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Abstract

Conditional variational auto-encoders showed im-
proved anomaly detection abilities over standard
variational auto-encoders in literature. This paper
explores the effectiveness of robot pose condition-
ing on thermal anomaly detection in the context
of electrical substations. We introduce a multi-
modal conditional variational auto-encoder frame-
work, capable of reconstructing thermal images
and robot poses. It utilises a multi-objective loss
function consisting of mean squared error image
and pose reconstruction loss and Kullback-Leibler
divergence. Orientation showed to be the most ef-
fective conditioning pose, in the context of anomaly
detection. A well performing network effectively
reconstructs the original assets based on the latent
space representation, contains only slightly blurred
reconstructions in cases of uncertainty, has a struc-
tured latent space as principal component analysis
reveals and shows high separability between the
distributions of the image reconstruction errors for
normal and anomalous samples.

1. Introduction
The demand for energy has reached an all-time
high, and will continue to do so for the foreseeable
future. This can be concluded from the 2024 In-
ternational Energy Agency (IEA) report [1], where
the global energy demand between 2010-2023 was
1.4%, with an estimated growth between 2023-2035
of 0.5%. For this reason, the energy infrastruc-
ture in the Netherlands, but also globally, will be
expanded in the coming years. Alliander, a Dis-
tribution System Operator (DSO) which operates
in approximately a third of the Dutch medium
and high-voltage grid, is required to operate and
also maintain its energy infrastructure. There is
a diminishing amount of technical personnel that
can be found and let alone educated, as per inter-
nal Alliander documents. Due to the requirement
for expansion of the electricity grid and this fact,
an increasing problem can be foreseen with the
indispensable inspection work that allows the in-
frastructure to function correctly.

In the context of energy distribution, substa-
tions play a vital role in electricity networks. They

facilitate the conversion of electricity from high
voltage to medium or low voltages, to ensure that
many energy consumers, from smaller households
to larger companies, are able to meet their indi-
vidual energy needs. Current inspection work is
done manually. This is done in a complex environ-
ment, and could result in possible downtime of the
substation. Robotic inspection could mitigate this
issue. It will also allow for more routine inspec-
tions, without the need for humans. This would
allow for robot inspection, regardless of the time
of day, when a substation is not functioning as it
should. Also inspection would be less prone to
human error, with a larger coverage. This would
benefit not only Alliander, but society as a whole.

These foreseen problems create an interesting
opportunity to use robotics for this not only vital,
but dangerous inspection work. Applying robotics
to this use case, has gained increased interest over
the years. Even though there are definite benefits
associated with robot inspection, it does not come
without its challenges. There exists a significant
research gap in streamlining this technology for
wider adoption. An indispensable step in the robot
inspection pipeline is Simultaneous Localisation
And Mapping (SLAM), this allows the robot to
map its environment, and navigate it accordingly.
The robot pose information which results from
this can enhance understanding of the layout of
a substation. Similarly to how a human operator
subconsciously would use pose information to de-
termine whether an asset is anomalous from that
specific view. This thesis will research whether in-
formation from SLAM, i.e. robot pose information,
can be leveraged to aid in the anomaly detection
process.

1.1 Contributions
The main contributions in this paper are the follow-

ing:

¢ A thermal image and robot pose data acqui-
sition pipeline, allowing for the systematic
collection of segmented thermal images and
pose pairs from a Gazebo simulation.

¢ A multi-modal Conditional Variational Auto-
Encoder (CVAE) framework, which jointly
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encodes thermal image and robot pose in-
formation in the latent space. Using Mean
Squared Error (MSE) loss terms comparing
the decoded and input representations of
both modalities, to ensure a structured la-
tent space which contains image and pose
information.

* Analysing the most effective robot pose condi-
tioning variables and network parameters for
thermal anomaly detection by comparing mis-
classification results to baseline Variational
Auto-Encoder (VAE) networks.

¢ Identifying well performing models by eval-
uating reconstructions, latent space structure
and reconstruction MSE distribution separa-
bility.

2. Related Work

2.1 Visual Anomaly Detection

In order to obtain a better understanding of visual
anomaly detection, a comprehensive survey was
used [2]. Due to the unpredictability of anomalies,
it is often impossible to create a data-set containing
them, since there is no clear pattern which differ-
entiates the anomalies from the normal instances.
For this reason, unsupervised detection is often
used [3] [4] [5], which also will be done in this
paper. Anomaly detection can be further classified
into two categories, image- and pixel-level meth-
ods. Image-level infers whether the entire image is
anomalous, using the entire context that the image
provides. Pixel-level detection does this using rela-
tive image location information. Since the global
context is relevant for anomalies in substation as-
sets, this will be used in this paper.

Another categorisation of the anomaly detec-
tion methods is pre- and post Deep-Learning (DL)
approaches. Pre-DL methods use more traditional
images features such as Scale-Invariant Feature
Transform (SIFT) [6] and Histogram of Oriented
Gradients (HOG) [7]. These features are then used
in order to differentiate between the anomalies
and normal instances. Post-DL methods use deep-
convolutional neural networks due to their ability
to solve computer vision tasks [8] [9] [10]. Since
deep-convolutional neural networks are capable
of analysis high-dimensional data, such as images,
and representing its features [11], a similar archi-
tecture will be utilised in this paper.

2.1.1 Image-Level Anomaly Detection

There are four ways of detecting image-level anoma-
lies. The first method does so, by formulating a
Probability Density Function (PDF). When a sample
is found outside of this PDF, an anomaly has been

found. Some example methods are: Gaussian Mix-
ture Model (GMM) [12], non-parametric estimation
like nearest neighbour or kernel density estimation
[13]. The second approach is one-class classifica-
tion. Using this method, a decision boundary is
attempted to be found. Some example methods
which achieve this are, one-class support vector
machine [14] or support vector data description
[15]. A benefit of using this approach compared
to the aforementioned one, is that it can deal with
a larger amount of samples, since no precise PDF
is calculated. The next method is image recon-
struction. In this approach, normal images are
compressed in a lower dimensional latent space,
based on which reconstructions can be formed. The
working principle behind this, is that anomalous
samples will have a higher reconstruction error
than the normal samples, since they contain in-
formation which the network will not be able to
reconstruct. Auto-encoder networks are used to
achieve this [16]. The final method to perform
image-level detection is self-supervised classifica-
tion. Using this approach, supervision information
is obtained using auxiliary tasks. Examples of this
are finding object rotation or position [17]. This
allows the model to learn visual features, which
can then be used for anomaly detection. In this
paper, reconstruction based anomaly detection will
be used, due to its suitability for high-dimensional
image data, interpretability and straightforward
implementation.

2.2 Conditional Variational Auto-Encoder Anomaly

Detection

The use of CVAE has been applied to the field of
anomaly detection [18]. Here, a CVAE network was
used in order to aid the detection of anomalies in
the trigger system of the CERN particle accelerator.
In this paper the loss function consists of a learned
variance log-likelihood for each feature, in com-
bination with Kullback-Leibler (KL) divergence,
where the model was conditioned on the known
L1 trigger rates. The mentioned paper highlights
the effective use of known conditioning variables
for anomaly detection, which will also be applied
in this paper.
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(a) Asset 5 - Baseline.

(b) Asset 5 - Anomaly. (c) Asset 7 - Baseline. (d) Asset 7 - Anomaly.

Figure 2: Cylindrical camera platform.

Figure 1: Baseline and anomaly textures for the thermal images of the two used

assets.

3. Methodology

The steps required in order to verify the effective-
ness of robot pose conditioning for anomaly detec-
tion will be described in this section. They consist
of data-acquisition, pre-processing, network archi-
tecture and logistic regression.

3.1 Data-Acquisition

First the thermal textures, which were needed to
assess the effectiveness of the anomaly detection
approach, had to be created. This was done using
two models of substation assets, which were pro-
vided by Alliander. For each of the models, two
textures were applied to the assets, which were
then used to generate thermal images.

The primary images, which were used to train
the networks, were generated using the baseline
textures. Also, anomalous images were required.
These images were used to verify whether anoma-
lies can be detected. All these textures were hand-
painted on the models using Blender. An overview
of the applied textures can be seen in Figure 1.

Specification Thermal/Depth
Camera
Horizontal FOV 11/1.1
Image Width (px) 320 / 320
Image Height (px) 256 / 256
fx x-axis focal length (px) | 277 / 277
fy y-axis focal length (px) | 277 / 277
¢y x-axis principle point | 160 / 160
(px)
cy y-axis focal length (px) | 120 / 120
Image Format L16 / L16
Clip Near (m) 0.1/0.1
Clip Far (m) 100 / 100
Update Rate (Hz) 30/ 30

Table 1: Specifications of thermal and depth cameras.

These models where then imported in a Gazebo
simulation, which was used to capture the thermal
images and accompanying pose information. The
robot used in this simulation was a simple cylin-
drical platform, which was 1 m high and had a
radius of 0.5 m. It supported a thermal and depth
camera at the same location on top of the cylinder,
of identical specs. The cylindrical platform can be
seen in Figure 2, and specifications of the cameras
can be found in Table 1.

Capturing the various images from the simula-
tion, was done in a systematic way which ensured
reproducibility. The robot, based on some param-
eters which will be discussed, captured images
at specific distances and angles. This approach,
where the robot spawned at specific distances and
angles relative to asset, ensured the captured data-
set was identical for the anomaly texture compared
to the baseline texture, for both of our used assets.
A birds-eye-view view of this capturing strategy is
given in Figure 3.

Figure 3: Birds-eye-view of image capturing strategy.
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Parameter Power Power
Asset 05 | Asset 07

a (start radius) 8.0 5.5

b (end radius) 10.0 8.0

n, (Number of | 10 10

radii)

ny (number of | 36 36

angles)

i i€{0,1,...,ny -1}

j je{0,1,...,n, -1}

Table 2: Parameters used to compute the radii and angles for
image generation.

The minimum and maximum radii, which were
used to capture images for each of the assets, were
ro and r,—1 respectively. All the individual radii
and angles which were used to capture images,
is described in Equation (1) and (2), using the
accompanying variables described in Table 2.

127
Yi - 1)
-a
pEat] T ()

These were used to describe the robot pose,
which later was used to condition the CVAE net-
works. Here x and y were the position relative
to the asset, and 1) was the z-axis orientation of
the robot. The points in Figure 3, which describe
the robot pose for each of the radii, are shown in
Equation (3).

x,',]' 1’]' . COS(I,DI'))
Pij=|vij| = |rj-sin(i)) (©)
Yi Vi

3.1.1 Masking Thermal Images

A mask was created based on the depth image,
which was needed to isolate the regions of interest
in the thermal images. The depth image contained
some invalid data due to the limits of the virtual
sensor, like oo values, which needed to be filtered
from the image prior to the utilisation of the depth
image as a mask. Removing these values effectively
filtered out all the pixels which showed the sky-box.
Subsequently, the remaining pixels were converted
to 3D-coordinates using the pinhole model. As
shown in Equation (4).

U—Cy

y| = Do) | ~L
y| =D, 0)- |-

z 1

Equation (4) contains the following intrinsic pa-
rameters of the camera. The 2D pixel coordinates
described by (u,v). The x and y focal length are
given using the variables f, and f,. The camera’s
principle point in x- and y-direction are c, and ¢,
respectively. The values used for these variables
are given in Table 1. After the pixels were converted
to real-world coordinates, the ground-plane was
filtered using a vertical threshold. The last step
needed to create the final mask, was isolating spe-
cific depth values. This ensured that the mask only
contained the asset. During data collection, only
one asset was present in the virtual world. This
ensured the possibility of using a simple depth
threshold to isolate the region of interest. A cluster-
ing algorithm such as DBSCAN would have been
more appropriate, had the virtual word contained
multiple assets.

The final step in obtaining the segmented ther-
mal image data, was applying a bit-wise masking
function to the thermal image. The masking ap-
proach effectively processed the depth-data, con-
verted the pixels to real-world coordinates, then
filtered the points based on spatial coordinates, in
order to prepare our dataset for anomaly detection.

3.2 Pre-Processing

Some pre-processing was required before our dataset
could be used for training. The first step when pro-
cessing the already masked thermal images, was
finding the smallest cropping rectangle, which
preserved the thermal data. This valid thermal
data could be identified, since these pixels con-
tained non-zero values. After this rectangle was
determined, there still were some empty pixels,
for instance around the base of the asset, due to
the masking approach utilised. For these empty
pixels, zero’s were inserted. At this stage in the
pre-processing pipeline, not all images had an uni-
form size. This could be attributed to the fact that
not all images were captured at the same distance
from the asset, which resulted in an imbalance
in the data. To mitigate this, zero-padding was
used to ensure the aspect ratio of the images was
maintained, while the images were converted to
the target size of 128 x 64 px. After the target size
was achieved, the images were normalized. Subse-
quently, the data structure was parsed into a tabular
form, which contained the pre-processed thermal
image in the first column, and the robot pose as
given in Equation (3), in the last three column ele-
ments. This effectively resulted in 360 table rows,
which contained different thermal image views
for each of the textures given in Figure 1, captured
using the parameters as described in Table 2. These
four tables then resulted in the complete data-set.
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Figure 4: The full pre-processing pipeline.

An overview of the entire pre-processing pipeline
is given in Figure 4.

3.3 Network Architecture

The main evaluation network followed the CVAE
framework, as introduced in [19], but this was ex-
tended for multiple modalities i.e., pose and image
reconstruction. CVAE networks have showed im-
proved anomaly detection over their VAE counter-
part [18], which was validated for thermal anomaly
detection utilising robot pose conditioning in this
paper. The implemented CVAE networks had a
shared latent space based on the input variables,
from which the network jointly reconstructed im-
ages and poses. Capacity influenced generalization,
and thus over- or under-fitting of the model, as
mentioned in [20]. For this reason, multiple size
configurations were used in order to asses the effect
of capacity, as determined by the latent space size
and encoder/decoder width, on the reconstruction
abilities and thus anomaly detection. The influ-
ence of the size parameter regarding the network
structure is given in Table 3. An overview of the
CVAE network structure is given in Figure 5b, in
which the variable s is the size parameter, and p
the amount of poses used per pose mode given in
Table 4.

The effectiveness of robot pose conditioning
on anomaly detection was compared to a baseline
VAE model, which only used images to represent
the latent space. This network can be seen in
Figure 5a, which used the same parameters as the
CVAE network presented in Figure 5b, but this
only contained an image encoder and decoder. The
assessment strategy regarding the pose modes will
be explained in Section 3.3.7.

3.3.1 Image Encoder

The image encoder architecture was designed in
order to utilize the thermal images, which has a
shape of (128, 64, 1), this was always the size of
the input layer. It utilised a Convolutional Neural
Network (CNN) format, which based on the size
parameter had more convolutional filters per layer,
which can be seen in Table 3. This increased repre-
sentational capacity as mentioned in [20]. Three 2D

convolutional layers were utilised, which ensured
sufficient representative capacity while avoiding
over-fitting, due to the relatively small input image
size. A kernel size of 3 x 3 and a stride of 2 x 2
was used, which is commonly used in auto-encoder
networks due to its balance between computational
efficiency and its contribution to representational
capacity. This ensured that the network effectively
captured features such as textures and edges. The
layers utilised Rectified Linear Unit (ReLU) acti-
vation, which introduced sparsity and thus was
computationally efficient. This also ensured that
vanishing gradients would not occur during train-
ing, as mentioned in [21]. Finally the feature tensor
was flattened and passed to a fully connected dense
layer, which resulted in a vector with dimensions
equal to the latent space.

3.3.2  Pose Encoder

The pose encoder captured the pose component in
the network, in order to represent it in the shared
latent space. The input size of the pose encoder
vector, scaled based on the pose mode used. The
used pose modes will be further clarified in the
Section 3.3.7. The number of neurons in the fully
connected dense layers of the pose encoder, sim-
ilarly to the image encoder, scaled with the size
parameter, as can be seen in Table 3. Again, this
increased representational capacity as mention in
[20]. These layers utilised ReLU activation, simi-
larly to the image encoder. Due to stability issues
in the pose encoder for the largest network size,
one additional layer was utilised, as can be seen in
Table 3.

3.3.3 Latent Space

The goal of the latent space, was to capture in-
formation from the encoders(s), in a compressed
format. In the case of the VAE networks, this was
solely embedded by the image encoder, and in the
case of the CVAE networks, this became a jointly
embedded representation of the images and the
poses. The latent space was then parametrized by
two vectors, namely z,, and z),4 ;2, which were the
mean and logarithmic variance respectively. In the
case of the CVAE networks, both encoders were
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Latent space

Dense (Z,)
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(a) VAE network structure.
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Pose encoder

Pose decoder

(b) CVAE network structure.

Figure 5: Comparison of VAE and CVAE network structures.

concatenated and fed into the dense layers to form
the latent distribution parameters, while for the
VAE networks the encoded image features were
used directly.

In order to facilitate gradient-based optimiza-
tion, direct sampling of the latent space was not
possible. This was due to the fact that direct sam-
pling is non-differentiable, which was a require-
ment needed in order to allow for back-propagation
of the gradients. The reparametrization trick [22],
as seen in Equation (5), allowed for sampling of the
latent space, while still remaining differentiable to
enable back-propagation of the gradients.

zZ =l +exp (% -logaz) ©Oe, €~N(OI (5
3.3.4 Image Decoder

The image decoder was required in order to obtain
reconstructed images, based on the latent repre-
sentation. It mirrored the structure of the image
encoder, but in reverse. Initially, the image decoder
started with a dense layer. This dense layer mapped
the latent vector to a flattened representation of
size 16-4-s, with s being the size parameter as men-
tioned in Table 3. This vector was then reshaped to
(16,4, s), which was then fed into a sequence of 2D
transposed convolutional layers, where the number
of filters per layer can be found in Table 3. A kernel
size of 4 X 4 and stride of 2 X 2 was utilised for
these layers. A slightly larger kernel size was used
compared to the encoder, which ensured the latent

representation was smoothly upscaled towards the
target shape of the original input images. Similarly
to the image encoder, ReLU activation was used.
A final single 2D transposed convolutional filter
layer was used, with a kernel size of 4 x4 and stride
of 1 X 2, to upscale towards the target shape of
(128,64, 1). For this final layer sigmoid activation
was used, which ensured the output values were
in the range of [0, 1].

3.3.5 Pose Decoder

The final part of the CVAE architecture, was the
pose decoder. Its goal was to reconstruct the origi-
nally used pose, based on the jointly formed latent
space structure, as deduced from the input images
and poses. The use of the pose decoder, in com-
bination with the loss function will be described
in Section 3.3.6. It ensured that the information
retained in the latent space was relevant to image
reconstructions, but also captured pose based fea-
tures. The pose decoder consisted of one to three
fully connected layers, based on the pose mode
used as described in Section 3.3.7. The input of
this layer was a vector from the latent space of
dimensions equal to size parameter s from Table
3, and the output was a vector of the same dimen-
sions as the poses used in Table 4. The layer in
the pose decoder used linear activation, since the
poses were continuous values.
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Size | Latent Image En-| Pose En-
(s) Space| coder / De- | coder
coder
16 16 [4, 8, 16] / | [16,32]
[16, 8, 4]
32 32 [8, 16, 32] / | [32, 64]
[32, 16, 8]
64 64 [16,32,64] / | [64, 128]
[64, 32, 16]
128 128 [32, 64,128] | [128, 256]
/ [128, 64,
32]
256 256 [64, 128, | [128, 256,
256] / [256, | 512]
128, 64]

Table 3: Influence of the size parameter on the network
components.

3.3.6  Training Implementation and Loss

The training implementation relied on Adaptive
Moment Estimation (ADAM) [23], with a base
learning rate of 0.0005, which was computationally
efficient, and required no tuning. Each network
was trained over 200 epochs, which was empirically
deduced since the training losses of the stable net-
works converged sufficiently. Smaller batch sizes
resulted in regularization, as mentioned in [24].
Since this was desirable in an auto-encoder archi-
tecture, a batch size of 32 was used. A standard
80/20 train-test split was utilised, where the sam-
ples were shuffled. In order to train the networks, a
multi-objective loss function needed to be devised,
which can be seen in Equation (6). These three
objectives consist of: image reconstruction, latent
space structure, and pose reconstruction.

The first loss term was Limage, and is defined
in Equation (7), as the MSE between the flattened
input image x = [x1,x2, ..., xp]" and flattened re-
constructed image X = [£1, £2, ..., £p]". Maximis-

Network | Pose Mode Piiode

VAE 0: default -

CVAE 1: orientation (W]’

CVAE 1: distance [Vx2 + y2]T

CVAE 2: position [x, y]"

CVAE 2: distance- | [y/x2 + y2, ¢
orientation

CVAE | 3: default [x,y, 0T

Table 4: Overview of network configurations, pose modes, and
Puode- The prefix p: indicates the number of poses used.

space had a similar distribution to a multivariate
Gaussian. This equation utilised the two vectors
which parametrize the latent space, as mentioned
in Section 3.3.3, namely z, and z),4 ;2. The KL-loss

was being scaled by Axy, € {0.0001, 0.001, 0.01, 0.1, 1.0}.

It should be noted that the total loss as described
in Equation (6) was utilised by the CVAE networks.
The VAE networks used only the image- and KL-
loss terms, and their weights. This will be further
clarified in Section 3.3.7. When training the VAE
networks, only non-anomalous thermal images
were used. While for the CVAE networks, non-
anomalous image and pose pairs were both used.
The reasoning for the use of the VAE and CVAE
networks, as of which poses were used for the
CVAE networks, will be further clarified in Section
3.3.7. The hardware which was used for training
consisted of an AMD Ryzen 7 5800H CPU and a
NVIDIA RTX 3070 laptop GPU.

ing the log-likelihood of our data given a Gaussian ~ Ltotal = @ * Limage + B * Lpose + AkL - LxL (6)
distribution, was equivalent to minimising the MSE 1 D
of the reconstructions, as mentioned in [22]. For Linage = D Z(xk — %r)? (7)
this reason MSE was used for our reconstruction k=1
terms. As standard in multi-objective loss func- 1 <&
tions, weights were introduced, where the image ~ Lyose = — Z(Pmode,l = Pmode,l )? (8)
loss was being scaled by a factor @ = 1.0. PiI

The second loss term L5 was defined in Equa- 1S
tion (8), as the MSE between the poses used for Lk = ~5 (1 + Ziog o2,m — zfm — exp(ziog Uz,m))
each pose mode as described in Table 4, and their m=1
reconstructions. These are described by p04. = )
[pmode,lr Ry pmode,p]T and Prode = [ﬁmode,l/ ey ﬁmode,p]T

respectively. The pose loss was being scaled by
pe{0.2, 04, 0.6, 0.8}.

The final loss term is described in Equation (9),
as KL loss [25]. This term ensured that the latent

3.3.7 Pose Evaluation

In order to evaluate the effectiveness of pose con-
ditioning on the anomaly detection abilities of the
networks, multiple pose configurations were eval-
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(a) Influence of KL-weight on misclassification count grouped by latent
size(capacity) and pose mode.

(b) Influence of f-weight on misclassification count grouped by latent
size(capacity) and pose mode.

Figure 6: Network parameter influence on misclassification count grouped by latent size(capacity) and pose mode.

uated. This ranged from a VAE baseline network,
which only used image information to structure
the latent space, to the one to three pose CVAE net-
works, where different combinations of the robot
poses as described in Equation (3), were used in
order to form a structured latent space which cap-
tured both image and pose features. An overview
of these different pose configurations is given in
Table 4. In order to determine how to scale the
pose- and KL-loss, different scaling parameter com-
binations were evaluated.

3.4 Logistic Regression

Binary classification was implemented, in order
to evaluate how well the reconstruction errors
could be utilised for anomaly detection. This was
achieved using logistic regression, which resulted
in an anomaly or normal label for the samples.
First the anomaly- and normal-dataset MSE recon-
structions and their ground-truth binary labels
were collected, ensuring a balance between both
classes. Subsequently, the data-set was split into
a 80/20 train and test-split, after which the train-
ing data was again split into a 80/20 training and
validation split. Subsequently, a five-fold stratified
cross validation implementation was utilised in
order to optimize the decision boundary, which
preserved the balance between anomaly and nor-
mal data in each fold. For every fold, four folds
were used to train the logistic regression model,
where a 20% penalty was implemented for misclas-
sifying anomalies compared to the misclassification
of normal samples. The final fold was then used to
validate the model. The decision boundary which
maximised the F1-score of the validation fold was
then stored. This process was then repeated five
times. The five optimal decision boundaries were
then averaged, and this was used on the final test-
set. For this test-set, the misclassified data-points
and their corresponding MSE were captured.

4. Results

4.1 Pose Mode Evaluation

The misclassifications which occurred during the
logistic regression step, as described in Section
3.4, have been summarized in Figure 6. These
plots describe the influence of network parameters,
indicated by the point colours, on misclassifica-
tion count, grouped by network capacity and pose
mode. The plots were derived from the Table in
Appendix A.

Networks where more than 60% of the image
reconstruction MSEs exceeded 0.01, were classified
as failed attempts, these were not used to generate
the plots in Figure 6. In order to relate the influence
of the latent space size, to the input image size of
128 x 64 px, a capacity metric is introduced. In
which the latent space size is divided by the number
of pixels in the input images. This will yield a per-
pixel capacity, as can be seen in Equation (10).

Latent Size

Network Capacity = 128 X 64 (10)
The default VAE network showed better per-
16

formance, for smaller network capacities of 5755 ~
1.95-1073, 5% ~3.91-10% and g5 ~ 7.81-10>.
These networks seemed to have the best results
using lower KL weights, which indicates that these
unconditioned networks benefit from less regular-
ization, which are lower in capacity.

Networks utilising one pose, namely distance
and orientation seemed to show mixed results. Us-
ing distance many failed reconstructions occurred,
as can be seen by the small amount of points for
this mode in Figure 6, and the strike-through val-
ues in Appendix A. This intuitively seems to make
sense. This parameter is the distance from the asset
where the image was captured, but this informa-
tion is mostly lost in our pre-processing pipeline
due to the padding approach. This leads to a high
level of confusion in these networks, due to the
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Figure 7: Comparison between the reconstructions of normal and anomalous images, for well and poor performing networks,
using correct and incorrect pose information.

conditioning on the distance metric.

Orientation however, is the best performing
pose mode, as can be seen based on low occurring
points in Figure 6. Even-though some well perform-
ing networks occurred at lower capacity networks,
the majority of them occurred at higher ones, indi-
cating that this additional representational capacity
can benefit this pose mode. The best performing
network, with 11 misclassifications, occurred at
a capacity of % ~ 3.13-1072. Larger capacity
networks tend to benefit from moderate to high KL
regularization, as can be seen for the other pose
modes. The influence of § weights seems rela-
tively stable, indicating that the pose information
is successfully captured in the latent space in these
networks.

The two pose modes again seemed to show
mixed results. Just as for the one pose distance
metric, we can again see the same effect of the
distance metric. Resulting in a high level of con-
fusion caused by the conditioning. The position
pose mode, was the best performing lowest ca-
pacity network, of 14 misclassifications. Overall,
showing relatively robust performance at a capac-
ity of 5ies ~ 1.95-107% and g5 ~ 3.91-1073, for
all § parameters. Using higher capacity networks
of #8 ~ 1.56- 1072 and £5 ~ 3.13- 1072, more
regularization seems to be needed, as of moderate
B values. For lower capacity networks, position
occasionally had similar or better performance com-
pared to the other pose modes. However, for high
capacity networks this was not the case.

The final pose mode, 3: default, seems to be
relatively robust, as indicated by the high amount
of points and the low misclassification fluctuation
of the different § parameters. This mode seems to
have the general trend of having better performance

using low capacity networks, with most § weights
and low regularization, but again almost never
outperforming orientation. The well performing
instances can most-likely be accredited to the use
of the orientation metric, which is the most telling
factor in terms of when an anomaly can be seen
or not, since orientation can drastically increase
the networks ability to reconstruct different asset
viewing angles, and thus increasing the MSE when
an anomaly is used in the image input.

The valid CVAE misclassifications have been
compared to their VAE counterparts. This resulted
in the following metrics, which show how often
the pose modes outperform the VAE networks; 1:
distance - % = 24.0%, 1: orientation - i—; =57.4%,
2: distance-rotation - % = 23.1%, 2: position -
18 = 32.0% and 3: default - £ = 30.0%. Highlight-
ing that orientation was the best performing pose
mode.

4.2 Reconstruction Analysis
A more detailed assessment of the network’s out-
puts will be had, in order to obtain a better under-
standing of the performance differences between
CVAE networks. To achieve this, two networks
will be compared, both from the best performing
pose mode orientation. Namely, size 32, § = 0.4,
Axr = 0.1 with 48 misclassifications and size 256,
B =0.2, Akt = 0.01 with 11 misclassifications.
First we will look at the model'’s ability to recon-
struct images. These reconstructions for normal
images can be seen in Figure 7a, and for anomaly
images in Figure 7b. For both these figures, the
first image column contain the images and pose
used as an input to the trained networks. The
second and third column contain reconstructions
of this input for a correct and incorrect pose, for
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Figure 8: Comparison of PCA for a well and poor performing network.

the well forming network, while the fourth and
fifth column contain the reconstructions for the
poor performing model. More of these reconstruc-
tions can be found in Appendix B and C, for the 11
and 48 misclassification networks respectively. A
colour-mapping was applied to the thermal images
in order to easily see the thermal differences in
them.

The differences between the well and poor per-
forming models is immediately apparent. In both
Figure 7a and 7b, we can see that the 11 misclas-
sification network is able to almost always fully
reconstruct the assets based on their latent repre-
sentation, while the 48 misclassification network
fails to do so. In both networks we can see the
effect of uncertainty on the network, where the
reconstruction contains blurred sections where the
networks fails to fully reconstruct the images. The
11 misclassification network only has this blurring
at sections of high complexity, such as the individ-
ual isolator disks. While for the 48 misclassification
network has blurring in almost the entire image.
This blurring only occurs less for this network when
the asset can easily be distinguished, as can be seen
in the bottom row of images in Figure 7b. Here,
the three isolator heads are much different than
other image representations. It can still be seen
that the network is uncertain about the height of
the centremost isolator though. The effect of pose
information on the well performing network can be
seen in the top row of Figure 7a. The network forms
a mixed representation between the input image
and the image which would occur at ¢ = 2.83.
This results in the rightmost isolator head being
elongated, and the diagonal frame which connects
the head to the base appearing in the right of the
image. This shows the networks ability to interpret
image and pose features in order to form a mixed

representation of them. This only occurs when
the network unable to distinguish the asset’s repre-
sentation based on image features alone, this can
be seen from the middle row of Figure 7a, where
the three isolator heads are easy to differentiate,
resulting in only slight blurring around the heads.
The general trend of the well performing network
is that it can reconstruct the normal image from
the anomalous ones. In the top row of Figure 7b,
we can see that this is not always the case. Here,
some artifacts can be seen, which possibly are rep-
resentations where asset 5 can be seen. This can
occur when some ambiguity is seen between the
two assets. The presence of these reconstruction
artifacts can be desirable, since this increases the
reconstruction error, which allows the anomalies
to be detected more easily. There is a trade-off
though, the interpretability of the reconstructions
could diminish, when too many unrelated features
constantly appear in the image.

4.3 Latent Space Analysis

The latent space of the models mentioned in Sec-
tion 4.2 will be analysed, to gain more insights on
what the differentiating factors are between well
and poor performing models. In order to do this,
a Principal Component Analysis (PCA) was con-
ducted on the Z, variable of the latent space. This
results in the dimensionality of the latent variable
being reduced to the three main contributing ones.
The can be seen for the 11 and 48 misclassification
networks in Figure 8a and 8b respectively.

A clear distinction between the well and poor
performing model, is the distribution of the points.
The well performing model seems to follow cyclical
patterns, where the pose is distributed relatively
smoothly, with better separability. The poor per-
forming model has clear discontinuities, especially
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at1 = 0 = 2rt. This highlights the network’s ability
to represent data points, and interpret interme-
diate ones. We can also determine that the well
performing model uses more volume to represent
these points, where a larger 3D domain of the PCA
axis is utilised. The PCA on the models’ zj,;
latent variable follows the same general trend as
the Z, ones. Where the well performing model
structures the uncertainty variable in well orga-
nized cyclical patterns, in a larger domain. For the
poor performing model this is more discontinuous
and compressed. These Can be found in Appendix
D.

4.4 Sample Distribution Analysis
Another way to differentiate well from poor per-
forming models is the Gaussian distributions be-
tween the normal and the anomalous image recon-
struction MSEs. When an error is calculated, which
could correspond to both normal and anomalous
distributions, i.e. when there is overlap between
them, logistic regression performance suffers.
Two formulas will be introduced, to evaluate
the performance of all valid models with regards
to separability between normal and anomalous
samples. These two functions describe the distance
between the mean of the normal and anomalous
distributions, normalized over the normal stan-
dard deviation in Equation (11) and the relative
uncertainty of the anomaly distribution in Equa-
tion (12). These two functions can be used as
measure to determine separability between the dis-
tributions. However, since Gaussian distributions
are assumed, while multi-modal distributions can
appear in the MSE distribution, inconsistencies can
occur.

(Ha = pN)
Sy = v (11)

The presented plot in Figure 9 shows the effect
of B pose weight during training on misclassifica-
tions. Where the centre point colour represents
the misclassification count, and the outer colour
the used p weights. The misclassification count
of the top 3% performing models is written as a
label close to the points. More separability analysis
plots can be found in Appendix E, but these will
not be discussed since these align with previously
discussed results.

The top performing models generally speaking
appear in the top right quadrant of the plot, where
there is a large difference between the means of
the distributions, and the normal distribution is
less skewed than the anomalous one. The most
appearing 3 values here, range from VAE networks
no f to moderate values of f = 0.6. From this

So=— (12)
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Figure 9: Separability analysis of misclassification count and
B-weight influence.

we can conclude that § influence can lead to well
performing models, but it is not strictly necessary.

5. Conclusions

In this work, a multi-modal CVAE framework was
presented, which was used to evaluate the perfor-
mance of thermal-image based anomaly detection.
The effect and influence of robot pose based condi-
tioning and network parameters was compared to
a baseline VAE network, using empirical results to
evaluate the most effective conditioning variable
which enhances anomaly detection abilities. These
empirical results include misclassification results,
reconstruction abilities, PCA of the latent variables
and MSE distribution separability analysis.

The most informative conditioning variable was
orientation. This showed improved anomaly de-
tection abilities by roughly 57.4% compared to the
VAE baseline models. Distance based conditioning
showed to be the worst performing model, resulting
in significantly worse anomaly detection compared
to orientation. This can likely be accredited to the
pre-processing pipeline, where distance informa-
tion is lost due to the zero padding approach.

The effect of network capacity, which is related
to network size, was also analysed. Networks
which benefit from lower KL regularization are of
smaller capacity, especially VAE models. CVAE
networks, especially using the well performing
orientation conditioning, moderate regularization
and pose reconstruction weight during training
show the best results. Stable performance for dif-
ferent pose reconstruction weights, are a tell for a
suitable conditioning variable.

The effect of well and poor performing models

Misclassification Count
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on the structure of the latent variables was also
conducted using PCA. Well performing models
showed cyclical patterns, where the conditioning
variable was continuously represented. This re-
sulted in correct reconstructions, where blurring
could be seen in places of uncertainty. In poor
performing models the PCA of the latent variables
showed discontinuous pose representation, where
less of the 3D domain was effectively utilised, re-
sulting in reconstructions which almost entirely
showed blurring.

A separability metric was introduced, which
showed how much the image reconstruction MSE
distributions of the normal and anomalous sam-
ples differed. This revealed a general trend which
well performing models have, where separability
is high. This was not always accurate, since this
metric assumes Gaussian distributions. In practise
this metric may not always hold, since the recon-
struction distributions may exhibit multi-modality.

To conclude, this work shows that pose con-
ditioning can have a positive effect on anomaly
detection abilities, when the weights of the KL di-
vergence and the reconstruction terms are properly
scaled. It also revealed that a simple, weighted
multi-component loss function is difficult to bal-
ance. In order to fully leverage the benefit of
pose condition on anomaly detection, future work
should explore different approaches which balance
these loss terms. Additionally, a more robust sepa-
rability metric, which takes the multi-modal nature
of the MSE image reconstruction distributions into
account, should be implemented to gain further
insights into when a model shows better anomaly
detection performance.
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Appendix

A Misclassification Count

size (s) Akr  0: Default 1: Distance 1: Orientation % Dlstar}ce— 2: Position 3: Default

Orientation

16 0.000100 15 20122|28|23 23|17|2+|28 19|19|34|41 19|21|17|18 20|19|21]|18
16 0.001000 18 25|23|24|24 16]28|18|26 26|21|27|22 1720|1821 23|23|18]|25
16 0.010000 22 22(24]27|21 18|23|35|23 22(33]19|25 14|21]18]20 19|23]|18]18
16 0.100000 29 46|25|35|50 29|306|25|23 44|27|46|24 19|23|40|23 2338|2418
16 1.000000 33 28|22|22|24 32|32(|29(32 31|49(|26|24 31|50|46|50 3949|4642
32 0.000100 12 33|25(25(21 22]19]20]22 33|22|19|21 16]|18|20|27 20|21|16|24
32 0.001000 17 2622|124 16]22]23]|19 19]|18|21|26 20|19|24|19 21|20]|20]20
32 0.010000 23 22]24(33(23 17|20]20|16 20]21]33|31 19]|23]21]20 22|25|19|23
32 0.100000 36 2346|2827 26]48|31|25 20|36|25|33 25|27]|22|20 28|21|21|24
32 1.000000 33 26|26|21|24 31|28|32|29 33|27|25|26 48|45|48|41 44|35|30(45
64 0.000100 18 33|33|33|33 33|46|33|21 33(|33|33|33 23|24|21|33 33|23|33|29
64 0.001000 20 17|33|33|33 18|19]17|33 19|33|33|33 21|25|21|24 22|23|24]|22
64 0.010000 22 1712313333 18|17]18|17 22|22|33|33 22|22|24|22 21|24|19]23
64 0.100000 31 2414212230 24]27]21|22 35|30|33|25 18]49]21|19 35|28|20|24
64 1.000000 33 23|25|27|22 306|31|28|30 45|50|45|45 44|46|42|43 44|56|50|46
128 0.000100 25 33|33|33|33 14|33|33|28 33|33|33|33 22|33|33|33 22|33|33|33
128 0.001000 16 3333|3333 18|19|12]21 33|33|33|33 21|19|24|33 22|20]|20|33
128 0.010000 19 33|33|33|33 17]17]17]18 33|33|33|33 20|22|19|25 23]21|22]|21
128 0.100000 40 33|33|33|33 18|46]22|24 33(|33|33|33 22|23|21|33 19|24|22|18
128 1.000000 32 33|33|33|33 30|30|28|45 33|33|25|33 44|49]|27|35 5041|5047
256 0.000100 33 33|33|33|33 33|33|33|33 33|33|33|33 33|33|33|33 33|33|33|33
256 0.001000 33 3333|3333 14|14|14|33 33|33|33|33 33|24|33|33 22|33|33|33
256 0.010000 33 33|33|33|33 11|15|12|16 33|33|33|33 24|17|24|24 21|21|22|22
256 0.100000 33 33|33|33|33 33|38|30]|29 33|33|33|33 23|25|16|25 4425|4320
256 1.000000 33 33|33|33|33 33|33|33|33 33|33|33|33 47|45|27|34 44|33|46|50

Table 5: All misclassifications of various pose modes and network parameters.

The first two columns indicate which size and KL weight were used. The remaining columns indicate
which pose modes were used, as described in Table 4. The VAE networks contain one number, while
the CVAE networks have four numbers per configuration. This due to the different f parameters used:
p=0.2|p=0.4|p =0.6|f = 0.8, while the VAE equivalent only used KL- and image reconstruction loss,
and thus no  parameter was utilised. The misclassifications were highlighted to show their significance.
Red numbers indicate the best performing model per row, i.e. per size and Ax; combination, while
blue numbers indicate the best performing network per pose mode. Green numbers show the best
performance for both row and pose mode. Some networks yielded sub-optimal reconstructions, were
the images failed to show the original asset. Networks where more than 60% of the image reconstruction
MSEs exceeded 0.01, were classified as failed attempts. In such cases, the corresponding misclassification
counts are shown with a strike-through.
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B Well Performing Network
B.1 Normal Image Reconstructions

Sample 0 Reconstruction with Pose Incorrect Pose: y=2.83
Pose: y=1.26 MSE: 0.002687 MSE: 0.004942
10 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
Sample 1 Reconstruction with Pose Incorrect Pose: y=2.29
Pose: y=0.72 MSE: 0.003234 MSE: 0.005876
10 1.0
% 0.8 0.8 i i
H
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
Sample 2 Reconstruction with Pose Incorrect Pose: y=4.80
Pose: y=3.23 MSE: 0.001273 MSE: 0.001760
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
Sample 3 Reconstruction with Pose Incorrect Pose: y=0.32
Pose: =5.03 MSE: 0.001857 MSE: 0.004824
10 1.0
0.8 a 0.8
Bl
0.6 l % o 0.6
0.4 0.4
0.2 0.2
0.0 0.0
Sample 4 Reconstruction with Pose Incorrect Pose: y=4.26
Pose: y=2.69 MSE: 0.006305 MSE: 0.008828
10 10
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0

Figure 10: Normal reconstructions of 1: orientation, size 256, § = 0.2, Ak, = 0.01 with 11 misclassifications.
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B.2  Anomaly Asset 7 Reconstructions

Sample 0
Pose: y=2.69

Sample 1
Pose: y=4.49

I

Sample 2
Pose: y=3.41

Sample 3
Pose: y=6.28

%

Sample 4
Pose: y=1.62
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Reconstruction with Pose

MSE: 0.013184

Reconstruction with Pose
MSE: 0.006800

Reconstruction with Pose
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Reconstruction with Pose
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Reconstruction with Pose
MSE: 0.007333
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MSE: 0.009270

Incorrect Pose: y=6.06

MSE: 0.012173

Incorrect Pose: y=4.98

MSE: 0.007242

T
i

i

Incorrect Pose: y=1.57

MSE: 0.006251

Incorrect Pose: y=3.19

MSE: 0.007085

Figure 11: Asset 7 reconstruction of 1: orientation, size 256, f = 0.2, Axz = 0.01 with 11 misclassifications.
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B.3 Anomaly Asset 5 Reconstructions

Sample 0 Reconstruction with Pose
Pose: y=1.80 MSE: 0.008487
1.0 1.0
0.8 = 0.8
0.6 ﬂ 0.6
0.4 0.4
0.2 0.2
0.0 0.0

Sample 1 Reconstruction with Pose
Pose: y=0.72 MSE: 0.002333

1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0

Sample 2 Reconstruction with Pose

Pose: y=4.13 MSE: 0.007288
10 : Lo
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
Sample 3 Reconstruction with Pose
Pose: y=4.49 MSE: 0.006945
: 10 Lo
0.8 0.8
0.6 0.6
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0.0 0.0
Sample 4 Reconstruction with Pose

Pose: y=1.44 MSE: 0.002733
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Figure 12: Asset 5 reconstructions of 1: orientation, size 256, = 0.2, Axr. = 0.01 with 11 misclassifications.
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C Poor Performing Network
C.1 Normal Image Reconstructions

Sample 0
Pose: y=1.26

Sample 1
Pose: y=0.72

%

Sample 2
Pose: y=3.23

Sample 3
Pose: =5.03

Sample 4
Pose: y=2.69

Reconstruction with Pose
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Figure 13: Normal reconstructions of 1: orientation, size 32, § = 0.4, Ak, = 0.1 with 48 misclassifications.
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C.2  Anomaly Asset 7 Reconstructions

Sample 0
Pose: y=2.69

Sample 1
Pose: y=4.49

i

Sample 2
Pose: y=3.41

Sample 3
Pose: y=6.28

i

Sample 4
Pose: y=1.62

0.0
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Reconstruction with Pose

MSE: 0.017314

Reconstruction with Pose
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Reconstruction with Pose
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Reconstruction with Pose
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MSE: 0.011580

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0

Incorrect Pose: y=4.26
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Incorrect Pose: y=1.57

MSE: 0.016583

Incorrect Pose: y=3.19

MSE: 0.016502

Figure 14: Asset 7 reconstructions of 1: orientation, size 32, § = 0.4, Axr = 0.1 with 48 misclassifications.
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C.3 Anomaly Asset 5 Reconstructions

Sample 0 Reconstruction with Pose Incorrect Pose: y=3.37
Pose: y=1.80 MSE: 0.051748 MSE: 0.046933
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
Sample 1 Reconstruction with Pose Incorrect Pose: y=2.29
Pose: y=0.72 MSE: 0.007349 MSE: 0.007153
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
Sample 2 Reconstruction with Pose Incorrect Pose: y=5.70
Pose: y=4.13 Lo MSE: 0.029964 Lo MSE: 0.030042
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
Sample 3 Reconstruction with Pose Incorrect Pose: y=6.06
Pose: y=4.49 Lo MSE: 0.030937 Lo MSE: 0.038225
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
Sample 4 Reconstruction with Pose Incorrect Pose: y=3.01
Pose: y=1.44 Lo MSE: 0.006795 Lo MSE: 0.006320
0.8 0.8
l I E 0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0

Figure 15: Asset 5 reconstructions of 1: orientation, size 32, § = 0.4, Axr = 0.1 with 48 misclassifications.
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Appendix

D Zlog g2 PCA
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Figure 16: Zyog 52 PCA of 1: orientation, size 256, f = 0.2, Ax;, = 0.01 with 11 misclassifications.
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E Separability Analysis
E.1 Pose Mode Separability Analysis
22 Pose Mode P - %5
@® 0: default
@ 1:distance 1 1414
@® 1 orientation s [ ] .. e - 50
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Figure 18: Separability analysis of misclassification count and pose mode influence.
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E.2  Size Separability Analysis
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Figure 19: Separability analysis of misclassification count and size influence.

Misclassification Count



Appendix 26

E.3 KL-weight Separability Analysis
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Figure 20: Separability analysis of misclassification count and Ak influence.
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