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Abstract
Conditional variational auto-encoders showed im-

proved anomaly detection abilities over standard

variational auto-encoders in literature. This paper

explores the effectiveness of robot pose condition-

ing on thermal anomaly detection in the context

of electrical substations. We introduce a multi-

modal conditional variational auto-encoder frame-

work, capable of reconstructing thermal images

and robot poses. It utilises a multi-objective loss

function consisting of mean squared error image

and pose reconstruction loss and Kullback-Leibler

divergence. Orientation showed to be the most ef-

fective conditioning pose, in the context of anomaly

detection. A well performing network effectively

reconstructs the original assets based on the latent

space representation, contains only slightly blurred

reconstructions in cases of uncertainty, has a struc-

tured latent space as principal component analysis

reveals and shows high separability between the

distributions of the image reconstruction errors for

normal and anomalous samples.

1. Introduction
The demand for energy has reached an all-time

high, and will continue to do so for the foreseeable

future. This can be concluded from the 2024 In-

ternational Energy Agency (IEA) report [1], where

the global energy demand between 2010-2023 was

1.4%, with an estimated growth between 2023-2035

of 0.5%. For this reason, the energy infrastruc-

ture in the Netherlands, but also globally, will be

expanded in the coming years. Alliander, a Dis-

tribution System Operator (DSO) which operates

in approximately a third of the Dutch medium

and high-voltage grid, is required to operate and

also maintain its energy infrastructure. There is

a diminishing amount of technical personnel that

can be found and let alone educated, as per inter-

nal Alliander documents. Due to the requirement

for expansion of the electricity grid and this fact,

an increasing problem can be foreseen with the

indispensable inspection work that allows the in-

frastructure to function correctly.

In the context of energy distribution, substa-

tions play a vital role in electricity networks. They

facilitate the conversion of electricity from high

voltage to medium or low voltages, to ensure that

many energy consumers, from smaller households

to larger companies, are able to meet their indi-

vidual energy needs. Current inspection work is

done manually. This is done in a complex environ-

ment, and could result in possible downtime of the

substation. Robotic inspection could mitigate this

issue. It will also allow for more routine inspec-

tions, without the need for humans. This would

allow for robot inspection, regardless of the time

of day, when a substation is not functioning as it

should. Also inspection would be less prone to

human error, with a larger coverage. This would

benefit not only Alliander, but society as a whole.

These foreseen problems create an interesting

opportunity to use robotics for this not only vital,

but dangerous inspection work. Applying robotics

to this use case, has gained increased interest over

the years. Even though there are definite benefits

associated with robot inspection, it does not come

without its challenges. There exists a significant

research gap in streamlining this technology for

wider adoption. An indispensable step in the robot

inspection pipeline is Simultaneous Localisation

And Mapping (SLAM), this allows the robot to

map its environment, and navigate it accordingly.

The robot pose information which results from

this can enhance understanding of the layout of

a substation. Similarly to how a human operator

subconsciously would use pose information to de-

termine whether an asset is anomalous from that

specific view. This thesis will research whether in-

formation from SLAM, i.e. robot pose information,

can be leveraged to aid in the anomaly detection

process.

1.1 Contributions
The main contributions in this paper are the follow-

ing:

• A thermal image and robot pose data acqui-

sition pipeline, allowing for the systematic

collection of segmented thermal images and

pose pairs from a Gazebo simulation.

• A multi-modal Conditional Variational Auto-

Encoder (CVAE) framework, which jointly
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encodes thermal image and robot pose in-

formation in the latent space. Using Mean

Squared Error (MSE) loss terms comparing

the decoded and input representations of

both modalities, to ensure a structured la-

tent space which contains image and pose

information.

• Analysing the most effective robot pose condi-

tioning variables and network parameters for

thermal anomaly detection by comparing mis-

classification results to baseline Variational

Auto-Encoder (VAE) networks.

• Identifying well performing models by eval-

uating reconstructions, latent space structure

and reconstruction MSE distribution separa-

bility.

2. Related Work
2.1 Visual Anomaly Detection
In order to obtain a better understanding of visual

anomaly detection, a comprehensive survey was

used [2]. Due to the unpredictability of anomalies,

it is often impossible to create a data-set containing

them, since there is no clear pattern which differ-

entiates the anomalies from the normal instances.

For this reason, unsupervised detection is often

used [3] [4] [5], which also will be done in this

paper. Anomaly detection can be further classified

into two categories, image- and pixel-level meth-

ods. Image-level infers whether the entire image is

anomalous, using the entire context that the image

provides. Pixel-level detection does this using rela-

tive image location information. Since the global

context is relevant for anomalies in substation as-

sets, this will be used in this paper.

Another categorisation of the anomaly detec-

tion methods is pre- and post Deep-Learning (DL)

approaches. Pre-DL methods use more traditional

images features such as Scale-Invariant Feature

Transform (SIFT) [6] and Histogram of Oriented

Gradients (HOG) [7]. These features are then used

in order to differentiate between the anomalies

and normal instances. Post-DL methods use deep-

convolutional neural networks due to their ability

to solve computer vision tasks [8] [9] [10]. Since

deep-convolutional neural networks are capable

of analysis high-dimensional data, such as images,

and representing its features [11], a similar archi-

tecture will be utilised in this paper.

2.1.1 Image-Level Anomaly Detection
There are four ways of detecting image-level anoma-

lies. The first method does so, by formulating a

Probability Density Function (PDF). When a sample

is found outside of this PDF, an anomaly has been

found. Some example methods are: Gaussian Mix-

ture Model (GMM) [12], non-parametric estimation

like nearest neighbour or kernel density estimation

[13]. The second approach is one-class classifica-

tion. Using this method, a decision boundary is

attempted to be found. Some example methods

which achieve this are, one-class support vector

machine [14] or support vector data description

[15]. A benefit of using this approach compared

to the aforementioned one, is that it can deal with

a larger amount of samples, since no precise PDF

is calculated. The next method is image recon-

struction. In this approach, normal images are

compressed in a lower dimensional latent space,

based on which reconstructions can be formed. The

working principle behind this, is that anomalous

samples will have a higher reconstruction error

than the normal samples, since they contain in-

formation which the network will not be able to

reconstruct. Auto-encoder networks are used to

achieve this [16]. The final method to perform

image-level detection is self-supervised classifica-

tion. Using this approach, supervision information

is obtained using auxiliary tasks. Examples of this

are finding object rotation or position [17]. This

allows the model to learn visual features, which

can then be used for anomaly detection. In this

paper, reconstruction based anomaly detection will

be used, due to its suitability for high-dimensional

image data, interpretability and straightforward

implementation.

2.2 Conditional Variational Auto-Encoder Anomaly
Detection

The use of CVAE has been applied to the field of

anomaly detection [18]. Here, a CVAE network was

used in order to aid the detection of anomalies in

the trigger system of the CERN particle accelerator.

In this paper the loss function consists of a learned

variance log-likelihood for each feature, in com-

bination with Kullback-Leibler (KL) divergence,

where the model was conditioned on the known

L1 trigger rates. The mentioned paper highlights

the effective use of known conditioning variables

for anomaly detection, which will also be applied

in this paper.
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(a) Asset 5 - Baseline. (b) Asset 5 - Anomaly. (c) Asset 7 - Baseline. (d) Asset 7 - Anomaly.

Figure 1: Baseline and anomaly textures for the thermal images of the two used

assets.

Figure 2: Cylindrical camera platform.

3. Methodology
The steps required in order to verify the effective-

ness of robot pose conditioning for anomaly detec-

tion will be described in this section. They consist

of data-acquisition, pre-processing, network archi-

tecture and logistic regression.

3.1 Data-Acquisition
First the thermal textures, which were needed to

assess the effectiveness of the anomaly detection

approach, had to be created. This was done using

two models of substation assets, which were pro-

vided by Alliander. For each of the models, two

textures were applied to the assets, which were

then used to generate thermal images.

The primary images, which were used to train

the networks, were generated using the baseline

textures. Also, anomalous images were required.

These images were used to verify whether anoma-

lies can be detected. All these textures were hand-

painted on the models using Blender. An overview

of the applied textures can be seen in Figure 1.

Specification Thermal/Depth
Camera

Horizontal FOV 1.1 / 1.1

Image Width (px) 320 / 320

Image Height (px) 256 / 256

𝑓𝑥 x-axis focal length (px) 277 / 277

𝑓𝑦 y-axis focal length (px) 277 / 277

𝑐𝑥 x-axis principle point

(px)

160 / 160

𝑐𝑦 y-axis focal length (px) 120 / 120

Image Format L16 / L16

Clip Near (m) 0.1 / 0.1

Clip Far (m) 100 / 100

Update Rate (Hz) 30 / 30

Table 1: Specifications of thermal and depth cameras.

These models where then imported in a Gazebo

simulation, which was used to capture the thermal

images and accompanying pose information. The

robot used in this simulation was a simple cylin-

drical platform, which was 1 m high and had a

radius of 0.5 m. It supported a thermal and depth

camera at the same location on top of the cylinder,

of identical specs. The cylindrical platform can be

seen in Figure 2, and specifications of the cameras

can be found in Table 1.

Capturing the various images from the simula-

tion, was done in a systematic way which ensured

reproducibility. The robot, based on some param-

eters which will be discussed, captured images

at specific distances and angles. This approach,

where the robot spawned at specific distances and

angles relative to asset, ensured the captured data-

set was identical for the anomaly texture compared

to the baseline texture, for both of our used assets.

A birds-eye-view view of this capturing strategy is

given in Figure 3.

Figure 3: Birds-eye-view of image capturing strategy.



3. Methodology 4

Parameter Power
Asset 05

Power
Asset 07

𝑎 (start radius) 8.0 5.5

𝑏 (end radius) 10.0 8.0

𝑛𝑟 (Number of

radii)

10 10

𝑛𝜓 (number of

angles)

36 36

𝑖 𝑖 ∈ {0, 1, . . . , 𝑛𝜓 − 1}
𝑗 𝑗 ∈ {0, 1, . . . , 𝑛𝑟 − 1}

Table 2: Parameters used to compute the radii and angles for

image generation.

The minimum and maximum radii, which were

used to capture images for each of the assets, were

𝑟0 and 𝑟𝑛−1 respectively. All the individual radii

and angles which were used to capture images,

is described in Equation (1) and (2), using the

accompanying variables described in Table 2.

𝜓𝑖 =
𝑖 · 2𝜋
𝑛𝜓 − 1

(1)

𝑟 𝑗 = 𝑎 + 𝑗 · 𝑏 − 𝑎
𝑛𝑟 − 1

(2)

These were used to describe the robot pose,

which later was used to condition the CVAE net-

works. Here 𝑥 and 𝑦 were the position relative

to the asset, and 𝜓 was the z-axis orientation of

the robot. The points in Figure 3, which describe

the robot pose for each of the radii, are shown in

Equation (3).

P𝑖 , 𝑗 =

𝑥𝑖 , 𝑗
𝑦𝑖 , 𝑗
𝜓𝑖

 =

𝑟 𝑗 · cos(𝜓𝑖))
𝑟 𝑗 · sin(𝜓𝑖))

𝜓𝑖

 (3)

3.1.1 Masking Thermal Images
A mask was created based on the depth image,

which was needed to isolate the regions of interest

in the thermal images. The depth image contained

some invalid data due to the limits of the virtual

sensor, like ∞ values, which needed to be filtered

from the image prior to the utilisation of the depth

image as a mask. Removing these values effectively

filtered out all the pixels which showed the sky-box.

Subsequently, the remaining pixels were converted

to 3D-coordinates using the pinhole model. As

shown in Equation (4).
𝑥
𝑦
𝑧

 = D(𝑢, 𝑣) ·

𝑢−𝑐𝑥
𝑓𝑥

− 𝑣−𝑐𝑦
𝑓𝑦

1

 (4)

Equation (4) contains the following intrinsic pa-

rameters of the camera. The 2D pixel coordinates

described by (𝑢, 𝑣). The x and y focal length are

given using the variables 𝑓𝑥 and 𝑓𝑦 . The camera’s

principle point in x- and y-direction are 𝑐𝑥 and 𝑐𝑦
respectively. The values used for these variables

are given in Table 1. After the pixels were converted

to real-world coordinates, the ground-plane was

filtered using a vertical threshold. The last step

needed to create the final mask, was isolating spe-

cific depth values. This ensured that the mask only

contained the asset. During data collection, only

one asset was present in the virtual world. This

ensured the possibility of using a simple depth

threshold to isolate the region of interest. A cluster-

ing algorithm such as DBSCAN would have been

more appropriate, had the virtual word contained

multiple assets.

The final step in obtaining the segmented ther-

mal image data, was applying a bit-wise masking

function to the thermal image. The masking ap-

proach effectively processed the depth-data, con-

verted the pixels to real-world coordinates, then

filtered the points based on spatial coordinates, in

order to prepare our dataset for anomaly detection.

3.2 Pre-Processing
Some pre-processing was required before our dataset

could be used for training. The first step when pro-

cessing the already masked thermal images, was

finding the smallest cropping rectangle, which

preserved the thermal data. This valid thermal

data could be identified, since these pixels con-

tained non-zero values. After this rectangle was

determined, there still were some empty pixels,

for instance around the base of the asset, due to

the masking approach utilised. For these empty

pixels, zero’s were inserted. At this stage in the

pre-processing pipeline, not all images had an uni-

form size. This could be attributed to the fact that

not all images were captured at the same distance

from the asset, which resulted in an imbalance

in the data. To mitigate this, zero-padding was

used to ensure the aspect ratio of the images was

maintained, while the images were converted to

the target size of 128 x 64 px. After the target size

was achieved, the images were normalized. Subse-

quently, the data structure was parsed into a tabular

form, which contained the pre-processed thermal

image in the first column, and the robot pose as

given in Equation (3), in the last three column ele-

ments. This effectively resulted in 360 table rows,

which contained different thermal image views

for each of the textures given in Figure 1, captured

using the parameters as described in Table 2. These

four tables then resulted in the complete data-set.
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Figure 4: The full pre-processing pipeline.

An overview of the entire pre-processing pipeline

is given in Figure 4.

3.3 Network Architecture
The main evaluation network followed the CVAE

framework, as introduced in [19], but this was ex-

tended for multiple modalities i.e., pose and image

reconstruction. CVAE networks have showed im-

proved anomaly detection over their VAE counter-

part [18], which was validated for thermal anomaly

detection utilising robot pose conditioning in this

paper. The implemented CVAE networks had a

shared latent space based on the input variables,

from which the network jointly reconstructed im-

ages and poses. Capacity influenced generalization,

and thus over- or under-fitting of the model, as

mentioned in [20]. For this reason, multiple size

configurations were used in order to asses the effect

of capacity, as determined by the latent space size

and encoder/decoder width, on the reconstruction

abilities and thus anomaly detection. The influ-

ence of the size parameter regarding the network

structure is given in Table 3. An overview of the

CVAE network structure is given in Figure 5b, in

which the variable 𝑠 is the size parameter, and 𝑝
the amount of poses used per pose mode given in

Table 4.

The effectiveness of robot pose conditioning

on anomaly detection was compared to a baseline

VAE model, which only used images to represent

the latent space. This network can be seen in

Figure 5a, which used the same parameters as the

CVAE network presented in Figure 5b, but this

only contained an image encoder and decoder. The

assessment strategy regarding the pose modes will

be explained in Section 3.3.7.

3.3.1 Image Encoder
The image encoder architecture was designed in

order to utilize the thermal images, which has a

shape of (128, 64, 1), this was always the size of

the input layer. It utilised a Convolutional Neural

Network (CNN) format, which based on the size

parameter had more convolutional filters per layer,

which can be seen in Table 3. This increased repre-

sentational capacity as mentioned in [20]. Three 2𝐷

convolutional layers were utilised, which ensured

sufficient representative capacity while avoiding

over-fitting, due to the relatively small input image

size. A kernel size of 3 × 3 and a stride of 2 × 2

was used, which is commonly used in auto-encoder

networks due to its balance between computational

efficiency and its contribution to representational

capacity. This ensured that the network effectively

captured features such as textures and edges. The

layers utilised Rectified Linear Unit (ReLU) acti-

vation, which introduced sparsity and thus was

computationally efficient. This also ensured that

vanishing gradients would not occur during train-

ing, as mentioned in [21]. Finally the feature tensor

was flattened and passed to a fully connected dense

layer, which resulted in a vector with dimensions

equal to the latent space.

3.3.2 Pose Encoder
The pose encoder captured the pose component in

the network, in order to represent it in the shared

latent space. The input size of the pose encoder

vector, scaled based on the pose mode used. The

used pose modes will be further clarified in the

Section 3.3.7. The number of neurons in the fully

connected dense layers of the pose encoder, sim-

ilarly to the image encoder, scaled with the size

parameter, as can be seen in Table 3. Again, this

increased representational capacity as mention in

[20]. These layers utilised ReLU activation, simi-

larly to the image encoder. Due to stability issues

in the pose encoder for the largest network size,

one additional layer was utilised, as can be seen in

Table 3.

3.3.3 Latent Space
The goal of the latent space, was to capture in-

formation from the encoders(s), in a compressed

format. In the case of the VAE networks, this was

solely embedded by the image encoder, and in the

case of the CVAE networks, this became a jointly

embedded representation of the images and the

poses. The latent space was then parametrized by

two vectors, namely z𝜇 and z
log 𝜎2 , which were the

mean and logarithmic variance respectively. In the

case of the CVAE networks, both encoders were
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(a) VAE network structure.

(b) CVAE network structure.

Figure 5: Comparison of VAE and CVAE network structures.

concatenated and fed into the dense layers to form

the latent distribution parameters, while for the

VAE networks the encoded image features were

used directly.

In order to facilitate gradient-based optimiza-

tion, direct sampling of the latent space was not

possible. This was due to the fact that direct sam-

pling is non-differentiable, which was a require-

ment needed in order to allow for back-propagation

of the gradients. The reparametrization trick [22],

as seen in Equation (5), allowed for sampling of the

latent space, while still remaining differentiable to

enable back-propagation of the gradients.

z = 𝝁 + exp

(
1

2
· log 𝝈2

)
⊙ 𝝐, 𝝐 ∼ 𝒩(0, I) (5)

3.3.4 Image Decoder
The image decoder was required in order to obtain

reconstructed images, based on the latent repre-

sentation. It mirrored the structure of the image

encoder, but in reverse. Initially, the image decoder

started with a dense layer. This dense layer mapped

the latent vector to a flattened representation of

size 16 ·4 · 𝑠, with 𝑠 being the size parameter as men-

tioned in Table 3. This vector was then reshaped to

(16, 4, 𝑠), which was then fed into a sequence of 2D

transposed convolutional layers, where the number

of filters per layer can be found in Table 3. A kernel

size of 4 × 4 and stride of 2 × 2 was utilised for

these layers. A slightly larger kernel size was used

compared to the encoder, which ensured the latent

representation was smoothly upscaled towards the

target shape of the original input images. Similarly

to the image encoder, ReLU activation was used.

A final single 2D transposed convolutional filter

layer was used, with a kernel size of 4×4 and stride

of 1 × 2, to upscale towards the target shape of

(128, 64, 1). For this final layer sigmoid activation

was used, which ensured the output values were

in the range of [0, 1].

3.3.5 Pose Decoder
The final part of the CVAE architecture, was the

pose decoder. Its goal was to reconstruct the origi-

nally used pose, based on the jointly formed latent

space structure, as deduced from the input images

and poses. The use of the pose decoder, in com-

bination with the loss function will be described

in Section 3.3.6. It ensured that the information

retained in the latent space was relevant to image

reconstructions, but also captured pose based fea-

tures. The pose decoder consisted of one to three

fully connected layers, based on the pose mode

used as described in Section 3.3.7. The input of

this layer was a vector from the latent space of

dimensions equal to size parameter 𝑠 from Table

3, and the output was a vector of the same dimen-

sions as the poses used in Table 4. The layer in

the pose decoder used linear activation, since the

poses were continuous values.
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Size
(s)

Latent
Space

Image En-
coder / De-
coder

Pose En-
coder

16 16 [4, 8, 16] /

[16, 8, 4]

[16, 32]

32 32 [8, 16, 32] /

[32, 16, 8]

[32, 64]

64 64 [16, 32, 64] /

[64, 32, 16]

[64, 128]

128 128 [32, 64, 128]

/ [128, 64,

32]

[128, 256]

256 256 [64, 128,

256] / [256,

128, 64]

[128, 256,

512]

Table 3: Influence of the size parameter on the network

components.

Network Pose Mode p𝑚𝑜𝑑𝑒
VAE 0: default -

CVAE 1: orientation [𝜓]𝑇
CVAE 1: distance [

√
𝑥2 + 𝑦2]𝑇

CVAE 2: position [𝑥, 𝑦]𝑇
CVAE 2: distance-

orientation

[
√
𝑥2 + 𝑦2 , 𝜓]𝑇

CVAE 3: default [𝑥, 𝑦,𝜓]𝑇

Table 4: Overview of network configurations, pose modes, and

p𝑚𝑜𝑑𝑒 . The prefix p: indicates the number of poses used.

3.3.6 Training Implementation and Loss
The training implementation relied on Adaptive

Moment Estimation (ADAM) [23], with a base

learning rate of 0.0005, which was computationally

efficient, and required no tuning. Each network

was trained over 200 epochs, which was empirically

deduced since the training losses of the stable net-

works converged sufficiently. Smaller batch sizes

resulted in regularization, as mentioned in [24].

Since this was desirable in an auto-encoder archi-

tecture, a batch size of 32 was used. A standard

80/20 train-test split was utilised, where the sam-

ples were shuffled. In order to train the networks, a

multi-objective loss function needed to be devised,

which can be seen in Equation (6). These three

objectives consist of: image reconstruction, latent

space structure, and pose reconstruction.

The first loss term was ℒimage, and is defined

in Equation (7), as the MSE between the flattened

input image x = [𝑥1 , 𝑥2 , ..., 𝑥𝐷]𝑇 and flattened re-

constructed image x̂ = [𝑥̂1 , 𝑥̂2 , ..., 𝑥̂𝐷]𝑇 . Maximis-

ing the log-likelihood of our data given a Gaussian

distribution, was equivalent to minimising the MSE

of the reconstructions, as mentioned in [22]. For

this reason MSE was used for our reconstruction

terms. As standard in multi-objective loss func-

tions, weights were introduced, where the image

loss was being scaled by a factor 𝛼 = 1.0.

The second loss termℒpose was defined in Equa-

tion (8), as the MSE between the poses used for

each pose mode as described in Table 4, and their

reconstructions. These are described by p𝑚𝑜𝑑𝑒 =
[𝑝𝑚𝑜𝑑𝑒,1 , ..., 𝑝𝑚𝑜𝑑𝑒,𝑝]𝑇 and p̂𝑚𝑜𝑑𝑒 = [𝑝̂𝑚𝑜𝑑𝑒,1 , ..., 𝑝̂𝑚𝑜𝑑𝑒,𝑝]𝑇
respectively. The pose loss was being scaled by

𝛽 ∈ {0.2, 0.4, 0.6, 0.8}.

The final loss term is described in Equation (9),

as KL loss [25]. This term ensured that the latent

space had a similar distribution to a multivariate

Gaussian. This equation utilised the two vectors

which parametrize the latent space, as mentioned

in Section 3.3.3, namely z𝜇 and z
log 𝜎2 . The KL-loss

was being scaled by𝜆KL ∈ {0.0001, 0.001, 0.01, 0.1, 1.0}.

It should be noted that the total loss as described

in Equation (6) was utilised by the CVAE networks.

The VAE networks used only the image- and KL-

loss terms, and their weights. This will be further

clarified in Section 3.3.7. When training the VAE

networks, only non-anomalous thermal images

were used. While for the CVAE networks, non-

anomalous image and pose pairs were both used.

The reasoning for the use of the VAE and CVAE

networks, as of which poses were used for the

CVAE networks, will be further clarified in Section

3.3.7. The hardware which was used for training

consisted of an AMD Ryzen 7 5800H CPU and a

NVIDIA RTX 3070 laptop GPU.

ℒtotal = 𝛼 · ℒimage + 𝛽 · ℒpose + 𝜆KL · ℒKL (6)

ℒimage =
1

𝐷

𝐷∑
𝑘=1

(𝑥𝑘 − 𝑥̂𝑘)2 (7)

ℒpose =
1

𝑝

𝑝∑
𝑙=1

(𝑝𝑚𝑜𝑑𝑒,𝑙 − 𝑝̂𝑚𝑜𝑑𝑒,𝑙)2 (8)

ℒKL = −1

2

𝑠∑
𝑚=1

(
1 + z

log 𝜎2 ,𝑚 − z2

𝜇,𝑚 − exp(z
log 𝜎2 ,𝑚)

)
(9)

3.3.7 Pose Evaluation
In order to evaluate the effectiveness of pose con-

ditioning on the anomaly detection abilities of the

networks, multiple pose configurations were eval-



4. Results 8

(a) Influence of KL-weight on misclassification count grouped by latent

size(capacity) and pose mode.

(b) Influence of 𝛽-weight on misclassification count grouped by latent

size(capacity) and pose mode.

Figure 6: Network parameter influence on misclassification count grouped by latent size(capacity) and pose mode.

uated. This ranged from a VAE baseline network,

which only used image information to structure

the latent space, to the one to three pose CVAE net-

works, where different combinations of the robot

poses as described in Equation (3), were used in

order to form a structured latent space which cap-

tured both image and pose features. An overview

of these different pose configurations is given in

Table 4. In order to determine how to scale the

pose- and KL-loss, different scaling parameter com-

binations were evaluated.

3.4 Logistic Regression
Binary classification was implemented, in order

to evaluate how well the reconstruction errors

could be utilised for anomaly detection. This was

achieved using logistic regression, which resulted

in an anomaly or normal label for the samples.

First the anomaly- and normal-dataset MSE recon-

structions and their ground-truth binary labels

were collected, ensuring a balance between both

classes. Subsequently, the data-set was split into

a 80/20 train and test-split, after which the train-

ing data was again split into a 80/20 training and

validation split. Subsequently, a five-fold stratified

cross validation implementation was utilised in

order to optimize the decision boundary, which

preserved the balance between anomaly and nor-

mal data in each fold. For every fold, four folds

were used to train the logistic regression model,

where a 20% penalty was implemented for misclas-

sifying anomalies compared to the misclassification

of normal samples. The final fold was then used to

validate the model. The decision boundary which

maximised the F1-score of the validation fold was

then stored. This process was then repeated five

times. The five optimal decision boundaries were

then averaged, and this was used on the final test-

set. For this test-set, the misclassified data-points

and their corresponding MSE were captured.

4. Results
4.1 Pose Mode Evaluation
The misclassifications which occurred during the

logistic regression step, as described in Section

3.4, have been summarized in Figure 6. These

plots describe the influence of network parameters,

indicated by the point colours, on misclassifica-

tion count, grouped by network capacity and pose

mode. The plots were derived from the Table in

Appendix A.

Networks where more than 60% of the image

reconstruction MSEs exceeded 0.01, were classified

as failed attempts, these were not used to generate

the plots in Figure 6. In order to relate the influence

of the latent space size, to the input image size of

128 × 64 px, a capacity metric is introduced. In

which the latent space size is divided by the number

of pixels in the input images. This will yield a per-

pixel capacity, as can be seen in Equation (10).

Network Capacity =
Latent Size

128 × 64

(10)

The default VAE network showed better per-

formance, for smaller network capacities of
16

8192
≈

1.95 · 10
−3

,
32

8192
≈ 3.91 · 10

−3
and

64

8192
≈ 7.81 · 10

−3
.

These networks seemed to have the best results

using lower KL weights, which indicates that these

unconditioned networks benefit from less regular-

ization, which are lower in capacity.

Networks utilising one pose, namely distance

and orientation seemed to show mixed results. Us-

ing distance many failed reconstructions occurred,

as can be seen by the small amount of points for

this mode in Figure 6, and the strike-through val-

ues in Appendix A. This intuitively seems to make

sense. This parameter is the distance from the asset

where the image was captured, but this informa-

tion is mostly lost in our pre-processing pipeline

due to the padding approach. This leads to a high

level of confusion in these networks, due to the
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(a) Reconstruction of normal images. (b) Reconstructions of anomaly images.

Figure 7: Comparison between the reconstructions of normal and anomalous images, for well and poor performing networks,

using correct and incorrect pose information.

conditioning on the distance metric.

Orientation however, is the best performing

pose mode, as can be seen based on low occurring

points in Figure 6. Even-though some well perform-

ing networks occurred at lower capacity networks,

the majority of them occurred at higher ones, indi-

cating that this additional representational capacity

can benefit this pose mode. The best performing

network, with 11 misclassifications, occurred at

a capacity of
256

8192
≈ 3.13 · 10

−2
. Larger capacity

networks tend to benefit from moderate to high KL

regularization, as can be seen for the other pose

modes. The influence of 𝛽 weights seems rela-

tively stable, indicating that the pose information

is successfully captured in the latent space in these

networks.

The two pose modes again seemed to show

mixed results. Just as for the one pose distance

metric, we can again see the same effect of the

distance metric. Resulting in a high level of con-

fusion caused by the conditioning. The position

pose mode, was the best performing lowest ca-

pacity network, of 14 misclassifications. Overall,

showing relatively robust performance at a capac-

ity of
16

8192
≈ 1.95 · 10

−3
and

32

8192
≈ 3.91 · 10

−3
, for

all 𝛽 parameters. Using higher capacity networks

of
128

8192
≈ 1.56 · 10

−2
and

256

8192
≈ 3.13 · 10

−2
, more

regularization seems to be needed, as of moderate

𝛽 values. For lower capacity networks, position

occasionally had similar or better performance com-

pared to the other pose modes. However, for high

capacity networks this was not the case.

The final pose mode, 3: default, seems to be

relatively robust, as indicated by the high amount

of points and the low misclassification fluctuation

of the different 𝛽 parameters. This mode seems to

have the general trend of having better performance

using low capacity networks, with most 𝛽 weights

and low regularization, but again almost never

outperforming orientation. The well performing

instances can most-likely be accredited to the use

of the orientation metric, which is the most telling

factor in terms of when an anomaly can be seen

or not, since orientation can drastically increase

the networks ability to reconstruct different asset

viewing angles, and thus increasing the MSE when

an anomaly is used in the image input.

The valid CVAE misclassifications have been

compared to their VAE counterparts. This resulted

in the following metrics, which show how often

the pose modes outperform the VAE networks; 1:

distance -
6

25
= 24.0%, 1: orientation -

27

47
= 57.4%,

2: distance-rotation -
6

26
= 23.1%, 2: position -

16

50
= 32.0% and 3: default -

15

50
= 30.0%. Highlight-

ing that orientation was the best performing pose

mode.

4.2 Reconstruction Analysis
A more detailed assessment of the network’s out-

puts will be had, in order to obtain a better under-

standing of the performance differences between

CVAE networks. To achieve this, two networks

will be compared, both from the best performing

pose mode orientation. Namely, size 32, 𝛽 = 0.4,

𝜆𝐾𝐿 = 0.1 with 48 misclassifications and size 256,

𝛽 = 0.2, 𝜆𝐾𝐿 = 0.01 with 11 misclassifications.

First we will look at the model’s ability to recon-

struct images. These reconstructions for normal

images can be seen in Figure 7a, and for anomaly

images in Figure 7b. For both these figures, the

first image column contain the images and pose

used as an input to the trained networks. The

second and third column contain reconstructions

of this input for a correct and incorrect pose, for
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(a) Z𝜇 PCA of well performing model. (b) Z𝜇 PCA of poor performing model.

Figure 8: Comparison of PCA for a well and poor performing network.

the well forming network, while the fourth and

fifth column contain the reconstructions for the

poor performing model. More of these reconstruc-

tions can be found in Appendix B and C, for the 11

and 48 misclassification networks respectively. A

colour-mapping was applied to the thermal images

in order to easily see the thermal differences in

them.

The differences between the well and poor per-

forming models is immediately apparent. In both

Figure 7a and 7b, we can see that the 11 misclas-

sification network is able to almost always fully

reconstruct the assets based on their latent repre-

sentation, while the 48 misclassification network

fails to do so. In both networks we can see the

effect of uncertainty on the network, where the

reconstruction contains blurred sections where the

networks fails to fully reconstruct the images. The

11 misclassification network only has this blurring

at sections of high complexity, such as the individ-

ual isolator disks. While for the 48 misclassification

network has blurring in almost the entire image.

This blurring only occurs less for this network when

the asset can easily be distinguished, as can be seen

in the bottom row of images in Figure 7b. Here,

the three isolator heads are much different than

other image representations. It can still be seen

that the network is uncertain about the height of

the centremost isolator though. The effect of pose

information on the well performing network can be

seen in the top row of Figure 7a. The network forms

a mixed representation between the input image

and the image which would occur at 𝜓 = 2.83.

This results in the rightmost isolator head being

elongated, and the diagonal frame which connects

the head to the base appearing in the right of the

image. This shows the networks ability to interpret

image and pose features in order to form a mixed

representation of them. This only occurs when

the network unable to distinguish the asset’s repre-

sentation based on image features alone, this can

be seen from the middle row of Figure 7a, where

the three isolator heads are easy to differentiate,

resulting in only slight blurring around the heads.

The general trend of the well performing network

is that it can reconstruct the normal image from

the anomalous ones. In the top row of Figure 7b,

we can see that this is not always the case. Here,

some artifacts can be seen, which possibly are rep-

resentations where asset 5 can be seen. This can

occur when some ambiguity is seen between the

two assets. The presence of these reconstruction

artifacts can be desirable, since this increases the

reconstruction error, which allows the anomalies

to be detected more easily. There is a trade-off

though, the interpretability of the reconstructions

could diminish, when too many unrelated features

constantly appear in the image.

4.3 Latent Space Analysis
The latent space of the models mentioned in Sec-

tion 4.2 will be analysed, to gain more insights on

what the differentiating factors are between well

and poor performing models. In order to do this,

a Principal Component Analysis (PCA) was con-

ducted on the Z𝜇 variable of the latent space. This

results in the dimensionality of the latent variable

being reduced to the three main contributing ones.

The can be seen for the 11 and 48 misclassification

networks in Figure 8a and 8b respectively.

A clear distinction between the well and poor

performing model, is the distribution of the points.

The well performing model seems to follow cyclical

patterns, where the pose is distributed relatively

smoothly, with better separability. The poor per-

forming model has clear discontinuities, especially
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at 𝜓 = 0 = 2𝜋. This highlights the network’s ability

to represent data points, and interpret interme-

diate ones. We can also determine that the well

performing model uses more volume to represent

these points, where a larger 3D domain of the PCA

axis is utilised. The PCA on the models’ z
log 𝜎2

latent variable follows the same general trend as

the Z𝜇 ones. Where the well performing model

structures the uncertainty variable in well orga-

nized cyclical patterns, in a larger domain. For the

poor performing model this is more discontinuous

and compressed. These Can be found in Appendix

D.

4.4 Sample Distribution Analysis
Another way to differentiate well from poor per-

forming models is the Gaussian distributions be-

tween the normal and the anomalous image recon-

struction MSEs. When an error is calculated, which

could correspond to both normal and anomalous

distributions, i.e. when there is overlap between

them, logistic regression performance suffers.

Two formulas will be introduced, to evaluate

the performance of all valid models with regards

to separability between normal and anomalous

samples. These two functions describe the distance

between the mean of the normal and anomalous

distributions, normalized over the normal stan-

dard deviation in Equation (11) and the relative

uncertainty of the anomaly distribution in Equa-

tion (12). These two functions can be used as

measure to determine separability between the dis-

tributions. However, since Gaussian distributions

are assumed, while multi-modal distributions can

appear in the MSE distribution, inconsistencies can

occur.

𝑆𝜇 =
(𝜇𝐴 − 𝜇𝑁 )

𝜎𝑁
(11)

𝑆𝜎 =
𝜎𝐴
𝜎𝑁

(12)

The presented plot in Figure 9 shows the effect

of 𝛽 pose weight during training on misclassifica-

tions. Where the centre point colour represents

the misclassification count, and the outer colour

the used 𝛽 weights. The misclassification count

of the top 3% performing models is written as a

label close to the points. More separability analysis

plots can be found in Appendix E, but these will

not be discussed since these align with previously

discussed results.

The top performing models generally speaking

appear in the top right quadrant of the plot, where

there is a large difference between the means of

the distributions, and the normal distribution is

less skewed than the anomalous one. The most

appearing 𝛽 values here, range from VAE networks

no 𝛽 to moderate values of 𝛽 = 0.6. From this

Figure 9: Separability analysis of misclassification count and

𝛽-weight influence.

we can conclude that 𝛽 influence can lead to well

performing models, but it is not strictly necessary.

5. Conclusions
In this work, a multi-modal CVAE framework was

presented, which was used to evaluate the perfor-

mance of thermal-image based anomaly detection.

The effect and influence of robot pose based condi-

tioning and network parameters was compared to

a baseline VAE network, using empirical results to

evaluate the most effective conditioning variable

which enhances anomaly detection abilities. These

empirical results include misclassification results,

reconstruction abilities, PCA of the latent variables

and MSE distribution separability analysis.

The most informative conditioning variable was

orientation. This showed improved anomaly de-

tection abilities by roughly 57.4% compared to the

VAE baseline models. Distance based conditioning

showed to be the worst performing model, resulting

in significantly worse anomaly detection compared

to orientation. This can likely be accredited to the

pre-processing pipeline, where distance informa-

tion is lost due to the zero padding approach.

The effect of network capacity, which is related

to network size, was also analysed. Networks

which benefit from lower KL regularization are of

smaller capacity, especially VAE models. CVAE

networks, especially using the well performing

orientation conditioning, moderate regularization

and pose reconstruction weight during training

show the best results. Stable performance for dif-

ferent pose reconstruction weights, are a tell for a

suitable conditioning variable.

The effect of well and poor performing models
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on the structure of the latent variables was also

conducted using PCA. Well performing models

showed cyclical patterns, where the conditioning

variable was continuously represented. This re-

sulted in correct reconstructions, where blurring

could be seen in places of uncertainty. In poor

performing models the PCA of the latent variables

showed discontinuous pose representation, where

less of the 3D domain was effectively utilised, re-

sulting in reconstructions which almost entirely

showed blurring.

A separability metric was introduced, which

showed how much the image reconstruction MSE

distributions of the normal and anomalous sam-

ples differed. This revealed a general trend which

well performing models have, where separability

is high. This was not always accurate, since this

metric assumes Gaussian distributions. In practise

this metric may not always hold, since the recon-

struction distributions may exhibit multi-modality.

To conclude, this work shows that pose con-

ditioning can have a positive effect on anomaly

detection abilities, when the weights of the KL di-

vergence and the reconstruction terms are properly

scaled. It also revealed that a simple, weighted

multi-component loss function is difficult to bal-

ance. In order to fully leverage the benefit of

pose condition on anomaly detection, future work

should explore different approaches which balance

these loss terms. Additionally, a more robust sepa-

rability metric, which takes the multi-modal nature

of the MSE image reconstruction distributions into

account, should be implemented to gain further

insights into when a model shows better anomaly

detection performance.
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Appendix
A Misclassification Count

size (s) 𝜆𝐾𝐿 0: Default 1: Distance 1: Orientation

2: Distance-

2: Position 3: Default

Orientation

16 0.000100 15 20|22|28|23 23|17|21|28 19|19|34|41 19|21|17|18 20|19|21|18

16 0.001000 18 25|23|24|24 16|28|18|26 26|21|27|22 17|20|18|21 23|23|18|25

16 0.010000 22 22|24|27|21 18|23|35|23 22|33|19|25 14|21|18|20 19|23|18|18

16 0.100000 29 46|25|35|50 29|30|25|23 44|27|46|24 19|23|40|23 23|38|24|18

16 1.000000 33 28|22|22|24 32|32|29|32 31|49|26|24 31|50|46|50 39|49|46|42

32 0.000100 12 33|25|25|21 22|19|20|22 33|22|19|21 16|18|20|27 20|21|16|24

32 0.001000 17 17|20|22|24 16|22|23|19 19|18|21|26 20|19|24|19 21|20|20|20

32 0.010000 23 22|24|33|23 17|20|20|16 20|21|33|31 19|23|21|20 22|25|19|23

32 0.100000 36 23|46|28|27 26|48|31|25 20|36|25|33 25|27|22|20 28|21|21|24

32 1.000000 33 26|26|21|24 31|28|32|29 33|27|25|26 48|45|48|41 44|35|30|45

64 0.000100 18 33|33|33|33 33|46|33|21 33|33|33|33 23|24|21|33 33|23|33|29

64 0.001000 20 17|33|33|33 18|19|17|33 19|33|33|33 21|25|21|24 22|23|24|22

64 0.010000 22 17|23|33|33 18|17|18|17 22|22|33|33 22|22|24|22 21|24|19|23

64 0.100000 31 24|42|22|30 24|27|21|22 35|30|33|25 18|49|21|19 35|28|20|24

64 1.000000 33 23|25|27|22 30|31|28|30 45|50|45|45 44|46|42|43 44|56|50|46

128 0.000100 25 33|33|33|33 14|33|33|28 33|33|33|33 22|33|33|33 22|33|33|33

128 0.001000 16 33|33|33|33 18|19|12|21 33|33|33|33 21|19|24|33 22|20|20|33

128 0.010000 19 33|33|33|33 17|17|17|18 33|33|33|33 20|22|19|25 23|21|22|21

128 0.100000 40 33|33|33|33 18|46|22|24 33|33|33|33 22|23|21|33 19|24|22|18

128 1.000000 32 33|33|33|33 30|30|28|45 33|33|25|33 44|49|27|35 50|41|50|47

256 0.000100 33 33|33|33|33 33|33|33|33 33|33|33|33 33|33|33|33 33|33|33|33

256 0.001000 33 33|33|33|33 14|14|14|33 33|33|33|33 33|24|33|33 22|33|33|33

256 0.010000 33 33|33|33|33 11|15|12|16 33|33|33|33 24|17|24|24 21|21|22|22

256 0.100000 33 33|33|33|33 33|38|30|29 33|33|33|33 23|25|16|25 44|25|43|20

256 1.000000 33 33|33|33|33 33|33|33|33 33|33|33|33 47|45|27|34 44|33|46|50

Table 5: All misclassifications of various pose modes and network parameters.

The first two columns indicate which size and KL weight were used. The remaining columns indicate

which pose modes were used, as described in Table 4. The VAE networks contain one number, while

the CVAE networks have four numbers per configuration. This due to the different 𝛽 parameters used:

𝛽 = 0.2|𝛽 = 0.4|𝛽 = 0.6|𝛽 = 0.8, while the VAE equivalent only used KL- and image reconstruction loss,

and thus no 𝛽 parameter was utilised. The misclassifications were highlighted to show their significance.

Red numbers indicate the best performing model per row, i.e. per size and 𝜆𝐾𝐿 combination, while

blue numbers indicate the best performing network per pose mode. Green numbers show the best

performance for both row and pose mode. Some networks yielded sub-optimal reconstructions, were

the images failed to show the original asset. Networks where more than 60% of the image reconstruction

MSEs exceeded 0.01, were classified as failed attempts. In such cases, the corresponding misclassification

counts are shown with a strike-through.
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B Well Performing Network
B.1 Normal Image Reconstructions

Figure 10: Normal reconstructions of 1: orientation, size 256, 𝛽 = 0.2, 𝜆𝐾𝐿 = 0.01 with 11 misclassifications.
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B.2 Anomaly Asset 7 Reconstructions

Figure 11: Asset 7 reconstruction of 1: orientation, size 256, 𝛽 = 0.2, 𝜆𝐾𝐿 = 0.01 with 11 misclassifications.
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B.3 Anomaly Asset 5 Reconstructions

Figure 12: Asset 5 reconstructions of 1: orientation, size 256, 𝛽 = 0.2, 𝜆𝐾𝐿 = 0.01 with 11 misclassifications.
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C Poor Performing Network
C.1 Normal Image Reconstructions

Figure 13: Normal reconstructions of 1: orientation, size 32, 𝛽 = 0.4, 𝜆𝐾𝐿 = 0.1 with 48 misclassifications.
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C.2 Anomaly Asset 7 Reconstructions

Figure 14: Asset 7 reconstructions of 1: orientation, size 32, 𝛽 = 0.4, 𝜆𝐾𝐿 = 0.1 with 48 misclassifications.
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C.3 Anomaly Asset 5 Reconstructions

Figure 15: Asset 5 reconstructions of 1: orientation, size 32, 𝛽 = 0.4, 𝜆𝐾𝐿 = 0.1 with 48 misclassifications.
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D zlog 𝜎2 PCA

Figure 16: z
log 𝜎2 PCA of 1: orientation, size 256, 𝛽 = 0.2, 𝜆𝐾𝐿 = 0.01 with 11 misclassifications.

Figure 17: z
log 𝜎2 PCA of 1: orientation, size 32, 𝛽 = 0.4, 𝜆𝐾𝐿 = 0.1 with 48 misclassifications.
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E Separability Analysis
E.1 Pose Mode Separability Analysis

Figure 18: Separability analysis of misclassification count and pose mode influence.
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E.2 Size Separability Analysis

Figure 19: Separability analysis of misclassification count and size influence.
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E.3 KL-weight Separability Analysis

Figure 20: Separability analysis of misclassification count and 𝜆𝐾𝐿 influence.
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