation, novel proposals for dealing with the main problems in
runtime reconfigurable systems have been presented. More specific, ef-
ficient online hardware task scheduling and placement, power consump-

tion reduction and runtime reconfiguration overhead reduction have been ad-
dressed. The proposals have been evaluated against existing state of the art
solutions. The main contributions of the thesis are summarized in Section 7.1
and future directions are presented in Section 7.2.

7.1 Main Contributions

In the context of runtime reconfigurable systems on partially reconfigurable
devices, the main contributions of this dissertation can be summarized as fol-
lows.

1. Two novel algorithms, called Intelligent Merging(IM) and Quad-
Corner(QC), for online placement of reconfigurable hardware tasks on
partially reconfigurable devices have been presented. Because of its on-
demand merging capability, the IM can speedup online placement algo-
rithms by 1.72x while loosing only 0.89 % placement quality on average.
Experiments with real hardware tasks on Virtex-4 show that the QC not
only has 78 % less penalty and 93 % lower wasted area than the existing
algorithms on average due to its quad-corner spreading capability but
also has 86 % lower runtime overhead due to its simplicity.

2. Two novel online hardware task scheduling and placement algorithms
have been proposed. The first algorithm, Intelligent Stuffing(IS), is de-
signed for 1D area model, whereas the second one, 3D Compaction
(3DC), is proposed for 2D area model. Because of having the additional
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alignment status, the IS outperforms the existing algorithms in terms
of reduced total wasted area up to 89.7%, has 1.5 % shorter schedule
time and 31.3% faster response time. Due to the blocking-awareness,
the 3DC not only has better scheduling and placement quality (up to 4.8
% shorter schedule time, 75.1 % lower waiting time, and 22.9 % less
wasted volume) but also has 97 % lower runtime overhead compared to
existing algorithms reported in the literature.

3. A novel low power logic element (LE) for FPDs to replace the conven-
tional LE has been proposed and carefully evaluated. The FPDs using
our proposal have 6-90 % lower total power due to the avoidance of
unnecessary activities. Devices using our LE run 2-33 % faster than
conventional systems due to our ”always ready” LE flip-flops.

4. A novel configuration circuit architecture for partially reconfigurable
FPGAs has been proposed. The proposal reconfigures FPGAs 4x faster
by avoiding sending unnecessary data and relocates hardware cores
19.8x faster due to its specialized command compared to Xilinx Virtex-4
with only 0.009 % area overhead. Moreover, the bitstream sizes of the
investigated MCNC benchmarks are reduced by 65 % on average when
our approach is applied.

7.2 Open Issues

The following open issues can be considered for future work on the topic.

1. Dynamic power is linearly proportional to the clock frequency. Running
hardware tasks at lower clock speeds can reduce power consumption. In
many cases, some tasks can be operated at lower speeds without affect-
ing on the overall system performance. Hence, online task scheduling
and placement algorithms that can run hardware tasks at different clock
speeds to reduce power consumption without sacrificing performance
can be considered as a future work.

2. A simple way to reduce both static and dynamic power consumptions is
to scale down the supply voltage. Online task scheduling and placement
algorithms that can run hardware task at different supply voltages should
be investigated for power reduction.

3. FPGAs with built-in online scheduling and placement hardware can be
studied for future general purpose computing systems.
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4. When the chip technology is scaled down, it is becoming almost im-
possible to create chips without any defects. Defect-aware online task
scheduling and placement algorithms that can intelligently manage the
defected chips are worthy to be investigated.

5. To reduce reconfiguration overhead further, utilizing placed hardware
tasks by reusing them for serial executions or copying them for paral-
lel executions can be integrated in our framework for future study. This
technique is supported by fast relocation of our reconfiguration infras-
tructure in Chapter 6.

6. Designing circuits targeting FPDs based on our proposed low power LEs
was performed by hand in this dissertation. To make this design process
automatically, CAD tools development for FPDs targeting our proposed
LEs is needed to be investigated further.

7. Benefits of replacing FFs with latches are increased performance, area
reduction, and minimized power consumption as have been investigated
in ASIC designs. An interesting research direction is to study of replac-
ing FFs with latches in FPDs targeting our proposed LEs.

8. Hardware tasks can be placed more efficient if we can have more flex-
ibility in rotating the tasks during reconfiguration. FPGAs with recon-
figuration circuit that supports this flexibility is a challenge for future
research. This requires homogeneity of the reconfigurable fabric.

9. If the homogeneity presents in FPGAs as required in previous future
direction, it is interesting to investigate in what extend this homogeneity
will affect the overall system performance. There will be a trade-off
between flexibility and performance. ”Can this flexibility cope with its
performance degradation?” is another future question that need to be
studied further.
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ses, ”Some Notes on Power Management on FPGA-Based Systems,”
Proceedings of the 5th International Workshop on Field-Programmable
Logic and Applications (FPL), pp. 149-157, 1995.

[20] A. Gayasen, K. Lee, V. Narayanan, M. Kandemir, M. J. Irwin, and T.
Tuan, ”A Dual-Vdd Low Power FPGA Architecture,” Proceedings of
the International Conference on Field-Programmable Logic and its Ap-
plications (FPL), pp. 145-157, August 2004.

[21] S. Mondal and S. O. Memik, ”Fine-grain Leakage Optimization in
SRAM based FPGAs,” Proceedings of the ACM Great Lakes Sympo-
sium on VLSI, pp. 238-243, 2005.

[22] K. Bazargan, R. Kastner, and M. Sarrafzadeh, ”Fast Template Place-
ment for Reconfigurable Computing Systems,” IEEE Design and Test
of Computers, vol. 17, pp. 68-83, 2000.

[23] J. Tabero, J. Septién, H. Mecha, and D. Mozos, ”A Low Fragmentation
Heuristic for Task Placement in 2D RTR HW Management,” Proceed-
ings of Field-Programmable Logic and Applications (FPL), pp. 241-
250, 2004.

[24] J. Tabero, H. Wick, J. Septién, and S. Roman, ”A Vertex-List Approach
to 2D HW Multitasking Management in RTR FPGAs,” Proceedings of
Conference on Design of Circuits and Integrated Systems (DCIS), pp.
545-550, November 2003.

[25] J. Tabero, J. Septién, H. Mecha, and D. Mozos, ”Task Placement Heuris-
tic Based on 3D-Adjacency and Look-Ahead in Reconfigurable Sys-
tems,” Proceedings of Asia and South Pacific Design Automation Con-
ference, pp. 396-401, 2006.

[26] C. Steiger, H. Walder, M. Platzner, and L. Thiele, ”Online Scheduling
and Placement of Real-time Tasks to Partially Reconfigurable Devices,”
Proceedings of Real-Time Systems Symposium (RTSS), pp. 224-225,
Dec 2003.

[27] H. Walder, C. Steiger, and M. Platzner, ”Fast Online Task Placement on
FPGAs: Free Space Partitioning and 2D-hashing,” Proceedings of In-
ternational Parallel and Distributed Processing Symp. (IPDPS), p.178b,
April 2003.



118 BIBLIOGRAPHY

[28] M. Morandi, M. Novati, M.D. Santambrogio, and D. Sciuto,”Core Al-
location and Relocation Management for a Self Dynamically Reconfig-
urable Architecture,” Proceedings of IEEE Computer Society Annual
Symposium on VLSI, pp. 286-291, 2008.

[29] A. Ahmadinia, C. Bobda, and J. Teich, ”A Dynamic Scheduling and
Placement Algorithm for Reconfigurable Hardware,” Proceedings of
Architecture of Computing Systems (ARCS), pp. 125-139, 2004.

[30] M. Handa and R. Vemuri, ”An Efficient Algorithm for Finding Empty
Space for Online FPGA Placement,” Proceedings of Design Automation
Conference (DAC), pp. 960-965, June 2004.

[31] M. Handa and R. Vemuri, ”An Integrated Online Scheduling and Place-
ment Methodology,” Proceedings of International Conference on Field
Programmable Logic and Applications (FPL), pp. 444-453, Aug./Sept.
2004.

[32] J. Cui, Q. Deng, X. He, and Z. Gu, ”An Efficient Algorithm for Online
Management of 2D Area of Partially Reconfigurable FPGA,” Proceed-
ings of Design Automation and Test in Europe (DATE), pp. 129-134,
Apr. 2007.

[33] Y. Xiao, Z. Duan, and P. Nie, ”An Efficient Algorithm for Finding
Empty Space for Reconfigurable Systems,” Proceedings of the 2009
Third IEEE International Symposium on Theoretical Aspects of Soft-
ware Engineering, pp. 36-43, 2009.

[34] J. Cui, Z. Gu, W. Liu, and Q. Deng, ”An Efficient Algorithm
for Online Soft Real-Time Task Placement on Reconfigurable Hard-
ware Devices,” Proceedings of IEEE International Symposium on
Object/component/services-oriented Real-time Distributed Computing
(ISORC), pp. 321-328, May 2007.

[35] M. Tomono, M. Nakanishi, S. Yamashita, K. Nakajima, and K. Watan-
abe, ”A New Approach to Online FPGA Placement,” Proceedings of
Conference of Information Science and Systems (CISS), pp. 145-150,
March 2006.

[36] M. Tomono, M. Nakanishi, S. Yamashita, K. Nakajima, and K. Watan-
abe, ”An Efficient and Effective Algorithm for Online Task Placement
with I/O Communications in Partially Reconfigurable FPGAs,” IEICE



BIBLIOGRAPHY 119

Trans. Fundamentals, Vol. E89-A, No. 12, pp. 3416-3426, December
2006.

[37] A. Ahmadinia, M. Bednara, C. Bobda and J. Teich, ”A New Approach
for On-line Placement on Reconfigurable Devices,” Proceedings of In-
ternational Parallel and Distributed Processing Symposium (IPDPS),
pp. 134-140, April 2004.

[38] A. Ahmadinia, C. Bobda, D. Koch, M. Majer and J. Teich, ”Task
Scheduling for Heterogeneous Reconfigurable Computers,” Proceed-
ings of Symposium on Integrated Circuits and Systems Design
(SBCCI), pp. 22-27, September 2004.

[39] C-H. Lu, H-W. Liao, and P-A. Hsiung, ”Multi-objective Placement of
Reconfigurable Hardware Tasks in Real-Time System,” Proceedings of
International Conference on Computational Science and Engineering,
vol. 2, pp.921-925, 2009.

[40] M. Elbidweihy and J. L. Trahan, ”Maximal Strips Data Structure to Rep-
resent Free Space on Partially Reconfigurable FPGAs,” International
Journal of Parallel, Emergent and Distributed Systems, Vol. 24, No. 4,
pp. 349-366, August 2009.

[41] A. Ahmadinia, C. Bobda, S. Fekete, J. Teich and J. van der
Veen, ”Optimal Routing-Conscious Dynamic Placement for Recon-
figurable Devices,” Proceedings of International Conference on Field-
Programmable Logic and Applications (FPL), LNCS 3203, pp. 847-
851, 2004.

[42] A. Ahmadinia, C. Bobda, S. Fekete, J. Teich and J. van der Veen, ”Op-
timal Free-space Management and Routing-conscious Dynamic Place-
ment for Reconfigurable Devices,” IEEE Transactions on Computers,
Vol. 56, No. 3, pp. 673-680, 2007.
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Samenvatting

H et aanwenden van partial reconfigurable devices voor runtime recon-
figurable systems kan een vermindering bewerkstelligen van hard-
ware area, energieverbruik, economische kosten, bitstream grootte

en herconfiguratie tijd in aanvulling op performance verbeteringen, die te
danken zijn aan beter maatwerk. Maar om deze voordelen te verkrijgen, dienen
de gebruikers bijkomende kosten te betalen: hoger stroomverbruik, meer sil-
icon area en lagere verwerkingssnelheden in vergelijking met ASIC’s. Hoger
stroomverbruik vereist hogere verpakkingskosten, verkort de chip-levensduur,
vereist dure koelsystemen, vermindert de betrouwbaarheid van het systeem
en belet het gebruik van een batterij. Om de minder efficiënte gebruik van
de ruimte op de FPGA tegen te gaan, moet men runtime reconfigureren en
de posities van draaiende taken herorganiseren. Aangezien de beschikbare
configuratie-datapaden gebruikelijk een gelimiteerde bandbreedte hebben, kan
de hoge overhead van de herconfiguratie de voordelen van een dynamisch sys-
teem te niet doen. In dit proefschrift richten we ons op drie belangrijke prob-
lemen om deze voordelen meer toe te passen. Om precies te zijn, zijn dat:
de online inroostering en plaatsing van hardware taken, vermindering van het
stroomverbruik, het terugschroeven van de runtime reconfiguration overhead.
Aangezien hardware taken dynamisch worden toegewezen en vrijgegeven tij-
dens de executie van het systeem, kan de reconfigurable fabric lijden aan frag-
mentatie. Dit kan leiden tot de ongewenste situatie dat de taken niet kunnen
worden toegewezen, zelfs als er voldoende vrije ruimte beschikbaar zou zijn.
Als gevolg worden de algehele prestaties van het systeem aangetast. Dus ef-
ficiënt beheer van de resources in hardware is erg belangrijk. Om hardware
resources efficiënt te beheren, stellen we vernieuwende online hardware taak
inroosterings- en plaatsingsalgoritmen voor op partial reconfigurable devices.
Deze algoritmen zijn zowel sneller als van hogere kwaliteit dan bestaande aan-
pakken. Met het oog op het reduceren van hoog stroomverbruik in FPD’s
stellen we een nieuw Logic Element (LE) voor met een lager stroomverbruik
dan huidige FPD’s. Om runtime overhead te reduceren stellen we een nieuwe
FPGA configuratie-circuit architectuur voor met snellere herconfiguratie en
herplaatsing in vergelijking met huidige FPGA’s.
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