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Abstract

Efficient management and propagation of temporal constraints is important
for temporal planning as well as for scheduling. During plan development,
many solvers employ a heuristic-driven backtracking approach, over the course
of which they maintain a so-called Simple Temporal Network (STN) of events
and constraints.

Recent research has shown that partial path consistency (PPC) can be used
to efficiently propagate temporal information in such networks. This insight
was applied in the IPPC algorithm, which enforces PPC in an incremental fash-
ion when new constraints are introduced.

We present two new algorithms that efficiently enforce PPC in modified
STNs. Vertex-IPPC allows the incremental introduction of an event and all its
associated constraints at once. Conversely, Support-DPPC allows the removal
or loosening of existing constraints. To the best of our knowledge, this is the
first decremental algorithm for enforcing PPC.

Our ultimate goal is a fully dynamic algorithm for PPC, supporting on-line
deletions as well as additions. This will allow solvers to efficiently explore the
solution space, rather than solving entire networks after each update.
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Chapter 1

Introduction

Schedules of all kinds greatly affect our daily lives, be it train schedules, time tables
used in schools and universities, or even our own working hours. While a schedule
itself is usually a fairly straightforward list showing at what time specific events
should take place, creating these schedules is a far from trivial task in general.

From a computer science perspective, schedules are solutions to problems from a
general class of so-called Temporal Constraint Satisfaction Problems, first formally
described by Dechter et al. (1991). “Temporal” since we aim to assign events a point
in time, “Constraint Satisfaction” since the resulting schedule needs to obey certain
constraints to make sense in the real world. In a railroad setting for example, if two
trains use the same platform, the departure of train one should occur before the arrival
of train two.

Many scheduling problems involve choices, meaning a solution is fine as long as
it satisfies one of a number of possible constraints. In the train example, it may be
that a train can arrive at a station either between 14:00 and 14:15 or between 14:30
and 14:45, but not from 14:15 to 14:30, because at that time another train occupies
the platform. Scheduling problems with choices like these are called Disjunctive
Temporal Problems (DTP), introduced by Stergiou and Koubarakis (2000).

Perhaps counter-intuitively, the fact that the DTP allows these choices can make
finding a schedule more difficult. The problem is that we can combine the various op-
tions in an exponential number of ways, but we do not know beforehand whether any
of these combinations allows a valid schedule. Algorithms solving DTP instances
therefore fall back on a basic back-tracking approach. They exploit the fact that if
there are no choices, the DTP reduces to a Simple Temporal Problem (STP), which
can be solved efficiently.

Specifically, DTP solvers start with an unconstrained STP instance. They then
use heuristics to select one option for a constraint from the DTP and add it to the
STP instance, creating a simplified version of the original problem. The solver then
checks if there is a solution to this STP, and, if so, simply includes an option for
another constraint. It continues doing so until we either have a solution satisfying
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Introduction

one option for every constraint in the original DTP, or find that our STP becomes
inconsistent, i.e. no longer has a solution.

If the schedule is inconsistent, the DTP solver records this and updates its heuris-
tics. It then takes a step back by removing a constraint, and starts over, using its
updated heuristics to select a different constraint. Taking a step back, however, is not
as simple as it might seem at first glance. While current DTP solvers can efficiently
add constraints to the schedule and check if any valid schedules remain, they can not
do the same when a constraint is removed. Instead, they may have to re-check the
entire STP from scratch.

In this thesis, we present two new algorithms for dynamically updating STP in-
stances. The first algorithm allows us to efficiently update an existing STP instance
to include an entire new event and all its adjacent constraints, rather than just a single
constraint as previous algorithms have done. Our second algorithm addresses the
problem described above: it can be used to efficiently remove or loosen a constraint
in an existing STP instance.

The remainder of this chapter provides an overview of the contents in this thesis. In
Chapter 2 we formally define the Simple Temporal Problem and review the concept
of chordal graphs, which is essential for the algorithms that form the current state of
the art for solving these problems. We review these and other existing approaches to
solving the STP in Chapter 3.

Having introduced the context of our work, we present our main contributions in
Chapters 4 and 5. Chapter 4 describes Vertex-IPPC, our new algorithm for incremen-
tally solving the STP. In Chapter 5 we turn our attention to the problem of loosening
or removing constraints, and present our algorithm Support-DPPC, which performs
this task efficiently.

Having demonstrated the theoretical correctness of our algorithms, we perform a
limited empirical evaluation of Vertex-IPPC in Chapter 6. Finally, in Chapter 7 we
conclude and provide interesting directions for future work.
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Chapter 2

Problem definition

Having sketched the broader context in which the Simple Temporal Problem (STP)
finds its use in Chapter 1, we now turn to consider this problem itself more closely.

We start by providing a more specific practical use case for the STP in Sec-
tion 2.1. Using this example as an illustration, we formally define the STP in Sec-
tion 2.2, and introduce our notation. In this section we also note that there is more
than one way to solve an STP, and proceed to introduce thee different kinds of solu-
tions.

Since most algorithms in this thesis operate on graphs, we specify our notation
for general graph properties in Section 2.3. We conclude with an introduction to the
class of chordal graphs in Section 2.4, and discuss the properties that make them
vital tools in approaches for solving the STP.

2.1 Example

Suppose we are tasked with finding a schedule for arrivals and departures of trains
in a railway station. In a particular part of the afternoon schedule, we need to handle
two trains, under the following conditions:

The first train is an express train arriving between 16:15 and 16:30 and can stay
in the station for only 5 to 10 minutes before departing again. Meanwhile, train two
is a local train, so we are allowed to hold it at the platform for 5 to 20 minutes, but
it has to depart between 16:00 and 16:20. Finally, we want to allow passengers to
switch from the local into the express train. To keep their travel time short, we do not
want to hold them up for more than 15 minutes. On the other hand, they should not
have to run, so we want to give them at least 10 minutes to change platforms.

To help reason about a possible solution, we can capture the essence of this story
in a graph. First, we create a node for every time variable. For example, let us say
that the arrival and departure times of train one are a1 and d1 respectively, and a2 and
d2 represent the arrival and departure of train two. We also add an additional variable
x0, called the temporal reference point, which allows us to convert the relative values
in our schedule to absolute time. In this example, we fix x0 at 16:00. Finally, we

3



Problem definition 2.2 Simple Temporal Networks

x0

a1 d1

a2 d2

[5,10]

[5,20]

[10,15]

[15,30]

[0,20]

Figure 2.1: Example of a Simple Temporal Network.

represent the constraints as edges connecting events. For our story, this yields a
network like the one shown in Figure 2.1.

To check whether a schedule is valid, we can now simply assign its values to the
time points and see if they satisfy all constraints. For example, the reader can verify
that (x0 = 0,a1 = 15,d1 = 20,a2 = 5,d2 = 10) is a valid schedule.

The network just presented is called a Simple Temporal Network (STN), which
models an instance from the class of Simple Temporal Problems (STP).In a seminal
paper, Dechter et al. (1991) introduced the STP as an important subclass of the more
general class of constraint satisfaction problems.

The “Temporal” part of these names stems from the fact that they concern con-
straints between events in time: temporal constraints. Furthermore, they are “Sim-
ple” in the sense that the constraints can be expressed as a binary relation between
two time variables, which is not generally the case in constraint satisfaction prob-
lems. In spite of this apparent simplicity there are many practical applications for the
STP, one of which we have just seen. Having intuitively established the usefulness
of STNs, we further formalize them in the next section.

2.2 Simple Temporal Networks

A Simple Temporal Network S consists of a set X = {x1, x2, . . . , xn} contain-
ing n events and a set C containing m constraints. Each constraint ci→ j ∈ C has
a weight wi→ j, which represents an upper bound on the time that may elapse be-
tween events xi and x j. A constraint can therefore also be interpreted as the in-
equality x j − xi ≤ wi→ j. Multiplying both sides of this equation by −1 we have
xi − x j ≥ −wi→ j, so−wi→ j is also the lower bound on the time difference between
x j and xi.

As demonstrated in the example, STNs can be naturally modelled as directed
graphs. An event xi is represented as a node, and for each constraint ci→ j there is a
directed edge from node xi to node x j, labelled by wi→ j. Alternatively, both ci→ j and

4
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b

a c

[0,10]

[10,40]

[10,20]

(a) Original STN

b

a c

[0,10]

[10,30]

[10,20]

(b) Tightened STN

Figure 2.2: Example of constraints implying a stricter value for another constraint. The combination
of constraints ca→b and cb→c implies a tighter bound on ca→c than originally specified.

c j→i can be shown as a single directed edge from xi to x j. This edge is then labelled
by [−w j→i,wi→ j], the exact range which the time difference x j−xi is constrained to.
The latter notation is used in Figure 2.1.

2.2.1 Solutions

A simple way to define the solution of an STN is the one we mentioned in our intro-
ductory example: a schedule satisfying all constraints specified by the STN instance.
Formally, such a solution is a schedule τ, which assigns a moment in time to every
event in X , such that all constraints in C are satisfied. If no such schedule exists, the
network is said to be inconsistent.

However, we can generalize this notion. In particular, provided an STN is consis-
tent, there are usually many different schedules that will satisfy all constraints. For
example, (x0 = 0,a1 = 20,d1 = 25,a2 = 10,d2 = 15) is also a valid solution for the
STN in Figure 2.1. It would therefore be interesting to have a representation of all
valid schedules.

Generally, an unprocessed STN will contain implicit information about con-
straints. Figure 2.2 illustrates this phenomenon. Here, event c can occur at most
20 minutes after event b, which in turn can occur at most 10 minutes after a. There-
fore, c can occur at most 30 minutes after a, which is stricter than the upper limit of
40 specified in the original STN.

Dechter et al. (1991) showed that if the network is a complete graph and all
constraints are as tight as possible, any valid schedule can be extracted efficiently
using a backtrack-free algorithm. Hence, this tight network can be considered a
solution to an STN as well.

In fact, this new solution gives rise to a number of new questions we can ask our-
selves regarding tight STNs. Recall that the STN instances we solve are ultimately
intermediate steps generated by a DTP solver. Typically, instances from consecutive
steps will differ in only a single constraint, leaving the rest of the network untouched.
It seems wasteful to re-solve an instance from scratch, when we already have a tight
network at our disposal, which may only require a small change to conform to the up-
dated constraint. We therefore distinguish three types of problems regarding updates
on STNs.

5



Problem definition 2.2 Simple Temporal Networks

Definition 2.1. Given a consistent, tight STN S and a new weight w′a→b for a con-
straint ca→b, with the original weight wa→b. We distinguish three types of problems
regarding the STN S ′ incorporating w′a→b.

• INCREMENTAL-STP: compute tight constraints in S ′, given that w′a→b <wa→b,
or return INCONSISTENT if the new weight makes the problem unsolvable.

• DECREMENTAL-STP: compute tight constraints in S ′ given that w′a→b >wa→b.

• DYNAMIC-STP: compute tight constraints in S without restrictions on w′a→b,
returning INCONSISTENT if the new weight makes the problem unsolvable.

Note that the weight of ca→b may have been infinite, in which case lowering wa→b
is equivalent to adding an entirely new constraint to the graph. Conversely, raising
wa→b to infinity is equivalent to removing the constraint from the graph.

This is the reason for the perhaps somewhat confusing naming of the incremental
and decremental problems: “Incremental” does not refer to a weight increase, but to
the fact this method can be used to increase the complexity of an STN, by adding new
constraints or further restricting the possible values of existing ones. In the same vein
“Decremental” algorithms can be use to decrease the complexity of the problem, by
loosening existing constraints or removing them altogether.

2.2.2 Intermediate STNs

It turns out that there are multiple variants of the “tight” STNs discussed in the previ-
ous section, each of which can be used as input for the greedy algorithm to construct
a schedule. These variants are sub-classes of a more general class of Intermediate
STNs (ISTNs), surveyed by Planken et al. (2011b). ISTNs explicitly record the in-
formation that can be inferred by tightening constraints.

Planken et al. identify five different types of ISTNs, that differ in how much
implicit information they make explicit. Since our interest for the STN originates in
solvers for the DTP, we are particularly interested in ISTNs that contain the informa-
tion these solver require. In particular, they need to compute the space of possible
schedules, which is captured by the tight STNs just discussed. Two of the five ISTN
types can immediately be used as input for Dechter et al.’s greedy schedule construc-
tion algorithm, so we restrict our discussion to these two types.

1. A Fully Path Consistent STN, is a complete graph that contains the tightest
possible constraints between any two events in the schedule. This ISTN corre-
sponds to the notion of a minimal network from constraint literature. Figure 2.3
shows the minimal network corresponding to the STN shown in Figure 2.1.

2. A Partially Path Consistent STN, first specified by Bliek and Sam-Haroud
(1999), is defined only for so-called chordal graphs. It contains the tightest

6
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x0

a1 d1

a2 d2

[5,10]

[5,5]

[10,15]

[5,15]

[0,10] [0,10]

[15,25]

[5,15]

[10,20]

[20,30]

Figure 2.3: A Fully Path Consistent STN equivalent to the STN S from Figure 2.1. Dashed constraints
were added to make the graph complete, constraints highlighted in bold were tightened
using implicit information from S .

x0

a1 d1

a2 d2

[5,10]

[5,15]

[10,15]

[15,25]

[5,15]

[10,20]

[20,30]

Figure 2.4: A Partially Path Consistent STN equivalent to the STN S from Figure 2.1. Dashed con-
straints were added to make the graph chordal, constraints highlighted in bold were tight-
ened using implicit information from S .
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Problem definition 2.3 Notation for graph properties

possible constraints as well, but only between events that are directly con-
nected by an edge. Figure 2.3 shows a Partially Path Consistent equivalent of
the STN from our example.

As illustrated by Figures 2.3 and 2.4, chordal graphs are in general far sparser
than complete graphs on the same number of vertices, so it seems reasonable that
enforcing partial path consistency would be less costly than enforcing full path con-
sistency.

Since algorithms enforcing Partial Path Consistency rely heavily on special prop-
erties of chordal graphs, we discuss them in more detail in Section 2.4. Before doing
so however, we shortly specify our notation for general properties of graphs in Sec-
tion 2.3.

2.3 Notation for graph properties

A graph G = 〈V,E〉 consists of |V | = n vertices and |E| = m edges. Each edge is a
pair of two vertices u,v ∈ V . For directed graphs, these are ordered pairs, denoted
(u,v). In undirected graphs, the pairs are unordered and we use braces instead of
parentheses, i.e. {u,v}.

In an undirected graph the neighbours of a vertex u are the vertices v such that
there is an edge between u and v in E. The neighbourhood N(u) of u is the set of these
vertices, i.e. N(u) = {v | {u,v} ∈ E}. The degree δ(u) of the vertex u is the size of its
neighbourhood, i.e. δ(u) = |N(u)|. If no argument is given, δ refers to the degree of
the graph, which is the size of the largest neighbourhood in G, i.e. δ = maxv∈V δ(v).

For a directed graph, we define the out-neighbourhood Nout(u) and in-neighbour-
hood Nin(u), where Nout(u) = {v | (u,v) ∈ E} and Nin(u) = {v | (v,u) ∈ E}. As with
undirected graphs, the in-degree δin(u) and out-degree δout(u) of vertex u are defined
as the size of the in- and out neighbourhood respectively.

Finally, given a graph G = 〈V,E〉 and a subset V ′ ⊆V , the induced graph GV ′ is
the subgraph of G obtained by removing all vertices v /∈V ′ and their adjacent edges.
Formally, we define GV ′ = 〈V ′,{{u,v} ∈ E | u,v ∈V ′}〉.

2.4 Chordal graphs

Many recent advances in the state of the art for STN solving algorithms were made by
exploiting specific properties of chordal graphs (e.g. Planken et al. (2008, 2011a); Xu
and Choueiry (2003)). Given the importance of chordal graphs to these algorithms,
we now explore this concept in more detail.

After formally defining what makes a graph chordal in Section 2.4.1, we discuss
the two properties most relevant for STN algorithms: clique trees in Section 2.4.2
and simplicial elimination orderings in Section 2.4.3. We conclude in Section 2.4.4

8



Problem definition 2.4 Chordal graphs

non-chordal

chordal

Figure 2.5: Examples of chordal and non-chordal graphs. Dashed lines represent fill edges added to
the upper graphs to make them chordal.

with remarks on methods to obtain a chordal equivalent of an arbitrary STN, which
make algorithms for chordal STNs more generally applicable.

2.4.1 Definition

The defining property of a chordal graph is that for every cycle of length greater
than three, there is an edge between two non-adjacent vertices on that cycle. We can
formally specify this as follows:

Definition 2.2. Let G = 〈V,E〉 be an undirected graph. If C = (v1,v2, . . . ,vk = v1)
with k > 3 is a cycle, then any edge {vi,v j} with 1 < j− i < k−1 is a chord of this
cycle. If every cycle of G with length greater than three has a chord, G is a chordal
graph.

Definition 2.2 implies that the longest chordless cycles in a chordal graph have
length three, or in other words, that they are triangles. Chordal graphs are therefore
also referred to as triangulated graphs.1 Figure 2.5 gives some examples of chordal
and non-chordal graphs.

2.4.2 Clique trees

Most people know a “clique” as a tightly knit group of friends, all of which know each
other. The graph-theoretical clique is not much different, if slightly more abstract.
Here, a clique is a group of vertices that are all directly connected to each other.
Formally:

Definition 2.3. A clique in a graph G = (V,E) is set of vertices K ⊆ V such that
{u,v} ∈ E for all u,v ∈ K (with u 6= v). A clique K of G is maximal if there is no
other clique K′ in G such that K ⊂ K′.

As we will see, chordal graphs are closely related to the notion of cliques. One
way in which this relationship becomes apparent is through the notion of clique trees.

A clique tree is an additional structure beyond the normal edges and vertices
making up a graph. Each node in a clique tree represents a clique of vertices in

1The term “triangulated” is also used in context of planar graphs, which do not concern us here.
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(a) Chordal graph

8 7

6

5

43

21

(b) A simplicial construc-
tion ordering

(c) Clique tree

Figure 2.6: Characterizations of a chordal graph. Edges of the original graph are drawn as solid lines,
fill edges are dashed. Each shape shaded red represents a maximal clique of the graph,
containing the vertices at its corners.

the underlying graph, and if two nodes are connected by a clique edge, the vertex
sets they represent overlap. We capture the defining properties of a clique tree in
Definition 2.4.

Definition 2.4. A tree T = (K,F) is a maximal clique tree of a graph G = (V,E) if it
satisfies the following conditions:

1. Vertex coverage: Every vertex v ∈V is contained in at least one clique C ∈ K.

2. Edge coverage: For every edge {u,v} ∈ E there is a clique C ∈ K such that
both u ∈C and v ∈C.

3. Coherence: If two cliques C1 and C2 in K both contain a vertex v, then all
nodes on the (unique) path between C1 and C2 in T contain v as well.

4. Clique maximality: Every node C ∈ K represents a maximal clique of G.

Figure 2.6c illustrates how a clique tree relates to the underlying graph. Note
that in general clique trees are not unique. Since vertices can be part of multiple
cliques, there can be instances where many cliques overlap. In such cases we can
choose which of these overlaps to represent by an edge, provided we do not break
coherence.

Intuitively, clique trees are useful because they introduce a notion of locality.
They allow us to decompose a graph into several subgraphs, each of which has the
special property that it is a clique. Algorithms can exploit this locality by first de-
composing the graph, then performing operations on each individual subgraph and
finally merging the results.

The following theorem allows us to exploit this notion for chordal graphs:

Theorem 2.5 (Buneman (1974); Gavril (1974); Walter (1972)). A graph is chordal
if and only if it has a maximal clique tree.

10
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2.4.3 Simplicial elimination orderings

Clique trees can be seen as a high-level property of chordal graphs: the tree provides
a generalized structure, allowing us to consider entire cliques at once rather than
every vertex and edge individually. However, since we are ultimately interested in
properties of individual edges, it is useful to have a lower level view as well. Such a
low-level perspective is provided by the notion of simplicial elimination orderings.

Simplicial elimination orderings are based on an interesting property of chordal
graphs. When we eliminate vertices from a chordal graph one by one in a particular
order, we can always find at least two vertices whose remaining neighbours induce a
clique. Formally, we define this as follows.

Definition 2.6. Given a graph G = 〈V,E〉, we can define the following concepts:

• A vertex v is simplicial if its neighbouring vertices N(v) = {u | {u,v} ∈ E}
induce a clique.

• Let d = (vn,vn−1, . . . ,v1) be an ordering of V and let Gk be the graph induced
by the vertices {v1, . . . ,vk}. If every vertex vk is simplicial in Gk, d is a sim-
plicial elimination ordering of G, and its reverse d′ = (v1,v2, . . . ,vn) is a
simplicial construction ordering of G.

• If d = (vn,vn−1, . . .v1) is a simplicial elimination ordering of G, the induced
width wd of d is the number of neighbours in the largest induced clique, i.e.:

wd = max
i
|{{vi,v j} ∈ E | j < i}|

Simplical orderings are particularly useful because they provide a natural way to
exploit the chordality of a graph when iterating over its vertices. The fact that the
neighbourhood of each vertex in a simplicial construction ordering induces a clique
when it is added the graph makes such an ordering very useful in combination with
induction proofs.

For chordal graphs, the induced width wd has the same value along any simplicial
elimination ordering d, and is exactly equal to the graph’s tree width w∗. The tree
width is a measure for the “tree-likeness” of the graph: graphs of low tree width can
be decomposed into many small cliques, mutually connected in a tree-like structure.
In particular, if w∗ = 1 the graph must be a tree, in which all cliques are of size two.
Graphs with the same number of vertices but higher tree widths consist of fewer, but
larger cliques, and the tree they span must therefore be less intricate.

The dependency on the ordering is relevant for the process of triangulation, which
computes a chordal graph that is similar in structure to general graph. We will discuss
this in more detail in Section 2.4.4. The induced width also provides a numeric
property of a graph which crops up frequently in run-time bounds of algorithms based
on elimination orderings.

11
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As with clique trees, it has been shown that the existence of a simplicial elimina-
tion ordering is a necessary and sufficient proof of graph chordality:

Theorem 2.7 (Fulkerson (1964)). A graph is chordal if and only if it has a simplicial
elimination ordering.

Note that just as a chordal graph may have many clique trees, it may have differ-
ent simplicial elimination orderings. For example, while (8,7,6,5,4,3,2,1) is a valid
elimination ordering of the graph shown in Figure 2.6b, so are (6,5,7,8,4,3,2,1) and
(4,8,6,5,3,1,2,7). However, (8,7,1,6,5,4,3,2) is not a valid simplicial elimination
ordering. When vertices 8 and 7 are eliminated, the set of remaining neighbours of
vertex 1 is {5,3,2}, but this does not induce a clique: there is no edge between
vertices 2 and 5.

There are various algorithms that produce a simplicial elimination ordering of a
chordal graph. They can be implemented to run in time O(mc), where mc is the num-
ber of edges in the chordal graph. In Section 4.2 we will discuss one such algorithm
in more detail.

2.4.4 Triangulation

Given the properties just discussed, it would be useful if we could transform problems
on arbitrary graphs into equivalent problems on chordal graphs. An important tool
for such transformations is the notion of a triangulation, which produces a chordal
graph that is structurally similar to an arbitrary input graph. This can be achieved in
two ways: we can either add so-called fill edges to the original graph, which serve as
chords for any chordless cycle, or we can remove edges from the graph until no more
chordless cycles remain.

In our case edges represent constraints, and deleting edges is equivalent to ig-
noring constraints. Since we want our final solution to obey all constraints, ignoring
them is not an option. We will therefore only consider adding fill edges, which can
be formally defined as follows:

Definition 2.8. A triangulation G′ of the graph G = (V,E) adds a set of fill edges F
such that G′ = (V,E ∪F) is chordal, where F ∩E =∅.

To differentiate between the properties of the original graph and those of its
chordal counterparts, the latter are assigned an (additional) subscript c. For example,
the number of edges in the chordal graph is mc, and the degree of vertex u in a chordal
graph is δc(u).

Minimum and minimal triangulations

Triangulations are not unique: there are many ways in which chords can be added to
all chordless cycles. A trivial solution is to simply add all possible edges, and return
a complete graph: a complete graph has no chordless cycles and is therefore chordal.

12
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(a) Original graph
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(b) Minimal triangulation
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(c) Minimum triangulation

Figure 2.7: Examples of triangulation classes. Edges from the original graph are drawn solid, fill edges
are dashed.

However, generally we would like to be more clever and add as few edges as
possible. Ideally, we want to find a triangulation such that no other triangulation
achieves chordality using fewer edges. Such a triangulation is called a minimum
triangulation. Formally, we say:

Definition 2.9. A triangulation G = (V,E ∪F) is a minimum triangulation if there is
no other triangulation G′ = (V,E ∪F ′) such that |F ′|< |F |.

Unfortunately, it turns out that the problem of finding a minimum triangulation
for an arbitrary graph is NP-hard (Yannakakis, 1981). However, there is a weaker
condition on triangulations that can be enforced in polynomial time. We say that a
triangulation is minimal if no strict subset of the fill edges it adds would suffice to
triangulate the graph. Formally:

Definition 2.10. A triangulation G = (V,E∪F) is a minimal triangulation if there is
no other triangulation G′ = (V,E ∪F ′) such that F ′ ⊂ F .

We illustrate the difference between minimal and minimum triangulations in the
following example.

Example 2.11. Consider the graph in Figure 2.7a. This graph contains three cycles
of length four: (u,x,v,y,u), (u,x,v,z,u) and (u,y,v,z,u).

One way to break these cycles is to insert the edges {x,y}, {y,z} and {x,z}, as
shown in Figure 2.7b. Note that each edge serves as a chord for exactly one of the
three cycles, so removing any of them will leave a 4-cycle without chord. Therefore
this is a minimal triangulation, of size three.

However, it is not a minimum triangulation. As shown in Figure 2.7c, all three
cycles can also be broken by inserting just one edge: {u,v}. Since we need to add at
least one edge, we cannot improve over this solution, and it is therefore a minimum
triangulation. �

On a related note, Example 2.11 illustrates a pattern that can be used to show that
a minimal triangulation may use O(n2) more edges than the minimum triangulation.
We create a graph consisting of two vertices u and v, and n−2 vertices w1, . . . ,wn−2.
These vertices wi are connected to u and v with the edges {{u,wi},{wi,v}}.

13
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One possible minimal triangulation of this graph is obtained by adding fill edges
until the subgraph consisting of all wi is complete, i.e. we add Θ(n2) edges. However,
the minimum triangulation of just inserting the one edge {u,v} is also valid, so the
difference between minimal and maximal triangulations can indeed be O(n2).

Triangulation algorithms

There are a number of algorithms that produce minimal triangulations, which are
excellently surveyed by Heggernes (2006). The best run time bounds for these algo-
rithms are O(nm) and O(n2.69).

Ultimately, these algorithms either visit the vertices in the graph in a particular
ordering d, or traverse the clique tree. Algorithms using the ordering-based approach
add fill edges such that this order becomes a simplicial elimination or construction
ordering. In other words, for each vertex v they add fill edges such that the ver-
tices in the neighbourhood of v that come after it in the chosen ordering d induce a
clique. Since the number of vertices following v depends on d, different triangulation
methods may yield different induced tree widths wd .

Algorithms based on clique trees construct an incomplete tree and then add fill
edges such that each node represents a clique. Here the choice of the original incom-
plete tree determines how large the largest clique is, and therefore what the value of
the tree width wd becomes. In Section 4.6 we will review one particular technique,
by Berry et al. (2006), in more detail.

If we let go of the condition of minimality, we can fall back on heuristics that will
produce a reasonable approximation of a minimal triangulation, i.e. include some
redundant fill edges. We shortly discuss two of these that are frequently used.

The minimum-fill heuristic takes O(n2) time, and iteratively eliminates the vertex
whose elimination results in the fewest fill edges to be added. The minimum-degree
heuristic is even simpler. It always eliminates the vertex with the lowest degree,
which can be done in O(n) time.
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Chapter 3

Known approaches

In the previous chapter we found that, for our purposes, solving an STN equates to
computing either its fully path consistent ISTN or its partially path consistent ISTN.
We now review algorithms that perform this computation in different settings.

Section 3.1 discusses the basic problem of computing an ISTN from scratch,
given an arbitrary STN as input. In section Section 3.2 we review more specialized
incremental algorithms, which ensure the tightness of an existing ISTN when the
weight of a single constraint is lowered.

3.1 Statically computing intermediate networks

The two kinds of ISTN introduced in Section 2.2.2 can be computed in different
ways. In this section we review algorithms that compute these ISTNs using no other
information than the constraints and events as specified by original STN instance.

We start with a brief overview of methods to compute intermediate networks.
In Section 3.1.1 and Section 3.1.2 we review methods for FPC and PPC networks
respectively. Since we are particularly interested in algorithms for partially path
consistent networks, Section 3.1.3 gives a more in-depth discussion of P3C, the state
of the art in this area.

3.1.1 Fully Path Consistent STNs

Dechter et al. (1991) show that enforcing Full Path Consistency is equivalent to cal-
culating the weight of the shortest paths between any pair of events in an STN. The
standard way to enforce this property is to run one of the many well-known All-Pairs
Shortest Paths (APSP) algorithms. A critical requirement for their use in computing
STNs is that these algorithms must be able to deal with negative weights. In par-
ticular, an algorithm should terminate even if the network is inconsistent, i.e. if it
contains a negative cycle.

The two classic APSP algorithms are the Floyd-Warshall algorithm, published
independently by Floyd (1962) and Warshall (1962), and Johnson’s algorithm (John-
son, 1977). Floyd-Warshall is quite simple to implement and runs in Θ(n3) time.
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Johnson is somewhat more complex but runs in O(nm + n2 logn), which is more
efficient for sparse graphs containing relatively few edges.

Recently even more advanced algorithms have appeared that exploit more spe-
cific properties. Pettie (2003) describe an algorithm which achieves a bound of
O(mn+ n2 log logn). Finally, the Snowball algorithm published by Planken et al.
(2011a) requires O(n2wd) time, which is efficient for graphs with low tree widths.

3.1.2 Partially Path Consistent STNs

The problem of enforcing Partial Path Consistency on graphs has received significant
attention in recent times. The original algorithm for this problem was proposed by
Bliek and Sam-Haroud (1999) for general constraint satisfaction problems. It relies
on the key insight that the tightest constraints in a chordal graph can be found by
adjusting a constraint only when a tighter value is implied by a directly neighbouring
triangle.

Their general idea is to maintain a queue of triangles that contain an edge whose
weight has been lowered, and then check whether this lowered weight induces a
lower weight in an other edge of the triangle. If so, all triangles adjacent to that edge
are added to the queue. This process stops when there are no more triangles in which
a shorter weight can be enforced. Bliek and Sam-Haroud show that at this point all
weights have their lowest possible value.

The time required by this algorithm is bounded by O(δ ·m · ∂2), where δ is the
maximum degree of the graph and ∂ is the maximum domain size, i.e. the number of
distinct values any variable can assume (for example, the domain size of a Boolean
problem would be 2). In practice however many problems take values from domains
of infinite size (e.g. the domain of real numbers) limiting the usefulness of this ap-
proach.

Xu and Choueiry (2003) improved upon this idea in their algorithm4STP, which
is more careful in selecting the triangles to be added to the queue. This allows their
algorithm to solve problems on continuous domains. Although it performed well
in practice, Xu and Choueiry did not offer a theoretical upper bound on the perfor-
mance 4STP. However, Planken et al. (2008) showed that in pathological cases the
algorithm may need time quadratic in the number of triangles.

In the same paper, Planken et al. present the P3C algorithm, which does have a
theoretical upper bound: it requires time at most linear in the number of triangles in
the graph. P3C is the current state of the art in enforcing Partial Path Consistency,
and is the most efficient known method to solve the STP from scratch. Since it is
closely related to the new algorithms presented in this work, we will now discuss it
in more detail.

3.1.3 The P3C algorithm

The P3C algorithm requires the STN to be triangulated, and a simplicial elimination
ordering d to be known. It performs two sweeps along d: in the inward sweep, a
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Algorithm 3.1: DPC
Input: A chordal STN S = 〈V,E〉 with associated weights wi→ j and an

ordering d = (vn, vn−1, . . . , v1).
Output: CONSISTENT if S has been made DPC along d, or INCONSISTENT

otherwise.

1 for k← n to 1 do
2 foreach i < j < k such that {vi,vk},{v j,vk} ∈ E do
3 wi→ j←min{wi→ j,wi→k +wk→ j}
4 w j→i←min{w j→i,w j→k +wk→i}
5 if wi→ j +w j→i < 0 then
6 return INCONSISTENT

7 return CONSISTENT

property called Directed Path Consistency (DPC) is enforced. During this phase the
algorithm checks whether the STN is consistent. The outward sweep then uses this
property to calculate the shortest paths.

Inward sweep: Directed Path Consistency

Given an ordering d = (vn,vn−1, . . . ,v1), the DPC algorithm ensures that every edge
(vi,v j) is labelled with the weight of the shortest vi− v j path through the subgraph
induced by all vertices that precede both vi and v j in the ordering d. In other words,
when DPC is enforced there is no path π from vi to v j consisting only of vertices vk
with k > max(i, j) such that the total weight of π is less than the weight wvi→v j . This
allows us to formally define Directed Path Consistency as follows:

Definition 3.1. A chordal network S is DPC along the simplicial elimination or-
dering d = (vn, vn−1, . . . , v1) if wvi→v j ≤ wvi→vk +wvk→v j for all i, j < k where
vi, v j ∈ N(vk).

Algorithm 3.1 shows the algorithm enforcing Directed Path Consistency, which
was discovered by Dechter et al. (1991).

Outward sweep

In the outward sweep, shown in lines 3 to 7 of Algorithm 3.2, we exploit the fact
that graph is already DPC to find the weights of the shortest paths through the entire
graph. In particular, we already know the weights w1→2 and w2→1 of the globally
shortest paths between v1 and v2. We use this knowledge to inductively calculate
the globally shortest paths for the other edges. That is, assuming that we know the
globally shortest paths between any two vertices vi and v j given i, j < k, we can
derive the weight of the globally shortest paths between vk, vi and v j.
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Algorithm 3.2: P3C
Input: A chordal STN S = 〈V,E〉 with associated weights wi→ j and a

simplicial elimination ordering d = (vn, vn−1, . . . , v1).
Output: The PPC network S , or INCONSISTENT.

1 call DPC(S ,d)
2 return INCONSISTENT if DPC did
3 for k← 1 to n do
4 foreach i, j < k such that {vi,vk},{v j,vk} ∈ E do
5 wi→k←min{wi→k,wi→ j +w j→k}
6 wk→ j←min{wk→ j,wk→i +wi→ j}

7 return S

For (vk,vi) the idea is as follows. Let π = vk → v j1 → . . .→ v j` → vi be the
shortest path from vk to vi. Since the graph is DPC, we can replace any part of π

outside Gk by a shortcut edge that lies within Gk. Also, since vi and v j1 are neigh-
bours of vk, by DPC there must be an edge v j1 → vi, so we can reduce the path to
π′ = vk → v j1 → vi. Since i and j1 are less than k, we know by our assumption
that v j1 → vi is labelled with the weight of shortest path. The loop in lines 4 to 6 then
checks all possible v j1 to find the weight of the shortest path from vk to vi.

3.2 Incrementally maintaining networks

Once an STP instance S has been solved, an interesting question is how it responds
to changes. Specifically, DTP solvers may produce a new network S ′ by further
restricting the value of an existing constraint, or even by introducing new constraints
between events that were not previously connected.

A naive approach would be to simply add the constraint to the network, and then
compute the solution for S ′ from scratch using one of the methods discussed in the
previous section. However, it seems that in many cases the solutions for this modified
network S ′ should not differ too much from the solutions for S . At the very least we
know that every constraint will be at least as tight in the solution for S ′ as it will be
in the solution for S . Furthermore, since we only deal with a single edge, it seems
intuitive that an update may be less costly than re-computing all constraints from
scratch.

In this section we discuss two algorithms that realize this intuition. We first dis-
cuss an algorithm that incrementally maintains full path consistency in Section 3.2.1,
and then turn to an algorithm for partially path consistent STNs in Section 3.2.2.
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3.2.1 Fully path consistent STNs

In practice the task of incrementally updating an STN boils down to the following:
Given a new weight w′a→b for an edge (a,b), adjust the weight of every edge (i, j)
for which there is a new path i 99K a→ b 99K j with a lower total weight than the
previously shortest path from i to j.

Tsamardinos and Pollack (2003) mention the IFPC algorithm to accomplish
this, citing Mohr and Henderson (1986). However, this paper only presents a static
O(n3d3) approach to path consistency rather than an incremental one (with d the
domain size mentioned earlier). Pseudocode for a version of the IFPC algorithm
meeting the O(n2) bound on run time stated by Tsamardinos and Pollack was first
published in full by Planken (2008). This algorithm runs in O(n+n∗2) time, where
n∗ is the number of vertices attached to an edge whose weight must change.

This variant of the IFPC algorithm works as follows. We start with a sweep over
all vertices vk other than va and vb. For each such vk, we update the shortest paths
vk 99K vb and va 99K vk to take the lower weight on va → vb into account. During
this sweep we track for which vk either of the paths was actually updated. In the
second phase of the algorithm we update the weights for all pairs (vi,v j) of affected
vertices as determined in the first sweep, by setting their corresponding weights to
wi→a +wa→ j.

On a somewhat higher level of abstraction, we use the following observation: for
any pair of events (i, j) affected by the change, the new path must be i 99K a→ b 99K
j. In the first phase, we update i 99K b and a 99K j accordingly. Finally, since the
network was already minimal, the weights for i 99K a and b 99K j cannot change, and
we calculate the correct weight for i 99K j in the second phase.

3.2.2 Partially path consistent STNs

The problem statement for incrementally updating Partial Path Consistent networks is
nearly identical with that for incrementally updating Fully Path Consistent networks,
with the notable distinction that in the PPC case we only need to update weights on
edges that already existed in the triangulated graph.

This has only recently become an area of interest, and the author is aware of only
one algorithm to perform such an update: the IPPC algorithm developed by Planken
et al. (2010).

The idea behind this algorithm is similar to the one behind IFPC, with some
tweaks to exploit the chordality of the underlying graph. Again, we know that when
a new, tighter, weight w′a→b is given for the constraint ca→b, all constraints whose
tightest value depends on ca→b need to be tightened even further.

The critical insight used by IPPC is that a PPC graph is DPC along any simplicial
elimination ordering. This allows us to efficiently construct an elimination ordering d
which visits a and b last. Since the original graph was already PPC and the weight of
a→ b is lowered, we know that the changed graph remains DPC along d. Therefore,
we only need to execute the outward sweep of P3C.
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However, the IPPC algorithm is even more clever. When we visit a vertex k
during the construction of the simplicial construction ordering, we can maintain the
weights of the shortest paths k 99K a and b 99K k. Since every new shortest i− j path
has to be of the form i 99K a→ b 99K j we can use this information to update the
weight of the path i 99K j.

All these steps can be executed in a single outward sweep that visits each edge of
the chordal graph at most once, so the run time of this algorithm is O(mc). A further
optimization stops the outward sweep when we are certain no more edges will be
affected by a change, which allows us to bound the run time by O(n∗δc). Here n∗ is
again the number of vertices adjacent to an edge whose weight was modified, and δc

is the degree of the chordal graph.

However, the IPPC algorithm has some weaknesses. The first issue is that it re-
quires that the edge a→ b is already part of the (chordal) STN. The problem here is
that adding a new edge may create a new chordless cycle of length greater than three,
thus breaking the chordality of the graph. Note that IFPC does not suffer from this
problem, for the simple reason that it operates on a complete graph, which already
contains all possible edges.

Secondly, in an empirical evaluation of the performance of the IPPC algorithm,
Planken et al. (2010) concluded that the gains it offered compared to IFPC were
rather limited. The results for IFPC were competitive on most benchmarks, and it
outperformed IPPC for the class of so-called job-shop instances.
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Chapter 4

Vertex-incremental PPC

As discussed in Section 3.2.2, the IPPC algorithm by Planken et al. (2010) has two
weaknesses. It requires that the edge (a,b) whose weight is lowered is already explic-
itly part of the triangulated graph, and in practice its performance does not improve
over the Incremental Full Path Consistency algorithm.

In this chapter we present a new algorithm, dubbed Vertex-IPPC, for incremen-
tally enforcing new or tighter constraints on an existing STN. To emphasize the dif-
ference between our approach and that of Planken et al., we will refer to the original
IPPC as Edge-IPPC from here onward.

The general idea for our new algorithm is presented in Section 4.1. Sections 4.2
to 4.4 discuss the algorithms Vertex-IPPC relies on and demonstrate the correctness
of their use in the current context. In Section 4.5 we use the proofs from earlier parts
of this chapter to prove the correctness of the entire algorithm. Finally, Section 4.6
concludes by discussing how Vertex-IPPC integrates nicely with an existing vertex-
incremental triangulation algorithm, thus addressing one of the problems with Edge-
IPPC mentioned above.

4.1 Algorithm idea

The idea behind the new algorithm is that instead of adding constraints one at a time,
we add a single new event a and all its adjacent constraints Ca at once. In terms of
the underlying network, we add a vertex instead of an edge.

We show that a large part of the network is still DPC when updates of this type are
executed. More specifically, we can use the Lex-BFS algorithm to find a simplicial
elimination ordering in which we need only re-enforce DPC in the graph induced by
a and its neighbours N(a). We therefore need only do a little work to enforce DPC
on the entire graph, and then we can simply re-run the outward sweep of the P3C
algorithm to re-enforce partial path consistency.

However, we can improve efficiency even more when we use the following obser-
vation. Recall that Edge-IPPC can efficiently calculate the new weights of tightened
constraints (i, j) when the weight for (a,b) is lowered, because we know that the
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Algorithm 4.1: Vertex-IPPC
Input: A chordal STN S ′ obtained by extending the PPC STN S with (1) a

new event a, (2) a set of constraints connecting a to the events in
U ⊆V with weights Ca = {wa→u,wu→a | u ∈U}, and (3) a set of
constraints with infinite weight needed to make S ′ chordal.

Output: INCONSISTENT if the new constraints yield inconsistency,
CONSISTENT if PPC has been enforced on the modified network S ′.

1 d← Lex-BFS (S ′,a)
2 call DPC (S ′N(a)∪{a},d)
3 return INCONSISTENT if DPC did
4 call SSSP-PPC (S ′,d,a)
5 return CONSISTENT

shortest path corresponding to any such tightened constraint must be of the form
i 99K a→ b 99K j. A similar fact holds for Vertex-IPPC: if constraint (i, j) needs
to be tightened, the new shortest path must be of the form i 99K a 99K j, i.e. it must
contain the newly added vertex a.

Hence, if we maintain the so-called Single-Source Shortest Paths from a to ev-
ery vertex, and the Single-Sink Shortest Paths every vertex to a, we can tighten all
constraints in one outward sweep, just as with Edge-IPPC. Since at this point the net-
work is already DPC, we can use an algorithm that does this in O(mc) time, which
is more efficient than the O(nw2

d) required by P3C’s outward sweep. Algorithm 4.1
shows the high-level pseudo-code for the algorithm just described.

It is possible that the new constraints Ca break the chordality of the original
STN S . We therefore require that chordality is re-enforced on the network in a pre-
processing step before we run Vertex-IPPC. In Section 4.6 we discuss an algorithm
to accomplish this.

We now discuss each step of the algorithm in more detail.

4.2 Lexicographic Breadth-First Search

The Lexicographic Breadth-First Search (Lex-BFS) algorithm was discovered by
Rose and Tarjan (1975) and can be used to construct a simplicial elimination or-
dering of a chordal graph. We reproduce the high-level pseudocode of this algorithm
in Algorithm 4.2.

Recall that when we visit a node v in a generic breadth-first search, we are re-
quired to visit all neighbours of v before proceeding with any node that is more than
one hop away from v, i.e. before visiting any node that is a neighbour of a neighbour.
Lex-BFS is a specialised version of this algorithm, which additionally requires that
the neighbours of v be visited in a particular order.

Specifically, the algorithm maintains a label for every unvisited vertex and a sin-
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Algorithm 4.2: Lex-BFS
Input: A chordal STN S = 〈V,E〉 and a vertex a ∈V .
Output: A simplicial elimination ordering d of the vertices in S , ending in a.

1 foreach v ∈V do
2 LABEL[v]←∅
3 TAGGED[v]← FALSE

4 call Tag(d,a,n)
5 for i← n−1 to 1 do
6 pick vertex v with the lexicographically largest label
7 call Tag(d,v, i)

8 return d

Procedure Tag(d,v ∈V, i ∈ 1 . . .n)

1 d(i)← v
2 TAGGED[v]← TRUE

3 foreach u ∈ N(v) such that ¬TAGGED[u] do
4 LABEL[u]← LABEL[u]∪{i}

gle global counter i, initialized with n, the number of vertices in the graph. Whenever
the algorithm visits a vertex v, the label of every unvisited neighbour of v is extended
with the current value of the counter. The counter is then decreased and the next
vertex is selected.

This next vertex must have a lexicographically largest label of all unvisited ver-
tices. A label a = a1a2 . . .ak is lexicographically larger than b = b1b2 . . .b` when
there is a j > 0 such that both ai = bi for all i < j and a j > b j. Note that there may
be multiple vertices with identical lexicographic labels. In that case one of these may
be selected arbitrarily. The order in which this algorithm visits the vertices is exactly
the reverse of a simplicial elimination ordering. However, since i counts down, we
obtain a simplicial elimination ordering by simply inserting the visited vertex at d(i).
This yields the following result:

Theorem 4.1 (Rose and Tarjan (1975)). The ordering d produced by Lex-BFS(G,a)
is a simplicial elimination ordering of the chordal graph G = 〈V,E〉 for any a ∈V .

In practice, implementations of Lex-BFS do not maintain the labels explicitly.
Rather, they use a modified queue data structure, which maintains sets of vertices
with equal lexicographic labels. During the execution of the algorithm these sets
are split and vertices are moved between them, such that the set at the head of the
queue always contains the vertices with the currently largest label. With careful
implementation, these algorithms require O(mc) time to compute a full ordering,
where mc is the number of edges in the chordal graph.
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Remember that for Vertex-IPPC we want to re-enforce DPC in the neighbourhood
of the newly added vertex a. Since DPC is enforced along a simplicial elimination
ordering, we want such an ordering that visits a and its neighbourhood last: in that
case, we show that we do not need to do work for any of the vertices earlier in the
ordering. Recall that δc(a) is the degree of a in a chordal graph. The following lemma
shows that the ordering produced by Lex-BFS fulfils the requirement just stated:

Lemma 4.2. Given a chordal graph G = 〈V,E〉 and a vertex a ∈ V , the simplicial
elimination ordering d of G produced by Lex-BFS starting at a satisfies d(n) = a and
{d(n−δc(a)), . . . ,d(n−1)}= N(a).

Proof. The ordering d is the reverse of the order in which Tag is called on the vertices
of G. The first vertex to be tagged is a (on line 4) and it is assigned the last position
in d on line 1 of Tag. Consequently the label of the neighbours N(a) of a is updated
to start with n on line 4.

Note that since the loop counter i of Lex-BFS decreases from n− 1, the label
assigned to any vertex not in N(a) can at most start with n−1. Since such labels are
lexicographically smaller than labels starting with n, all neighbours of a are tagged
before any other vertices. Hence the slots d(n−δc(a)−1) through d(n−1) are taken
by N(a).

4.3 DPC on induced subgraphs

In the previous section we saw that we can obtain a simplicial elimination ordering
in which we visit the new vertex a and its neighbourhood last. We now use this
information to demonstrate that running the DPC algorithm along this ordering in the
subgraph induced by {a}∪N(a) only is sufficient to re-enforce DPC for the entire
graph.

This is done in three steps. First we demonstrate that the subsequence d′ of a
simplicial elimination ordering d is a valid simplicial elimination ordering for the
subgraph induced by the vertices in d′. We then revisit the definition of DPC, and
show that it can also be expressed as a property of vertices relative to an ordering.
Finally, we show that running DPC along the ordering in the subgraph induced by
{a}∪N(a) re-enforces this property for all vertices, thus re-enforcing DPC on the
entire graph.

As stated above, we start by showing that a subsequence d of a simplicial elim-
ination ordering d′ is a valid elimination ordering of the subgraph induced by the
vertices in d′. Let G\{v} be a shorthand for GV\{v}, the graph induced by all vertices
in V other than v. In other words, G\{v} is the graph from which the vertex v and all
edges connected to v have been removed. We then have the following result:

Lemma 4.3. Let d = (vn,vn−1, . . . ,v1) be a simplicial elimination ordering of the
chordal graph G. Then the ordering d′ = (vn, . . . ,vk+1,vk−1, . . . ,v1) is a simplicial
elimination ordering of the graph G′ = G\{vk} for every 1≤ k ≤ n.
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Proof. First consider the vertices vi with i > k. Since d is a simplicial elimination
ordering of G, the vertices Ci =

{
v j | v j ∈ N(vi), j < i

}
induce a clique in G. A subset

of vertices in a clique also induces a clique, so Ci\{vk} is a clique in G′. Therefore vi

remains simplicial in d′.
Furthermore, for vi with i < k, we know that Ci is a clique in G, which cannot

contain vk since i < k. Since the removal of vk is the only difference between G and
G′, this clique remains unchanged in G′, and vi remains simplicial in d′.

Since vk itself does not occur in d′ and all other vertices remain simplicial, d′

must indeed be a valid simplicial elimination ordering of G′.

Let d′ = d\V ′ be a sequence of all vertices v∈V\V ′, appearing in the same order
as they appear in d. Repeatedly applying Lemma 4.3 for different vertices of the
graph G yields the following corollary:

Corollary 4.4. Given a simplicial elimination ordering d of a chordal graph G =
〈V,E〉 and an arbitrary subset V ′ ⊆ V . Then the ordering d′ = d\V ′ is a simplicial
elimination ordering for the graph G′ = GV\V ′ .

Given an elimination ordering for the entire graph G, Corollary 4.4 allows us to
derive an elimination ordering for the subgraph G{a}∪N(a) induced by {a}∪N(a). We
now need to show that re-enforcing DPC in this subgraph suffices to re-enforce DPC
in the entire graph.

Unfortunately, Definition 3.1 (repeated below for convenience) defined DPC in
terms of an ordering spanning the entire graph. For Vertex-IPPC, we want to be able
to reason about DPC in the context of an induced subgraph. Definition 4.5 addresses
this issue by providing an alternative definition of DPC at the level of individual
vertices.

Definition 3.1. A chordal network S is DPC along the simplicial elimination or-
dering d = (vn, vn−1, . . . , v1) if wvi→v j ≤ wvi→vk +wvk→v j for all i, j < k where
vi, v j ∈ N(vk).

Definition 4.5. A vertex vk of an STN S has the DPC property relative to the ordering
d = (vn,vn−1, . . . ,v1) if wvi→v j ≤wvi→vk +wvk→v j for all i, j < k where vi, v j ∈ N(vk).

The following proposition shows that these definitions express the same notion
of Directed Path Consistency.

Proposition 4.6. A network S is DPC along the ordering d if and only if all its
vertices have the DPC property relative to d.

Proof. (⇒) If S is DPC along d, Definition 3.1 requires that for every vertex vk the
inequality wvi→v j ≤ wvi→vk + wvk→v j holds, and hence that every vk has the DPC
property relative to d.

(⇐) For the other direction, if every vertex has the DPC property relative to d,
we know by Definition 4.5 that wvi→v j ≤ wvi→vk + wvk→v j holds for every vk, and
therefore that S is DPC along d.
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We use the shorthand d-DPC both to indicate that a vertex has the DPC property
relative to d and to indicate that an STN is DPC along d. Which of the two definitions
applies will always be clear from context.

The concept of the DPC property of a vertex allows us to prove the following
intuitive notion. Suppose the first k vertices of an ordering d already have the DPC
property. Then we need only run the DPC algorithm along the remaining unvisited
vertices of d to enforce DPC on the entire graph. We formalise this in Lemma 4.7,
where we use Sd2 to denote the subnetwork induced by the vertices in d2 only.

Lemma 4.7. Given an STN S and an elimination ordering d = (vn,vn−1, . . . ,v1) of
which the vertices d1 = (vn,vn−1, . . . ,vk+1) have the DPC property along d. Then
running the DPC algorithm along d2 = (vk,vk−1, . . . ,v1) in Sd2 makes S d-DPC.

Proof. Because d2 is a subsequence of d, it follows from Corollary 4.4 that d2 is a
simplicial elimination ordering of Sd2 . This means that we can run the DPC algorithm
in Sd2 to enforce the DPC property along d2 on all vertices in d2.

When all vertices in d2 are d2-DPC, we know that all weights wvi→v j are correctly
set for i, j < `, where vi,v j ∈ N(v`) and 1 ≤ ` ≤ k. Since the vertices in d1 are still
d-DPC, the same holds for k+1 ≤ ` ≤ n. Together, this means that the weights are
correctly set for all 1≤ `≤ n, and therefore that S is d-DPC.

We now have enough information to prove the principal lemma of this section. Let
S = (V,C) be a PPC STN and consider the STN S ′ = (V ′,C′) obtained by adding
to S a new vertex a connected to N(a) ⊆ V by the set of constraints Ca, i.e. with
V ′ = V ∪{a} and C′ = C∪Ca. We show that running the DPC algorithm along a
simplicial elimination ordering visiting only a and its neighbours re-enforces DPC
on the entire network.

Lemma 4.8. Let S ′ be an STN as just defined. Given a simplicial elimination order-
ing d = (vn,vn−1, . . .v1) of S ′ such that {vδc(a)+1, . . . ,v2} = N(a) and v1 = a. Then
running the DPC algorithm along d′ = (vδc(a)+1, . . . ,v1 = a) in S ′{a}∪N(a) makes S ′
d-DPC.

Proof. It suffices to show that each vertex vk ∈ (vn,vn−1, . . . ,vδc(a)+2) has the DPC
property along d in S ′. The remainder of the proof then follows immediately from
Lemma 4.7.

Assume for a contradiction that one such vk is not d-DPC; then there must be
some vi, v j such that i, j < k and vi, v j ∈ N(vk), but wi→ j > wi→k + wk→ j. Since
S was PPC already and none of the weights in S have changed, this inequality cannot
hold if vi, v j and vk are all in S . Hence one of them must be a, the only vertex not in
S .

Since k > δc(a)+1 and a = v1, vk cannot be a. Furthermore, since k > δc(a)+1
and all neighbours v` of a have ` ≤ δc(a)+ 1, vk cannot be a neighbour of a. But

26



Vertex-incremental PPC 4.4 PPC with Single-Source Shortest Paths

Algorithm 4.3: SSSP-PPC(S ,d,a)
Input: A DPC STN S = 〈V,E〉 which is PPC on S\{a} and has associated

weights
{

wi→ j,w j→i | {i, j} ∈ E
}

, and a simplicial elimination
ordering d = (vn,vn−1, . . . ,v2,v1 = a).

Output: The PPC network S .

1 Da→[a]← 0; Da←[a]← 0
2 VISITED[a]← TRUE

3 for k← 2 to n do
4 Da→[vk]← ∞; Da←[vk]← ∞

5 call Visit(vk)

since vi and v j are neighbours of vk, this means that vi and v j cannot be a either, a
contradiction. Thus, vertices (vn,vn−1, . . . ,vδc(a)+2) must indeed be d-DPC in S ′.

4.4 PPC with Single-Source Shortest Paths

Now that DPC has been re-enforced on the extended network S ′, the final step is
exploiting this property to re-enforce partial path consistency. This can be done with
a slightly modified version of the DPC-SSSP algorithm designed by Planken et al.
(2011b).

The original DPC-SSSP algorithm calculates the Single-Source Shortest Paths
(SSSP) distances from a single vertex a to every other vertex in the graph. By ex-
ploiting the knowledge that the graph is already DPC, DPC-SSSP needs to visit every
edge in the graph only twice, achieving a runtime bound of O(mc).

Our modified version is extended to track the length of both the shortest incoming
and shortest outgoing paths to and from a. As we stated earlier, we know that if the
insertion of a and its adjacent constraints causes a change in weight for the edge
(i, j), the new shortest path from i to j must go through a. In other words, the new
shortest i− j path must be of the form i 99K a 99K j.

Since DPC-SSSP calculates exactly the weights of these paths i 99K a and a 99K j
for all i and j, we can re-enforce partial path consistency in the same sweep. Our
modified algorithm, dubbed SSSP-PPC, is shown in Algorithm 4.3.

We prove the correctness of SSSP-PPC in two steps. First, in Lemma 4.9 we adapt
the correctness proof of DPC-SSSP to show that SSSP-PPC does in fact calculate
the correct weights for the shortest paths between a and any other vertex. This infor-
mation is then used in Lemma 4.10 to show that a run of SSSP-PPC enforces partial
path consistency on the network we encounter in line 4 of Vertex-IPPC.

Lemma 4.9. When VISITED[v] is TRUE, Da←[v] and Da→[v] are set to the total weight
of the shortest paths from v to a and from a to v respectively.
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Procedure Visit(v ∈V )
1 foreach u ∈ N(v) such that VISITED[u] = TRUE do
2 Da→[v]←min{Da→[v],Da→[u]+wu→v}
3 Da←[v]←min{Da←[v],wv→u +Da←[u]}
4 VISITED[v]← TRUE

5 foreach u ∈ N(v) such that VISITED[u] = TRUE do
6 wu→v←min{wu→v,Da←[u]+Da→[v]}
7 wv→u←min{wv→u,Da←[v]+Da→[u]}

Proof. The proof is by induction along the simplicial construction ordering d−1 =
(a = v1,v2, . . . ,vn). For the base case, Da←[a] and Da→[a] are set correctly in line 1
of SSSP-PPC. Now for the induction step, assume that the weight Da→[v] is set cor-
rectly for all v ∈ {v1, . . . ,vk}; we show that SSSP-PPC sets the correct weight for
Da→[vk+1]. The proof for Da←[vk+1] is analogous.

Assume for a contradiction that VISITED[vk+1] is TRUE but that Da→[vk+1] does
not hold the weight of shortest path. Then there must be some path π = a→ v j1 →
·· · → v j` → vk+1 with weight wπ < Da→[vk+1]. If there is a vertex on π such that
maxi ji > k, we know by DPC that we can replace this vertex by a shortcut from
its predecessor to its successor, without increasing the weight. By repeating this
procedure we can remove all such v ji from the path π without increasing its total
weight.

In particular, this means that j` ≤ k, which implies that VISITED[v j` ] is TRUE

and therefore, by the induction hypothesis, that Da→[v j` ] has been correctly set. But
then the value of Da→[vk+1] is correctly updated by the assignment on line 2 of Visit,
contradicting our assumption that wπ < Da→[vk+1].

Lemma 4.10. Given a d-DPC STN S , where a is the last vertex of d and S\{a} is
PPC. Then the network S ′ produced by running SSSP-PPC on S along the reverse of
d is PPC.

Proof. First consider the edges adjacent to a, i.e. the edges {a,v} with a ∈ N(v).
Before the second loop of Visit(v) is executed, VISITED[a] and VISITED[v] are both
TRUE, by lines 2 of SSSP-PPC and 4 of Visit respectively. Hence, by Lemma 4.9,
Da→[v] and Da←[v] hold the weights of the corresponding minimum paths between
v and a. So the weights of wa→v and wv→a are correctly updated in lines 6 and 7 of
Visit.

Now consider any other edge {u,v} neither endpoint of which is a. Since S\{a}
was PPC, the only way in which the weight wu→v can be further reduced is if there
is some shorter path u 99K a 99K v through a. Without loss of generality, assume
that Visit(u) is called before Visit(v). Then VISITED[u] and VISITED[v] are both TRUE

before the execution of the second loop in Visit(v). By the same reasoning as used
above for a and its neighbours, line 6 of Visit correctly updates wu→v. The proof for
wv→u is analogous, reversing all arcs and using line 7 of Visit instead.
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4.5 Correctness and efficiency

Having shown the correctness of the individual steps of the Vertex-IPPC algorithm,
we now complete our analysis by demonstrating that these steps do indeed re-enforce
partial path consistency when executed in sequence.

Theorem 4.11. The Vertex-IPPC algorithm correctly re-enforces PPC or decides in-
consistency in O(mc + δc(a)w2

d) time.

Proof. The simplicial elimination ordering d of S ′ is obtained using Lex-BFS, and
therefore, by Lemma 4.2, the last elements in d are the neighbours of a, followed by
a itself as final element. Since S was PPC, by Lemma 4.8 the call to DPC on the
sub-graph consisting of a and its neighbours re-enforces DPC along d for the new
S ′, or concludes inconsistency. Finally, by Lemma 4.9, running SSSP-PPC along S ′
re-enforces PPC on S ′.

We now turn to the time complexity. Lex-BFS takes O(mc) time to construct
the ordering d, and running DPC on an induced graph with δc(a)+ 1 nodes takes
O(δc(a)w2

d) time. Finally, SSSP-PPC takes O(mc) time: Visit is called once per vertex
and all operations in Visit take amortized constant time per edge.

4.6 Incremental triangulation

So far we have focussed exclusively on the correctness of Vertex-IPPC. We now
discuss an important advantage of Vertex-IPPC over Edge-IPPC: it integrates well
with an incremental triangulation algorithm.

Recall that Edge-IPPC requires that the edge (a,b), representing the constraint
ca→b to be tightened, is already part of the underlying structure. If the edge is not
present, a new triangulation must be found in which it does exist. Note that we cannot
simply include (a,b), since it may introduce a new chordless cycle This would break
the chordality required for PPC algorithms to work.

For Vertex-IPPC, we can address this issue by using a recently discovered algo-
rithm by Berry et al. (2006). This algorithm performs vertex-incremental minimal
triangulation: given a chordal graph G = 〈V,E〉, a new vertex a, and a set of edges
Ea connecting a to existing vertices of G, it can compute the minimal fill F such that
the graph G′ = 〈V ∪{a},E ∪Ea∪F〉 is chordal.

Their algorithm needs O(n) time to insert one edge, and since there are m edges it
takes O(nm) time to triangulate a graph from scratch. An interesting observation here
is that if we average this time over the number of vertices, we obtain an amortized
bound of O(m) time to insert one vertex. Since m = O(mc), this fits comfortably in
the O(mc +δc(a)w2

d) bound for one run of Vertex-IPPC.
While Berry et al. give an extensive description of their algorithm and proved

its correctness, they did not provide an implementation. Since vertex-incremental
triangulation aligns well with Vertex-IPPC, we contacted the original authors to ask
whether they were aware of any existing implementations. It turned out that to the
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best of their knowledge, no such implementation existed. We therefore decided to
create our own.

In the remainder of this section, we discuss the high-level idea behind Berry
et al.’s algorithm and the special data structure they use to achieve a time bound
of O(n) for inserting an edge. We conclude with the discussion of an important
implementation detail that was not mentioned in the original paper.

4.6.1 Algorithm idea

The algorithm relies on the notion of separators in the graph. A set of vertices V ′ is
called a u− v separator if there is no longer any path from u to v when all vertices
in V ′ have been removed from the graph. More generally, we say that V ′ is separator
of the graph G if G dissolves into two or more disconnected components after V ′ is
removed. If there is no strict subset of V ′′ ⊂V ′ such that V ′′ is still a separator, V ′ is
a minimal separator.

Recall that each node in a clique tree represents a clique of vertices in the un-
derlying graph, and that if there is an edge between two node in the clique tree, the
cliques represented by the nodes overlap. Therefore, every edge in the clique tree
can be labelled by the overlap between the cliques on its endpoint. A special prop-
erty of clique trees is that the overlap corresponding to an edge is a separator of the
underlying graph.

The algorithm is based on two key observations. First, the authors prove that
when an edge {u,v} is inserted, the set of fill edges required to ensure chordality of
the graph is exactly the set of edges between u and any vertex in a minimal u− v
separator. Second, they show that we obtain a minimal triangulation if we insert the
fill edges required by the previous observation for each edge attached to the new
vertex a. This is not necessarily the case when we use the algorithm to insert an edge
connecting two vertices already in G.

At the highest level, their algorithm for adding each individual edge {a,v} at-
tached to a follows the following steps:

1. Use the clique tree to find the union S of all minimal a− v separators.

2. Insert the corresponding fill edges {a,s} for all s ∈ S in the underlying graph.

3. Update the clique tree to reflect the new structure.

In order to find S in step one, we find the shortest path P through the clique tree
between the closest two cliques Ka and Kv, such that a ∈ Ka and v ∈ Kv. Each of the
clique edges on this path is linked to a separator that should be included in S. Some
of these separators may not be minimal, but this can be detected while traversing the
path, at which point the clique tree can be restructured. Following this restructuring,
we know that each clique edge on P represents a unique, minimal a− v separator.
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The second step is straightforward, but the third step may require some expla-
nation. The idea here is to traverse P again and insert a into every clique along the
way, since it is now connected to at least one vertex in that clique. However, this
may cause a to be inserted into a clique with some other vertex q it is not actually
connected to. Fortunately, this too can efficiently detected, and if we encounter such
a clique, we split it in two, such that one contains a and the other contains q.

Finally, it may be that in the third step one clique becomes a subset of another,
which would cause the clique tree to contain a non-maximal clique. However, this
can only occur at the head of the path P, where it can be easily detected. Simply
removing the non-maximal clique re-establishes maximality of the clique tree.

4.6.2 Data structure

There is one problem with the algorithm as described above. In a naive clique tree
data structure, we may annotate each clique edge with the set of all vertices in the
minimal separator it represents. However, each such separator can be of size Θ(n),
such that merely scanning through all sets on the path in step 1 may cost more than
O(n) time. Since this work has to be done for each edge, and there are m edges, the
algorithm would not be competitive with other O(mn) minimal triangulation algo-
rithms.

To circumvent this problem, the authors use another representation of a clique
tree. Rather than explicitly maintaining the contents of each separator, we annotate a
clique edge with the difference between its two endpoints, in so-called diff-lists. More
specifically, we maintain add and remove lists, such that when we traverse the edge
from clique Kx to clique Ky, we know that Ky = (Kx ∪ add(Kx,Ky)) \ remove(Kx,Ky).

Using the coherency property of clique trees, we can derive that if a vertex v
appears on the path P, all cliques containing v will form a connected sub-path of P.
Therefore, when traversing P each vertex occurs at most once on an add and at most
once on a remove list, and we can collect the separators on a path in O(n) time.

Finally, we also add a root node Kr, which we connect to one arbitrary clique K
in the tree, and set add(Kr,K) to be the contents of K. Now, if we want to determine
the contents of a clique node K′, we find the path from the root node Kr to K′. We
can determine the contents of K′ by starting with the empty set, and then iterating
over the clique edges on the path. For every edge (Ki,Ki+1) we add the vertices on
add(Ki,Ki+1) to our set and remove the vertices in remove(Ki,Ki+1). When we arrive
at K′, the set will hold the contents of K′. Moreover, since we only read the diff-lists
on a path, by the same reasoning as above this operation takes only O(n) time.

We include a slightly more detailed version of the pseudo-code for the algorithm
in Appendix A. For the full details and correctness proof we refer the reader to Berry
et al. (2006).
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4.6.3 Implementation details

A detail left open by the authors of the algorithm is exactly how we find a clique Kv

containing the vertex v in the first step of the algorithm. Since the structure of the
clique tree can change during the execution of the algorithm, a static lookup table
does not suffice: as we have seen, a clique can be split in parts, or may even be
deleted. These operations may cause references in a static table to point at incorrect
cliques, or even cliques that no longer exist.

A first approach to circumvent this is to simply search through the tree. Since a
clique tree has O(n) nodes and O(n) edges, a breadth-first search will also complete
in O(n) time. Furthermore, in naive clique trees it is an O(1) operation to check
whether a clique node contains a specific vertex.

However, we do not have a naive clique tree: we need to check the diff-lists to
determine whether a clique contains a vertex. Moreover, while coherence guarantees
that the total size of the diff-lists along a path is O(n), for a tree-traversal as per-
formed by a BFS the total size may well be Ω(n). Therefore this solution will not
do.

Fortunately, we can solve this issue by falling back on a lookup-table, but being
more clever about maintaining it. Specifically, we have to be careful about the way
cliques are split and removed in step three.

Recall that we split a clique K when it contains a vertex q not connected to the
inserted vertex u in the underlying graph. We observe that instead of splitting K,
we can just insert another clique K′ = K\{q}∪{u}, connect K to K′ in the tree and
replace K with K′ on the path. This way, we do not have to update any references in
the table, since the original clique K still exists.

Regarding removal, this only happens when a clique becomes a subset of some
other clique that is its direct neighbour on the path P. As mentioned earlier we
can find the contents of the clique to be removed in O(n) time, and updating the
references in the table to point at the neighbouring clique can also be done in O(n)
time.

We will revisit our implementations of Berry et al.’s vertex-incremental triangulation
algorithm and of Vertex-IPPC in Chapter 6, where we subject them to a limited em-
pirical evaluation. Before doing so however, we present our second new algorithm in
Chapter 5.
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Chapter 5

Support-based decremental PPC

As discussed in Section 3.2.2, there is at least one method to efficiently maintain
partial path consistency when an edge weight is lowered. However, we are not aware
of an algorithm to accomplish this is in the case when an edge weight is raised.

The crucial difference between lowering and raising weights is as follows. When
an edge is shortened, we can simply check the weights of the shortest paths in the
graph, and see if we can reduce them even further using the edge whose weight was
just lowered. Note that we only need to know the weights of the paths, not the paths
themselves.

When the weight of an edge is raised however, it is not immediately obvious
which shortest paths are affected by the change. Moreover, even if we know what
paths have changed, in the new situation an entirely different path may have become
shortest.

Nonetheless, it seems plausible that the effects of raising the weight of a local
edge will be unlikely to affect the weights of an edge very far away. Conversely,
the edges whose weights are affected are probably relatively close to the edge whose
weight was raised to begin with.

In this chapter we present an algorithm that exploits this intuition to efficiently re-
enforce partial path consistency in an STN, given that the weight of one of its edges
is raised. Specifically, in Section 5.1 we introduce the weight support graph, which
tracks the relations between the weights of edges at a local level. In Section 5.2
we show how this support graph can be efficiently initialized for a partially path
consistent STN.

The subsequent sections then describe our new algorithm. We start with a high-
level overview in Section 5.3. Section 5.4 discusses the details of our method for
finding the affected edges. These affected edges are then used in Section 5.5, where
we show how to re-enforce partial path consistency and update the weight support
graph accordingly. In Section 5.6 we use the results from the preceding sections to
prove our overall claims on correctness and efficiency. Finally, in Section 5.7 we dis-
cuss possible extensions to improve the applicability and run time of our algorithm.
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Support-based decremental PPC 5.1 The weight support graph

5.1 The weight support graph

We will need to reason about both weights that were originally assigned to constraints
and the minimum weights that are computer for them when partial path consistency
is enforced. To be able to succinctly refer to the right kind of weight, we introduce
the following notation:

Definition 5.1. Given a chordal STN S , we define the following two weights for each
constraint ci→ j between events xi and x j. The original weight wi→ j is the weight the
constraint was initialized with, and the minimum weight ωi→ j is the weight assigned
to ci→ j when partial path consistency is enforced, i.e. the lowest cumulative weight
along any path from x.

Now, observe that there are two ways we can arrive at the minimum weight ωu→v

of a constraint (u,v). First, it may be that there is no path with a total weight lower
than the original weight wu→v of (u,v). The other option is that there is a path u 99K
x 99K v through a vertex x neighbouring on both u and v, such that ωu→x +ωx→v =
ωu→v. Note that since shortest paths are not unique, both options may be true at the
same time.

Both options above contain an implicit notion of support. If the minimum weight
of (u,v) is due to its original weight, we can say that ωu→v is supported by wu→v. In
the second case, the minimum weight of (u,v) is due to the minimum weights of
(u,x) and (x,v), and therefore ωu→v is supported by ωu→x and ωx→v. It now seems
reasonable that if one of these supporting weights changes, its support falls away.
Furthermore, if that means the minimum weight of (u,v) is no longer supported,
ωu→v should change as well.

5.1.1 Formal definition

We capture this intuitive notion of support in the definition of a weight support graph
D, the structure of which reflects how the minimum weights of the constraints in the
underlying network S support each other. For each constraint (i, j) in the network S ,
D contains a minimum node µi→ j representing the minimum weight ωi→ j of (i, j) and
an original node oi→ j representing the original weight wi→ j of (i, j). Furthermore, for
every ordered triangle (i,k, j) such that ωi→k +ωk→ j = ωi→ j, D contains a triangle
node4ik j.

We can now model the weight supports in the network S by drawing directed
edges between these nodes in D, as follows:

• If ωi→ j = wi→ j, we insert an edge from oi→ j to µi→ j, showing that the mini-
mum weight of (i, j) is supported by its original weight.

• If S contains a triangle (i,k, j) such that ωi→ j = ωi→k +ωk→ j, we insert three
edges:
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(c) Support graph for Figure 5.1b.

Figure 5.1: Example of a support graph.

– One edge (4ik j,µi→ j), showing that the minimum weight of the con-
straint (i, j) is supported by the presence of the triangle, and

– Two edges (µi→k,4ik j) and (µk→ j,4ik j), showing that this support exists
only because of the minimum weight of the constraint (i,k) and (k, j).

We summarize the above in the following formal definition of the weight support
graph:

Definition 5.2. Let S be a PPC STN with events X and constraints C, such that each
constraint ci→ j has the original weight wi→ j and the minimum weight ωi→ j. Then
the graph D = 〈V ′,E ′〉 is the weight support graph of S , where V ′ and E ′ are defined
as follows:

V ′ ={oi→ j,µi→ j | ci→ j ∈C}
∪ {4ik j | ci→k,ck→ j,ci→ j ∈C ∧ ωi→k +ωk→ j = ωi→ j}

E ′ ={(oi→ j,µi→ j) | ωi→ j = wi→ j}
∪ {(µi→k,4ik j),(µk→ j,4ik j),(4ik j,µi→ j) | ωi→k +ωk→ j = ωi→ j}

Example 5.3. Consider the network in Figure 5.1a. As we can see, there are two
paths from vertex a to c: following the constraint (a,c) directly, for a weight of
wa→c = 40, or by following the path through constraints (a,b) and (b,c), for a total
weight of wa→b+wb→c = 30. Since the path through b is shorter, it supports a tighter
weight of ωa→c = 30 on the constraint (a,c), as shown in Figure 5.1b.

Figure 5.1c shows the corresponding support graph. Since the weights of (a,b)
and (b,c) retain their original values, there are edges from the original nodes oa→b
and ob→c to the minimum nodes µa→b and µb→c respectively. The minimum weight
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on the constraint (a,c) on the other hand is not supported by its original weight, so
there is no edge from oa→c to µa→c.

Instead, its weight is supported by the minimum weights of the constraints (a,b)
and (b,c). Therefore, there is an incoming support edge on µa→c from the triangle
node 4abc, which in turn has edges incoming from the minimum nodes µa→b and
µb→c. �

5.1.2 Properties

In Section 5.4 we present an algorithm to determine which other constraints are af-
fected when the weight of one constraint is increased. This algorithm requires that
the support graph is acyclic. Since the existence of a cycle implies that a constraint
ultimately supports its own weight, this may seem absurd at first. When we adhere
strictly to Definition 5.2 however, a cycle can in fact occur, if the underlying network
contains a cycle with zero cumulative weight.

Fortunately, we are able to show that this is in fact the only case in which the sup-
port graph may contain a cycle. Hence, if we restrict ourselves to networks without
such zero-cycles, our algorithm will work. In Section 5.7.1 we present ideas to lift
this restriction.

Our proof here is in two stages. First we show that the existence of a cycle in D
implies the existence of at least one circuit in the network S . We then show that the
cumulative weight of these circuits is exactly 0, from which our result follows.

In the first part of our proof we need to relate the edges in D to the constraints S .
In particular, we need the following property:

Definition 5.4. Let (u,v) be a constraint in S and let µu→v be its corresponding min-
imum node in D. Then, if P =4i → µu→v →4i+1 is a path in D, we call (u,v) a
propagating constraint on P between 4i and 4i+1. Note that the triangle 4i+1 has
another incoming edge from some minimum node µx→y, which is not on P. We call
the constraint (x,y) corresponding to this node a non-propagating constraint on P.

We are now ready for the first part of our proof.

Lemma 5.5. Let D be the weight support graph of the PPC STN S . Then, if there is
a cycle in D, there is at least one circuit in S , consisting of non-propagating edges
on C.

Proof. Let C be the cycle in D, i.e. C = µ1→41→ µ2→ ·· · →4k→ µk+1 = µ1.
Now consider any subsequence C′ =4i→ µu→v→4i+1 of C. The existence of this
subsequence implies that4i supports the minimum weight of (u,v), which, together
with some other constraint not in4i, forms the triangle4i+1 supporting the weight
of some next constraint.

Consider the connection between µu→v and 4i+1. Note that the triangle rep-
resented by 4i+1 has to include u and v, and some other vertex x. There are two
possibilities, shown in Figures 5.2a and 5.2c.
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(c) Option II: (x,u) and (u,v)
support (x,v).

Figure 5.2: Possible constraint configurations in S if µu→v→4i+1 is a subpath of a cycle in D. Black
constraints are propagating, red constraints non-propagating; the blue arrows show support
relations.

First, we can have that 4i+1 =4uvx, in which case constraints (u,v) and (v,x)
support the minimum weight of (u,x), as shown in Figure 5.2a. Since4i+1 is on the
cycle, and there is only one outgoing edge from any triangle node in D, this means
that µu→x is also on the cycle. This in turn means that (u,x) is propagating between
4i+1 and4i+2, and, therefore, that (v,x) is not propagating between these two. Note
that (v,x) is outgoing from v, and that the next propagating constraint (u,x) again
starts from the starting vertex u of (u,x).

The other option is that4i+1 =4xuv, i.e. constraints (x,u) and (u,v) support the
minimum weight of (x,v), as shown in Figure 5.2c. By the same reasoning as above,
this means that (x,v) is propagating between 4i+1 and 4i+2, and that (x,u) is not
propagating. Note that in this case the non-propagating constraint is outgoing from u,
and that the next propagating constraint (x,v) ends in v, the terminal vertex of (u,v).

If we apply this reasoning to subsequent sequences4i+1→ µi+2→4i+2 etc., we
observe that we construct two directed paths through G, consisting of non-propagating
constraints. Specifically, at each step, the non-propagating constraint is either:

1. Appended to a path starting in v, connecting terminal vertices of propagating
constraints (illustrated in Figure 5.2b), or

2. Prepended to a path ending in u, connecting starting vertices of propagating
constraints.

Now, note that the cycle in D eventually has to come full circle and return to µu→v.
So consider the connection between 4i and µu→v. We know that 4i contains u, v
and some other vertex y, and has to support the weight of (u,v). Hence, we must
have 4i =4uyv and constraints (u,y) and (y,v) support the weight of (u,v). Thus
we again have two possibilities, shown in Figure 5.3: either (u,y) or (y,v) must be
supported by4i−1, the previous triangle on C.

If 4i−1 supports (u,y), then (y,v) is not supported by 4i−1 and thus not prop-
agating between 4i−1 and 4i. So in this case, (y,v) must be a non-propagating
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(b) Option II: (y,v) is propagating.

Figure 5.3: Possible edge configurations in S if4i→ µu→v is a subpath of a cycle in D.

constraint incoming on v, as shown in Figure 5.3a. Since y is a terminal vertex of a
propagating constraint on C, by the construction in the first part of this proof there
is a path from v to y. The constraint (y,v) connects the endpoints of this path, thus
creating a circuit.

Similarly, if4i−1 supports (y,v), then (y,v) is propagating between4i−1 and4i,
and (u,y) is not. So here we have an outgoing non-propagating constraint from u, as
in Figure 5.3b. Since y is a starting vertex of the propagating constraint (y,v), by the
first part of this proof, there is a path from y to u. The non-propagating constraint
(u,y) connects the endpoints of this path, thus creating a circuit.

The above shows that there is at least one circuit through G. It may be that either
u or v is shared between all triangles on the path, in which case one of the circuits
degenerates to consist of just that one vertex. However, since we are discussing
triangles, there is always a third vertex involved, and thus there is always at least one
non-propagating constraint to construct a circuit with.

Finally, we only claim circuits and not strict cycles, since it may be the case that
some non-propagating constraint participates in multiple triangles: the above only
shows that these triangles cannot be consecutive on C.

Lemma 5.6. If the consistent PPC STN S does not contain any cycles of cumulative
weight 0, its corresponding weight support graph D is acyclic.

Proof. We will prove the contrapositive of the statement above: if D contains a cycle,
there must be a zero-weight cycle in S . So consider a weight support graph D that
contains a cycle C = µ1→41→ µ2→ ·· · →4k→ µk+1 = µ1. By Lemma 5.5, we
know that Scontains one or more circuits consisting of non-propagating constraints.
We now show that the cumulative weight of these circuits is exactly zero.

By the definitions of D and of propagating constraints on a path, we have the
following two facts. First, every triangle 4i on C has incoming support from one
propagating constraint pi and from one non-propagating constraint p̄i. The triangle
itself supports a leaving constraint `i, which is the constraint propagating to the next
triangle4i+1.

Second, the existence of the triangle 4i implies that ωpi +ω p̄i = ω`i . We can
rewrite this to ωpi +ωp̄i−ω`i = 0. Summing these equations over all triangles on C,
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we have:
∑

1≤i≤k
ωpi + ∑

1≤i≤k
ωp̄i− ∑

1≤i≤k
ω`i = 0 (5.1)

Since the leaving constraint `i of every triangle 4i is the incoming propagating
constraint pi+1 of 4i+1, we have ω`i = ωpi+1 for 1 ≤ i < k and ω`k = ωp1 . There-
fore, we have ∑1≤i≤k ωpi = ∑1≤i≤k ω`i , which means that the first and third term in
Equation (5.1) cancel out. This leaves:

∑
1≤i≤k

ωp̄i = 0

So the total weight of the circuits spanned by the non-propagating constraints is
exactly zero. A circuit may consist of many cycles, but since S was consistent, none
of these cycles can be negative. Since the cumulative weight of the circuit is zero,
this means that no cycle can have positive weight either, and therefore all component
cycles of the circuit have weight 0.

5.2 Initializing the weight support graph

Provided the network S is partially path consistent, we can initialize its weight sup-
port graph D = 〈V ′,E ′〉 using the algorithm Construct-Support-Graph, shown in Algo-
rithm 5.1. To do so, we construct a preliminary support graph D containing only
the original nodes ou→v and the minimum nodes µu→v for every constraint (u,v), and
mark every minimum node.

We then re-trace the steps of the P3C algorithm, in the subprocedure Update-
Support-Graph, shown in Algorithm 5.2. Every triangle in the graph is visited again,
allowing us to reconstruct how the weights of its constraints depend on each other.
This information is captured to produce a weight support graph conforming to Defi-
nition 5.2.

The notion of marking is important when processing decremental updates, since
it gives us fine-grained control over the constraints whose support is updated. For our
current purpose of initialisation however, we want to obtain the support information
for all constraints, and therefore simply mark all minimum nodes.

Lemma 5.7 below proves a key property of Update-Support-Graph. We use this
property to show the correctness of the initialization in Theorem 5.8.

Lemma 5.7. Given a PPC STN S , Update-Support-Graph correctly inserts exactly all
edges in E ′ that either end in a marked minimum node, or end in a triangle support-
ing a marked minimum node. The run time of Update-Support-Graph is bounded by
O(nw2

d).

Proof. First of all, since S is already PPC, we know that all minimum weights are
correctly set. We now show that all support relations incoming on a marked minimum
node in D indeed conform to Definition 5.2.
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Algorithm 5.1: Construct-Support-Graph
Input: A PPC STN S = 〈V,E〉 with each constraint ci→ j ∈C annotated by its

original weight wi→ j and its minimum weight ωi→ j, and a simplicial
elimination ordering d = (vn,vn−1, . . . ,v1).

Output: The weight support graph D for S .

1 V ′,E ′←∅
2 foreach (u,v) ∈ E do
3 add ou→v and µu→v to V ′

4 mark µu→v

5 D← (V ′,E ′)
6 call Update-Support-Graph(S ,d,D)
7 return D

Algorithm 5.2: Update-Support-Graph
Input: (1) A PPC STN S = 〈V,E〉 with each constraint ci→ j ∈C annotated by

its original weight wi→ j and its minimum weight ωi→ j, and a
simplicial elimination ordering d = (vn,vn−1, . . . ,v1). (2) A
preliminary weight support graph D = 〈V ′,E ′〉 in which no edges are
adjacent to any marked minimum node.

Output: A weight support graph D with correct supports for all minimum
nodes that were originally marked.

1 foreach (u,v) ∈ E do
2 if ωu→v = wu→v and µu→v is marked then
3 add (ou→v,µu→v) to E ′

4 for k← 1 to n do
5 foreach i, j < k such that {vi,vk},{v j,vk} ∈ E do
6 call find-support(i,k, j)
7 call find-support(k, j, i)
8 call find-support(i, j,k)

9 foreach (u,v) ∈ E do clear mark on µu→v

10 return D

Procedure find-support(x,y,z)

1 if µx→y is marked and ωx→y = ωx→z +ωz→y then
2 add4xzy to V ′

3 add (µx→z,4xzy), (µz→y,4xzy) and (4xzy,µx→y) to E ′

40



Support-based decremental PPC 5.3 Processing decremental updates

First, observe that in the loop on lines 1 to 3, we insert exactly those edges be-
tween original and marked minimum nodes required by the definition.

Now consider the second loop, from line 4 through line 8. We show that we visit
each (directed) constraint, and add the correct support if its corresponding minimum
node is marked. Note that any triangle {x,y,z} contains six directed constraints.
W.l.o.g. assume that z > x,y in the elimination ordering d. In that case, the body of
the inner loop visits {x,y,z} twice: once for (i, j,k) = (x,y,z) and once for (i, j,k) =
(y,x,z).

During the first iteration through the loop, find-support considers the constraints
(x,z), (z,y) and (x,y) in S , during the second iteration, it considers (y,z), (z,x) and
(y,x). Thus, we consider every directed constraint in every triangle. The first part
of the condition on line 1 of find-support ensures that we only add support incoming
on marked minimum nodes. Since the second part of the condition is exactly the
condition from Definition 5.2, if µx→y is marked we add exactly those triangle nodes
and support edges that the definition requires.

Regarding the time complexity, the first loop visits each edge of the chordal graph
once, in O(mc) time, while the second loop performs the same iterations as P3C and
therefore takes O(nw2

d) time. Since mc = O(nw2
d), we arrive at a total run time of

O(nw2
d).

Theorem 5.8. Given a PPC STN S , Construct-Support-Graph computes the weight
dependency graph D corresponding to S in O(nw2

d) time.

Proof. The preliminary support graph D constructed in lines 1 to 5 contains only
original and minimum nodes, and all minimum nodes are marked. Note that by
definition all edges in the weight support graph must either end in a minimum node or
in a triangle node. Since all minimum nodes in the preliminary graph D are marked,
by Lemma 5.7, Update-Support-Graph adds the correct edges to all minimum nodes,
and therefore the resulting weight support graph D is correct.

Constructing the preliminary graph takes O(mc) time, which is dominated by the
O(nw2

d) time required by Update-Support-Graph. The overall time required is therefore
bounded by O(nw2

d).

5.3 Processing decremental updates

The weight support graph gives us a powerful tool to determine what needs to be done
when the weight of a constraint (a,b) is raised. We now use it for the main contri-
bution of this chapter: an algorithm capable of re-enforcing partial path consistency,
taking the raised weight of (a,b) into account.

As we noted earlier, the minimum weight ωi→ j of a constraint (i, j) is valid only
if it is supported by either its original weight or some triangle. We can now make this
requirement more specific:

Lemma 5.9. The minimum weight ωi→ j of the constraint (i, j) ∈ S is only correct if
its corresponding minimum node µi→ j ∈ D has at least one incoming edge.
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Proof. Recall that there are only two ways in which the value of ωi→ j can be derived:
either it is implied by an original weight, or it is implied by some triangle. Now
suppose for a contradiction that ωi→ j is correctly set, but µi→ j has no incoming edges.
By the definition of D, this means that neither wi→ j =ωi→ j, since then there would be
an incoming edge from oi→ j, nor is there any triangle (i,k, j) such that ωi→k+ωk→ j =
ωi→ j, since then there would be an incoming edge from4ik j.

This suggests the following algorithm for updating the weights in an STN, given
that the weight wa→b of the constraint (a,b) is increased to w′a→b > wa→b. First, note
that we only need to do any work if there is an edge between the original node oa→b
and the minimum node µa→b. If there is no such edge, the weight of the shortest path
from a to b does not depend on the weight of the edge (a,b), so when we raise it
none of the shortest paths in the graph need to change.

If the edge (oa→b,µa→b) does exist in D, we remove it, since with the increased
weight it is no longer true that w′a→b = ωa→b. At this point we can use Lemma 5.9:
if there are no other incoming edges on µa→b, apparently its minimum weight is
no longer valid. Therefore, any triangles that depended on µa→b can no longer be
valid either, so we remove them from the graph. This removal causes more edges to
disappear from D, and may cause other minimum nodes to lose all support, causing
the removal of yet more triangles.

We continue this process until there are no new minimum nodes that lose all sup-
port. By tracking the endpoints of any constraint (u,v) whose corresponding mini-
mum node µu→v is removed, we obtain a set V ∗ of all vertices adjacent to a constraint
whose weight needs to change. In other words, we need only re-enforce PPC in the
subgraph SV ∗ induced by the vertices in V ∗. When we traverse the constraints to be
changed, we make sure to reset their minimum weights to their original values. The
new minimum weights will be computed when we re-enforce PPC.

Unfortunately, simply running the P3C algorithm on SV ∗ will not suffice to ac-
complish this. Specifically, when the weight of (a,b) is raised, the new shortest path
πxy between the two endpoints x and y of an edge in SV ∗ may now visit some vertex
z outside V ∗. In Theorem 5.22 we show that we can include knowledge about the
shortest paths external to V ∗ by including all vertices that neighbour on at least two
vertices in V ∗. It therefore suffices to run the P3C algorithm on the graph induced by
this extended set to enforce partial path consistency on the entire graph. Once par-
tial path consistency is re-established, we update the weight support graph by calling
Update-Support-Graph.

The entire process just discussed is summarized in Algorithms 5.3 to 5.5. Support-
DPPC, shown in Algorithm 5.3, performs the pre-processing and contains the high-
level control flow. The process of finding V ∗ is formalized in Algorithm 5.4, dubbed
Affected-Endpoints. Finally, Algorithm 5.5 shows the algorithm used to determine the
set of vertices that neighbour on at least two vertices in V ∗.

Recall that the sets Nin(µu→v) and Nout(µu→v) used in Affected-Endpoints and line 6
represent the sets of incoming and outgoing neighbours respectively. Furthermore,

42



Support-based decremental PPC 5.4 Finding the affected endpoints

note that by Definition 5.2 all outgoing edges of a minimum node point at triangle
nodes, and hence we need not apply any filtering on line 4 of Affected-Endpoints.

In the following two sections, we prove the correctness of these algorithms and
give bounds on their run time. Section 5.4 discusses the Affected-Endpoints algo-
rithms, the construction of the extended set V+ and the re-enforcement of partial
path consistency are presented in Section 5.5.

5.4 Finding the affected endpoints

The difficulty in proving the correctness of Affected-Endpoints lies in the fact that even
if the minimum weight ωu→v for the constraint (u,v) is supported by multiple shortest
u− v paths, it may still be the case that each of these paths contains the constraint
(a,b) whose weight is raised. In that case u and v should of course be included in V ∗,
but we need to show how the algorithm makes progress in tearing down the different
paths supporting ωu→v, until it ultimately concludes that no such paths remain.

In Section 5.4.1 we introduce the notion of a hop-maximal shortest path, which
provides exactly such a measure. After proving three supporting lemmas in Sec-
tion 5.4.2, we use this notion to inductively prove the correctness of Affected-Endpoints
in Section 5.4.3. Finally, in Section 5.4.4 we exploit this proof to demonstrate the
correctness of a slightly more complex version of the algorithm, which has the benefit
of being more efficient.

5.4.1 Hop-maximal shortest paths

The measure of progress needed for our induction proof is provided by the concept
of hop-maximal shortest u− v paths. Let |P| denote the number of edges in the path
P.

Definition 5.10. Let π be a shortest u− v path. Then π is hop-maximal shortest if
there is no shortest u− v path π′ such that |π′| ≥ |π|. We let hms(u,v) denote the set
of all hop-maximal shortest u− v paths.

In other words, if π ∈ hms(u,v) is a hop-maximal shortest u− v path, there is no
u− v path consisting of more edges whose cumulative weight is still ωu→v.

As we will see, Affected-Endpoints visits edges (u,v) in order of increasing number
of edges on the hop-maximal shortest u−v paths. To prove the correctness of Affected-
Endpoints in Theorem 5.17, we will exploit the following property of hop-maximal
shortest paths:

Lemma 5.11. Let u 99K x 99K v be a shortest u− v path and let πuv, πux and πxv be
hop-maximal shortest u− v, u− x and x− v paths respectively. Then πuv has at least
as many edges as the sum of the edges on πux and πxv, i.e. |πux|+ |πxv| ≤ |πuv|.
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Algorithm 5.3: Support-DPPC
Input: (1) A PPC STN S = 〈V,E〉 with original weights wi→ j, lowest weights

ωi→ j, and a simplicial elimination ordering d. (2) The weight support
graph D = 〈V ′,E ′〉 of S . (3) A new weight w′a→b > wa→b for the edge
(a,b).

Output: PPC has been re-enforced in S given wa→b = w′a→b, and D has been
updated to reflect the new weight supports.

1 if (oa→b,µa→b) /∈ E ′ then
2 wa→b← w′a→b
3 return

4 wa→b← w′a→b
5 remove (oa→b,µa→b) from E ′

6 if Nin(µa→b) 6=∅ then return

7 V ∗← Affected-Endpoints(a,b)
8 V+←V ∗∪Shared-Neighbours(V ∗)

9 call P3C(SV+ ,dV+)
10 call Update-Support-Graph(SV+ ,dV+)

Algorithm 5.4: Affected-Endpoints(a,b)

1 while there is an unmarked µu→v with Nin(µu→v) =∅ do
2 mark µu→v ; add u and v to V ∗

3 reset ωu→v to wu→v

4 foreach4xyz ∈ Nout(µu→v) do
5 remove4xyz and edges attached to it from D

6 return V ∗

Algorithm 5.5: Shared-Neighbours(V ∗)

1 result←∅
2 foreach u ∈V ∗ do
3 foreach v ∈ N(u) such that v /∈V ∗ do
4 increment COUNT[v]
5 if COUNT[v] = 2 then
6 add u to result

7 return result
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Proof. We will assume that there exist πux ∈ hms(u,x) and πvx ∈ hms(x,v) such that
|πux|+ |πxv|> |πuv|, and arrive at a contradiction.

Consider the path π′uv created by concatenating πux and πxv. By our assumption,
we know that |π′uv| > |πuv|. Since πux and πxv are shortest paths to and from x, they
have weights ωu→x and ωx→v, so π′uv is a shortest u− v path. But π′uv contains more
hops than πuv, so πuv was not a hop-maximal shortest u− v path, contradicting the
condition from the lemma statement. Therefore π′uv cannot exist.

5.4.2 Supporting lemmas

Before constructing the induction proof itself, we need a general property of shortest
paths, and two observations on the behaviour of the Affected-Endpoints algorithm.

Lemma 5.12. Suppose that the weight of the edge (u,v) must be raised due to an
increase of the weight of the edge (a,b) in a network which contains no zero-length
cycles. Then, if there is a shortest path u 99K x 99K y 99K v, such that a→ b is on
x 99K y, and there exists an edge (x,y), the weight of (x,y) must be increased.

Proof. First of all, note that neither u 99K x nor y 99K v can include a→ b. If either
did, (a,b) would repeat, and the path either would not be shortest, or there would be
a zero-length cycle.

Now suppose for the purpose of obtaining a contradiction that the weight of (x,y)
need not be raised. Then there must be some other shortest x−y path π that does not
include a→ b. But then the concatenation of u 99K x, π and y 99K v would be a
shortest u− v path whose weight is independent of a→ b. This would mean that the
weight of (u,v) need not be raised if the weight of (a,b) is raised, contradicting the
statement of the lemma.

Therefore, all shortest x− y paths must contain a→ b, and the weight of (x,y)
must increase if the weight of (a,b) increases.

Lemma 5.13. During the main loop of Affected-Endpoints, if the weight of edge (u,v)
needs to change following a weight increase on (a,b), every incoming edge on µu→v

in D originates from some triangle node4uxv (with x ∈V ).

Proof. Observe that all edges in D are either between original and minimum nodes
or between triangle and minimum nodes. We therefore need only show the absence
of the edge (ou→v,µu→v) for every edge (u,v) whose weight needs to be raised.

There are two cases: either (u,v) is (a,b), or it is not. If (u,v) = (a,b), the edge
(oa→b,µa→b) is explicitly removed on line 5 of Support-DPPC, and therefore does not
exist when the main loop of Affected-Endpoints is executed.

Now consider the case where (u,v) 6= (a,b). If there were an edge (ou→v,µu→v),
this would imply that the minimum weight for (u,v) is equal to its original weight.
Furthermore, since (u,v) 6= (a,b), this original weight does not change. But then the
minimum weight for (u,v) would not need to change, contradicting the statement
that it does need to change. Therefore, the edge (ou→v,µu→v) cannot exist.
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Lemma 5.14. If Affected-Endpoints does not mark a node µu→v corresponding to a
changed edge (u,v), µu→v has at least one incoming edge.

Proof. This follows immediately from lines 1 and 2: if µu→v had no incoming edge,
it would be marked.

5.4.3 Correctness proof

We now have sufficient information to complete the proof of correctness of Affected-
Endpoints. As mentioned earlier, we will use an induction proof, over the number of
edges in the hop-maximal shortest u− v paths for edges whose weight must change.

Lemma 5.15 proves the induction step. In Lemma 5.16 we then show that (a,b)
is the only edge we need to consider for the base. Finally, these two are combined in
the induction proof for Theorem 5.17.

Lemma 5.15. Assume Affected-Endpoints marks all nodes µu′→v′ corresponding to
edges (u′,v′) whose weight must change and whose hop-maximal shortest paths con-
tain fewer than k edges. Then Affected-Endpoints also marks all nodes µu→v corre-
sponding to edges (u,v) whose weight must change and whose hop-maximal shortest
paths contain exactly k edges.

Proof. Suppose, for the purpose of obtaining a contradiction, that there is some node
µu→v not marked by Affected-Endpoints, even though its corresponding edge (u,v)
must be changed and every hop-maximal shortest path πuv ∈ hms(u,v) has |πuv|= k.

By Lemma 5.14, µu→v has at least one incoming edge, and by Lemma 5.13 this
edge originates at a triangle node. In other words, there must be an x ∈ V such that
µu→x and µx→v point to 4uxv. This means that there must be a shortest u− v path
u 99K x 99K v through x. Since the weight for (u,v) must change, every shortest u−v
path must contain a→ b, so either u 99K x or x 99K v must contain a→ b. We assume
u 99K x contains a→ b; the case for x 99K v is analogous.

Consider any hop-maximal shortest u− v path πuv ∈ hms(u,v), and let πux and
πxv be hop-maximal shortest u− x and x− v paths respectively. By Lemma 5.11, we
know that |πux|+ |πxv| ≤ |πuv|. Since any hop-maximal shortest path consists of at
least one edge, we have |πux| < |πuv| = k. Furthermore, since u− x is a subpath of
u 99K x 99K v containing a→ b, and (u,x) is an edge of G, we have by Lemma 5.12
that the weight on (u,x) must change.

So, since |πux| < k and the weight of (u,x) must change, by the assumption in
the statement of this lemma, µu→x must have been marked by Affected-Endpoints. But
then all 4uxy and 4yux were removed from D in lines 4 through 5. In particular,
4uxv and its outgoing edge (4uxv,µu→v) must have been removed, contradicting the
assumption that this edge blocked the algorithm from marking µu→v.

This argument applies to any triangle node with an edge pointing at µu→v, so
µu→v can have no edge originating from a triangle node. Since by Lemma 5.13
all incoming edges on µu→v originate at triangles, we conclude that µu→v has no
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incoming edges. Therefore the condition on line 1 will eventually be fulfilled and
Affected-Endpoints will mark µu→v.

Lemma 5.16. The edge (a,b) is the only affected edge whose hop-maximal shortest
path has length 1.

Proof. Any shortest path for any other edge (u,v) whose weight must increase must
contain (a,b) as a strict subpath. Therefore the hop-maximal shortest path u−v path
of such an edge will have length at least 2.

The hop-maximal shortest path for (a,b) must have length 1, for otherwise there
is some shortest path that does not use the direct edge, and the weight for (a,b) need
not have changed.

Theorem 5.17. Affected-Endpoints(a,b) marks all minimum nodes corresponding to
edges whose weight must be raised given that the weight of (a,b) has increased.
Moreover, the set V ∗ it returns is exactly the set of vertices that are adjacent to at
least one edge whose weight must be raised.

Proof. We will prove this by induction over the number of edges in the hop-maximal
shortest u− v path.

For the base case, consider the edges whose hop-maximal shortest u− v path
consists of a single edge, which by Lemma 5.16 can only be (a,b). By Lemma 5.13,
any incoming edge on ωa→b must be a triangle edge. However, since we only enter
Affected-Endpoints when we know (a,b) must be changed and by Lemma 5.6 D con-
tains no cycles, there can be no such incoming triangle edge on µa→b. Hence, we
have Nin(µa→b) =∅ and the condition on line 1 is fulfilled, which causes µa→b to be
marked on line 2. So all edges whose hop-maximal shortest u− v paths have length
1 are marked.

For the induction step, we assume that Affected-Endpoints marks all nodes µu→v

corresponding to edges (u,v) whose weight must change and whose hop-maximal
shortest paths contain fewer than k edges. By Lemma 5.15, the algorithm will then
also mark all edges (u′,v′) that need to change and whose hop-maximal shortest
u′− v′ paths contain k edges. By induction, Affected-Endpoints therefore marks all
edges (u,v) whose weight must change.

Finally, note that the endpoints of any changed edge are added to V ∗ on line 2,
right after its corresponding minimum node is marked. Therefore, the set V ∗ returned
by Affected-Endpoints does indeed contain all vertices attached to at least one edge
whose weight must be raised, given that the weight of (a,b) has increased.

5.4.4 Efficiency

Having shown the correctness of Affected-Endpoints, we now consider the amount of
time it requires to find all affected edges. Note that while the pseudocode shown
in Algorithm 5.4 finds the correct edges, it requires us to repeatedly scan the entire
support graph for minimum nodes whose in-degree has dropped to 0. Since there are
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Algorithm 5.6: Affected-Endpoints-Advanced(a,b)

1 enqueue µa→b in the queue Q
2 while Q is not empty do
3 dequeue µu→v from Q
4 if Nin(µu→v) =∅ then
5 mark µu→v ; add u and v to V ∗

6 reset ωu→v to wu→v

7 foreach4xyz ∈ Nout(µu→v) do
8 enqueue µx→z in Q
9 remove4xyz and edges attached to it from D

10 return V ∗

O(mc) minimum nodes and in the worst case all of them change, this naive imple-
mentation may require O(m2

c) time.
To improve over this, we make the following observation: If the in-degree of

minimum node drops to 0, its last incoming support edge must have been removed
in some earlier iteration. Moreover, by Lemma 5.13, that support edge must have
originated at a triangle.

In other words, the above means that when a minimum node µ loses all support,
we know the only other minimum nodes that could be directly affected by this are
exactly those nodes who were supported by some triangle supported by µ. We can
therefore maintain an explicit queue of minimum nodes that we still need to visit,
which means we no longer need to scan the entire support graph in any iteration. An
advanced version of the Affected-Endpoints algorithm exploiting this idea is shown in
Algorithm 5.6.

We now show that Affected-Endpoints-Advanced has the same end result as Affected-
Endpoints. This will, again, be done by induction over the lengths hop-maximal short-
est paths. However, in this case we need a slightly higher-level property, which we
prove in Lemma 5.18. Lemma 5.19 then shows the equivalence of Affected-Endpoints-
Advanced and Affected-Endpoints, following which we determine a bound on its run
time in Theorem 5.20.

Lemma 5.18. If an edge (u,v) supports the weight of some other edge (u′,v′), the
hop-maximal shortest path from u to v has fewer edges than the hop-maximal shortest
path from u′ to v′.

Proof. Assume for a contradiction that there is some edge (u,v) whose hop-maximal
shortest u− v path πuv has length k, such that the weight of (u,v) is supported by
some edge (x,y) whose hop-maximal shortest x−y path πxy is of length `≥ k. Since
(u,v) is supported by (x,y), we either have that x = u and there is a path π′uv : u =
x 99K y 99K v, or we have y = v and there is a path π′′uv : u 99K x 99K y = v. Both π′uv
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and π′′uv are shortest u−v paths, but contain at least one more edge than πuv. But then
πuv cannot have been a hop-maximal shortest u− v path, a contradiction.

Lemma 5.19. Affected-Endpoints and Affected-Endpoints-Advanced mark the exact same
minimum nodes and remove the same triangle nodes.

Proof. We will prove this by induction over the length of the hop-maximal shortest
paths of affected edges.

For the base case, we consider (a,b), which by Lemma 5.16 is the only edge
whose hop-maximal shortest u− v path consists of a single edge. On line 1 we
explicitly add the minimum node corresponding to (a,b) to the queue. Since we
only enter Affected-Endpoints-Advanced when we know (a,b) must change, µa→b has
no incoming support and therefore it is marked on line 5.

For the induction step, assume that Affected-Endpoints and Affected-Endpoints-Advanced
mark the exact same minimum nodes µu′→v′ for all edges (u′,v′) whose hop-maximal
shortest u′− v′ paths have length k− 1 or less. Note that the same minimum node
µx→y may occur in the queue multiple times: once for each triangle node 4i that
supported it. By Lemma 5.18 each such4i must itself have been supported by some
minimum node µx′→y′ whose hop-maximal shortest path has fewer edges than the
hop-maximal shortest x− y path.

Consider the last time any node µu→v is dequeued, where the hop-maximal u− v
path is of length k. By the induction hypothesis, all minimum nodes whose hop-
maximal shortest path has fewer edges than k have been removed, and therefore, by
line 9, all edges incoming on µu→v from triangles supported by such nodes have been
removed as well. By Lemma 5.13, the only possible remaining support at this point
is from triangles supported by minimum nodes whose corresponding hop-maximal
shortest paths have length at least k. But by Lemma 5.18 these nodes cannot support
µu→v. Therefore, no incoming edges remain, and µu→v is correctly marked on line 5.

By induction, the above shows that Affected-Endpoints and Affected-Endpoints-Advanced
mark the same minimum nodes. Finally, note that both Affected-Endpoints and Affected-
Endpoints-Advanced remove all triangles adjacent to a minimum node immediately af-
ter it is marked. Since both algorithms mark the same minimum nodes, they therefore
also remove the same triangle nodes, concluding the proof.

Theorem 5.20. Affected-Endpoints-Advanced performs the same modifications on S
and D as Affected-Endpoints in O(t∗) time, where t∗ is the number of triangles that
contain an affected edge.

Proof. The equivalence of the modifications follows from Lemma 5.19, so we focus
on the run time.

After adding µa→b, a minimum node µu→v can only be added to the queue if it is
supported by a triangle about to be removed, i.e. on lines 8 and 9. Every such triangle
is visited because it was supported by an edge whose weight needed to change, and is
removed from the graph immediately after µu→v is added to the queue. Hence, every
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triangle containing an affected edge causes exactly one entry in the queue, and the
outer loop is executed at most O(t∗) times.

Moreover, the inner loop in lines 7 to 9 is executed exactly once for each triangle
containing an affected edge. Therefore, amortized over all affected edges, this loop is
also executed at most O(t∗) times during the entire run of Affected-Endpoints-Advanced.
We show below how to remove a triangle from D in constant time, so we can execute
the body of the inner loop in constant time as well, and therefore the entire procedure
takes at most O(t∗) time.

To delete triangle nodes from D in constant time, we use the following imple-
mentation. We store the outgoing neighbours of every minimum node in a linked
list. For each triangle, we keep a reference to the list nodes in the linked lists of its
incoming and outgoing minimum nodes. To remove the triangle, we simply remove
these list nodes from their linked lists, which can be done in constant time.

5.5 Re-enforcing partial path consistency

Having demonstrated how to efficiently obtain the set of affected endpoints, we now
consider the next phase in the algorithm: re-enforcing partial path consistency. Es-
sentially, we have to perform two tasks. We need to make sure that the minimum
weights are correctly set, and we need to update the weight support graph to reflect
the new support relations.

We start with the first task, re-enforcing partial path consistency. Recall from our
general introduction in Section 5.3 that this requires the extended set V+. Lemma 5.21
shows that the Shared-Neighbours algorithm find the vertices that we need in addition
to V ∗.

Lemma 5.21. The set computed by Shared-Neighbours contains all vertices neigh-
bouring on at least two vertices in V ∗.

Proof. Consider any vertex x /∈V ∗ neighbouring on vertices u,v ∈V ∗. W.l.o.g. sup-
pose that u is the first of the neighbours of x to be visited in the outer loop of Shared-
Neighbours, and v the second. When the neighbours of u are visited in the inner
loop, COUNT[x] is incremented to 1. Then, when the outer loop visits v, COUNT[x] is
incremented to 2, and consequently added to the result, as required.

We are now ready to prove that our algorithm re-enforces partial path consistency.

Theorem 5.22. After running Support-DPPC, the minimum weight ωu→v associated
with any constraint (u,v) is the lowest cumulative weight along any path from u to v,
i.e. the network is partially path consistent.

Proof. Note that unless (u,v) is an affected edge, its minimum weight is already
correctly set before we run the algorithm. So we only need to show that the minimum
weights for affected edges (u,v) are set correctly. Hence, consider any such edge
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(u,v). We distinguish three cases, based on the number of edges in the u− v path
with lowest cumulative weight.

First, this path may simply be the edge (u,v) itself. The minimum weight for
(u,v) was reset to its original weight in line 3 of Affected-Endpoints, and since this is
the minimum weight P3C will not lower it further, nor increase it. So in this case, our
theorem holds.

Secondly, the path of lowest weight may have consisted of two edges, i.e. it was
of the form u→ x→ v for some x. Since (u,v) is affected, u and v must be in V ∗.
But then x is a common neighbour of two vertices in V ∗, and therefore we must have
that x ∈ V+. This means that the path is fully contained within SV+ , and therefore
running P3C on this subgraph will set the correct minimum weight.

Finally, it may be that the path π of lowest weight has more than two edges. We
now show that in this case π can be reduced to a path π′, which contains one edge
less. Since π contains more than two edges, there must be a cycle C = u−π−v−u of
more than three edges (disregarding directionality). Hence, the graph induced by the
vertices on this cycle must have a simplicial vertex x. We distinguish two sub-cases:
either x is one of u or v, or x is neither.

First, suppose x is neither u or nor v. Let x′ and x′′ be the neighbours of x on
C. Since x is simplicial, there must be an edge between x′ and x′′. If any two of the
three vertices x, x′ and x′′ are in V ∗, the remaining vertex must be in V+. Therefore,
P3C will correctly derive the minimum weight on the edge between x′ and x′′, and
we can eliminate x from the cycle. On the other hand, if at most one of the three is
in V ∗, none of the edges can be affected and we do not need to adjust any weights.
So in this case as well we can eliminate x, by taking the shortcut between x′ and x′′

instead. Observe that in both cases, we reduce π to a path π′ with equivalent weight,
but containing one edge fewer.

Now suppose x is one of u or v. W.l.o.g. we assume x = u, and let u′ be u’s
neighbour on C other than v. Since u is simplicial, there is an edge between u′ and
v. Hence, u′ is connected to two vertices in V ∗, and is therefore in V+. Note that
the u′− v path of lowest weight is a subpath of the u− v path of lowest weight, but
one edge shorter. There are two cases: either (u,v′) is itself affected or it is not. If
it is not, we immediately know that the minimum weight for (u′,v) is correct, and
P3C will enforce the correct weight on (u,v). If (u,v′) is affected, we can recursively
apply our reasoning to the lowest weight u′− v path, which is one edge shorter than
π. Since this ultimately reduces to a path of length two, for which we already know
we derive the correct weight, we must also arrive at the correct weight for (u′,v).
P3C then enforces the correct weight on (u,v).

Note that regardless of whether x is u, v, or neither, we have shown that ei-
ther (1) P3C determines the correct weight, or (2) that this weight can be obtained
from a reduced path π′, one edge shorter than the original u− v path. By repeat-
ing this reduction, any path eventually reduces to length two, in which case we have
already shown we provide the correct answer. Hence, every edge (u,v) is assigned
the minimum weight of any u− v path, and the resulting network is partially path
consistent.
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Finally, we show that we correctly update the weight support graph for use with
future updates. For the bound on the run time, we let n+ denote the number of
vertices in V+.

Lemma 5.23. Running Update-Support-Graph on SV+ on line 10 of Support-DPPC en-
sures D is a correct weight support graph for S . This run takes O(n+w2

d) time,
following which all minimum nodes in D are unmarked.

Proof. First of all, we note that running P3C can never cause an affected edge e to
support the weight of a non-affected edge e′. If e was the only support for e′, then e′

should have been affected as well. Since it is not, there must be some other path π′

that supports the weight of e′ but does not include any affected edge. The weight of
π′ does not change, but the weight of any path π containing e must increase, so e can
never support e′.

Since the graph outside V ∗ was already PPC, the support relations there need not
change. Moreover, the above implies that any new support relations within V ∗ must
be incoming on an affected edge. These edges correspond exactly to the minimum
nodes marked by Affected-Endpoints. By Lemma 5.7, running Update-Support-Graph
therefore yields the correct support edges in D. Moreover, since we run it on an
induced subgraph of n+ nodes, Lemma 5.7 shows that we require O(n+w2

d) time.
Finally, note that line 9 clears the mark on all minimum nodes corresponding to

an edge in SV+ . Since all affected edges are in SV+ , and only affected edges were
marked, this line therefore clears all marks in the graph.

5.6 Correctness and efficiency

At this point, the correctness of all components of the algorithm has been proven.
We are now ready to demonstrate the correctness of the algorithm as a whole and
provide bounds on the run time of each individual update. We conclude with remarks
on possible future improvements of our algorithm.

Let n∗ denote the number of vertices in V ∗, n+ the number of vertices in V+

and recall that δc is the degree of the vertex with the most neighbours in the chordal
graph. We then have the following:

Theorem 5.24. After initialization by Construct-Support-Graph in O(nw2
d) time, Support-

DPPC can correctly process any sequence of weight increases on edges in a PPC STN
S without zero-weight cycles, each in time O(n∗δc +n+w2

d) and O(nw2
d).

Proof. By Theorem 5.8, running Construct-Support-Graph takes O(nw2
d) time and cor-

rectly constructs the weight support graph of S . Moreover, by line 9 of Update-
Support-Graph all minimum nodes in the graph are unmarked.

Now consider any update processed by Support-DPPC. When its execution is
complete, S is PPC by Theorem 5.22, with the updated weight taken into account.
By Lemma 5.23 the weight support graph is updated accordingly, and all minimum
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nodes are again unmarked. Thus, both the network S and its weight support graph D
are in the correct state required by the next update.

We now consider the time required by each such update. The initial checks and
preliminary modifications on lines 1 through 6 of Support-DPPC can all be performed
in constant time.

By Lemma 5.19, we can compute the set of affected endpoints in O(t∗) time.
Note that each affected triangle contains at least one affected edge and hence at least
two vertices from V ∗. The final vertex of any such triangle must be a common neigh-
bour of the vertices in V ∗ and thus each affected triangle is fully contained in V+.
Then, since V+ contains at most O(n+w2

d) triangles, we have t∗ = O(n+w2
d).

To compute V+ we visit all neighbours of every vertex in V ∗, for a total time
of O(n∗δc). Alternatively, Shared-Neighbours traverses each edge in the network at
most twice: once for each endpoint. With this analysis, the upper bound is O(mc)⊆
O(nw2

d). Finally, running P3C takes O(n+w2
d) time, and by Lemma 5.23 so does

running Update-Support-Graph.
Summarizing the above, we require time of order O(1)+O(n+w2

d)+O(n∗δc)+
O(n+w2

d), which sums to O(n∗δc + n+w2
d), as claimed. We obtain the bound of

O(nw2
d) by observing that n∗ ≤ n+ ≤ n by the definition of V ∗ and V+, and that

we can replace O(n∗δc) by O(nw2
d) as discussed earlier.

5.7 Possible further improvements

With the proof of Theorem 5.24, we formally established the correctness and effi-
ciency of the Support-DPPC algorithm. However, there are still ways in which our
algorithms can be further improved, which we present in this section. In Section 5.7.1
we discuss ways to extend the applicability of our algorithm to networks that include
zero-cycles. Section 5.7.2 presents ways to reduce the execution time of the algo-
rithm. We have not yet fully investigated these ideas, but we mention them here as
directions for future research.

5.7.1 Handling zero-cycles

The only restriction on the applicability our algorithms is that the underlying net-
work may not contain any zero-cycles, cycles of cumulative weight zero. However,
we conjecture that we can work around this issue. In particular, we sketch two ap-
proaches that could be used to remove the zero cycles from the graph, without affect-
ing the correctness of the computed minimum weights.

A first way would be to pre-process the graph, raising the weight of each constraint
by a very small amount ε. After our algorithm completes we would then perform a
post-processing step to remove all epsilons from the computed minimum weights.
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The idea behind this method is that by increasing the weights, the cumulative
weight along any cycle that was originally a zero-cycle will be raised to some mul-
tiple of ε, i.e. to a weight strictly greater than zero. Hence, the processed graph
no longer contains any zero cycles, and by Lemma 5.6 its weight support graph is
acyclic.

There is an issue with this approach however. In the original graph, the weight
of a constraint may have been supported by multiple paths, consisting of different
numbers of edges. In the pre-processed graph, paths with more edges accumulate
more weight increases, and thus their weight is higher than that of paths with fewer
edges. Hence, the processed graph does not capture all support relations that were
present in the original graph.

This might cause us to incorrectly deduce that the weight for some constraint is
no longer supported. However, note that we can never incorrectly assume that an
edge is still supported, and need not change. Therefore the algorithm would still be
correct, but may perform some unnecessary work.

A second option emerges when we consider what a zero-cycle represents in terms
of our original problem. When a constraint between two events xi and x j has weight
zero, this means that x j can occur no more than zero time units after xi. However,
if there is a zero cycle, we also know that xi can occur no more than zero time units
after x j. In other words x j and xi must coincide.

Our second idea then is to search for zero-cycles in the graph. If we find one, we
know that all events on that cycle must coincide, and can thus replace them all by a
single new event. We can repeat this method to eliminate all zero-cycles in the graph,
yet retain a network equivalent to the input network. The pre-processed network can
then be used in our algorithm.

Unfortunately, this method too has a catch. It may be that our algorithm is asked
to increase the weight of a constraint that previously participated in a zero-cycle.
At this point, we may need to expand the previously collapsed cycle, and adjust the
network and support graph accordingly. It is not immediately clear how this might
be accomplished.

5.7.2 Reducing the extended set

The size of V+ determines the size of the subgraph on which we run P3C and Update-
Support-Graph. These algorithms are quite costly, so any reduction of this set could
yield a significant speed-up in overall execution. In this section we briefly mention
two possible improvements that would reduce the size of V+.

First of all, while the current method to select V+ is correct, we observe that it does
not produce the minimum set required to correctly enforce PPC. Specifically, if the
vertex u /∈V ∗ is connected to two vertices v1,v2 ∈V ∗, but the weight of neither of the
edges (v1,v2) or (v2,v1) needs to change, we can show that u need not be included in
V+.
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Support-based decremental PPC 5.7 Possible further improvements

Secondly, even if no such vertices exist, it may be possible to omit a specific set
of edges. In particular, if the graph induced by V+ contains an edge e between two
vertices that are not in V ∗, we know that the weight of e cannot change. Moreover,
since neither endpoint of e is in V ∗, we know that e is not even part of a triangle
one of the edges of which must change. Nonetheless, in the current implementation
e is still visited, which is essentially a waste of time. If we had a way to eliminate
these edges, we could further reduce the run time of Support-DPPC, to be bound by
the number of triangles containing an affected edge. The correctness of this second
optimization is less certain however, since it is unclear whether the graph would still
be chordal if we removed such edges.
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Chapter 6

Experimental evaluation

In Chapter 4 we proved the correctness of our new Vertex-IPPC algorithm and de-
rived a theoretic bound on its asymptotic run time. We also observed that it would
integrate well with a vertex-incremental triangulation algorithm.

This chapter presents a limited experimental evaluation of our implementations
of these two algorithms. In Section 6.1 we evaluate the run-time characteristics of
Berry et al.’s triangulation method. Section 6.2 then discusses a similar experiment
performed to demonstrate that our implementation of Vertex-IPPC meets the run time
bound we claimed in Chapter 4. We also compare the performance of our algorithm
to that of a simple extension of Edge-IPPC.

6.1 Incremental triangulation

This experiment aims to assess the run-time characteristics of our implementations of
Berry et al.’s incremental triangulation algorithm in terms of the number of vertices
in the input graph. As we mentioned in Section 4.6, the authors prove that their
algorithm inserts a single edge in O(n) time.

In Section 4.6.3 we presented two different implementations of this algorithm:
one using breadth-first search and one using a dynamic lookup table. This in fact
represents our implementation history: we first implemented the breadth-first search
approach, and later switched to dynamic lookup tables, based on experimental re-
sults. In other words, we ran experiments to find evidence supporting the following
two hypotheses:

Hypothesis 6.1. Our implementation of the vertex-incremental triangulation method
by Berry et al. using breadth-first search performs an edge insertion in O(n) time.

Hypothesis 6.2. Our implementation of the vertex-incremental triangulation method
by Berry et al. using a dynamic lookup table implementation performs an edge in-
sertion in O(n) time.
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Experimental evaluation 6.1 Incremental triangulation

Tasks 1000
Branch depth [min,max] [3,6]
Branches [min,max] [3,10]
Landmark ratio 0.20
Probability of SR-edge 0.50

Table 6.1: Parameters for generating HTN graphs.

6.1.1 Data set

Since we aim to assess asymptotic behaviour, we require graphs with large numbers
of vertices. Moreover, since we concern ourselves with problems related to schedul-
ing, we would like our input graphs to stem from this domain as well.

We therefore used a generator for so-called Hierarchical Task Networks (HTNs),
a planning paradigm formalised by Erol et al. (1994). The generator we used was
created by Planken et al. (2010) for the empirical evaluation of the Edge-IPPC al-
gorithm. We briefly summarize their discussion of HTNs here, for more details we
refer to the original papers.

In short, an HTN represents a hierarchy of tasks, in which high-level tasks are
progressively decomposed into collections of smaller tasks as we go further down the
hierarchy. Constraints in an HTN occur only between a parent task and its children,
or between sibling tasks. The latter constraints are so-called sibling-restricted (SR)
edges. Given this restriction, it is not possible to coordinate the execution of tasks in
the different branches of the hierarchy when we strictly adhere to the HTN format.
In order to circumvent this, the definition of an HTN may be extended to include
so-called landmark variables, which do allow synchronisation between branches.
Finally, each task is modelled as a pair of events in the network: it start and its end.

In the interest of reproducibility, the settings we used to generate our HTNs are
listed in Table 6.1. Using these settings, each generated graph contained 2200 ver-
tices and between 9500 and 9800 edges. Our benchmark set consisted of 80 such
graphs.

6.1.2 Method

In order to assess the run time as function of the number of vertices, we then pro-
ceeded as follows. First we generated a random permutation of the vertices in the
graph by shuffling a sequence of all vertices. We then created a new, empty graph,
on which the experiment was to be performed. During the actual experiment we used
the triangulation algorithm to insert the vertices from the generated graph into the
experiment graph one by one, as enumerated in the shuffled sequence. We timed the
performance of every edge insertion, keeping track of the number of nodes at the
time of insertion.

The experiments were run on an Intel Core i7 Q740 with four cores clocked at
1.73 GHz and 4 GB RAM. The Java VM (build 1.6.0 24-b07) was given 1.5 GB of
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Figure 6.1: Run time for Berry et al.’s triangulation algorithm, using breadth-first search to find cliques.
The dark blue lines plot the median values over 400 runs, the light bands show the range
between the 25th and 75th percentile.

memory. Since it takes some time before the Just-In-Time optimizer in the Java VM
starts up, we ignored the results for the first 300 vertex insertions and focused only
on the asymptotic behaviour.

6.1.3 Results and discussion

Breadth first search Figure 6.1 shows the results for running the algorithm us-
ing the implementation based on breadth-first search. Plotting the size of the graph
against the time required to insert an edge and its accompanying fill-edges, we ob-
serve a slight upwards curve in Figure 6.1a, suggesting supra-linear run times.

This suspicion is confirmed by Figure 6.1b, where we normalize the time by the
size of the graph at the time the vertex was inserted. For an algorithm with perfor-
mance linear in the number of vertices, we expect a horizontal line here, averaging
the constant for our implementation. We observe a clear upwards trend however,
indicating that this implementation does not realize the O(n) bound we aimed for.
Hence we reject Hypothesis 6.1.

Dynamic lookup table To improve on this negative result, we replaced the imple-
mentation using breadth-first search with a version using a dynamically maintained
lookup table. Keeping all other factors constant, we performed the exact same exper-
iment, which yielded the results shown in Figure 6.2.

Our first observation is that Figure 6.2a does not show the curvature observed
when using breadth-first search. Reviewing the normalized graph in Figure 6.2b
shows that in this case we do achieve a horizontal line. In fact, if anything the nor-
malized graph appears to show a decreasing trend. Hence, this experiment provides
evidence that Hypothesis 6.2 holds, and we do not reject it.

A second observation can be made by comparing the scale on the y-axes of Fig-
ures 6.1a and 6.2a. As we see, the implementation using a lookup table requires far

58



Experimental evaluation 6.2 Vertex-IPPC
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Figure 6.2: Run time for Berry et al.’s triangulation algorithm, using a lookup table to find cliques.
The dark blue lines plot the median values over 400 runs, the light bands show the range
between the 25th and 75th percentile.

less time than the breadth-first search version, especially when the size of the graph
increases. This is of course to be expected, as we have replaced a supra-linear search
operation by a constant time lookup operation. Nonetheless, we point out that the
performance gains are impressive.

6.2 Vertex-IPPC

Having evaluated the expected bounds of our implementation of the vertex-incremental
triangulation algorithm, we now turn to assess our own contribution, the Vertex-IPPC
algorithm.

In particular, we want to answer two questions. One, does our implementation
meet the run time bound of O(mc + δc(a)w2

d) derived in Chapter 4, and two, how
does its performance compare to Edge-IPPC?

Regarding the second question, comparing a vertex-incremental algorithm to an
edge-incremental one may seem strange. However, we observe that Edge-IPPC can
be used to enforce PPC after a vertex has been inserted, using the following simple
approach. After the graph has been pre-processed such that it contains a and will
still be chordal after all new constraints are added, we simply run Edge-IPPC once
for every constraint attached to a. Since there are exactly δ(a) such constraints and
each run of Edge-IPPC takes O(mc) time, this simple algorithm re-enforces PPC in
O(δ(a) ·mc) time.

Hypothesis 6.3 and Hypothesis 6.4 present the expected answers to respectively
the first and second question posed above.

Hypothesis 6.3. The run time of our implementation of Vertex-IPPC meets the theo-
retical bound of O(mc +δc(a)w2

d).

Hypothesis 6.4. When inserting a new vertex a in a graph, running Vertex-IPPC is
faster than running Edge-IPPC δ(a) times.
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6.2.1 Data sets

To assess the runtime characteristics of the Vertex-IPPC algorithm, we generated
HTN graphs with the same values for the parameters used to generate the graphs for
our experiments with incremental triangulation. However, since these graphs were
intended for more computationally intensive experiments, the number of tasks was
restricted to 100. This resulted in 80 graphs of 220 vertices each.

To assign the weights, we used a utility provided with the HTN generator by
Planken et al. (2010). We configured this utility to first ensure a solution exists, by
assigning a random time between −50 and 100 to each event. Then, the weight for
each constraint in the network was calculated as follows. First, the utility determined
the minimum possible weight such that the random solution was still possible. It then
increased this weight by a value selected randomly from the range [0,150]. Hence
the original solution still existed, but had been “obscured” by the randomly added
slack.

In order to test the influence of the graph structure on performance, we also
generated a set of chordal graphs. This set was also created with the HTN generator
and the weight setting utility. However, for this set we first added the fill edges as
inserted by the minimum degree heuristic, before assigning weights.

6.2.2 Method

In order to assess performance, we used the following procedure. For each exper-
iment we incrementally constructed three graphs: two graphs used to benchmark
Vertex-IPPC and Edge-IPPC, and one control graph on which we ran the P3C algo-
rithm to verify that our implementation was correct.

All three graphs were initially empty. During the experiment we inserted the
vertices from the input graph into the three experiment graphs one by one, as well as
all constraints connecting the new vertex to the other vertices already in the graph.
The order in which vertices were inserted was chosen randomly.

When a vertex and its constraints were inserted, we first used Berry’s vertex-
incremental triangulation scheme to ensure the resulting graph was chordal. We then
re-enforced partial path consistency by three different methods. On the first graph
we then ran Vertex-IPPC, starting from the newly added vertex. In the second graph,
we ran Edge-IPPC once for each constraint attached to the new vertex a, for a total
of δ(a) runs. Finally, we ran P3C on the third graph.

At the end of each step, we made sure the weights in the graphs maintained
by Vertex- and Edge-IPPC were equivalent to the weights enforced by P3C, thus
verifying that the implementation was correct.
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Experimental evaluation 6.2 Vertex-IPPC
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Figure 6.3: Run time for Vertex-IPPC on HTN graphs consisting of 220 vertices.
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Figure 6.4: Run time for Vertex-IPPC on pre-triangulated HTN graphs consisting of 220 vertices.

6.2.3 Results and discussion

Verification of theoretical bounds

The aim of our first experiment was to verify our implementation against the theo-
retical upper bound of O(mc +δc(a)w2

d) derived in Chapter 4. We therefore plot the
run time required to insert a vertex as function of the complexity of the graph at the
time of insertion. By taking x = mc +δc(a)w2

d as measure of complexity, we should
see a straight line if our implementation meets this bound on the given input graphs.

Figure 6.3a shows this plot for the normal HTN graphs, Figure 6.4a for HTN
graphs that were previously triangulated. We observe that both figures show a line
with a clear linear trend.

In order to more closely assess whether we meet the theoretical bound, we in-
clude normalized plots for both normal and pre-triangulated HTN graphs in Fig-
ure 6.3b and Figure 6.4b respectively. If our implementation satisfies the theoretical
bounds, these plots should show a constant horizontal line or a decreasing trend.
This is indeed the behaviour we observe. In other words, our experiments support
Hypothesis 6.3 and we conclude that we cannot reject it.
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Comparison to Edge-IPPC

In our second experiment we compare the performance of using Vertex-IPPC to insert
a vertex at once, to the performance of running Edge-IPPC once for every constraint
adjacent to the new vertex. We initially ran this experiment on the set of normal HTN
graphs and obtained the results summarized in Figure 6.5a.

Rather surprisingly, we find that Edge-IPPC is significantly faster than Vertex-
IPPC in this benchmark. Hence, Hypothesis 6.4 does not hold in general, and we
reject it.

A possible explanation for this somewhat disappointing result is that the degrees
of the new vertices in the chordal graph may have been much higher than their de-
grees in the original graph. Recall that Edge-IPPC needs to be executed only once
for each constraint in the original graph, and completes in time linear in the number
of edges. On the other hand, the run time of the DPC algorithm used by Vertex-IPPC
depends on the size of the neighbourhood in the triangulated graph. Running DPC
is relatively expensive, so if there are only a few real constraints but many fill edges,
this investment may not pay off.

In particular, we may have the following pathological case. Suppose the new ver-
tex a has only two constraints involving older vertices in the original graph. However,
these constraints create a cycle involving all n vertices, and thus after triangulation,
a is connected to all vertices in the chordal graph. In this case we need only run
Edge-IPPC twice, which can be done in O(mc) time, while the DPC step alone takes
O(nw2

d) time. Conversely however, if nearly all edges in the chordal graph corre-
spond to actual constraints, the Edge-IPPC method will take O(nmc) time, which is
worse than the O(nw2

d) that dominates the run time of Vertex-IPPC in this case.
We summarise the above in the following new hypothesis, a more specific form

of Hypothesis 6.4:

Hypothesis 6.5. Given that δ(a) = δc(a) when a new vertex a is inserted in a graph,
running Vertex-IPPC is faster than running Edge-IPPC δ(a) times.

To test this hypothesis, we ran our experiment on the input set consisting of pre-
triangulated HTNs. Since these graphs are already triangulated, we do not need to
add any fill edges, which should give Vertex-IPPC an advantage over Edge-IPPC.
The results for this experiment are shown in Figure 6.5b.

This figure does indeed show a better relative performance for Vertex-IPPC com-
pared to Edge-IPPC. However, the difference is only small, and for greater input com-
plexities Edge-IPPC seems to be gaining the upper hand again. Since Vertex-IPPC
does not clearly perform better than Edge-IPPC, we have to reject Hypothesis 6.5 as
well.

A final possibility to explain these results is the following. It may be that the
consecutive runs of Edge-IPPC in the neighbourhood of the new vertex “help” each
other. More specifically, it may be that two constraints c1 and c2 imply a lower weight
for some constraint c3 than c3 is itself labelled with in the source graph. If Edge-IPPC
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Figure 6.5: Run time comparison between Vertex-IPPC and Edge-IPPC on HTN graphs.
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Experimental evaluation 6.2 Vertex-IPPC

enforces c1 and c2 first, it can then immediately detect that the weight of c3 need not
change, thus reducing the execution cost. If this happens frequently, then Edge-IPPC
essentially gets a few runs “for free”. Vertex-IPPC on the other hand always needs to
pay the cost of running DPC, whether constraints subsume each other or not.

While this hypothesis does not offer a way to improve the performance of Vertex-
IPPC, it can be used to improve that of Edge-IPPC. In particular, it would be inter-
esting to see whether there is some way to put the constraints inserted by Edge-IPPC
in such an order that the “help” is maximized. We will not pursue this idea here, but
note it as an interesting direction for future work.
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Chapter 7

Conclusions and future work

In this final chapter, we first summarize our contributions and draw conclusions. We
then present some interesting directions for future work.

7.1 Summary and conclusions

In Chapter 2 we introduced the Simple Temporal Problem (STP) and reviewed the
different solution types for this problem. We also paid attention to the concept of
chordal graphs, the properties of which are key to the efficiency of the current state
of the art in algorithms solving the STP.

Such algorithms were discussed in more detail in Chapter 3, which reviewed ex-
isting methods to compute the different solution types introduced in the preceding
chapter. We showed that these methods can be classified into two groups: methods
enforcing Full Path Consistency operate on complete graphs, while methods enforc-
ing Partial Path Consistency operate on chordal graphs. We paid particular attention
to the P3C algorithm, which computes a solution for a STP instance by enforcing
PPC and constitutes the current state of the art in this area.

In Chapter 4 we presented our first contribution: the Vertex-IPPC algorithm. This
algorithm allows us to efficiently re-enforce partial path consistency when we update
an existing STP instance by adding a new event and all its adjacent constraints. We
demonstrated that Vertex-IPPC integrates well with a recently discovered method for
vertex-incremental triangulation, designed by Berry et al.. Moreover, to the best of
our knowledge – having corresponded with the original authors – we created the first
actual implementation of this triangulation method. In doing so we contributed the
implementation of one step not made explicit in the original paper.

Our most important contribution is made in Chapter 5, where we present the
Support-DPPC algorithm. To the best of our knowledge this is the first algorithm to
efficiently process decremental updates for a partially path consistent STP instance.
To do so we introduced the notion of the weight support graph, which tracks the ori-
gins for the tightest constraints in the graph. We showed that our algorithm efficiently
exploits and maintains this graph in parallel with the original network. Moreover, we
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concluded that even in the worst case the asymptotic bound on the run time for our
algorithm is no worse than that of P3C, and we proved a second bound showing that
our algorithm may in fact outperform P3C practice.

Finally, in Chapter 6 we presented a limited empirical evaluation of our imple-
mentations of the vertex-incremental triangulation method by Berry et al. and our
own Vertex-IPPC algorithm. We conclude that both our implementations meet their
respective theoretical bounds. Unfortunately, a second set of experiments compar-
ing Vertex-IPPC to a straightforward extension of the existing Edge-IPPC algorithm
showed that Vertex-IPPC did not yield the improved execution time we expected.
Due to limited time, we have not yet implemented and benchmarked Support-DPPC.

7.2 Future work

In this section we give an overview of topics for future research, some of which have
already been mentioned in the preceding chapters. The topics are grouped by the
nature of the algorithms they relate to.

7.2.1 Vertex-incremental approaches

It would be interesting to further explore the properties of the naive algorithm for
vertex-incremental partial path consistency based on Edge-IPPC we benchmarked
in Chapter 6. As discussed in Section 6.2.3, a first avenue for improvement is the
ordering in which the weights of the new constraints are enforced. A heuristic that
would maximize the number of “free” constraints could significantly reduce the run
time of the algorithm, particularly in cases where the new vertex has many adjacent
constraints.

Furthermore, recall from Section 3.2.2 that Edge-IPPC itself was outperformed
by IFPC, the Incremental Full Path Consistency algorithm. Therefore it would be in-
teresting to see if we can perhaps exploit the properties of a complete graph to create
a vertex-incremental version of IFPC, which well may outperform the variant using
Edge-IPPC. Note that this approach may also benefit from a heuristic as described in
the previous paragraph.

7.2.2 Decremental PPC

Since the Support-DPPC is the first decremental algorithm for enforcing partial path
consistency, there are many interesting directions for further research.

An obvious first step is to implement Support-DPPC and benchmark its perfor-
mance on practical problems. Interesting candidates to compare its performance
against would be the P3C algorithm itself, but also the method for fully dynamic full
path consistency on graphs with non-negative weights discovered by Demetrescu and
Italiano (2004).
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Furthermore, we would like to eliminate our dependency on the fact that the un-
derlying network may not contain cycles of cumulative length zero. It would there-
fore be interesting to investigate the pre-processing approaches suggested in Sec-
tion 5.7.1, and determine whether they can be used to eliminate all zero-cycles from
the network.

Finally, in Section 5.7.2 we observed that the current way the extended set V+ is
created results in the inclusion of vertices and edges that are not strictly necessary to
re-enforce PPC. Further research may yield more advanced methods, which should
reduce the size of V+. Since the the size of V+ determines the size of the subgraph on
which we perform expensive computations, any reduction of this graph could yield a
significant speed-up in overall execution.

Another idea only tangentially related to decremental PPC is to use the notion of
support graphs for decremental triangulation. In the context of triangulation, we
also find the notion of “support”: there is a sense that a “hard” edge in the original
graph “supports” a fill edge required to break some cycle in which the hard edge
participates. If a fill edge is not supported by any hard edge, it can be removed. If
we find a way to efficiently capture these relations in a support graph or dependency
graph, we should therefore be able to immediately remove fill edges if they are no
longer needed.

To the best of our knowledge, no truly decremental triangulation algorithms exist
yet. There is an algorithm by Ibarra (2008), but this algorithm explicitly fails if an
edge cannot be removed without breaking chordality. An approach based on support
graphs could implicitly defer the deletion of an edge in this case, until the last hard
edge requiring its existence is removed.

7.2.3 Dynamic PPC

While we have not achieved a fully dynamic algorithm for enforcing partial path
consistency, we have come quite close. In particular, we believe it should be pos-
sible to combine Support-DPPC with an incremental algorithm in order to obtain a
fully dynamic algorithm for enforcing partial path consistency. The most important
aspect here is that we maintain the weight support graph correctly. An interesting
observation in this regard is that when the weight of an edge is lowered, we know
we can remove any pre-existing incoming support. After all, such pre-existing sup-
port relations represented support for the previous, higher weight, which has now
changed.

A simple first approach might be to modify Edge-IPPC to update the support
graph in this way. If we then determine the subgraph in which the updates took
place, we can run the Update-Support-Graph algorithm to correctly re-establish the
weight support graph.

Finally, provided the approach outlined above works, it would be interesting to
embed the resulting algorithm in a DTP solver. As we stated in the introduction,
current DTP solvers have to recompute the solution for an STP from scratch when
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they back-track. If Support-DPPC is used instead, performing these backtracking
steps may take less time, thus improving performance.

As the title of this thesis indicates, we have worked towards a fully dynamic al-
gorithm for the Simple Temporal Problem. Especially in the light of the approach
sketched in this last section, we expect that such an algorithm is indeed feasible, and
it will be interesting to see how it performs in practice.
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Appendix A

Pseudo-code incremental
triangulation

As discussed in Section 4.6, while Berry et al. (2006) prove that their vertex-incremental
triangulation algorithm is correct, they did not create an implementation. Moreover,
their paper does not contain explicit pseudocode. Instead, the algorithm is described
in text form, mixed with proofs of correctness.

When building our implementation of the algorithm, we had some initial dif-
ficulties to maintain a high-level overview of how it worked. This became much
easier when we extracted our own version of the pseudocode from the text, which we
include in Algorithm A.1.

Our main purpose for including it here is that it may serve as a high-level guide
for any other implementers of the algorithm. In that spirit, we would like to point
out that Section 4.6 discusses an important implementation detail on the process of
finding the cliques Ku and Kv mentioned in line 1.
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Pseudo-code incremental triangulation

Algorithm A.1: Add edge (u,v) to G and update the clique forest F

1 find any cliques Ku,Kv ∈ F such that u ∈ Ku and v ∈ Kv

2 find a path Puv between Ku and Kv in the clique forest

3 if such a path exists then Ku,Kv are nodes of the same tree
4 trim Puv so only the first and last clique contain u and v respectively
5 reduce Puv so each edge is a minimal u,v separator
6 extract minimal separators S from Puv

7 call update-tree(u,Puv)
8 insert edges (u,s) for all s ∈ S into the underlying graph
9 else

10 create a new clique Kuv containing u and v
11 connect Ku and Kv to Kuv in F

12 insert (u,v) in the underlying graph

Procedure update-tree(u, Puv)

1 remove u from remove-list of the first edge of Puv

2 foreach clique Ci ∈ Puv do
3 update incoming add-lists of Ci to include u
4 if Ci now contains both u and a non-neighbour x of u then
5 split Ci into two cliques, one containing x, one containing u

6 if head of Puv ⊆ second clique in Puv then
7 remove head of Puv
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