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Thesis Summary

Epidemics in Networks: Modeling, Optimization and Secu-
rity Games

Epidemic theory has wide range of applications in computer networks, from
spreading of malware to the information dissemination algorithms. Our soci-
ety depends more strongly than ever on such computer networks. Many of these
networks rely to a large extent on decentralization and self-organization. While
decentralization removes obvious vulnerabilities related to single points of failure,
it leads to a higher complexity of the system. A more complex type of vulnerabil-
ity appears in such systems. For instance, computer viruses are imminent threats
to all computer networks. We intend to study the interaction between malware
spreading and strategies that are designed to cope with them.

The main goals of this thesis are:

1. to analyze influence of network topology on infection spread

2. to determine how topology can be used for network protection

3. to formulate and study optimization of malware protection problem with
respect to topology

4. to investigate non-cooperative game of security

We used analytical tools from various fields to answer these questions. First of all,
we have developed homogeneous and heterogeneous N -intertwined, susceptible -
infected - susceptible (SIS) model for virus spread. This model is used to deter-
mine the influence of topology on the spreading process. For the N -intertwined
model, we show that the largest eigenvalue of the adjacency matrix of the graph
rigorously defines the epidemic threshold. The results of the model also predict
the upper and lower bounds on epidemics as a function of nodal degree. The
epidemic threshold is found to be a consequence of the mean field approxima-
tion. However, slow convergence to the steady-state justifies the application of
the threshold concept. We used the exact 2N -state Markov chain model to ex-
plore the phase transition phenomenon for two contrasting cases, namely the line
graph and the complete graph.
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ii THESIS SUMMARY

The N -intertwined model assumes that the infection spreading over a link is a
Poisson process. By introducing infection delay, we studied the influence of devi-
ation from Poisson process assumption on epidemic threshold for the special case
of a complete bi-partite graph. Due to the special structure of bi-partite graphs
we were also able to derive approximate formula for the extinction probability in
the first phase of the infection.

In the case of SIS epidemic models, the effects of infection depend on the
protection of individual nodes. We studied optimization of protection scheme for
different networks. We use the results from heterogeneous N -intertwined model
to determine the global optimum at the threshold. Above the threshold, the prob-
lem is a sum of ratios fractional programming problem, which is NP-complete.
Therefore, we only determine the upper bound on the optimum. Contrary to
the common sense, reducing the probability of infection for higher degree nodes
pushes the network out of the global optimum. For the case of complete bi-partite
graphs, we derive optimal threshold if only 2 fixed protection rates are available.

Computer networks are generally distributed systems and protection cannot
be globally optimized. The Internet is an extreme example: there is no global
control center, and obtaining complete information on its global state is an illu-
sion. To approach the issue of security over decentralized network, we derived a
novel framework for network security under the presence of autonomous decision
makers. The problem under the consideration is the N players non-cooperative
game. We have established the existence of a Nash equilibrium point (NEP). The
willingness of nodes to invest in protection depends on the price of protection.
We showed that, when the price of protection is relatively high for all the nodes,
the only equilibrium point is that of a completely unprotected network; while if
this price is sufficiently low for a single node, it will always invest in protecting
itself. We determine bounds on the Price of Anarchy (PoA), that describes how
far the NEP is from the global optimum. We have also proposed two methods for
steering the network equilibrium, namely by influencing the relative prices and
by imposing an upper bound on infection probabilities.

A quarantine is another possible measure against the epidemic. A quarantine
on a set of network nodes separates them from the rest of the network by remov-
ing links. The concept of threshold and the N -intertwined model provides a tool
to analyze how quarantine improves the network protection. We studied several
different networks from artificially generated to real-world examples using the
modularity algorithm. The real-world networks tend to show a better epidemic
threshold after clustering than artificially generated graphs. The real-world net-
works have typically two or three big clusters and several smaller ones, while
Barabási-Albert (BA) and Erdös-Rényi (ER) graphs have several smaller clusters
comparable in size. However, the number of removed links in a graph using mod-
ularity algorithm is unjustifiably high, suggesting that complete quarantine is not
a viable solution for real-world networks.

Jasmina Omić



Samenvatting

Epidemieën in Netwerken: Modellering, Optimalisering en
Veiligheids Spelen

De epidemietheorie heeft een brede waaier van toepassingen in computernet-
werken, van het uitspreiden van malware tot aan algoritmen voor informatiever-
spreiding. Onze maatschappij hangt nu meer dan ooit af van computernetwerken.
Veel van deze netwerken zijn voor een groot deel decentraal en de zelforganis-
erende. Terwijl decentralisatie enige duidelijke punten van kwetsbaarheid ver-
wijdert, leidt het tot een hogere complexiteit van het systeem. Een complexer
type van kwetsbaarheid verschijnt in dergelijke systemen. Bijvoorbeeld, zijn de
computervirussen belangrijke bedreigingen voor alle computernetwerken. In dit
proefschrift onderzoeken wij de interactie tussen het verspreiden van malware en
strategien die dreigende ontwikkelingen dienen te behandelen. De belangrijkste
doelstellingen van deze thesis zijn:

1. de invloed van de netwerktopologie op verspreide besmetting te analyseren

2. te bepalen hoe de topologie voor netwerkbescherming kan worden gebruikt

3. het malwarebescherming optimalisatieprobleem vaststellen en de invloed
van de topologie op optimalisatie bepalen

4. een niet-coöperatief spel van veiligheid te onderzoeken

Wij gebruikten analytische hulpmiddelen van diverse gebieden om deze vra-
gen te beantwoorden. Eerst en vooral, hebben wij homogeen en heterogeen N -
verstrengeld, vatbaar - besmet - vatbaar (SIS) model voor virusverspreiding on-
twikkeld. Dit model wordt gebruikt om de invloed van de topologie op het sprei-
dingsproces te bepalen. Voor het N -verstrengeld model, tonen wij aan dat de
grootste eigenwaarde van de nabijheidmatrix van de graaf de epidemische drem-
pel bepaalt. De resultaten van het model voorspellen ook de hogere en lagere
grenzen aan epidemien als functie van knoopgraad. De epidemiedrempel is een
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iv SAMENVATTING

uitkomst van gemiddelde-gebiedsbenadering te zijn. Echter, de langzame con-
vergentie naar de evenwichtstoestand rechtvaardigt de toepassing van het drem-
pelconcept. Wij gebruikten het exacte 2N -staat Markov proces model om het
fenomeen van de faseovergang voor twee verschillende gevallen te onderzoeken,
namelijk de lijngraaf en de volledige graaf. Het N - verstrengeld model veron-
derstelt dat de besmetting die over een verbinding uitspreidt een Poisson proces
is. Door besmettingsvertraging te introduceren, bestudeerden wij de invloed van
afwijking op de Poisson proces aanname op de epidemiedrempel voor het speciale
geval van de bi-partite graaf. Vanwege de speciale structuur van bi-partite graven
konden wij ook benaderende formules voor de uitroeiingwaarschijnlijkheid in de
eerste fase van de besmetting afleiden. In het geval van SIS epidemische modellen,
hangen de gevolgen van besmetting van de bescherming van de individuele knopen
af. Wij bestudeerden optimalisering van de beschermingsregeling voor verschil-
lende netwerken. Wij gebruiken de resultaten van het heterogeen N - verstrengeld
model om het globale optimum bij de drempel te bepalen. Boven de drempel,
is het probleem een ’som van verhoudingen’ fractie-programmeringprobleem, die
NP- complete is. Daarom bepalen wij slechts het boven limiet op het optimum.
Tegen verwachtingen in, drijft verlagen van de besmettingswaarschijnlijkheid voor
hogere graad knooppunten het netwerk uit het globale optimum. In het geval van
volledige bi-partite graven, leiden wij de optimale drempel af indien slechts 2 vaste
beschermingsniveaus beschikbaar zijn.

Computernetwerken zijn in het algemeen gedistribueerde systemen en de be-
scherming kan niet globaal worden geoptimaliseerd. Het Internet is een extreem
voorbeeld: er is geen globaal controlecentrum en het verkrijgen van volledige in-
formatie over de globale toestand is een illusie. Om de kwestie van veiligheid
voor gedecentraliseerde netwerken te benaderen, leiden wij een nieuw kader voor
netwerkveiligheid onder de aanwezigheid van autonome besluitvormers af. Het
probleem in overweging is het N -speler niet-coöperatieve spel. Wij hebben het
bestaan van een Nash evenwichtspunt (NEP) aangetoond. De bereidheid van
knopen om in bescherming te investeren hangt van de prijs van bescherming af.
Wij toonden aan dat, wanneer de prijs van bescherming voor alle knopen vrij hoog
is, het enige evenwichtspunt dat van een volledig onbeschermd netwerk is; terwijl
als deze prijs voor n enkele knoop voldoende laag is, het altijd in bescherming zal
investeren. Wij bepalen grenzen aan de Prijs van Anarchie (PoA), die beschrijft
hoe ver het NEP van het globale optimum ligt. Wij hebben ook twee methodes
voorgesteld om het netwerkevenwicht te sturen, namelijk door de relatieve prijzen
te benvloeden en door een verbindend limiet aan besmettingswaarschijnlijkheid
op te leggen.

Een quarantaine is een andere mogelijke maatregel tegen de epidemie. Een
quarantaine op een verzameling netwerkknopen scheidt hen van de rest van het
netwerk door verbindingen te verwijderen. Het concept van een drempel en
het N - verstrengeld model verstrekken een hulpmiddel dat analyseert hoe de
quarantaine de netwerkbescherming verbetert. Gebruikenmakend van het modu-
lariteitsalgoritme bestudeerden wij verscheidene netwerken van kunstmatig ge-
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produceerde tot real-world voorbeelden. De real-world netwerken neigen een
betere epidemiedrempel te tonen na het groeperen dan kunstmatig geproduceerde
graven. De real-world netwerken hebben typisch twee of drie grote clusters en
verscheidene kleinere delen, terwijl Barabási-Albert (BA) and Erdös-Rényi (ER)
graven verscheidene kleinere clusters hebben van vergelijkbare grootte. Het aantal
verwijderde verbindingen in een graaf die het modulariteitsalgoritme gebruikt is
echter onweerlegbaar hoog, voorstellend dat de volledige quarantaine geen haal-
bare oplossing voor real-world netwerken is.

Jasmina Omić
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Chapter 1

Introduction

In the course of this thesis, we will explore dynamic process of spread on networks.
The networks that we will consider are part of our every day life like the Internet,
the World Wide Web, power grids, transportation system, social networks etc.
These networks are constructed as the interaction networks, for example, social
networks represent the interactions between friends. The networks also represent
physical infrastructure used by a dynamic process, the Internet and power grids
are two most prominent examples.

Dynamic process or dynamics of flows of some quantities over the network and
its interaction with the network elements is important dimension of network com-
plexity. A full characterization of a network is not possible without considering
interplay between structural and dynamical aspects.

The dynamic process that is focus of our work is the spread of malware over
computer networks. We are especially interested how epidemic interacts with
protection strategies.

Although the modeling of diseases is an old discipline [1], the epidemic theory
was first applied to computer diseases - computer malware by Kephart and White
(KW) in 1993 [2]. The KW model was a homogeneous models. The malware
was spreading with the same speed in every part of the network and nodes were
cured from infection with the same frequency. The model also assumed that the
underlaying network of interactions was a regular graph where every node has the
same number of neighbors. This assumption was later shown to be inadequate
for malware spreading. Pastor-Satorras and Vespignani [3] discussed discrepancy
between the data of virus spread on the Internet and theoretical results of the KW
model for homogeneous networks. They introduced a model that underlines the
influence of degree heterogeneity in the networks. At that point, the influence of
topology in the application of epidemic theory in computer networks became an
important issue. Recently, malware started spreading over on-line social networks,
emphasizing the importance of underlying structure. On-line social networks

1



2 CHAPTER 1. INTRODUCTION

have specific power-low network structure which makes them prone to epidemic
spreading [3], [4], [5], [6].

Epidemic modeling was not used only for malware spreading. Engineers used
epidemic paradigm to design distributed and scalable algorithms for ad-hoc and
P2P networks [7]. The Erdös-Rényi graph or a hypercube were often used to
represent such networks. The adequate functioning of the epidemic algorithm is
responsible for the resilience of the network [8].

Propagation of faults and failures is yet another application for epidemic mod-
els in networks. If an element in a network fails it can lunch an avalanche of failures
in the neighboring elements. One example is cascading BGP failures on a fully
connected topology [9].

Since there are many different applications and the range of topologies ap-
pearing in applications varies significantly, an abstract epidemic model should be
capable of capturing any epidemic process on any given finite graph.

Different epidemic processes on computer networks are not only heterogeneous
in the sense of underlining topology. Usually, spreading is heterogeneous in the
sense of protection ability and spreading power of each individual network element.
The difference in bandwidth and computational power between different hosts on
the Internet will determine the speed with which the malware is spreading. The
protection is also highly heterogeneous. A protection strategy can be an antivirus
software, with its signature quality and the speed of response to new virus strains.
An important property of a protection strategy is the frequency with which the
host is checked and secured. Several factors influence the choice of the protection
strategy, most notably the significance and value of the protected information,
the probability of infection, the overhead of employing the protection strategy
and its (monetary) price.

We will introduce a model which captures the influence of network topol-
ogy and extend this model to full heterogeneous settings including heterogeneous
spreading power and protection abilities of individual nodes.

Further more, systems that have to be protected are usually large and dis-
tributed with autonomous decision makers. A key-point is that the security of
each host depends not only on the protection strategies it chooses to adopt but
also on those chosen by other hosts in the network with example of the Internet
malware. This class of problems has two aspects. First, it deals with epidemic
processes, and as such calls for the employment of epidemic theory. Second, the
distributed and autonomous nature of decision-making in major classes of net-
works (e.g., P2P, ad-hoc, and most notably the Internet) call for the employment
of game theoretical approaches. Indeed, the trade-offs between the damage infec-
tion and the price and overhead of a protection strategy may be vastly different
across users, hence placing certain nodes in an unfair position to protect much of
the network by investing more than other nodes. In this thesis, we will discuss
the global optimization problem of protection in a network and employ the game
theory to determine the outcome of the non-cooperative security game.
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Except individual protection of each host in a computer network, hosts can
also be quarantined. A quarantine on a network is created by removing links
that connect host or group of hosts to the rest of the network. This clustering
allows limited intra community communication between nodes to continue, while
possibly quarantining the rest of the network. Removal of links was studied
in diseases modeling [10], [11], [12], however the network was not separated in
disconnected clusters. In the last part of the thesis, we will explore how the
change of network topology induced by quarantine can be used to improve network
protection.

Although, epidemic theory has many nice results, there are still many open
questions. In the following section, we present a set of questions which are the
scope of this thesis.

1.1 Scope

This thesis concentrates on N -intertwined epidemic model of SIS type, on any
network, in continuous time. Using N -intertwined model, we attempt to answer
the following questions:

1. What is the influence of the network of contacts on epidemic

spreading? The sharp epidemic threshold , which is a consequence of mean
field theory, is rigorously shown to be equal to the largest eigenvalue (the
spectral radius) of the adjacency matrix. Positive eigenvalues and their
eigenvectors of adjacency matrix are more important than negative ones
above the threshold. (ch. 4)

2. What is the role of topology in heterogeneous protection settings?

Minimum threshold in the sense of the total protection is reached if the
protection is applied proportional to the node degree. (ch. 5)

3. What is the solution to the global optimum in protection against

epidemic? The global optimum in the case of protection on the threshold
exists and the sum of all protection is equal to twice the number of links in
the graph. Global optimum above the threshold is bounded from above by
the protection proportional to the node degree. (ch. 6)

4. What is the outcome of non-cooperative security game that rises

as a consequence of malware spreading? Multiple NEP (Nash Equilib-
rium Point) exist for the sum of protections above the minimum threshold.
If there is not enough protection for minimum threshold to be reached, at
least one NEP exists. PoA (Price of Anarchy) can be very large, but it is
not unbounded. (ch. 7)
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5. What is the influence of quarantine on epidemic spread? Network
protection against epidemic can be improved using quarantine for any kind
of graph. However, the number of removed links is large. (ch. 8)

1.2 Thesis outline

The thesis consist of 9 chapters organized in 3 parts. The first part presents and
discusses the N -intertwined model. The second describes the global protection
optimization problem and non-cooperative security protection game. The last
part considers consequences of quarantine application on epidemic spread.

In Chapter 2, we present an introduction to epidemic modeling: the concept
of threshold and interaction matrix and related work in the field of malware
modeling.

1.2.1 Part I: N-intertwined model

Chapter 3 Presents the exact 2N -state Markov chain model as a comparison
model for N -intertwined model. In particular, we discuss the convergence to the
absorbing steady state.

The major part of Chapter 4 is devoted to our N -intertwined Markov model.
We derive the model, assess the influence of the mean field approximation, derive
precise relations and upper bounds for the steady-state. Further, we characterize
the exponential die out and the role of the spectrum of adjacency matrix A. The
accuracy of the Kephart and White model is evaluated and our model is compared
with exact computations. We conclude with application of the model to complete
bi-partite graph.

Chapter 5 extends the N -intertwined model for virusspread in any network
with N nodes to a full heterogeneous setting. The steady-state infection proba-
bilities are specified in terms of a generalized Laplacian, that possesses analogous
properties as the classical Laplacian in graph theory. The critical threshold that
separates global network infection from global network health is characterized via
an N dimensional vector that makes the largest eigenvalue of a modified adja-
cency matrix equal to unity. We apply these results to two special case graphs,
the complete bi-partite and the regular graph.

1.2.2 Part II: Optimization of protection and game theory

In Chapter 6, we consider two protection optimization problems for heteroge-
neous spread using N -intertwined model, namely the optimization at the thresh-
old and above the threshold. We solve the optimization problem at the threshold.
Above the threshold problem belongs to the class of sum of ratios fractional pro-
gramming problems and global optimization is necessary. We determine the upper
bond on global optimum and show that for strong epidemics increase in protection
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of well connected nodes to the detriment of nodes with low degree is not a good
strategy.

In Chapter 7, we introduce a novel framework for network security under the
presence of autonomous decision makers with multiple (possibly infinite) protec-
tion strategies. The model encompasses general (arbitrary) topologies. Further,
we establish the existence of a Nash equilibrium point and characterization of its
properties. We discus the related global (i.e., social) optimization problem, and
establishment of an upper bound on the price of anarchy. Finally, we propose
schemes for a network manager to influence the game, resulting in a potentially
major improvement in the level of network security.

1.2.3 Part III: Influence of quarantine on epidemic spread

In Chapter 8, we quantify the improvements of protection that the network quar-
antine is introducing, using the epidemic threshold concept and the N -intertwined
Susceptible Infected Susceptible (SIS) epidemic model on a large set of networks,
both real-world and artificial ones.
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Chapter 2

Epidemic modeling

Initially a part of the biology, mathematical modeling of epidemic has evolved
and became a fine tool that is applied in other scientific fields. The modeling of
diseases is thee hundred years old, but application to the Internet virus and worms
modeling, fault propagation and epidemic algorithms for information spread in
distributed systems is just emerging. This is partly due to the fact that the
Internet itself has just being born and partly because the spreading mechanisms
and the nature of medium are different. As a young discipline, the epidemic
modeling in computer networks can learn a lot from already flourished biological
models.

Epidemic modeling has three main goals. The first one is to understand the
mechanisms of spreading and how different parameters influence its course. The
second goal is to be able to predict the course of epidemic in future, which includes
among others, the final size of the epidemic and convergence time to the steady
state. Finally, the third goal is to determine mechanisms to control and stop
epidemic and study their influence on the process.

The epidemic model consists of a set of assumption about the nature of the
population and the spreading mechanism. The assumptions regarding population
usually belong to the following categories [1]:

• General structure of the population. The population can be homoge-
neous - such that every individual reacts to infection and spreads infection in
the same manner. There can be several different homogeneous populations
or stratas interacting or completely heterogeneous population.

• Population dynamics. The set of individuals can be closed or open. In
the closed set, the number of individuals does not change over time, there
are no new births, deaths, emigrations or immigrations.

• Diseases statuses of an individual. There are many possible states in
epidemic models. An individual can be susceptible to infection, incubating,

7
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infectious, carrier without symptoms, immune or removed.

The spreading mechanisms determines how exactly the infection is transmit-
ted. For example, in diseases, the infection can be airborne or it can be transmit-
ted by blood.

Based on the disease statuses of individuals and transition between statuses or
states, the most studied models are SI (Susceptible - Infected), SIS (Susceptible
- Infected - Susceptible) and SIR (Susceptible - Infected - Recovered). In the SI
model, the individuals are susceptible to infection and than they become infected
and stay in that state forever. In SIS model, the individuals can transit from
infected state to susceptible state again. The spread of common cold can be
modeled with this model. In the case of SIR model, after some time spent in
infected state, an individual dies or becomes immune (recovered) and can not
spread infection further.

When there is a well-described set of characteristics of the spreading process
and population, second step is to choose specific mathematical modeling approach.
Although the spreading is stochastic process in its nature, deterministic models are
frequently used. It is used to approximate the mean of the random process which
implies that the number of individuals has to be large enough. The stochastic
models are used for the small populations and in the cases when the fluctuation
of the infected population is of interest.

2.1 Epidemic modeling in biology

Biological epidemiology has produced significant number of deterministic and
stochastic models as well as relevant conclusion about prevention and prediction
of epidemics. One of the first epidemic models can be traced to Daniel Bernoulli
in 1760, who worked on a simple deterministic mode of smallpox. Subsequently,
more complex deterministic models developed. Stochastic models appeared later
in 19th and 20th century.

The epidemic modeling of diseases in the population is based on the law of
mass action, which states that in the homogeneously mixed population the rate
of interaction is proportional to the product of the infected and susceptible. The
law of mass action is a superposition of all contributions of individual components
in the interaction, and if more than one process is involved effects are additive.

In diseases modeling, SIR model is used most frequently as the most realistic
model for disease spread. SIR model exhibits threshold behavior, in other words
if the epidemic parameters are belove some critical value, the virus in the network
with N nodes dies out before large population is infected. If parameters are above
the threshold, epidemic will reach most of the population. In the case of determin-
istic modeling, Kermack – McKendrick theorem [13] determine the threshold and
the portion of infected nodes. For the stochastic SIR model, Whittle’s theorems
[14] determines the threshold behavior.
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In the following sections, we will present most important results for determin-
istic and probabilistic models without going into details. We will discuss concepts
of threshold and interaction matrix that appear in heterogeneous, multi-strata
models.

2.1.1 Kermack-McKendrick threshold theorem

In [13], Kermack and McKendrick (KM) established deterministic epidemic model
with fixed population of N individuals and three states (SIR). The results con-
stitute a benchmark for a range of epidemic models. Their main result treats
epidemic threshold that separates epidemic from a small infection. We will state
the theorem formally.

Theorem 1. For the deterministic SIR model with x denoting the fraction of
susceptible, y the fraction of infectives and z the fraction of removals we can write
equations:

dx

dt
= −βxy;

dy

dt
= βxy − γy;

dz

dt
= γy;

1

x

dx

dt
= −β

γ

dz

dt

where β denotes the pairwise rate of infection and γ is the removal rate.
For this system of equations it holds that:

1. (Survival and Total size) When the infection stops spreading the fraction
of susceptible that was never infected is x∞ and the fraction of individuals
ultimately removed is z∞ = x0 + y0 − x∞ and z∞ is a unique root of the
equation:

N − z∞ = x0 + y0 − z∞ = x0e
−z∞

β
γ

where x0, y0 are initial fraction of susceptible and infected nodes.

2. (Threshold theorem) A major outbreak occurs if and only if dy
dt
|t=0 > 0 which

is equivalent to the x0 > γ
β
.

3. (Second threshold theorem) If x0 exceeds γ
β

by a small value ǫ, then the final

fraction of susceptible left in the population is approximately x∞ = γ
β
− ǫ,

and z∞ ≈ 2ǫ.

Whether major outbreak will occur depends on the initial condition i.e. the
fraction of susceptibles at the start of the epidemic. Dependency of the spread on
initial condition is specific feature of the SIR model, in SI and SIS models, the
steady-state does not depend on initial conditions. This work is followed by a sim-
ilar theorem for stratified population which involves interaction or transmission
matrix [15].
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Theorem 2. For the deterministic SIR model in stratified population with m
strata, xi denotes the fraction of susceptible, yi the fraction of infectives and zi

the fraction of removals in strata i, we can write equations:

dxi

dt
= −xi(β1iy1 + ... + β1iy1);

dyi

dt
= xi(β1iy1 + ... + β1iy1) − γiyi;

dzi

dt
= γiyi;

where βji is the pairwise rate of infection between strata j and i and γi is the
removal rate of strata i.

Provided that solution trajectory lies in region χ defined by

xi, yi, zi ≥ 0; xi + yi + zi = xi0 + yi0; (j = 1..m)

where xi0, yi0 are initial fractions of susceptible and infected nodes in strata i.
If the transmission matrix B with elements βij is primitive1 and the removal rate
vector has all elements positive, than it holds that:

1. (Survival and Total size) When the infection stops spreading the fraction
of susceptible that was never infected is xi∞ in each of the strata i = 1..m
and the fraction of individuals ultimately removed zi∞ constitutes a unique
solution in χ.

2. (Threshold theorem) A major outbreak occurs if and only if the largest eigen-
value λmax of the non-negative matrix diag(x0)B′diag(γ−1) lies strictly out-
side of the unit circle.

We have omitted second threshold theorem for the stratified population model
because it is out of the scope of this discussion. The stratified model is the fist
one to introduce interaction matrix, which plays important role in our model.
The basic result that relates the largest eigenvalue of interaction matrix with the
threshold is significant contribution to the epidemic theory. Using the concept of
interaction matrix it is possible to explore influence of the interaction graph on
the epidemic spreading.

1A nonnegative square matrix B is said to be a primitive matrix if there exists k such that
for all i, j , the (i, j) entry of Bk is positive. A sufficient condition for a matrix to be a primitive
matrix is for the matrix to be a nonnegative, irreducible matrix with a positive element on the
main diagonal.
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2.1.2 Whittle’s threshold theorem

While deterministic models are very good at characterizing the epidemic in large
population, they are not satisfactory for smaller populations like that of the house-
hold size. A general epidemic process of the SIR type, modeled by the simple
stochastic (Markovian) epidemic model obeys

Pr[(X,Y )(t + ∆t) = (i − 1, j + 1)|(X,Y )(t) = (i, j)] = βij∆t + o(∆t)

Pr[(X,Y )(t + ∆t) = (i, j − 1)|(X,Y )(t) = (i, j)] = γj∆t + o(∆t)

Pr[(X,Y )(t + ∆t) = (i, j)|(X,Y )(t) = (i, j)] = 1 − (βi + γ)j∆t − o(∆t)

Using forward Kolmogorov equations [16], the state probabilities can be de-
termined. Even with a small population, threshold exists and it is formulated in
the following theorem.

Theorem 3. For this process with initial number of susceptible N and infectives
I and relative removal rate γ

β
for any ǫ in (0, 1), let p(ǫ) denote the probability

that at most [Nǫ] of the susceptible are ultimately infected i.e. that the intensity
of epidemic does not exceed ǫ then

1. If γ
β

< N(1 − ǫ), then

(
γ

β

1

N

)I

6 p(ǫ) 6

(
γ

β

1

N(1 − ǫ)

)I

2. If N(1 − ǫ) ≤ γ
β

< N , then

(
γ

β

1

N

)I

6 p(ǫ) 6 1

3. If γ
β

> N then p(ǫ) = 1 and the infection can not reach more than ǫN
individuals.

Whittle et al. used non-negative integer-valued Markov process in continuous
time [17]. Similar result exist for stratified population [18].

The threshold theorem distinguishes epidemics with sub- and super-critical

conditions. Sub-critical case behaves roughly like birth and death process (BD).
Duration and the final size are the same as in the BD process. Super-critical
is more complex – it is possible that only a minor epidemic occurs with proba-
bility ( γ

Nβ
)I which is similar to the super-critical BD conditioned on extinction.

The early behavior of the epidemic is similar to the super-critical BD process
conditioned on non-extinction. This is till the number of susceptible approaches



12 CHAPTER 2. EPIDEMIC MODELING

borderline value γ
β
. At this stage, process follows approximately the solution

of the deterministic epidemic model E[X(t)] ≈ x(t). If γ
β

< N and γ
β

and N
are sufficiently large; the number of not infected is random variable with normal
distribution. If N > 3 γ

β
than number of never-infected is Poisson distributed.

Models in biology are adjusted for specific needs of diseases spread. Similarly,
application of epidemic models in computer networks will reflect particularities
of the field. In the following section, we will explore several important epidemic
models for computer networks.

2.2 Epidemic Modeling and the Internet

In computer networks, epidemic modeling is applied in three areas. First of all,
it is used for modeling computer virus and worm propagation [2]. Second, it is
employed in epidemic algorithms and information dissemination in distributed
networks [7], [8]. Finally, propagation of faults and failures is modeled using
epidemic theory. One of the examples is the work of Coffman et al. [9], who
models cascading BGP failures on a fully connected topology using birth and
death process.

Epidemic algorithms for information dissemination are also referred to as gos-
sip dissemination. Epidemic algorithms are simple and easy to deploy and math-
ematical tools predict the system behavior. Usually, either the information is
spread forever, modeled by SI or each node spreads the information for some
time and than it stops, following the SIR model [7]. Unreliable networks which
use gossip algorithms can be modeled with SIS model.

The computer viruses are defined as small programs that can reproduce and
copy themselves on other systems or on other files. The worm, also called network
virus, does not need user intervention to spread, but instead it uses protocol and
software bugs. In the beginning, before the computer networks became common,
the viruses were propagating by means of removable media like floppy discs. The
first PC virus was the Brain developed by two Pakistan brothers in 1986 [19]. The
program was originally designed to protect the software copyright. In the ‘90s,
macro viruses became common [20]. The macro viruses are programs written
in script languages of the text editors. After infecting a file, every time the
file is opened the virus script was executed. One of the first viruses that used
Internet to spread were e-mail viruses. Traveling over the network as an e-mail
attachment, they were written in different script languages or they used software
bags to execute them selves on the computer. One of the most well known is the
LOVE BUG first discovered in 2000 [20]. This virus raised concerns worldwide
about a problem that was emerging. The newest species use cross-site scripting –
a code injected into web page that execute on the client side [21], like Java scripts.



2.2. EPIDEMIC MODELING AND THE INTERNET 13

Today viruses and worms use different methods for spreading and different security
vulnerabilities. Some of them use several propagation vectors at the same time.

We discuss several modeling approaches that appear in the literature.

2.2.1 Kephart and White model (KW)

One of the first milestones in the modeling of viruses on the Internet was set by
the paper of Kephart and White [2]. The model belongs to the homogeneous
models of the SIS type. KW have introduced a fixed, directed network as a part
of the model for the first time. Kephart and White [2] considered a connected,
regular graph2 of N nodes. Using deterministic and probabilistic analyzes they
have developed a number of useful analytical techniques.

The number of infected nodes in the population at time t is denoted by I(t).
If the population is sufficiently large, we can convert I(t) to y(t) ≡ I(t)/N , a con-
tinuous quantity representing the fraction of infected nodes. Hence, the implicit
assumption is that the number of states is sufficiently large such that the asymp-
totic regime for an infinite number of states is reached. Similarly to the models
in previous section, the rate at which the fraction of infected nodes changes, is
determined by two processes: (a) infected nodes are being cured and (b) suscep-
tible nodes are infected. For process (a), the cure rate of a fraction y of infected
nodes is δy. The rate at which the fraction y grows in process (b) is proportional
to the fraction of susceptible nodes, i.e. 1 − y. For every susceptible node, the
rate of infection is the product of the infection rate β per link, the number of
infected neighbors (i.e. the degree k) of the node, which is ky. Combining all
contributions yields the time evolution of y(t) in the Kephart and White model,
described by the differential equation

dy (t)

dt
= βky(1 − y) − δy (2.1)

with solution

y(t) =
y0y∞

y0 + (y∞ − y0)e−(βk−δ)t
(2.2)

where y0 is the initial fraction of infected nodes whereas the steady-state fraction
is y∞ = limt→∞ y(t) obeying dy∞

dt
= 0.

The Kephart and White differential equation (2.1) is the basis of a large class
of mean field models that, apart from some variations, possess the same type of
solution, specified by a “steady-state” epidemic threshold,

τc,KW =
1

k
(2.3)

2Kephart and White have modeled an Erdös-Rényi random graph Gp (N) with average degree
p (N − 1), which tends, for large N , to a regular graph. Hence, to first order in N , the properties
of virus spread in Erdös-Rényi random graphs and regular graphs are the same.
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where τc,KW is critical effective spreading rate. Since each node has (on average)
the same degree, the Kephart and White model is also termed a “homogeneous”
model. Many variations on and extensions of the Kephart and White model have
been proposed (see e.g. [22]). The logistic model of population growth, that was
first introduced by Verhulst in 1838 as mentioned by Daley and Gani [1, p. 20], is,
in fact, the same as the simple Kephart and White model. Moreover, the simplest
stochastic analogon [1, p. 56-63] – a pure birth process with transition rate
λn,n+1 = βn (N − n)– is mathematically identical to the shortest path problem
[17, Chapter 16] in the complete graph with i.i.d. exponential link weights. This
observation and relation to the complete graph shows that these earlier models
do not take the confining way of actual virus transport into account.

The deterministic analyzes provide basic overview of the epidemic features,
however it does not provide information about fluctuation of the number of in-
fected individuals which can result in the extinction of infection before it reaches
the steady state. KW proposed probabilistic model of time dependent probability
distribution of the infected nodes [2].

Using probabilistic model, KW estimate the survival probability distribution
as well as the variance in the steady state.

2.2.2 Pastor-Satorras and Vespignani model

Vespignani and Pastor-Satorras (VP) [3] have noticed discrepancy between the
data of the virus spread on the Internet and theoretical results from the SIS model
for a homogeneous network. They have noticed the long lasting low prevalence
even with the aggressive antivirus campaigns. This would suggest that relative
spreading rate is very close to the critical value for a great number of the virus
strains and for the all cleaning rates which is impossible. The SIS model for
homogeneous networks would suggest that for fast cleaning rate the threshold
would be reached and the virus should extinct exponentially fast.

They have proposed in [3] that spreading media is responsible for this paradox.
They have concluded that viruses are spreading in the networks were the degree
fluctuations are unbounded.

For the uncorrelated scale free networks the equation of the spreading dynam-
ics can be written as

dyk(t)

dt
= −δyk(t) + βk(1 − yk(t))Θk[{yk′(t)}]

where yk(t) is relative density of infected vertices with degree k and Θk[{yk′(t)}]
is the probability that the node with k vertices is connected to the infected node.
They assumed that Θk depends only on the degree k and the density of infected
vertices {yk′(t)}. The threshold can be derived as

τc =
〈k〉
〈k2〉
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which for N −→ ∞ and
〈
k2
〉
−→ ∞ the threshold τc −→ 0.

The actual social and virtual networks on the Internet are not infinite and they
are very far from the thermodynamic limit. In that sense VP have discussed the
effect of the maximum degree kc on the threshold τc. For the scale-free exponent
2 < γ < 3 threshold scales with

τc(kc) ≃
(

kc

m

)γ−3

where m is the minimum degree of any vertex. They have also discussed the
threshold for the correlated networks which does not have an exact solution.

The VP showed that topology is very important for the virus spread, however
several questions stay unanswered. The cleaning rate is different for different
nodes, some users are not well informed or have illegal software and can not
download updates, having δ −→ 0. The same effect of the long prevalence was
also observed in the cases where the worm does not use social or virtual networks
to spread, but the complete graph topology. An example of virus that spreads on
completely connected graph is IP scanning worms.

2.2.3 Modeling scanning worms

Contemporary worms, also called network viruses are self-replicating programs
which scan automatically IP address space for new victims. Population of hosts
compose a full meshed, homogeneous network, where every user can contact every
other. The paper of Zou et al. [23] gives a survey of the existing scanning types
based on the logistic model of population growth. The considered model does not
take into account curing or removing of nodes, thus using the SI model. We will
present the most important scanning strategies.

1. Uniform scanning – The worm is scanning IP addresses uniformly. Any host
can infect any other with the rate β = η

Ω , where η is an average number of
scans in time unit, Ω is number of IP addresses that worm is able to scan.
The basic equation is

dI(t)

dt
=

η

Ω
I(t)(N − I(t))

2. Uniform flash worm – An example of idealistic worm which knows who vul-
nerable hosts are and scans the list uniformly. The worm is the fastest, but
also very hard to deploy. Since it is fast spreading worm average propagation
delay ǫ must be taken into account. The propagation equation is

dI(t)

dt
=

η

Ω
I(t − ǫ)(N − I(t))
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where I(t − ǫ) = 0,∀t < ǫ.

3. Destructive worm – Most of the worms do not destruct the infected host,
but some of them do. The destructive worm propagation model is derived
based on the Witty worm that writes data at a random point of a hard disc
after every 20, 000 scans till the infected computer crashes. The propagation
equation is

dI(t)

dt
=

η

Ω
I(t)(N − I(t) − D(t)) − λI(t)

dD(t)

dt
= λI(t)

Scanning worms are one of the most prosperous sorts of malware. They spread
quickly and automatically. However, they are also easiest to detect and stop,
leaving Internet for stealth sorts of malware. New sorts use social engineering
and spread over social networks. With the introduction of new Web applications
for exchange of information and data, the number of security incidents increased.
Scansafe Web STAT [21] reported that between May 2007 and May 2008 the risk
of exposure to the exploits and compromised Web sites increased 407%.

The problem arises from the use of Web 2.0 which introduces client content
into the Web pages. Applications like AJAX 3 and Adobe Flash provide excellent
platform for malware development. Machines are infected simply by visiting a
Web page, no user interaction is necessary [24]. Several worms have appeared
that use social networking Web sites to spread. Many of them use AJAX scripts
like Samy [24], Yamanner [25] and Mikeyy [26]. Other involve user interaction in
order to download worm payload on the local machine as Koobface [27].

2.2.4 Topological aspects of epidemics

As far as the IP-scanning worms are concerned, individuals interact homoge-
neously without special fixed relations that can be modeled by a relation graph.
One of the most important novelties in diseases modeling is the introduction of
a network of contacts and traveling patterns. The homogeneous mixing assump-
tion was shown not to be adequate [28]. Great attention is given to epidemics on
different networks from random graphs [29], small world graphs [30], to scale free
networks [3]. Generalization of the epidemic modeling to any network structure
was recently proposed by Ganesh et al. in [31], Wang et al. [32] and Newman [6].

The physical layer of the telecommunication systems are often fixed networks.
Higher communication layers can also be modeled by relation graphs, like P2P
networks or DNS servers structure for the error propagation. Therefore, models

3asynchronous JavaScript and XML
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that aim to analyze spreading in computer networks or on application layer net-
works have to take into account its topology. We will present several influential
models that take into account topology of computer networks.

2.2.5 Sufficient conditions for fast recovery and lasting in-
fection

Ganesh et al. [31] derived sufficient conditions for fast recovery and lasting in-
fection of an epidemic on an arbitrary network for SIS and SIR models. For
the effective spreading rate τ < 1

λmax
, the lifetime of the epidemic is of the order

O(log(N)), where N is the number of nodes in the network and λmax is the largest
eigenvalue of adjacency matrix of the underling graph.

Further, Ganesh et al. bound the expected survival time with the worst case
scenario of an epidemic. If the relative infection rate τ is larger than the gener-
alized isoperimetric constant4 η(G,m) of a graph G, the mean epidemic lifetime
[31] is of the order Ω(eNa

), for some positive constant a.
The sufficient condition for lasting infection for any initial condition is

τ >
1

η(G,m)

m = Θ(Na) and m 6 ⌊N/2⌋ (2.4)

E[T ] = Ω(eNa

)

where T is the time till absorbing state is reached and the maximal size of infected
cluster m is tightly bounded by Na, (from below (m = Ω(Na)) and from above
(m = O(Na))).

The sufficient conditions (2.4) hold for any initial condition, any set of initially
infected nodes. The proof consists of lower bounding the actual process with
another stochastically dominating process - the standard coupling argument.

The result for the SIR epidemic model, Ganesh et al. explore topological
aspects in [33].

2.2.6 The Model of Wang et al.

The major merit of the model of Wang et al. [32] is the incorporation of an
arbitrary network characterized by the adjacency matrix A. This is generalizes the
homogeneous Kephart and White model, where the only network characteristic

4Let S denote the cluster of maximum m nodes and e(S, Sc) the number of links between
cluster S and the rest of the network and |S| denotes the number of nodes in set S. Generalized
isoperimetric constant is the minimum of the ratios between the number of links between clusters
and the size of the cluster for different maximal sizes of the infected cluster m,

η(G, m) = inf
S⊂{1,..,n},|S|≤m

e(S, Sc)

|S| , 0 < m 6 ⌊N/2⌋
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was the (average) degree. The discrete-time model of Wang et al. belongs to the
class of mean field models. Their major and intriguing result is that the epidemic
threshold is specified by

τc,WCWF =
1

λmax (A)

Unfortunately, this result is proved in an approximate manner which questions to
what extent this remarkable result holds in general.

For a finite power law graphs studied by Vespignani and Pastor-Satorras epi-
demic threshold is more precisely indicated by the largest eigen value then by the

term 〈k〉
〈k2〉 as shown in [32].

We will use Wang et al. notation in order to distinguish discrete model from
our N -intertwined model. Without going into detailed derivations, we present
here the evolution equation. Probability of node i to be infected at the step t
is denoted by pi,t, probability that at step t infected node i attempts to infect
neighbor j is denoted by βw and probability of curing during the same step with
δw.

pi,t = 1 −
∏

(1 − βwpj,t−1)(1 − pi,t−1 −
1

2
δwpi,t−1) −

1

2
δwpi,t−1

which leads to the steady state solution denoted by pi,∞ = pi

pi =
1 −∏ (1 − βwpj,t−1)

1 − (1 − 1
2δw)

∏
(1 − βwpj,t−1) + 1

2δw

(2.5)

We will discuss in details differences between Wang et al. and N -intertwined
model in the sections 4.5.3.

2.2.7 Interactive Markov Chains

One of the most comprehensive frameworks that uses interaction matrix to de-
scribe relations between individuals, is the Interactive Markov Chains (IMC).
Garetto et al. [34] developed a stochastic model of virus propagation based on
IMC [35].

IMC is specified for the directed graph G(N,L). Each node on the graph
has a state that evolves over time according to an internal discrete-time Markov
chain. The transition probabilities depend on the internal state of a node as well
as on the states of neighboring nodes. The system can be completely described
by the global Markov chain with mN states where m is the number of states
of a node. However, because of the exponential growth of the number of states
Garetto et al. use the influence model which is a special case of IMC developed
by C. Asavathiratham [36]. With the influence model it is possible to obtain the
marginal state probabilities of each node with at most mN states.

The model is discrete and in order to emphasize this fact we will use different
notation. Let πj [k] be a state probability row vector of a node j at a given time
step k. The evolution of each node has a form
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πj [k + 1] =

N∑

i=1

wijπi[k]P ij (2.6)

Where wij is weight of a link connecting node i and j taking values from the

interval [0, 1], and
N∑

i=1

wij = 1. P ij determines how specific states of node j

influence specific states of node i and the number of rows equal to the number of
states in i and the number of columns equal to the number of states in j. For a
homogeneous influence model number of states is equal for all nodes and is marked
by m. In this case transition matrix is m × m matrix. The element (P ij)gh (h
column and g row of the matrix P ij) defines how the state g of the neighbor i can
influence the state h of the node j. The overall influence of a neighboring node
is represented with the weight wij . In this way network topology is extracted.
Garetto et al. obtain marginal state probabilities of all sites at any given time
step from the equation

H =




w11P 11 · · · w1NP 1N

...
...

wN1P N1 · · · wNNP NN




Π[k] = Π[0]Hk

where Π[0] is initial node probabilities.
This model is in many aspects similar to the model of Wang et al. The model of

Garetto et al. separates the topology influence determined by matrix W , and state
influence determined by matrix P , and analyze behavior for different topologies
and relates eigenvalue structure to the spreading process.

2.2.8 Pair-approximation models

Pair-approximation models take into account states of node pairs together for all
node pairs in the network. With only two states per node - infected or susceptible
number of states for one pair becomes 4, while the number of pairs that have to
be considered for a network of N nodes is

(
N
2

)
. The pair-approximation model

is used for computer virus modeling by Nikoloski et al. [37]. Although model is
more precise, additional complexity is not justified.

2.2.9 Percolation on a graph

Percolation theory is devised as a model of a fluid flow and other similar processes
in disordered media. Using infinite lattice topology, porous rocks are modeled by
adding or removing link/node at random. Two different type of percolation exist,
namely the site percolation and the bond percolation. In the model with bond
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percolation, each link in lattice exist with the probability p. For such a lattice,
a percolation threshold exist, defined in the following way. If p is 0, all nodes in
lattice are isolated. If p = 1, the system is connected from one side to the other,
since there are paths that go completely across the system, linking one sub-unit
to the next along the spanning cluster. If probability p changes from 1 to 0, at
one point there is no longer an unbroken path from one side of the system to the
other.

Epidemic can be modeled using percolation theory on any graph G with site
percolation. Garetto et al. [34] used site percolation on the small-world graph
to set boundaries of the final size of infected population. The shortcomings of
percolation theory is assumption of infinite set and impossibility to apply any
epidemic model except that of a SI type or special case of SIR with nodes
immune from the start.

In this section, we gave and overview of important results in epidemic modeling
in biology and computer networks. We concentrated mostly on the results that
determine threshold and how the underlining graph of contacts influences spread.
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Chapter 3

The exact 2
N state Markov

chain

Epidemic spreading with two states – Susceptible and Infected can be completely
described by the global Markov chain with 2N states. We will first study the
global Markov chain for SIS model.

We consider the virus spread in an undirected graph G(N,L) characterized
by a symmetric adjacency matrix A. We assume that the arrival of an infection
on a link and the curing process of an infected node are independent Poisson
processes with rate β and with rate δ, respectively. As soon as a node i receives
an infection at time t, it is considered to be infected and infectious and in state
Xi(t) = 1. Similarly, an infected node i is cured with rate δ, and in the healthy
state Xi(t) = 0 at time t. At each time t a node is in one of these two states.

The state Y (t) of the network at time t is defined by all possible combinations
of states in which the N nodes can be at time t,

Y (t) =
[

Y0(t) Y1(t) . . . Y2N−1(t)
]T

and

Yi(t) =

{
1, i =

∑N
k=1 Xk (t) 2k−1

0, i 6=∑N
k=1 Xk (t) 2k−1

Hence, the state space of the Markov chain is organized with xk ∈ {0, 1} as

State number i xNxN−1...x2x1

0 00...000
1 00...001
2 00...010
3 00..011
... ...

2N − 1 11...11

23
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The number of the states with j infected nodes is
(
N
j

)
. Figure 3.1 shows an

example of the Markov state diagram in a graph with N = 4 nodes.
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Figure 3.1: The state diagram in a graph with N = 4 nodes and the binary numbering
of the states.

The defined virus infection process is a continuous-time Markov chain with
2N states specified by the infinitesimal generator Q with elements

qij =





δ if i = j + 2m−1; m = 1, 2...N ; xm = 1

β
∑N

k=1 amkxk if i = j − 2m−1; m = 1, 2...N ; xm = 0

−
∑N

k=1;k 6=j qkj if i = j

0 otherwise

(3.1)

and i =
∑N

k=1 xk2k−1. The time dependence of the probability state vector s (t),
with components

si (t) = Pr [Y (t) = i]

= Pr[X1(t) = x1,X2(t) = x2, ...,Xn(t) = xn]

and normalization
∑2N−1

i=0 si (t) = 1, obeys [17, p. 182] the differential equation

dsT (t)

dt
= sT (t)Q

whose solution is
sT (t) = sT (0)eQt

The definition of si (t) as a joint probability distribution shows that, if we sum
over all the states of all nodes except for the node j, we obtain the probability
that a node j is either healthy xj = 0 or infected xj = 1,
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Pr[Xj(t) = xj ] =

2N−1∑

i=0;i6=j

si (t)

where, in the index i =
∑N

k=1 xk2k−1, every xk with k 6= j takes both values
from the set {0, 1}, while for k = j, xk = xj is either 0 (healthy) or 1 (infected).
Defining vj (t) = Pr [Xj (t) = 1], then the relation between the vectors s (t) and
v (t) is

vT (t) = sT (t)M

where the 2N × N matrix M contains the states in binary notation, but bit-
reversed:

M =




0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
1 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

1 1 1 · · · 1




The binary representation of the network states determines the structure of
the Q matrix. The upper triangular part of Q, denoted by QA, depends on the
adjacency matrix elements aij , while the lower triangular part Qδ does not. The
diagonal elements of any Q matrix are the negative sum of the row elements, such
that Qdiag = diag

(
q00, q11, . . . , q2N−1,2N−1

)
with qjj = −

∑N
k=1;k 6=j qkj as in (3.1).

It is thus instructive to write Q as a sum of three matrices Q = Qδ + QA + Qdiag.
The structure of the matrix Qδ is shown in the Fig. 3.2, where the block matrix
B (j) = δI2j×2j and the nondefined elements are zeros. This nested structure is
the consequence of the binary representation.

The matrix QA is shown in Fig. 3.3. The block matrices C (j) in QA are diago-
nal matrices of size 2j×2j with diagonal elements depending on the adjacency ma-
trix A. The first row of the matrix Q is zero, and as a consequence the largest block
is C(N−1). The elements of QA depend on the indices i, j where i =

∑N
k=1 xk2k−1

as QA(i, j) = β
∑N

k=1 amkxk where i = j − 2m−1;m = 1, 2...N ;xm = 0. The ex-
act 2N− state Markov chain has an absorbing state because the first row in Q
is a zero row and the absorbing state is the zero state in which all nodes are
healthy. The steady-state is just this absorbing state, with steady-state vector
s∞ = π = (1, 0, . . . , 0). The probability state vector requires the insights in the
eigenstructure of Q because [38]

s(t) = s(0)eQt = π +
2N−1∑

k=1

eλkt

nk−1∑

m=0

rk,m

tm

m!

where nk denotes the multiplicity of the eigenvalue λk (with Reλk < 0) and the
vector rk,m is related to the left- and right eigenvector belonging to λk and the
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Figure 3.2: The lower triangular part Qδ of the infinitesimal generator Q.

initial conditions. Since vj (t) =
(
sT (t)M

)
j

=
∑2N−1

k=0 skMkj is a sum of certain

rows of s (t), we may write

vj (t) =
2N−1∑

k=1

eλkt

nk−1∑

m=0



∑

i∈Mj

(rk,m)
i


 tm

m!

where Mj denotes the j-th column in the matrix M . Let µj be the largest
eigenvalue λk of the set where (rk,m)

i
6= 0, then vj (t) is dominated (for not

too small t) by

vj (t) ∼ eµjt

nµj
−1∑

m=0

γm

tm

m!
(3.2)

which shows that a “bell-shape” distribution of vj (t) can only occur if that largest
eigenvalue µj < 0 has a multiplicity larger than 1.

3.1 Spectrum of Q

For all infinitesimal generators, it holds that detQ = 0, and, hence, the largest
eigenvalue is λ = 0.

Theorem 4. For β = 0, the eigenvalues of the matrix Q, defined by (3.1), are
λ (Qβ=0) = −kδ with multiplicity

(
N
k

)
, where 0 ≤ k ≤ N .
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Figure 3.3: The upper triangular part QA of Q.

Proof. For β = 0, the infinitesimal generator Q = Qδ + Qdiag + QA reduces to
the lower-triangular matrix Qδ + Qdiag, whose eigenvalues are identical to the
diagonal elements of Qdiag, which are multiples of δ. In fact, the structure of Qδ

shows that each block row j has a row sum equal to kδ for 1 ≤ k ≤ N whose value
appears

(
j

k−1

)
times. Hence, Qβ=0 has an eigenvalue at λ = −kδ with multiplicity

∑N−1
j=0

(
j

k−1

)
=
(
N
k

)
. These contain all the non-zero eigenvalues of Qβ=0 because

∑N
k=1

(
N
k

)
= 2N − 1.

For small values of τ , Q tends thus to a discrete, binomial spectrum. Fig. 3.4
illustrates that, also for larger τ , the spectrum of Q for the complete graph KN

is still discrete1, containing many eigenvalues with high multiplicity.

Proposition 5. For constant δ and increasing β (and τ = β
δ
), the eigenvalues of

Q shift, on average, to more negative values than those of Qβ=0.

Proof. We apply Gershgorin’s Theorem2 to Q = Qδ + Qdiag + QA, where QA =
βTA and TA only contains (non-zero) integer elements related to the adjacency
matrix A as observed from (3.1). Hence, qii < 0 decreases with β which implies

1Random matrices of this size exhibit an almost continuous spectrum.
2Every eigenvalue of a matrix B lies in at least one of the circular discs with centers bjj and

radii Rj =
∑

k=1;k 6=j

∣∣bjk

∣∣. For any infinitesimal generator Q, Gershgorin’s Theorem shows

that |λi − qii| ≤ |qii| and that the maximum possible interval for real eigenvalues of Q is
[0, 2 maxi |qii|].
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Figure 3.4: (in color) The histogram eigenvalues λ of Q of the in the complete graph
KN for three values of τ gives the number of times an eigenvalue λ occurs. The insert
shows the spectrum of K11 for an extremely high τ = 100.

that both the center position and the possible range of each eigenvalue λi (Q)
increases with β.

Corollary 6. The eigenvalues of Q for the complete graph KN and line graph
spread over the largest, respectively smallest possible range among all connected
graphs. The maximum possible range of the real part of eigenvalues of Q for any

connected graph is
(
− (βN+δ)2

2β
, 0
]

Proof. From QA = βTA, defined in the proof of Theorem 5, it follows that the
maximum possible sum of row elements occurs for KN (all aij = 1 except for
aii = 0) and the minimum one for line graph (only one 1-element on each row in
the adjacency matrix A). Gershgorin’s Theorem then provides the first statement.
Since the maximum eigenvalue range thus occurs for a complete graph, we consider
in the Q-matrix for KN the i-th row with k one-bits in the binary representation.
The row elements, except from the diagonal element, represents the transitions
from and to a state with N − k healthy and k infected nodes. The row sum of
these positive elements equals βk(N −k)+kδ, and, hence, qii = −βk(N −k)−kδ.
Optimizing with respect to k proves the corollary.

As shown in the Section 3.1.3, also for the line graph, the maximum of the
diagonal elements qii can be computed.

Yet, there are open questions regarding the spectrum of Q. (a) Although
Q is not symmetric, computations reveal that all eigenvalues of Q are real (and
negative). (b) Perturbation theory of Q for small β (or τ) expresses the eigenvalues
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in terms of those of Qβ=0 and of the corresponding right- and left-eigenvectors of
Qβ=0. However, the multiplicity of the eigenvalues of Qβ=0 further complicates
the perturbation analysis. (c) The recursive block-structure (due to the binary
representation) of Q needs to be exploited.

In the sequel of this section, we confine to explicit computation of the Q matrix
for two extreme types of graphs, the complete graph which has the smallest aver-
age hopcount (or the fastest virus penetration), and the line graph that possesses
the largest possible average hopcount.

3.1.1 The complete graph KN

Fig. 3.5 shows the four largest eigenvalues of Q for the complete graph KN

for N = 5, 8 and 10. The second largest eigenvalue seems the only eigenvalue
that increases – contrary to the expectations of Gershgorin’s Theorem – roughly
exponentially in τ and with rate increasing for increasing size N . This second
largest eigenvalue determines the speed of convergence towards the steady-state.
Fig. 3.5 also shows that, initially for small τ , the third and fourth eigenvalue
are the same and bifurcate (see dots) into distinct values roughly around τc =

1
λmax(A) = 1

N−1 . Hence, (3.2) indicates that below τc, the dominant eigenvalue is

simple causing exponential decay, while above τc, it has multiplicity larger than
1 creating a bell-shape.
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Figure 3.5: The four largest eigenvalues of the infinitesimal generator Q for the com-
plete graph with size N = 5, 8 and 10 as a function of τ with δ = 5 10−3. The second
largest eigenvalues are increasing with τ as λ2 (5) ≈ −δe−3.5τ ,λ2 (8) ≈ −δe−8.8τ and
λ2 (10) ≈ −δe−14.7τ .
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In Fig. 3.6, the eigenvalues of Q for all computable complete graphs (up to
N = 13) have been numerically calculated. The second largest eigenvalue seems
well fitted (for τ ≥ 0.05) by

λ2 = −δ e−b(τ)L (3.3)

where L =
(
N
2

)
denotes the number of links in the complete graph KN . The

dependence on τ is approximately given by b (τ) ≈ 0.17τ (1 + 2τ). Assuming
that the scaling law (3.3) of λ2 holds for any N , the convergence time T of
the virus spread in KN towards the steady-state (the zero state), defined by

r2e
−|λ2|T = 10−ǫ is found as T = O

(
eb(τ)L

)
= O

(
e

b(τ)
2 N2

)
. In other words,

for large size N and τ > 0, the convergence time T is so large that convergence
towards the zero state is in reality never reached, which explains the appearance
of the so-called “metastable state”.

Ganesh et al. [31] show that, for τ < τc – a regime that is not covered by (3.3)
–, the mean epidemic lifetime E [T ] scales as O (log N) while, for τ > τ∗ > τc

where τ∗ is the generalized isoperimetric constant, E [T ] = O
(
eNa)

, for some
constant a. If we may extrapolate (3.3) to large N , it shows that the constant
a = 2 for KN .
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Figure 3.6: The logarithm of −λ2 versus the number links in KN for τ =
0.05, 0.1, 0.15, . . . , 0.3 and δ = 5 10−3.

3.1.2 The line graph

Fig. 3.7 plots the second largest eigenvalue λ2 of Q for the line graph. The
largest eigenvalue of the adjacency matrix A of the line graph, where each row
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has precisely one non-zero element in the upper triangular part of A, is λmax (A) =

2 cos
(

π
N+1

)
< 2. Fig. 3.7 (axis on the right) also shows the epidemic threshold

of the line graph τc = 1
λmax(A) > 1

2 versus N .
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Figure 3.7: The second largest eigenvalue λ2 of Q in the line graph versus the number
of nodes N for various τ and δ = 5 10−3. The epidemic threshold τc is shown in dotted
line on the right hand side axis

As observed from Fig. 3.7, the curves λ2 increase very slowly with N . Via
curve fitting in the range N ∈ [8, 13], we found that

λ2 (τ,N) ≈ −δe−τ(1.184+0.0413N),
which shows the exponential dependence on τ (accurate) and the less accurate

dependence on N . If extrapolation to large N is allowed, the convergence time T
of the virus spread in the line graph towards the steady-state (the zero state) is

T = O
(

1
λ2

)
= O

(
eτ(1.184+0.0413N)

)
, which is considerably smaller than in KN ,

the other extreme case.

3.1.3 The row sum of Q for the line topology

We compute the upper bound of the sum of the rows in Q for the line topology.
First, let us consider two cases with the same number of infected nodes on the
same line graph as shown in Fig. 3.8.

Case a) has two nodes that can be infected by two neighbors and one that
can be infected by only one neighbor. In the case b) only one node can be
infected by one neighbor. Thus, in the case a) all healthy nodes can be infected
by two neighbors in contrast to case b) where one node can be infected by only
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1 1 1 0 0 01 1 1 0 0 0

1 0 1 0 1 0 11 0 1 0 1 0 1

a)

b)

c)

Figure 3.8: a) and b): Line graph with N = 6 and 3 infected nodes. The ’1 ’ refers
to an infectected and a ’0 ’ to healthy node. c) Line graph with N = 7 (odd number of
nodes) and 4 infected nodes.

one neighbor. Since, from the viewpoint of curing, both cases are equal, we will
consider only the cases analogous to a), where nodes are alternately infected.
There is also a difference between the line graphs with odd and even number of
nodes N , as observed from case c). We can now write the sum of the non-diagonal
elements of such a i-th row in Q as a function of the number of infected nodes k.
We have for odd N ,

max |qii| = (2β(k − 1) + β + δk), k <
N + 1

2

max |qii| = (2β(N − k) + δk), k >
N + 1

2

and when N is even,

max |qii| = (2β(k − 1) + β + δk), k 6
N

2

max |qii| = (2β(N − k) + δk), k >
N

2



Chapter 4

N-intertwined model

In this chapter, we focus on simple continuous-time model which belongs to the
class of susceptible-infected-susceptible (SIS) models. Our major motivation is
to understand the influence of graph characteristics on epidemic spreading.

By separately observing each node, we will model the virus spread in a bi-
directional network specified by a symmetric adjacency matrix A. Every node i
at time t in the network has two states: infected with probability Pr[Xi (t) = 1]
and healthy with probability Pr[Xi (t) = 0]. At each moment t, a node can only
be in one of two states, thus Pr[Xi(t) = 1] + Pr[Xi(t) = 0] = 1. If we apply
Markov theory straight away, the infinitesimal generator Qi (t) of this two-state
continuous Markov chain is,

Qi (t) =

[
−q1;i q1;i

q2;i −q2;i

]
(4.1)

with q2;i = δ and

q1;i = β
N∑

j=1

aij1{Xj(t)=1}

where the indicator function 1x = 1 if the event x is true else it is zero. The
coupling of node i to the rest of the network is described by an infection rate q1;i

that is a random variable, which essentially makes the process doubly stochastic.
This observation is crucial. For, using the definition of the infinitesimal generator
[17, p. 181],

Pr[Xi(t + ∆t) = 1|Xi (t) = 0] = q1;i∆t + o(∆t)

the continuity and differentiability shows that this process is not Markovian any-
more. The random nature of q1;i is removed by an additional conditioning to all
possible combinations of rates, which is equivalent to conditioning to all possible
combinations of the states Xj(t) = 1 (and their complements Xj(t) = 0) of the

33
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neighbors of node i. Hence, the number of basic states dramatically increases.
Eventually, after conditioning each node in such a way, we end up with a 2N–
state Markov chain, defined in Chapter 3.

Instead of conditioning, we replace the actual, random infection rate by an
effective or average infection rate, which is basically a mean field approximation,

E [q1;i] = E


β

N∑

j=1

aij1{Xj(t)=1}


 (4.2)

In general, we may take the expectation over the rate β, the network topology
via the matrix A and the states Xj(t). Since we assume that both the infection
rate β and the network are constant and given, we only average over the states.
Using E [1x] = Pr [x] (see e.g. [17]), we replace q1;i by

E [q1;i] = β

N∑

j=1

aij Pr[Xj(t) = 1]

which results in an effective infinitesimal generator,

Qi(t) =

[
−E [q1;i] E [q1;i]

δ −δ

]

The effective Qi(t) allows us to proceed with Markov theory. Denoting vi (t) =
Pr[Xi(t) = 1] and recalling that Pr[Xi(t) = 0] = 1−vi (t), the Markov differential
equation [17, (10.11) on p. 182] for state Xi(t) = 1 turns out to be non-linear

dvi (t)

dt
= β

N∑

j=1

aijvj (t) − vi (t)


β

N∑

j=1

aijvj (t) + δ


 (4.3)

Each node obeys a differential equation as (4.3),




dv1(t)
dt

= β
∑N

j=1 a1jvj (t) − v1 (t)
(
β
∑N

j=1 a1jvj (t) + δ
)

dv2(t)
dt

= β
∑N

j=1 a2jvj (t) − v2 (t)
(
β
∑N

j=1 a2jvj (t) + δ
)

...
dvN (t)

dt
= β

∑N
j=1 aNjvj (t) − vN (t)

(
β
∑N

j=1 aNjvj (t) + δ
)

Written in matrix form, with V (t) =
[

v1 (t) v2 (t) · · · vN (t)
]T

, we arrive
at

dV (t)

dt
= βAV (t) − diag (vi (t)) (βAV (t) + δu) (4.4)

where u is the all-one vector and diag(vi (t)) is the diagonal matrix with elements
v1 (t) , v2 (t) , . . . , vN (t).
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We rewrite (4.4) with V (t) = diag(vi (t))u as

dV (t)

dt
= βAV (t) − δdiag (vi (t))u − diag (vi (t))βAV (t)

= (βA − δI) V (t) − βdiag (vi (t))AV (t)

or
dV (t)

dt
= (βdiag (1 − vi (t))A − δI)V (t) (4.5)

An extension of the N -intertwined model where the curing and infection rates
are node specific is examined in more details in Chapter 5.

4.1 The steady-state

Assuming that the steady-state exists, we can calculate the steady-state proba-
bilities of infection for each node. The steady-state, denoted by vj∞, implies that
dvj(t)

dt

∣∣∣
t→∞

= 0, and thus we obtain from (4.3) for each node j,

β

N∑

j=1

aijvj∞ − vi∞


β

N∑

j=1

aijvj∞ + δ


 = 0

Since all the diagonal elements of the adjacency matrix A are zero, ajj = 0, we
find

vi∞ =
β
∑N

j=1 aijvj∞

β
∑N

j=1 aijvj∞ + δ
= 1 − 1

1 + τ
∑N

j=1 aijvj∞
(4.6)

This nodal steady-state is the ratio of the (average) infection rate induced by

the node’s direct neighbors
∑N

j=1 aijvj∞ over the total (average) rate of both
the competing infection and curing process. Since ajj = 0, (4.6) is equal to the
steady-state probability in a two-state, continuous Markov chain (see e.g. [17,
p. 196]), which exemplifies the local (or nodal) character of our N -intertwined
Markov model. We observe the trivial solution vi∞ = 0 for all i, which means
that eventually, all nodes will be healthy. On the other hand, if δ = 0, then all
vi∞ = 1, or slightly more precise, (4.6) shows that vi∞ = 1−O

(
τ−1

)
for large τ .

Of course, if there is no curing at all (δ = 0), all nodes will eventually be infected
almost surely.

Lemma 7. In a connected graph, either vi∞ = 0 for all i nodes, or none of the
components vi∞ is zero.

Proof. If vi∞ = 0 for one node i in a connected graph, then it follows from (4.6)

that
∑N

j=1 aijvj∞ = 0 which is only possible provided vj∞ = 0 for all neighbors
j of node i. Applying this argument repeatedly to the neighbors of neighbors in
a connected graph proves the lemma.
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Apart from the exact steady-state vi∞ = 0 for all i, the non-linearity gives
rise to a second solution, coined as the “metastable state”. That second, non-zero
solution can be interpreted as the fraction of time that a node is infected while
the system is in the “metastable state”, i.e. there is a long-lived epidemic.

Theorem 8. For any effective spreading rate τ = β
δ
≥ 0, the non-zero steady-state

infection probability of any node i in the N -intertwined model can be expressed as
a continued fraction

vi∞ = 1 − 1

1 + τdi − τ
∑N

j=1
aij

1+τdj−τ
∑

N
k=1

ajk

1+τdk−τ
∑N

q=1

akq

1+τdq−

. . .

(4.7)

where di =
∑N

j=1 aij is the degree of node i. Consequently, the exact steady-state
infection probability of any node i is bounded by

0 ≤ vi∞ ≤ 1 − 1

1 + τdi

(4.8)

Proof. We rewrite (4.6) as

vi∞ = 1 − 1

1 + τ
∑N

j=1 aijvj∞

= 1 − 1

1 + τdi − τ
∑N

j=1 aij (1 − vj∞)

≤ 1 − 1

1 + τdi

since τ
∑N

j=1 aij (1 − vj∞) ≥ 0 because vj∞ ∈ [0, 1] for all j. This proves (4.8).

We proceed further by introducing 1 − vj∞ = 1
1+τ

∑
N
k=1 ajkvk∞

, such that

vi∞ = 1 − 1

1 + τdi − τ
∑N

j=1
aij

1+τ
∑

N
k=1 ajkvk∞

= 1 − 1

1 + τdi − τ
∑N

j=1
aij

1+τdj−τ
∑

N
k=1 ajk(1−vk∞)

≤ 1 − 1

1 + τdi − τ
∑N

j=1
aij

1+τdj

This bound improves on (4.8). The third iteration gives

vi∞ = 1 − 1

1 + τdi − τ
∑N

j=1
aij

1+τdj−τ
∑

N
k=1

ajk

1+τdk−τ
∑N

q=1 akq(1−vq∞)
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Ignoring
∑N

q=1 akq(1−vq∞) ≥ 0 yields a new upper bound that sharpens the pre-
vious upper bound of the second iteration. Each iteration provides a tighter upper
bound by putting

∑N
q=1 akq(1− vq∞) = 0 in the deepest fraction. Continuing the

process leads to an infinite continued fraction expansion (4.7) for vi∞.

The continued fraction stopped at iteration k includes the effect of virus spread
up to the (k − 1)-hop neighbors of node i. As illustrated in Fig. 4.1 (and typical
for other graphs that we have simulated), a few iterations in (4.7) already give an
accurate approximation. The accuracy seems worst around τ = τc.
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Figure 4.1: Difference between the exact result and the k-iterations (1 ≤ k ≤ 5) of
(4.7) for the complete graph and line graph (both with N = 5 nodes) versus the effective
infection rate τ .

Additional insight can be gained from (4.4), which in steady-state reduces to

AV∞ − diag (vi∞)

(
AV∞ +

1

τ
u

)
= 0

Define the vector w = AV∞ + 1
τ
u, then

w − 1

τ
u = diag (vi∞) w

or

(I − diag (vi∞))w =
1

τ
u

Ignoring the absence of curing (δ = 0 or τ → ∞), the bound (4.8) shows that vi∞
cannot be one such that the matrix (I − diag (vi∞)) = diag(1 − vi∞) is invertible.
Hence,

w = diag

(
1

1 − vi∞

)
1

τ
u

=
1

τ

[
1

1−v1∞

1
1−v2∞

· · · 1
1−vN∞

]T
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and we end up with the equation

1

τ

[
v1∞

1−v1∞

v2∞

1−v2∞
· · · vN∞

1−vN∞

]T
= AV∞

Further, we expand each element as vi∞

1−vi∞
=
∑∞

k=1 vk
i∞, where the geometric

series always converges since vi∞ < 1.

With the notation V k
∞ =

[
vk
1∞ vk

2∞ · · · vk
N∞

]T
, we arrive at the steady-

state equation

1

τ
V∞ +

1

τ

∞∑

k=2

V k
∞ = AV∞ (4.9)

Lemma 9. There exists a value τc = 1
λmax(A) > 0 and for τ < τc, there is only

the trivial steady-state solution V∞ = 0. Beside the V∞ = 0 solution, there is
a second, non-zero solution for all τ > τc. For τ = τc + ε where ε > 0 is an
arbitrary small constant, V∞ = εx where x is the eigenvector belonging to the
largest eigenvalue of the adjacency matrix A.

Proof. Theorem 8 shows that the only solution at τ = 0 is the trivial solution
V∞ = 0. Let V∞ = εx, where ε > 0 is an arbitrary small constant and each
component xi ≥ 0. Introduced in (4.9) gives, after division by ε,

Ax =
1

τ
x +

ε

τ
x2 + O

(
ε2
)

For sufficiently small ε > 0, the steady-state equations reduce to the eigenvalue
equation

Ax =
1

τ
x (4.10)

which shows that x is an eigenvector of A belonging to the eigenvalue 1
τ
. Since A

is a non-negative matrix, the Perron-Frobenius Theorem [17, p. 451] states that A
has a positive largest eigenvalue λmax (A) with a corresponding eigenvector whose
elements are all positive and there is only one eigenvector of A with non-negative
components. Hence, if 1

τ
= λmax (A) > 0, then x (and any scaled vector V∞ = εx)

is the eigenvector of A belonging to λmax (A). If τ < 1
λmax(A) = τc, then 1

τ
cannot

be an eigenvalue of A and the only possible solution is x = 0, leading to the
trivial solution V∞ = 0. For τ > τc, Theorem 8 provides the non-zero solution of
(4.6).

Canright et al. [39] proposed the eigenvector centrality (EVC) measure of a
spreading power of a node

ei =
1

λmax

∑

j=neighbor(i)

ej
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where ek is the spreading power of a node k. Written in our notation as vi∞ =
1

λmax

∑N
j=1 aijvj∞, the EVC is recognized as the component representation of the

eigenvalue equation (4.10) for τ = τc. The steady-state infection probability is
the long-run fraction of time during which the node is infected. The higher the
probability vi∞, the faster the node i is prone to infection and the more important
its role is in further spreading. This Markov steady-state interpretation may
explain the term centrality analogously as the betweenness centrality of a node.

In passing by, we note that, by combining Theorem 8 and Lemma 9, a contin-
ued fraction expansion of the (scaled) largest eigenvector in any graph is found
from (4.7) for τ = τc = 1

λmax(A) .

Lemma 10. For any effective spreading rate τ = β
δ
≥ 0, the components vi∞ of

the steady-state infection probability vector obey

N∑

i=1

(
1

1 − vi∞
− τdi

)
vi∞ = 0 (4.11)

Proof. By summing all rows in (4.9), which is equivalent to multiplication of both
sides in (4.9) by the all-one vector uT yields

1

τ

N∑

i=1

vi∞ +
1

τ

∞∑

k=2

N∑

i=1

vk
i∞ = uT AV∞

= DT V∞ =

N∑

i=1

divi∞

where D =
[

d1 d2 · · · dN

]T
is the degree vector. After rewriting the k-

sum, we arrive at (4.11).

Equation (4.11) is obeyed for the trivial solution vi∞ = 0 and, if vi∞ = 1− 1
τdi

.
In the case of regular graphs (where di = d for all 1 ≤ i ≤ N), both vi∞ = 0 and
vi∞ = 1 − 1

τd
are exact solutions of (4.6). This shows that, in certain cases, the

continued fraction (4.7) can be simplified.

The fraction y∞ (τ) = 1
N

∑N
i=1 vi∞ (τ) of infected nodes in the network, based

on the estimate vi∞ ≈ 1 − 1
τdi

, is

y∞ (τ) ≈ 1 − 1

τN

N∑

i=1

1

di

(4.12)

Numerical computations in Fig. 4.2 assess the quality of the approximation (4.12).

Lemma 11. For all i, vi∞ = 1 − 1
τdi

cannot be a solution of (4.6) for τ ≤ 1
d(2)

where d(2) > dmin is the second smallest degree in the graph G.
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Figure 4.2: Comparison of (4.12) and exact computations or precise simulations for
different type of graphs with N = 50 nodes

Proof. Indeed, 1 − vi∞ = 1
τdi

≤ d(2)

di
leads for di = dmin < d(2) to vi∞ < 0, which

is impossible.

The strict inequality d(2) > dmin is important. Lemma 11 explains that larger
variations in the degree lead to worse results of (4.12) in Fig. 4.2.

Lemma 12. In a connected graph G with minimum degree dmin and for τ ≥ 1
dmin

,
a lower bound of vi∞ for any node i equals

1 − 1

1 + di

dmin
(τdmin − 1)

6 vi∞ (4.13)

Proof. Lemma 7 and Lemma 9 show that, for τ > τc, there exists a non-zero
minimum vmin = min

1≤i≤N
{vi∞} > 0 of steady-state infection probabilities, which

obeys (4.6), assuming that this minimum vmin occurs at node i,

vmin = 1 − 1

1 + τ
N∑

j=1

aijvj∞

≥ 1 − 1

1 + τ
N∑

j=1

aijvmin

= 1 − 1

1 + τdivmin
≥ 1 − 1

1 + τdminvmin

From the last inequality, it can be shown that

vmin ≥ 1 − 1

τdmin
(4.14)
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which is only larger than zero provided τ > 1
dmin

≥ τc. Introducing the bound
(4.14), we also have for each node

vi ≥ vmin ≥ 1 − 1

1 + τdivmin
> 1 − 1

1 + di

dmin
(τdmin − 1)

which is (4.13).

For dmin = 1 the lowest possible lower bound for node i is

vi∞ > 1 − 1

1 + (τ − 1)di

Finally, by combining the upper bound (4.8) and the lower bound (4.13) for
τ ≥ 1

dmin
, we find that vi∞ belongs to the interval

1 − 1

1 + di

dmin
(τdmin − 1)

6 vi∞ 6 1 − 1

1 + τdi

This shows clearly that for τ → ∞ variations between all values of vi for all i will
tend to 0.

4.2 Model approximations

At first glance, the averaging process – replacing q1;i in (4.2) by its mean E [q1;i]
– seems quite accurate, because a sum SN of independent indicators (Bernoulli
random variables) is close – exactly if all Bernoulli random variables have the
same distribution – to a binomial random variable, whose standard deviation

σSN
=
√

Var [SN ] = O
(√

N
)

is small compared to the mean E [SN ] = O (N).

The latter implies that the random variable SN is closely approximated by its
mean1 for large N .

1More precisely, the central limit theorem for a sum SN =
∑N

j=1 Rj of independent random

variables R1, . . . , RN , each with finite variance Var[Rj ] (and small compared to Var[SN ]) states
that, for large N ,

Pr




SN − E [SN ]√∑N
j=1 Var [Rj ]

≤ x


 → 1√

2π

∫ x

−∞
e−

t2

2 dt

Applied to independent indicators with Var
[
1{Xj(t)=1}

]
= Pr [Xj (t) = 1] (1 − Pr [Xj (t)]) ≤

E
[
1{Xj(t)=1}

]
shows that, for x ≥ 0 and large N ,

Pr
[
|SN − E [SN ]| ≥ x

√
E [SN ]

]
≤ 1√

2π

∫ ∞

x

e−
t2

2 dt
large x
≈ e−

x2

2

x
√

2π

where the last step follows after (successive) partial integration and retaining the O
(
x−1

)
term

in the series for large x. Hence, for independent indicators, large deviations from the mean are
very unlikely.
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However,
q1;i

β
=
∑

j=neighbor(i) 1{Xj(t)=1} ∈ {0, 1, . . . , di} is a sum of dependent
indicators. In addition, if N is large, q1;i does not always increase with N . Indeed,
q1;i ≤ βdmax (A) and the maximum degree dmax (A) in a graph can be independent
of N , for example, in the line graph where dmax = 2 for any N .

We will first elaborate on the dependence. Let us consider the time-dependent
random variable Si (t) = 1{Xi(t)=1}, which is 1 if node i is infected, else it is zero.
If the node i is infected (Xi(t) = 1) , Si (t) can change from 1 to 0 with curing
rate δ. If the node i is healthy (Xi(t) = 0), Si (t) can change from 0 to 1 with

rate β
∑N

j=1 aij1{Xj(t)=1}. The change of Si in a sufficiently small time interval
∆t is

Si (t + ∆t) − Si (t)

∆t
= (1 − Si (t))β

N∑

j=1

aij1{Xj(t)=1} − δSi (t)

After taking the expectation of both sides, we obtain
(with E [Si (t)] = Pr [Xi (t) = 1] = vi (t))

vi (t + ∆t) − vi (t)

∆t
= β

N∑

j=1

aijvj (t) − δvi (t)

− E


1{Xi(t)=1}β

N∑

j=1

aij1{Xj(t)=1}




Since aii = 0, only the case where j 6= i appears in the remaining expectation,
which is

E
[
1{Xi(t)=1}1{Xj(t)=1}

]
= E

[
1{Xi(t)=1}∩{Xj(t)=1}

]

= Pr [Xi(t) = 1,Xj(t) = 1]

= cij (t) Pr [Xi(t) = 1]

where the conditional probability cij (t) = Pr [Xj(t) = 1|Xi(t) = 1]. Hence, when
∆t → 0, we arrive at

dvi (t)

dt
= β

N∑

j=1

aijvj (t) − vi (t)


β

N∑

j=1

aijcij (t) + δ




Assuming that the graph is connected,

Pr [Xj(t) = 1|Xi(t) = 1] ≥ Pr[Xj(t) = 1]

because a given infection at node i cannot negatively influence the probabil-
ity of infection at node j. When comparing with (4.3), we observe that the
mean field approximation implicitly makes the assumption of independence that
Pr [Xj(t) = 1,Xk(t) = 1] = Pr [Xj(t) = 1] Pr [Xk(t) = 1]. Hence, the positive cor-
relation is not incorporated appropriately. As a consequence, the rate of change in
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dvi(t)
dt

is always overestimated. The N -intertwined Markov chain thus upperbounds
the exact probability vi (t) of infection.

Next, we will address the effect on the size N by computing the variance of
q1;i, Var [q1;i] = E

[
q2
1;i

]
− (E [q1;i])

2
. First, we have

E
[
q2
1;i

]
= E


β

N∑

j=1

aij1{Xj(t)=1}β
N∑

k=1

aik1{Xk(t)=1}




= β2
N∑

j=1

N∑

k=1

aikaijE
[
1{Xj(t)=1}1{Xk(t)=1}

]

= β2
N∑

j=1

N∑

k=1

aikaij Pr [Xj(t) = 1,Xk(t) = 1]

or, in terms of the conditional probabilities,

E
[
q2
1;i

]
= β2

N∑

j=1

N∑

k=1

aikaij Pr [Xj(t) = 1|Xk(t) = 1] Pr [Xk(t) = 1]

Since Pr [Xj(t) = 1|Xk(t) = 1] ≤ 1, an upperbound of E
[
q2
1;i

]
is

E
[
q2
1;i

]
≤ β2di

N∑

k=1

aik Pr [Xk(t) = 1] = max [q1;i]E [q1;i] (4.15)

The variance of q1;i is

Var [q1;i] = β2
N∑

j=1

aij Pr [Xj(t) = 1] (1 − Pr [Xj(t) = 1])

+ 2β2
N∑

j=1

N∑

k=j+1

aikaij (ckj (t) − vj (t)) vk (t) (4.16)

Since ckj (t) ≥ vj (t) as argued above, the second double sum consists of non-
negative terms such that the variance Var[q1;i] is larger than in the case of in-
dependent random variables (where the double sum disappears). This fact is
not in favor of the mean field approximation since larger variations around the
mean E [q1;i] can occur which makes the mean a less good approximation for
the random variable q1;i. In particular, (4.16) shows that standard deviation√

Var [q1;i] = O (N), whereas the standard deviation scales as O
(√

N
)

in case

of independence! Especially in graphs with bounded maximum degree (such as
the line graph),

√
Var [q1;i] may not decrease sufficiently fast in N compared to

E [q1;i]. Thus, we expect deviations between the N -intertwined and the exact
model in those graphs to be largest.
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For small τ (and t large enough to ignore the initial conditions),
Pr [Xk(t) = 1] ≤ ε and (4.16) shows that the double sum is O

(
ε2
)
. Hence,

for small τ , the situation is close to the independence case, in which mean field
theory performs generally well. An upperbound for Var[q1;i] follows from (4.15)
such that the coefficient of variation

√
Var [q1;i]

E [q1;i]
≤
√

max [q1;i]

E [q1;i]
− 1

This shows, that for large τ where E [q1;i] → max [q1;i], the coefficient of varia-
tion is small, again in favor of the mean field approximation. Hence, we expect
that the deviations between the N -intertwined and the exact model are largest for
intermediate values of τ . As shown in Section 4.5.4, in some τ -region around τc,
large deviations are indeed found.

The two observations, dependence and absence of a limiting process towards
the mean as N increases, complicate a more precise assessment of the averaging
process at this point. Since the mean field approximation is the only approxima-
tion made, a comparison of the non-linear model (4.4) with the exact 2N -state
solution in Section 4.5.4 further quantifies the effect of the mean field approxima-
tion.

Finally, the mean field approximation also excludes information about the
joint probability of states,

Pr [X1 (t) = n1,X2 (t) = n2, . . . ,XN (t) = nN ]

where all nj ∈ {0, 1}, as in the 2N– state Markov chain.

4.3 The time evolution of epidemics

Suppose that all vi (t) are sufficiently small to ignore the term diag(vi (t))βAV (t)
in (4.5), the time-dependent solution is

V (t) = e(βA−δI)tV (0)

Since an adjacency matrix has the eigenvalue decomposition A = UΛUT , where
Λ = diag(λj) and {λj}1≤j≤N

is the set of eigenvalues of A, and where the or-

thonormal matrix U has the eigenvectors of A as columnvectors (see e.g. [17,
Appendix A]), we obtain

B = βA − δI = U (βΛ − δI) UT

or B = Udiag(βλj − δ) UT . Thus,

V (t) = Udiag
(
e(βλj−δ)t

)
UT V (0)
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and, in order for V (t) to be a probability vector, we must require that all eigenval-
ues βλj − δ ≤ 0 or that λj ≤ 1

τ
for all j. This again leads to the requirement that

τ ≤ 1
λmax(A) . The analysis shows that, in the regime τ ≤ 1

λmax(A) , the probability

vector V (t) tends exponentially fast to zero.
Ganesh et al. [31, Theorem 3.1] and Durrett [40] have bounded the probability

that the virus spread process is not (yet) in the absorbing state as

Pr [X (t) 6= 0] ≤
√

N ‖X (0)‖1e
(βλmax(A)−δ)t

where the norm (see e.g. [17, Section A.3]) ‖X (0)‖1 =
∑N

j=1 Xj (0). Since
Pr [X (t) 6= 0] is related to V (t) and the largest component of V (t) precisely
decays proportionally to e(βλmax(A)−δ)t, we may expect that the non-linear N -
intertwined model is fairly accurate for τ ≤ τc = 1

λmax(A) , as also confirmed by

simulations presented in Section 4.5.4.

4.4 The role of the spectrum of A

The sum y (t) = 1
N

∑N
i=1 vi (t) gives the fraction of infected nodes in the network.

Summing (4.3) over all i is equivalent to right multiplication of V (t) by uT because∑N
i=1 vi (t) = uT V (t). Then, we find from (4.5) that

duT V (t)

dt
= uT (diag (1 − vi (t))βA − δI)V (t)

= β (u − V (t))
T

AV (t) − δuT V (t)

Since uT A = DT because A = AT , we can write

d

dt

(
uT V (t)

)
= (βD − δu)

T
V − βV T AV (4.17)

Invoking the eigenvalue decomposition A = UΛUT of the symmetric adjacency
matrix leads to

d

dt

(
uT V (t)

)
= (βD − δu)

T
V − β

(
UT V

)T
Λ
(
UT V

)

= (βD − δu)
T

V − β

N∑

j=1

λj (A) z2
j (4.18)

where zj is the j-th component of the vector UT V : the scalar product V.xj or
the projection of the vector V onto the j-th eigenvector xj of A. We have that

0 ≤ V T AV =
∑N

j=1 λj (A) z2
j .

Equation (4.18) shows that the zero eigenvalues in the adjacency matrix of a

graph do not contribute to the infected fraction y (t) = uT V
N

of nodes. In general,
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a matrix has a zero eigenvalue if its determinant is zero. A determinant is zero if
two rows are identical or if some of the rows are linearly dependent. For example,
two rows are identical if two distinct nodes are connected to a same set of nodes.
Since the elements aij of an adjacency matrix A are only 0 or 1, linear dependence
of rows here occurs every time the sum of a set of rows equals another row in the
adjacency matrix. For example, consider the sum of two rows. If n1 is connected
to the set S1 of nodes and n2 is connected to the distinct set S2, where S1∩S2 = ∅

and n1 6= n2, then the graph has a zero eigenvalue if another node n3 6= n2 6= n1

is connected to S1 ∪ S2. These zero eigenvalues occur when a graph possesses a
“local bi-partiteness”. In real networks, this type of interconnection often occurs.

Lemma 13. For any effective spreading rate τ = β
δ
≥ 0, the components vi∞ of

the steady-state infection probability vector obey

N∑

i=1

(
di −

1

τ

)
vi∞ =

N∑

j=1

λj (A) z2
j∞ (4.19)

from which

0 ≤
N∑

j=1

λj (A) z2
j∞ ≤

N∑

i=1

|τdi − 1|
τdi + 1

di ≤ 2L

where L is the number of links.

Proof. The equality (4.19) is an immediate consequence of (4.18). The first upper
bound follows from (4.8). The second one from the basic equation of the degree∑N

i=1 di = 2L.

Since
∑N

j=1 λj (A) = 0 for any graph, the lower bound in Lemma 13 shows
that the positive eigenvalues and their eigenvectors are more important than the
negative ones. Because the left hand side of (4.19) is increasing in τ , the vector
V∞ is increasingly more aligned with eigenvectors of A belonging to positive eigen-
values. Lemma 9 shows that at τ = τc + ε, only the eigenvector of λmax (A) plays
a role. As τ increases, we now deduce that V∞ is influenced by additional eigen-
vectors (proportional to λj (A)). The contribution of the eigenvector of λmax (A)

to
∑N

j=1 λj (A) z2
j∞ remains dominant, because it is the only eigenvector with all

positive components and all eigenvectors in U are normalized, i.e. xT
j xj = 1. By

combining (4.19) and (4.11), we have

N∑

j=1

λj (A) z2
j∞ =

1

τ

N∑

i=1

v2
i∞

1 − vi∞

4.5 The N-intertwined model and other models

In this section, we will show that, by making additional approximations, our
model can reproduce the differential equation (2.1) of the Kephart and White
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model. Further, we present average cluster model that illustrate the averaging
bias introduced by the application of the logistic equation for topology epidemics.
Finally, we compare N -intertwined model with exact model for the reference.

4.5.1 Evaluation of the Kephart and White model

In a regular graph with degree k and adjacency matrix AR, the degree vector
D = ku and the eigenvector belonging to the largest eigenvalue λmax (AR) = k is
u such that (4.18) becomes

d

dt

(
uT V (t)

)
= (βk − δ) uT V − βk

(
uT V

)2 − β

N∑

j=2

λj (AR) z2
j

If we let y (t) = uT V
N

and assume in the last sum that all eigenvalues and vectors
are equal to the largest one, we again find the Kephart and White differential
equation (2.1). Clearly, apart from the mean field approximation and the confine-
ment to regular graphs (or nearly regular graphs), the Kephart and White model
approximates the eigenvalue structure of a regular graph and only the largest
eigenvalue and eigenvector are considered. Since

∑N
j=1 λj (AR) = 0 implying that

a non-negligible fraction of the eigenvalues are negative, the Kephart and White

derivative dy(t)
dt

underestimates the actual rate of infection in the regular graph.
Most likely, this underestimation is a general property of “homogeneous” virus
spread models. A similar comment holds for the extended local models proposed
by Pastor Satorras and Vespignani [22, Chapter 9].

For the simplest regular graph, the complete graph KN , we observe that the
equation (4.3) for each node i is identical. Thus, one might be led to put, vi = vk,

for all 1 ≤ k ≤ N and for all t and such that
∑N

j=1 aijvj (t) = (N − 1)vi (t). In
that case, the set of equations (4.4) reduces to a single equation,

dvi (t)

dt
= β (N − 1) vi (t) (1 − vi (t)) − δvi (t)

which is the Kephart and White differential equation (2.1). Although apparently
correct, the assumption that vj = vk (for all t) implies that all initial conditions
also are the same. That full symmetry reduces the modeling of the network to
that of a single node. Also, that local view of the single node is equivalent to
ignoring all, but the largest eigenvalue in (4.18). In random attack strategies of
computer viruses, where each node has equal probability to be infected initially,
the full symmetry vi (0) = vj (0) for any pair of nodes i and j is achieved.

4.5.2 Average cluster model and isoperimetric constant

As presented in Chapter 2, section 2.2.5, Ganesh et al. in [31] determine the two
thresholds τc and τ∗

c . The first threshold, τc was examined in details in [41] as
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well as in [3] and [32]. Below the first one, the lifetime of the epidemic is of the
order O(log(N)), where N is the number of nodes in the network [31] and it is
determined as reciprocal of the largest eigenvalue λmax of the adjacency matrix
i.e. τc = 1

λmax
. Above the second threshold τ∗

c , the lifetime of the metastable state

is of the order2 Ω(eNα

), where τ∗
c is such an effective spreading rate for which the

infected fraction in the metastable state is y∞(τ) = O(Nα−1), for α > 0 [31].
Let us divide an infected graph into two sets: a set S(t) of infected nodes

at time t and its complement Sc(t), the set of non-infected nodes. The number
of edges between the two clusters at time t is denoted as e (S(t), Sc(t)) and the
number of nodes in each set as |S(t)| , |Sc(t)|. The birth of new infections is a sum
of Poisson processes on each link connecting infected and non-infected clusters.
The rate at which new infected nodes appear is thus βe (S(t), Sc(t)). On the
other hand, the curing process is a sum of Poisson processes on all the infected
nodes which leads to δ |S(t)|. For large N , the increase/decrease of the fraction
of infected nodes depends on these two processes and can be written as

N
dy(t)

dt
= βe (S(t), Sc(t)) − δ |S(t)|

where Ny(t) is the total number of infected nodes in the graph.
During the metastable state, individual nodes change their states from infected

to susceptible and back, while the clusters S(t) and Sc(t) are constantly changing.

When dy(t)
dt

is equal to zero, then the number of new nodes that are infected and
the infected ones that are cured is equal, but the clusters may still be changing.

For dy(t)
dt

= 0, we find
e (S∞, Sc

∞)

|S∞| =
1

τ
(4.20)

Because the infected cluster changes, it is possible to enclose the infection in a
cluster that is poorly connected to the rest of the graph. In this case, the number
of nodes in the infected cluster will decrease and not enough new nodes will be
infected, resulting in infection extinction.

Let us define the minimum of the ratio (4.20) as the generalized isoperimetric
constant for different maximal sizes of the infected cluster m,

η(G,m) = inf
S⊂{1,..,n},|S|≤m

e(S, Sc)

|S| , 0 < m 6 ⌊N/2⌋

Bounding the epidemic process with this worst case scenario leads to the second
epidemic threshold 2.4.

Another important result [42] is the relation between the second smallest eigen-
value µN−1(Q) of the Laplacian matrix Q of a graph G to the standard isoperi-

2Ω is a lower asymptotic bound with definition: for a given real function g(x), we denote
Ω(g(x)) as the set of functions such that Ω(g(x)) = {f(x), ∃x0, ∃c > 0| 0 ≤ cg(x) ≤ f(x),∀x ∈
, x > x0}.
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metric constant η(G) = η(G,
⌊

N
2

⌋
)

η(G) >
µN−1(Q)

2
(4.21)

The average infected cluster of a graph

Statistically, infection of some clusters is more probable than of others. Some
nodes have higher probability of being infected because they are more connected
or they are part of a highly connected cluster. Some examples are hubs in a star
networks, or nodes in the middle of a lattice. The N -intertwined model takes
into account interactions between pair of nodes and the position of a node in the

network, but is not able to describe interactions of clusters. The ratio e(S,Sc)
|S| is

the best way to describe cluster interactions, but it is not a simple parameter to
calculate. In this section, we show that averaging over the cluster connectivity
leads to the logistic equation [1].

Not all the clusters are equally probable, but in the first approximation we
will disregard this fact. For sufficiently large N , we can calculate the average

increment dy(t)
dt

in the number of infected nodes for a given cluster size of m
nodes as a sum over all the clusters divided by the total number of combinations(
N
m

)
.

N
dy(t)

dt
=

β(
N
m

)
∑

(∀S)S⊂{1,..,N},|S|=m

e (S(t), Sc(t)) − δ(
N
m

)
∑

(∀S)S⊂{1,..,N},|S|=m

|S(t)|

For dy(t)
dt

= 0, we have

τ =
1

1

(N
m)

∑
(∀S)S⊂{1,..,N},|S|=m

e(S(t),Sc(t))
m

(4.22)

We will define the average interconnection constant of a graph as

−
η(G,m) =

1(
N
m

)
∑

(∀S)S⊂{1,..,N},|S|=m

e(S, Sc)

m

Simply stated, we have averaged the ratio e(S,Sc)
|S| over all combinations of clusters

with m nodes, taking any of them as equiprobable and divided by the total number
of combinations of m-sized clusters from the network with N nodes.

Lemma 14. The average interconnection constant of a graph G obeys

−
η(G,m) = dav(1 − m − 1

N − 1
) (4.23)
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Proof. We denote the degree of a node i by di and the number of links from
node i to the nodes inside set S as hi. From the definition of the averaged cluster
constant, we have

−
η(G,m) =

1(
N
m

)
∑

(∀S)S=(i1,i2,...im),S⊂{1,..,N},|S|=m

m∑
p=1

(dip
− hip

)

m

The number of clusters, in which a node i appears, is equal to
(
N−1
m−1

)
. Counting

the number of combinations for different values of hip
= 0, 1, 2...m we have

−
η(G,m) =

(
N−1
m−1

) N∑
i=1

di

m
(
N
m

) − 1(
N
m

)
∑

(∀S)S=(i1,i2,...im),S⊂{1,..,N},|S|=m

m∑
p=1

hip

m

In order to count the number of clusters in which a node i appears with hip
= k

of its neighbors, we calculate all the combinations without a node i and all of
its neighbors, which is

(
N−di−1
m−k−1

)
and multiply that with all the combinations of a

node i with k neighbors, which is
(
di

k

)
. If a node i has large degree, it is not always

possible to include any number of its neighbors in the cluster S. The minimal
number of neighbors k that can be in a cluster S is k = max(0,m + d − N) and
the maximal k is k = min(di,m). Hence,

−
η(G,m) = dav −

N∑
i=1

min(di,m)∑
k=max(0,m+d−N)

(
N−di−1
m−k−1

)(
di

k

)

m
(
N
m

)

We can simplify the double sum and find (4.23).

In other words, the average interconnection constant
−
η(G,m) is equal to the

average degree of a node dav excluding connections inside a cluster m−1
N−1dav.

Assuming dy(t)
dt

= 0 and using (4.22) and (4.23) for any graph, leads to

τ =
1

dav(1 − m−1
N−1 )

from which follows the estimation of the average number of infected nodes in the
graph as a function of τ :

m = 1 + (N − 1)(1 − 1

τdav

) (4.24)
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This result is equivalent to the Kephart and White result for k-regular (k = dav)
graphs [2]. The epidemic threshold (for m = 0) is

τc =
1

dav(1 + 1
N−1 )

≈ 1

dav

The largest eigenvalue of an adjacency matrix is always larger then or equal
to the average degree which implies 1

dav
> 1

λmax
[17] such that the threshold of

the Kephart and White model is overestimating the real epidemic.
It is interesting to observe that not all the clusters have the same probability

to appear as an infected cluster. If the probability distribution of infected clusters
would be available, a more precise description of an epidemic process in a network
could be derived. In Figure 4.3, the comparison between the N -intertwined model
and the eq. (4.24) is given. The largest discrepancy can be observed for a power
law graph.
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Figure 4.3: The fraction of infected nodes as a function of τ . Comparison between the
model given by eq. (4.24) and the N-intertwined model. All graphs consist of N = 100
nodes.
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4.5.3 The model of Wang et al.

In section 2.2.6, we have presented model of Wang et al.. In this section, we will
compare the steady state of Wang model with the N -intertwined model. To help
reader follow the arguments we will repeat the steady state equations of Wang et
al. 2.5 and the N -intertwined model 4.6.

pi =
1 −∏ (1 − βwpj,t−1)

1 − (1 − 1
2δw)

∏
(1 − βwpj,t−1) + 1

2δw

vi∞ =
β
∑N

j=1 aijvj∞

β
∑N

j=1 aijvj∞ + δ

Note that in the first equation (4.5.3) β and δ are probabilities, while in (4.5.3)
they are rates. In order to distinguish between probability of transmission and
rate of transmission, we denoted probability with βw and δw.

The main difference in these two models lies in different application regions.
Wang et al. is discrete model and can be used only for synchronous systems
where there is specific time unit during which the infection will or will not be
transmitted. In that sense, Wang et al. model tends to N -intertwined model in
the limit β → 0 and δ → 0 with βw

δw
= τ . If the process that is being modeled is

in continuous time, Wang et al. model introduces an error which increases with
increase of βw and δw.

Further more, steady state solution in Wang et al. model does not depend
only on ratio τw = βw

δw
, but also on a polynomial of βw. Although completely

natural for discrete time, this effect does not exist in continuous time. Therefore
in the discrete model, the steady state is different for the same τw and different
βw.

The Wang et al. model as presented in [32] has one serious mistake. To cite:
[...] we assume that the probability that a curing event at node i takes place after
infection from neighbors is roughly 50%. First of all, it is not possible to have
before and after in discrete time step and secon estimation of roughly 50% is not
rigorous analytical modeling step.

Wang et al. and N -intertwined model are created with different systems in
mined, namely discrete and continuous. While Wang et al. model can not be used
for continuous time epidemic spreading, N -intertwined model is not appropriate
for discrete time, sinhronous, epidemic spreading.

4.5.4 The exact 2N Markov chain

Via simulations, we assess the accuracy of the N -intertwined Markov chain. Only
small networks are simulated because we expect for small N the largest error.
Fig. 4.4,4.5 and 4.6 present a typically view of the fraction y (t) as function of
time t in K11 for three different τ -regimes.
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Figure 4.4: The fraction y (t) of infected nodes in K11 where τ = 10−3 as a function
time computed exactly (via the Q-matrix) and with the N intertwined Markov chain
model.

Below the epidemic threshold τc = 1
10 (N = 11 in Fig. 4.4), the N -intertwined

non-linear model is almost exact.
In a τ -region round τc, Fig. 4.5 illustrates that the deviations from the exact

solution are substantial. But, sufficiently above τc as in Fig. 4.6, the accuracy
of the N -intertwined non-linear model again improves. Since the N -intertwined
non-linear model upperbounds the fraction of infected nodes as shown in Section
4.2, the relative small difference in Fig. 4.6 quantifies the effect of neglecting
dependence in the mean field approximation.

In summary, for all graphs, if τ < τc, the N -intertwined Markov chain is
very accurate. If τ > τc, the N -intertwined Markov chain differs from the exact
solution, but the difference decreases with increasing network size N . The fact
that the non-linear N -intertwined model and the exact 2N -state Markov chain
are close for large N is linked with a general property of Markov chains: A
Markov chain can approximate any stochastic process arbitrarily close provided
the number of states in the Markov chains is sufficiently large.

4.6 Special case - complete bi-partite graph

In this section we will consider complete bi-partite graphs. A complete bi-partite
graph KM,N consists of two disjoint sets S1 and S2 containing respectively M
and N nodes, such that all nodes in S1 are connected to all nodes in S2, while
within each set no connections occur. Figure 4.7 gives an example of a complete
bi-partite graph on 6 nodes.
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Figure 4.5: The N = 11 times the fraction y (t) of infected nodes in K11 where
τ = 0.2 = 2τc as a function time computed exactly (via the Q-matrix) and with the
N intertwined Markov chain model.

Notice that (core) telecommunication networks often can be modeled as a
complete bi-partite topology. For instance, the so-called double-star topology
(i.e. KM,N with M = 2) is quite commonly used because it offers a high level of
robustness against link failures. For example, the Amsterdam Internet Exchange
(see www.ams-ix.net), one of the largest public Internet exchanges in the world,
uses this topology to connect its four locations in Amsterdam to two high-density
Ethernet switches. Sensor networks are also often designed as complete bi-partite
graphs.

Due to the symmetry, for complete bi-partite graph the set of N equations for
N -intertwined model reduces to only two [43], [41].

vN =
τ2MN − 1

Nτ(Mτ + 1)
; vM =

τ2MN − 1

Mτ(Nτ + 1)
(4.25)

Because an epidemic steady state only exists if VN∞ > 0 or VM∞ > 0, Eq.
(4.25) yields the epidemic threshold:

τ =
1√
MN

. (4.26)

This complies with [32] because according to [44] the spectral radius of the adja-
cency matrix of the graph KM,N is equal to

√
MN .

For effective spreading rates above the epidemic threshold the epidemic steady
state y∞ for the complete bi-partite graph KM,N satisfies

y∞ =
MvM∞ + NvN∞

M + N
. (4.27)
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Figure 4.6: The N times the fraction y (t) of infected nodes in K11 where τ = 2 as a
function time computed exactly (via the Q-matrix) and with the N intertwined Markov
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Figure 4.7: Complete bi-partite graph K2,4

Substitution of Eq. (4.25) into Eq. (4.27) yields

y∞ =
(MNβ2 − δ2)(βN + βM + 2δ)

β(M + N)(βM + δ)(βN + δ)
. (4.28)

The epidemic spreading is a stochastic process, and in the steady state, the
system is taking a set of values around the mean epidemic steady state y∞, see
also Figures 4.9-4.8. Because the steady state probability of a node being infected
does not depend on other nodes the steady state probability Pr[IN , IM ] satisfies:

Pr[IN = x, IM = w] =

(
N

x

)
vx

N∞(1−vN∞)N−x

(
M

w

)
vw

M∞(1−vM∞)M−w (4.29)

4.6.1 The impact of infection delay

So far we have assumed that once a node is infected, it instantaneously becomes
infectious. In reality, there may be a time lag between the arrival of a virus at
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a node and the time this node itself starts to spread the virus. A virus could lie
dormant on a host due to user inactivity or because the virus was designed in this
manner for stealth reasons.

In [45], Wang and Wang have studied the impact of infection delay on the
epidemic threshold and the epidemic steady state for regular graphs. In [45] the
infection delay ǫ is defined as the length of time between the virus arrival at a
node and the instant the node becomes infectious.

It is shown in [45] that the steady state for the fraction of infectious nodes
satisfies

vN∞ =
βk − δeδǫ

βk
, (4.30)

which yields for the epidemic threshold:

τ =
eδǫ

k
. (4.31)

Thus, the infection delay increases the epidemic threshold, which means that
infection delay makes an epidemic die out more easily. Let us examine the impact
of infection delay on virus spread on complete bi-partite graphs.

We can derive the following delay-differential equation for the evolution of
vN (t), which as before, denotes the fraction of infected nodes in S2 at time t:

dvN (t)

dt
= βMvM (t − ǫ)e−δǫ(1 − vN (t)) − δvM (t), (4.32)

where vM (t − ǫ) = 0 for t < ǫ and vM (t) denotes the fractions of nodes in
S1 that is infectious at time t. For t ≥ ǫ, the probability that a node in S1 is
infectious is the probability that the node was already infected at time t− ǫ, since
all nodes infected between t−ǫ and t are still being delayed. Curing a node during
the infection delay period ǫ results in the e−δǫ factor.

Let us denote the steady state of Eq. (4.32) as vN∞. We solve for vN∞ by
setting the right hand side of Eq. (4.32) equal to zero and vM (t − ǫ) = vM∞.
Analogous to Eq. (4.30) we find for vM∞

vM∞ =
βNvN∞e−δǫ

βNvN∞e−δǫ + δ
, (4.33)

where the e−δǫ factor corresponds with the probability that a node is cured
during the infection delay period ǫ.

Plugging Eq. (4.25) and vN = vN∞ into Eq. (4.32) and solving the right hand
side with respect to vN∞ we obtain the steady state solution for the fraction of
infected nodes in S2:

vN∞ =
MNβ2 − δ2e2δǫ

βN(βM + δeδǫ)
, (4.34)
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which yields for the epidemic threshold:

τ =
eδǫ

√
MN

. (4.35)

Analogous to the previous section it can be shown that for effective spreading
rates above the epidemic threshold the epidemic steady state y∞ for the complete
bi-partite graph BM,N with infection delay ǫ satisfies

y∞ =
(MNβ2 − δ2e2δǫ)(βN + βM + 2δeδǫ)

β(M + N)(βM + δeδǫ)(βN + δeδǫ)
. (4.36)

4.6.2 Simulation analysis

Virus spread without infection delay

In this section, we present a set of simulation results that will validate the mean
field model for complete bi-partite graphs proposed in the previous section. We
have considered complete bipartite graphs KM,N with {M = 10, N = 990}, {M =
500, N = 500}. Note that for K10,990 and K500,500 the epidemic threshold is τc =
0.0101 and τc = 0.002, respectively. The virus spread is a stochastic process, and
it can be expected that during evolution some of the infections die out before
reaching the steady state even though the effective spreading rate is above the
threshold. These evolutions have been excluded from calculations of the expected
number of infected nodes in the steady state.

1000

800

600

400

200

0

A
ve

ra
ge

 n
um

be
r 

of
 in

fe
ct

ed
 n

od
es

1000080006000400020000

t

 τ = 0.012
 τ = 0.045
 τ = 0.15
 τ = 0.5

Figure 4.8: Average number of infected nodes for K10,990, excluding virus epidemics
that died out.

Figures 4.8 and 4.9 show the average number of infected nodes for different
values of τ .
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Figure 4.9: Average number of infected nodes for K500,500, excluding virus epidemics
that died out.

Figures 4.10 and 4.11 show theoretical and simulated values for the mean
number of infected nodes in steady state. Again, realizations of the system in
which the virus died out during evolution are excluded in calculating the average.
Simulation results also showed that below the threshold the virus dies out.

Figure 4.12 shows the standard deviation σ as a function of the effective spread-
ing rate τ .

Note that our model, which is based upon mean field theory, fails to explain
extinction of the virus before the steady state is reached for effective spreading
rates above the threshold. We will deal with these issues in subsequent sections.

The impact of infection delay

We have conducted simulations for different values of the effective spreading rate
τ = β

δ
on a complete bipartite graph KM,N with {M = 250, N = 750} and for

two values of the infection delay ε ∈ {10, 50}. Again the evolutions that died out
are excluded in calculating the average number of infected nodes. Figures 4.13
and 4.14 show that our approximation Eq. (4.36) predicts the steady state well
for the virus spread with infection delay.

Steady state probability distribution

We conducted simulations for the complete bi-partite graph KM,N with M =
10, N = 990 with the effective spreading rate τ ∈ {0.045, 0.15, 0.5}. Note that
the epidemic threshold for this case is τc = 0.0101. Figure 4.15 also contains the
probabilities that the virus dies out during system evolution.

We conclude from the simulation that Eq. (4.29) predicts the probability
distribution of the number of infected nodes in steady state very well for large
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Figure 4.10: Number of infected nodes in the steady state for K10,990

values of the effective spreading rate τ . For values of τ just over the threshold our
model is less accurate in predicting the probability distribution. This confirms the
result of section 4.2 that the N -intertwined model exhibits the largest deviation
around τ = τc.

4.6.3 Extinction probability

Eventually, every epidemic on a finite population will die out. However, for ef-
fective spreading rates above the epidemic threshold, this will take an extremely
long time in general [31].

We approximate the probability that a virus dies out before reaching the
steady state pext by the probability that all initially infected nodes are cured
before they infect any other node. We initially infect N0 nodes in the larger
group of nodes S2 (consisting of N nodes). Then pext equals the probability that
all N0 nodes are cured before they infect any of the susceptible M nodes to which
they are attached, see Figure 4.16, where full and open circles denote infected
and susceptible nodes, respectively. Let us first determine the probability pM

that one specific node will be cured before it has infected any of the susceptible
M nodes, before time T . It is assumed that the infection process (over a link)
and the node curing process are independent Poisson processes with rates β and
δ, respectively. Furthermore, let Tβ be a random variable that denotes the time it
takes for a susceptible node to become infected over a link and Tδ denotes the time
it takes for a node to cure. For the latter random variable, let fTδ

(x) denote its
corresponding probability density function. Suppose the infected node is cured at
time x, with 0 ≤ x ≤ T . This implies, that for all M susceptible nodes attached
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Figure 4.11: Number of infected nodes in the steady state for K500,500

to the infected node, we require Tβ > x. Applying the law of total probability we
obtain:

pM =

T∫

0

[Pr[Tβ > x|Tδ = x]]MfTδ
(x)dx

=

T∫

0

(e−βx)Mδe−δxdx

=
δ

δ + Mβ
(1 − e−(δ+Mβ)T ).

Because the curing processes of the N0 infected nodes are independent, in
order to obtain pext, we have to multiply the probabilities of each of them being
cured before they infect other nodes, which leads to:

pext =

(
δ

δ + Mβ
(1 − e−(δ+Mβ)T )

)N0

(4.37)

In order to estimate how well Eq. (4.37) predicts extinction of a virus spread
in the first phase, we have conducted simulations on the complete bi-partite graph
KM,N with parameters {M = 10, N = 990, τ = 0.045}. Figure 4.17 shows the
probability of extinction evolving in time for the case of three initially infected
nodes (N0 = 3).
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Figure 4.12: Standard deviation around the steady state for K10,990

Figure 4.18 depicts pext for the number of initially infected nodes between 1
and 8. For a given graph, there is high probability that initially infected nodes
are in the larger less connected set of nodes. If nodes in smaller well connected
set are infected significantly different results can be expected.
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Figure 4.13: Average number of infected nodes for K250,750 with infection delay ε = 10,
excluding virus epidemics that died out.
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Figure 4.14: Average number of infected nodes for K250,750 with infection delay ε = 50,
excluding virus epidemics that died out.
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Figure 4.16: Complete bi-partite graph KM,N0 , with N0 infected nodes
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Figure 4.17: Extinction of the virus as a function of time for K10,990 with τ = 0.045
for 3 initially infected nodes.
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Figure 4.18: Extinction of the virus after T = 6000 as a function of number of initially
infected nodes, for K10,990 with τ = 0.045.



Chapter 5

Heterogenous N-intertwined
model

In this Chapter, we will study an extension of the N -intertwined model, where
the curing and infection rates are node specific.

As in homogeneous case in Chapter 4, by separately observing each node, we
will model the virus spread. In the case of heterogeneous model, the network
is bi-directional, specified by asymmetric adjacency matrix A. Every node i at
time t in the network has two states: infected with probability Pr[Xi (t) = 1]
and healthy with probability Pr[Xi (t) = 0]. If we apply Markov theory, the
infinitesimal generator Qi (t) of this two-state continuous Markov chain is the
same as in equation 4.1, with q2;i = δi and

q1;i =

N∑

j=1

βjaij1{Xj(t)=1}

where the indicator function 1x = 1 if the event x is true else it is zero. The
coupling of node i to the rest of the network is described by an infection rate q1;i

that is a random variable, which essentially makes the process doubly stochastic.
Using the same analysis as in homogeneous case and denoting infection proba-

bility of node i with vi (t) and recalling that Pr[Xi(t) = 0] = 1−vi (t), the Markov
differential equation [17, (10.11) on p. 182] for state Xi(t) = 1 turns out to be
non-linear

dvi (t)

dt
=

N∑

j=1

βjaijvj (t) − vi (t)




N∑

j=1

βjaijvj (t) + δi


 (5.1)

Written in matrix form, with

65
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V (t) =
[

v1 (t) v2 (t) · · · vN (t)
]T

we arrive at

dV (t)

dt
= Adiag (βj) V (t) − diag (vi (t)) (Adiag (βj) V (t) + C) (5.2)

where diag(vi (t)) is the diagonal matrix with elements v1 (t) , v2 (t) , . . . , vN (t)
and the curing rate vector is C = (δ1, δ2, . . . , δN ).

We note that Adiag(βi) is, in general and opposed to the homogeneous setting,
not symmetric anymore, unless A and diag(βi) commute, in which case the eigen-
value λi (Adiag (βi)) = λi (A) βi and both βi and λi (A) have a same eigenvector
xi.

5.1 General heterogeneous steady-state

The metastable steady-state follows from (4.4) as

Adiag (βi) V∞ − diag (vi∞) (Adiag (βi) V∞ + C) = 0

where V∞ = limt→∞ V (t). We define the vector

w = Adiag (βi) V∞ + C (5.3)

and write the stead-state equation as

w − C = diag (vi∞) w

or

(I − diag (vi∞))w = C

Ignoring extreme virus spread conditions (the absence of curing (δi = 0) and
an infinitely strong infection rate βi → ∞), then the infection probabilities vi∞
cannot be one such that the matrix (I − diag (vi∞)) = diag(1 − vi∞) is invertible.
Hence,

w = diag

(
1

1 − vi∞

)
C

Invoking the definition (5.3) of w, we obtain

Adiag (βi) V∞ = diag

(
vi∞

1 − vi∞

)
C

= diag

(
δi

1 − vi∞

)
V∞ (5.4)
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The i-th row of (5.4) yields the nodal steady state equation

N∑

j=1

aijβjvj∞ =
vi∞δi

1 − vi∞
(5.5)

Let Ṽ∞ = diag(βi) V∞ and the effective spreading rate for node i, τi = βi

δi
, then

we arrive at

Q
(

1

τi (1 − vi∞)

)
Ṽ∞ = 0 (5.6)

where the symmetric matrix

Q (qi)= diag (qi) − A (5.7)

= diag (qi − di) + Q

can be interpreted as a generalized Laplacian1, because Q (di) = Q = ∆ − A,
where ∆ = diag(di). The observation that the non-linear set of steady-state
equations can be written in terms of the generalized Laplacian Q (qi) is fortunate,
because, as will be shown in Section 5.1.1, the powerful theory of the “normal”
Laplacian Q applies.

The modified steady-state vector Ṽ∞ is orthogonal to each row (or, by sym-

metry, each column) vector of Q
(

1
τi(1−vi∞)

)
. A non-zero modified steady-state

vector Ṽ∞ is thus only possible provided detQ
(

1
τi(1−vi∞)

)
= 0. In other words,

the generalized Laplacian Q
(

1
τi(1−vi∞)

)
should have a zero eigenvalue with the

modified steady-state vector Ṽ∞ as corresponding eigenvector. Since the vectors
B = (β1, β2, . . . , βN ) and C = (δ1, δ2, . . . , δN ) are given, the non-linear eigenvec-
tor problem (5.6) has, in general, a solution that cannot simply be recast to the
homogeneous case where B = βu and C = δu (or βi = β and δi = δ for all
1 ≤ i ≤ N) in which the all-one vector u = (1, 1, . . . , 1).

5.1.1 The generalized Laplacian Q (qi)

Since Q (qi) is symmetric, all eigenvectors are orthogonal such that, with Ṽ∞ =
diag(βi) V∞,

N∑

j=1

βjvj∞yj = 0 (5.8)

where y is the eigenvector belonging to λ (Q (qi)) 6= 0.

1All eigenvalues of the Laplacian Q = ∆ − A in a connected graph are positive, except for
the smallest one that is zero. Hence, Q is positive semi-definite. Much more properties of the
Laplacian Q are found e.g. in [46] and [44].
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Theorem 15. If the network G is connected, all eigenvalues of Q (qi) are positive,
except for the smallest one λN (Q) = 0.

Proof. The theorem is a consequence of the Perron-Frobenius Theorem (see e.g.
[47]) for a non-negative, irreducible matrix. Indeed, consider the non-negative
matrix qmaxI − Q (qi), where qmax = max1≤i≤N qi, whose eigenvalues are ξk =
qmax − λk (Q) for 1 ≤ k ≤ N . Since G is connected, then qmaxI − Q (qi) is
irreducible and the Perron-Frobenius Theorem states that the largest eigenvalue
r = max1≤k≤N ξk of qmaxI −Q (qi) is positive and simple and the corresponding
eigenvector xr has positive components. Hence, Q (qi) xr = (qmax − r) xr. Since

eigenvectors of a symmetric matrix are orthogonal while Ṽ T
∞xr > 0, xr must be

proportional to Ṽ∞, and thus qmax = r. Since there is only one such eigenvector
xr and since the eigenvalue r > qmax − λk (Q) for all k (except that k for which
λk (Q) = 0, which is thus the smallest eigenvalue), all other eigenvalues of Q (qi)
must exceed zero.

If the graph G is disconnected which means that A is reducible [17], the
Theorem 15 still applies (see e.g. [47]), however, under the slightly weakened form
that xr has non-negative components (instead of positive, hence, zero components
can occur) and that the largest eigenvalue r is non-zero (not necessarily strict
positive). The consequence is that more than one zero eigenvalue can occur.
From the point of virus spread, we may ignore disconnected graphs, because the
theory can be applied to each connected component (cluster) of the network G.
The symmetry of Q (qi) implies that all eigenvalues are real and can be ordered.
By Theorem 15, we have

0 = λN (Q) ≤ λN−1 (Q) ≤ . . . ≤ λ1 (Q)

Gerschgorin’s theorem [48, p. 71-75] indicates that the eigenvalues of Q (qi) are
centered around qi with radius equal to the degree di, i.e. an eigenvalue λ of
Q (qi) lies in an interval |λ − qk| ≤ dk for some 1 ≤ k ≤ N . Thus, there is an
eigenvalue λ of Q (qi) that obeys

qk − dk ≤ λ ≤ dk + qk

A solution of (5.6) requires that at least one eigenvalue of Q (qi) is zero, while
Theorem 15 states that there is only one zero eigenvalue. Hence, precisely one, say
the j-th, of the Gerschgorin line segments that contain the eigenvalue λN (Q) = 0,
must obey qj ≤ dj to have a non-zero solution of (5.6). However, more Gerschgorin
segments may obey qk − dk ≤ 0. This couples 1

τj(1−vj∞) ≤ dj for at least one j

component and shows that, when vj∞ → 1, there must hold that τj → ∞. Hence,
for at least one component j, there holds that

0 < vj∞ ≤ 1 − 1

τjdj
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where the lower bound follows, by the Perron-Frobenius Theorem, from the fact
that the network G is connected. This shows that there is a critical bound on
τj > 1

dj
for at least one component of τ . The critical threshold on the τ -vector is

further explored in Section 5.1.2.
We also know that trace(Q (qi)) =

∑N
k=1 λk (Q). Thus, with λN (Q) = 0,

N−1∑

k=1

λk (Q) =

N∑

i=1

1

τi (1 − vi∞)

In addition, since

trace
(
Q2 (qi)

)
= trace

(
diag

(
q2
i

))
+ trace

(
A2
)

=

N∑

i=1

1

τ2
i (1 − vi∞)

2 + 2L

we have that
N−1∑

k=1

λ2
k (Q) =

N∑

i=1

1

τ2
i (1 − vi∞)

2 + 2L

Right multiplication of (5.4) by the all one-vector uT = (1, 1, . . . , 1) yields

uT Adiag (βi) V∞ = uT diag

(
δi

1 − vi∞

)
V∞

With uT A = DT = (d1, d2, . . . , dN ), the degree vector, we have

(
uT diag

(
δi

1 − vi∞

)
− DT diag (βi)

)
V∞ = 0

or2
N∑

j=1

(
1

τj (1 − vj∞)
− dj

)
βjvj∞ = 0 (5.9)

Similarly as deduced from Gershgorin’s theorem, this sum shows that, at least
one j term should be negative (because βjvj∞ ≥ 0), i.e. dj ≥ 1

τj(1−vj∞) . Also,

in view of (5.8), the vector y with components yj = 1
τj(1−vj∞) − dj is a linear

combination of eigenvectors of Q
(

1
τi(1−vi∞)

)
belonging to a non-zero eigenvalue.

In general, however, the vector y is not an eigenvector of Q
(

1
τi(1−vi∞)

)
.

2The result (5.9) also follows by adding all rows in (5.6)

Q (qi) Ṽ∞ = diag (qi − di) Ṽ∞ + QṼ∞

and using the basic fact that the row sum of the Laplacian Q is zero.
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5.1.2 The critical threshold

We known that the exact steady-state is V∞ = 0, but the metastable steady-
state (see [41] for a deeper discussion) is characterized by a second solution, the
eigenvector of (5.6).

Theorem 16. The critical threshold is determined by vector τc = (τ1c, τ2c,
. . . , τNc) that obey λmax (R) = 1, where λmax (R) is the largest eigenvalue of the
symmetric matrix

R = diag (
√

τi) Adiag (
√

τi) (5.10)

whose corresponding eigenvector has positive components if the graph G is con-
nected.

Proof. At the critical threshold, the second, non-zero solution is V∞ = εx, where
x is a vector with non-negative components and where ε is arbitrary small. This
property allows us to approximate the generalized Laplacian Q (q) as

Q
(

1

τi (1 − vi∞)

)
= diag

(
δi

βi (1 − εxi)

)
− A

= diag

(
δi

βi

)
(I − εdiag (xi)) − A + O

(
ε2
)

such that (5.6) becomes to first order in ε

Q
(

1

τi

)
diag (βi) x = 0

which can be rewriten as an eigenvalue equation for the adjacency matrix,

diag

(
1

δi

)
Adiag (βi) x = x

Hence, x is the eigenvector of Ã = diag
(

1
δi

)
Adiag(βi) belonging to the eigenvalue

1. Since Ã is a non-negative, irreducible matrix, the Perron-Frobenius Theorem

[17, p. 451] states that Ã has a positive largest eigenvalue λmax

(
Ã
)

with a

corresponding eigenvector whose elements are all positive and that there is only
one eigenvector of Ã with non-negative components. Since any scaled vector
V∞ = εx must have non-negative components (because they represent scaled

probabilities), we find that λmax

(
Ã
)

= 1. Hence, for the given vectors B =

(β1, β2, . . . , βN ) and C = (δ1, δ2, . . . , δN ), there are three possibilities:




λmax

(
Ã
)

< 1 not infected network

λmax

(
Ã
)

= 1 critical threshold

λmax

(
Ã
)

> 1 infected network

(5.11)
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where the inequalities sign are deduced by relating the largest eigenvalue to the
norm of the matrix Ã: higher eigenvalues correspond to a larger norm (see e.g. [17,

Section A.3.1]). Of course, only in case λmax

(
Ã
)

= 1, the eigenvector equation

has a non-zero solution. If λmax

(
Ã
)

> 1, then the first order expansion is

inadequate and the full non-linear equation (5.6) needs to be solved.

The first order expansion process has caused Ã to be not symmetric, while

Q
(

1
τi(1−vi∞)

)
is symmetric in general. Fortunately, there exist a similarity trans-

form H = diag
(√

δiβi

)
which symmetrizes Ã,

R = HÃH−1 = diag

(√
βi

δi

)
Adiag

(√
βi

δi

)

and R = RT has the same real eigenvalues as Ã (see [17, p.438]). The matrix R
also demonstrates that only an effective rate per node, τi = βi

δi
, is needed. Thus,

the equation that characterizes the critical threshold is

Ry = y

where y = Hx. The eigenvalue λmax

(
Ã
)

= λmax (R) = 1 determines the critical

vectors τc = (τ1c, τ2c, . . . , τNc). In general, there can be more than one critical
vector because λmax (R) = 1 is a map of R

N → R.

We remark that, since trace(R) = trace(A) = 0, that λmax (R) = λ1 (R) =

−∑N
j=2 λj (R), where the eigenvalues are ordered as λN ≤ λN−1 ≤ · · · ≤ λ1.

Special cases

We illustrate that more than one critical vector obeys λmax (R) = 1.
1. The homogeneous threshold τhom;c is found when τi = τ , in which case

λmax (R) = 1 reduces to 1
τhom;c

= λmax (A), a basic result in [41].

2. When δi

βi
= 1

τi
= di for all 1 ≤ i ≤ N , we observe that Q (di) = Q if vi∞ =

ε > 0, where ε is arbitrary small. In that case, the steady-state vector is Ṽ∞ → εu,

thus V∞ = ε (β1, β2, . . . , βN ) and the critical vector τc =
(

1
d1

, 1
d2

, . . . , 1
dN

)
. In

that case, R = diag
(√

1
di

)
A diag

(√
1
di

)
and after a similarity transform H1 =

diag
(√

1
di

)
, we obtain the stochastic matrix [17, p.484-486]

H1RH−1
1 = ∆−1A

whose largest eigenvalue is, indeed, equal to one.
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5.1.3 Bounding λmax (R)

Applying the general Rayleigh formulation for any matrix M ,

λmax = sup
x6=0

xT Mx

xT x

and, knowing that all components of the eigenvector belonging to the largest
eigenvalue are non-negative, we obtain

λmax (R) = sup
x6=0

xT diag
(√

τi

)
Adiag

(√
τi

)
x

xT x

Let z = diag
(√

τi

)
x, then

λmax (R) = sup
z 6=0

zT Az

zT diag
(

1
τi

)
z

(5.12)

In the sequel, we deduce several bounds from (5.12).
First, we rewrite (5.12) as

λmax (R) = sup
z 6=0

zT Az

zT z

zT z

zT diag
(

1
τi

)
z

≥ sup
z 6=0

zT Az

zT z

zT z

inf
z 6= 0zT diag

(
1

τi

)
z

= λmax (A) min
1≤j≤N

τi

Thus,
λmax (A) min

1≤j≤N
τi ≤ λmax (R) ≤ λmax (A) max

1≤j≤N
τi (5.13)

where the upper bound follows similarly from

supz 6=0
zT Az

zT diag
(

1
τi

)
z
≤ maxz 6=0 zT Az

minz 6=0 zT diag
(

1
τi

)
z
.

At the critical threshold where λmax (R) = 1, the bounds reduce, with τmin =
min1≤j≤N τi and τmax = max1≤j≤N τi, to the inequality for the minimum and
maximum component of the critical τ -vector,

τmin;c ≤ 1

λmax (A)
≤ τmax;c

Hence, there is always at least one τ -component below and one τ -component
above the critical threshold in the homogeneous case τhom;c = 1

λmax(A) .

Next, a common lower bound (see e.g. [49],[50]) is obtained by letting z = u,
the all-one vector, in (5.12). Equality in (5.12) is only achieved when z is the
eigenvector such that, in all other cases,
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λmax (R) ≥ uT Au

uT diag
(

1
τi

)
u

=
2L

∑N
j=1

1
τj

(5.14)

For all regular graphs3, the bound (5.14) is sharp, because u is the largest

eigenvector of A belonging to λmax (A) = d. However, all eigenvectors of diag
(

1
τi

)

are the basic vectors ej with all components equal to zero, except for the j-th one
that is equal to one. Written in terms of the average degree E [D] = 2L

N
and the

harmonic mean E
[
τ−1

]
= 1

N

∑N
j=1

1
τj

yields

λmax (R) ≥ E [D]

E [τ−1]

such that at the critical threshold, where λmax (R) = 1, there holds that E
[
τ−1
c

]
≥

E [D]. Unfortunately, the harmonic, geometric and arithmetic mean inequality4,

that leads to 1
E[τ−1] = N

(∑N
j=1

1
τj

)−1

≤ 1
N

∑n
j=1 τj = E [τ ], prevents us to

clearly upper bound the average zero infection τ -region, [0, E [τc]]. Approximative,
by assuming 1

E[τ−1] ≈ E [τ ], the average zero infection τ -region is upper bounded

by the mean degree E [D]. Notice that, in the homogeneous case (τj = τ), the
approximation is exact, leading to τhom;c ≤ 1

E[D] .

There are several other interesting choices. A first alternative choice is z = D,
where D = (d1, d2, . . . , dN ) is the degree vector. Or A second alternative choice is
to choose the components of the vector z equal to a row vector of A, i.e. zj = aqj .
However, these bounds are not very good.

5.1.4 Additional properties

We list here additional properties that have been proved in [41], and whose ex-
tension to the in-homogeneous setting is rather straightforward.

Lemma 17. In a connected graph, either vi∞ = 0 for all i nodes, or none of the
components vi∞ is zero.

Lemma 7 also follows from the Perron-Frobenius theorem as shown in the
proof of Theorem 15.

3A regular graph is a graph where all degree di = d.
4For real positive numbers a1, a2,, . . . , an, the harmonic, geometric and arithmetic mean

inequality is

n
∑n

j=1
1

aj

≤ n

√√√√
n∏

j=1

aj ≤ 1

n

n∑

j=1

aj (5.15)
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Theorem 18. The non-zero steady-state infection probability of any node i in
the N -intertwined model can be expressed as a continued fraction

vi∞ = 1 − 1

1 + φi
δi

− δ−1
i

∑N
j=1

βjaij

1+
φj
δj

−δ
−1
j

∑
N
k=1

βkajk

1+
φk
δk

−δ
−1
k

∑N
q=1

aqkβq

. . .

(5.16)

where the total infection rate of node i, incurred by all neighbors towards node i,
is

φi =
N∑

j=1

aijβj =
∑

j∈ neighbor(i)

βj (5.17)

Consequently, the exact steady-state infection probability of any node i is bounded
by

0 ≤ vi∞ ≤ 1 − 1

1 + φi

δi

(5.18)

The continued fraction stopped at iteration k includes the effect of virus spread
up to the (k−1)-hop neighbors of node i. In the homogeneous case where βj = β
for all 1 ≤ j ≤ N , we have that φi = βdi is proportional to the degree of node i.
The ratio τ̃i = φi

δi
is the total effective infection rate of node i.

Lemma 19. In a connected graph G above the critical threshold, a lower bound
of vi∞ for any node i equals

vi∞ ≥ 1 − 1

min1≤k≤N
φk

δk

(5.19)

Proof. Lemma 7 and Theorem 16 show that, for vectors τ above the critical
threshold vector τc, there exists a non-zero minimum vmin = min1≤i≤N vi∞ > 0
of the steady-state infection probabilities, which obeys (5.5). Assuming that this
minimum vmin occurs at node i,

vmin = 1 − 1

1 + δ−1
i

∑N
j=1 aijβjvj∞

≥ 1 − 1

1 + φi

δi
vmin

where we have used the definition (5.17). From the last inequality, it follows that

vmin ≥ 1 − δi

φi

(5.20)

such that (4.13) is proved.

By combining (4.8) and (4.13), the total fraction of infected nodes y∞ =
1
N

∑N
k=1 vk∞ in steady-state is bounded by

1 − 1

min1≤k≤N
φk

δk

≤ y∞ ≤ 1 − 1

N

N∑

i=1

1

1 + φi

δi
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5.2 Special case - the regular graph with m curing
rates

In this section, we derive the threshold for the spread of viruses on regular graphs
with m different curing rates and the same infection rate per link β.

Assume that n1, n2, .., nm denotes the fraction of nodes with curing rate δ1, δ2

, .., δm (
∑m

i=1 ni = 1). It is important to note that one of the assumptions is
complete symmetry of the problem. For every node i, a fraction n1 of neighbors
has the curing rate δ1, a fraction n2 has curing rate δ2 and so on.

Denote the number of infected nodes of type i in the population at time t
by Xi(t). The probability that a randomly chosen node of type i is infected is

vi(t) ≡ Xi(t)
Nni

. For every susceptible node the rate of infection is the product of the
infection rate per node (β) and the probability that on a given link the susceptible
node connects to an infected node (

∑m
j=1(njk)vj).

Therefore, we obtain the following differential equation describing the time
evolution of vi(t):

dvi

dt
= βk(

m∑

j=1

njvj)(1 − vi) − δivi, i = 1, ..,m (5.21)

For the general case with different curing rates, it is impossible to obtain an
explicit solution for the system of equations (5.21). The standard approach for
this type of system of nonlinear differential equations, is to study the qualitative
behavior in the phase space.

Theorem 20. Consider connected regular graphs where each node has exactly k
neighbors. Assume that the infection rate along each link is β while the curing
rate for each node is δi for a fraction ni of the nodes, with i = 1, ..,m 6 k
and

∑m
i=1 ni = 1. Complete symmetry is assumed, where each node sees the

same fraction of different curing rates. If we define the effective spreading rate
as τ = β

δ∗ , where δ∗ is defined as the weighted harmonic mean of δ1, ..., δm, i.e.

δ∗ =

(
m∑

i=1

ni

δi

)−1

, then the epidemic threshold satisfies τc = 1
k
.

Proof. We denote the fraction of infected nodes of type i (1 6 i 6 m) at time t
as vi(t). This leads to a system of m differential equations (5.21).

We will use a Lyapunov function [51] to show that, under the condition

β
m∑

t=1

nt

δt
− 1

k
≤ 0, the origin is a global attractor for {v1 ≥ 0, v2 ≥ 0, .., vm ≥ 0},
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hence, that the virus dies out. Let V (v1, v2, .., vm) =
m∏

j=1

δj

m∑

s=1

vs

δs
. Then, we have

dV

dt
= −

(
m∑

s=1

vs

)
βkV − βk

m∏

j=1

δj

m∑

t=1

nt

δt

+

m∏

j=1

δj




= −
(

m∑

s=1

vs

)
βkV − k

m∏

j=1

δj

(
β

m∑

t=1

nt

δt

− 1

k

)
 .

The claim follows directly by applying Lyapunov’s stability theorem. Next we

consider the case β

m∑

t=1

nt

δt
− 1

k
> 0. We first note that any trajectory of the system

(5.21) can never leave the box B = {(v1, ..., vm)|0 ≤ v1 ≤ 1, ..., 0 ≤ vm ≤ 1}.
This follows from dv1

dt
|v1=0 = βk(

∑m
j=1 njvj) ≥ 0, and similar inequalities at the

borders of the box B.
From the construction of the above Lyapunov function V , we can see that

for β
m∑

t=1

nt

δt
− 1

k
> 0, and for (v1, ..., vm) ∈ B and sufficiently close to the origin,

dV
dt

> 0. This implies that the origin has an unstable manifold in B. Therefore,
since any trajectory of system (5.21) can never leave the box B, system (5.21) has
an attractor as the ω-limit set and, hence, the virus does survive. This finishes
the proof of the theorem.

5.2.1 Virus spread on regular graphs with two curing rates

The two dimensional case (m = 2) of virus spread on a regular graph can be
analyzed in more details. Applying Theorem 20, the spreading process has a
threshold at τ = β

δ∗ = 1
k
, where δ∗ = δ1δ2

n1δ2+n2δ1
.

The phase portrait of two examples are depicted in Figure 5.1. The attractor
for the case where virus survives is given by (v1, v2) = (0.22, 0.17).

For system (5.21) where m = 2, it can be proven that the attractor is an
equilibrium point of a nodal type, situated on a straight line L. It can also be
shown that the system does not contain other equilibrium points in A or closed
orbits. Therefore, in the case m = 2, this equilibrium point is a global attractor
of system (5.21) in A.

Lemma 21. The set of differential equations given by (5.21) for m = 2, has a
straight line solution of the form v2 = λv1.

Proof. We have that (
dv2

dt
= λ

dv1

dt

)

v2=λv1
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v[1]
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(b)

Figure 5.1: Phase portrait for a regular graph with the two curing rates where a) virus
dies out β = 0.2, δ1 = 0.8, δ2 = 1.2, k = 4, n1 = n2 = 0.5. b) virus survives β = 0.4,
δ1 = 0.8, δ2 = 1.2, k = 4, n1 = n2 = 0.5.

−v1(βkn1λ
2 + (βk(n1 − n2) − δ1 + δ2)λ − βkn2) ≡ −v1f(λ)

f(λ) has got exactly one negative root and one positive root. The positive root
λ1 satisfies

λ1 =
βk(n2 − n1) + δ1 − δ2 +

√
∆

2βkn1
,

where ∆ = β2k2 + 2βk(n1 − n2)(δ2 − δ1) + (δ1 − δ2)
2. Therefore the straight line

L : v2 = λ1v1 is a solution of system (5.21) for m = 2, which for 0 ≤ v1 ≤ 1 is
situated in A.

By application of the Poincaré-Bendixson theorem [51] on A, the ω-limit set
for the system (5.21) for m = 2, can be either an equilibrium point or an isolated
periodic orbit. From the fact that there is a line solution through the equilibrium
point, it follows that the ω-limit set is the equilibrium point.

5.3 Special case - the complete bi-partite graph
with two curing rates

We will now derive a model for virus spread on the complete bi-partite graph
KM,N with two different curing rates and one spreading rate. The result is general
in the sense that both curing rates can be distributed in both sets of nodes (S1

and S2).
Let us assume that a fraction p, with p ∈ [0, 1], of nodes belonging to S1 and

a fraction q, with q ∈ [0, 1], of nodes belonging to set S2 have a curing rate δ1,
the rest have a curing rate δ2. The total fraction of nodes with the curing rate δ1

is s = Mp+Nq
M+N

.
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Denote the number of infected nodes of type 1 in the population of nodes
from set S1 at time t by Xi1(t). The probability that a randomly chosen node

of type 1 from set S1 is infected is vi1(t) ≡ Xi1(t)
Mp

. Similarly, let vi2 denote the

infection probability for nodes of type 2 from set S1, (vj1 denotes type 1, set
S2; and vj2 denotes type 2, set S2). Now, the rate at which the probability of
infection for nodes of type 1, set S1 changes is due to two processes: susceptible
nodes becoming infected and infected nodes being cured. The curing rate for an
infection probability vi1 for nodes of type 1, set S1 is δ1vi1. The rate at which the
probability vi1 grows is proportional to the probability of a node of type 1, set
S1 being susceptible, i.e. 1− vi1. For every susceptible node the rate of infection
is the product of the infection rate per node (β), the degree of the node (N) and
the probability that on a given link the susceptible node connects to an infected
node (qvj1 + (1 − q)vj2).

Similarly, we obtain the differential equations for the other probabilities:





dvi1

dt
= βN(qvj1 + (1 − q)vj2)(1 − vi1) − δ1vi1,

dvi2

dt
= βN(qvj1 + (1 − q)vj2)(1 − vi2) − δ2vi2,

dvj1

dt
= βM(pvi1 + (1 − p)vi2)(1 − vj1) − δ1vj1,

dvj2

dt
= βN(pvi1 + (1 − p)vi2)(1 − vj2) − δ2vj2,

(5.22)

In order to simplify the system of equations, we will substitute

i1 = pvi1, i2 = (1 − p)vi2, j1 = qvj1, j2 = (1 − q)vj2

and
i = i1 + i2, j = j1 + j2

Therefore, we obtain the following differential equations for i1(t), i2(t), j1(t),
j2(t): 




di1
dt

= pβNj − βNji1 − δ1i1,
di2
dt

= (1 − p)βNj − βNji2 − δ2i2,
dj1
dt

= qβMi − βMij1 − δ1j1,
dj2
dt

= (1 − q)βNi − βNij2 − δ2j2,

(5.23)

By solving the system of equations 5.23 for the steady state (di1
dt

= di2
dt

=
dj1
dt

= dj2
dt

= 0) we can calculate the threshold:

β

δ∗
= τc =

1√
MN

(5.24)

δ∗ =
δ1δ2√

δ2
1(1 − p)(1 − q) + δ2

2pq + δ1δ2(p(1 − q) + q(1 − p))
(5.25)

Theorem 22. Consider complete bi-partite graphs KM,N consisting of two dis-
joint sets S1 and S2 containing respectively M and N nodes. Assume that the
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infection rate along each link is β. For the nodes in S1 a fraction p has curing rate
δ1 and in S2 a fraction q of the nodes has curing rate δ1, while the curing rate for
a fraction (1 − p)((1 − q)) of the nodes is δ2. If we define the effective spreading
rate as τ = β

δ∗ , where δ∗ is defined as δ∗ = δ1δ2√
(1−p)(1−q)δ2

1+pqδ2
2+δ1δ2(p(1−q)+q(1−p))

,

then the epidemic threshold satisfies τc = 1√
MN

.

Proof. First, we will show that if β
δ∗ 6 1√

MN
, the virus dies out. (0, 0, 0, 0)

is an equilibrium point for system (5.22). We will use a Lyapunov function to
show that, under the condition β

δ∗ 6 1√
MN

, the origin is a global attractor for

i1 ≥ 0, i2 ≥ 0, j1 ≥ 0, j2 ≥ 0.
Let V (i1, i2, j1, j2) = δ1δ

2
2i1 + δ2

1δ2i2 +βN(pδ2 +(1−p)δ1)(δ2j1 + δ1j2). Then,

dV

dt
= (β2MN((1 − p)(1 − q)δ2

1 + pqδ2
2+

+ δ1δ2((1 − p)q + (1 − q)p)) − δ2
1δ2

2)(i1 + i2)

− βNδ2(βM(pδ2 + (1 − p)δ1) + δ1δ2)i1j1

− βNδ1(βM(pδ2 + (1 − p)δ1) + δ2
2)i1j2

− βNδ2(βM(pδ2 + (1 − p)δ1) + δ2
1)i2j1

− βNδ1(βM(pδ2 + (1 − p)δ1) + δ1δ2)i2j2.

The extinction of the virus follows directly by applying Lyapunov’s stability the-
orem. Next we will show that if β

δ∗ > 1√
MN

, the virus survives. We first

note that any trajectory of the system (5.22) can never leave the box B =
{(i1, i2, j1, j2)|0 ≤ i1 ≤ 1, 0 ≤ i2 ≤ 1, 0 ≤ j1 ≤ 1, 0 ≤ j2 ≤ 1}. This follows
from di1

dt
|i1=0 = pβN(j1 + j2) ≥ 0, and similar inequalities at the borders of the

box B.
From the construction of the Lyapunov function, we can observe that for

β2MN((1− p)(1− q)δ2
1 + pqδ2

2 + δ1δ2((1− p)q + (1− q)p))− δ2
1δ2

2)− δ2
1δ2

2 > 0 and
for (i1, i2, j1, j2) ∈ B and sufficiently close to the origin, dV

dt
> 0. This implies

that the origin has an unstable manifold in B. Therefore, because any trajectory
of system (5.22) can never leave the box B, system (5.22) has an attractor as the
ω-limit set and hence the virus does survive.

The result from Theorem 22 holds for non-symmetric cases: a node from set
S1 sees different portion of nodes with curing rate δ1 than a node from set S2

(p 6= q). In the symmetric case (p = q), a more general result with m different
curing rates can be derived, as in the case of the regular graph, described in
Theorem 20.
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Optimization of protection
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Chapter 6

Optimization of protection

Security and protection against malware spread are expensive luxury. In addition,
security of the whole network depends on protection strategy of each node. What
is the optimal protection in a network with N nodes? In an attempt to address
these questions, we will study the global optimization problem for a network with
N nodes in the case where spreading rate is the same for all the nodes and the
sum of all curing rates is optimized. Because spreading rate per link is the same
for all the nodes, without loss of generality, we will assume β = 1 and we will
omit it from the equations.

6.1 Problem Formulation

Each node in a network has protection given by curing rate δi. Its level of security,
the probability of infection influences neighbors. All the nodes in the network
form network security. We will optimize overall security by strategic distribution
of curing rates to nodes. As probabilities of infection are functions of curing rates
of all nodes vi∞(C), where C = [δ1 δ2 .. δN ]T .

We formulate the following problem:

Problem 23.

(P1) :





min f(C) =
N∑

j=1

vj∞(C)

s.t.
N∑

j=1

δj = 2Lα

0 ≤ vi∞ ≤ 1; i = 1..N
0 ≤ δi ≤ δc; i = 1..N

Where α ∈ [0, 1] and constant L refers to the number of links in the graph,
and δc = 2Lα.

83
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In general, probability of infection vi∞ can not be found as explicit function of
C, thus it is better to consider inverse problem of optimization of sum of curing
rates such that probability of infection is bounded.

6.2 Inverse Optimization Problem

From equation 4.6, we have that

δi =
1 − vi∞

vi∞

N∑

j=1

aijvj∞

Let V denote the vector of infection probabilities V = [v1∞ v2∞ .. vN∞].

We formulate the following problem:

Problem 24.

(P2) :





min f(V ) =
N∑

j=1

δj(V )

s.t.
N∑

j=1

vj∞ = Nα

0 ≤ vi∞ ≤ 1; i = 1..N
0 ≤ δi ≤ δc; i = 1..N

(6.1)

where δc ≤ 2L and α ∈ [0, 1], N is the number of nodes in the network. For
α = 1 optimization function is f(V ) = 0. We derive in Theorem 25 that at the
threshold for α = 0, minimum of optimization function is f(V ) = 2L.

For 0 < α < 1, the optimization problem (24) belongs to the class of sum of
ratios fractional program [52].

We will separate the problem in two subproblems, namely α = 0 and α ∈ (0, 1).
This will allow us to treat the threshold point with different analytical tools. We
will first consider the case for α = 0, namely at the threshold, and than the case
for 0 < α < 1 which is the sum of ratios fractional programming problem.

6.3 Optimization at the Threshold, α = 0

In [53], Borgs et al. derive that minimum sum of curing rates applied on a network,
such that contact process is at the threshold, is equal to the number of links in

the network,
N∑

j=1

δj = 2L, and it holds for all i, δi = di.

We can derive the same result using N -intertwined model.
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Theorem 25. The minimum global price for a network at the threshold is

f
(min)
V =

N∑

j=1

dj

and it is reached for each δi = di.

Proof. Using the lower bound (5.14) on the largest eigenvalue of matrix Aδ, we
have that if 2L

N∑
j=1

δj

≥ 1, the largest eigenvalue obeys λmax (Aδ) ≥ 2L
N∑

j=1

δj

≥ 1. If

λmax (Aδ) ≥ 1 the network is above the threshold. Therefore, if 2L ≥
N∑

j=1

δj which

is equivalent to
N∑

j=1

dj ≥
N∑

j=1

δj the network is infected. The equality λmax (Aδ) =

2L
N∑

j=1
δj

= 1 holds if δi = di and the epidemic threshold is reached.

It is possible that other curing distributions satisfy
N∑

j=1

dj =
N∑

j=1

δj , however the

minimum of the sum of curing rates cannot be lower than
N∑

j=1

dj = 2L. Therefore

for α = 0, our minimization function is equal to 0. The optimal strategy is to
distribute curing rates proportional to the degree of nodes.

The protection’s efficiency depends on topological properties. In particular,
for a complete graph, the minimum of the cost function is largest among all the

graphs f
(min)
V = N(N − 1)C.

6.4 Sum of Ratios Fractional Programming, α ∈
(0, 1)

By rewriting equation (6.1)
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f(V ) =

N∑

i=1

δi(V )

=
N∑

i=1

1 − vi∞
vi∞

N∑

j=1

aijvj∞

=

N∑

i=1

N∑
j=1

aijvj∞ − v2
i di

vi∞

where di is the degree of i-th node.
Sum of Ratios generally is not a convex problem. Specifically, problem (24),

Section 6.2 is not a convex problem which can be checked by restriction to a line.
For an overview of fractional programming, we refer to Schaible [52]. The

sum of ratios fractional programming is a difficult problem, because many local
minima can exist. Freund et al. [54] have shown that minimizing the sum of
ratios is NP - complete problem. Several authors proposed algorithms for solving
linear sum of ratios functional program [55], [56], [57], [58]. Only recently, several
algorithms have been proposed for the case of nonlinear sum of ratios problem.
Benson presented algorithm for globally solving equivalent convex maximization
problem via branch-and-bound method in 2p+N space, where p is the number of
fractions in the sum and N is the original size of the problem [59] and [60]. Wang
et al. [61] generalized branch-and-bound method for the case where nominator,
denominator and constrains are generalized multivariable polynomials and the
feasible region is non convex.

6.4.1 Protection Proportional to the Node Degree for α ∈
(0, 1)

At the threshold, the minimum of function f(C) is reached for
N∑

j=1

δj = 2L. The

curing rate δi of a node i is equal to the degree di of that node. It is possible that
the same strategy holds for the case where the threshold can not be reached due

to the constrain
N∑

j=1

vj = αN > 0. This is equivalent to the constrained problem

(23), Section 6.1,
N∑

j=1

δj < 2L.

Consider problem (24), Section 6.2. If the curing rate is proportional to the
degree with the same factor α, than all the infection probabilities are equal, which
is formally stated in next Lemma.



6.4. SUM OF RATIOS FRACTIONAL PROGRAMMING, α ∈ (0, 1) 87

Lemma 26. If δi = (1 − α)di, α < 1, the probabilities of infection are all equal,
namely (∀i)vi∞ = α.

Proof. If δi = (1 − α)di, α < 1, we have that

N∑

j=1

δj = (1 − α)
N∑

j=1

dj ≤
N∑

j=1

dj

we are certainly above the threshold. Let us assume that vi∞ = α, from 4.6 we
have that δi = (1 − α)di.

For the constrain
N∑

j=1

vj = αN and α > 0, is the protection which is propor-

tional to the node degree the global optimum?

Theorem 27. Consider problem (24), Section 6.2. For α > 0 and for all ones
vector u, solution V = αu is not a global minimum of function f(V ).

Proof. Consider optimization problem (24) and let all nodes have the same infec-
tion probability vi∞ = α. The objective function is f(V ) = 2L(1 − α), L is the
number of links. Now, let us take the node with the maximum degree dmax and
the node with minimum degree dmin and change their infection probabilities as

vdmin∞ = α − γ
vdmax∞ = α + γ,
such that total sum of infection probabilities stays the same. We will assume

for now that two nodes have no neighbors in common and that they are not
connected. Any other case can be derived in similar manner.

The curing rates of these two nodes and their neighbors will change as follows

δdmax
= αdmax(

1

α + γ
− 1)

δdmin
= αdmin(

1

α − γ
− 1)

δdimax
= (1 − α)dimax − (

1 − α

α
γ)

δdimin
= (1 − α)dimin + (

1 − α

α
γ)

The new total sum of curing rates - objective function f ′(V ) becomes

f ′(V ) =

N∑

j=1

δj(V )

= 2Lα − S +
Sα2 − αγR

α2 − γ2
− R

γ(1 − α)

α
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dmax
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dmax

dmin
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c) d)

Figure 6.1: Structures of connections between a node with maximum and minimum
degree

where S = dmax + dmin and R = dmax − dmin. After some calculations it is
possible to show that for any α, S,R there exist γ, such that f ′(V ) < 2Lα.

For other topological cases shown in Figure 6.1 similarly can be deduced that
for any α, S,R there exist γ, such that f ′(V ) < 2Lα. We will skip details here.

Corollary 28. Consider problem (24), Section 6.2. For α > 0 and for all ones
vector u, vector V = αu is an upper bound on the global optimum.

Proof. The Corollary is direct consequence of Theorem 27.

It is interesting to note that by decreasing infection probability of highly con-
nected node and increasing probability of a node with smallest degree for same
γ we will always increase objective function. If the level of security is higher for
highly connected node, the overall security will be worse.

In order to illustrate this fact, we have used simple graph depicted in Figure
6.2.

In Figure 6.3, the sum of infection probabilities as a function of α is depicted.
Different strategies for distribution of δ have been considered. Curing vector C
is represented as a vector which sum is equal to the number of links in a network
multiplied by α. Different strategies are optimal in different regions of α.

What is the strategy to distribute the protection in a network? Should we
reduce the probability of infection of the nodes with the highest degree, such that
they do not spread infection to their neighbors? At the threshold, curing rates are
proportional to the degree, but infection probabilities are all equal. If the same
strategy is applied above the threshold, but with the constrain

∑
δ = α2L,α < 1

infection probabilities of all nodes will be the same. The question is if the higher
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Figure 6.2: Example graph with 5 nodes.
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Figure 6.3: Sum of infection probabilities as a function of α. Curing rate vector
is represented by a vector which sum is equal to the number of links in the network
multiplied by factor α ∈ [0, 1].
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degree nodes have lower probability of infection does that increase overall security?
The following theorem formulates non-intuitive answer.

Theorem 29. Consider problem (24), Section 6.2. For 0 < α < 1, if high de-
gree nodes have larger probability of infection than lower degree nodes, the overall
probability of infection

∑
vi is smaller.

Proof. Let us assign factor xi to each node, such that
∑

xi = N and 0 < xi < N .
Let us write each infection probability as vi∞ = αxi. The equation vi∞ = αxi

holds only for α < 1
xi

. Let the vector X = [x1 x2 . . . xN ] be a strategy. We will
fix strategy vector and compare for which α certain strategy is better. The sum
of curing rates is ∑

δi =
∑∑

aij

xi

xj

− α
∑

dixj

In the case of ∀i, xi = 1, we have
∑

δi = 2L − α2L. We will compare all the
strategies with this one. Lets denote Z =

∑∑
aij

xi

xj
and W =

∑
dixj . If we join

contributions of two nodes we have a sum over all the links i, j.

Z =
∑

all links

(
xi

xj

+
xj

xi

)

=
∑

all links

x2
i + x2

j

xixj

We have that
x2

i +x2
j

xixj
≥ 2, thus Z ≥ 2L. Therefore, for α = 0,

∑
δi = Z. Because

Z is always larger than 2L, W also has to be larger than 2L, such that the sum
of curing rates is smaller than the sum of curing rates in the case with all equal
probabilities which is 2L − α2L. Because W =

∑
dixj , it is always better to

assign higher infection probability to high degree nodes.

Investing in the protection of high degree such that they are the most protected
nodes above the threshold is not the best strategy in the sense of global optimum.

6.5 Special case - complete bi-partite graph, α ∈
(0, 1)

In the case of complete bi-partite graph, the minimum threshold is reached when
each node has protection proportional to its degree. However, there are other
optimization problems such as the optimization with two fixed curing rates. Let
us consider the heterogeneous case with two curing rates, presented in Chapter 5,
section 5.3.

For any bi-partite graph, the threshold for the heterogeneous case is fixed and
equal to δ∗ =

√
MN , where δ∗ is defined in eq. (5.25). The threshold can be
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reached for different values of δ1, δ2, p and q. For example, for (δ1 = M, δ2 =
N, p = 1, q = 0) the threshold is reached with δ1 applied on nodes from set S1,
while for (δ1 = M, δ2 = N, p = 1, q = 0) the threshold is also reached and the
curing rate δ1 is now applied on the nodes from the other set. The question is
how can we decide which solution is better. One of the options is to minimize the
total protection strategy applied on the network, while reaching the threshold.
The total protection strategy, denoted by f(p, q, δ1, δ2)

f(p, q, δ1, δ2) =

M+N∑

l=1

δl = Mpδ1 + M(1 − p)δ2 + Nqδ1 + N(1 − q)δ2 (6.2)

For the previous two cases, the total protection strategy is different. In case
(δ1 = M, δ2 = N, p = 1, q = 0), the total protection strategy is f = (M2 + N2),
and in the other case, f = 2MN , which is always smaller than or equal to the
first case.

Let us formulate the general optimization problem for complete bi-partite
graph:

Problem 30. Minimize

f(p, q, δ1, δ2) = Mpδ1 + M(1 − p)δ2 + Nqδ1 + N(1 − q)δ2 (6.3)

subject to the conditions

√
MN =

δ1δ2√
(1 − p)(1 − q)δ2

1 + pqδ2
2 + δ1δ2(p(1 − q) + q(1 − p))

(6.4)

0 ≤ p, q ≤ 1

0 < δ1, δ2

The optimization problem is non-linear with non-linear conditions. However,
the minimum of the function f for any graph and any set of curing rates is equal
to twice the number of links L in the network

fmin = 2L.

In the case of the complete bi-partite graph, the minimum is fmin = 2MN and it
is reached for (δ1 = M, δ2 = N, p = 1, q = 0) or (δ1 = N, δ2 = M,p = 0, q = 1).
This means that for N > M , the larger curing rate proportional to the number
of links in set S1 will be assigned to the nodes from that set.

Further, we can have a situation, where curing rates (δ1, δ2) are fixed and we
will optimize the parameters (p, q). This optimization problem can be formulated
as follows.

Problem 31. For two fixed curing rates δ1, δ2 , minimize function (6.2), subject
to the conditions (6.4).
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From the threshold condition we can determine one of the variables p or q.
We will derive equations for variable q (the case with p is analogue),

q =
δ1(MNδ1(1 − p) + MNδ2p − δ1δ

2
2)

MN(δ2
1(1 − p) + δ1δ2(2p − 1) + δ2

1)
(6.5)

By substituting q in f , the total sum of curing rates becomes a function of param-

eter p only and optimization is simplified. The function is of the form f(p) = P2(p)
P1(p)

where P1(p) is a polynomial of the first order in p and P2(p) is a polynomial in
the second order in p.

Lemma 32. For any fixed δ1, δ2, the optimal solution of minimization problem
(31) is on the boundary of the region (p = 0 or p = 1 or q = 0 or q = 1).

Proof. The function f(p) is not defined for P1(p) = 0, which holds for p = δ1

δ1−δ2
.

The value δ1

δ1−δ2
does not belong to the interval [0, 1]. The second derivative of

f(p) is strictly negative in the interval q ∈ [0, 1].

d2f(p)

dp2
= − 2δ2

1δ2
2(δ1 − δ2)

2

(δ1(1 − q) + δ2q)
< 0, q ∈ [0, 1]

Therefore, f(p) is concave in the interval of interest and minimum is on the
boundaries of the interval. �

For given δ1, δ2, it is not always possible to reach the threshold. In the case
δ1, δ2 <

√
MN , the threshold cannot be reached and the network is in the state

of permanent infection. For example, if δ1, δ2 <
√

MN and δ1 > δ2, if we take
only the larger curing rate for the whole network, we have 1

δ1
< 1√

MN
.

If the threshold can be reached, Lemma 32 shows that either set S1 or set S2

is completely protected with only one curing rate. In order to minimize the sum
of curing rates we are interested how many times we can apply smaller curing
rate. Without loss of generality, let δ1 <

√
MN < δ2 and N > M . Firstly, we

will assign δ2 to all the nodes from larger set with N nodes and δ1 to the smaller
set. If the effective spreading rate obeys 1

δ∗ > 1√
MN

, than p = 1, and q can be

calculated from equation (6.5). In the case 1
δ∗ < 1√

MN
, the network is cured and

below the threshold. Then q = 0 and p can be calculated from the condition for
the threshold.

With the previous result, the curing rate space for problem (23), Section 6.1
is bounded in a box δi ≤ δc, δc = 2L, which makes the set space non-empty,
compact and convex.



Chapter 7

Protecting against network
infections: a game theoretic
perspective

Network security has become one of the major challenges of communication net-
working. Security breaches come in many forms, such as the spread of viruses
and worms in the Internet, as well as social engineering compromises and direct
exploitation of a hosts vulnerability. In such a breach, an exposed (infected) host
becomes a new source of infection, which attacks other unprotected machines. We
shall generalize any such breach and model it as an infection process.

In order to overcome such breaches and their implied damage, network users
and nodes can be equipped with protection and curing tools, to which we shall
refer as protection strategies (or curing strategies). For example, a protection
strategy is an antivirus software, with its signature quality and the speed of
response to new virus strains.

A major source of complication in network security is the typically autonomous
nature of decision making in the network, most notably in the Internet. Indeed,
administration and policy enforcement are not possible at the inter-networking
level (as opposed to intra-networking within a company), hence a majority of
users is left to make independent decisions, including the choice of the protection
strategy. Clearly, while such decisions are made autonomously by users and nodes,
they do influence other users, through the potential infection processes. This gives
rise to a noncooperative game.

Consider an internetwork that includes a company network that has servers
with vital data, as well as hosts of individual users that are divided into subnet-
works. Suppose that each machine is administrated by an independent decision
maker. The companys servers will seek a higher level of protection, due to the
importance of the information they contain and the fact that many users hosts

93
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will be able to connect to them. On the other hand, for individual users, the price
of tools such as antivirus software and hosts firewall will often be too high com-
pared to the value of the security they provide. Moreover, a user host often has
just a small number of neighbors, namely other hosts that can connect to them
hence potentially endangering them. Therefore, these hosts would compromise
with a lower level of protection, hence decreasing the level of security of the whole
network, and, in turn, putting a higher burden on the companys servers. Inves-
tigating such a network security game requires a proper model, which captures
both the process of infection spread as well as the games structure. We obtain
such a model by combining game theoretic principles with epidemic theory.

With the rapid growth of Internet and decentralization of services, the game
theoretical framework has become an important tool for network modeling. Game
theoretic models have been employed in various networking contexts, such as flow
control [62], [63], routing [64], [65], and bandwidth allocation [66]. These studies
mainly investigated the structure of the network operating points i.e., the Nash
equilibria of the respective games. Such equilibria are inherently inefficient [67]
and, in general, exhibit suboptimal network performance. As a result, the question
of how much worse the quality of a Nash equilibrium is with respect to a centrally
enforced optimum has received considerably attention e.g., [68, 69, 70]. In order
to quantify this inefficiency, several conceptual measures have been proposed in
the literature. Most notably, the price of anarchy [71] corresponds to a worst-case
analysis and it is the ratio between the worst Nash equilibrium and the social
optimum.

Recently, network security under a game theoretical setting was considered
in [72]. That study addressed the interplay between protection and infection and
noted the influence of the underlying topology, however it focused on the case of
just two simple strategies, namely being fully protected or totally unprotected.
In particular, if a node chooses the “fully protected” strategy, its security level
does not depend on those of its neighbors. Somewhat similar work appears in [73,
74], where Lelarge et al. generalize game settings to incorporate weak security
solutions. However, the problem is tractable only for sparse random graphs and
trees. In [75], Jiang et al. consider a network security game, where the level
of security is determined by weights assigned to a topology and the infection
process is not modeled. A framework that is closer to the present study is that of
IDS (Interdependent security games) [76, 77]. As opposed to [72], in IDS games
security levels of agents are interdependent even when they choose the “protected
strategy”. However, the IDS framework does not consider the influence of the
underlying topology, as it restricts its attention to the case of a complete graph.

7.1 The virus protection game

Consider a network with N nodes defined by an adjacency matrix A. This is an
underlying topology over which a virus can spread with an infection rate β = 1 per
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link. Each node i chooses its curing rate among an infinite number of strategies
from the interval δi ∈ [0,∞], so as to minimize its cost function J i = ciδi + vi∞,
where ci is a positive value that stands for the relative price of protection and
quantifies the trade-off of the user between the money (and any overhead) invested
in protection and the penalty of being infected. For example, a firm may give much
importance to security, hence its relative price of protection would be smaller than
that of a private Internet user. Thus, the utility function of a node i is a weighted
sum of the curing rate per node, δi, and the probability of infection in the steady-
state, vi∞.

To sum up, the game has N players, corresponding to the nodes of a graph.
Each node i chooses a curing strategy δi so as to minimize its cost function
J (i). The strategies chosen by all nodes result in a certain steady-sate infection
probability for each node, vi∞. The latter is also the percentage of time that the
node is in the infected state. We term this game as the virus protection game.

A Nash equilibrium point (NEP) is a strategy profile such that no user can
benefit from unilaterally changing its strategy. We shall denote an NEP by a

vector
−→
δ = [ δ1 δ2 .. δN ]T and a corresponding vector of individual prob-

abilities of infection V∞ = [v1∞, v2∞, ..vN∞]T . The probability of infection vi∞
depends on the states of other nodes as in equation (4.6) and, therefore, the util-

ity function J i(
−→
δ ,A) depends on the vector of curing strategies and the system

(network) parameters.

In section 7.1.3, a simple case with just two nodes and one link illustrates the
utility function behavior and the optimization process of individual nodes. An
example of a utility function for a network with two nodes is given in Figure 7.1.
The utility function of the second node J (2) is calculated for different values of the
constants c1 and c2. In the case c1 > 1, c2 > 1, the utility function only increases
due to the fact that the protection price is larger than the corresponding security
it offers.

In the case c1 < 1, c2 < 1, the utility function decreases due to the decrease
of the infection probability. A network is clean of viruses if the curing rates of all
nodes satisfy the threshold relation (5.11). Whether the network is able to reach
the threshold depends on the price each node is prepared to pay.

Clearly, it is of interest to establish the existence of an NEP and characterize
it. We shall show that a Nash equilibrium always exists. We shall also show that
the NEP’s quality, in terms of overall network security and protection against
viruses, largely depends on the properties of the underlying topology.

7.1.1 Nash Equilibrium

First we indicate that the individual probabilities of infection vi∞ are strictly
convex in δi. This will be later used to establish the quasi-convexity of the cost
function, with which we shall prove the existence of a Nash equilibrium.

The following result is taken from [78].
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c1<1, c2<1, optimum is at the threshold c1>1, c2>1, optimum is below the threshold

c1<1, c2<1, optimum is below the threshold

c1<1, c2<1, optimum is at the threshold c1>1, c2>1, optimum is below the threshold

c1<1, c2<1, optimum is below the threshold

Figure 7.1: Utility function for a network with two nodes and different parameters c1

and c2. The curing rate δ1 of the first node is optimal.
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Lemma 33. For fixed curing rates of other nodes, the probability of infection
vi∞(δi) is a strictly convex function in δi.

Lemma 34. For the utility function defined as J (i)(δi, δ−i) = ciδi + vi∞(δi, δ−i),
ci > 0, the function is quasi-convex in each δj , j = 1..N .

Proof. Let us first show that J (i) is quasi-convex in δj . For any j 6= i, the utility
function J (i) is quasi-convex in j

ciδi + vi∞(δi, λδj + (1 − λ)δ′j , δ−i,−j)

≤ max{ciδi + vi∞(δi, δ
′
j , δ−i,−j), ciδi + vi∞(δi, δj , δ−i,−j)}

which holds for any ci. The probability of a node being infected vi∞(δi, δ−i) is
convex function in δi. When δi reaches the threshold value for the curing rate
δic, the infection probability becomes zero. The utility function J (i) is a sum of
a convex function and a linear - strictly increasing function and, therefore, it is
quasi-convex in the domain of interest.

Theorem 35. For a set of strategies ∀i δi ∈ [0, δmax] which is non-empty, com-
pact and convex, and for the continuous and quasi-convex cost function in each
δi, the game has at least one Nash equilibrium.

Proof. The set of minimizers of a quasi-convex function on a convex set is convex.
Continuity of the cost function implies upper-hemicontinuity of the point to set
correspondence [79].

The existence of an NEP means that the protection game has at least one
stable point. We proceed to explore the properties of the Nash equilibria, which
indicate the ability of a network to protect itself from epidemics.

7.1.2 Characterization of equilibrium

An NEP can be in two very different regions, namely above or at the threshold
(5.11). The NEP does not exist below the threshold: in order to realize why,
consider the following example. A node i has a curing rate δi and the curing rates
of other nodes are fixed. If inequality holds λmax(Aδc

) < 1, the cost function of
a node i is J (i) = ciδi. Therefore, a node i is able to reduce the curing rate such
that its cost function decreases, because the probability of infection vi∞ = 0 will
not change.

If the optimum of the cost function is reached at the threshold point, we can

have multiple Nash equilibria. At the critical point
−→
δ c, we have that

λmax(Aδc
) = 1 (7.1)

This can be easily shown on a simple example of a two-nodes network. This
infinite set of NEPs is bounded and we will establish the worst case scenario.
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When the network is in the regime above the threshold, numerical calcula-
tions suggest that only one equilibrium exists. However, this was not established
formally, and the uniqueness of the NEP above the threshold remains an open
problem.

In the case of two nodes (see section 7.1.3), a unique Nash equilibrium exists if
3
√

c1c2
2 + 3
√

c2
1c2 > 1, (δ1δ2 < 1). For 3

√
c1c2

2 + 3
√

c2
1c2 ≤ 1, (δ1δ2 ≥ 1), the example

with two nodes shows multiple NEPs.
Next, we determine the influence of the relative price of protection vector −→c

on the Nash equilibria. This shall be later used to bound the equilibrium value
of the cost function.

In some cases, all the nodes of a network decide not to protect themselves
against infection, leaving the overall network unsecured. If a node is unprotected,
i.e., δi = 0, the infection probability is always equal to 1 and it does not depend
on the curing rates of other nodes.

The next theorem makes a distinction between networks with a vector −→c
such that every node chooses not to be protected at all and networks where the
equilibrium point is reached with curing rates larger than 0.

Theorem 36. In a virus protection game, for a network with N nodes and with
cost function for a node i defined as

J (i) = ciδi + vi∞

the following holds:

1. If ∀i ci ≥ 1, the only Nash equilibrium is defined by the curing rate vector−→
δ = [ 0 0 .. 0 ]T .

2. If ci < 1
di

, where di is the degree of a node i, the curing rate of a node i in
the Nash equilibrium is different from zero, δi 6= 0.

Proof. Point 1.
Consider any two nodes in the network i, j. Since the network is a connected

network with N nodes, at least one node from the pair will be connected to at
least one other node. For the same δi, δj ,we can compare the infection probability
of neighboring nodes in a network with N nodes (vi∞, vj∞), with the case of a

network with only two connected nodes vi∞, v
(2)
j∞. The infection probability of a

connected node will increase due to possible connections to infectious nodes and
its neighbor will also feel this effect. It holds that

vi∞ ≥ v
(2)
i∞, vi∞ ≥ 1 − δiδj

1 + δi

(7.2)

Similarly, we have

vj∞ ≥ v
(2)
j∞, vj∞ ≥ 1 − δiδj

1 + δj
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Equality holds for N = 2.
For a node i to increase δi from zero it has to hold that for some δi > 0

J (i,δi=0) > J (i,δi>0) (7.3)

1 > ciδi + vi∞

vi∞ < 1 − ciδi

and similarly for node j.
From (7.2) and (7.3) we have

δj > ciδi + ci − 1 (7.4)

and similarly, for node j it holds

δi > cjδj + cj − 1 (7.5)

from (7.4) and (7.5) we have

(1 − cicj)δj > −1 + cicj

which gives for positive ci, cj , δj

δj > −1, cicj < 1

δj < −1, cicj > 1

And similarly we have for δi. We can conclude that for ci > 1, cj > 1 for nodes i
and j there is no other solution than δi = δj = 0. We can continue the process

for any other two nodes in the network concluding that the only solution is
−→
δ =

[ 0 0 .. 0 ], which proves the first point of the theorem.
Point 2.
For scaled rates such that β = 1, the infection probability of a node i is

vi∞ =

N∑
j=1

aijvj∞

N∑
j=1

aijvj∞ + δi

The first derivative of the cost function for a node i for δi = 0 is

dJ (i)

dδi

∣∣∣∣
δi=0

= ci +

δi

N∑
j=1

aij
∂vj∞

∂δi
−

N∑
j=1

aijvj∞

(
N∑

j=1

aijvj∞ + δi)2

∣∣∣∣∣∣∣∣∣
δi=0

(7.6)

= ci −
1

N∑
j=1

aijvj∞
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which achieves its maximum for
N∑

j=1

aijvji∞ = di. If ci < 1
di

, the first derivative

of the cost function is smaller than zero for any set of curing rates of other nodes.
This proves the second point of the theorem.

Theorem 36 shows that if antivirus software or other means of protection
against viruses are too expensive, such that ∀i ci ≥ 1, the NEP is unique and the
network will end up in the completely infected state. In order to steer a decision
maker i to chose protection over infection, the relative price should satisfy the
inequality ci < 1

di
. The higher the degree of a node, the more it is exposed to

infection, hence the required relative price is lower. For example, a large firm
typically has many interactions over the Internet and thus its degree is higher.
Therefore, its required relative price of antivirus software is lower than that of a
smaller firm, which has less opportunities to get infected.

In order to determine the global optimum and the worst case scenario that can
happen in a virus protection game, we establish an upper bound on the minimum

of the cost function J
(i)
min.

Lemma 37. The minimum of the cost function J
(i)
min is bounded by J

(i)
min ≤ 1.

Proof. For curing rate δi > 0, vi∞ is bounded. The cost function for δi = 0 is
J (i)(δi = 0) = 1 and the minimum cannot be larger than this value. Therefore,
we have

J
(i)
min = ciδiopt + viopt∞ ≤ 1 (7.7)

δiopt ≤ 1 − viopt∞
ci

≤ 1

ci

In the case of a network above the threshold, inequality (7.7) holds because the
function’s minimum cannot be larger than 1 (J (i)(δi = 0) = 1). We have

J (i) = ciδiopt ≤ 1

δiopt ≤ 1

ci

If multiple Nash equilibria exist, the curing vector
−→
δc is bounded as in Lemma

37. If the relative price of a protection strategy for a node i is too high, the other
nodes in the network will have to pay more for the security of the whole network.

7.1.3 Unconstrained case with 2 nodes

For a network with two nodes and one link, each node chooses its strategy out of
the interval δi ∈ [0,∞]. The utility function is defined as J (i) = ciδi + vi∞. The
probabilities of infection follow from (4.6) as v1∞ = 1−δ1δ2

1+δ1
; v2∞ = 1−δ1δ2

1+δ2
. The
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Nash equilibrium point (NEP) is reached for δ1opt = 3

√
1

c2c2
1
−1, δ2opt = 3

√
1

c2
2c1

−1.

If optimal solutions δ1opt, δ2opt satisfy
√

δ1optδ2opt > 1, the network NEP will

be at the threshold and the cost functions reduce to J (j) = c2δ2, J
(j) = c2δ2.

In this case, both nodes will choose smaller curing rates than δ1opt, δ2opt such

that new values δ′1optδ
′
2opt satisfy

√
δ′1optδ

′
2opt = 1. All the solutions that satisfy

δ′1opt < 3

√
1

c2c2
1
− 1, δ′2opt < 3

√
1

c2
2c1

− 1 and
√

δ′1optδ
′
2opt = 1 are optimal and

nodes will not change their curing rates. This yields an infinite number of Nash
equilibrium points.

In Figure 7.1, for a network with two nodes, the cost function of the second
node J (2) is calculated for different values of constants c1 and c2.

7.2 Price of anarchy

Clearly, if we could dictate the security strategy of the whole network, we would
be able to obtain a better solution. However, as mentioned, the Internet is a
decentralized system, and it is challenged by persistent virus infections. Therefore,
security of the whole network depends on the decisions of independent users. Yet,
is it possible and feasible to completely cure the Internet? How far is the Internet
from the global optimal point in the presence of a virus protection game?

In a noncooperative networking game, it is important to know the social wel-
fare attained at the operating points, namely the Nash equilibria. Social welfare
is defined as the well-being of the community as a whole. In this specific case
of protection game, it is the cost of all the protection in the network. A Nash
equilibrium typically exhibits non optimal social welfare. This penalty of selfish
behavior is quantified by the price of anarchy (PoA), which is defined as:

PoA =
Cost of worst NEP

Social optimum

7.2.1 Social optimum

Social optimum is the solution to the global optimization problem. In Chapter
6, we discussed constrained optimization problem where protection costs are not
taken into account. Unconstrained global optimization problem is significantly
more complex and we will consider optimization of upper bound on optimal so-
lution presented in Chapter 6. Assume that a “network manager” has the same
relative price of security C for all the nodes. In order to compare global optimum,

with the NEP we will assume that C = 1
N

N∑
j=1

cj . The corresponding (global) op-

timization problem is
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Minimize

JM =
N∑

j=1

vj∞ + C
N∑

j=1

δj

For some C, a network will be in the regime at the threshold and
N∑

j=1

vj∞ = 0.

The global cost function becomes JM = C
N∑

j=1

δj . A manager can be interested

in optimizing the overall protection, such that
N∑

j=1

vj∞ = 0, which reduces the

problem to JM =
N

C
∑

j=1

δj .

A network can be in two significantly different states, namely above or at
the threshold. Due to the fact that unconstrained global optimization problem
is significantly more complex, these two states have to be discussed separately.
Thus, we split the optimization problem into two different problems, namely:
optimization of the network at the threshold and above the threshold. We assume
that a manager optimizes in the regime where the network NEP is, i.e.: if a
network NEP reaches the threshold, the manager will optimize with the constraint
N∑

j=1

vj∞ = 0 while if a network NEP is above the threshold, the network manager

will optimize the function JM =
N∑

j=1

vj∞ +
N

C
∑

j=1

δj with the constraint
N∑

j=1

vj∞ >

0. In the case of multiple NEPs, where some are above and others are at the
threshold, the network manager optimizes at the threshold.

The network is below the threshold if the curing rates of individual nodes
satisfy the inequality

λmax(diag(
1

δi

)A) ≤ 1

If the strict inequality λmax(diag( 1
δi

)A) < 1 holds, the vector
−→
δ cannot be a Nash

equilibrium point, because there is a point δ∗j < δj such that λmax(diag( 1
δ∗

i
)A) =

1. The equality λmax(diag( 1
δi

)A) = 1 can be a Nash equilibrium point, if the

condition (∀i)∂J(i)

∂δi
= 0 is satisfied.

Above the critical threshold, the probabilities of infection vi∞ are larger than
zero and interesting parameters for the optimization are the sum of infection

probabilities and the sum of curing rates JM =
N∑

j=1

vj∞ + C
N∑

j=1

δj .
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7.2.2 The worst NEP at the threshold

As shown in section 7.1.2, there can be an infinite number of NEPs in this regime.
The set of Nash equilibria is bounded in this regime as (∀i)δi < 1

ci
, thus the worst

NEP is also bounded.
We proceed to determine the worst possible case of an NEP and the global

optimal point.

Lemma 38. The worst case Nash equilibrium, when the network is at the thresh-
old, is bounded by

JM < C

N∑

j=1

1

cj

(7.8)

where C = 1
N

N∑
j=1

cj.

Proof. Each curing rate is bounded by the constant ci as in Lemma 37 and the
set of Nash equilibria is therefore bounded as in (7.8).

The minimum price that has to be paid for a network which is clean of viruses
is determined by the number of links, as shown in Theorem 25.

At the threshold, the minimum of the global cost function is a linear function

of the number of links in the network J
(min)
M = 2LC.

For an NEP such that δ1 = δ2 = ..δN = δc (homogeneous case), the price is
JM = Nλmax(A)C.

For example, the largest eigenvalue of a line graph is λmax(A) ≃ 2 = δc,
while that of a star topology is λmax(A) =

√
N − 1 = δc. These two graphs are

interesting examples, as both have the same number of links L = N − 1. Thus,
in the homogeneous case, the level of protection required for a star topology is
significantly higher than for a line topology with the same number of nodes and
links. The minimal global price is the same for these two topologies; however, in
the homogeneous case, the NEP price is significantly higher for a star topology
(JM = CN

√
N − 1), than for a line topology (JM = 2CN).

At the threshold, the cost of the social optimum is J
(min)
M = C

N∑
j=1

dj . The

cost of the worst Nash equilibrium is upper bounded as in lemma 38, under the
constraint that the network’s NEP is at the threshold, which depends on the
vector −→c .

Theorem 39. The price of anarchy for a network that reaches an NEP at the
threshold is bounded by

PoA ≤

N∑
j=1

1
cj

C
N∑

j=1

dj
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where C = 1
N

N∑
j=1

cj.

Proof. Follows from Lemma 38 and Theorem 25.

It is interesting to note that if nodes regard security as an important issue

(cj ≪ 1,
N∑

j=1

1
cj

is large), the price of anarchy can be very high. It is necessary to

help the network reach a more efficient NEP, by starting the system from a point
close to the optimal.

7.2.3 The worst NEP above the threshold

The network is above the threshold if the curing rates satisfy the inequality

λmax(diag( 1
δi

)A) > 1. In general, the optimization function is JM = C
N∑

j=1

δj +

N∑
j=1

vj∞. Due to the complexity of the general problem, we will consider the up-

perbound strategy where δi = (1 − α)di, α < 1. The upperbound was stated in
Theorem 28, Chapter 6.

The optimization function reduces to JM = C(1−α)
N∑

j=1

dj +Nα. This function

shows threshold behavior around the point C = N∑
i

di
.

JM =





N, C ≥ N∑
i

di

C
∑
i

di C < N∑
i

di

(7.9)

For C < N∑
i

di
, the threshold is reached and the cost function is equal to the

sum of degrees JM = C
∑
i

di < N . In the case C ≥ N∑
i

di
, the optimum is reached

for curing rates equal to zero and JM = N .

Compared with the optimization at the threshold, where the cost function

minimum can be J
(min)
M = O(N2) for the complete graph, the cost function mini-

mum cannot be larger than the size of the network J
(min)
M = O(N).

If a network is above the threshold (vi∞ > 0), we considered a special case
where curing rates are proportional to degrees with the same factor 1−α and we
can estimate the price of anarchy.

Theorem 40. For global optimum calculated for curing rates proportional to the
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degrees, the price of anarchy above the threshold is bounded by

PoA ≤





N∑
j=1

1
cj

N
, C ≥ N∑

i

di

N∑
j=1

1
cj

C
N∑

j=1

dj

, C < N∑
i

di

where C = 1
N

N∑
j=1

cj.

Proof. Follows from Lemma 38 and equation (7.9).

7.3 Managing a network by constraining the in-
fection probabilities

We proceed to discuss how a manager can influence and control the Nash equi-
libria of the virus protection game. In section 7.1.2, we have shown how a Nash
equilibrium depends on the relative price of protection vector −→c . If a network is
at the epidemic threshold, more Nash equilibrium points exist. By varying the
relative price of protection vector −→c a manager can influence the network equilib-
rium point. A manager may be able to do that by determining (or affecting, e.g.,
through subsidies) the cost of protection means, e.g., antivirus software, hence in-
directly influencing ci. Here, the “manager” may be an antivirus supplier, which
gives cheaper (per unit) antivirus to entities that have many Internet interactions
and are densely connected to other nodes.

In section 7.1.2, Theorem 36, some conditions are introduced that can give
guidance to the choice of the relative price of protection. If all ci > 1, there is
only an unprotected state, and no one will buy antivirus protection. If ci < 1

di
,

a node will always invest some money in protecting itself. These results make
it possible for an antivirus supplier to estimate what price will make a network
more secure. In Theorem 39, we have seen that too low relative prices can lead a
network further away from the global optimum. If large firms invest in expensive
security, other nodes can buy cheaper antivirus software such that the network
reaches the threshold.

The other option for a manager is to set up upper bounds on infection prob-
abilities, for all relative prices ci ≥ 1, which will determine the Nash point as
presented in Theorem 41.

Theorem 41. If ∀i vi∞ ≤ Bi, ∀i ci > 1, the only Nash equilibrium is reached for

(∀i) δi min =

(1 − Bi)
∑
j

aijBj

Bi
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Proof. The result for the unconstrained case with N nodes shows that a node will
tend to decrease its curing rates till they all become terminally infected (Theorem
36). The only NEP is out of the bounded region, thus the feasible minimum will
be on the bound such that ∀i vi∞ ≤ Bj . Nodes that are above the bound will
tend to decrease their curing rates, which draws other nodes to do the same till
they all reach the constraint of infection probability Bj . Thus, the minimum is
reached for ∀i vi∞ = Bj . The minimum point for all the nodes exists, and the
corresponding curing rate can be calculated from Equation (4.6), for vj∞ = Bj

Bi =

∑
j

aijBj

∑
j

aijBj + δi

Now, the curing rates are

(∀i) δi min =

(1 − Bi)
∑
j

aijBj

Bi

For Bi → 0 and Bj finite for j 6= i , the curing rate of node i will tend to
infinity δi → ∞. For Bj = B, δi = di(1 − B), where di is the degree of a node i,

we have the vector of curing rates
−→
δ

−−→
δmin =

[
βd1(1 − B) βd2(1 − B) .. βdN (1 − B)

]T

However, this is not a stable point. If there is an unfair player in the game, which
reduces its security against the rules vi∞ > B, it can cause other players to pay
more than what was planned. The security of the whole network is harmed.

This result suggests a strategy for steering autonomous systems (ASs), or
Internet service providers, to invest money in their own security, which is propor-
tional to the number of “links”, that is, interactions they have with other ASs.
The way to “force security” upon ASs is by asking a certain fixed probability
of infection vi∞ < B, for all relative prices ci > 1. Together with the fact that
the cheapest threshold, in terms of the total security (

∑
δi), is reached when the

nodes are protected proportionally to their own degrees, this seems to be a very
fair way to provide overall security. Bigger ASs with more connections towards
other ASs will have to protect themselves more, in order to provide the same level
of security, while smaller ASs will invest proportionally to their sizes and profits.



Part III

Influence of quarantine on
epidemic spread
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Chapter 8

Virus spread in social
networks

The protection of important networks is not fast enough in practice, and the in-
fection easily reaches all the segments of network. In this chapter, we propose and
analyze a fast method to stop or reduce epidemic spreading on networks. When
an epidemic is detected, a network cut is performed by removing links leading to
several disconnected clusters of nodes. This clustering allows limited intercom-
munity communication between nodes to continue, while possibly quarantining
the rest of the network. Many real world networks from on-line social networks
to airline transport networks and Internet AS network typically show a strong
community structure [80], [12]. Depending on the speed of the epidemic reaction,
it is possible to totally prevent any risk of infection for a number of disconnected
clusters. Even with very delayed reaction, the amount of protection, that has to
be applied in the network in order to stop the spreading, can be reduced. Thus
clustering can be used in addition to other protection methods.

The removal of links as protection against epidemics was proposed in mathe-
matical epidemiology. The Equal Graph Partitioning (EGP) method uses immu-
nization to remove specific nodes that cut the graph into clusters [81]. However,
the immunization takes time, while individual nodes can stop communicating with
other nodes immediately after receiving the news about the epidemic. Several au-
thors have studied the reduction of disease spreading using air line restrictions.
Goedecke et al. [10] and Epstein et al. [11] used the Susceptible Exposed Infected
Recovered (SIER) model and dynamic in time travel restrictions. Marcelino et
al. [12] used the Susceptible Infected (SI) model together with edge betweenness
and Jaccard coefficient to increase in spreading time [12] by 81% by removing
25% of the links. Due to the multicommunity structure of the network with most
connected nodes not being the most central, the optimal strategy for flight can-
cellation is not the removal of nodes (cities), but the removal of intercommunity
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flights, which introduced an increase in spreading time [12]. We are interested
in specific link removal such that intra-communty communication is preserved.
We are not interested in optimizing of the clustering algorithm, but instead in
the general improvement of protection that is possible by using a well-defined
clustering algorithm.

Several algorithms have been proposed to find network communities. Mod-
ularity maximization is the most popular method. Modularity is a quantitative
criterion to evaluate how good a graph partition is [82]. It maximizes links within
communities, while minimizing the links between them. Modularity maximization
is an NP problem, given the exponential number of existing partitions. We use
a greedy heuristic proposed by Clauset et al. [83] to find an optimal modularity
clustering.

In order to quantify the improvements of the network clustering in terms of
epidemics, we use the epidemic threshold concept and the N -intertwined model
on a large set of networks.

8.1 Quarantine model and networks

The protection method of dividing the network into clusters by removing links
will be referred to as clustering or quarantining. The moment when a network
is quarantined determines how many nodes are completely protected, since the
virus is not able to infect nodes outside its cluster. In the first case, if we are able
to quarantine a network into clusters faster than the virus is spreading, only a
single cluster will contain infected nodes. On the other hand, if the virus infects
all the clusters before a quarantine takes place there are still benefits, which are
discussed in more details in section 8.3. Usually, the effective speed of clustering
the network will be somewhere in between.

We discuss the two boundary cases separately. In the first case we determine
the size of the clusters, which provides an estimate of how many nodes will never
get infected. The size of the clusters also affects the performance of the network.
Larger clusters mean that a larger part of the network can continue exchanging in-
formation. Second, we show that the epidemic threshold that divides non-infected
from infected networks improves in networks that display clustering features.

If the infection is spreading very fast and all the clusters get infected, the
number of infected nodes in the metastable state is reduced. We discuss the
improvement with the respect to the number of removed links.

To show influence of clustering on epidemic spreading, we use several real-
world networks. First, the Internet AS level topology obtained by Route View in
2006 and posted by the University of Oregon is used to illustrate the influence of
cutting and virus spread on large infrastructural networks. The network consists
of N = 22, 963 ASs and L = 48, 436 connections or links. Further, we used an
example of a social network between weblogs on US politics recorded in 2005 by
Adamic and Glance [84]. The political blog network is shown in Fig. 8.1, with
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Figure 8.1: Network of weblogs on US politics clustered network using modularity
maximization. Nodes belonging to different clusters are differently colored.

nodes belonging to different clusters colored in different colors. The network has
N = 1, 222 users and L = 19, 021 relations between them. Finally, we examine on-
line social network of friends from www.digg.com, gathered by the Delft University
of Technology. The digg network has N = 281, 471 friends and L = 4, 354, 174
connections.

In disease modeling, transport networks are frequently used. To illustrate the
influence of traveling patterns on virus spread, we investigate the direct airport-to-
airport American traffic network maintained by the U.S. Bureau of Transportation
Statistics and European direct airport-to-airport traffic network obtained from
European commission for statistics Eurostat. The USA network consists of N =
2, 188 airports and L = 31, 331 connections or links. The European network
consists of N = 1, 247 airports and L = 22, 830 of connections or links.

In order to extend our understanding of the effects of clustering on the network
robustness against virus spread, we include several artificial networks with N =
1, 000 nodes.

We consider three Erdös-Rényi (ER) random graphs with a different number
of links. Each node in ER random graph is connected to every other node with
probability p. The probability p determines the number of links in the network
[85]. We model power law networks using the Barabási-Albert model (BA) of
preferential attachment for different number of links [86]. Finally, we use an ar-
tificial model of clustered networks [87]. The network is constructed in a similar
manner as the ER random graph with two probabilities of link existence, one
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for inter-community connections and the other for intra-community connections.
We have generated several different networks with N = 1, 000, two clusters and
different modularity. The modularity was set to Q = 0.17, 0.28, 0.49 for networks
with L = 10, 000 links and Q = 0.004, 0.16, 0.49 for networks with L = 100, 000.
Further, we have considered networks with 4, 6, 8, 10 clusters. We chose to gener-
ate a greater number of networks with two clusters because most of the real-world
networks consist of mainly two big clusters.

We additionally consider the square lattice, line, ring and tree topologies.

8.2 Early clustering

In this section, we examine the case of instant clustering where a network is clus-
tered faster than the worm is spreading, resulting in a single infected cluster.
Defending the network and performing quarantines provides important advan-
tages. First of all, if a network is cut on time and the infection is limited to
one cluster, only a percentage of nodes will eventually be exposed to infection.
Second, from the interlacing theorem of graph theory [44], the largest eigenvalue
of a subgraph is always smaller than that of the graph. Thus, the thresholds
τc = 1/λmax will always increase for any subgraph, making the subgraphs more
robust to epidemic spreading. The case that all the clusters are initially infected
is discussed in section 8.3. Finally, the lifetime of the metastable state depends
on the number of nodes [31] as Ω(eNα

), for α > 0.
One of the improvements introduced by clustering is a reduction of the largest

eigenvalue λmax of the smaller clusters with respect to the original graph. This
increases the threshold τc, the border between infected and non-infected networks.
The ration between the largest eigenvalue of a cluster and the largest eigenvalue
of the whole network versus the modularity Q for several networks is shown in
Fig. 8.2 and 8.3.

The behavior of λmax Cluster for the different network is diverse. For net-
works with high modularity, such as the lattice and tree topologies, improvement
(λmax Cluster

λmax G
) is not so significant. For the same type of networks e.g. BA or ER

with different number of links, a reduced modularity results in a reduced λmax,
which is an improvement. For both cases, the modularity is reduced by generating
topologies with a larger number of links (by respectively increasing parameter m
in BA model and parameter p in ER model). In addition, the difference between
the two largest eigenvalues of different clusters is greater for BA than for ER.
The effect can be caused by the homogeneity of the degree distribution of clus-
ters in the ER case, while BA shows a significantly heterogeneous cluster degree
distribution.

The threshold τc ( 1
λmax Cluster

) increases as a function of the number of links
removed between a cluster and the rest of the network, as shown in Fig. 8.4 and
8.5. In order to preserve as much network communication as possible upon link
removal, a small number of links should be removed during the quarantine. On
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Figure 8.2: Relative largest eigenvalue of the each cluster λmax Cluster/λmax G as a
function of the modularity Q for real-world networks and real world models.

the other hand, τc is inversely proportional to λmax Cluster. Hence the networks
with best performance show clusters with both low λmax Cluster and low Lout,
close to the point (0, 0) in the figures. Real-world networks such as the airline
networks and AS network perform well, while artificial networks perform much
better the smaller the number of clusters the graph has.

For individual graphs, the dependency of threshold improvement versus the
number of links removed is close to linear, which is indicated by change in lower
bound on largest eigenvalue λmax ≥ 2L

N
. Sparse ER graphs are clustered easily,

with small number of removed links, but show no significant improvement of τc.
The artificial clustered graph with modularity 0.04 shows the worst performance
in the number of removed links.

The size of the clusters after cutting is an important variable for the perfor-
mance of the network. Large clusters will allow for node communication after a
quarantine. But on the other hand smaller clusters will be more robust to virus
spread. The size of the clusters is decided by the modularity algorithm.

Another parameter to consider is the size of the largest cluster after the quar-
antine. The distribution of number of cluster sizes is shown in Fig. 8.6. In the
case of early clustering, network is cut into clusters before the virus can reach any
other cluster except for the one it starts to spread in. The worst case scenario
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Figure 8.3: Relative largest eigenvalue of the each cluster λmax Cluster/λmax G as a
function of the modularity Q for cluster network models.

is when the virus starts to spread in the largest cluster. Most of the networks
have one cluster that contains half of the nodes. In the case of the European
air network, three clusters pop up, thus leaving more than two thirds of network
protected. A BA graph has many small clusters of the size one fifth of network,
which leaves four fifths of network protected, Fig.8.6.

The Digg network has one large cluster which covers the half of the network
and many significantly smaller ones. The USA air network and the political
blog network have 2 large clusters, while the European air network has 3 large
clusters and several small ones. The Internet AS topology is more differentiated.
There are 8 clusters with 1, 000 − 1, 500 nodes and two larger ones with 3, 000
and 6, 000. Artificial networks show different behavior. ER and BA have a lot
of smaller clusters comparable in size. In Fig. 8.7, the number of nodes in the
cluster is given as a function of the number of removed links between the cluster
and the rest of the network. The air network of USA airports has the largest
cluster with the smallest number of deleted links, while the European air network
has 3 clusters.

In Fig. 8.8 and 8.9, for the same network, larger clusters tend to have a larger
λmax Cluster than the smaller clusters. This is, however, not true for any graph:
by comparing the line graph of any size with the complete graph of any smaller
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Figure 8.4: Relative largest eigenvalue of the cluster λmax Cluster/λmax G as a function
of relative number of links leaving the cluster Lout Cluster/L real world networks and real
world models.

size.

8.3 Delayed clustering

This section assumes that all the clusters are infected before the quarantine pro-
cess clustered the network. We examine the performance using the N -intertwined
model. In order to clean the infected network, it is necessary to apply a pro-
tection/cleaning rate δ such that the effective spreading rate τ = β

δ
is below

the threshold 1
λmax

. If the network is completely infected and then clustered,
the amount of cleaning that is reduced because λmax Cluster ≤ λmax G, therefore
τc(G) ≥ τc(Cluster). Therefore, if the network is clustered, it will be easier to
clean the network from infection.

Fig. 8.10 presents the percentage of infected nodes as a function of effective
spreading rate τ for different clusters in the network Cluster 0.004.

We calculate the fraction of infected nodes in the clustered network yclust

for the effective spreading rate τ for which the number of infected nodes in the
original network ytot,50%, ytot,80% reaches 50% and 80%. Then, we calculate the
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Figure 8.5: Relative largest eigenvalue of the cluster λmax Cluster/λmax G as a function
of relative number of links leaving the cluster Lout Cluster/L for cluster network models.

difference between the original value and improved one:

i50% = ytot,50% − yclust, i80% = ytot,80% − yclust

We calculate the fraction of infected nodes for several networks. Larger net-
works as the Internet AS and the Digg network are more computationally demand-
ing and are left out of the analysis. In Fig. 8.11, the upper bound on reduction
of infected nodes exhibits the tendency to decrease with the modularity of the
graph. The improvement is different when there are 50% and 80% of infected
nodes in the original network. Air travel networks and ER networks with small
average degree do not show significant difference between improvements and have
generaly small improvements.

The number of infected nodes decreases with the increase of the number of
removed links in the whole network, shown in Fig. 8.12. This is not surprising
because the power of spreading in a network decreases with links removal. Real-
world networks do not show a significant reduction in number of infected nodes.
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Figure 8.6: Relative number of nodes in the cluster NCluster/N as a function of mod-
ularity Q real world networks and real world models.

8.3.1 Random removal of nodes

In this section, we compare the threshold τc between quarantined networks with
networks where the same number of links has been randomly removed. We give
the largest eigenvalue of the original graph λmax G, the size of the giant connected
component

Nrand.big.comp

NG
%, its largest eigenvalue λmax rand, the size

Nbig.clust

NG
% and

the largest eigenvalue λmax l.Clust of the largest cluster in the clustered network in
Table 8.1. Links are removed at random and the average over many simulations
of the largest eigenvalue of the largest connected component is calculated together
with the variance of the largest eigenvalue.

The results are presented in Table 8.1. A large part of the network remains
connected and can transmit infection, which is an expected result of random link
removal. Between 80% and 90% of the network can be affected compared with
at most 50% in case of clustering. Further, the largest eigenvalue of the largest
cluster is still smaller than that of the large component in the case of random link
removal.

In USA airlines network, ER with p = 0.002 and p = 0.006 some smaller
cluster have larger λmax Cluster. In ER graphs and the political blog, two or more
components similar in size have the same or close largest eigenvalue. In the case
of political blog the advantage of clustering over random link removal lies in the
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Figure 8.7: Relative number of nodes in the cluster NCluster/N as a function of relative
number of links leaving the cluster Lout Cluster/L for real world networks and real world
models.

fact that the other half of the nodes will not get infected if the clustering is
performed before the virus has spread. In the case of AS Internet topology the
smaller cluster of N = 3, 600 nodes also has a larger λmax Cluster than the largest
cluster of 6, 200 nodes. The Digg network also has smaller cluster of N = 36, 491
nodes with the largest eigen value λmax Cluster = 701.61, while all the rest of the
network has significantly smaller largest eigenvalue. In the case of cluster 28s and
49s, two disconnected components have the same largest eigenvalue, which is the
same as for random removal.

The variance of largest eigenvalue for different simulations of random link
removal is less than 0.2 in all cases.

8.4 Discussion of results

When dividing the network into clusters, a virus can be stopped and annihilated
faster. However, protection comes with a cost. Shutting down links from the
network reduces the communication and reachability of nodes in the network.
Assuming that the graph is disconnected only temporally, we calculate the price
of quarantine as the number of links that are removed from the graph as a result
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Figure 8.8: Relative number of nodes in the cluster NCluster/N as a function of relative
largest eigenvalue of the cluster λmax Cluster/λmax G for real world networks and real
world models.

of a modularity clustering.
The number of removed links varies from 0.4% to 60%. Most of the considered

networks have around 50% of removed links which is significant. In networks
where a small number of links is removed, no significant improvement in largest
eigenvalue and number of infected nodes is found in the steady-state.

Although the modularity maximization algorithm is popular [82], it has not
passed a rigorous theoretical examination. The question is also how good is its
resulting clustering. We have not examined other algorithms that may perform
differently, because we have concentrated on keeping the communities intact.

The largest eigenvalue improvement using the modularity algorithm is com-
parable with random links removal for several networks; however, in this case the
worm can spread to 90% of the network.
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Figure 8.9: Relative number of nodes in the cluster NCluster/N as a function of relative
largest eigenvalue of the cluster λmax Cluster/λmax G for cluster network models.

Network λmax G
Nrand.big.comp

NG
% λmax rand

Nbig.clust

NG
% λmax l.Clust

Euro 80.92 83.23 53.48 31.99 43.07
USA 144.61 96.51 118.67 47.54 42.36
BA 2m 16.09 85.50 12.01 10.08 8.22
BA 3m 28.11 88.40 20.41 16.30 13.24
Cluster 0.17s 22.88 100 11.77 37.9 13.17
Cluster 0.28s 23.51 100 18.41 50.0 18.77
Cluster 0.49s 25.32 100 25.23 50.00 25.26
ER 0.002 3.59 83.41 3.29 6.68 2.67
ER 0.006 7.23 93.2 4.29 13.7 4.03
ER 0.02 20.93 100 10.05 30.4 10.77
AS ’06 71.61 90.59 58.49 27.27 51.22
Pol. Blog 74.08 99.01 69.88 51.88 62.11
Digg 775.33 92.7 582.11 48, 13 317.32

Table 8.1: Comparison of the random links removal strategy with clustering strategy -
largest eigenvalue of largest connected component and largest cluster.
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Figure 8.10: Percentage of infected nodes y∞ as a function of effective spreading rate
τ for original network and clustered network.

Network N Ltot Lremoved%

Euro 1, 247 14, 952 47.27%
USA 2, 179 31, 326 18.11%
BA 2m 1000 1, 971 42.46%
BA 3m 1000 2, 673 58.88%
ER 0.002 808 980 17.34%
ER 0.006 1000 3, 054 51.27%
ER 0.02 1000 9, 938 55.02%
AS ’06 22, 963 48, 436 20.62%
Pol. Blog 1, 222 19, 021 7.16%
Digg 281, 471 4, 354, 174 25.02%

Table 8.2: Network cost, the number of removed links.
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and clustered network as a function of modularity in the case when 50% and 80% of
nodes are infected in original network.
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Figure 8.12: The difference between number of infected nodes in the original network
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50% and 80% of nodes are infected in original network.
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Chapter 9

Conclusions

The robustness of the infrastructure against failures and attacks has motivated the
analysis of an epidemic spreading process in a given, fixed network, represented
by the adjacency matrix A. Individual interactions are not homogeneous, but
dictated by the structure of the network. Models of spreading processes should
take the network topology into account.

We studied the N -intertwined SIS epidemic model. The exact 2N state
Markov chain model was compared with introduced N -intertwined model, whose
only approximation lies in the application of mean field theory. The exact Markov
chain provides insight into the virus spread process (the time of convergence to the
absorbing state) for two boundary cases – the line graph and the complete graph.
The N -intertwined model relates network topology parameters to the spreading
process (largest eigenvalue and degrees of the nodes). The influence of the mean
field approximation is quantified. Several upper bounds for the steady-state in-
fection probabilities are presented.

N -intertwined model reduces for regular graphs to the basic Kephart and
White epidemiological model after additional simplifications. We have explored
the phase transition phenomenon and shown that, for a fixed graph, the epidemic
threshold τc is consequence of the mean field approximation. We have presented
the relation between spreading rate τ and convergence time towards the extinction
of epidemics for two extreme cases (full mesh and line graph). This is especially
important for smaller epidemics where τ is close to the epidemic threshold and
where the lifetime of an epidemic varies significantly. The largest eigenvalue of the
adjacency matrix of the graph is rigorously shown to define an epidemic threshold
of the N -intertwined model (as well as of other mean field models).

As a special case, we have studied the spread of viruses on the complete bi-
partite graph KM,N . Using N -intertwined model we have calculated the average
number of infected nodes in the steady state and confirmed these results by means
of simulations. In addition, the model was improved by introduction of infection
delay. We also presented a heuristic for the prediction of the extinction probability
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in the first phase of the infection. Simulations show that for the case without
infection delay this time dependent heuristic is quite accurate.

The heterogeneous N -intertwined virus spread model has been described and
analyzed in the steady-state. Since it applies to any network and any combi-
nation of node infections and curing vectors, we believe that the heterogeneous
N -intertwined virus spread model is useful for a wide range of practical infection
scenarios in networks, from computer viruses to epidemics in social networks and
in nature. The critical threshold regime is investigated using generalized Lapla-
cian. The largest eigen value of non-symmetric infection matrix was bounded. An
upper and lower bounds for the steady-state infection probabilities are presented.

We considered two special cases in more details, namely the regular graph
and the complete bi-partite graph. Using Lyapunov’s stability theorem, we have
shown that for regular graphs, the epidemic threshold is inversely proportional
to the degree of nodes and directly proportional to the harmonic mean of curing
rates. Further, we have considered the heterogeneous case with 2 curing rates for
the complete bi-partite graph.

We discussed global protection optimization problem. We formulated inverse
problem which is a sum of ratios fractional programming problem in the case above
the threshold. We determined the global optimum for the case at the threshold.
An upper bound on the global optimum above the threshold is presented. For
the case above the threshold, it was shown that highly connected nodes should
have higher or equal probability of infection compared to low degree nodes if the
network reaches the global optimum. At the threshold, the minimum of the social
cost function is O(L), where L is the number of links in the network.

We studied special case of optimization problem in complete-bipartite graph.
For the case of fixed curing rates, the distribution is convex function in fractions
p, q.

In Chapter 7, a novel framework for network security under the presence of
autonomous decision makers was presented. We have established the existence of
a Nash equilibrium point (NEP) and investigated its properties. In particular, we
showed that, when the price of protection is relatively high (namely, ∀i ci ≥ 1),
the only equilibrium point is that of a completely unprotected network; while if
this price is sufficiently low for a node (namely, ci < 1

di
), it will always invest in

protecting itself.
A network can be in two significantly different regimes, namely above or at

the threshold. If a network reaches Nash equilibrium at the threshold, multiple
equilibria may exist. The question of uniqueness of the Nash equilibrium above
the threshold remains an open question.

Although the optimal value of the social cost is the same for networks with the
same number of links L, the non-optimal distribution of curing rates at an NEP
results in much worse social welfare in some topologies (e.g., a star graph) than
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in other topologies (e.g., a line graph). When optimizing above the threshold, we
considered a specific case, for which we showed that the global utility function
is always smaller than the number of nodes in the network. This specific case
provides some insight on the social performance in the general case.

We have also proposed two methods for steering the network equilibrium,
namely by influencing the relative prices and by imposing an upper bound on
infection probabilities.

Chapter 8 we studied the influence of protection measures on epidemic spread.
We studied how clustering/quarantining influence different network from artifi-
cially generated to several real world examples. We have found that real-world
networks tend to show a better epidemic threshold τc after clustering than artifi-
cially generated graphs.

For all the networks under study, the curing rate can improve between 29%
an 83% for the largest connected component with respect to the original graph.
This wide range of values demonstrates the effect of the network topology on the
virus spread. Regarding the network clustering features, an easily clustered graph
does not guarantee a slower epidemic threshold, but the way the links intertwine
between inter- and intra-communities are key.

Overall, network protection against cascading failures can be improved for any
kind of graph. However, the number of removed links in a graph in order to apply
a quarantine has been shown to be in the range of 7% to 58% of the links. These
values are, in practice, unacceptably high. The advantages of early quarantine
are shadowed by the fact that up to half of the links must be shut down for the
quarantine to take effect.

The real-world networks have typically two or three big clusters and several
smaller ones, while BA and ER graphs have several smaller ones comparable in
size. BA and ER graphs are assumed to model the real-world complex networks.
However, in respect of the size of the clusters, BA and ER fail to match real world
networks.

Additional to the epidemic spread analysis, this diversity in results appears
valuable to create a general classification of types of networks. The degree distri-
bution of the graph has been so far widely used for this purpose. For instance, a
network classification could be generated by taking the largest eigenvalue of the
adjacency matrix of clusters λmax Cluster vs. Lout distributions as an input.

The clustering with random removal of links has led us to conclude that the
largest eigenvalue of the largest cluster can be less or comparable to the largest
eigenvalue of the biggest component generated by random links removal. However,
other clusters have a significantly smaller largest eigenvalue, which leads to a
smaller amount of cleaning necessary to completely remove the worm from the
network. Furthermore, if only the largest cluster is infected only up to 50% of the
network will need cleaning.
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9.1 Future Work

The results in this thesis provide a strong foundation for future work. Each
chapter provides several research directions.

The appearance of several worms that use social networking Web sites to
spread introduces the need of accurate relation graph in computer worms mode-
ling. The N -intertwined model can be applied to social website worms and com-
pared with the data. However, gathering data on computer malware is bounded
by legal issues.

The N -intertwined model is derived under the mean-field approximation and
the complete view of the process is only possible using the exact 2N -state model.
The size of the matrix is an unavoidable obstacle, however the specific structure
of the infinitesimal generator matrix can give insights into the time evolution of
epidemics.

Another line of research is related to heterogeneous N -intertwined model,
which models a wide range of practical infection scenarios in networks, from com-
puter viruses to epidemics in social networks and in nature. The interplay between
topology and curing and protection parameters can be explored in more details.
For example, two structurally different networks can have the same infection prob-
ability vector V by applying adequate infection and curing rates. It should be
examined whether any graph structure can be simulated by only applying different
curing and protection rates on a complete graph.

Game theoretical framework of epidemic spreading opens more questions than
it answers. By fixing all relative price to ci = c, the topology influence becomes
dominant and reflects on the game outcome. Further more, topology can be
diluted i.e. links and nodes. For example the game can be steered by deleting
a limited number K of links or nodes. The nodes play the usual game, namely:
each node i buys immunity in a way that minimizes its cost function Ji. The goal
is to identify a set of K such links or nodes, which maximizes the global security
at the Nash equilibrium.

Another method to steer the game outcome is to set bounds on the risk from
infection. For example, players can agree on the upper bound on the probability
of each player getting infection. This can lead to a construction of a distributed
algorithm for P2P network security. Other algorithms or rules which can improve
network security in distributed manner should be explored.

Chapter 6 considers the constrained optimization problem above the threshold.
Numerical simulation on a set of real world graphs can add new insights and
approaches to the problem. Another question is if two graphs have the same
number of links L, nodes N and the same total curing rates

∑
δi = H1, is there

a specific structure such that it has the most optimal (minimal) average number
of infected

∑
vi. Such structures can be considered as more robust against virus

spread. Starting point would be the fact that on the threshold point two graphs
with the same number of links and nodes have the same total curing rate

∑
δi =

2L, (Theorem 25 of this thesis).
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In chapter 8, we considered modularity to be the partitioning algorithm, but
there exist a large number of partitioning algorithms that try to optimize differ-
ent variables. The investigation of how different clustering algorithms affect the
epidemic dynamics is an open question. This section also poses the question what
other protection algorithms can be applied to specific computer networks.

All the above mentioned research lines are directly derived from the thesis
results. A completely new direction would be the application of the N -intertwined
model to general risk analysis framework. Contemporary computer networks are
very complex and interdependent. System (computer or program) is modeled
as a black box with interfaces that connect it with the other components and
interactions between components is modeled with Markov intertwined theory.
Protection of these boxes can be viewed as ’curing’ of malfunctions. It is important
to capture service/system dependencies that are present in contemporary complex
computer networks.
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