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Abstract

Imaging Mass Spectrometry (IMS) collects spatial and chemical information of a sample,
generating high-dimensional datasets that present challenges in exploratory data analysis due
to their substantial size. Spectral clustering is a promising unsupervised learning approach for
IMS applications, employing graph-based strategies to identify patterns without assumptions
about cluster geometry.

Unlike many clustering algorithms that have assumptions about the geometry of the clusters,
spectral clustering constructs a similarity graph and performs eigendecomposition on the
Laplacian matrix to reveal non-convex clusters. This allows one to find clusters of arbitrary
shapes, which can result in new or improved segmentation being discovered in IMS data.
Furthermore, two recent studies allow for the potential argument that spectral clustering
might be optimal for IMS data.

Despite these advantages, spectral clustering faces implementation barriers primarily due to
its computational complexity and memory constraints. The limited applications of spectral
clustering on IMS data, can predominantly be attributed to these limitations.

This thesis investigates the feasibility of spectral clustering for analyzing high-dimensional
imaging mass spectrometry data, with a focus on performance under noise, computational
scalability, and maintaining biological segmentation. To assess the performance, internal and
external validation metrics are used as well as a comparison with variations of k-means clus-
tering. Additionally, a memory constrained algorithm was developed to address the scalability
issue induced by the memory complexity.

The results highlight that spectral clustering outperforms k-means, when both methods are
utilizing the cosine metric, in scenarios of increased noise on a synthetic dataset. Upon
application on a real world subset of an IMS dataset of a mouse pup containing the brain,
the results between k-means and spectral clustering were highly comparable. When applied
on the complete dataset with a memory constrained version of spectral clustering, the results
were less promising due to its dependence on initial seeding, where k-means obtained better
or similar clustering results with lower time and memory complexity.
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Chapter 1

Introduction and Background

Imaging Mass Spectrometry (IMS) is an analytical technique that allows the retrieval of both
chemical and spatial information of a sample. This technique maps the spatial organization of
molecules directly from tissue section, single cells and various other surfaces without the need
for prior extraction or labeling of target molecules [1, 2]. The molecular information encoded
in IMS datasets makes it possible to automatically segment tissues into medically significant
subregions, which is in particular interest for applications such as clinical or pathological
applications [3, 4, 5] .

Due to the large size and complexity of IMS data, manual interpretation becomes impractical.
To address this, researchers apply exploratory data analysis to understand the structure,
patterns, relationships and anomalies within the data. This can be achieved through statistical
or machine learning analyses [6].

Among these techniques, clustering belongs to the branch of unsupervised machine learning,
where data points are grouped together based on how similar they are to each other without
the presence of any prior labels. Clustering does not only aid in pattern recognition but also
enables the discovery of molecular signatures and spatial domains.

In the context of IMS, clustering pixel locations by looking at the similarity in their mass
spectra, groups regions with comparable molecular profiles. As a result, clustering enables
the identification of distinct molecular regions within complex tissue structures. This seg-
mentation generates a spatial molecular map that highlights regions of interest within the
tissue sections revealing subregions with comparable compositions.

This chapter provides background information on IMS and clustering, covered in section 1-1
and section 1-2, respectively. This context lays the foundation for formulating the problem
statement (section 1-3) and facilitates a better understanding of the rest of the report.

1-1 Introduction to Imaging Mass Spectrometry

The fundamental principle behind IMS involves the acquisition of the mass spectra from a
sample surface along multiple predefined measurement locations. The obtained data can be
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2 Introduction and Background

represented in a three-dimensional dataset where each pixel, corresponding to a measurement
location, contains a complete mass spectrum. There are two approaches in which the data can
be retrieved from a sample, these are denoted as microprobe mode imaging and microscope
mode imaging [1, 2, 7].

Microprobe mode imaging This imaging mode uses a two-dimensional grid with measure-
ment locations. At each of these measurement locations, the sample is subjected to an ion-
ization beam, which vaporizes the tissue sample, changing its state from a solid/liquid phase
to a gaseous one. The gas is fed into a mass analyzer where the analytes are characterized by
their mass to charge ratio (m/z). This process is repeated over the complete grid to obtain
a dataset for the complete sample, see Figure 1-1a.

Microscope mode imaging Instead of using pre-defined grid points, in microscope mode
imaging a large area of the sample is subjected to an ionization beam. Whilst the sample has
transitioned into the gas phase for a larger area, the use of specialized ion optics allow for
the retention of their spatial distribution as they are extracted and travel through the mass
analyzer. Specialized ion optics magnify and project this distribution onto a position-sensitive
detector, see Figure 1-1b.

position-correlated spectra

Paosition sensitive
detector

mass analysis | 3, P P Mass analysis
2 p — retaining spatial inegrity
P & ""1 - 7 ’
M CJ - "/ Magnified

72 SR ~ /chemical images

focus defines spatial
originofions. -~

(a) The microprobe mode imaging can be (b) Different images of mass spectra are
seen going over prespecified locations and obtained by using the microscope mode
the gas is than fed into a mass analyzer. imaging.

Figure 1-1: The two approaches in molecular imaging mass spectrometry. [Image from [2]]

The amount of pixels are determined by the achievable spatial resolution, which can reach
into the order of 1 to 10 pm. The selected ionization technique determines how high the
spatial resolution can be. There are many ionization techniques, such as Secondary Ion Mass
Spectrometry (SIMS) [8], Desorption Electrospray Ionization (DESI) [9] or Matrix-Assisted
Laser Desorption/Ionization (MALDI) [10]. We will focus on MALDI, as this is the technique
used to obtain the data that will be analyzed.

In MALDI-IMS, the sample is coated in a matrix that absorbs the energy of the ioniza-
tion beam. The matrix assists in minimizing the fragmentation when the ionization beam

Bahier Ahmad Khan Master of Science Thesis



1-1 Introduction to Imaging Mass Spectrometry 3

is traversing the raster pattern. The technique allows for the preservation of the larger
molecules, which results in high accuracy when used for imaging of proteins, peptides, lipid
and metabolites.

The higher the spatial resolution, the more pixels are present in the obtained dataset, which
can accumulate to datasets consisting of more than 100,000 pixels. Each of these data points
has a discretised mass spectrum connected to it. The mass spectrum is organized into bins
and each one often has hundreds of bins (Figure 3-1). This highlights the complex nature
of IMS datasets, which will prove to be a challenge when trying to employ exploratory data
analysis (see section 1-2).

Mass Spectrum of a Measurement Location
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Figure 1-2: Example of a mass spectrum.

The collected data in imaging mass spectrometry can be represented in two primary formats;
the 3D-mode data array and the 2D-mode data array (Figure 1-3). In the 3D-mode data
array, the data is structured with three dimensions, the x — y pixel directions which indicate
the spatial locations where the data was collected on the sample in 2D space, and the third
dimension which corresponds to the m/z bins [11]. This format allows for a comprehensive
visualization of molecular distributions at the measurement locations of the sample.

Alternatively, a 2D-mode data array can be employed. Here, one axis represents the combined
x and y pixel locations, effectively flattening the spatial information into a single dimension.
The other axis remains dedicated to the m/z bins, capturing the spectral information. This
representation simplifies the data structure but still retains the essential spatial and spectral
relationships [2, 11].

Whilst the 3D mode data array is useful for visualizing individual ion images or mass spectra
of a pixel, the 2D mode finds its use more in the analysis of the data.

From the aforementioned information, one can imagine that the data generated through the
process of IMS can be large in size and complex. After all, a discrete signal is stored for each
measurement location and for a good resolution of the tissue sample an adequate amount
of measurement locations have to be chosen. The implications of this are notable when one
would like to apply data analysis, which will be discussed in section 1-2.

Another problem with IMS data is that it contains noise [12, 13, 14]. Examples of noise are
background noise, noise from the measurement equipment or noise due to incorrect sample
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4 Introduction and Background
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Figure 1-3: The different data formats for IMS.

preparations leading to the presence of bubbles and dust. This noise prevents us from ob-
serving the true spectra, and should be filtered out. Noise can present itself as peaks, which
can than be mistaken as the presence of a bio-chemical [12].

Even though it not being compulsory, preprocessing is often applied step when working with
IMS data. Preprocessing consists of several steps to prepare the raw data for data analysis.
Typical procedures may include smoothing, baseline correction and denoising, among others
[15, 12]. These steps address common issues in raw spectra such as signal noise, baseline drift,
and experimental variability.

The aim of pre-processing is to enhance desired features whilst minimizing artifacts, to ensure
that the data reflects the tissue sample accurately. This phase allows for more effective
analyses when clustering, and could improve interpretability and reproducibility of the results.
The preprocessing step relevant for this thesis is total ion count normalization, as the provided
dataset has already been processed from the raw file.

Total lon Count (TIC) Normalization Given a mass spectrum (5= y1,¥2,...,Yyn), normal-
ization is nothing more than,

1 1/p
Snormalized = ?§7 where f = <Z |yz|p> :
%

In the case p = 1, the mass spectrum is divided by the sum of all intensities and this is
called TIC normalization [16]. This method has been applied commonly when looking at
MALDI-IMS datasets. The idea is that this normalization will correct for variations in total
signal intensity between different spectra. However, TIC is based on the assumption that the
total ion count remains constant on average across samples and that signals do not decrease
or increase in intensity systematically. This why the application of TIC could cause artifacts
to occur and is why Deininger et al. recommends to use it after considering these possible
implications [16].

Bahier Ahmad Khan Master of Science Thesis



1-2 Introduction to Clustering in Imaging Mass Spectrometry 5

1-2 Introduction to Clustering in Imaging Mass Spectrometry

As mentioned earlier, clustering is an unsupervised machine learning method that groups
data points based on their similarity or distance with unlabeled data. In the field of IMS,
clustering is applied in two different ways on the data.

Firstly, the data can be clustered based on the similarity in their mass spectra at each mea-
surement location. This way the pixels of the image are clustered together providing a tissue
segmentation map, which allows insight into anatomical regions. Therefore, this method is
also called pixel-based clustering or spatial clustering/segmentation [6, 17, 18].

The second method regards ion image clustering, where the m/z values are clustered based
on their spatial distribution across the tissue. This time relevant molecular ions are clustered
that show similar spatial distribution patterns, which allows for the interpretation molecular
pathways within the tissue section [19, 20].

Both methods of clustering IMS data have seen many applications. FEach of these with
different improvements and clustering algorithms accompanied. Some clustering algorithms
include k-means [18, 21], hierarchical clustering [22, 23, 24], but also more learning based
methods such as deep clustering [25, 26] .

This highlights the interest and need for improved clustering performance, as one clustering
method can not be the best in every area. There are many challenges that show up when
using clustering within IMS, some induced due to the complexity and size of the IMS data,
whilst others are a consequence of the clustering algorithm and its unsupervised nature. These
challenges will now be discussed, to provide the groundwork for when the problem statement
is presented.

Curse of Dimensionality As stressed in section 1-1, IMS data is vast and complex. Firstly,
depending on the application, the amount of pixels present in IMS data can range into an
order of 10* — 108, whilst the mass spectra at each pixel location can be discretized into bins
in the range of 10?2 — 10°. The latter is of particular interest for clustering purposes.

Most clustering algorithms are developed with a specific metric in mind, be it either a distance
or similarity. To reiterate, the data points are grouped based on the chosen distance or
similarity metric, where data points with a smaller distance or higher similarity are often
grouped together.

However, when the data has high dimensionality the distance between points tends to become
relatively uniform [27, 28, 29], making the notion of close and far data points ambiguous.
Therefore, the clustering algorithms will also deteriorate in performs.

In the field of IMS, feature selection and the projection of data onto lower dimensional spaces
are used strategies to mitigate the effects of high dimensionality. Feature selection, essentially
cleans up the data in a way that irrelevant features are discarded. There are many different
ways in which this can be achieved and feature selection is a difficult topic by itself and
considered outside the scope of this thesis.

For dimensionality reduction, the idea is that the complete dataset can be approximated
by using a lower amount of dimensions. However, often the dimensions are still quite large
even if they have been reduced significantly. This is because the amount of data needed to
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6 Introduction and Background

cover the amount dimensions scales with an estimate of O(c?), where ¢ is a constant and
d the dimension of the data [30]. Therefore, even if it is reduced to a dimension of order
10" — 102, the amount of data is still insufficient to give a proper coverage of the dimensional
space. Nevertheless, many results have shown to be promising when applying dimensionality
reduction techniques [6].

Computational Complexities When computing clustering results, IMS necessitates the a
sufficient amount of memory for storing intermediate results and the high dimensionality
of the data causes significantly more effort for the calculations of the distance or similarity
metrics.

The memory requirements vary significantly between clustering algorithms. For instance, k-
means has a memory complexity of O(nd), where n is the number of data points and d is the
number of dimensions. In contrast, spectral clustering requires O(n?) memory, as it involves
computing and storing a full similarity matrix. Since in most practical scenarios n > d,
spectral clustering typically demands substantially more memory than k-means.

Similarly, the time complexity of the algorithms is also impacted by the properties of the
data. When looking again at k-means clustering the computational complexity is O(nkdi),
where n is the number of points, k the number of clusters, d is the dimensionality and 7 is the
number of iterations. Whilst, spectral clustering has a much higher computational complexity
of O(n?).

This shows that depending on the clustering algorithm, results can either be computed in
relatively short or large amount of time. Therefore, when selecting an algorithm that has a
high computational and memory cost, the benefits should be sufficient to substantiate the use
of the algorithm.

Algorithmic Challenges Clustering algorithms inherently depend on a number of hyperpa-
rameters, with the most common one being the number of clusters k. These hyperparameters
must be carefully selected, as they play an important role in determining the quality of the
resulting clusters.

In particular, the way an algorithm is initialized, for example the selection of initial cluster
centers in k-means, can have a significant impact on the final outcome.This sensitivity to ini-
tialization results in several challenges. It introduces inconsistency in the results, especially
for algorithms that tend to to converging to local minima. Meaning, that the same algorithm
could produce different clustering results when run multiple times with a different initializa-
tion of the centroids. To address this issue, it is common practice to run clustering algorithms
multiple times with different initializations and to select the solution that optimizes a given
objective function. Improved initialization techniques, such as k-means++, have been devel-
oped to increase the likelihood of convergence to a better solution by carefully selecting initial
cluster centers [31].

Furthermore, determining an appropriate value for k is often non-trivial and is an issue shared
by many clustering algorithms if not all. Some algorithms may benefit of the use of internal
evaluation metrics like the silhouette score or the Davies—Bouldin index to assist in assessing
clustering quality and guiding the choice for the number of clusters [18]. However, as these
validation metrics are based on assumptions on the retrieved clustering results, it is not
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1-3 Problem Statement 7

an universal solution and in most cases running the algorithm with different values for the
number of clusters is the best method.

Noise This challenge has relations to feature selection, given that the complete dataset does
not contain only relevant information, but also several sources of noise. Separating the noise
from the biologically relevant signals will help in obtaining better clustering results, as an
increase in similarity through the inclusion of noise can be induced.

Validation As clustering is an unsupervised machine learning technique, it means that the
data is unlabeled. This provides a particular challenge when validating results. Whilst ground
truth labels could be used when verifying the results with the help of a synthetic dataset,
validating the results using the collected data is much harder.

Qualitative validation usually happens through inspection or expert opinion. Meaning that
a look is taken at the obtained clustering and it is argued if the results represent what was
expected, or if there are obvious signs of misclustering in the final result. Although this is
useful to obtain an initial indication about the accuracy of the results, no actual conclusion
can be made.

Accompanying qualitative validation is usually quantitative validation. In this case results
are validated through the use of evaluation metrics. However, each of these evaluation metrics
have to be internal evaluation metrics meaning it is based on the clustering result and the
original data and no ground truth is present. These internal validation metrics are all derived
based off assumptions on what a good clustering is, which is not applicable for all types of data
and might therefore give a false affirmation of the obtained results. Furthermore, clustering
can have multiple solutions that all result in similar results for the evaluation metric making
it still ambiguous to simply decide if a clustering is good based on quantitative validation.

1-3 Problem Statement

Imaging Mass Spectrometry is a technique that has many applications from biomedical explo-
ration of organic tissue to use in forensic fingerprint analyses. To aid in the interpretability of
the data, unsupervised learning is a powerful tool that can provide insight without prior in-
formation. Although rather vague at the current stage of the report, one of the unsupervised
learning methods that is of interest is spectral clustering.

Spectral clustering is a graph based clustering approach known in the fields of image segmen-
tation [32], community detection [33], speech separation [34] and text mining [35]. Most of
these fields deal with high dimensional data and use spectral clustering for its most prominent
feature, the ability to provide non-convex clusters.

In addition to this, a keen interest is shown towards spectral clustering due to two recently
published papers. The first paper by Lofler et al. highlights that spectral clustering is optimal
for Gaussian Mixture Models (GMM) [36]. The second paper by Delacour et al. has shown
that IMS data can be modeled as a Spiked Mixture Model (SMM) [37]. Since a SMM is a
constrained version of a GMM, we have reason to believe that similar guarantees will hold for
the SMM. Although, at this point spectral clustering might seem like an alien subject, these
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8 Introduction and Background

points will be further elaborated on throughout the report. The reason spectral clustering is
introduced is to make the reader aware of the following research objective:

Research Objective

To develop and validate a spectral clustering framework for Imaging Mass

Spectrometry (IMS) data that addresses computational scalability and resistance
against noise, whilst maintaining biological segmentation.

Bahier Ahmad Khan Master of Science Thesis



Chapter 2

Theoretical Foundation

Spectral clustering is an unsupervised learning technique that belongs to the family of cluster-
ing algorithms. In this chapter, the problem formulation for spectral clustering is elaborated
upon in section 2-1, followed by a explanation of the algorithm that will be used in section 2-2.
While effective for non-convex partitions, spectral clustering faces scalability issues in IMS.
Therefore, a memory-efficient approach is proposed to address computational constraints
when handling large-scale datasets in section 2-4.

2-1 The Problem

Spectral clustering is a graph-based approach to clustering that has been widely used across
various fields including image segmentation [32], community detection [33], speech separation
[34] and text mining [35]. Its proven ability with high dimensional data, makes it particularly
interesting for IMS datasets. To illustrate the problem spectral clustering addresses, we con-
sider the example of bi-partitioning, which helps build intuition for why solving the problem
in its original formulation is difficult. Spectral clustering avoids this difficulty by relaxing
the original NP-hard problem, allowing for approximate but more efficient solution using the
eigendecomposition of the graph Laplacian. T

Given a dataset X = {x1,29,...,2,} € R?, where each z; is a pixel with a mass spectrum
of dimension d, the goal is to group similar points into clusters while ensuring dissimilarity
between different clusters. To achieve this, we start with a similarity measure (i.e. the
gaussian similarity s;; = exp(—||z; — z;||?/20?)) using pairwise relationships between data
points, with the metric being maximal when points are identical (i.e., when x; = x;). This
leads to the construction of a similarity matrix S = (s;; > 0); j=1,...n € R™*". This matrix is
symmetric, with all entries non-negative and typically has a diagonal with all zeros (s;; = 0)
to avoid self-loops in the graph representation [38, 39].

The similarity graph can be constructed using a multitude of different approaches such as
n-neighborhood graphs (connecting points within a distance threshold) or k-nearest neighbor
graphs (linking each point to its k closest neighbors). Our focus will be on constructing
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10 Theoretical Foundation

fully connected graphs, where every pair of data points is linked. Through this construction,
global and local information is contained in the similarity graph, which in turn results in more
information when clustering [38].

From the similarity matrix S, an undirected weighted graph G = (V, E, W), where the set of
vertices V = vy, ve, ..., v, correspond to the data points in X, the set of edges E connect pairs
of vertices for which s;; > 0, and values of the weight adjacency matrix W = (wij)i,jzl,wn
are set to the similarity values (w;; = s45).

Given a constructed graph G the question being posed is [39]:

Minimum cut problem formulation

How can we obtain a separation of the graph into sets (A, A°), whilst
minimizing the total weight of edges being cut?

The cut weight is defined as the sum of the weights of edges crossing from A to A = V\ A,
see Equation 2-1.

cut(A) = Z Wi (2-1)

i€A,jeAc

As there are no constraints imposed on the size of the set, minimizing the cut(A) leads to an
optimal solution of A = ) with cut () = 0, which is a trivial partition. Before looking at
solution of spectral clustering, let us examine a naive approach to solving this problem, given
that the trivial solution (the empty or full set) are not allowed [39].

Naive approach Let us assume that our constructed graph has n = 10 vertices. This naive
approach addresses the problem combinatorially, which involves determining all possible ways
to partition the vertices into two non-empty subsets A and A¢, counting the total weight of
the cut edges for each partition and selecting the one with the lowest value.

For a graph with 10 vertices, the total number of possible partitions is 27! —1 = 29 —1 = 511,
where the empty set and complete set are omitted, and it is accounted for the fact that
(4, A%) = (A%, A).

Although it is still feasible to compute for n = 10, the complexity of O(2") makes it impractical
for IMS, where n ~ 10% — 10°. Furthermore, although trivial solutions such as the empty or
full set where not allowed, partitions where one set contains a singular data point are still
possible. Thus, this would still result in uninformative partitions, highlighting the need for
further restrictions in attainable partitions.

2-1-1 Graph Laplacian

Before we continue to the problem statement that is being solved with spectral clustering,
a final component has to be introduced. The graph Laplacian (L) is defined as shown in
Equation 2-2, where D € R™*"™ is the diagonal degree matrix and its entries can be calculated
by summing the rows of the weight matrix (Equation 2-3).
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2-1 The Problem 11

L=D-W (2-2) Dy = ; Wij (2-3)

The graph Laplacian is used to represent the connectivity of the data and is useful due to
several properties shown below [38]:

Properties of the Graph Laplacian Matrix (L)

1. For every vector f € R™ we have
n
FILf =Y wi(fi = ;)% (2-4)
1<j
2. L is symmetric and positive semi-definite

3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant
one vector 1.

Explanation of the properties The second and the third property are a consequence of the
construction of the graph Laplacian. However, the first property needs more explanation,
which allows the cut(A) to be presented in the quadratic form of the graph Laplacian.

Given a balanced bi-partition into sets A and A€, an indicator vector f € R™ can be defined
where f; = 1 if vertex v; € A and f; = —1 if vertex v; € A°. The quadratic form of the graph
Laplacian can be rewritten as follows:

ffLf=f"'Df — fTW¥
The different terms can also be written as:

o The degree term fTDf =3, d;f? =3, d; = 23;; wij, since f2=1Vi.

e The weight adjacency term fTW f = >_i; Wij fifj, where the product f;f; = 1 if the
vertices are in the same set and f; f; = —1 if they vertices are in different sets.

Expanding the target expression in the first property results in the following expression:

Zwij(fi_fj)zzézwij(fi = szj f2 f2 2fzf] sz]f2+ sz]f szgfzf]
2]

1<j

Each of these terms can be expressed in terms of the aforementioned quadratic expression
using D and W:

e The first term: QZ wzjf2 anfQ(anzg):%Z?fz?di:%fTDf

e The second term can be derived similarly to the first term and also results in % fIDf.
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e The third term can be rewritten into Z?] wi; fifj = ffwf

When all terms are summed together it becomes apparent that property 1 holds:

> wii(fi = £)* = %fTDf %fTDf —[TWf=f"Df—fTWf=f"Lf

1<j

Example: Cut(A) and the Quadratic Form of the Graph Laplacian A short example will
now follow to illustrate the concepts introduced so far. We will consider the graph displayed
in Figure 2-1, this graph has 4 vertices and is fully connected with cross edge weights of 0.5
and weights of 1 for the edges that connect the nodes we would like to keep in our sets.

—_— - — — — Cross edge with weight of 0.5
~ ~ : :
Pl ——— Set edge with weight of 1.0

Figure 2-1: Example graph used to illustrate the introduced concepts. [Own Work]

It can already be seen that the optimal solution is cutting the cross edges which would lead to
a cut value of 2. We will now verify that the quadratic form of the graph Laplacian provides
the same result. To this end we will set up the W and D matrices:

0 1 05 05 2  —1 —05 —05
1 0 05 05 . . |-t 2 —05 -05
W=los 05 0 1 |P=dee@222evingl=| 5 - o5
05 05 1 0 05 —05 -1 2

The indicator vector f needs to be of the form f = [1,1,—1,—1]7, if A = {1,2} and A° =
{3,4}, which would be the optimal solution. This results a value for fTLf = 8, it is clear that
this is not the expected value of 2 for the cut(A). This difference can be explained by looking
at the expanded expression of the quadratic form of the graph Laplacian, where contributions
accumulate only for cut edges, resulting in (f; — f;)> = (1 — (—1))? = 4. Accounting for
a correction factor leads to the corrected expression shown in Equation 2-5, and thus the
cut(A) expressed as a quadratic form of the graph Laplacian also results in a value of 2 (8/4)
matching the expected cut size.

cut(A) = 3 fILf = 32 wi(fi = f;)° (2-5)

i<j
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Normalized Graph Laplacian Often the graph Laplacian is normalized before employing
spectral clustering, to prevent bias towards nodes with higher degrees. There are two ways
to construct a normalized graph Laplacian and both are closely related to each other [38]:

Lgym =D Y2LD Y2 = [ - D~12wp~1/2

Lyw: =D 'L=I-D"'W

Where, Ly, stands for symmetrical graph Laplacian because the matrix is symmetric and
L,,, stands for random walk graph Laplacian. However, for the purposes of this literature
review Lgyn, is only used. As was the case with the unnormalized graph Laplacian, the
normalized graph Laplacian also has interesting properties [38].

Properties of the Normalized Symmetric Graph Laplacian Matrix (L)

1. For every vector f € R" we have

1 RS
fLoymf =35 ( . —]> : (2-6)
Y 2 =1 Wij Vd; «/dj

2. Lsym is symmetric and positive semi-definite

3. The smallest eigenvalue of L is 0, the corresponding eigenvector is D'/21.

2-1-2 Spectral Clustering

Balanced Partitions Let us revisit the minimum cut problem. So far, we have defined a
notion of a cut that helps us move toward the problem solved by spectral clustering. However,
with the current formulation, there is still the possibility of obtaining a trivial solution, such
as the empty set. In our earlier example, we introduced the indicator vector f. By minimizing
cut(A) subject to the constraint that f € {+1}", where f; =1ifi € Aand f; = —1if i € A,
and additionally enforcing the balance condition 17 f = 0, which ensures the partition is
balanced, such trivial solutions are avoided.

min ifTLf
s.t. f e {£1}"
1Tf=0

Unfortunately, this problem is too constrained. First, to satisfy 17 f = 0 this problem for-
mulation requires that |A| = |A°| meaning that there can not be an uneven amount of data
points. Furthermore, this problem still needs us to check all possible ways f € {£1}" can be
constructed making it impractical.

A method to evaluate if an obtained partition is not too small , whilst removing the possibility
of trivial solutions is called the Cheeger’s cut.
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Cheeger’s Cut and Cheeger’s Constant [ ]

Given a graph and a vertex partition (A4, A°), the cheeger cut (also known as conduc-
tance, and sometimes expansion) of A is given by

cut(A)
A) = 2-
MA) min{vol(A), vol(A¢)}’ (27)
where vol(S) = Y",cq deg(i). Also, the Cheeger’s constant of G is given by
he = min h(4) (2-8)
\ J

The Cheeger cut (h(S)) is a measure that quantifies the ratio of crossing edges between sets
to the volume for any subset of vertices. The minimum value of h(S) is called the Cheeger
constant (h¢) and represents the optimal graph partition. However, this problem suffers from
the same issue as before, the minimum value is calculated over all possible subsets A C V'
and as there are 2!V possible subsets it is computationally intractable for many cases. This
makes it a NP-hard problem, meaning that a solution can not be found in polynomial time.

The reason the Cheeger cut and constant are introduced is because the attainable partitions
of the upcoming problem formulations can be bounded using the Cheeger constant.

Normalized Cut A way to relax the balanced partition problem is by allowing f € {a,b},
where both a and b are real distinct values [39, 38]. The balancing constrained can than be
relaxed by requiring that,

a vol(A) 4+ b vol(A°) =0,

which allows A and A¢ to be of different sizes. This constraint can also be reformulated
into 17D, as the volume is nothing but the sum of degrees. Additionally, some sort of
normalization for ¢ and b can be determined by requiring that

a’ vol(A) + b? vol(A°) =1,

which can be rewritten to fZDf = 1. This constraint ensures that no trivial solution are
obtained. Lastly, the objective function needs to be changed to correspond to the so-called
normalized cut (Ncut(A)). The derivation will be omitted as it does not bring any additional
information, but the Ncut(A) is equal to the following,

1 1

Neut(&) = eut(d) | T3y + veolran)

= fTLf,

which is the quadratic form of the graph Laplacian. The complete problem can be described
as,
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min fTLf

s.t. f € {a,b}" for some a,b
yI'Dy=1
yI'D1 =0.

This problem remains NP-hard, but is crucial for the final relaxation. The Ncut(A) can be
related to the Cheeger cut, by looking at the formulation of both problems and noticing that,

h(A) < Neut(A) < 2h(A).

Eigenvector Problem For the final formulation of the problem, the Ncut(A) problem will
be relaxed in two ways. First, the constraint that f can only take on values a and b will be
changed to f € R™ [38, 39]. This turns the problem from a discrete partitioning problem to
a continuous one. Secondly, the graph Laplacian will be normalized to clearly show that the
resulting problem will become a eigenvector problem and therefore computationally tractable.
Spectral in spectral clustering refers to the use of this eigen decomposition to solve the op-
timization problem. This also means that instead of f, a transformed variable z = DV/2f is
introduced to maintain the objective function in the same form.

min zTﬁsymz

s.t.z e R"
22 = 1 (2-9)
(DV21)Tz =0

The minimum for 2-9 is obtained by the second smallest eigenvalue of the normalized laplacian
X2 (Lsym), as M(Lsym) = 0 and its accompanying eigenvector is (D'/21)7. Furthermore, all
eigenvalue are ordered from smallest to largest (0 = A (Lsym); - - An(Lsym)). The second
eigenvector, in the form of z, would be orthogonal to the first eigenvector and thus satisfy
the constraints.

To obtain the subsets (A, A°), a threshold 7 can be set and A = {i €: z < 7}. As z has at
most a size of n, one could try all possible values of 7 and select the best partition, which
would have a complexity of O(n).

The obtained solution now is continuous and therefore it can be concluded that,

< mi
Ao (Lsym) < min Ncut(A)

This also implies that
)\2 (ﬁsym) < hG
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which provides a lower bound on the Cheeger constant, and allows us to determine bounds
on the partitions obtained using the problem in 2-9.

The derivation of the upper bound will be omitted due to complexity, but the Cheeger constant
is bounded by

)\2(£sym> S hG § 2>\2(£sym)-

Let our obtained partition with 2-9 have a Cheeger cut of H(A), than this can by realizing
that

ha < h(A) < \/2X2(Lsym)-

Using the lowerbound, to rewrite the upperbound in terms of h¢g results in the Cheeger cut
(h(A)) of our obtained partition to be at most a factor of 2/hg from the optimal partition
given by the Cheeger constant.

he < h(A) < 2vhg

Extension to multiple clusters An extension of the normalized cut can be made for more
than 2 clusters and a derivation can be found in the paper titled "A Tutorial on Spectral
Clustering" by Von Luxberg [38]. This problem can than again be relaxed to allow for real
values and be transformed into an eigenvector problem. The problem has now become too
complex to solve by thresholding the second eigenvector, the algorithm used to solve this
problem will be discussed in section 2-2. The main focus of this section is to show that the
k-way expansion of the problem still has bounds on the partition attained by the algorithm.

First, we will have to introduce the k-way Cheeger’s cut as we are now considering k > 2:

k-way Cheeger’s cut and Cheeger’s Constant [ ]

For any subset A C V, the Cheeger’s cut of A is given by the aforementioned h(A)
of Equation 2-7. Subsequently, we will define for every k € N the k-way Cheeger’s

constant:
hg(k) = min  max{h(4;):i=1,2,--- k} (2-10)
A17A27"' 7Ak
where the minimum is taken over the k non-empty disjoint subsets Ay, Aa, -+, A C V.
\ J

Here, we want to find a k-way partition where the worst subset (in terms of Cheeger cut) has
the smallest possible Cheeger cut among all possible partitions.

The Cheeger inequality for any graph G and cluster size k£ € N, is than formulated in Equa-
tion 2-11 [41, 40].

1
5Ak(ﬁsym) < ha(k) < Ck*\/ A\ (Lsym) (2-11)
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2-2 Algorithm 17

Here, C' > 0 is a universal constant. It can be seen that the lower bound has remained in a
similar form to the case of k = 2, whilst the upperbound has become looser. The lower bound
has been derived analytically in similar way to that of case of k = 2, whilst the upperbound
has been proven algorithmically.

Similarly to the case of k = 2, we can rewrite this inequality into the following form to bound
the obtained partition h(S;):

ha(k) < h(S;) < Ck*\/2hq(k) (2-12)

Evidently this bound is less tight than the case of k = 2, as it scales with number of clusters.

2-2  Algorithm

In subsection 2-1-2 an algorithm was explained that is able to solve the bi-partition (k = 2)
problem for the eigenvector problem. Depending on the application, this is often insufficient
and k > 2 is chosen. An algorithm that accounts for that is the one by Ng et al. shown in
algorithm 1 [42].

Spectral clustering with algorithm 1 uses the first k£ eigenvectors of the Laplacian matrix L to
embed data into a lower-dimensional space, where k-means clustering is applied. The reason
for choosing only the first k eigenvectors can be explained in two fold.

The first interpretation uses the quadratic form of the graph Laplacian, which is used in
the objective function of all problem formulation shown in section 2-1. This form allows
us to find the path that minimizes the amount of edges being cut to partition the graph,
as the cut(A) and Ncut(A) can both be expressed in the quadratic form of the laplacian.
Therefore, selecting too many eigenvectors will only dilute the signal for the most informative
directions and could lead to the introduction of noise. Furthermore, to identify k-clusters, a k-
dimensional embedding is required. Therefore, selecting too many clusters can be detrimental
as this could lead to noisy clustering results.

Another way of looking at it is through the the spectral gap. The spectral gap refers to a
large difference between eigenvalue \; and A1, this large cap serves as indication for k well
separated clusters [38, 43, 44].

As an intuitive example, one could think about a making a graph for k well separated clusters.
The similarity graph would have strong connections within the clusters and weak connections
between the clusters. This means that the weight matrix would exhibit a block diagonal
structure, where each block would be a distinct cluster. This structure would be transferred
over to L, such that the first k eigenvectors would highlight nodes in the k-clusters, whilst
the k + 1 eigenvector would mostly be referring to noise.

If we assume that the matrix of L is exactly block diagonal, than each of the first k- eigen-
vectors would contain values in R at the entries that correspond to the size of the block and
0’s for the other ones, see Figure 2-2. This makes sense as each of the blocks on the diagonal
are Laplacian matrices, each having the 1 as the eigenvector associated with the smallest
eigenvalue of 0 [38]. Therefore, such a matrix would contain as many 0 eigenvalues as blocks.
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The k4 1** eigenvector would not contain such a division and its eigenvalue would be greater
than 0.

Eigen Decomposition

ﬂeigenvalues of 0

m eigenvector of the form:

Block Diagonal Graph Laplacian L € R™™

n
Rm

Figure 2-2: Visualization of the eigendecomposition for blockdiagonal graph Laplacians.[Own
Work]

Although the spectral gap is a useful measure to get an indication about the amount of clusters
that one should select, it deteriorates in performance when data has noise and overlap as can
be seen in Figure 2-3. Therefore, one should mostly use this metric to get an initial idea
about the amount of clusters that can be used.

Histogram of the sample Histogram of the sample Histogram of the sample
10 10 6

4

5 5
2
0 0 0
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Eigenvalues Eigenvalues Eigenvalues
e 0.08 * ¥ 0.08 *
0.06 %
0.06 0.06
*
0.04 0.04 0.04
* -
0.02 * % % ¥ 0.02 « % ¥ 0.02 % ¥
Ok—H—h—k by x ¥ Y
12 3 456 7 8 910 12 3 456 7 8 910 12 3 456 7 8 910

Figure 2-3: Spectral gap vanishing with increasing overlap and noise between the clusters. [Image
from [38]]
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2-3 Strengths and Limitations of Spectral Clustering 19

Algorithm 1 Normalized Spectral Clustering (Ng et al., 2002)

Input: Similarity matrix S € R™*" number of clusters k.

1: Construct a similarity graph. Let W be its weighted adjacency matrix.
2: Compute the normalized Laplacian Lgym:

Loym =1 — D7V2WD™1/2,

where D is the degree matrix.
3: Compute the first £ eigenvectors ui, ua, ..., uy of Leym.
4: Let U € R™¥* be the matrix containing the eigenvectors w1, us, .. ., uj as columns.
5: Form the matrix 7' € R™** by normalizing each row of U to have unit length:

Ujj
b= =
D j—1 Uy

6: Fori=1,...,n, let y; € R* be the vector corresponding to the i-th row of T
7: Cluster the points {y;}/; with the k-means algorithm into clusters Cy, Cy, ..., Ck.

Output: Clusters Ay, As, ..., Ag, with:

A ={j|yj € Ci}.

2-3 Strengths and Limitations of Spectral Clustering

So far, the advantages of spectral clustering have not been mentioned and the focus was on
understanding the theoretical foundation behind spectral clustering. Therefore, this section
will focus on obtaining a better understanding of the advantages and limitations spectral
clustering brings.

Strength: Arbitrarily Shaped Clusters The graph-based approach in spectral clustering en-
ables the discovery of clusters with arbitrary shapes. Once the graph Laplacian is constructed,
partitions are obtained by minimizing the total cost of cut edges, with no assumptions on
the cluster shape. This stands in contrast to traditional methods like k-means and Gaussian
mixture model (GMM) clustering.

In k-means, data points are assigned to clusters based on their distance to a centroid, typically
using metrics such as euclidean or cosine distance. This results in partitions that favor
spherical or convex shapes, making it challenging to identify arbitrarily shaped or non-convex
clusters.

GMM clustering allows for slightly more flexibility by modeling the data as a mixture of
gaussian distributions, allowing for elliptical shapes through covariance matrices. However,
even though GMMs can approximate more complex cluster shapes through the mixtures of
gaussians, they are still limited in capturing highly non-convex or irregular clusters, as each
cluster remains convex.
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This property of spectral clustering could lead to better segmentation of the data, as different
clustering results will be obtained by these methods if the data indeed contains regions that
can only be captured through methods that can cluster non-convex regions.

Strength: Cheeger Inequality Bounds Although spectral clustering does not guarantee the
optimal partition due to its relaxation of the NP-hard problem, the Cheeger inequality pro-
vides valuable bounds on the quality of the approximated clusters. This gives a quantitative
measure of the clustering’s effectiveness, with tighter bounds indicating better alignment to
the optimal solution.

Strength: Speculated Optimality of Spectral Clustering on IMS Data Loffler et al. have
shown that spectral clustering is optimal for GMM’s [36]. Furthermore, recent results obtained
by Delacour et al., have shown that IMS data can be approximated by a Spiked Mixture Model
(SMM) [37]. A SMM is a constrained version of a GMM, therefore it would not be a stretch
to assume that similar guarantees could be derived for the case of SMM.

Limitation: Time and Memory Complexity The biggest limitation of spectral clustering
is with regards to the time and memory complexity of the algorithm. Algorithm 1 can be
broken down into the following steps:

1. Constructing the similarity matrix.

2. Computing the normalized Laplacian

3. Computing the eigendecomposition on the normalized laplacian.
4

. Applying k-means clustering on the eigenvectors.

For the time complexity, the computation of the similarity matrix has a time complexity of
O(n%d), where d is added to account for high dimensional data. The quadratic term comes
from evaluating similarities for every pair of points.

The computation of the normalized laplacian has a time complexity of O(n?), due to matrix
operations on the n X n similarity matrix.

The eigen decomposition has the highest time complexity of O(n®). However, as only the
k-smallest eigenvectors and eigenvalues are required, this can be reduced to O(n%k).

In contrast, an algorithm that is used to its efficiency, k-means has a time complexity of
O(nkdi), which in the case of IMS data is mostly dominated by n. Furthermore, algorithms
such as k-means++, use improved initialization strategies which would reduce the number of
iterations.

This makes the dominant term O(n?d), because d >> k in case of IMS data. However,
depending on the application it could be interchanged with O(n?k).

The quadratic time complexity in n is not a favorable feature of spectral clustering, as this
slows down computation significantly compared to methods that are linear in n such as k-
means.
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For the memory complexity, a similar analysis can be performed. The eigenvectors, degree
matrix and k-means input all have a complexity that is linear in n (i.e. O(n)). Whilst the
normalized graph Laplacian and the similarity matrix require matrices of size n x n to be
stored, and therefore have a complexity of O(n?).

This memory constraint is especially a big limitation when analyzing large datasets. Typical
work laptops or computers have a memory of 16 to 32 GB nowadays. However, if a dataset
has n = 10° points this requires approximately ~ 75 GB of memory to be stored in float64
format. This clearly illustrates an issue in scalability for spectral clustering, which in the
context of IMS is an issue.

Limitation: Sensitivity to Choice of Similarity Metric The choice of similarity metric
impacts the obtained clustering results in spectral clustering greatly. The similarity matrix
is a key component in constructing the graph Laplacian and defines the pairwise relationship
between data points, affecting the obtained clusters.

For example, if a gaussian similarity metric is selected the choice of o impacts how much
importance you give to local similarity. A higher ¢ means that you care about a broader
region, which can lead to over-smoothing the similarity values. Whilst a smaller ¢ constraints
it more, but a ¢ that is too low can lead to fragmented clusters.

On the other hand, the cosine similarity does not use the euclidean distance but focuses on
directional alignment through the cosine angle. This approach normalizes the magnitude and
relies on orientation, often yielding different similarity matrices.

202

m-x]-l?)
Gaussian Similarity Metric = exp<
T T4

Cosine Similarity Metric =2 — ——
IEAIPIEAIP

2-4 Memory Constrained Spectral Clustering

From the limitations of spectral clustering, it is apparent that scalability emerges as a critical
problem for large datasets. In this section a heuristic is proposed that allows one to implement
spectral clustering on large IMS datasets.

The Algorithm Given our dataset X € R™ ¢ the data set will be split into r distinct
subsets. These r distinct subsets are selected through random seeding, meaning a random
data point (x,;, the r is used to indicate which subset it belongs to) is selected and the subset
is constructed by looking at the [n/r] — 1 data points that have the highest similarity to z, ;.
The variable r should be chosen as small as admissible by the hardware. This should be
done to minimize the loss of information between data points, the larger r is the smaller the
subsets, which can lead to fragmented clusters.

Since the subsets are not overlapping, spectral clustering can be applied independently to
each subset.The final clustered image can be constructed by collecting the labels obtained for
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each subset, see algorithm 2. This method reduces the memory complexity from O(n?) to
O((n/r)?), which is still quadratic in n but implementable within hardware limitations.

For each subset r, construct a fully connected weight adjacency matrix W,.. From this, derive
the individual graph Laplacian L, = D,.—W,. and normalized Laplacian £, = D, 1/ 2LTDT_ 12
Collecting all W, into a global weight adjacency matrix W yields a block-diagonal structure,
as intersubset similarities are ignored. Consequently, the global Laplacian L and normalized
Laplacian Ly, also remain block-diagonal, since D is diagonal and W follows the same
pattern. This resembles the decomposition shown in Figure 2-2.

Addressing Limitations There are some clear drawbacks from this method, the most appar-
ent one being the divisibility of n/r. In case a remainder exists after division, one can choose
to assign the remainder to a specific subset which will be negligibly larger.

Another limitation is that the subsets are constructed with respect to a random seeding point.
This could lead to data points of a region of interest being disconnected into different subsets.
As an example, given n = 30,000 and r = 2, this means that each subset will contain 15,000
data points. Now imagine that the similarity with respect to the random seeded point is high
initially but degrades as more data points are accumulated into the subset. This could mean
that the tail end of the n/r most similar data points have a low similarity value with respect
to the random seeding point, but could have a high similarity with respect to data points in
the second subset.

Finally, the amount of clusters that are selected will be constant for all subsets. This means
that the total amount of clusters are equal to kr, which is a limitation as certain subsets
might require less clusters than others. Variable cluster allocation is difficult to achieve as
unsupervised learning means that there can not be any prior information.

Algorithm 2 Memory-Constrained Spectral Clustering for Large IMS Datasets

Input: Dataset X € R™*? number of subsets r» € N, similarity metric s(-,-), optionally:
number of clusters k € N
Output: Assignment of clusters A1, Ao, ..., A,

1: fori=1tor do

2:  Select a random seed data point z;seceq from the remaining pool.

3:  Compute similarities $(2; seed, z;) for all remaining z; in X.

4:  Form subset X; by selecting n/r — 1 data points most similar to @; geeq (including the
seed itself).

Remove selected points from the pool.

Compute the similarity matrix S; € R(?/")*(/7) for X; using s(-, ).
Apply spectral clustering (Algorithm 1) to S;, obtain labels y(®.

8: end for

9: Concatenate labels from all subsets to obtain global cluster assignments.
10: return Cluster assignments A; = {j | y; € C;} for all 4.
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Chapter 3

Data and Experiments

3-1 Synthetic Dataset

The use of a synthetic dataset facilitates the validation of spectral clustering through direct
comparison with other clustering methods against a known ground truth. As the aim of this
research assignment is to investigate the performance of spectral clustering data with high
noise and compare it against k-means clustering in the context of IMS, the data is modelled to
closely represent IMS data. The paper by Delacour et al. [37], which is used as motivation for
the use of spectral clustering, has concluded that a SMM represents IMS data better than a
GMM. Therefore, our dataset will be constructed using the SMM shown below as a guideline:

ax) +¢  with probability 1,
axXi + ¢ with probability 7y,

a~N(0,1), e~N(0,0°T),

K
Zwkzl, xl,...,xKeRd.
k=1

Where y1,--- ,yn € R? are N independent observations sampled from the above model. The
parameter « is a random scaling factor of observation y, x;. is the k-th subpopulation or spike,
€ is the random noise of observation y, and 7 is again the mixing coefficient or as mentioned
in the paper the probability of the k-th subpopulation.

K
p(y) =Y mN(0,)
k=1
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This model can not be used directly to create mass spectra, as the variable a ~ N (0,1) can
be negative, and a mass spectrum can not have negative intensities, see (Figure 3-1). For
this reason, the alpha parameter is chosen uniformly between o ~ U(amin, maz) to imitate
varying intensities in the mass spectrum. The standard values for [min, Qmaz] = [0, 1.5]. The
gaussian noise (€), will not be adjusted and is maintained to imitate the background noise,
the value for o will be variable to simulate different levels of noise.

Mass Spectrum of a Measurement Location

6000
5000 A

4000

ity

3000

2000 1
1000 4
A

0 200 400 600 800
Mass-to-Charge Ratio (m/z)

Intens

Figure 3-1: Example of a mass spectrum.

The synthetic dataset consists of four non-overlapping regions, each characterized by a distinct
Xr, with other observations generated according to Equation 3-1. The choice of one ground
signal (xj) per region is due to deterministic nature of the clustering algorithms, where each
pixel can only belong to one cluster. Although the underlying model of the generated data
permits soft assignments, allowing a pixel to belong to more than one cluster via the mixing
coefficients 7, spectral clustering and k-means are a deterministic method that assign each
pixel to exactly one cluster.

In Figure 3-2, the outlines of the different regions, the mask of the regions and the amount
of data points are shown. The spikes corresponding to each region are shown in Figure 3-3
and some example observations generated using these spikes are shown in Figure 3-4.

Region Labels A 5
80 4
g >3
= 60 =
4= = 3
[=] o
g 40 g
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1
0 1
0 20 40 60 80
X coordinate X coordinate 0

Figure 3-2: The different regions (or pixel locations) defined for generating the observations.
[Own Work]
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Figure 3-3: The true spikes (x;) of each region.
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Figure 3-4: A subset of 4 observations, 1 from each region to visualize the observations and the
impact of the intensity scaling parameter («) and the gaussian noise (1) with a ¢ = 0.4.[Own

Work]
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3-1-1 Experiment 1: Performance of Spectral Clustering in the Presence of
Noise

In this experiment, the performance of spectral clustering will be analysed on the aforemen-
tioned data set. The synthetic dataset will be generated for different values of gaussian noise
controlled with the parameter . This parameter will be varied from between 0 and 2, where
0 would indicate clustering without noise and therefore only signals that are scaled using the
parameter «. The amount of clusters will be assumed to be known and set equal to k = 4.

This will be done through comparison against a method that is used frequently for clustering
on IMS data, which is called k-means clustering [18, 21, 6, 45]. As for spectral clustering the
choice of similarity measure is of importance, two different metrics will be used, which are the
euclidean metric and the cosine metric. A short discussion will now follow on the different
metrics used, followed by a theoretical introduction into k-means clustering.

The metrics that will be used to quantify the results are the hamming loss (HL), adjusted
rand index (ARI) and the confusion matrix. These indices all evaluate the obtain clustering
results by comparing it with the ground truth.

Euclidean Metric The euclidean distance calculates the shortest straight line path between
two data points, meaning that it uses the magnitude of data points. For k-means this means
that the objective function in Equation 3-2, minimizes the distance of the data points with
respect to a centroid.

The euclidean distance can not be directly used in spectral clustering, as here a similarity
measure is needed. To transform the euclidean distance into a similarity measure, the inverse
is taken and one is added to the denominator to prevent division by 0. This way a larger
distance will lead to a lower similarity value, whilst a larger value will mean that points are
closer together in terms of magnitude.

However, as mentioned in the section 1-2, distances tend to become uniform with growing
dimensionality making, making data points that discrepancy between far and close redundant.
As the current dataset contains d = 879 m/z bins, this should be of impact to the gaussian
similarity metric and therefore the performance of spectral clustering.

n

Euclidean Distance Metric = Z(az, — yi)2
i=1

1

Euclidean Similarity Metric =
uclidean Similarity 1“1 Fuclidean Distance 4 1

Cosine Metric The cosine distance is defined as a shifted version of the cosine similarity. In
contrast to euclidean metric, the cosine metric only looks at the orientation of the datapoints,
it computes the angle between datapoints. The cosine similarity is defined as follows:

.’Ei-l‘j

Cosine Similarity = cos(f) = Tzl
zi||2]|7j[|2

As one can see, the denominator normalizes the numerator, making the magnitude redundant.
The cosine similarity measure in its current form can take on values in [—1, 1], where the 1
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means that the data points have the same direction high similarity and -1 that they are
opposing each other. Similarity measures can not be negative as to not ruin the semi-positive
definiteness of the graph Laplacian. Therefore, the cosine similarity is shifted with 1 to make
the bounds between [0, 2].

Cosine Similarity Metric = 1 + cos(f) = 1 + A
[EAIPYEAIP
The cosine distance is defined as,
T4 - Tj

Cosine Distance Metric = 1 — Cosine Similarity =1 — ——————
[l l2l2;]2

The bounds of the cosine distance metric are between [0, 2], where 0 indicates that data points
are identical and 2 that they are completely dissimilar. The cosine similarity has been used
in many high dimensional applications, such as text mining and natural language processing
[46, 47], making it an interesting option for application in spectral clustering.

k-means Clustering The general formulation of k-means is displayed below [39, 28].

k-means problem statement

Given X € R™P_ k-means clustering partitions the data points in to clusters S1U- - -USk
with centers pq,--- , pur € RP as a solution to.

k
parl}giltrilon Z Z distance metric(z;, ;). (3-2)
Si,...,8) =11€5
By
) J

The choice of distance metric depends on the application. In our case, the euclidean distance
and the cosine distance are considered. Finding an exact solution to the aforementioned
optimization problem is NP-hard, which necessitates the need for approximate solutions.
A commonly utilized algorithm is Lloyd’s algorithm; 1) Calculate/Determine the k cluster
centroids, 2) Calculate the distance between each pixel and the cluster centroid, 3) Assign
each data point to closest centroid, 4) Repeat until convergence criterion is met [28, 48]. This
algorithm of k-means clustering aims to minimize the intra-cluster distance [48]. The existing
implementations for k-means, in well reputed python packages, such as Scikit Learn, only
work with an euclidean distance objective function. This is not surprising as it has been
well studied and has convergence guarantees. An overview of Lloyds algorithm for k-means
clustering is also presented in algorirthm 2 [48].

When utilizing the cosine distance, our attention will shift to a method called spherical k-
means. Here, the data X will be Lo normalized, such that ||z;|| = 1 for all data points, which
means that the data has been projected on the unit hypersphere in R? [49, 50]. The data has
to be normalized to ensure the algorithm only considers the orientation of the data. Most
of Lloyd’s algorithm remains the same as for euclidean k-means, the main difference is the
objective function and the centroid update step. Specifically, he centroid update step will use
the Fisher mean,
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ij €S; x]

[ = .
' ||ZZ‘]‘ES¢ x]”

The use of the Fisher mean requires Lo normalization in the data preprocessing step [49, 50].
To illustrate this, let consider a simple dataset X = x4, xp, where ||z4|| >> ||z3||, than the
Fisher mean would be biased towards z,, eventhough the goal is to not rely on the magnitude
of the data points. In algorithm 3, an overview is provided of the steps in spherical k-means
[50].

Algorithm 3 k-means Clustering Algorithm (Lloyd, 1982).
Input: Dataset X € R™*¢ number of clusters k.

1: Initialize k centroids pu1, i, ..., up € RY.
2: repeat
3:  For each data point x;, assign it to the closest centroid:

Sj={zi € X | [|ai — pll3 <l —plls V 1<1<k}.

4:  Update each centroid as the mean of its assigned points:

1
SR

.Z’iESj

5: until Convergence criterion is satisfied.
Output: Clusters 51,59, ...,S5;.

Confusion Matrix The confusion matrix illustrates which labels have been clustered cor-
rectly and which have been assigned to the wrong label. For a binary classification task,
the confusion matrix is shown in Figure 3-5. It consists of four regions, each indicating how
predicted labels align with the ground truth. A true positive occurs when the ground truth
and predicted label match for the positive class, a false positive means the prediction assigns
it to the positive class incorrectly, a true negative shows correct classification as negative,
and a false negative indicates that negative classification was incorrectly marked as positive.
For multi class tasks, the idea is similar, but the matrix is k x k in size for k clusters. Here,
entries should be interpreted as points correctly clustered as x or mislabeled as x when they
belonged to .
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Algorithm 4 Spherical k-means Clustering Algorithm (Dhillon and Modha, 2001).
Input: Dataset X € R™*? number of clusters k.

1: Normalize all data points to unit length:

T; = i , V 1<i<n
|||
2: Initialize k centroids p1, po, ..., ur € RP all Ly normalized.
3: repeat
4:  For each data point z;, assign it to the centroid with highest cosine similarity:
Si={v;e X |alp;>alw vV 1<1<k}.
5:  Update each centroid using the Fisher mean:

p= Tt Y 1<k
28, ill

6: until Convergence criterion is satisfied.
Output: Clusters S1,59,...,S5.

Predicted Labels

Positive Negative
©
=
£ G| TruePositive False Negative
: 2
[=
°
5 o
3 2
=1 " .
O g | False Positive True Negative
[}
z

Figure 3-5: Confusion matrix for binary classification tasks.[Own Work]

Hamming Loss (HL) The hamming loss function compares the predicted labels against the
ground, and sums the amount of misclassified labels (Equation 3-3).

. 1 & . (4) (#)
H Loss = — E =1)» [[(y;’ #7; -
amming Loss = —— j:l[ (y] Y; )] (3-3)

Here, n denotes the amount of samples, L refers to the number of unique labels, yj(»i) is the
true label and g)](i) is the predicted label. The hamming loss is bounded between 0 and 1,

where 0 means perfect predictions and 1 means that all predictions are wrong. This is a
straightforward metric that only counts if a data point has been clustered incorrectly.
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Adjusted Rand Index (ARI) The Rand Index (RI) compares the ground truth to the re-
sulting clustering assignment. It does this by looking at how many data points are clustered
correctly by checking for the number of True Positives (TP), True Negatives (TN), False
Positives (FP) and False Negatives (FN). The rand index is than calculated as follows:

TP +TN

RI =
TP+ FP+FN+TN

(3-4)

A RI of value of 0 means that there is no similarity between the ground truth and the
clustering result, whilst a score of 1 indicates exact recovery. The downside of this method is
that it does not account for random agreement of the clustering result with the ground truth.

The adjusted rand index (ARI) [51], tackles this problem and is calculated using Equation 3-5.

RI — E[RI]

ARL= max(RI) — E[RI]

(3-5)

This ARI score has a range between -1 and 1, where 0 indicates random agreement, 1 perfect
agreement and negative values indicate that the resulting clustering is worse than what would
be obtained through random clustering.

3-2 IMS Dataset: Mouse pup

Spectral clustering will also be applied on one real-world IMS dataset of a 1 week old C57BL/6
control mouse pup [52]. The original data file consisted of individual spectra each containing
between 10,000 and 100,000 centroid peaks that span the m/z range of 300-1,200 which con-
sisted of 221,888 bins. The provided dataset was already pre-processed and TIC normalised
by L.G. Migas PhD. This dataset consisted of 164,808 pixels with 879 bins, where the bins
contained m/z values between 550-1200. Additionally, there were acquisition masks provided
by L.E.M. Tideman PhD, separating the mouse pup from the background. However, upon
inspection there were still multiple zero vectors present throughout in the area of the acqui-
sition mask (Figure 3-6). The zero vectors were removed from the dataset by adding them as
background pixels.

Map of Zero Vectors in Mouse Data (Black = Zero Vector Pixels)

Figure 3-6: The black regions indicate the presence of zero vectors, whilst the white region show
registered m/z-values at the measurement locations.
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3-2 IMS Dataset: Mouse pup 31

The cleaned up dataset of the mouse pup contains 163,863 data points within the acquisition
mask, making the application of spectral clustering on the current setup impossible with a
memory complexity of O(n?). Fortunately, an acquisition mask of the brain area was also
provided, and is used for easier experimentation with hyper parameters due the significant
reduction in data points (n = 25,031).

3-2-1 Mouse pup

In Figure 3-7, four different ion images of the mouse pup are presented. The complete mouse
pup image contains 163,863 data points and 879 m/z-bins. The different organs within the
mouse pup are highlighted at varying m/z-values, showing that the clustering should show
distinction between different regions of interest. However, certain organs have high intensities
at the same m/z-value, such as at m/z = 652.328 in the top left image, where the liver and
the tongue of the mouse pup both show high intensity.

mz = 653.328 mz = 752.540

mz = 827.592 mz = 891.679

Figure 3-7: Different ion images from the mouse pup IMS dataset, a brighter color means a
larger intensity at the m/z-value.

3-2-2 Mouse Brain

The dataset of the mouse brain is acquired through the brain mask as mentioned earlier. In
Figure 3-8, several m/z slices of the mouse brain are shown. The reduced dataset consists of
n = 25,031 pixels and 879 m/z bins.
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m/z value = 708.559 m/z value = 767.365

m/z value = 827.592 m/z value = 842.68

Figure 3-8: Mouse brain ion images at different m/z-values, a brighter color means a larger
intensity at the m/z-value..

3-2-3 Experiment 2: Hyperparameter Selection on IMS Data.

The hyper parameters of spectral clustering are the amount of desired clusters (k) and the
metrics of interest. Therefore, in this experiment a comparison is once again done between
spectral clustering and (spherical) k-means, using the same similarity metrics and a varying
number of clusters k. Although some conclusion could be drawn about the performance of
similarity measures from the previous experiment, it is deemed appropriate to confirm this
on the real IMS dataset as well.

The results will be validated both quantitatively and qualitatively. The qualitative assess-
ment primarily focuses on ensuring that clustered regions do not exhibit irregular labeling or
other inconsistencies. Again, a comparison against k-means will be provided to analyze the
differences between the obtained clustering.

The results will be validated using internal validation metrics, without the presence of the
ground truth as the IMS datasets are unlabeled. This is customary for clustering evaluation,
where the labels are compared with the data set itself to conclude if the obtained results are
satisfactory. A total of three internal validation metrics will be used.

Calinski-Harabasz Index (CHI) The Calinski-Harabasz index is defined as follows for a
dataset X [53]:
tr(Bk> nx — k

HI = :
¢ tr(Wy) k-1

(3-6)
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k
Wi=>_ > (z—c)(z—cp)" (3-7)
q=12€Cy

k
By = Z ng(cq — ex)(cg — ex)” (3-8)
q=1

Where W}, represents within cluster dispersion matrix constructed as shown in Equation 3-
7, By the between-cluster dispersion matrix constructed as shown in Equation 3-8, nx the
number of datapoints in dataset X, k the number of clusters, C, the set of points in cluster
q and cx the center of dataset X.

If the CHI is higher, it means that there is a large distance between the clusters as By
would contain higher values, whilst the within cluster connection is compact meaning smaller
values for Wj. The advantage of this method is that it allows for quantification of clustering
results without needing a ground truth, meaning that it is an internal evaluation scheme.
Unfortunately, this method favors spherical convex clusters more than non-convex clusters.
This can be seen by looking at the equation for W and By, that utilize the Euclidean distance,
which is minimal for spherical data. Consequently, methods ,such as k-means, will receive a
high CHI score even if they are unable to capture non-convex clusters.

Davies-Bouldin Index (DB) The Davies-Bouldin index is defined as shown in Equation 3-9

[54].
1 k
DB = - max R;; 3-9
Rij = Sit 5 (3-10)

Where, R;; is a similarity measure, ¢ and j denote different clusters, s; is the average distance
between the centroid of cluster 7 and the data points in cluster ¢ and d;; is the distance
between the cluster centroids of ¢ and j.

Values close to the lowest attainable score of 0 indicate a better partitioning in the DB index.
This is because, the cluster centroids would be well separated and the average distance in
each cluster would small.

Similarly to the CHI, the DB index does not need a ground truth. However, the current
formulation of DB index introduces similar problems as the CHI index, where convex cluster
shapes will obtain a low score even if they do not capture the correct clustering.

Silhouette Score (SIL) The silhouette score is another internal evaluation score. The equa-
tion for the silhouette score of a single sample is provided in Equation 3-11 [55].

b—a
5T max(a,b) (3-11)
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Where a is the mean distance between a sample and all other points in the same class and
b the mean distance between a sample and all points in the next nearest cluster. For a
set of samples, the silhouette score is calculated as the average of the single sample scores.
Silhouette scores can take on values between -1 and 1, where 1 indicates dense clustering and
-1 wrong clustering results.

In addition, to being used as a quantitative metric, the silhouette score is also often utilized
to determine the number of clusters for clustering methods [18, 56].

Unfortunately, the silhouette score also favors convex shaped clusters over non-convex ones.
This is most likely due to a, which should be minimized to obtain a high score and is achieved
with convex clusters.

3-2-4 Experiment 3: Memory Constrained Spectral Clustering

After conclusions are drawn for the hyperparameters from the mouse pup brain dataset, the
memory constrained spectral clustering algorithm will be tested. The number of subsets r is
set to 3 as this is maximum size the setup can accommodate. This means that each subset
will consist of 54,621 points. The results will be constructed using the similarity measure that
performed best in experiment 2 and a comparison will follow with its k-means counterpart.

The number of clusters in each subset has to remain the same, meaning that the total amount
of clusters is equal to r x k. Therefore, k will also be varied to analyze if a constant number
of clusters in each subset is a viable option to obtain interpretable results.

Validation of results The results will be validated the same way as described in subsection 3-
2-3. The main difference being that the qualitative validation could include a comparison to
that of the previous section, as the brain could be contained in a subset if r is chosen large
enough.

Hardware Specifications As experiment 3 is designed, such that spectral clustering can
run on regular workstations, the specification of the current system will be outlined. The
experiments are all ran on a Lenovo Legion 5 Pro 16ACH16H, with a AMD Ryzen 7 5800H
processor, 32 GB of installed RAM and a 1 TB Samsung NVMe SSD.
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Chapter 4

Results

4-1 Experiment 1: Performance of Spectral Clustering in the Pres-
ence of Noise

In this section the results of the experiment 1 described in subsection 3-1-1 will be presented.
This will be done two fold with qualitative and quantitative validation, the latter will be done
using the adjusted rand index (ARI), hamming loss (HL) and confusion matrices as external
validation metrics. The synthetic dataset was generated with the SMM model described in
section 3-1, using a scaling factor v ~ U(0,1.5) and a varying value for the gaussian noise
(€ ~ N(0,02I)) with values for o between [0, 2.0].

4-1-1 Results using Cosine Similarity and Distance

First, we will compare spherical k-means against spectral clustering using cosine metrics. The
visual clustering results for a ¢ = 0 are portrayed in Figure 4-1. It can be seen that perfect
recovery of the ground truth has been achieved by both methods, up to a permutation in
labels. This is also confirmed by the validation metrics in Figure 4-2.

Kmeans (Cosine) 3
80
60
40
20
0 0

Spectral Clustering (Cosine)

w

N
N

Y coordinate
Y coordinate

-
-

0 20 40 60 80
X coordinate

0 20 40 60 80
X coordinate

Figure 4-1: Predicted labels of the regions for ¢ = 0.
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Figure 4-3: Predicted labels of the regions for o = 0.4.

ARI and Hamming Loss vs Noise for KMeans and Spectral Clustering (Cosine Metrics)
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Figure 4-2: ARl and Hamming Loss for spherical k-means and spectral clustering.

However, from Figure 4-2 it is also apparent that with increasing values of o, the hamming
loss of k-means is worse than that of spectral clustering, which is also reflected in the ARI.
For the current synthetic dataset, it seems that spherical k-means degrades in performance
for a ¢ > 0.4. When looking at the predicted labels for a ¢ = 0.4 in Figure 4-3, the results
seems to be similar in appearance. There are clear misclustered labels in each region due to
the combination of signal variability and increased noise.

When this value of noise is increased, it can be noted that the performance of spectral clus-
tering seems to degrade at a slow linear rate, whilst spherical k-means experiences a faster
decrease in performance. Analyzing Figure 4-4 with a ¢ = 2.0, it can be noted that the
predicted labels differ quite a lot now compared to Figure 4-3. Instead of misclustered la-
bels in each region due to the noise and signal variability, it seems that spherical k-means
has allocated the majority of the pixels to one of the clusters. By looking at the image, it
is hard to draw a conclusion if the amount of misclustered labels by spherical k-means are
equivalent to that off spectral clustering. However, the hamming loss in Figure 4-2 shows
that spectral clustering has less misclustered labels. This is further confirmed when looking
at the confusion matrices in Table 4-1.
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Figure 4-4: Predicted labels of the regions for o = 2.0.

Table 4-1: Spherical k-means and spectral clustering confusion matrices for o = [0.4, 1.0, 2.0].

k-means Spectral Clustering

oc=04 Predicted Label c=04 Predicted Label
True Label 1 2 3 4 True Label 1 2 3 4
1 2481 11 7 1 1 2429 47 17 7
2 35 2457 3 5 2 9 2477 6 8
3 32 26 2441 1 3 2 44 2453 1
4 56 18 8 2418 4 7 40 13 2440
k-means Spectral Clustering

oc=10 Predicted Label o=10 Predicted Label
True Label 1 2 3 4 True Label 1 2 3 4
1 2500 0 0 0 1 2326 99 54 21
2 351 2149 0 0 2 20 2436 22 22
3 378 0 2121 1 3 16 88 2390 6
4 367 2 0 2131 4 21 80 30 2369
k-means Spectral clustering

c=20 Predicted Label c=20 Predicted Label
True Label 1 2 3 4 True Label 1 2 3 4

1 1822 2 676 0 1 2214 124 108 54
2 4 1923 573 0 2 47 2047 453 49
3 0 1 2499 0 3 52 0 2500 30
4 1 4 602 1893 4 66 96 T4 2264

4-1-2 Results using Euclidean Similarity and Distance

The visual results when using the squared euclidean metric with a ¢ = 0, are displayed in
Figure 4-5. Both clustering algorithms were only able to reconstruct one region, but it seems
as that the a ~ U(0, 1.5) parameter, which scales the true signal, is an issue when using the
euclidean metrics. This is not surprising, as the euclidean distance is based on magnitude
only. If within the same region observations are scaled, the euclidean distance between two
observations can already be high.

The reason the misclustered labels are assigned to one cluster in the case of k-means can be
attributed to the minimization of the distance with respect to a centroid. The centroids are
iterated in each step to minimize the cost of the objective function, meaning that one centroid
is drawn out by the data points that have high distances to minimize the cost of the overall
objective function.

For spectral clustering, the reason can be attributed to the construction of the similarity
graph. If there are many signals that have a large distance within their regions, a dense
cluster will form of signals with low similarity value. When computing the eigenvectors these
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points are assigned to be close to one of the graph Laplacian structures embedded in the
eigenvectors. k-means than clusters these eigenvectors and clusters the data points with low
similarity from the different regions to be part of the wrong region.

Kmeans (Euclidean) Spectral Clustering (Euclidean
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Figure 4-5: Predicted labels of the regions for o = 0.0.

When looking at an image with a ¢ = 2.0 in Figure 4-6, the results seem to be equally bad
visually. However, when analyzing the validation metrics in Figure 4-7 it can be noted that the
result of spectral clustering started to improve with an increase in o. This result can be linked
back to what was discussed above. An increase in noise means that within a region, pixels
can have a higher similarity as the noise is added independent and identically distributed
(i.i.d.). This improvement is not something positive, as it is noise dependent improvement
and if the noise was lower, as illustrated, the results were worse, which is counterintuitive and

not desirable.

The reason why within k-means no improvement is noted, is due to the dependence on
centroid whilst spectral clustering embeds the graph in eigenvectors. These results can also
be analyzed within the confusion matrices shown in Table 4-2.
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Figure 4-6: Predicted labels of the regions for o = 2.0.
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ARl and Hamming Loss vs Noise for KMeans and Spectral Clustering (Euclidean Metrics)
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Figure 4-7: ARI and Hamming Loss for k-means and spectral clustering using euclidean metrics.

Table 4-2: k-means and spectral clustering confusion matrices for ¢ = [0.0, 1.0, 2.0].

k-means Spectral Clustering

o=0.0 Predicted Label o=0.0 Predicted Label
True Label 1 2 3 4 True Label 1 2 3 4
1 1571 0 929 0 1 2500 0 0 0
2 0 1696 804 0 2 835 1665 0 0
3 0 0 2500 0 3 791 0 1709 0
4 0 0 776 1724 4 784 0 0 1716
k-means Spectral Clustering

o=10 Predicted Label =10 Predicted Label
True Label 1 2 3 4 True Label 1 2 3 4
1 1451 291 1049 0 1 1899 566 35 0
2 0 1594 906 0 2 0 2497 3 0
3 0 0 2500 0 3 0 201 2299 0
4 0 0 889 1611 4 0 500 8 1992
k-means Spectral clustering

o=20 Predicted Label =20 Predicted Label
True Label 1 2 3 4 True Label 1 2 3 4
1 1442 0 1058 0 1 1974 80 426 20
2 0 1565 935 0 2 5 2194 287 14
3 0 0 2500 0 3 3 31 2311 2
4 0 0 902 1598 4 2 53 362 2083

4-2 Experiment 2: Hyperparameter Selection on IMS Data.

In this section the results of the second experiment outlined in subsection 3-2-3 will be pre-
sented. The number of clusters (k)for spectral clustering and (spherical) k-means were varied
between [2,7]. The obtained clustering results will first be analysed qualitatively, to see if
biological regions can be identified. After this a look will be taken at the quantitative re-
sults, to see if they align with the observations. Each part will only contain relevant images
for the discussion, the resulting clustering assignments for both algorithms can be found in

Appendix A.
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4-2-1 Qualitative validation: Brain Data Set

For qualitative validation to be relevant, the different regions in the mouse brain have to be
visualised first. In Figure 4-8a, a simplified view of different anatomical areas in the mouse
brain are visualised to provide a guideline for what could be seen in the obtained clustering
results.

Olfactory bulb Cortex Hippocampus Cerebellum
© (CTX) (HPC) (cBL)

Thalamus

Olfactory Hypo-
cortex thalamus

(b) Acquisition mask of the brain region,

Subcortical region/Midbrain Brainstem

(ScMb) (895) where the red pixels are definitive areas of

the brain, whilst the pink pixels are border

(a) Anatomical areas in the mouse brain. pixels that are difficult to label as it is
[Image from [57]] uncertain which organ they belong to.

Figure 4-8: Anatomical areas of the mouse brain and the brain acquisition mask.

Cosine Metric Let us first discuss the results of spectral clustering using the cosine similarity
and spherical k-means. In Figure 4-9, the results for k = 2 are presented and it can be noted
that both results are quite similar. The cerebellum is captured by both clustering techniques,
whilst k-means captured the brain stem in more detail. The region that should contain the
hippocampus is still clustered as an uniform area, but when increasing to k = 3 this region is
clustered as a separate area (see Figure 4-10).

For k = 4, the results are relatively similar to k¥ = 3 where new clusters are mostly formed in
the region surrounding the cortex and the area in grey displayed in Figure 4-8a (Olfactory bulb
and Subcortical region/Midbrain), which also shows more definition in the area containing
the hippocampus. When looking at the results for £ = 5 in Figure 4-11, the brain stem seems
to be captured better by spectral clustering but the remaining clusters seem rather speckled.
In contrast, spherical k-means captures the brain stem worse but has more heterogeneous
areas overall.

Finally, a look is taken at & = 7 in Figure 4-12b with particular interest in the results obtained
by spectral clustering. The cerebellum area seems to be quite well defined, especially when
comparing to a stained image of a mouse of the same sort (C576BL/6) shown in Figure 4-12a.
Here the foldings and the area containing white matter seemed to be captured in more detail.
This does come at the cost of fragmented clusters surrounding the cerebellum, but in none of
the images was spherical k-means able to achieve this result.
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Predicted Labels (Kmeans) k =2 Predicted Labels (Laplacian) k =2
2 2.0
1 1.0
0 0.0
(a) Predicted labels using spherical k- (b) Predicted labels using spectral clus-
means, with k = 2. tering with cosine similarity, with k& = 2.
Figure 4-9: Predicted labels.
Predicted Labels (Kmeans) k =3 Predicted Labels (Laplacian) k =3
3 3.0
2 2.0
1 1.0
0 0.0
(a) Predicted labels using spherical k- (b) Predicted labels using spectral clus-
means, with & = 3. tering with cosine similarity, with & = 3.
Figure 4-10: Predicted labels.
Predicted Labels (Kmeans) k =5 Predicted Labels (Laplacian) k =5
5 5.0
4 4.0
3 3.0
2 2.0
1 1.0
0 0.0

(a) Predicted labels using spherical k-
means, with £ = 5.

(b) Predicted labels using spectral clus-
tering with cosine similarity, with £ = 5.

Figure 4-11: Predicted labels.
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Predicted Labels (Laplacian) k =7
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(a) Stained parasaggital view of the (b) Predicted labels using spectral clus-
mouse brain. [Image from [58]] tering with cosine similarity, with k = 7.

Figure 4-12: Stained image of cerebellum and predicted labels.

Euclidean Metric In Figure 4-13, the resulting cluster assignments are presented for spectral
clustering using the euclidean similarity and k-means. These results are not similar to one
another as was the case with the cosine similarity. The results obtained with k-means are quite
detailed, with the brain stem and hippocampus region being clearly present. Additionally,
vague outlines of the cerebellum are also visible. On the other hand, the results obtained by
spectral clustering show mostly one homogeneous region, with an area of the hippocampus
region outlined.

However, the results obtained by k-means quickly degraded as is visible in Figure 4-14, where
horizontal lines are present through the area of the brain. The results for spectral clustering
are more representative of the brain structure and have resemblance to the ones obtained by
k-means for k = 2.

Increasing the number of clusters accentuated the horizontal lines, but the brain stem and
the region containing the hippocampus remained a well clustered area for nearly all number
of clusters. The outline of the cerebellum remained visible but the clusters surrounding it are
all fragmented and heterogenous, see Figure 4-15.

Predicted Labels (Kmeans) k =2 Predicted Labels (Laplacian) k =2

2.0
1 1.0
0 0.0
(a) Predicted labels using k-means, with (b) Predicted labels using spectral clus-
k=2 tering with euclidean similarity.

Figure 4-13: Predicted labels.
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Predicted Labels (Kmeans) k =3 Predicted Labels (Laplacian) k =3

3.0
2 2.0
1 1.0
0 0.0
(a) Predicted labels using k-means, with (b) Predicted labels using spectral clus-
k=3. tering with euclidean similarity.
Figure 4-14: Predicted labels.
Predicted Labels (Kmeans) k =6 Predicted Labels (Laplacian) k =6
6 6.0
5 5.0
4 4.0
3 3.0
2 2.0
1 1.0
0 0.0
(a) Predicted labels using k-means, with (b) Predicted labels using spectral clus-
k =6. tering with euclidean similarity.

Figure 4-15: Predicted labels.

4-2-2 Quantitative validation: Brain Data Set

From the qualitative validation, the initial indication is that using the cosine metric provides
better visual results, resembling anatomical relevant regions. In this section, the internal
validation metrics quantifying the quality of the obtained clustering results will be discussed.

We will first look at the Davies-Bouldin (DB) scores shown in Figure 4-16, a score closer to 0
indicates a better quality of obtained clusters. It can be seen that the metric favors k-means
using the euclidean distance for all number of clusters, whilst spectral clustering using the
cosine similarity scores the worst. However, as was observed previously for k > 3, the results
obtained by k-means show fragmented clusters and heterogeneous regions. This preference
for k-means has to do with how the metric is derived, as is explained in subsection 3-2-3.
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Davies-Bouldin Score against Number of Clusters
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Figure 4-16: Davies-Bouldin score for different number of clusters k.

The Calinski Harabasz (CHI) score for different number of clusters is displayed in Figure 4-
17, where a higher score indicates a better quality of clusters. Similarly to the DB score,
the CHI index favors k-means using the euclidean distance and scores spectral clustering
using the cosine distance as the worst. This time, there is also a clear difference between the
alleged quality of the clusters obtained by spectral clustering using the euclidean similarity
and spherical k-means. This is because the CHI score actually contains the euclidean distance
in its metric to asses the resulting cluster assignment, which means that it would favor results
based on euclidean distance (subsection 3-2-3).

A similar trend can be observed for the silhouette score shown in Figure 4-18, where a score
closer to 1 is better, but this time more nuanced. Spectral clustering using the cosine similarity
performs the worst again, but not by much. For most cluster numbers the results seem to
have a similar value, but none of them show a value close to 1, with the highest value of 0.4
being achieved at k = 2.

Calinski-Harabasz Score against Number of Clusters
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Figure 4-17: Calinski Harabasz score for different number of clusters k.
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Silhouette Score against Number of Clusters
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Figure 4-18: Silhouette score for different number of clusters k.

4-2-3 Discussion

The qualitative and quantitative validation are in stark contrast one another. By looking at
the results visually, it is pretty apparent that for k > 3, the cosine metric provides regions
that are more homogenous and anatomically relevant, whilst the euclidean metric provides
mostly fragmented clusters, and contains some anatomically relevant areas.

However, when looking at the quantitative results only one would expect much better per-
formance from the euclidean metric, and specifically k-means. The internal validation metric
do have to be taken with less importance, as they are derived based on assumptions that
generally favor clusters obtained by k-means. Therefore, it is deemed that the cosine metric
should be used instead of the euclidean metric, as for any cluster number higher than 2,
fragmented clusters start to appear rapidly.

Additionally, a short note will be provided on the runtime of each algorithm. The complexity
of both algorithms is highlighted in section 2-3, but the runtime was significantly longer for
spectral clustering. Where k-means finished within a minute, spectral clustering took about
15-20 minutes. Given that the results are not that different, it might be preferred to use
spherical k-means, if the data is of a similar form the current data.

4-3 Experiment 3: Memory Constrained Spectral Clustering

In this section, the results of the experiment presented in subsection 3-2-4 will be provided.
Again a qualitative validation will be presented first, followed by a quantitative validation of
the results. It should be noted that the results are only provided using the cosine metrics, as it
was concluded to be the better metric for the current dataset in the discussion of experiment
2. The result for all number of clusters is provided in Appendix B.

The comparison will contain images of the different subsets (r = 3) and the clustering assign-
ments for each of these subsets using spectral clustering with the cosine similarity. Addition-
ally, the complete ims data set of the mouse is also run using spherical k-means to see if the
results are similar.
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Furthermore, for the complete mouse pup the liver mask, shown in Figure 4-19b, that was
included in the dataset can be useful to detect if it has been included in a subset in its
entirety. Additionally, a stained image of a mid sagittal cut of a mouse has been provided in
Figure 4-19a, to better understand certain uniform clusters within the clustered images.

(b) Acquisition mask of the liver region,
where the red pixels are definitive areas of
the liver, whilst the pink pixels are border
(a) Stained image of a mid sagittal cut pixels that are difficult to label as it is
of a mouse pup. [Image from [59]] uncertain which organ they belong to.

20

Mouse, sagittal (eary msacita)
R ot 013 mm

Figure 4-19: Anatomical areas of the mouse pup and the mouse pup acquisition mask.

4-3-1 Qualitative Validation

Before the images are analyzed, some information will be provided about the setting up the
experiment. Each run used different random seeding point, meaning that the construction of
each subset is unique. This is done this way because spectral clustering is an unsupervised
learning technique and selecting the seeding location means that one has knowledge about the
specimen that will be observed. Furthermore, the total number of clusters k was determined
by multiplying the number of clusters per subset (rk,), where k, is constant for all subsets.

The results for k = 6, are shown in Figure 4-20, it can immediately be noticed that the liver
is fragmented into different subsets (see Figure 4-20a). This results in clustering results using
spectral clustering that are rather uninformative in this region. Fortunately, the brain region
has been captured in its entirety, and the obtained clustering assignment is similar to the one
displayed in Figure 4-10b, which shows that if the random seeding provides good subsets it
could provide relevant clustering results.

Looking at the results obtained with spherical k-means, that used the complete dataset in
Figure 4-21, it can be noted that the liver region has been captured here in close resemblance
to the outline of liver mask. However, there is not the same level of detail in the brain
region, as there is no subset division in the brain region when running spherical k-means.
Nevertheless, this is at the benefit of the overall clustering results that shows homogeneous
regions and clear region separation.
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Predicted Labels (Laplacian) k = 6
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(a) Subset division with random seeding (b) Predicted labels using spectral clus-
r=3. tering with cosine similarity, with k& = 6.

Figure 4-20: Subsets and predicted labels.

Predicted Labels (Kmeans) kK = 6

O NWRAU O

Figure 4-21: Predicted labels using spherical k-means, k=6.

We will now analyse, the results for clustering assignments that have more favorable subsets
for the identification of different regions visually. In Figure 4-22, the results are presented for
k = 12, where the subset division also specifically includes the brain region and liver region in
their entirety into two separate subsets. The attained clusters, using the memory constrained
version of spectral clustering, show that the liver region has been captured in its entirety, and
it omits many surrounding points that were included in the subset division. Furthermore,
the brain area is captured again and this time the result shows a more homogeneous region
with only the region containing the hippocampus being clustered differently. Although by
no means of expert opinion, when comparing the obtained clusters for k = 12, the lungs and
the heart (indicated in Figure 4-19a with longen and hart) seem to have been captured in
separate clusters as well.

Comparing it once again to the result obtained with spherical k-means in Figure 4-23, the liver
region is captured similarly but it seems to be its separate cluster in its entirety, whilst in the
case of spectral clustering it shares a cluster with other regions. The brain is also captured
with more detail with the brain stem being visible and vague outlines of the cerebellum
appearing. However, something that is captured clearer in the case of spectral clustering
seems to be the spine of the mouse when different disks are quite visible. Additionally, when
looking at the cluster that contains the tongue of the mouse, both labels have clustered similar
regions to that cluster.
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Predicted Labels (Laplacian) k = 12
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(a) Subset division with random seeding (b) Predicted labels using spectral clus-
r=3. tering with cosine similarity, with k = 12.

Figure 4-22: Subsets and predicted labels.

Predicted Labels (Kmeans) k = 12

§

Figure 4-23: Predicted labels using spherical k-means, k=12.

For higher cluster numbers, the region containing the liver turned into two separate clusters
but not as displayed in the liver mask (see Appendix B). The brain area was clustered in
better detail with higher cluster numbers, however it was difficult to differentiate other areas.

4-4 Quantitative Validation

The quantitative validation will feature both spherical k-means and the memory constrained
version of spectral clustering using the cosine similarity. This time the goal of the quantitative
validation is not to differentiate which method performs better, but if the metrics for the
different clustering assignments are somewhat in agreement.

Looking at DB score in Figure 4-24, spectral clustering seems to show more promising scores
for higher cluster numbers (k > 15), whilst spherical k-means is preferred for the lower
ones (k < 12). Nevertheless, the values for the DB score are rather high for all number of
clusters, indicating that the clustering results are not that good. On the other hand, the CHI
score indicates better quality of cluster for spherical k-means overall for all cluster number
or equivalent evaluation to spectral clustering, see Figure 4-25. Finally, the silhouette score
fluctuates slightly around 0 which would indicate that clusters are overlapping.

These validation metrics have to again be taken with a grain of salt, as they are not designed
to evaluate the performance of spectral clustering or spherical k-means in mind. The idea
behind many of these metrics is that the intracluster connection should be higher than the
inter cluster connection, but due to assumptions on the cluster geometry or the formulation
of the metrics, they inherently favor cluster results that align with these assumption more.
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Davies-Bouldin Score against Number of Clusters
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Figure 4-24: Davies-Bouldin score for different number of clusters k.
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Figure 4-25: Calinski Harabasz score for different number of clusters k.

Silhouette Score against Number of Clusters

10— e Optimal Sil = 1.0 _
0.8 1
<
=]
2 0.6
g —— k-means Cosine Spectral Cosine
v
é 0.4 1
w
0.2 4
0.0 X¥— -— —_— "
é Eli ].IO lé l|4 1‘6 ].IB
Number of clusters (k)
Figure 4-26: Silhouette score for different number of clusters k.
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4-4-1 Discussion

The qualitative validation of the memory constrained version of spectral clustering showed
that the subset division is of utmost importance to obtain relevant clustering results. The
assumption that regions of interest would be captured in their entirety due to the subsets being
much larger (n/r = 54,621)than the largest region of interest (brain with n = 25,031), turned
out to be wishful thinking. However, in cases where the subset division did end up capturing
these areas, the resulting clustering assignment looked quite good visually. Therefore, if the
subset division step is updated to a more appropriate method this could end up being a
viable option to apply spectral clustering on larger IMS datasets on computers that do not
necessarily have the hardware specifications for it.

Nevertheless, the runtime has a much more substantial difference to that of spherical k-means
this time. A singular run of the algorithm for all 3 subsets takes about 2 hours in its entirety,
whilst spherical k-means finishes in about 5 to 10 minutes. The clustering results also looked
highly similar to those obtained by spherical k-means, making it difficult to justify the use of
spectral clustering on the current dataset.

It can very well be, that this is due the dataset being cleaned beforehand and noise not
being as much of an issue, in which case the synthetic dataset confirms that the results
between spherical k-means and spectral clustering should be similar. Therefore, no definitive
conclusion can be made about the usefulness of spectral clustering on real world IMS datasets,
as the dataset seems to not have been perturbed by noise enough to display a clear difference.
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Chapter 5

Conclusion and Future Work

This work investigates the feasibility of spectral clustering in imaging mass spectrometry
(IMS). The aim of the report was the provide an answer to the following research objective.

Research Objective

To develop and validate a spectral clustering framework for Imaging Mass

Spectrometry (IMS) data that addresses computational scalability and resistance
against noise, whilst maintaining biological segmentation.

To address each part step by step, the objective was answered with the help of three exper-
iments. Firstly, a synthetic dataset was constructed, using a spiked mixture model (SMM),
which is modified with a signal variability parameter o« ~ U(0,1.5) and a gaussian noise
€ ~ N(0,0%I) to represent IMS data. Spectral clustering was then applied using two differ-
ent similarity measures, euclidean and cosine, to understand how increased noise levels and
variations in ground signals within a region of interest impact the obtained clustering assign-
ment. The obtained results were compared against k-means and spherical k-means, which
showed that in every external validation metric spectral clustering using the cosine similarity
performed the best for increased noise levels. However, the results of spherical k-means com-
pared well, if not identical, against spectral clustering using the cosine similarity for lower
noise levels.

This was followed by an application of the aforementioned methods on a subset of a real life
IMS dataset of mouse pup which contained the brain. Here, the experimental setup was similar
as the one before, where two different metric and a comparison to another clustering method
was done, but the number of clusters was also a variable. Again, the clustering algorithms
using the cosine metric showed more promising results qualitatively, where identified regions
showed homogeneous clusters and an increased number of cluster improved the detail visible in
the cluster assignment (k < 4). However, increasing the cluster number too high deteriorated
the attained clusters quality. The euclidean metric, showed initially promising results at
a value of k = 2, but with increasing cluster numbers k& > 3, the clusters quickly showed
fragmented clusters with horizontal splits in areas of interest.
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Finally, the address the scalability of spectral clustering a memory constrained version was
developed, where the complete dataset is split up into r subsets. The value r should be chosen,
such that n/r is as high as possible, where n indicates the total amount of pixels. Each time
the random subsets were constructed to seeding a random point and selecting the [n/r] — 1
closest points. This lead to different runs containing different subsets, which impacted the
final clustering assignment greatly, as often regions of interest were split up into different
subsets. In cases where areas were captured into subsets with entirely, the resulting cluster
quality closely resembled that of spherical k-means and biological regions could clearly be
identified.

An important note is that, although spectral clustering shows promising results on the syn-
thetic dataset and real IMS datasets, the computational complexity and the memory com-
plexity are significantly higher, to the point where it can not be recommended for use on the
current real world IMS dataset. Spherical k-means works with a substantially lower amount
of resources and a faster computation time, whilst providing visually similar results to spec-
tral clustering. A proper quantitative analysis was difficult as internal validation is highly
dependent on the assumptions of the designed metric, and it this scenario these did not favor
the results obtained with the cosine similarity.

However, this it can not be concluded that spectral clustering has no benefit at all compared
to spherical k-means, as the results of the synthetic dataset show cased that spectral clustering
has superior performance in case the data is perturbed by a larger amount of noise.

From this, several future research directions can be taken, such as:

e Analysis of spectral clustering on a more noisy real world IMS dataset.
e Develop a better seeding method than randomly selection.

e Develop an internal validation metric that can quantify the results obtained with spec-
tral clustering.
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Appendix A

Predicted Cluster Labels Brain
Dataset

A-1 Spectral Clustering (Cosine) and Spherical k-means

Predicted Labels (Kmeans) k =2 Predicted Labels (Laplacian) k =2

2.0

1 1.0

0 0.0
(a) Predicted labels using spherical k- (b) Predicted labels using spectral clus-
means, with k = 2. tering with cosine similarity, with k£ = 2.

Figure A-1: Predicted labels.
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Predicted Labels (Kmeans) k =3 Predicted Labels (Laplacian) k =3

3 3.0
2 2.0
1 1.0
0 0.0
(a) Predicted labels using spherical k- (b) Predicted labels using spectral clus-
means with k& = 3. tering with cosine similarity, with £ = 3.
Figure A-2: Predicted labels.
Predicted Labels (Kmeans) k =4 Predicted Labels (Laplacian) k =4
4 4.0
3 3.0
2 2.0
1 1.0
0 0.0
(a) Predicted labels using spherical k- (b) Predicted labels using spectral clus-
means, with & = 2. tering with cosine similarity, with k& = 4.
Figure A-3: Predicted labels.
Predicted Labels (Kmeans) k =5 Predicted Labels (Laplacian) k =5
5 5.0
4 4.0
3 3.0
2 2.0
1 1.0
0 0.0
(a) Predicted labels spherical k-means, (b) Predicted labels using spectral clus-
with k£ = 5. tering with cosine similarity, with K =5

Figure A-4: Predicted labels.
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Predicted Labels (Kmeans) k =6 Predicted Labels (Laplacian) k =6

6 6.0
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4 4.0
3 3.0
2 2.0
1 1.0
0 0.0

(a) Predicted labels spherical k-means, (b) Predicted labels using spectral clus-

with k = 6. tering with cosine similarity, with kK = 6

Figure A-5: Predicted labels.
Predicted Labels (Kmeans) k =7 Predicted Labels (Laplacian) k =7

7 7.0
6 6.0
5 5.0
4 4.0
3 3.0
2 2.0
1 1.0
0 0.0

(a) Predicted labels spherical k-means, (b) Predicted labels using spectral clus-

with k = 7. tering with cosine similarity, with kK = 7

Figure A-6: Predicted labels.
A-2 Spectral Clustering (Euclidean) and k-means
Predicted Labels (Kmeans) k =2 Predicted Labels (Laplacian) k =2

2 2.0
1 1.0
0 0.0

(a) Predicted labels using k-means, with (b) Predicted labels using spectral clus-

k=2 tering with euclidean similarity.

Figure A-7: Predicted labels.
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Predicted Labels (Laplacian) k =3
Predicted Labels (Kmeans) kK =3

3.0
3
2.0
2
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1
0.0
0
(b) Predicted labels using spectral clus-
(a) Predicted labels using k-means, with tering with euclidean similarity, with k& =
k= 3. 3.
Figure A-8: Predicted labels.
Predicted Labels (Laplacian) k =4
Predicted Labels (Kmeans) k =4
4.0
4 3.0
3 2.0
2 1.0
1 0.0
0
(b) Predicted labels using spectral clus-
(a) Predicted labels using k-means, with tering with euclidean similarity, with k =
k= 4. 4.
Figure A-9: Predicted labels.
Predicted Labels (Laplacian) k =5
Predicted Labels (Kmeans) k =5
5.0
5 4.0
4 3.0
3 2.0
2 1.0
1 0.0
0
(b) Predicted labels using spectral clus-
(a) Predicted labels using k-means, with tering with euclidean similarity, with k =
k = 5. 5.

Figure A-10: Predicted labels.
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Predicted Labels (Laplacian) k =6
Predicted Labels (Kmeans) kK =6
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(b) Predicted labels using spectral clus-
(a) Predicted labels using k-means, with tering with euclidean similarity, with k& =
k = 6. 6.

Figure A-11: Predicted labels.
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(b) Predicted labels using spectral clus-
(@) Predicted labels using k-means, with tering with euclidean similarity, with k =
k=T. 7.

Figure A-12: Predicted labels.
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Predicted Cluster Labels Brain Dataset
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Appendix B

Predicted Cluster Labels Mouse Pup

Dataset

B-1 Memory Efficient Spectral Clustering

100

200 4

300 .
0 100 200 300 400 500 600 700

(a) Subset division with random seeding
r=3.

Figure B-1:
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(a) Subset division with random seeding
r=3.
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(b) Predicted labels using spectral clus-
tering with cosine similarity, with & = 6.
Subsets and predicted labels.
Predicted Labels (Laplacian) k = 9
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(b) Predicted labels using spectral clus-
tering with cosine similarity, with & = 9.

Figure B-2: Predicted labels.
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Predicted Cluster Labels Mouse Pup Dataset
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(a) Subset division with random seeding
r=3.
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(a) Subset division with random seeding
r=3.
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(b) Predicted labels using spectral clus-
tering with cosine similarity, with k& = 12.

B-3: Predicted labels.

o = N W

Predicted Labels (Laplacian) kK = 15

(b) Predicted labels using spectral clus-
tering with cosine similarity, with £ = 15.

Figure B-4: Predicted labels.
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(a) Subset division with random seeding
r=3.
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Predicted Labels (Laplacian) k = 18

(b) Predicted labels using spectral clus-
tering with cosine similarity, with k& = 18.

Figure B-5: Predicted labels.
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B-2 Spherical k-means

Predicted Labels (Kmeans) k = 6
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Figure B-6: Predicted labels using spherical k-means, k=6.

Predicted Labels (Kmeans) kK = 9
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Figure B-7: Predicted labels using spherical k-means, k=9.
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Predicted Labels (Kmeans) kK = 12
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Figure B-8: Predicted labels using spherical k-means, k=12.
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Figure B-9: Predicted labels using spherical k-means, k=15.

Predicted Labels (Kmeans) kK = 18
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Figure B-10: Predicted labels using spherical k-means, k=18.
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