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Abstract

Max-plus algebra is an algebra that is entirely based on the mathematical operations ⊕ =
max(·) and ⊗ = +, hence the name max-plus algebra. It can be used to describe Discrete
Event Systems (DES) that require scheduling, such as a printer or train network. Max-plus
algebra is studied because of its interesting properties, which make some non-linear systems
in conventional algebra linear in max-plus algebra. These systems are called Max-Plus Linear
(MPL) systems. This exploratory study introduces Max-Plus Linear Parameter Varying (MP-
LPV) systems, systems that are not entirely linear in max-plus algebra but not that non-linear
either, like LPV systems in conventional algebra. An urban railway line will be taken as an
example of an MP-LPV system. Urban railway lines often operate relatively freely, with a
passenger-dependent variable dwell time which can be modelled in max-plus algebra as a
linear variable dependency on the arrival and departure times. It will be shown that such
an MP-LPV system of an urban railway line can be rewritten to a set of linear inequalities,
which can be used in an optimization framework to optimize for both minimal total passenger
travel time and minimal absolute operation time. Some study cases will be shown in with it
can be observed that these systems compute very rapidly, which makes a possible practical
implementation interesting. Finally, some algebraic analysis on the MP-LPV system of an
urban railway line will be done, such as on the definition of stability. But future work is still
necessary on further analysis on the general class of MP-LPV systems.
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Chapter 1

Introduction

Many processes around us can be described by mathematical models. These models describe
a (simplified) system, for example in terms of a relation between what goes in and out of
the system. Most of these systems are described by (conventional) algebra, which makes use
of elementary operations like + and × and has been studied extensively through the past
thousands of years. Examples of systems that are described with conventional algebra are
the rise of temperature in a room or the amount of current in an electrical wire.

But many systems can also be described in terms of different algebra. Take for instance
the timetable of a train service or the scheduling of the order of tasks that a printer has to
complete. These two systems have in common that they require an event-wise scheduling,
and that one process can only start after the other one has finished. They (might) also
repeat themselves after a specific cycle-time. These event-based systems are called Discrete
Event Systems (DES) and can be described with event-wise algebra. The algebra that will be
used in this paper is max-plus algebra, an algebra that is entirely based on two elementary
operations, namely the maximum of two elements and the summation of two elements. These
operations can be seen as the equivalence of summation and multiplication in regular algebra,
respectively.

Many research has been done already on max-plus algebra (Heidergott et al., 2014). Most DES
systems are non-linear when modelled in conventional algebra, but a specific class of systems
that can be modelled by only using the max- and plus-operation are linear in max-plus algebra.
Those systems are called Max-Plus Linear (MPL) systems and can be used to describe above-
mentioned systems like printer queuing and train scheduling. A more recent addition to MPL
systems are the so-called Switching Max-Plus Linear (SMPL) systems (van den Boom & De
Schutter, 2006), where the relations between states and matrices are still linear in max-plus
algebra, but where the systems matrices can switch between different modes. As an addition
to the field of max-plus systems, this paper will introduce a new class of systems that use
max-plus algebra: so-called Max-Plus Linear Parameter Varying (MP-LPV) systems.

While (S)MPL’s were originally meant to be linear in max-plus algebra, MP-LPV systems
are not: the system matrices can vary dependent on the states of the system, like regular
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2 Introduction

LPV systems in conventional algebra (Tóth et al., 2009). This means that there is an implicit
relation between the left and right side of the equations which is hard to model in max-plus
algebra. This paper will try to define this problem while also modelling such a system by
using an urban railway line with variable dwell time as a case study.

Urban railway networks are a special case of railway networks that are seen as complicated
systems to optimize (Wang, Ning, et al., 2015; Li & Lo, 2014; Sun et al., 2014), often resulting
in a non-linear programming problem. While regular railway networks can be modelled (and
synchronized) by using a timetable, urban railway networks often work with irregular intervals
without timetabling. Research in the past years has mainly been conducted on energy saving,
minimal passenger travel time, stop-skipping (i.e skipping stops that are less popular) by
allowing these dynamics intervals, but up to the knowledge of the author none of these
researches have been done within max-plus algebra. Different from regular railway networks
(Kersbergen et al., 2016), urban railway lines contain variable dwell times that will not result
into (S)MPL systems with constant matrices but in systems that will contain non-linear and
implicit relations within max-plus algebra. The question is whether they can be modelled,
controlled and analysed as MP-LPV systems and more importantly, if it has any use to do
so.

The research goals are therefore defined as following:

• How can a Max-Plus Linear Parameter Varying (MP-LPV) system be defined and what
are its properties?

• Is it possible to model an urban railway line with variable dwell times in max-plus
algebra? And more importantly, can it modelled as an MP-LPV system?

• Can we control these systems with respect to an objective function in order to find a
global optimum?

To answer these questions, this thesis will build up as following: in chapter 2, max-plus
algebra and the concept of MP-LPV will be introduced to the reader. In chapter 3, urban
railway modelling (in max-plus algebra) will be explained after which it will be presented as
an MP-LPV. Chapter 4 will introduce control with respect to minimizing the total schedule
of a predefined amount of trains and with respect to minimizing total passenger travel time,
while chapter 5 will consist of some case studies showing to show some results. In chapter 6
MP-LPV systems will be analysed according to max-plus algebra theory. Finally, in chapter
7, there will be conclusions and suggestions for future work on this topic.

Ben Zwerink Arbonés M.Sc. thesis



Chapter 2

Introduction to max-plus algebra

This chapter will mainly follow the theory and notation of Heidergott et al. (2014).

2-1 Max-plus algebra

Max-plus algebra is an algebra that focuses mainly on the use of two elementary operations,
namely the maximum of two elements and the summation of two elements. Hence, the
name max-plus algebra. Mathematically, for the relation between max-plus algebra and
conventional algebra, we denote:

a⊕ b = max(a, b) (2-1)

a⊗ b = a+ b (2-2)

It is important to notice the order in max-plus algebra, whereas ⊗ (read: o-times) always has
priority over ⊕ (read: o-plus). This is in line with regular algebra, where × has priority over
+.

Conventional algebra also has two essential ’neutral’ numbers, namely 0 and 1. A summation
and multiplication with these numbers respectively will not have an influence on the outcome
of a computation. In max-plus algebra, we will have to introduce a new ’0’ and ’1’ in order to
introduce a neutral computation. These new numbers will be ǫ = −∞ and e = 0 respectively,
because:

a⊕ ǫ = max(a, ǫ) = max(a,−∞) = a (2-3)

a⊗ e = a+ e = a+ 0 = a (2-4)

M.Sc. thesis Ben Zwerink Arbonés



4 Introduction to max-plus algebra

More complex systems will require more complex notation. Therefore, we can introduce
max-plus computations for matrices. If we define A ∈ R

n×n
max and B ∈ R

n×n
max , then:

[A⊕B]ij = aij ⊕ bij (2-5)

[A⊗B]ij =

l⊕

k=1

aik ⊗ bkj (2-6)

We can also denote the max-plus power function as:

A⊗k = A⊗A⊗ ...⊗A
︸ ︷︷ ︸

k times

(2-7)

An brief example of these matrix computations is given in the following Example 2-1:

Example 1.1 Given A =

(
e ǫ

3 2

)

and B =

(
−1 11
1 ǫ

)

, we find that:

A⊕B =

(
max(e,−1) max(ǫ, 11)
max(3, 1) max(2, ǫ)

)

=

(
e 11
3 2

)

A⊗B =

(
max(e− 1, ǫ+ 1) max(e+ 11, ǫ+ ǫ)
max(3− 1, 2 + 1) max(3 + 11, 2 + ǫ)

)

=

(
−1 11
3 14

)

A⊗2 = A⊗A =

(
e ǫ

5 4

)

Equal to the scalar cases in (2-3) and (2-4), there also exists a max-plus version of the
conventional identity-matrix I, denoted as the matrix E, and of the zero matrix 0, denoted
as E :

E =








e ǫ · · · ǫ

ǫ e · · · ǫ
...

...
. . .

...
ǫ ǫ · · · e








(2-8)

E =








ǫ ǫ · · · ǫ

ǫ ǫ · · · ǫ
...

...
. . .

...
ǫ ǫ · · · ǫ








(2-9)

such that:

A⊕ E = A (2-10)

A⊗ E = A (2-11)

It will also be defined that A⊗e ≡ E for A,E ∈ R
n×n
max .
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2-2 Max-plus linear systems 5

2-2 Max-plus linear systems

Max-plus algebra has many advantages over conventional algebra. The most beneficial one
can be found in Max-Plus Linear (MPL) systems, defined as in (2-12) (De Schutter & van den
Boom, 2008; Baccelli et al., 1992). These systems would be non-linear in conventional algebra,
due to the max-operator, but are linear in max-plus algebra.

x(k) = A⊗x(k − 1)⊕B⊗u(k)

y(k) = C⊗x(k)
(2-12)

In line with conventional algebra, max-plus algebra also has eigenvalues and eigenvectors.
Let A ∈ R

n×n
max . If there exist λ ∈ Rmax and v ∈ R

n
max (with v 6= En×1) such that

A⊗ v = λ⊗ v, then λ is a max-plus eigenvalue of A and v is a corresponding max-plus
eigenvector. Every square matrix with entries in Rmax has at least one eigenvalue, but
in contrast to conventional algebra the number of eigenvalues is in general lower than
the dimension n. Furthermore, if a matrix is irreducible, then it has only one eigenvalue.
The definition of irreducibility can be found in graph theory (Heidergott et al., 2014): a
matrix A is irreducible when its graph G(A) = (N ,D), with node set N and arc set D, is
strongly connected. A graph G is strongly connected when for any two nodes i, j ∈ N , node j
is reachable from node i. A node j is reachable from node i if there exists a path between them.

The eigenvalue λ of the matrix A has some interesting properties. For instance, a finite
eigenvalue of a matrix A is the average weight of some circuit in G(A). The average weight is
defined as the weight of the circuit divided by the amount of arcs that connected the nodes
of that circuit. A good example of a circuit would be a (circular) urban rail line, with every
station being a node and the arcs being the connection between the stations. The values
assigned to these arcs would be the travel times and the total weight of the circuit would be
the summation of all these travel times, i.e. the time it takes to complete the circuit.

We can now also define a normalized matrix of A, namely Aλ (2-13). The original matrix A

had eigenvalue (and thus average circuit weight) λ, so by subtracting λ it is clear that Aλ has
average circuit weight (and thus eigenvalue) e.

[Aλ]ij = aij − λ (2-13)

Now first, we consider the max-plus linear system in (2-14)

x = A⊗ x⊕ b (2-14)

with A ∈ R
n×n
max and dimension n. According to (Baccelli et al., 1992) (Theorem 2.1 in

(Kersbergen et al., 2016)), the unique solution to this max-plus linear system is (2-15)

x = A∗ ⊗ b (2-15)

M.Sc. thesis Ben Zwerink Arbonés



6 Introduction to max-plus algebra

where we can write A∗ as (2-16):

A∗ = E⊕A⊕A2 ⊕ ...⊕A∞ =
∞⊕

p=0

Ap (2-16)

In the case that there are no circuits with positive weights in the graph of A, G(A), Theorem
2.2 from (Kersbergen et al., 2016) shows that we can limit the sum to the dimension n of the
matrix A, such that:

A∗ = E⊕A⊕A2 ⊕ ...⊕An−1 (2-17)

Now, the concept of implicit and explicit MPL systems can be introduced. Imagine the
autonomous system in (2-18), without any control signal u(k):

x(k) = A0⊗x(k)⊕A1 ⊗x(k) (2-18)

Since we have x(k) on both the left and right side of the equation, this is called an implicit
MPL system. The system in (2-12) was explicit, since it only contained past entries of the
states x(k) on the right side of the equation. But, by using (2-15) and (2-17), it can be found
that the implicit relation in (2-18) can be rewritten to an explicit relation under certain
conditions, as will be shown in the following example:

Example 1.2 Consider the implicit MPL system of (2-18), with dimension n = 4. Given

A0 =







ǫ ǫ ǫ ǫ

ǫ ǫ 3 ǫ

4 ǫ ǫ ǫ

ǫ 5 ǫ ǫ







and A1 =







1 ǫ ǫ ǫ

2 1 ǫ ǫ

3 2 1 ǫ

4 3 2 1






. Since the graph of A0 does not contain any

circuits, and thus also no circuits with positive weights, we can use (2-17) to find that:

A⊗n−1 = A⊗3 =







ǫ ǫ ǫ ǫ

ǫ ǫ ǫ ǫ

ǫ ǫ ǫ ǫ

12 ǫ ǫ ǫ







A⊗2 =







ǫ ǫ ǫ ǫ

7 ǫ ǫ ǫ

ǫ ǫ ǫ ǫ

ǫ ǫ 8 ǫ







A∗
0 =

n−1⊕

p=0

Ap = E⊕A⊕A2⊕A3 =







e ǫ ǫ ǫ

7 0 3 ǫ

4 ǫ 0 ǫ

12 5 8 0







According to (2-15), if we take b = A1 ⊗x(k − 1), we finally obtain the explicit relation:

Ben Zwerink Arbonés M.Sc. thesis



2-3 Max-plus linear parameter varying systems 7

x(k) = A∗
0⊗ b = A∗

0 ⊗A1 ⊗x(k − 1) = A⊗x(k − 1)

A = A∗
0⊗A1 =







e ǫ ǫ ǫ

7 0 3 ǫ

4 ǫ 0 ǫ

12 5 8 0







⊗







1 ǫ ǫ ǫ

2 1 ǫ ǫ

3 2 1 ǫ

4 3 2 1







=







1 ǫ ǫ ǫ

8 5 4 ǫ

5 2 1 ǫ

13 10 9 1







Combining (2-13) and (2-16) will result into the following theory: let the communication
graph G(A) of matrix A ∈ R

n×n
max have finite maximal average circuit weight λ. Then, the

scalar λ is an eigenvalue of A, and the column [A∗
λ]·η is an eigenvector of A associated with λ,

for any node η in the critical graph Gc(A) (2-19). Here, a critical graph is defined as a graph
which contains all nodes and arcs that are contained within the critical circuits of G(A). A
critical circuit is a circuit with maximal average weight.

A⊗[A∗
λ]·η = λ⊗[A∗

λ]·η (2-19)

However, all this theory is based on graph theory. To find the eigenvalue λ of matrix A

without graph theory, one can also use other methods (Heidergott et al., 2014; De Schutter
& van den Boom, 2008). One of these lies within the cyclic behaviour of irreducible matrices:
if A ∈ R

n×n
max is irreducible, then for a certain k and cycle c, (2-20) holds and the eigenvalue λ

can be found.

A⊗k+c

= λ⊗c

⊗A⊗k

(2-20)

Example 1.3 Given the irreducible matrix A =





0 e 2
2 0 4
1 2 3



 with cyclicity c = 1, we find

that:

A⊗2
=





3 4 5
5 6 7
4 5 6



 , A⊗3
=





6 7 8
8 9 10
7 8 9



 , A⊗4
=





9 10 11
11 12 13
10 11 12



 , ...

and thus that: A⊗k+1
= 3⊗A⊗k

for k = 2, 3, ...

2-3 Max-plus linear parameter varying systems

Up to the authors knowledge, this section is committed to an entirely new class of max-plus
systems: so-called Max-Plus Linear Parameter Varying (MP-LPV) systems. Within max-plus
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8 Introduction to max-plus algebra

algebra, regular max-plus linear systems or the more extended Switching Max-Plus Linear
(SMPL) systems (van den Boom & De Schutter, 2006) are often used to describe discrete-
event scheduling processes. These models are per definition linear in max-plus algebra, since
the elemental operation a⊕ b = max(a, b) is linear in max-plus algebra. For this exploratory
study, it will be investigated whether MP-LPV has the potential to be used and controlled
like MPL and SMPL as well.

In conventional algebra, LPV systems are a special case of non-linear systems (Tóth et al.,
2009), defined in discrete time as:

x[k + 1] = A[p]x[k] +B[p]u[k]

y[k] = C[p]x[k] +D[p]u[k]
(2-21)

where A[p], B[p], C[p] and D[p] are system matrices dependent on the parameter p = p[k].
This parameter is - as the name Linear Parameter Varying suggests - a linear combination
of one or multiple states of the system (Mohammadpour & Scherer, 2012). For instance,
the difference between two scaled time-steps of the state x: p[k] = ax[k] − bx[k − 1] with a

and b constants. Since the system-matrices are state-dependent, the system is in fact non-
linear. But due to the special structure, there are still several ways to analyse and control
such systems Tóth et al. (2009); Mohammadpour and Scherer (2012). The last citation
appropriately describes LPV systems as ’a ”middle ground” between linear and nonlinear
dynamics’.

LPV systems have been introduced in order to systematically compute gain-scheduled con-
trol, and also to be able to systematically interpret the results and properties of non-linear
systems (Gáspár et al., 2017). Before LPV systems were modelled as such, non-linear plants
were often linearized around multiple operation points, after which interpolation or switching
between the multiple controller gains was necessary. But these linearized points only guar-
antee stability and robustness around the operation points and not around the interpolated
values between them. LPV control changed this and introduced a more valid robustness cri-
terion for such non-linear systems. As mentioned before, ’non-linear’ is a strong definition:
these systems can often be modelled with a dependency on a linear operation.

LPV systems deal with time-varying matrices within a dynamical system. Within max-plus
algebra, systems with variable system matrices are often modelled as SMPL’s, which means
that the matrices vary per event but that they are still constant. Under certain conditions,
even with (bounded) uncertainty present in (S)MPL systems, it can be proven that these
systems are stable (van den Boom & De Schutter, 2011).

But dealing with a situation where these matrices vary with dependency on the states is a
new field of research. It has been observed that this class of systems appears when we try to
model a train network with dependency on the time it spends at a platform, i.e. the dwell
time. The amount of dwell time depends on the amount of passengers, which on itself depends
on the arrival and departure times of the trains and of course on the time of the day. Since
this means that arrival and departure times of trains are partly dependent on the arrival and
departure times of these same trains, we can observe a self-loop that can best be described

Ben Zwerink Arbonés M.Sc. thesis



2-3 Max-plus linear parameter varying systems 9

as a Max-Plus Linear Parameter Varying system of the form:

x(k) = A(p)⊗x(k − 1)⊕B(p)⊗u(k) (2-22)

In (2-22), the matrices A(p) and B(p) are dependent on the varying parameter p. Similarly
to the conventional algebra system description in (2-21), this parameter can be modelled as a
linear relation between the states of the system. However, an important notice will be made
here: in this thesis, this dependency will be modelled as a linear relation in conventional
algebra and not in max-plus algebra. An example of such a conventional algebra-expression
for the parameter p will be shown in section 3-5. Furthermore, this paper will focus on the
situation where only A(q) has dependency on the parameter p, and where B(q) = B is a
constant matrix. Furtermore, an implicit relation will be modelled instead of the explicit
relation in (2-22). This means that x(k) on the left side of the equation is equal to itself
multiplied with a system matrix, in this case the LPV matrix A0(p). This general form of
explicit linear parameter varying max-plus systems can be written as:

x(k) = A0(p)⊗ x(k)⊕A1 ⊗x(k − 1)⊕B⊗u(k) (2-23)

where by using the Kleene star as defined in (2-15) and (2-17), it can be shown that (2-23) is
equal to (2-22) when A(p) = A∗

0(p)⊗A1. Observe the difference between the two expressions:
the right side of the equation is both dependent on the past (i.e., k − 1) and present (i.e.,
k), where the latter makes this expression implicit. We have seen in (2-12) that an explicit
max-plus linear system is only dependent on the past states.

Since the matrix A(q) is state-dependent, it is not naturally to transform (2-23) back to (2-22)
by using the Kleene star. Observe that A(q) itself introduces yet another implicit relation
between the left and right side of the equation in (2-23), since it is also dependent on scaled
differences between the past and current cycles. In the regional railway network of (Kersbergen
et al., 2016), only (switching) constant matrices appear and therefore the expression can be
rewritten to an explicit model like in (2-12), where the left side only contains past entries
x(k− i) with i > 0. The implicit relation implies that current states are directly involved into
the current outcome, and that a Kleene star product does not solve the implicit relation. It
will be shown from section 3-6 onward that this problem can be solved iteratively.

From now on, the class of max-plus systems in (2-23) will be called Max-Plus Linear Pa-
rameter Varying (MP-LPV) in the rest of this paper, since the matrix A0(p) will depend
on scaled (and past) versions of the the state x(k). The case of MP-LPV will investigated
by modelling an urban railway line in max-plus algebra. Different to most regional railway
networks (Kersbergen et al., 2016), many urban railway networks in large cities operate rel-
atively freely, because they arrive and leave whenever they are able and allowed to. If the
arrival and departure times of a train k are based only on others trains and on the variable
dwell time at stations, and thus not on some fixed scheduled arrival time ra(k) and departure
time rd(k), then such a system can be seen as a MP-LPV system.

Since the MP-LPV system in this thesis is both implicit and p is expressed in conventional
algebra, this thesis can be seen as an exploratory study into MP-LPV. This also means that
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the problem is all but fully described and that more research is needed into the stability of
these systems. Stability will be briefly touched upon in chapter 6.

In the next chapter, it will be shown how the situation of MP-LPV occurs. It will summarize
the use of max-plus notation to model an urban train line. The use of max-plus algebra is
limited to what has been explained in this chapter so much more in-depth knowledge is not
required for now.
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Chapter 3

Modelling of an urban railway network
in max-plus algebra

In this chapter, the modelling of a railway network in max-plus algebra will be discussed.
Railway networks can be modelled in many different ways, but the use of max-plus algebra is
a very convenient one since many non-linearities become linear in max-plus algebra. Take for
instance the modelling of the Dutch railway networks in Kersbergen et al. (2016). One of the
things that this master thesis tries to add to the previous work, is the addition of a variable
dwell time, which is the case for many urban railways systems. Adding such a variation
introduces a non-linearity in max-plus algebra, because the dwell times are now dependent
on the states (arrival and departure times) of the system.

This problem will become more clear by the end of this chapter. First, the difference with the
previous work done by Kersbergen et al. (2016) will be explained. Then, the constraints of
an (urban) railway network will be mentioned. Finally, the constraints can be used to model
the urban railway network in max-plus algebra.

3-1 Difference with previous studies

As mentioned before, the largest difference between this master thesis and the study by
Kersbergen et al. (2016) will be the addition of a variable dwell time, dependent on the
states of the system itself. Variable dwell times (or ’Passenger-demand scheduling’ in some
papers) are already considered and solved by (Wang, Ning, et al., 2015), (Sun et al., 2014)
and (Niu et al., 2015) for instance, but all of these studies do not work within the max-plus
framework. Often, the problem becomes a non-linear or non-convex optimization problem.
For on-line computations, it is of large importance that the optimization problem can be
solved quick and efficiently, which is often possible with discrete-event algebra like max-plus
algebra. Furthermore, it will be interesting to be able to extrude some information out of the
max-plus system, for instance on the (max-plus) eigenvalue of the system, and see if this has
any useful physical interpretation.
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12 Modelling of an urban railway network in max-plus algebra

Another difference with Kersbergen et al. (2016) is the switch from a cycle-counter to a
product-counter k (van den Boom, T., unpublished work, 2019). The reason for this is the
switch from a regional train network to an urban train line. Due to the nature of most urban
train lines, trains can not overtake each other and therefore their order remains the same
for the whole duration of the day. Furthermore, controlling only one line instead of multiple
train lines makes it unnecessary to consider multiple trains at once. A product-counter simply
makes the model more insightful, because every state x(k) will be a direct representation of
the arrival and departure times of train k.

3-2 Constraints

The modelling of a train network will be done following the procedure in Kersbergen et al.
(2016), in which a train network has been documented in max-plus notation. In his work, six
different constraint are mentioned that have to be taken into account:

- Running time constraints
- Dwell time constraints
- Headway constraints
- Timetable constraints
- Coupling constraints
- Connection constraints

A satisfying observation is that not all of these constraints have to be modelled for an urban
train line. Many constraints like the transfer from one train to another will be neglected in
this study, so they don’t have to be taken into account. In the following subsections, the
constraints will be described in further detail. Notation-wise, the following things should be
noted: in this thesis, the event-counter k is considered to be a product-counter instead of a
cycle-counter. This means that k is the train index, and the departure times dj(k) and aj(k)
represent the arrival and departure times at station j.

3-2-1 Running time constraints

A running time constraint simply deals with the time between arrival and departure of a train
between the stations j − 1 and j as:

aj(k) ≥ dj−1(k) + τr,min,j−1(k) (3-1)

In other words; a train k can not arrive at the station j before this minimal traversing time
from station j − 1 to j.

3-2-2 Dwell time constraints

The dwell time constraint (also called continuity constraint) is an inequality that tries to
connect the departure and arrival time at station j to each other in the following simple
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manner:

dj(k) ≥ aj(k) + τd,j(k) (3-2)

where τd,j(k) is the variable dwell time. One goal of this thesis is to make this dwell time
dependent on the amount of passengers on the platform, which on itself is dependent on the
amount of trains in service and the time of the day. This will introduce a non-linear term
in the max-plus algebra. Later in chapter, it will be explained how this dwell time can be
modelled as a variable dependent on the departure and arrival times of previous and current
trains k.

3-2-3 Headway constraints

To keep a sufficient (time-)distance between two trains, headway constraints are necessary. To
make sure that two trains do not approach each other to closely, these margins are necessary
to maintain safety. Mathematically, we can write that:

dj(k) ≥ dj+1(k − 1) + τh,d,j(k) (3-3)

aj(k) ≥ aj+1(k − 1) + τh,a,j(k) (3-4)

In order to have some kind of structure in the metro service - and often because of the
absence of timetable constraints -, these constraints can be seen as some kind of minimal
distance between two trains, to maintain some margins. More on this can be found in section
3-3.

3-2-4 Timetable constraints

A timetable constraint is simply a guarantee that trains cannot depart before the actual
departure time according to a predefined timetable. Sometimes, trains are also not allowed
to enter a station before the timetable says they can. Mathematically, we can denote that:

dj(k) ≥ rd,j(k) (3-5)

aj(k) ≥ ra,j(k) (3-6)

However, in the case of an urban train line without a timetable - like the urban train line in
this study-, these constraints can be neglected. This can be done by setting both ra,j(k) and
rd,j(k) to ǫ, such that these inequalities are always true.

Another option is to maintain these constraints as a way to control the network. By replacing
ra,j(k) and rd,j(k) with ua,j(k) and ud,j(k), we find that the railway network is only controlled
when the control inputs are sufficiently large. Note that because of the ≥-sign, this way of
incorporating control does only allow to delay the schedule.
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14 Modelling of an urban railway network in max-plus algebra

3-2-5 Coupling and connection constraints

In train networks, it can occur that two trains have to be coupled to each other. This could
be modelled as following:

dj(k) ≥ dj−1(k) (3-7)

dj−1(k) ≥ dj(k) (3-8)

aj(k) ≥ aj−1(k) (3-9)

aj−1(k) ≥ aj(k) (3-10)

However, for urban train lines like a metro, coupling does normally not take place. There-
fore, we can and will neglect these constraints. The same will be done with the connection
constraints. These normally guaranty that passengers are able to transfer from one train to
another. In practice, this means that one train cannot leave if the other train did not arrive
yet. Besides that, it is necessary to have some extra connection time τc,j(k) at station j for
the passengers to change trains.

Even though this is an important part for both trains and metro’s, and any public transport
in general, this paper will start with the modelling and control of a single isolated urban rail
line. This means that there is no need for any transfer constraint yet, as there is no other line
to transfer to. Furthermore, to transform this constraint from a cycle- to a product-counter,
it would be necessary to have a much finer definition of the product-counter k. For instance,
are all train lines defined as different counters k1, k2, etc., or differently? It has been chosen
to not answer this question for now and just neglect this constraint.

3-3 Modelling the max-plus equations

If the arrival and departure times of train k at station j are defined as aj(k) and dj(k)
respectively, then we can write out the max-plus equations. But before this is done, there
are some assumptions that can be made to ease the modelling for urban rail transportation
compared to regional rail transportation. The assumptions are as following:

1. There is only one train track (in every direction); trains can not overtake each other.
2. There can only be one train waiting on a station; a subsequent train should wait in the

tunnel if it is closely following its predecessor.
3. There is a maximum velocity in every segment of the urban train line; trains can not

run faster between two stations than within a certain minimum running time.
4. It is assumed that all passengers arrive between the departure of a train and the arrival

of its successor; no passengers arrive during the dwell time.
5. In the uncontrolled case, trains leave as soon as all conditions are satisfied. In the

controlled case, trains may be delayed to improve the overall performance of the urban
railway line.
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3-3 Modelling the max-plus equations 15

Assumption 1 makes most urban train lines different from its regional counterparts, because
having trains run over multiple tracks makes the model different: by having one track per
direction only, trains always have the same order so there is no need to consider different
orders of trains. Also, in regional rail modelling, there should always be enough headway
time τh between two trains - even when they are running over different tracks - to make sure
that they do not interfere once they come back together again. But in the urban rail case, it is
enough to guarantee some minimum safety headway time between two trains. This brings us
to assumption number 2: due to physical limitations, it is often not possible to stall two trains
in one stop. Therefore, we can define a minimum headway time τh,min between a departing
train k and a soon-to-arrive train k + 1 on station j which guarantees that these trains will
not physically touch each other. Assumption 3 is also based on physical limitations: even
if a train can run faster to make up for delays, it is not allowed to do so because of the
facilities it uses; tunnels and train tracks are often older than the trains and should be used
responsibly to guarantee safety. However, this assumption eases our model because a train
can not arrive before a certain minimum running time τr,min. Assumption 4 can be done by
assuming that most passengers arrive before the train arrives, and thus that relatively no
passengers arrive during the dwell time of train k. This assumption is very important for
the MP-LPV model of the urban railway line, because it reduces the implicit complexity of
the matrix A0(q). More on this in section 3-6. Finally, assumption 5 allows us to write the
urban railway line as a max-plus system with an equality constraint. It also indicates that
the max-plus system can be rewritten to linear inequality constraints as long as one of the
inequalities is an equality, the so called extended linear complementarity problem (ELCP)
(De Schutter & van den Boom, 2001).

Last but not least, a train can only depart from station j after a certain dwell time τd to
allow passengers to alight and board the train. This leaves us with the following equations:

aj(k) ≥ dj−1(k) + τr,min,j−1 (3-11)

aj(k) ≥ dj(k − 1) + τh,min (3-12)

dj(k) ≥ aj(k) + τd,j(k) (3-13)

where τr,min,j−1(k) is the minimum running time between station j − 1 and station j and
τd,j(k) is the dwell time of train k at station j. Because the dwell time can change over time,
dependent on the amount of passengers, it is variable over time and per station. We can
observe that these constraints can be written as a maximum expression as following:

aj(k) = max(dj−1(k) + τr,min,j−1, dj(k − 1) + τh,min) (3-14)

dj(k) = aj(k) + τd,j(k) (3-15)

and then be translated to a max-plus notation, in the following way:

aj(k) = dj−1(k)⊗ τr,min,j−1 ⊕ dj(k − 1)⊗ τh,min (3-16)

dj(k) = aj(k)⊗ τd,j(k) (3-17)
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16 Modelling of an urban railway network in max-plus algebra

If we denote a state x(k) being all the arrival and departure times of train k together, then
we can easily rewrite the set of equations to a max-plus system.

x(k) =

















a1(k)
a2(k)

...
aJ(k)

d1(k)
d2(k)

...
dJ(k)

















=

















d0(k)⊗ τr,min,0 ⊕ d1(k − 1)⊗ τh,min

d1(k)⊗ τr,min,1 ⊕ d2(k − 1)⊗ τh,min
...

dJ−1(k)⊗ τr,min,J−1 ⊕ dJ (k − 1)⊗ τh,min

a1(k)⊗ τd,1(k)
a2(k)⊗ τd,2(k)

...
aJ(k)⊗ τd,J(k)

















(3-18)

Now it can be observed that the arrival and departure times of train k depend on both the
previous train k − 1 and on itself. If we consider all the unnecessary variables in this system
as ǫ, as for instance d0(k), then we can rewrite the equation into the following max-plus
state-space equation:

x(k) =



















E

ǫ ǫ · · · ǫ ǫ

τr,min,1 ǫ · · · ǫ ǫ

ǫ τr,min,2 · · · ǫ ǫ
...

...
. . .

...
...

ǫ ǫ · · · τr,min .J−1 ǫ

τd,1(k) ǫ · · · ǫ

ǫ τd,2(k) · · · ǫ
...

...
. . .

...
ǫ ǫ · · · τd,J(k)

E



















︸ ︷︷ ︸

A0(p)

⊗x(k)

⊕










E

τh,min ǫ · · · ǫ

ǫ τh,min · · · ǫ
...

...
. . .

...
ǫ ǫ · · · τh,min

E E










︸ ︷︷ ︸

A1

⊗x(k − 1)

(3-19)

As can be seen from (3-19), not only the states x(k) but also the dwell times τd,j(k) are
dependent on the train-counter k. The exact relation is yet unknown and will be called p,
which means that we have a dependency on p in the A0-matrix. Therefore, we can conclude
that we have an autonomous Max-Plus Linear Parameter Varying (MP-LPV) system from
the form:

x(k) = A0(p)⊗ x(k)⊕A1 ⊗ x(k − 1) (3-20)
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3-4 Passenger-dependent demand 17

where the lack of linearity comes from the A0(p) matrix. This can be seen from (3-27) and
the derivation that led to it.

The system is autonomous because it contains no control input u(k). Else, it would look like
the following equation:

x(k) = A0(p)⊗ x(k)⊕A1 ⊗ x(k − 1)⊕ u(k) (3-21)

In this form, it is possible to regulate the metro network with the help of a control signal
u(k). This would for example be an amount of time to delay the arrival or departure time of
train k, if necessary. This will be discussed in more detail in section 4-4.

But before we get into controlling this system, the modelling of passengers will be discussed
in 3-4.

3-4 Passenger-dependent demand

Wang et al. have performed research on both Origin-Destination-independent and Origin-
Destination-dependent rail scheduling (Wang, Ning, et al., 2015) and passenger-demands-
oriented train scheduling (Wang, Tang, et al., 2015), both for urban rail. In both papers, the
optimization process is done with respect to minimizing both total travel time and energy
consumption. The first paper looks at a time-driven model while the second one looks at an
event-driven model, according to the author mainly for computational efficiency and to better
model time-varying origin-destination passenger demand. This section is entirely based on
the formulation in those papers, except for some notation.

Regarding OD-independent passenger modeling, (Wang, Ning, et al., 2015) does the following
assumptions: first, passengers arrive at a constant rate λj at station j. Second, the number of
passengers that exit a train at station j is a fixed proportion ρj of the number of passengers
that are on board of the train when it arrives at station j. Third, the number of passenger
on platforms and in the trains are approximated by real numbers. The first assumption is
done because for short headway times, people arrive randomly over the time interval between
two trains and therefore can be seen as a uniform distribution. Assumption two can be done
by analysing historical data and by estimating a constant average value from this data. The
third assumption is done because integer numbers simplify their optimization process, and the
error by rounding up or down is relatively small with large number of passengers. However, it
will not simplify the optimization process in this paper since there will be no Mixed-Integer
Linear Programming (MILP) problem. Therefore, all but the third assumption will be used
for the modelling of passengers in this paper.

The passenger demand characteristics are formulated as following: the number of passengers
remaining on the platform after train k − 1 departed from station j is wremain

j (k − 1), such
that we can write:

wwait
j (k) = wremain

j (k − 1) + λj(dj(k)− dj(k − 1)) (3-22)
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18 Modelling of an urban railway network in max-plus algebra

with dj(k) and dj(k− 1) the departures of trains k and k− 1 respectively. However, since we
decided in assumption 5 of section 3-3 that we can ignore the amount of arriving passengers
during the dwell time, we can rewrite (3-22) into:

wwait
j (k) = wremain

j (k − 1) + λj(aj(k) − dj(k − 1)) (3-23)

If the number of passengers on trains k and k − 1 are nj(k) and nj(k − 1) respectively, then
the remaining capacity of the train after departure from station j is:

nremain
j (k) = Cmax(k)− nj−1(k) · (1− ρj) (3-24)

with Cmax(k) being the effective maximal capacity of train k. The number of passengers at
station j that can board is now:

nboard
j (k) = min(nremain

j (k), wwait
j (k)) (3-25)

and, in case of a full train, the remaining passengers on the platform can be found to be
wremain
j (k) = wwait

j (k) − nboard
j (k). Furthermore, the number of passengers on train k after

departing from station j is:

nj(k) = nj−1(k) · (1− ρj) + nboard
j (k) (3-26)

which is simply the amount of people on the train after departing station j − 1, times the
proportion of people that stayed the train and the amount of new people that has boarded.

The dwell time is being modelled as a variable, which means that boarding and alighting
passengers are being taken into account. This can be done either with a linear (3-27) or a
non-linear (3-28) model. Here, τd,min,j(k) is the minimum dwell time, α1,d, α2,d, α3,d and α4,d

are coefficients that can be estimated from historical data, and ndoor is the amount of doors
of the train.

τd,min,j(k) = α1,d + α2,d · nj−1(k) · ρj + α3,d · n
board
j (k) (3-27)

τd,min,j(k) = α1,d + α2,d · n
alight
j (k) + α3,d · n

board
j (k) + α4,d ·

(

wwait
j (k)

ndoor

)3

· nboard
j (k) (3-28)

If τ̃min is the minimum dwell time set by the operator and τd,max,j(k) is the maximum ’allowed’
dwell time for train k at station j, then:

max(τ̃min, τd,min,j(k)) ≤ τd,j(k) ≤ τd,max,j(k) (3-29)

For OD-dependent rail scheduling, some slight alterations are done to the passenger modelling
procedure. In OD-independent rail scheduling, passengers are considered to have no specific
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destination and they are therefore modelled as percentages of the total on-board passengers
that leave at a certain stop. However, OD-data is available for operators, which means that
the number of passengers with a certain trajectory can be estimated over time. The largest
difference with the OD-independent rail scheduling problem is therefore the more specifically
defined amount of passengers that are waiting on a platform; the number of waiting passengers
wwait
j (k) with destination m for instance is:

wwait
j,m (k) = wj,m(k − 1) + λj,m(dj(k)− dj(k − 1)) (3-30)

where every term is now defined in terms of destination m as well. The sum of all destinations
m now gives the total amount of waiting passengers for train k at station j:

wwait
j (k) =

J∑

m=j+1

wwait
j,m (k) (3-31)

3-5 The max-plus linear parameter varying system

Now that we have defined passenger-dependent demand, we can incorporate this into the
MP-LPV that was defined in the end of section 3-3. First of all, from (3-23), we find that
the amount for passengers wwait(k) waiting at station j is dependent on the arriving time
aj(k) of train k and departure time dj(k− 1) of train k+1. We also found in (3-27) that the
minimum dwell time τd,min,j(k) for train k at station j is based on the amount of passengers
nj−1(k) that were on board of train k since station j − 1 and on the amount of passengers
nboard
j (k) that board train k at station j. And because nj−1(k) is calculated from nj−2(k)

and nboard
j (k − 1) (3-26), and nboard

j (k) is calculated from wwait(k), we find that recursively
all these variables depend somehow on arriving and departure times of previous- and current
trains {k, k − 1, k − 2, ...} at stations {j, j − 1, j − 2, ...}. If we further assume that all trains
have infinite capacity Cmax(k) such that there is always room for more passengers in train
k, then the min-operation in (3-25) is unnecessary and the amount of boarding passengers is
just the amount of waiting passengers:

nboard
j (k) = wwait

j (k) (3-32)

Also, there are no remaining passengers wremain
j (k) on the platform any more, because all of

them fitted in the train. Therefore:

wwait
j (k) = λj(aj(k) − dj(k − 1)) (3-33)

This results into the following expression for the minimal dwell time:

τd,min,j(k) = α1,d + α2,d · nj−1(k) · ρj + α3,d · n
board
j (k)

= α1,d + α2,d ·
(

nj−2(k) · (1− ρj−1) + nboard
j−1 (k)

)

· ρj + α3,d · n
board
j (k)
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= α1,d + α2,d ·
(

nj−3(k) · (1− ρj−2) (1− ρj−1) + nboard
j−2 (k) · (1− ρj−1) + nboard

j−1 (k)
)

· ρj

+ α3,d · n
board
j (k)

...

= α1,d + α2,d ·
(

n0(k)
︸ ︷︷ ︸

0

·(1− ρ1)(1 − ρ2)(...)(1 − ρj−1) + nboard
1 (k) · (1− ρ2)(1− ρ3)(...)(1 − ρj−1)

+ ...+ nboard
j−1 (k)

)

· ρj + α3,d · n
board
j (k)

= α1,d + α2,d ·
(

nboard
1 (k) · (1− ρ2)(1− ρ3)(...)(1 − ρj−1) + ...+ nboard

j−1 (k)
)

· ρj

+ α3,d · n
board
j (k)

= α1,d +










α3,d

α2,dρj
α2,d(1− ρj−1)ρj

...
α2,d(1− ρ2)(1 − ρ3)(...)(1 − ρj−1)ρj










T

·










nboard
j (k)

nboard
j−1 (k)

nboard
j−2 (k)

...
nboard
1 (k)










The dwell time τd,min,j(k) for train k at station j has now recursively been reduced to a
formula that shows dependency only on the proportion of passengers ρj that leave the train
at station j and the amount of passengers that board train k at station j (and past stations).
If we then use what was found in (3-32) and (3-33), we find that:

τd,min,j(k) = α1,d +










α3,d

α2,dρj
α2,d(1− ρj−1)ρj

...
α2,d(1− ρ2)(1 − ρ3)(...)(1 − ρj−1)ρj










T

·










wwait
j (k)

wwait
j−1 (k)

wwait
j−2 (k)
...

wwait
1 (k)










(3-34)

The length of the expression for the dwell time τd,min,j(k) logically depends on the station
counter j; if j is large, then the expression that determines the dwell time will also be large
because all previous j’s have to be taken into account. For j = 1 for example, the expression
reduces to τd,min,1(k) = α1,d + α3,d · w

wait
1 (k). Proceeding with this for j = {1, ..., J} gives us

the following:
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τd,min,1(k) = α1,d + α3,d · w
wait
1 (k) = α1,d +








α3,d

0
...
0








T

︸ ︷︷ ︸

Φ1

·








wwait
1 (k)

wwait
2 (k)
...

wwait
J (k)








τd,min,2(k) = α1,d + α3,d · w
wait
2 (k) + α2,d · ρ2 · w

wait
2 (k) = α1,d +








α2,d · ρ2
α3,d
...
0








T

︸ ︷︷ ︸

Φ2

·








wwait
1 (k)

wwait
2 (k)
...

wwait
J (k)








...

τd,min,J(k) = α1,d + α3,d · w
wait
J (k) + ...+ α2,d · ρJ(1− ρJ−1)(...)(1 − ρ3)(1− ρ2) · w

wait
1 (k)

= α1,d +








α2,d · ρJ(1− ρJ−1)(...)(1 − ρ3)(1 − ρ2)
α2,d · ρJ−1(1− ρJ−2)(...)(1 − ρ2)

...
α3,d








T

︸ ︷︷ ︸

ΦJ

·








wwait
1 (k)

wwait
2 (k)
...

wwait
J (k)








Now, the structure of wwait
j (k) can be exploited. As mentioned before, it is dependent on the

arriving time of train k and the departure time of train k − 1 (3-33). In (3-18), state vector
x(k) was defined as the collection of all arrival and departure times aj(k) and dj(k), such that
aj(k) = xj(k) and dj(k) = xj+J(k). Therefore, we can define a vector wwait(k) as following:

wwait(k) =








wwait
1 (k)

wwait
2 (k)
...

wwait
J (k)








(3-35)

and if I ∈ R
J×J is the the unity matrix with only ones on the diagonal, the zero matrix is

0 ∈ R
J×J , the unity vector is 1̄ ∈ R

1×J , and the zeroes vector is 0̄ ∈ R
1×J , it can be written

that:

wwait(k) = λ
([
I 0

]
x(k)−

[
0 I

]
x(k − 1)

)
=
[
λ 0

]
x(k)−

[
0 λ

]
x(k − 1) (3-36)

where λ ∈ R
J×J is a diagonal matrix containing all λj .
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Finally, everything can be substituted in (3-19) by defining:

τd,min(k) =








τd,min,1(k)
τd,min,2(k)

...
τd,min,J(k)








= α1,d +








Φ1

Φ2
...
ΦJ








wwait(k)

= α1,d +








Φ1

Φ2
...
ΦJ








[
λ 0

]
x(k)−








Φ1

Φ2
...
ΦJ








[
0 λ

]
x(k − 1)

= α1,d +
[
Ψ 0

]
x(k)−

[
0 Ψ

]
x(k − 1)

(3-37)

where α1,d ∈ R
1×J is simply a vector filled with α1,d and where Ψ = Φλ. If we now forget

about the upper boundary of (3-29), we see that τd,j(k) ≥ max(τ̃min, τd,min,j(k)) or in max-
plus algebra that τd,j(k) = τ̃min⊕ τd,min,j(k), which means that we can reinterpret (3-16) and
write:

aj(k) = dj−1(k)⊗ τr,min,j−1 ⊕ dj(k − 1)⊗ τh,min (3-38)

dj(k) = aj(k)⊗ (τ̃min⊕ τd,min,j(k)) = aj(k)⊗ τ̃min⊕ aj(k)⊗ τd,min,j(k) (3-39)

and thus that the max-plus system becomes:

x(k) =



















E

ǫ ǫ · · · ǫ ǫ

τr,min,1 ǫ · · · ǫ ǫ

ǫ τr,min,2 · · · ǫ ǫ
...

...
. . .

...
...

ǫ ǫ · · · τr,min .J−1 ǫ

τ̃min⊕ τd,min,1(k) ǫ · · · ǫ

ǫ τ̃min⊕ τd,min,2(k) · · · ǫ
...

...
. . .

...
ǫ ǫ · · · τ̃min⊕ τd,min,J(k)

E



















︸ ︷︷ ︸

A0(p)

⊗x(k)

⊕










E

τh,min ǫ · · · ǫ

ǫ τh,min · · · ǫ
...

...
. . .

...
ǫ ǫ · · · τh,min

E E










︸ ︷︷ ︸

A1

⊗x(k − 1)

(3-40)

We can observe that sub-matrix A
[2,1]
0 (p) = diag⊕ (τ̃min)⊕ diag⊕ (p(k)), where the diag⊕(·)
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operator makes a max-plus matrix with the arguments a on the diagonal and ǫ everywhere
else, and where p(k) can be defined as a vector with the dwell times:

p(k) = τd,min(k) = α1,d +
[
Ψ 0

]
x(k)−

[
0 Ψ

]
x(k − 1) (3-41)

As can be seen from (3-41), p(k) is defined in conventional algebra and clearly shows the
(scaled) relation between x(k) and x(k− 1), and how A0(p) depends on it. To make a clearer
distinction between the part of A0(p) that is dependent on x(k) and x(k + 1) and the part
that is not, we can split A0(p) into Ã0 and Â0(p), where A0(p) = Â0(p)⊕ Ã0. Then:

x(k) =



















E

ǫ ǫ · · · ǫ ǫ

τr,min,1 ǫ · · · ǫ ǫ

ǫ τr,min,2 · · · ǫ ǫ
...

...
. . .

...
...

ǫ ǫ · · · τr,min .J−1 ǫ

τ̃min ǫ · · · ǫ

ǫ τ̃min · · · ǫ
...

...
. . .

...
ǫ ǫ · · · τ̃min

E



















︸ ︷︷ ︸

Ã0

⊗x(k)

⊕










E E
τd,min,1(k) ǫ · · · ǫ

ǫ τd,min,2(k) · · · ǫ
...

...
. . .

...
ǫ ǫ · · · τd,min,J(k)

E










︸ ︷︷ ︸

Â0(p)

⊗x(k)⊕










E

τh,min ǫ · · · ǫ

ǫ τh,min · · · ǫ
...

...
. . .

...
ǫ ǫ · · · τh,min

E E










︸ ︷︷ ︸

A1

⊗x(k−1)

(3-42)

It can be observed that Ã0 and A1 are constant matrices, independent of the varying train
counter and the changing arrival and departure times. Â0(p)

1 is the matrix that will depend
on the arrival and departure times of train k and k − 1 according to (3-41).

3-6 Exploring the structure of Â0(p)

The structure of the max-plus system (still without control) has been defined in the previous
section. It has become clear from (3-37) that one of the limiting factors is the dependency
of Â0(p) on the schedule of the current and previous trains x(k) and x(k − 1). However, in

1Note: when Â0(p) is written, in fact it should be Â0(p(k))). But for convenience and readability, the
dependency of p(k) on k and k − 1 is assumed automatically.
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order to find the schedule of the current train x(k), Â0(p) has to be known. This tendency is
therefore a vicious circle and not directly solvable.

The first problem is the implicit relation between the left and right side of the equation.
In (Kersbergen et al., 2016), the problem is solved by going from an implicit to an explicit
formulation by using the so-called Kleene star A∗. In order to do so, the Kleene star is
computed out of A, as in (2-17). However, in order to compute the Kleene star of a matrix
A, that matrix A has to be constant. Because the A-matrix in this thesis is varying for every
train k, it can not be used in the same way. This directly implicates the second problem:
because of the dependency on x(k) and x(k − 1), no matter what we do, Â0(p) will remain
implicit. One way to tackle this problem is by solving (3-42) for every k iteratively. This
means that the calculation has to be done step-by-step, until the scheduling problem x(k) is
solved and Â0(p) is constant. The following procedure can be applied:

1For ev e r y x ( k ) :

C a l c u l a t e an i n i t i a l x_i ( k ) b a s e d on k n o w n i n f o r m a t i o n x ( k−1) and A_1

D e t e r m i n e the d w el l t i m e s t a u _ d ( k ) b a s ed on i n i t i a l x_i ( k ) and k n ow n x ( k−1)
Find the A _ 0 _ i ( p ) m a t r i x a c c o r d i n g to the d we l l t i me s t a u _ d ( k )

6C a l c u l a t e the next i t e r a t i v e s c h e d u l e x_i+1(k ) b a s e d on A _ 0 _ i ( p ) , x_i ( k ) and x ( k−1)

R e p e a t u n t i l x_i+1(k ) = x_i ( k )
R e t u r n x ( k ) = x_i+1(k )

A_0 ( p ) = A _ 0 _ i ( p )
11I n de x ( k ) = i

Because of all the max- and plus-operations, it is guaranteed that the next iteration is always
’later’ than or equal to the current one. Ideally, there will be a moment where the next
iteration xi+1(k) is strictly equal to the current iteration xi(k), even if this means that initially
the train has to be delayed at some stations. Apparently, that delay is necessary in order
to fulfil all the max-plus constraints and the train can not run faster, because it would
violate one or more of these constraints (see Lemma 1 and Proof underneath). The initial
condition xi(k) is always valid, because it consists of a combination of the prior knowledge
x(k− 1), which is always known at the start of x(k), and the matrix A1, which is a collection
of the minimal travelling times between the stations. Therefore, train k is never allowed
to run faster than the initial schedule xi(k), and xi(k) can now be used to determine the
corresponding dwell times. The script will stop when the arriving and departure times in xi(k)
do not change any more, resulting into a static equation in which Ai(p) becomes constant (i.e.
Âi+1

0 (p) = Âi
0(p) → Â0(p)) and xi+1(k) = xi(k) → x(k). The train schedule x(k) can then

be used to define the initial schedule xi(k + 1) for the next train, and this goes on until the
schedule of all K trains is determined. Last but not least, for every train k, the index-number
i is returned to show how many iterations it took to reach for a constant solution.

Lemma 1 (Existence of x(k))
Let x(k − 1) be an initial feasible schedule. Then under assumptions 4 and 5 in section 3-3,
it is guaranteed that x(k) exists.

Proof Since x(k− 1) exists and is feasible, we can use the relations in (3-11) to see that we
can always compute x(k), even if p(k) = τ d,min(k) is variable. Since a train k has to leave as
soon as it is allowed to, we have that the maximum of the inequalities is an equality constraint.
Also, since the arrival time aj(k) is only based on constant constraints, it can always be found
as long as either the departure time dj(k − 1) of train k − 1 or dj−1(k) of train k is known.
The first one is always finite since x(k − 1) exists and is feasible. This means that aj(k) can
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only become infinitely large is dj−1(k) was also infinitely large. But dj−1(k) can only become
infinitely large if the variable dwell time is infinitely large. The variable dwell times are given
as a vector in (3-41). Since all the elements of Ψ are finite and even smaller than 1, we know
that the variable dwell times can only become infinitely large if one of the arrival or departure
times in x(k) is infinitely large.

Assume that a1(k), the arrival time of station j = 1 exists because train simply has to start
from this station. Now, τd,min,1(k) = α1,d + Ψ1,1a1(k) − Ψ1,1d1(k − 1) can be computed and
is finite, therefore d1(k) also exists. From station 1 on, dj−1(k) and aj(k) are always known
and finite, the latter one because it is just a summation of a constant with a existing variable.
Therefore, and since the structure of Ψ is lower-triangular in such a way that it only takes
into account past arriving times, all the arrival and departure times of x(k) can be computed
and therefore, x(k) exists. �

Because of assumption 4 in section 3-3, there can not exist a self-loop where the departure
time is dependent on the departure time itself. This could potentially become unstable if Ψj,j

is sufficiently large. For simplification, imagine that p(k) = τ d,min(k) in (3-41) would not be
dependent on the arrival times but on the departure times. We would find that for j = 1 that
τd,min,1(k) = α1,d+Ψ1,1d1(k)−Ψ1,1d1(k−1), and thus that d1(k) ≥ a1(k)+α1,d+Ψ1,1d1(k)−
Ψ1,1d1(k − 1), resulting into:

d1(k) ≥ a1(k) + α1,d +Ψ1,1d1(k)−Ψ1,1d1(k − 1)

(1−Ψ1,1)d1(k) ≥ a1(k) + α1,d −Ψ1,1d1(k − 1)

d1(k) ≥
1

1−Ψ1,1
a1(k) +

1

1−Ψ1,1
α1,d −

1

1−Ψ1,1
Ψ1,1d1(k − 1)

where if Ψ1,1 becomes too large, i.e. goes to 1, then the departure time d1(k) would go to
infinity since 1

1−Ψ1,1
→ 1

1−1 = 1
0 = ∞. This is why assumption 4 helps to ease the model;

once a train k arrives at a station j, its dwell time is fixed.

Lemma 1 shows us that x(k) exists. Furthermore, it can be shown that if x(k) exists, that it
is also unique according to Lemma 2.

Lemma 2 (Uniqueness of x(k))
Let x̂(k) be an existing schedule of train k, with the equality x̂(k) =

Â0(p̂)⊗ x̂(k)⊕ Ã0 ⊗ x̂(k)⊕A1 ⊗x(k − 1) where Ã0, A1 and x(k − 1) are all known. Then
we know that x̂(k) is a unique solution.

Proof This proof will be done by contradiction. Imagine a time schedule x̃(k) for train k that
is quicker then the ’optimal’ free-run x̂(k), because x̃(k) = x̂(k) − γ, where γ is a arbitrarily
chosen positive vector because all its entries {γ1, ..., γ2J} are positive but not necessarily equal
to each other. Then, according to (3-42), we find find that:

x̃(k) = Â0(p̃)⊗ x̃(k)⊕ Ã0 ⊗ x̃(k)⊕A1 ⊗x(k − 1)

= Â0(p̃)⊗(x̂(k)− γ)⊕ Ã0 ⊗(x̂(k)− γ)⊕A1 ⊗x(k − 1)
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with Â0(p̃) being defined according to (3-37):

τ̃d,min(k) = α1,d +








Φ1

Φ2
...
ΦJ








[
λ 0

]
(x̂(k)− γ)−








Φ1

Φ2
...
ΦJ








[
0 λ

]
x(k − 1)

= α1,d +








Φ1

Φ2
...
ΦJ








[
λ 0

]
x̂(k) −








Φ1

Φ2
...
ΦJ








[
0 λ

]
x(k − 1)−








Φ1

Φ2
...
ΦJ








[
λ 0

]
γ)

= τd,min(k)−








Φ1

Φ2
...
ΦJ








[
λ 0

]
γ)

and so:

Â0(p̃) =










E E
τd,min,1(k)− (Φ

[
λ 0

]
γ)1 ǫ · · · ǫ

ǫ τd,min,2(k)− (Φ
[
λ 0

]
γ)2 · · · ǫ

...
...

. . .
...

ǫ ǫ · · · τd,min,J(k)− (Φ
[
λ 0

]
γ)J

E










Now, we transform the first equation back to the max of the three subcomponents to find that:

x̃(k) = Â0(p̃)⊗(x̂(k)− γ)⊕ Ã0 ⊗(x̂(k)− γ)⊕A1⊗x(k − 1)

= max(Â0(p̃)⊗(x̂(k) − γ), Ã0 ⊗(x̂(k)− γ), A1 ⊗x(k − 1))

≥







Â0(p̃)⊗(x̂(k)− γ)

Ã0 ⊗(x̂(k)− γ)

A1 ⊗x(k − 1))

If we look at the first inequality, we see that:

x̃(k) ≥ Â0(p̃)⊗(x̂(k)− γ)

x̂(k) − γ ≥ Â0(p̃)⊗(x̂(k)− γ)

To show the logic behind this proof, it is best to split x̂(k) and x̃(k) into an upper and lower
half, both halves of a vector being R

J×1. If we write that Ψ = Φλ, we find that:
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x̂l(k) ≥ τ̃ d,min(k)−
[
Ψ 0

]
γ + x̂u(k) +

[
0 I

]
γ

≥ τ̃ d,min(k) + x̂u(k)
︸ ︷︷ ︸

x̂l(k)

−
[
Ψ 0

]
γ +

[
0 I

]
γ

≥ x̂l(k) +
[
−Ψ I

]
γ

0 ≥
[
−Ψ I

]
γ

Similarly, the same kind of argumentation can be done for the second inequality, since:

x̃(k) ≥ Ã0 ⊗(x̂(k)− γ)

x̂(k)− γ ≥ Ã0 ⊗(x̂(k)− γ)

x̂(k)− γ ≥















ǫ

τr,min,1 + x̂J+1(k)− γJ+1
...

τr,min,J−1 + x̂2J−1(k)− γ2J−1

τ̃min + x̂1(k)− γ1
...

τ̃min + x̂J(k)− γJ















x̂(k)− γ ≥ x̂(k)−










0

0 0 · · · 0
1 0 · · · 0
...

. . .
. . .

...
0 · · · 1 0

I 0










γ

0 ≥










I

0 0 · · · 0
−1 0 · · · 0
...

. . .
. . .

...
0 · · · −1 0

−I I










γ

For the last inequality, we simply find that:

x̃(k) ≥ A1 ⊗x(k − 1)

x̂(k)− γ ≥ A1 ⊗x(k − 1)
︸ ︷︷ ︸

x̂(k)

0 ≥ γ

By simply combining all these constraints into one big matrix, we find that:
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0 ≥
















−Ψ I

I

0 0 · · · 0
−1 0 · · · 0
...

. . .
. . .

...
0 · · · −1 0

−I I

I 0

0 I
















︸ ︷︷ ︸

V

γ

and since γ is strictly positive and V TV is positive definite for every value possible in the
matrix Ψ (because 0 < Ψi,j ≤ 1), the right side of this equation will always be larger than 0,
therefore not allowing the inequality to be true. Furthermore, we can observe that the easiest
satisfaction of this inequality would be γ = 0, which would indicate that x̃(k) = x̂(k) and
therefore that x̂(k) is a unique solution. �

3-7 Expanding for multiple train cycles

The arrival and departure times of train k can be found according to (3-42), but for optimiza-
tion purposes it is necessary to consider multiple trains cycles at once in order to anticipate
on the control action that might have to be taken in the future. Notice that up until now,
control action is still not taken into account yet.

If we consider the same strategy as in Kersbergen et al. (2016), then multiple trains cycles

can be combined into one vector x̆(k) =
[
xT (k) xT (k + 1) ... xT (k +M − 1)

]T
. Here, M

is the total amount of train cycles that should be considered at once, the so-called planning
or prediction horizon. We then find the following equation:

x̆(k) = Ă(p̆)⊗ x̆(k)⊕ Ă0 ⊗ x̆(k)⊕ Ă1⊗x(k − 1) (3-43)

where Ă(p̆) 2, Ă0 and Ă1 are defined as:

2Note: with p̆, the dependency on the collection of vectors {p(k), p(k + 1), ..., p(k +M − 1)} is meant.
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Ă(p̆) =








Â0(p(k)) E · · · E

A1⊗ Â0(p(k)) Â0(p(k+1)) · · · E
...

...
. . .

...

A⊗M−1
1 ⊗ Â0(p(k)) A⊗M−2

1 ⊗ Â0(p(k+1)) · · · Â0(p(k+M −1))








(3-44)

Ă0 =








Ã0 E · · · E

A1 ⊗ Ã0 Ã0 · · · E
...

...
. . .

...

A⊗M−1
1 ⊗ Ã0 A⊗M−2

1 ⊗ Ã0 · · · Ã0








(3-45)

Ă1 =








A1

A⊗ 2
1
...

A⊗M−1
1








(3-46)

A similar iterative procedure as before can now be applied to find the matrix Ă(p̆):

For ev e r y x _ b r e v e ( k ) :

C a l c u l a t e an i n i t i a l x _ b r e v e _ i ( k ) ba s e d on k n o w n i n f o r m a t i o n x ( k−1) and A _ b r e v e _ 1

15D e t e r m i n e the d w el l t i m e s t a u _ d _ b r e v e ( k ) b a s e d on i n i t i a l x _ b r e v e _ i ( k ) and k n o w n x ( k−1)
Find the A _ b r e v e _ i ( p ) m a t r i x a c c o r d i n g to the d w el l t i m es t a u _ b r e v e _ d ( k )
C a l c u l a t e the next i t e r a t i v e s c h e d u l e x _ b r e v e _ i+1( k ) ba s e d on A _ b r e v e _ i ( p ) , x _ b r e v e _ i ( k ) and x ( k

−1)

R e p e a t u n t i l x _ b r e v e _ i+1(k ) = x _ b r e v e _ i ( k )
20R e t u r n x _ b r e v e ( k ) = x _ _ b r e v e _ i+1( k )

A _ b r e v e ( p ) = A _ b r e v e _ i ( p )
I n de x ( k ) = i

To be able to model disturbances, it is also wise to add some control variable d̆(k) to this
formulation. This can be done by considering the original inequalities and by adding da,j(k)
to delay the arrival time and dd,j(k) to delay the departure time, where da,j(k) and dd,j(k)
should not be confused with the departure times dj(k).

aj(k) ≥ dj−1(k) + τr,min,j−1 (3-47)

aj(k) ≥ dj(k − 1) + τh,min (3-48)

aj(k) ≥ da,j(k) (3-49)

dj(k) ≥ aj(k) + τd,j(k) (3-50)

dj(k) ≥ dd,j(k) (3-51)

and therefore also in the single-cycle max-plus system that we saw before:

x(k) = Â0(p)⊗ x(k)⊕ Ã0⊗x(k)⊕A1 ⊗ x(k − 1)⊕B ⊗ d(k) (3-52)

where d(k) =
(
da,1(k) · · · da,J(k) dd,1(k) · · · dd,J(k)

)
and B = E. Scaling this up to

multiple cycles at once (Section 3-7) results into (3-53):

x̆(k) = Ă(p̆)⊗ x̆(k)⊕ Ă0 ⊗ x̆(k)⊕ Ă1⊗x(k − 1)⊕ B̆⊗ d̆(k) (3-53)
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where B̆ and d̆(k) are defined as:

B̆ =








B E · · · E
A1⊗B B · · · E

...
...

. . .
...

A⊗M−1
1 ⊗B A⊗M−2

1 ⊗B · · · B







=








E E · · · E
A1 E · · · E
...

...
. . .

...

A⊗M−1
1 A⊗M−2

1 · · · E








(3-54)

d̆(k) =








d(k)
d(k + 1)

...
d(k +M − 1)








(3-55)

Now that the max-plus model for an urban train line is found, we can move on to the next
chapter. In the next chapter, the addition of control will be discussed. Furthermore, a direct
translation to an optimization problem is suggested.
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Chapter 4

Controlling an urban train line

An important part for a model of an urban rail network is the ability to control it. There are
several ways to define control action. One way for example is to use the amount of passengers
to define the ideal frequency for trains, which results into an optimal headway time τh(k) and
consequently into optimal departure and arrival times. However, the max-plus framework
only allows delaying the departure and arrival times, because the ⊕-operator always takes
the maximum of the control signal u(k) and the time vectors x(k) and x(k− 1). This is why,
if there is need for an earlier departure, the current max-plus formulation does not allow that.

Therefore, it might be more interesting to solve an optimization problem over a certain
prediction horizon and to find an ideal train schedule in this way. In order to do so, it is
interesting to see if the max-plus framework can be rewritten back to linear inequalities,
in order to find the optimal control law ŭ(k). Such an action would be a relaxation of
the problem and therefore it does not necessarily have to be that the best schedule for the
relaxed problem works as well for the max-plus framework. Within the framework of linear
inequalities, optimization can be used to find the best possible schedule x̆opt(k). If this ideal
x̆opt(k) gives the same cost in the max-plus framework as it gives in the linear inequalities
framework, then the transformation is valid. In short, we would like to replace:

min
x̆(k)

Jobj

s.t. x̆(k) = Ă(p̆)⊗ x̆(k)⊕ Ă0 ⊗ x̆(k)⊕ Ă1 ⊗x(k − 1)⊕ B̆⊗ d̆(k)
(4-1)

with

min
x̆(k)

Jobj

s.t. F0 · x̆(k) + F1 · x(k − 1) ≤ g0 +Gd · d̆(k)
(4-2)

without any different results. To achieve this result, this chapter builds up as following: in
section 4-1, it will be shown that an uncontrolled case of an urban railway line can become
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unstable over time and thus that control is necessary. In section 4-2, the max-plus model will
be expressed in a set of linear inequalities. In section 4-3, the many options for an objective
function will be discussed. Finally, in section 4-4 the addition of a control signal to the original
MP-LPV equations will be discussed, and also the conditions are discussed which allow us to
do so.

4-1 Uncontrolled case study of an urban railway line

In this section, it will be shown that there are cases where control is absolutely necessary in
order to maintain a stable rail line.

Figure 4-1: Example of the schedule an urban train line, where all headway-, dwell- and running
times are constant and where trains {1, ..., κ − 1} run without delays. Train κ is the first train
with delay from station q onward.

Imagine the situation in 4-1, where all trains k ∈ {1, ...,K} run from station 1 towards station
J . Here, J can be taken to be a large integer value. We assume that all headway- and running
times are constant. This means that we assume that the travel time between two stations is
always the same, and also that the amount of arriving passengers per second λ is equal at
every station j. Because of this, the headway times between trains will always stay the same.
Furthermore, all dwell times are constant up until k = κ.

The goal is to observe if a sudden increase of dwell time at a station q will introduce an
insuperable delay for train κ in the long run. If this can be shown, there is a good reason
to introduce control and make sure that such a situation does not occur. Therefore, let us
introduce the difference in time between (the arrival times of) two trains at station j as:

∆j(k) = xj(k)− xj(k − 1) (4-3)

Consequently, ∆J(k) = xJ(k) − xJ(k − 1) and ∆q(k) = xq(k) − xq(k − 1). To see if such a
delay becomes insuperable, the limit of the difference can be taken for train κ between the
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differences at the last station of the line (∆J(κ)) and the first station where the delay started
(∆q(κ)) such that:

lim
J→∞

(∆J(κ)−∆q(κ)) = ∞ (4-4)

If this condition is true, control is necessary. This brings us to the following Theorem:

Theorem 3 (Divergence of limJ→∞(∆J(κ) − ∆q)(κ))
Let ∆J (κ)−∆q(κ) be the difference in headway between station J and station q, for train κ.
If there is a disturbance αq(κ) for train κ at station q, then limJ→∞(∆J (κ)−∆q(κ)) = ∞.

Underneath, a proof will follow to show that this limit occurs. The Proof will be done in
conventional algebra, since working with minus-signs is not convenient in max-plus algebra.
But since max-plus algebra always takes the maximum arrival and departure times for any
train k, we can assume that the results in conventional algebra will also hold in max-plus
algebra, since ∞ is always the maximum of two or more values if one of them is also ∞.
That means, that if ∞ is reached in conventional algebra, it will also be reached in max-plus
algebra. However, by doing this proof in conventional algebra, it can not be shown when the
limit in (4-4) will be reached (i.e. if it is already ’before’ J → ∞) in max-plus algebra.

Proof Since the delay occurs for train κ at station q, only train κ and κ−1 will be considered
because every train up until then had a constant undisturbed schedule, so the operation in (4-3)
will result into 0. If we consider ∆j(κ) = xj(κ)− xj(κ− 1), it can be written that:

∆q+1(κ) = xq+1(κ)− xq+1(κ− 1)

∆q(κ) = xq(κ)− xq(κ− 1)
(4-5)

and that:

∆q+1(κ)−∆q(κ) = xq+1(κ)− xq+1(κ− 1)− xq(κ) + xq(κ− 1)

= xq+1(κ)− xq(κ)
︸ ︷︷ ︸

τd,q(κ)+τr

−
(
xq+1(κ− 1)− xq(κ− 1)

)

︸ ︷︷ ︸

τd,q(κ−1)+τr

= τd,q(κ)
︸ ︷︷ ︸

τd+αq(κ)

− τd,q(κ− 1)
︸ ︷︷ ︸

τd

= αq(κ)

(4-6)

where αq(κ) is the extra dwell time caused by an increased amount of passengers at station q

for train κ (see Figure 4-1). Similarly, we find that:
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∆q+2(κ)−∆q+1(κ) = αq+1(κ)

∆q+3(κ)−∆q+2(κ) = αq+2(κ)

...

∆J(κ)−∆J−1(κ) = αJ−1(κ)

Then, by summation, it is easy to see that:

∆q+1(κ) −∆q(κ) = αq(κ)

∆q+2(κ) −∆q+1(κ) = αq+1(κ)

∆q+3(κ) −∆q+2(κ) = αq+2(κ)

∆J(κ) −∆J−1(κ) = αJ−1(κ)

+

∆J(κ) −∆q(κ) = αq(κ) + · · ·+ αJ−1(κ)

(4-7)

For the second part of the proof, it is important to rewrite all α’s that occur at stations after
station q. Consider τh,q(κ), the difference between the arrival time of train κ and the departure
time of train κ− 1 at station q, and τh,q+1(κ):

τh,q(κ) = xq(κ)− (xq(κ− 1) + τd)

τh,q+1(κ) = xq+1(κ)− (xq+1(κ− 1) + τd)

The dwell time at a station j is defined as the amount of passengers per second multiplied
with the headway time between two trains, i.e. τd,j(k) = λ · τh,j(k). Furthermore, by writing
out the expression for τh,q+1(κ), it can be found that:

τh,q+1(κ) = xq+1(κ)− (xq+1(κ− 1) + τd)

= xq+1(κ)
︸ ︷︷ ︸

xq(κ)+τd+αq(κ)+τr)

− xq+1(κ− 1)
︸ ︷︷ ︸

xq(κ−1)+τd+τr)

−τd

= xq(κ) − xq(κ− 1)− τd
︸ ︷︷ ︸

τh,q(κ)

+αq(κ)

τh,q+1(κ) = τh,q(κ) + αq(κ)

If we multiply the expression above with λ, we can substitute that τd,j(k) = λ ·τh,j(k) for every
j and k, and since every dwell time τd,j(κ) for train κ after station q− 1 is a combination of
the constant dwell time τd and some additional positive αj(κ), it can be found that:
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τh,q+1(κ) = τh,q(κ) + αq(κ)

λ · τh,q+1(κ)
︸ ︷︷ ︸

τd+αq+1(κ)

= λ · τh,q(κ)
︸ ︷︷ ︸

τd+αq(κ)

+λ · αq(κ)

αq+1(κ) =
(
1 + λ

)
· αq(κ)

The last equation holds for all j ∈ {q, ..., J − 1}, so:

αq+2(κ) =
(
1 + λ

)
· αq+1(κ)

=
(
1 + λ

)2
· αq(κ)

...

αJ−1(κ) =
(
1 + λ

)J−1
· αq(κ)

Finally, by substituting these new relations back into (4-7), it can be found that:

∆J(κ) −∆q(κ) = αq(κ) + · · ·+ αJ−1(κ)

= αq(κ) + · · ·+
(
1 + λ

)J−1
· αq(κ)

=
( J−1∑

a=0

(
1 + λ

)a
)

· αq(κ)

and since clearly, the limit limJ→∞

(
∑J−1

a=0

(
1 + λ

)a
)

= ∞, it is proven that:

lim
J→∞

(∆J(κ)−∆q(κ)) = lim
J→∞

(
( J−1∑

a=0

(
1 + λ

)a
)

· αq(κ)

)

= ∞ �

This proof shows that it is in fact possible for the system to become unstable when there is
either no bound on the amount of dwell time, or when train κ− 1 is not delayed accordingly
with train κ. Since it is only possible to delay the network in max-plus algebra, previous
trains k ∈ {1, ..., κ − 1} have to be delayed to avoid instability of the urban train line. This
is why it is proposed in this thesis to allow these delays in order to avoid the proportional
increase of the delay for train κ (see assumption 5 in section sec:maxpluseq). Such a strategy
corresponds with the same reasoning behind the avoidance of the so-called accordion effect
in traffic.

4-2 Converting the max-plus system to linear inequalities

The multiple cycle max-plus system as could be observed in (3-43) consists of all the con-
straints to simulate the trajectories of M − 1 trains in once, by using the iterative method.
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However, if we want to find the ideal control law ŭ(k) for every set of M − 1 trains, optimiza-
tion according to some kind of objective function will be necessary. In order to simulate the
max-plus model following some kind of objective function, it is more convenient to transform
the system back to a set of linear inequalities. The reason for this is that a set of linear
inequalities lents itself perfectly for Linear Programming or Quadratic Programming, as long
as the objective function is linear or quadratic respectively.

Such a strategy is inspired and motivated by following the theory on the so-called extended
linear complementarity problem (ELCP) in De Schutter and van den Boom (2001), where
a max-plus equality system can be rewritten to a set of linear inequalities as long as one of
them actually holds as an equality. The reason for rewriting the constraints is that solving
an optimization problem with a set of linear inequality constraints is much easier to solve
numerically than it would have been with equality constraints. Chapter 4 of (Kersbergen et
al., 2016) will be used as the main reference for this procedure. If the ideal schedule x̆opt(k)
is found with optimization, then that schedule can be used as the control law ŭ(k) (section
4-4).

Now, let us refine some definitions. If M is the total amount of train cycles that will
be considered at once, and m = {1, 2, ...,M} is the cycle counter, then we can de-

fine x̆(k) =
[
xT (k) xT (k + 1) ... xT (k +M − 1)

]T
such that x̆m(k) = x(k + m − 1).

Furthermore, x̆m(k) can be partitioned into 2J scalars x̆m,k(k), such that x̆m(k) =
[
xT1 (k +m− 1) xT2 (k +m− 1) ... xT2J (k +m− 1)

]T
, where J is the total amount of train

stations on a line. To show the line of thought, the conversion of the max-plus equations to
a set of linear inequality constraint will be done with the number of stations chosen to be
J = 2.

Â0(p), Ã0, A1 and B to linear inequalities

Â0(p)) To begin with, we have to recall that:

Â0(p) =










E E
τd,min,1(k) ǫ · · · ǫ

ǫ τd,min,2(k) · · · ǫ
...

...
. . .

...
ǫ ǫ · · · τd,min,J(k)

E










(4-8)

and furthermore that x(k) = Â0(p)⊗x(k). Since J = 2, we know that our matrix Â0(p) is a
2J = 4 by 2J = 4 matrix, and thus there should be 4 inequalities. But since we observe that
only the botom-left sub-matrix matters, we only need J inequalities. Namely:

xJ+1(k) ≥ τd,min,1(k) + x1(k)

xJ+2(k) ≥ τd,min,2(k) + x2(k)
(4-9)

From (3-37), we know that every τd,min,j(k) is a linear combination of x(k) and x(k − 1). If
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we define the matrix product Ψ = Φ · λ and partition the matrices Φ and Ψ as

Φ =

(
Φ1,1 Φ1,2

Φ2,1 Φ2,2

)

Ψ =

(
Φ1,1λ1 Φ1,2λ2

Φ2,1λ1 Φ2,2λ2

)

, (4-10)

we find that every τd,min,j(k) can be written as:

τd,min,j(k) = α1 +

J∑

i=1

Ψj,i · (xi(k)− xJ+i(k − 1)) (4-11)

Ã0) For Ã0, we have that:

Ã0 =



















E

ǫ ǫ · · · ǫ ǫ

τr,min,1 ǫ · · · ǫ ǫ

ǫ τr,min,2 · · · ǫ ǫ
...

...
. . .

...
...

ǫ ǫ · · · τr,min .J−1 ǫ

τ̃min ǫ · · · ǫ

ǫ τ̃min · · · ǫ
...

...
. . .

...
ǫ ǫ · · · τ̃min

E



















(4-12)

and that x(k) = Ã0⊗x(k). Because of J = 2, we have 2 inequalities from the bottom-left
sub-matrix and 2 inequalities from the top-right sub-matrix. These are defined as following:

x1(k) ≥ τr,min,0 + xJ(k)

x2(k) ≥ τr,min,1 + xJ+1(k)

xJ+1(k) ≥ τ̃min + x1(k)

xJ+2(k) ≥ τ̃min + x2(k)

(4-13)

A1) The third matrix is A1, which could be written as:

A1 =










E

τh,min ǫ · · · ǫ

ǫ τh,min · · · ǫ
...

...
. . .

...
ǫ ǫ · · · τh,min

E E










(4-14)

This matrix connects previous and current train cycles with each other, as x(k) = A1⊗x(k−
1). Again, we find that there are only J constraints, and those are:

x1(k) ≥ τh,min + xJ+1(k − 1)

x2(k) ≥ τh,min + xJ+2(k − 1)
(4-15)
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B) At last, we can define the matrix B simply such that x(k) ≥ d(k). So we just write that:

x1(k) ≥ d1(k)

x2(k) ≥ d2(k)

x3(k) ≥ d3(k)

x4(k) ≥ d4(k)

(4-16)

and consequently, B = E.

Collecting all the constraints

With all constraints known, we can start writing the problem in the form F0 · x̆(k)+F1 ·x(k−
1) ≤ g0 +Gd · d̆(k), were the matrices F0, F1, g0 and Gd are defined in conventional algebra.
First, we collect all the constraints and rewrite them as xj(k +m− 1) = x̆m,j(k):

x̆m,1(k) ≥ x̆m,2(k) + τr,min,0

≥ x̆m−1,3(k) + τh,min

≥ dm,1(k)

x̆m,2(k) ≥ x̆m,3(k) + τr,min,1

≥ x̆m−1,4(k) + τh,min

≥ dm,2(k)

x̆m,3(k) ≥ x̆m,1(k) + τ̃min

≥ x̆m,1(k) + α1 +Ψ1,1x̆m,1(k) + Ψ1,2x̆m,2(k)−Ψ1,1x̆m−1,3(k)−Ψ1,2x̆m−1,4(k)

≥ dm,3(k)

x̆m,4(k) ≥ x̆m,2(k) + τ̃min

≥ x̆m,2(k) + α1 +Ψ2,1x̆m,1(k) + Ψ2,2x̆m,2(k)−Ψ2,1x̆m−1,3(k)−Ψ2,2x̆m−1,4(k)

≥ dm,4(k)

(4-17)

Now we can move all the variables in x̆m,j(k) to the left side and all the control variables and
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constants to the right side. We find that:

x̆m,2(k)− x̆m,1(k) ≤ −τr,min,0

x̆m−1,3(k)− x̆m,1(k) ≤ −τh,min

−x̆m,1(k) ≤ −dm,1(k)

x̆m,3(k)− x̆m,2(k) ≤ −τr,min,1

x̆m−1,4(k)− x̆m,2(k) ≤ −τh,min

−x̆m,2(k) ≤ −dm,2(k)

x̆m,1(k)− x̆m,3(k) ≤ −τ̃min

x̆m,1(k)− x̆m,3(k) + Ψ1,1x̆m,1(k) + Ψ1,2x̆m,2(k)−Ψ1,1x̆m−1,3(k)−Ψ1,2x̆m−1,4(k) ≤ −α1

−x̆m,3(k) ≤ −dm,3(k)

x̆m,2(k)− x̆m,4(k) ≤ −τ̃min

x̆m,2(k)− x̆m,4(k) + Ψ2,1x̆m,1(k) + Ψ2,2x̆m,2(k)−Ψ2,1x̆m−1,3(k)−Ψ2,2x̆m−1,4(k) ≤ −α1

−x̆m,4(k) ≤ −dm,4(k)

(4-18)

and with the vector x̆m(k) being defined earlier, and a similarly defined d̆m(k), we see that:























−1 1 0 0
−1 0 0 0
−1 0 0 0
0 −1 1 0
0 −1 0 0
0 −1 0 0
1 0 −1 0

1 + Ψ1,1 Ψ1,2 −1 0
0 0 −1 0
0 1 0 −1

Ψ2,1 1 + Ψ2,2 0 −1
0 0 0 −1























︸ ︷︷ ︸

F0,m

·







x̆m,1(k)
x̆m,2(k)
x̆m,3(k)
x̆m,4(k)







+























0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 −Ψ1,1 −Ψ1,2

0 0 0 0
0 0 0 0
0 0 −Ψ2,1 −Ψ2,2

0 0 0 0























︸ ︷︷ ︸

F1,m

·







x̆m−1,1(k)
x̆m−1,2(k)
x̆m−1,3(k)
x̆m−1,4(k)







≤























−τr,min,0

−τh,min

0
−τr,min,1

−τh,min

0
−τ̃min

−α1

0
−τ̃min

−α1

0























︸ ︷︷ ︸

g0,m

+























0 0 0 0
0 0 0 0
−1 0 0 0
0 0 0 0
0 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0
0 0 0 0
0 0 0 −1























︸ ︷︷ ︸

Gd,m

·







d̆m,1(k)

d̆m,2(k)

d̆m,3(k)

d̆m,4(k)







(4-19)

M.Sc. thesis Ben Zwerink Arbonés



40 Controlling an urban train line

which can be summarized in short as:

F0,m · x̆m(k) + F1,m · x̆m−1(k) ≤ g0,m +Gd,m · d̆m(k) (4-20)

We can make the last step by writing out (4-20) for m = 1, 2, ...,M − 1, to find that:

F0,1 · x̆1(k) + F1,1 · x̆0(k) ≤ g0,1 +Gd,1 · ŭ1(k)
(
F0,1 0 · · · 0

)
· x̆(k) + F1,1 · x̆0(k)

︸ ︷︷ ︸

x(k−1)

≤ g0,1 +
(
Gd,1 0 · · · 0

)
· ŭ(k)

F0,2 · x̆2(k) + F1,2 · x̆1(k) ≤ g0,2 +Gd,2 · ŭ2(k)
(
F1,2 F0,2 · · · 0

)
· x̆(k) ≤ g0,2 +

(
0 Gd,2 · · · 0

)
· ŭ(k)

...

F0,M−1 · x̆M−1(k) + F1,M−1 · x̆M−2(k) ≤ g0,M−1 +Gd,M−1 · ŭM−1(k)
(
0 · · · F1,M−1 F0,M−1

)
· x̆(k) ≤ g0,M−1 +

(
0 · · · 0 Gd,M−1

)
· d̆(k)

eventually resulting into:








F0,1 0 · · · 0
F1,2 F0,2 · · · 0
...

. . .
. . .

...
0 · · · F1,M−1 F0,M−1








· x̆(k) +








F1,1

0
...
0








· x(k − 1)

≤








g0,1
g0,2
...

g0,M−1








+








Gd,1 0 · · · 0
0 Gd,2 · · · 0
...

. . .
. . .

...
0 · · · 0 Gd,M−1








· d̆(k)

(4-21)

and thus that F0 · x̆(k) + F1 · x(k − 1) ≤ g0 +Gd · d̆(k). It can be observed that the matrices
F0, F1, g0 and Gd contain multiple matrices with different indices (F0,1, F1,2, etc.). This is
purely distinguished for optional future work: in the case of different Ψ values over time, the
matrices will differ from each other, but when λ and Φ do not change over time, then these
matrices are all equal to each other (i.e. F0,1 = F0,2 = ... = F0,M−1).

This procedure remains similarly structured for more stations (i.e. J > 2) and more trains
M . The next step is define an objective function Jobj in section 4-3.

4-3 Objective function

The objective function basically describes the goal of the optimization problem. Operators of
urban rail networks probably prefer economically profitable scheduling, for example by mini-
mizing energy consumption or maximizing profit. Governments and municipalities probably
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prefer the best for their residents by minimizing the total travel time or total waiting time for
passengers. Environmentalists do also prefer minimal energy consumption while passengers
themselves would prefer maximal capacity, minimal travel time and minimal transfers. That
is why the ’optimal’ schedule is a very tricky definition; it is very hard to satisfy all the
stakeholders at once.

Many studies focus on minimizing energy consumption. Take for instance Li and Lo (2014),
whom focus on scheduling while minimizing the total energy consumption while also taking
into account regenerative energy. A genetic algorithm was used to solve the (non-convex)
optimization problem. In (Yang et al., 2017), not only net energy consumption is minimized,
but also the total travel time while also modelling dwell time uncertainty. This results into
an optimum between travel time and energy consumption, but also in the amount of vehicles
that have to be used. Again, the optimization is non-convex and is solved by a genetic
algorithm. In (Wang, Ning, et al., 2015) and (Wang, Tang, et al., 2015), two papers which
are being used more often as a source for this study, optimization is being done with respect
to minimizing both energy consumption and total travel time. The problem formulation is a
little less complex due to not taking into account regenerative energy, but it is still a non-linear
programming problem which requires non-linear solvers, mainly due to a min-function in the
constraints. Niu et al. (2015) focus on minimizing the total waiting times of passengers at
stations, both with and without a predetermined skip-stop pattern for trains. Their algorithm
can be used for both real-time scheduling (computation time: 2.7 minutes) and medium-term
planning (computation time: 10.7 minutes), by using a non-linear mixed integer programming
model.

As can be seen, all of the above-mentioned studies contain non-linear programming problems.
It does not necessarily have to be a problem, but in order to compute on-line scheduling
problems it is of high importance that the total computation time of the optimization is
smaller than the interval between two subsequent optimizations. To achieve this, linear of
quadratic programming problems are the most ideal. In the next subsection, two different
objective functions will be shown that fulfil this requirement: minimizing total travel time
and minimizing total passenger travel time.

4-3-1 Minimizing total travel time

Minimizing total travel time is basically the same as minimizing every arrival or departure
time of the total schedule; the absolute limits of the constraints will be pushed all the way
until the railway network can not be operated any quicker. This means that we just have
to minimize every value such that the total travel time xtot(k) is the lowest, resulting in the
following objective function:

min
x(k)

xtot(k) (4-22)

where xtot(k) can be interpret as:

xtot(k) =
(
1 1 · · · 1

)
· x̆(k) = 1̄ · x̆(k) (4-23)
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This optimization problem is linear, since both the constraints as well as the objective function
are linear. Therefore, it is the easiest and simplest optimization problem. However, it contains
some important information. For instance, the modelled railway network can never run fast
than the solution xsol(k) of this optimization problem. Therefore, it can be taken as a lower
bound for every other optimization problem.

4-3-2 Minimizing total passenger travel time

To formulate the real-time scheduling problem with respect to minimizing the total travel
time of all passengers, a specific objective function has to be defined. The total travel time of
passengers is the sum of the total waiting time and total in-vehicle time for every passenger.

Passenger waiting time

The passenger waiting time twaitj (k) at station j for train k is the waiting time of passengers
that were left behind by train k − 1 and the passengers that arrived randomly after worth:

twaitj (k) = wj(k − 1) · (dj(k)− dj(k − 1)) +
1

2
λj · (dj(k)− dj(k − 1))2 (4-24)

Since it is assumed that no passengers are left behind by train k− 1 and no passengers arrive
during the dwell time, wremain

j (k − 1) = 0 and dj(k) can be replaced with aj(k):

twaitj (k) =
1

2
λj · (aj(k)− dj(k − 1))2 (4-25)

If we write this equation out in terms of the vector x(k), we find that aj(k) = xj(k) and
dj(k − 1) = xJ+j(k − 1).

twaitj (k) =
1

2
λj · (xj(k)− xJ+j(k − 1))2

=
1

2
λj · (xj(k)− xJ+j(k − 1))T (xj(k)− xJ+j(k − 1))

(4-26)
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It can be found that for j = 1, ..., J :

twait1 (k) =
1

2
λ1 · (x1(k)− xJ+1(k − 1))T (x1(k)− xJ+1(k − 1))

=
1

2
λ1 ·













xT (k) ·










1
0
0
...
0










− xT (k − 1) ·













0
...
0
1
...
0















































1
0
0
...
0










T

· x(k)−













0
...
0
1
...
0













T

· x(k − 1)














= xT (k) ·













1
2λ1 · · · 0 0 · · · 0
...

. . .
...

...
. . . 0

0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0













· x(k) + xT (k − 1) ·













0 · · · 0 0 · · · 0
...

. . .
...

...
. . . 0

0 · · · 0 0 · · · 0
0 · · · 0 1

2λ1 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0













· x(k − 1)

− xT (k − 1) ·













0 · · · 0 0 · · · 0
...

. . .
...

...
. . . 0

0 · · · 0 0 · · · 0
λ1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0













· x(k)

...

twaitJ (k) =
1

2
λJ · (xJ (k)− x2J(k − 1))T (xJ(k)− x2J(k − 1))

= xT (k) ·













0 · · · 0 0 · · · 0
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. . .
...

...
. . . 0

0 · · · 1
2λJ 0 · · · 0

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0













· x(k) + xT (k − 1) ·













0 · · · 0 0 · · · 0
...

. . .
...

...
. . . 0

0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0
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. . .
...

...
. . .

...
0 · · · 0 0 · · · 1

2λJ













· x(k − 1)

− xT (k − 1) ·













0 · · · 0 0 · · · 0
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. . .
...

...
. . . 0

0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · λJ 0 · · · 0













· x(k)

(4-27)

M.Sc. thesis Ben Zwerink Arbonés



44 Controlling an urban train line

From these relations, we can construct the term twait(k) which is the sum of all the separate
twaitj (k):

twait(k) =

J∑

j=1

twaitj (k)

= xT (k) ·













1
2λ1 · · · 0 0 · · · 0
...

. . .
...

...
. . . 0

0 · · · 1
2λJ 0 · · · 0

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0













· x(k) + xT (k − 1) ·













0 · · · 0 0 · · · 0
...

. . .
...

...
. . . 0

0 · · · 0 0 · · · 0
0 · · · 0 1

2λ1 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 1

2λJ













· x(k − 1)

− xT (k − 1) ·













0 · · · 0 0 · · · 0
...

. . .
...

...
. . . 0

0 · · · 0 0 · · · 0
λ1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · λJ 0 · · · 0













· x(k)

= xT (k) ·

(
1
2λ 0
0 0

)

︸ ︷︷ ︸

λ0

·x(k) + xT (k − 1) ·

(
0 0
0 1

2λ

)

︸ ︷︷ ︸

λ1

·x(k − 1)− xT (k − 1) ·

(
0 0
λ 0

)

︸ ︷︷ ︸

λ2

·x(k)

(4-28)

Passenger in-vehicle time

The in-vehicle time tin-vehiclej (k) for all passengers is sum of the dwell time τd,j(k) for the
passengers who did not get out of the train at the current stop j and the running time rj(k)
for all passengers:

tin-vehiclej (k) = nj−1(k) · rj−1(k) + nj−1(k) · (1− ρj) · τd,j(k)

= nj−1(k) · (rj−1(k) + (1− ρj) · τd,j(k))

= nj−1(k) · (xj(k)− xj+J−1(k) + ρ̄j · τd,j(k))

(4-29)

because rj−1(k) can be written as the time between the departure time dj−1(k) = xj+J−1(k)
at j − 1 and the arrival time aj(k) = xj(k) at j. Furthermore, we write ρ̄j = 1 − ρj for
convenience. If we define the actual dwell time τd,j(k) simply as the difference between the
departure and arrival time at station j (i.e., as τd,j(k) = dj(k) − aj(k) = xj+J(k) − xj(k)),
we can substitute that:

tin-vehiclej (k) = nj−1(k) · (ρj · xj(k)− xj+J−1(k) + ρ̄j · xj+J(k)) (4-30)
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By definition, we know that tin-vehicle1 (k) = 0, since there are no passengers in the train yet.
By writing out (4-30) for j = 2, 3, ..., J , we find that:

tin-vehicle2 (k) = n1(k) · (ρ2 · x2(k)− x1+J(k) + ρ̄2 · x2+J (k))

tin-vehicle3 (k) = n2(k) · (ρ3 · x3(k)− x2+J(k) + ρ̄3 · x3+J (k))

...

tin-vehicleJ (k) = nJ−1(k) · (ρJ · xJ(k)− x2J−1(k) + ρ̄J · x2J(k))

(4-31)

and thus that:










tin-vehicle1 (k)
tin-vehicle2 (k)
tin-vehicle3 (k)

...
tin-vehicleJ (k)










︸ ︷︷ ︸

tin-vehicle(k)

=










0 0 0 · · · 0
0 n1(k) 0 · · · 0
0 0 n2(k) · · · 0
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...
...

. . .
...

0 0 0 · · · nJ−1(k)










·










0 0 0 · · · 0
0 ρ2 0 · · · 0
0 0 ρ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · ρJ

0 0 0 · · · 0
−1 ρ̄2 0 · · · 0
0 −1 ρ̄3 · · · 0
...

...
. . .

. . .
...

0 0 · · · −1 ρ̄J










︸ ︷︷ ︸

P

·










x1(k)
x2(k)

...
x2J−1(k)
x2J(k)










︸ ︷︷ ︸

x(k)

(4-32)

To find the total in-vehicle time tin-vehicle(k), we can take the sum of all the individual in-
vehicle times per station, as following:

tin-vehicle(k) =

J∑

j=1

tin-vehiclej (k) = 1̄ · tin-vehicle(k) (4-33)

where again 1̄ ∈ R
1×J is a unity vector such that the sum-operator is eliminated. We find

that this unity vector also eliminates the diagonal-operator in (4-32), such that:

tin-vehicle(k) =










0
n1(k)
n2(k)

...
nJ−1(k)










T

· P · x(k) (4-34)
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We would like to replace the first vector in (4-32) by an expression with x(k) in it. In order
to do so, the theory in section 3-4 can be used. Since it is assumed that there is no capacity
constraint for the trains, and no passengers board during the dwell time, the following can
be concluded:

nj(k) = nj−1(k) + nboard
j
︸ ︷︷ ︸

wwait
j

− nleave
j
︸ ︷︷ ︸

ρj ·nj−1(k)

= wwait
j + (1− ρj)

︸ ︷︷ ︸

ρ̄j

·nj−1(k)
(4-35)

and therefore, we can write out that:

n1(k) = wwait
1 + ρ̄1 · n0(k)

= wwait
1

n2(k) = wwait
2 + ρ̄2 · n1(k)

= wwait
2 + ρ̄2 · w

wait
1

n3(k) = wwait
3 + ρ̄3 · n2(k)

= wwait
3 + ρ̄3 · w

wait
2 + ρ̄3ρ̄2 · w

wait
1

...

(4-36)

which can be written in matrix-form as:










n1(k)
n2(k)
n3(k)

...
nJ(k)










=










1 0 0 · · · 0
ρ̄2 1 0 · · · 0
ρ̄3ρ̄2 ρ̄3 1 · · · 0
...

...
...

. . .
...

ρ̄J · · · ρ̄2 ρ̄J · · · ρ̄3 · · · · · · 1










·










wwait
1 (k)

wwait
2 (k)

wwait
3 (k)
...

wwait
J (k)










︸ ︷︷ ︸

wwait(k)

(4-37)

Since we only need the first J − 1 terms of nj(k), the expression in (4-38) is rewritten as:










0
n1(k)
n2(k)

...
nJ−1(k)










=










0 0 0 · · · 0 0
1 0 0 · · · 0 0
ρ̄2 1 0 · · · 0 0
...

...
...

. . .
...

...
ρ̄J−1 · · · ρ̄2 ρ̄J−1 · · · ρ̄3 · · · · · · 1 0










︸ ︷︷ ︸

Tρ

·wwait(k) (4-38)

and finally, by substituting (4-38) into (4-39), it can be found that:

tin-vehicle(k) = wwait(k)T · T T
ρ · P · x(k) (4-39)
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Finally, by substituting the results from (3-36), the total in-vehicle travel time for train k can
be defined in terms of x(k):

tin-vehicle(k) =

(

[
λ 0

]
x(k)−

[
0 λ

]
x(k − 1)

)T

· T T
ρ · P · x(k)

= xT (k) ·
[
λ 0

]T
· T T

ρ · P · x(k)− xT (k − 1) ·
[
0 λ

]T
· T T

ρ · P · x(k)

(4-40)

which can be written in the following form:

tin-vehicle(k) = xT (k) ·H · x(k) + xT (k − 1) · F · x(k) (4-41)

H =
[
λ 0

]T
· T T

ρ · P (4-42)

F = −
[
0 λ

]T
· T T

ρ · P (4-43)

(4-44)

From (4-41), (4-42) and (4-43), it can be seen that the total travel time for passengers in
train k is a quadratic optimization function, with some dependencies on past trains k−1. We
can also observe that the matrix H is playing a major role in the ease of this optimization
problem. If this matrix is symmetric and positive definite, then the problem is convex and
easily solvable.

Total travel time

The total travel time of all passengers for train k is now defined as the weighted sum of the
passenger waiting time for train k and the total in-vehicle time in train k:

ttotal(k) =
J−1∑

j=1

(γwaitt
wait
j (k) + tin-vehiclej (k))

= γwaitt
wait(k) + tin-vehicle(k)

= xT (k) · (H + γwaitλ0)
︸ ︷︷ ︸

H∗

·x(k) + xT (k − 1) · (F − γwaitλ2)
︸ ︷︷ ︸

F∗

·x(k) + xT (k − 1) · (γwaitλ1)
︸ ︷︷ ︸

C

·x(k − 1)

(4-45)

where γwait is a weighting factor that can be taken larger than 1, because passengers usually
feel that time passes slower when they are waiting for a train. It is now important to also
write the objective function in terms of x̆(k), such that we have a quadratic optimization
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problem with linear constraints (4-21). To do so, we start by defining the total travel time for

M trains as t̆total(k) =
(
ttotal(k) ttotal(k + 1) · · · ttotal(k +M − 1)

)T
. Then we see that:








ttotal(k)
ttotal(k + 1)

...
ttotal(k +M − 1)








= diag








x(k)
x(k + 1)

...
x(k +M − 1)








·








H∗ 0 · · · 0
0 H∗ · · · 0
...

...
. . .

...
0 0 · · · H∗








·








x(k)
x(k + 1)

...
x(k +M − 1)








+ diag








x(k − 1)
x(k)
...

x(k +M − 2)








·








F∗ 0 · · · 0
0 F∗ · · · 0
...

...
. . .

...
0 0 · · · F∗








·








x(k)
x(k + 1)

...
x(k +M − 1)








+ diag








x(k − 1)
x(k)
...

x(k +M − 2)








·








C 0 · · · 0
0 C · · · 0
...

...
. . .

...
0 0 · · · C








·








x(k − 1)
x(k)
...

x(k +M − 2)








(4-46)

This expression can be reshuffled, because x̆(k−1) can be written as a combination of x(k−1)
and the first M − 1 rows of x̆(k). Furthermore, the total travel time for all passengers of the
M trains that are considered, is t̆total(k) = 1̄ · t̆total(k) = ttotal(k)+ttotal(k+1)+ · · ·+ttotal(k+
M − 1). The reduced relation is:

t̆total(k) =








x(k)
x(k + 1)

...
x(k +M − 1)








T

·









H∗ + C F∗ · · · 0

0 H∗ +C
. . .

...
...

...
. . . F∗

0 0 · · · H∗









·








x(k)
x(k + 1)

...
x(k +M − 1)








+ x(k − 1)T ·








F∗

0
...
0








T

·








x(k)
x(k + 1)

...
x(k +M − 1)








+ x(k − 1)T · C · x(k − 1)

(4-47)
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which can be written more compactly as:

t̆total(k) = x̆(k)T ·









H∗ + C F∗ · · · 0

0 H∗ +C
. . .

...
...

...
. . . F∗

0 0 · · · H∗









︸ ︷︷ ︸

H̆

·x̆(k)

+ x(k − 1)T ·








F∗

0
...
0








T

︸ ︷︷ ︸

F̆

·x̆(k) + x(k − 1)T · C · x(k − 1)

(4-48)

The optimization problem now becomes:

min
x̆(k)

x̆(k)T · H̆ · x̆(k) + x(k − 1)T · F̆ · x̆(k) + x(k − 1)T · C · x(k − 1) (4-49)

Again, it can be observed that the matrix H̆ is crucial: when this matrix is symmetric and
positive definite (i.e., when all its (conventional) eigenvalues are larger than 0), then we see
that this objective function is convex.

4-4 Control

By transforming the max-plus system back to linear inequality-constraints and adding an
objective function, an optimal solution x̆sol(k) can be found by using LP or QP. This schedule
can be used as a control variable when implemented as:

ŭ(k) = x̆sol(k) (4-50)

x̆(k) ≥ ŭ(k) (4-51)

where ŭ(k) is the control variable that can steer x̆(k) into the desired schedule within the
max-plus framework. By adding (4-51) as an extra control variable to the original MP-LPV
system that was defined in (3-43), it can be seen that this would result into the following
expression:

x̆(k) = Ă0(p̆)⊗ x̆(k)⊕ Ă1 ⊗x(k − 1)⊕ B̆⊗ d̆(k)⊕ ŭ(k) (4-52)

where for convenience, Ă(p̆) and Ă0 were merged back into one matrix Ă0(p̆), i.e. Ă0(p̆) =
Ă(p̆)⊕ Ă0.
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Because of the ⊕-operator, ŭ(k) can only delay x̆(k). This is not necessarily a problem: as
long as the (convex) optimization problems find a minimal cost, it is guaranteed that no
other (quicker) scheduling would give a better result in terms of the objective function, and
thus that the solution x̆sol yields the most ideal schedule. Consider the following Lemma:

Lemma 4 (Relaxation of the MP-LPV system)
The optimization problem minx̆(k) J(x̆(k)) subject to either x̆(k) ≥ Ă0(p̆)⊗ x̆(k)⊕ b [1] or

x̆(k) = Ă0(p̆)⊗ x̆(k)⊕ b⊕ ŭ(k) [2] gives the same cost value J(x̆(k)), as long as ŭ(k) =
x̆sol,[1](k) is the solution to the first of the two problems.

A Proof will follow underneath.

Proof Consider the MP-LPV system underneath:

x̆(k) = Ă0(p̆)⊗ x̆(k)⊕ b

Since we have an equality sign, we can add a cost function to the problem without violating
any mathematical rule:

min
x̆(k)

J(x̆(k))

s.t. x̆(k) = Ă0(p̆)⊗ x̆(k)⊕ b

As long as there exists a solution x̆(k) that fulfils this constraint, it is obvious that minimizing
this objective function yields only one solution x̆sol,1(k), because of the equality-sign. The cost
that follows according to this solution is J(x̆sol,1(k)). This solution is what we can call the
’free-run schedule’, which is the MP-LPV without any control. Now consider the following
optimization problem:

min
x̆(k)

J(x̆(k))

s.t. x̆(k) ≥ Ă0(p̆)⊗ x̆(k)⊕ b

This expression can also be rewritten to linear inequalities as could be seen in the previous
sections. As long as J(x̆(k)) is a convex function of x̆(k), then this optimization problem yields
an optimal solution x̆sol,2(k) which gives us that J(x̆sol,2(k)). Now we can add the steering
control signal ŭ(k) to the first problem, defining it as the solution of the second optimization
problem:

min
x̆(k)

J(x̆(k))

s.t. x̆(k) = Ă0(p̆)⊗ x̆(k)⊕ b⊕ ŭ(k)

ŭ(k) = x̆sol,2(k)
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Now we assume:

x̆(k) = Ă0(p̆)⊗ x̆(k)⊕ b
︸ ︷︷ ︸

χ̆(k)

⊕ ŭ(k)
︸︷︷︸

x̆sol,2(k)

= max(χ̆(k), x̆sol,2(k))

and fill in at the right side of the equation that x̆(k) = x̆sol,1(k) (i.e., the free run sched-
ule). There are three scenarios that possible: x̆sol,1(k) is larger, smaller or equal to x̆sol,2(k).
Suppose that x̆sol,1(k) ≥ x̆sol,2(k), then χ̆(k) > x̆sol,2(k) and the new solution x̆sol(k) = χ̆(k)
would be larger than x̆sol,2(k), which implies that the schedule x̆sol(k) would become worse
than x̆sol,2(k). However, the solution x̆sol,2(k) was supposed to be the solution to a convex
optimization problem, indicating that J(x̆sol,2(k)) is minimal. So a slower schedule x̆sol(k)
indicates a higher cost value, i.e. J(x̆sol(k)) > J(x̆sol,2(k)) which is not desired. The steering
control variable would not do its job well.

Now consider x̆sol,2(k) > x̆sol,1(k) and thus that χ̆(k) < x̆sol,2(k). It would be clear that
x̆sol(k) = max(χ̆(k), x̆sol,2(k))) = x̆sol,2(k) and the cost would remain J(x̆sol,2(k)).

Finally, the third condition is when x̆sol,1(k) = x̆sol,2(k), indicating that χ̆(k) = x̆sol,2(k),
implying J(x̆sol(k)) = J(x̆sol,1(k)) = J(x̆sol,2(k)) and thus that adding ŭ(k) = x̆sol,2(k) did
not change the problem formulation. This means that x̆sol,2(k) ≥ x̆sol,1(k) guarantees that the
two optimization problems will give the same cost when we add ŭ(k) = x̆sol,2(k) and that we
can rewrite the MP-LPV to linear inequalities to find the scheduling solution. �

The Proof shows that the result of the optimization problem would be no different when
adding ŭ(k) = x̆sol,2(k). Since the cost of the optimization problem with both a steering
control signal and equality-sign constraints was the same as the cost with the inequality-
sign constraints, converting them to linear inequalities is allowed and this relaxation will
not influence the result. However, this can only be guaranteed as long as it holds that the
objective function J(x̆(k)) is convex.

It also shows us that in case of no disturbance, the two schedules x̆sol,1(k) and x̆sol,2(k) would
be the same and that their cost would then also be the same. In case of a disturbance and thus
a delayed x̆sol,1(k) and x̆sol,2(k), we can see that by adding the delayed x̆sol,2(k) > x̆sol,1(k), the
cost remains the same. This indicates that we can rewrite the second optimization problem
to linear inequalities and still maintain the same cost.
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Chapter 5

Case study

In the previous chapters, the MP-LPV system has been described and it was proposed how
such a model could still be used and controlled. In this chapter, the theory up until now will
be used in a case study to show if the formulation also holds in practice.

The case study consists of a fictional urban rail line, consisting of J = 10 stations and K = 10
trains. The idea of the optimization problem is that it takes M trains into account in every
iteration. So if M = 3, there would be K −M + 1 = 8 updates. But since in this case study,
we will only compute one M-steps-ahead prediction, we choose M = K = 10. Furthermore,
the following constants will be used:

Constants
Description Constant Value

Passenger rate λ1 0.9 [pass/s]
per station λ2 0.8 [pass/s]

λ3 1.3 [pass/s]
λ4 1.2 [pass/s]
λ5 1.4 [pass/s]

Minimal running time τr,min,1 60 [s]
τr,min,2 80 [s]
τr,min,3 40 [s]
τr,min,4 60 [s]
τr,min,5 30 [s]

Ratio of ρ1 0.2 [-]
alighting passengers ρ2 0.3 [-]

ρ3 0.5 [-]
ρ4 0.8 [-]
ρ5 0.7 [-]

Dwell time characteristic α1,d 4.002 [s]
Dwell time characteristic α2,d 0.047 [s/pass]
Dwell time characteristic α3,d 0.05 [s/pass]
Ratio objective function γ 0.5 [-]

Constants
Description Constant Value

Passenger rate λ6 0.8 [pass/s]
per station λ7 0.8 [pass/s]

λ8 0.9 [pass/s]
λ9 1.2 [pass/s]
λ10 0 [pass/s]

Minimal running time τr,min,6 40 [s]
τr,min,7 50 [s]
τr,min,8 60 [s]
τr,min,9 80 [s]
τr,min,10 0 [s]

Ratio of ρ6 0.9 [-]
alighting passengers ρ7 0.6 [-]

ρ8 0.5 [-]
ρ9 0.3 [-]
ρ10 1 [-]

Minimal dwell time τ̃d 5 [s]
Minimal headway time τh,min 60 [s]
Frequency of trains τh,1 90 [s]

Furthermore, the initialization vector, i.e. the ’zeroth’ train x(k − 1) is chosen to be:
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aT (k − 1) =
(
0 70 155 200 265 300 345 400 465 550

)

dT (k − 1) =
(
10 75 160 205 270 305 350 405 470 555

)

x(k − 1) =
(
aT (k − 1) dT (k − 1)

)T

The simulations are done with MATLAB R2016b, with an Intel Core i5-3340M processor with
2.70 GHz CPU and 8 GB of RAM, on a 64-bits Windows 10 operating system. Most of the
variables are loaded into MATLAB through an Excel-sheet. The LP optimization is solved
with the MATLAB-commmand ’linprog’ while the QP optimization is solved with ’quadprog’.
An important mentioning has to be done about ’quadprog’: it appears that the H̆-matrix
contains negative eigenvalues with these (and also for other choices of the) aforementioned
constants, therefore not being positive definite and consequently, the optimization problem
is non-convex. Furthermore, H̆ is not symmetric. The latter can be solved easily by taking

H̆∗ = H̆T+H̆
2 , something that is automatically done within the ’quadprog’ command.

But the non-convex problem is a little more complex. Since it is not convex, it can not be
guaranteed that the solution that is found is also the global optimum. The optimization might
get stuck in a local optimum. However, trying to solve the same optimization problem with
other solvers like CPLEX gives no result at all; it can not compute since H̆ is not positive
definite in the first place. This means that the build-in ’quadprog’ command in MATLAB
somehow manages to still compute for some cases. Even though the QP optimization perfectly
computes in Case A and Case B, it can be seen in Case 3 that this is not always the case.
Therefore, we are forced to mention that the results obtained with the ’quadprog’ command
should not be entirely trusted; it can not be guaranteed that it actually computes the global
minimum. As a result of this, we will introduce a non-linear optimization method for Case C
as well, by using the ’fmincon’ build-in function in MATLAB and see if this gives trustworthy
results.

Case A: undisturbed line

As a first case, d̆(k) will be set to E which means that there is no disturbance. This mean
that we have the following MP-LPV:

x̆(k) = Ă0(p̆)⊗ x̆(k)⊕ Ă1 ⊗x(k − 1)⊕ B̆⊗ d̆(k) = Ă0(p̆)⊗ x̆(k)⊕ Ă1 ⊗x(k − 1) (5-1)

The simulation will be done in 4 different ways; both as a single-at-once [1] and multiple-at-
once [2] cycle iterative MP-LPV, as a Linear Programming problem while minimizing x̆(k)
[3] and as a Quadratic Programming problem while minimizing total passenger travel time
[4]. The results can be seen in Figure 5-1.
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Figure 5-1: Comparison of performance between the free run iterative MP-LPV simulations
(above) and the relaxed, linear inequality versions solved within an optimization framework (un-
der). There is no disturbance so they all behave the same. The ’first’ train is just an initialization
and is in fact x(k-1).

Since there is no disturbance, all the methods yield the same result: the ’quickest’ schedule
x̆(k) is the fastest free run. With free run, the pure max-plus system is meant, without
any objective function; every train k leaves whenever it is possible. Since the LP problem
minimizes x̆(k), and since we showed before that even though it is a relaxed formulation it
should give the same answer, we can find that its optimum is equal to a free run schedule.
To show that that the schedules are indeed equal, we can take a look at the value of the cost
for minimizing x̆(k) (JLP(x̆(k))) and for minimizing total passenger travel time (JQP(x̆(k))):

Results
Method JLP(x̆(k)) JQP(x̆(k)) Computation time [s]

1 1.6904 · 105 1.2704 · 107 0.0899
2 1.6904 · 105 1.2704 · 107 1.0581
3 1.6904 · 105 1.2704 · 107 0.3830
4 1.7079 · 105 1.2704 · 107 0.4048

As can be seen from Table 5, the schedules are indeed the same. The only side-note that has
to be given is the value for the QP-solution (number 4) in the LP cost function; it differs
slightly from the other cost values, but the reason is simple. Since the QP problem minimizes
the total passenger travel time, it does not take into account the departure time of the last
train at the last station. The reason being that because λ10 = 0 and ρ10 = 1, there are no
passengers in the train any more. Since there is no next train, it is not forced to leave the
station. It can be seen from the value for the QP-solution in the QP cost function that it does
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not matter for the optimization if x10(10) is large or small: they all give the same value. But
by taking away the last entry of x̆(k), this problem can be avoided and we would see that the
costs are all the same in the case of simulation without disturbance. In Figure 5-1, this last
departure time of last train has manually been reduced such that the figure shows up well.

Case B: disturbed line

In the second case, we would like to see the effect of anticipating on the (expected) disturbance:
the entry of d̆(k) that is responsible for an external disturbance on train 3, station 2 will be
set to 500 seconds. This mean that the departure time of the third train is now fixed at 500
seconds. The resulting MP-LPV is:

x̆(k) = Ă0(p̆)⊗ x̆(k)⊕ Ă1 ⊗x(k − 1)⊕ B̆⊗ d̆(k)

d̆i(k) =

{

500 , if i = 2 · J · k + (j + J) = 2 · 10 · 3 + (2 + 10) = 72

ǫ , else

Now, there will be some notable difference with the undisturbed case. This can be seen from
Figure 5-2.
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Figure 5-2: Comparison of performance between the free run iterative MP-LPV simulations
(above) and the relaxed, linear inequality versions solved within an optimization framework (un-
der). There is a disturbance on the departure time of train 3 at station 2. The ’first’ train is just
an initialization and is in fact x(k-1).
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Clearly, the disturbance causes the LP and QP solutions to be different from the free run-
variants. The optimizations work with an M-steps-ahead principle, which lets them anticipate
on the disturbance with respect to their objective functions. This can clearly be seen by
inspecting the behaviour of train 2, the train before train 3: it anticipates on the disturbance
by going slower as well, which makes sure that the train 3 does not run away from its
predecessors. The free run (both one cycle as multiple cycles at once) MP-LPV systems
behave similar to each other but are not controlled, which explains the results in Table 5.
Also, observe that the free run schedules are still finite, but from the behaviour of train 3 it
seems obvious that - as the station counter J goes to infinity -, the headway time between
train 2 and 3 goes to infinity (as has been shown in the Proof in Section 4-1). This does not
happen for the optimized schedule: everything gets delayed accordingly to the disturbance
such that a lower cost value can be found (both for minimizing x̆(k) and for minimizing total
passenger travel time).

Results
Method JLP(x̆(k)) JQP(x̆(k)) Computation time [s]

1 1.8100 · 105 1.5751 · 107 0.0466
2 1.8100 · 105 1.5751 · 107 1.0758
3 1.7767 · 105 1.3826 · 107 0.2374
4 1.8364 · 105 1.3698 · 107 0.2545

From the results, it becomes clear that the best value for the LP cost is achieved by the LP
optimization itself, something that also can be said for the best value for the QP cost (which is
found by the QP optimization). Clearly, the optimization strategies find a minimum cost that
satisfies their respective objective functions. However, for the QP formulation, it can not be
proven that this is a global optimum. The reason why will be explained in Case C. Still, the
result is valid with respect to the constraints, which can be tested by taking ŭ = x̆sol,QP(k).
If this control action is implemented in the original MP-LPV formulation, we can observe in
Figure 5-3 that it is indeed a solution since the two schedules are equal.

Another interesting conclusion that can be made for Case B is about the computation speed:
for both optimization problems, for these settings, it takes roughly a quarter of a second to
compute the optimum.

Case C: disturbed with high passenger load

As has been mentioned in both the introduction of this chapter, as well as in the last paragraph
of Case B: the build-in ’quadprog’ command within MATLAB computes, but since we do not
have a positive definite matrix H̆ it can not be guaranteed that the QP solution for Case
B is the global optimum. It will be shown that ’quadprog’ does actually not compute any
more if we raise the aforementioned passenger loads λj . We believe that the reason for
’quadprog’ to still compute in Cases A and B is that the constraints create a safe bound on
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Figure 5-3: Solution of the QP optimization where afterwords ŭ = x̆sol,QP(k) is taken as a control
signal in the original MP-LPV, as a check. The ’first’ train is just an initialization and is in fact
x(k-1).

the objective function in which ’quadprog’ can search as a convex problem. If we increase the
passengers load sufficiently, these bounds shift and there is a point where it concludes that
convex optimization is not possible any more.

Therefore, a non-linear optimization strategy [5] will be used for this case. The build-in
function ’fmincon’ can be used for this. If we increase the default number of iterations from
3000 to at least one million, it can find a local minimum which is very similar to the results
of ’quadprog’. By increasing all but the last one of the λj by 1 (passenger per second), the
following characteristics are found:

Constants
Description Constant Value

Passenger rate λ1 1.9 [pass/s]
per station λ2 1.8 [pass/s]

λ3 2.3 [pass/s]
λ4 2.2 [pass/s]
λ5 2.4 [pass/s]

Constants
Description Constant Value

Passenger rate λ6 1.8 [pass/s]
per station λ7 1.8 [pass/s]

λ8 1.9 [pass/s]
λ9 2.2 [pass/s]
λ10 0 [pass/s]

The rest of the characteristics will remain the same. The non-linear optimization basically
uses the exact same objective function as the quadratic programming objective function as
defined in (4-49), which is:

min
x̆(k)

x̆(k)T · H̆ · x̆(k) + x(k − 1)T · F̆ · x̆(k) + x(k − 1)T · C · x(k − 1)

As a starting initial point, we use a vector x0 = 1̄ ∈ R
2·J ·M i.e. a vector filled with only

ones. As a lower bound on the solution, we use the solution of the free run MP-LPV systems
for the undisturbed case in Case A, since we know that the max-plus algebra will only allow
trains to be equally fast or slower in case of a disturbance. There is no upper bound and
there are no equality constraints. The amount of maximum function evaluations is set to 106.
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Since the QP optimization does not work for these constraints, its solution is replaced with
the non-linear optimization solution in Figure 5-4:
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Figure 5-4: Comparison of performance between the free run iterative MP-LPV simulations
(above) and the relaxed, linear inequality versions solved within an optimization framework (un-
der). There is a disturbance on the departure time of train 3 at station 2. The ’first’ train is just
an initialization and is in fact x(k-1).

The resulting cost values for both minimizing x̆(k) (JLP(x̆(k))) and minimizing the total
passenger travel time (JQP(x̆(k))) as well as the computation times can be found underneath:

Results
Method JLP(x̆(k)) JQP(x̆(k)) Computation time [s]

1 1.9581 · 105 3.9206 · 107 0.0456
2 1.9581 · 105 3.9206 · 107 1.0418
3 1.8729 · 105 3.0357 · 107 0.2486
4 - - -
5 1.8778 · 105 3.0087 · 107 17.3326

Clearly, the non-linear optimization takes more computation time than the LP optimization,
but it is still a tolerable amount of time considering that an update is only required approx-
imately every τh,1 = 90 seconds (i.e. the time it approximately takes for the next train x(k)
to finish and become the new x(k − 1)). Furthermore, we see that the non-linear solution is
a little bit better than the LP solution, but not considerably much better. It also still holds
that the LP solution is still the ’quickest’ x̆(k) considering its objective function, which is to
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be expected. However, it does not differ that much. Since both JLP(x̆(k)) and JQP(x̆(k)) do
not differ that much from each other, it can be concluded that the solutions are very much
similar and thus that the LP solution is much more favourable in terms of computation time.

If computation time is considered an issue, it is also possible to work with a ’relaxed’ QP
optimization [6]. In this case, we can compute the conventional eigenvalues of the matrix H̆.
Since some of them are negative and thus the matrix is indefinite, it can artificially be made
convex by adding a slightly larger value than the largest (negative) eigenvalue, as following:

min
x̆(k)

x̆(k)T · H̆ · x̆(k)+c · x̆(k)T x̆(k)+x(k − 1)T · F̆ · x̆(k) + x(k − 1)T · C · x(k − 1)

= x̆(k)T ·
(

H̆ + cI
︸ ︷︷ ︸

H̆∗

)

· x̆(k) + x(k − 1)T · F̆ · x̆(k) + x(k − 1)T · C · x(k − 1)

with

c > −min eig
(

H̆T + H̆
)

For the current setting, we find that min eig
(

H̆T + H̆
)

= −3.5668, so by adding c = 3.6 we

will find a new H̆∗ that is positive definite since all its eigenvalues are positive. We can now
use the ’quadprog’ command to find Figure 5-5:
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Figure 5-5: Solution of the ’relaxed’ QP optimization where afterwords ŭ = x̆sol,QP(k) is taken
as a control signal in the original MP-LPV, as a check. The ’first’ train is just an initialization
and is in fact x(k-1).

Furthermore, the resulting new cost values for option [6] become:
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Results
Method JLP(x̆(k)) JQP(x̆(k)) Computation time [s]

3 1.8729 · 105 3.0357 · 107 0.2546
5 1.8778 · 105 3.0087 · 107 17.3326
6 1.8731 · 105 3.0351 · 107 0.2459

In able to compare, options [3] and [5] have also been added to the table. Since the objective
function has changed due to the addition of c · x̆(k)T x̆(k), the cost would normally be higher
for [6]. For comparison, this has also been subtracted again while computing JQP(x̆(k)). We
can see that by making the objective function truly convex, the solution is computable again
and almost entirely similar to the schedule that was obtained with LP. This indicates that
introducing non-linear programming did not give us a better solution than LP and (relaxed)
QP did. We can also observe that the difference between LP cost and the relaxed QP cost
became smaller, indicating that minimizing x̆(k) gives similar results to minimizing the total
travel time of passengers.

Case D

In order to be able to fully understand the flaws of ’quadprog’, a situation in between of
Case B and Case C will be shown: the case where the QP optimization still computes, but
where we can see that the solution is not unique because the matrix H̆ is not positive definite.
Therefore, the QP optimization is not convex and we can not guarantee that the solution is
unique to the cost value. The characteristics from the first table of this chapter will be used
again, instead of the modified version in Case C.

In order to compare these systems, there will be 3 sub-cases: one case where the minimal
eigenvalue of the matrix H̆ is smaller than 0, another case where it is larger than 0 and
finally one more case where it is ’sufficiently’ larger than 0 to show that the solution from the
non-linear optimization becomes the same as the solution from the QP optimization. The
meaning of sufficiently will be explained in the latter case.

Case D.1

The first sub-case will be a similar to the Case B, except that we also compute the non-linear
optimization problem. Furthermore, we raise the disturbance on the departure time of the
third train in the second station to 700 seconds, i.e. d̆72 = 700 instead of 500. This in order
to show the difference more clearly in the figures; similar results can be obtained with the
previous settings but they are less visible.

It can be observed from Figure 5-6 that the scheduling results for the non-linear optimization
problem and the (non-convex) quadratic programming problem are different. Although the
cost varies very little (the quadratic optimization problem gives a cost value that is 0.12%
larger than the non-linear optimization problem). The difference in scheduling can be ex-
plained by the fact that the quadratic optimization problem is not convex, and that even
though it computes it is not a guaranteed global minimum, so other schedules and minimums
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are possible. The small difference in cost value is harder to directly explain: it might be a
numerical error but also (again) the fact that ’quadprog’ finds a different local minimum than
’fmincon’.
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QP problem - minimizing total travel time for passengers
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Figure 5-6: Comparison of performance between the free run iterative MP-LPV simulation and
non-linear optimization (above) and linear programming and quadratic programming versions
(under). There is a disturbance on the departure time of train 3 at station 2. The ’first’ train is
just an initialization and is in fact x(k-1).

From the table, it can be seen that the cost for the minimizing x̆(k) is still achieved by the LP
optimization, but clearly the non-linear optimization finds a slightly better cost for minimizing
total passenger travel time than the QP optimization. As mentioned before, this might be a
numerical error, but at least indicates that ’quadprog’ does not find a global minimum. Also,
notice that reducing back the passengers rates made the non-linear optimization way quicker
in terms of computation time in comparison with the non-linear optimization in Case C.

Results
Method JLP(x̆(k)) JQP(x̆(k)) Computation time [s]

2 2.2006 · 105 2.5863 · 107 1.0335
3 2.0929 · 105 1.8861 · 107 0.2402
4 2.2274 · 105 1.6889 · 107 0.2543
5 2.1577 · 105 1.6867 · 107 3.9137
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Case D.2

The second sub-case will take into account the minimum eigenvalue of H̆ + H̆ again. This
time, it can be found that it is λmin = −2.0235, which means that we can add c = 2.1 and
make the QP objective function convex again. The following interesting effects are visible:
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QP problem - minimizing total travel time for passengers
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LP problem - minimizing the schedule x

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time [s]

1

2

3

4

5

6

7

8

9

10

S
ta

ti
o
n
 #

Max-plus LPV system - free run, multiple cycles at once

Figure 5-7: Comparison of performance between the free run iterative MP-LPV simulation and
non-linear optimization (above) and linear programming and quadratic programming versions
(under). There is a disturbance on the departure time of train 3 at station 2. The ’first’ train is
just an initialization and is in fact x(k-1).

In Figure 5-7, it can be seen that the two schedules on the right side are almost equal now,
indicating that the QP optimization [6] indeed finds a global optimum and that the non-linear
optimization [5] finds similar results. Now observe the table underneath:

Results
Method JLP(x̆(k)) JQP(x̆(k)) Computation time [s]

2 2.2006 · 105 2.5863 · 107 1.0106
3 2.0929 · 105 1.8861 · 107 0.2404
5 2.1039 · 105 1.8166 · 107 11.7185
6 2.1041 · 105 1.8163 · 107 0.2534

The differences between the QP and non-linear optimizations are very small again, but this
time, it can be seen from Figure 5-7 that they give very similar schedules. So clearly, the fact
that the matrix H̆∗ is convex now, seemingly results into a global minimum. The difference in
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cost value can be attributed to numerical differences in the two methods, since it is only 0.2%
for the minimizing total passenger travel time-cost and 0.1% for the minimizing x̆(k)-cost.

To show the actual little difference between the two methods, we can compute the average
squared error between the two. We find that:

1

n
eT e =

1

2 · J ·M
(x̆QP − x̆NL)

T (x̆QP − x̆NL) =
201.2

200
= 1.0061

The average difference between arrival and departure times for the two schedules is approx-
imately one second. Case D.3 shows that this can be reduced by increasing the value c and
thus the eigenvalues of the matrix H̆∗.

Case D.3

This time, the value c is set to 10. A figure will not be shown, because it would be too similar
to Figure 5-7. Instead of a figure, we can observe the table with result underneath:

Results
Method JLP(x̆(k)) JQP(x̆(k)) Computation time [s]

2 2.2006 · 105 2.5863 · 107 1.0328
3 2.0929 · 105 1.8861 · 107 0.2384
5 2.1035 · 105 1.8174 · 107 7.4794
6 2.1036 · 105 1.8172 · 107 0.2594

The differences become a little bit smaller again, which can be better seen from the average
squared error:

1

n
eT e =

1

2 · J ·M
(x̆QP − x̆NL)

T (x̆QP − x̆NL) =
47.2

200
= 0.24

The numerical differences between Case D.2 and Case D.3 can be explained as following:
by increasing the eigenvalues of H̆∗, the slopes of the convex function become steeper and
therefore it is easier for both programs to find the global optimum. Since many of the
eigenvalues in Case D.2 were close to 0, the matrix H̆∗ was close to being positive semi-
definite, which could indicate a poly-dimensional surface of solutions. The steeper the slopes,
the better the algorithms can work in order to approximate the global optimum.

Therefore, by substantially increasing the eigenvalue of the matrix H̆∗, a global optimum can
be guaranteed and the non-linear programming problem shows that this is indeed a similar
solution.
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Chapter 6

Evaluation within the max-plus algebra
framework

In the previous chapter, it was shown how the max-plus algebra framework could be used
to control an urban railway line with a variable dwell time, by using a linear, quadratic and
non-linear optimization problems that minimize both x̆(k) and the total travelling time for
passengers. The resulting matrices Â0(p(k)) in the matrix Ă(p̆) change from train to train
and can therefore not easily be evaluated like most matrices in max-plus algebra (Heidergott
et al., 2014). Still, the matrix Ă(p̆) contains important information about the urban railway
line, such as the dwell times, minimal travel times, and some relations between M − 1 trains
with respect to each other.

Therefore, it is interesting to use this information somehow, and evaluate such a linear pa-
rameter varying matrix nevertheless.

6-1 Analysis of the matrix Â0(p)

For this section the matrix A0(p) (3-42) will be used, but with the simplification that we do
not consider the minimal dwell times τ̃d. If we consider j = 3, we find that A0(p) ∈ R

6×6 and
that it looks as following:

A0(p) =











E
ǫ ǫ ǫ

τr,min,1 ǫ ǫ

ǫ τr,min,2 ǫ

τd,1(k) ǫ ǫ

ǫ τd,2(k) ǫ

ǫ ǫ τd,3(k)
E











(6-1)

Or, equivalently in graph theory:
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1 3 5

2 4 6

τd,1(k) τd,2(k) τd,3(k)τr,min,1 τr,min,2

With a close look to this graph, it can be be observed that every node is connected to the
following node, except for node 6 which does not relate back to node 1. Whenever an arc
(i, j) exists but the retuning arc (j, i) does not exist, we have a so-called directed graph. When
there exists a path between node i and node j (in this order), then j is reachable from node i.
A graph G(A) is strongly connected when every node j is reachable from node i. A strongly
connected graph G(A) implies that the matrix A is irreducible. Since node 1 is not reachable,
G(A0(p)) is not strongly connected and therefore the matrix A0(p) is called reducible.

The irreducibility of a matrix A is of great importance for the max-plus eigenvalue of that
matrix. When a matrix is irreducible, it contains at least one circuit which contains an average
circuit weight. The average circuit weight is directly coupled to the definition of a max-plus
eigenvalue, as could be seen from (2-20), and it is unique.

It should be noted that the matrix A0(p) on itself is not of great importance if the eigenvalue
of the MP-LPV system has to be found: it does not contain all the information of the system.
The rest of the information can be found in A1, so we will need to combine this information
somehow.

6-1-1 Kleene star of the matrix A0(p)

It is best to introduce some more theory first. An important property of a matrix is the
nilpotency. A matrix A ∈ R

n×n
max is nilpotent if the following is true:

A⊗n−1 6= E

A⊗n+i = E for i ≥ 0
(6-2)

If this is true, then it is also possible to compute the Kleene star of that matrix A (2-17).
The Kleene star would allow us to write the problem as (2-15) (see Example 1.2), which on
its turn can be used to extract information from using Karp’s algorithm (subsection 6-1-2).

If we consider again the example of the matrix A0(p) as in (6-1), with n = 6, it is easily
verifiable to see that:

A0(p)
⊗n−1 = A0(p)

⊗ 5

= A0(p)⊗A0(p)⊗A0(p)⊗A0(p)⊗A0(p)

=







E E

ǫ ǫ ǫ

ǫ ǫ ǫ

τd,1(k) + τd,2(k) + τd,3(k) + τr,min,1 + τr,min,2 ǫ ǫ

E







(6-3)
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Clearly, this matrix has one finite element left. Since A0(p)
⊗n = A0(p)

⊗n−1⊗A0(p) = E , it
can be concluded that A0(p) is nilpotent. Therefore, it is also possible to compute the Kleene
star A∗

0(p):

A∗
0(p) = E⊕A0(p)⊕A2

0(p)⊕ ...⊕An−1
0 (p)

= E⊕A0(p)⊕A2
0(p)⊕ ...⊕A5

0(p)

= E⊕











E
ǫ ǫ ǫ

τr,min,1 ǫ ǫ

ǫ τr,min,2 ǫ

τd,1(k) ǫ ǫ

ǫ τd,2(k) ǫ

ǫ ǫ τd,3(k)
E











⊕ ...⊕







E E
ǫ ǫ ǫ

ǫ ǫ ǫ

τd,1(k) + τd,2(k) + τd,3(k) + τr,min,1 + τr,min,2 ǫ ǫ

E







=

(

A∗
0,[a,a](p) A∗

0,[a,d](p)

A∗
0,[d,a](p) A∗

0,[d,d](p)

)

(6-4)

where:

A∗
0,[a,a](p) =





e ǫ ǫ

τr,min,1⊗ τd,1(k) e ǫ

τr,min,1⊗ τr,min,2⊗ τd,1(k)⊗ τd,2(k) τr,min,2 ⊗ τd,2(k) e





A∗
0,[a,d](p) =





ǫ ǫ ǫ

τr,min,1 ǫ ǫ

τr,min,1⊗ τr,min,2⊗ τd,2(k) τr,min,2 ǫ





A∗
0,[d,a](p) =





τd,1(k) ǫ ǫ

τr,min,1⊗ τd,1(k)⊗ τd,2(k) τd,2(k) ǫ

τr,min,1 ⊗ τr,min,2 ⊗ τd,1(k)⊗ τd,2(k)⊗ τd,3(k) τr,min,2⊗ τd,2(k)⊗ τd,3(k) τd,3(k)





A∗
0,[d,d](p) =





e ǫ ǫ

τr,min,1⊗ τd,2(k) e ǫ

τr,min,1⊗ τr,min,2⊗ τd,2(k)⊗ τd,3(k) τr,min,2 ⊗ τd,3(k) e





The link to graph theory can be made very clearly now. The partitioning of A∗
0(p) is done on

purpose like this: the subscripts a and d indicate if we talk about an arrival of departure event
respectively. The second subscript basically indicates ’coming from’ and the first subscript
indicates ’going to’. For example, the bold expression in A∗

0,[d,a](p) is the weight of the arc

from node/station 1 to 3, since it is element {3, 1}. It is evident that this element is the sum
of all the individual dwell and minimal travel times, since node 1 in A∗

0,[d,a](p) represents the
arrival time at station 1 and node 3 represents the departure time at station 3 and thus, the
weight of the arc should be exactly all these times summed up. We can also observe that
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going from a specific arrival or departure time back to itself has weight e = 0, because it it
already there. Similarly, going from a departure time to an arrival time has weight ǫ = −∞
because it is not possible to go back to this event any more. See Figure 6-1 for a more visual
representation.

1 2

3

0 τr,min,1 + τd,1(k)

τr,min,1 + τr,min,2 +

τd,1(k) + τd,2(k)

τr,min,2 + τd,2(k)

0

0

1 2

3

τr,min,1

τr,min,1 + τr,min,2 +

τd,2(k)

τr,min,2

1 2

3

τd,1(k) τr,min,1 + τd,2(k)

τr,min,1 + τr,min,2 +

τd,1(k) + τd,2(k) +

τd,3(k)

τr,min,2 + τd,2(k) + τd,3(k)

τd,2(k)

τd,3(k)

1 2

3

0 τr,min,1 + τd,2(k)

τr,min,1 + τr,min,2 +

τd,2(k) + τd,3(k)

τr,min,2 + τd,3(k)

0

0

Figure 6-1: The four sub-graphs of A∗

0(p), from left to right: A∗

0,[a,a](p) and A∗

0,[a,d](p) above

and A∗

0,[d,a](p) and A∗

0,[d,d](p) below

Another interesting property of the Kleene star can be used as well. According to (2-15), the
unique solution xsol can be found by writing:

xsol = A∗⊗ b (6-5)

which means that:

xsol(k) = A∗
0(p)⊗ b = A∗

0(p)⊗A1
︸ ︷︷ ︸

A(p)

⊗x(k − 1)
(6-6)

where of course again, the only problem is the implicit relation of A(p) on x(k). But never-
theless, once the entries of A∗

0(p) are known or well-estimated, this theorem can be applied
and the schedule of train k can be found in just one computation.

6-1-2 Karp’s algorithm

As has been mentioned before, irreducibility of a matrix A guarantees that there is one, unique
eigenvalue. According to Heidergott et al. (2014), there are however also other methods to
discover an eigenvalue of a matrix A, even if it reducible. One of those algorithms is Karp’s
algorithm, which can help to find (multiple) eigenvalues λ(A) of a matrix A. The methodology
will be explained below, after which an example will be shown:
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Karp’s algorithm

1. Choose an arbitrary j ∈ {1, 2, ..., n−1} and set the initial state as a unit vector x(0) = ej

2. Compute x(k) for k = 0, 1, ..., n

3. Compute the eigenvalue as: λ = maxi=1,...,nmink=0,...,n−1
xi(n)−xi(k)

n−k

Example 5.1 Given a matrix A =











E
ǫ ǫ ǫ

60 ǫ ǫ

ǫ 80 ǫ

38 ǫ ǫ

ǫ 58 ǫ

ǫ ǫ 36
E











and x(0) = e1 =











0
ǫ

ǫ

ǫ

ǫ

ǫ











,

we find that: x(1) =











ǫ

ǫ

ǫ

36
ǫ

ǫ











, x(2) =











ǫ

96
ǫ

ǫ

ǫ

ǫ











, x(3) =











ǫ

ǫ

ǫ

ǫ

154
ǫ











, x(4) =











ǫ

ǫ

234
ǫ

ǫ

ǫ











, x(5) =











ǫ

ǫ

ǫ

ǫ

ǫ

272











and for k ≥ 6, x(k) =











ǫ

ǫ

ǫ

ǫ

ǫ

ǫ











. We now find, for n = 6 and i = 1:

λ1 = min
k=0,...,5

x1(n)− x1(k)

6− k

= min(
x1(6)− x1(0)

6− 0
,
x1(6) − x1(1)

6− 1
, ...,

x1(6)− x1(5)

6− 5
)

= min(ǫ, 0, ..., 0)

= ǫ

(6-7)

If we apply the algorithm for i = 2, 3, ..., 6 as well, we find similar results as λi = ǫ, which
means that the eigenvalue of this reducible matrix is λ = max(ǫ, ǫ, ..., ǫ) = ǫ. If we would
remove the first row and last column of A, the situation would be quite different since this
would be an irreducible matrix. In that case, the eigenvalue according to Karp’s algorithm
would be finite.

It is interesting to apply Karp’s algorithm on A(p) 1 and see if we can finally extract some
information on the eigenvalue of this (reducible) matrix. Since A1 only consists of constant

1In other work, this matrix is often just called the A matrix of the max-plus system, but since this thesis
adds the dependency on p(k) it has been chosen to rename it to avoid confusion.
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values, A(p) can be determined to be:

A(p) =











E
τh,1 ǫ ǫ

τh,1 ⊗ τr,min,1 ⊗ τd,1(k) τh,2 ǫ

τh,1 ⊗ τr,min,1 ⊗ τr,min,2⊗ τd,1(k)⊗ τd,2(k) τh,2⊗ τr,min,2 ⊗ τd,2(k) τh,3

E
τh,1 ⊗ τd,1(k) ǫ ǫ

τh,1⊗ τr,min,1 ⊗ τd,1(k)⊗ τd,2(k) τh,2 ⊗ τd,2(k) ǫ

τh,1 ⊗ τr,min,1 ⊗ τr,min,2 ⊗ τd,1(k)⊗ τd,2(k)⊗ τd,3(k) τh,2 ⊗ τr,min,2 ⊗ τd,2(k)⊗ τd,3(k) τh,3 ⊗ τd,3(k)











(6-8)

where the bold expressions are especially important, because applying Karp’s algorithm (with
j = 4, 5, 6 because j = 1, 2, 3 results in vectors of x(k) filled with ǫ only) results into the
following:

λ(A(p)) = max(τh,1 + τd,1(k), τh,2 + τd,2(k), τh,3 + τd,3(k)) (6-9)

The eigenvalue of this matrix A(p) is the largest combination of dwell and minimal headway
time. In general, this means that:

λ(A(p)) =

J⊕

j=1

(τh,j ⊗ τd,j(k)) (6-10)

It should again be noted that Ã0 has not been entirely included in this analysis. It has
been assumed that the minimal dwell times τ̃d will always be exceeded, which can be done
as long as there are enough passengers per second λj on the station of the urban rail line.
Nevertheless, the addition of τ̃d would not change the general procedure; there would just be
an extra max-operator around the dwell times, because of the ⊕ in A0(p) = Â0(p)⊕ Ã0.

6-1-3 Growth rate of the max-plus system

Stability of the urban railway network is an important feature we would like to prove. The
question is whether one of the dwell times τd,j(k)) or some disturbance d(k) can cause the
system to become unstable. For a good estimation of the reachable region of A∗

0(p), we can
try to bound it with a lower and upper bound. First, let us define a new relation (Lemma 25
from (Farlow, 2009) or Lemma 3.10 from Heidergott et al. (2014)). For any (not necessarily
square) regular matrix A ∈ R

m×n
max and vectors u, v ∈ R

n, we can define:

‖(A⊗ u)− (A⊗ v)‖∞ ≤ ‖u− v‖∞ (6-11)

One could be tempted to find the bounds or the system by using (6-11), but two options are
not possible: using both A0(p(k)) and A0(p(k + 1)) on the places of A is not possible since
A should be constant and A0(p(k)) and A0(p(k + 1)) very likely are not. A second option
is to somehow define a bound on both A0,min and A0,max, two matrices that can be defines
by taking τd(k) = τ̃min and τd(k) = τd,max with these limits representing the limits given in
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(3-29). Since A∗
0 is regular (i.e., at least one finite element in every row) (6-4), we found find

that:

‖(A∗
0,min ⊗ b(k))− (A∗

0,min⊗ b(k − 1))‖∞ ≤ ‖b(k) − b(k − 1)‖∞

‖(A∗
0,max ⊗ b(k))− (A∗

0,max ⊗ b(k − 1))‖∞ ≤ ‖b(k) − b(k − 1)‖∞
(6-12)

where b(·) = A1 ⊗x(·) (6-6). However, this is equally invalid since b(k) and b(k − 1) will
be n-by-1 vectors in R

n
max (due to A1), which contradicts the fact that they should be finite

vectors in R
n.

However, a bound can be put on the eigenvalue λ. If the minimum allowable dwell time is
τ̃min and the maximum allowable dwell time is τd,max, then we find that:

λmin =

J⊕

j=1

(τh,j ⊗ τ̃min) (6-13)

λmax =
J⊕

j=1

(τh,j ⊗ τd,max) (6-14)

and thus that:

λmin ≤ λ(A(k)) ≤ λmax (6-15)

which means that the eigenvalue of the system is upper- and lower bounded when both a
maximum and minimum dwell time are specified by the operator.

The problem with such a statement is the bound itself: how should an operator (or engineer)
set a bound? In order to answer such a question, it is important to realize that the max-
plus system described in this thesis is solely lower bounded but not upper bounded by the
assumptions which were done a little before (3-40). Therefore, in theory, when train k − 1
would break down, train k can not continue its way and the delay would go to ∞. Also,
when too many passengers would be entering the stations for too long, dwell times would
become very large and therefore, it might feel like the system stops working as well. Since
these situations are not common, it has not been modelled and therefore, a general advice
would be to not use the max-plus model that has been proposed in such a situation.

The following section will therefore focus more on the suggestion of when it is useful to use
this model.

6-2 Bounds on the max-plus system

As mentioned before, it is clear that the max-plus system as described in this paper in not
upper bounded, because of the linear parameter varying nature of the A(p) (or A0(p)) matrix.
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To show this, we will try to put an upper bound on the maximum value of the difference
between train k + 1 and k, as following:

‖x(k + 1)− x(k)‖∞ ≤ U (6-16)

where U is a scalar upper bound that has to be found, in order to maintain a stability margin.
Applying the reverse triangle inequality theorem results into:

‖x(k + 1)− x(k)‖∞ ≥ |‖x(k + 1)‖∞ − ‖x(k)‖∞| (6-17)

Since by definition, train k+1 will always be later than train k, we know that ‖x(k+1)‖∞−
‖x(k)‖∞ is always positive so we can neglect the absolute value-operator. So we find that:

‖x(k + 1)‖∞ − ‖x(k)‖∞ ≤ ‖x(k + 1)− x(k)‖∞ ≤ U

‖x(k + 1)‖∞ − ‖x(k)‖∞ ≤ U

‖A(p(k + 1))⊗ x(k)‖∞ − ‖x(k)‖∞ ≤ U
∥
∥
∥
∥
∥
∥
∥
∥
∥

max(A1,J+1(p(k + 1)) + xJ+1(k), ...,A1,2J (p(k + 1)) + x2J(k))
max(A2,J+1(p(k + 1)) + xJ+1(k), ...,A2,2J (p(k + 1)) + x2J(k))

...
max(AJ,J+1(p(k + 1)) + xJ+1(k), ...,AJ,2J (p(k + 1)) + x2J(k))

∥
∥
∥
∥
∥
∥
∥
∥
∥
∞

−

∥
∥
∥
∥
∥
∥
∥
∥
∥

x1(k)
x2(k)

...
x2J(k)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∞

≤ U

(6-18)

Since the ∞-norm takes the maximum of all the elements in the supplied vector, and since
we can presume that x2J (k) and x2J(k + 1) are the largest components of these vectors, we
can only look at the last row and write:

max(AJ,J+1(p(k + 1)) + xJ+1(k), ...,AJ,2J (p(k + 1)) + x2J(k)) − x2J(k) ≤ U

max(AJ,J+1(p(k + 1)) + xJ+1(k)− x2J(k)
︸ ︷︷ ︸

≤0

, ...,AJ,2J (p(k + 1))) ≤ U (6-19)

From (6-8), we know that the largest of the elements of A(p(k+1)) is AJ,J+1(p(k+1)), so if
the bound U is defined for this element, it will be valid for all the others as well, also taking
in mind that the elements of x(k) will not make a difference in this. By taking a closer look
at (6-8), we see that the expression for AJ,J+1(p(k + 1)) in general is:

τh,1 +
J∑

j=1

τd,j(k + 1) +
J−1∑

j=1

τr,min,j ≤ U

J∑

j=1

τd,j(k + 1) ≤ U − τh,1 −
J−1∑

j=1

τr,min,j

︸ ︷︷ ︸

U∗

[
1 1 · · · 1

]
τ d,j(k + 1) ≤ U∗

(6-20)
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If we take again that τd,j(k + 1) = xj+J(k + 1) − xj(k + 1), i.e. as the difference between
arrival and departure time, then we find that:

[
1 1 · · · 1

]
τ d,j(k + 1) ≤ U∗

[
1 1 · · · 1

]








xJ+1(k + 1)− x1(k + 1)
xJ+2(k + 1)− x2(k + 1)

...
x2J(k + 1)− xJ(k + 1)








≤ U∗

[
−1 −1 · · · −1 1 1 · · · 1

]
x(k + 1) ≤ U∗

(6-21)

Clearly, this is were the user-defined bound kicks in: since the schedule x(k + 1) for train
k+1 can delay up until ∞, a bound U∗ can be defined to avoid that. See the example below.
However, as another conclusion, as long as the schedule of train k + 1 does not contain any
elements x1,...,2J = ∞, then the max-plus system is bounded and will never become ∞ itself.

Example 6.1 Imagine that for an J = 5-stop urban rail line, the maximum allowable dwell
time is 200 seconds at every station. Furthermore, the headway time between two trains at
the first station is defined to be τh,1 = 240 seconds, while the minimal travel time between all
the stops is 60 seconds. Then the upper bound U can be found to be:

[
1 1 · · · 1

]
τd,j(k + 1) ≤ U∗

J · τd,max ≤ U∗

U∗ ≥ J · τd,max = 5 · 200 = 1000

U = U∗ + τh,1 +

J−1∑

j=1

τr,min,j ≥ 1000 + 240 + 4 · 60 = 1480

(6-22)

The upper bound U has to be at least 1480 or larger to guarantee that x(k+1)−x(k) remains
bounded. If ‖x(k + 1)− x(k)‖∞ > 1480, the system might become unstable.

As a final note, one can use a user defined bound as an additional linear constraint for the
optimization process. Observe (6-21), which concludes that:

[
−1 −1 · · · −1 1 1 · · · 1

]
x(k + 1) ≤ U∗ (6-23)

Of course, if the upper bound U∗ is set on x(k + 1), it is also an upper bound on x(k + 2),
x(k + 3), ..., x(k +M − 1). Therefore, we find that:

[
−1 −1 · · · −1 1 1 · · · 1

]
x(k) ≤ U∗

[
−1 −1 · · · −1 1 1 · · · 1

]
x(k + 1) ≤ U∗

...
[
−1 −1 · · · −1 1 1 · · · 1

]
x(k +M − 1) ≤ U∗
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and thus that:

S̆ · x̆(k) ≤ Ŭ∗ (6-24)

where S̆ ∈ R
1×2·J ·M is a vector filled with only −1 and 1, x̆(k) is the same as in all the

previous definitions and Ŭ∗ ∈ R
M×1 is a vector filled with the user defined upper bound Ŭ∗.
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Chapter 7

Conclusions and future work

In chapter 1 and section 2-3, the goals of this thesis were stated. The main question was
whether it is possible to use max-plus algebra in some kind of linear parameter varying
context. Secondly, this thesis aims to contribute to the field of max-plus (linear parameter
varying) systems by modelling an urban railway line in max-plus algebra. Last but not least,
an attempt has been done to analyse the potential stability criteria for MP-LPV systems.
The main conclusion will be discussed in this chapter, after which some future work will be
suggested.

7-1 Conclusions

7-1-1 Max-plus Linear Parameter Varying systems

This thesis introduces a new kind of max-plus systems, namely the Max-Plus Linear Param-
eter Varying (MP-LPV) systems. Such systems can be expressed in max-plus algebra, but
one or multiple systems matrices contain dependencies on current and/or previous states.
These state-dependent matrices make the system non-linear in max-plus algebra, but it has
been shown that the dependency on states can be modelled as a linear relation p. The linear
relation p in this thesis was considered to be a linear relation in conventional algebra rather
than in max-plus algebra, due to scaling and subtraction of the states (3-41). Furthermore,
only the A = A(q) matrix was state-dependent (3-42); the rest of the state matrices could be
taken as constant matrices.

By applying the iterative procedure of sections 3-6 and 3-7, an MP-LPV could be implemented
in MATLAB both as one-cycle-at-once and multiple-cycles-at-once systems. An important
assumption here is that the dwell time of train k is dependent on the arrival time of train
k and the departure time of train k − 1, instead of on the departure times of both trains k

and k− 1. As long as there are not too much passengers per second λ, this is not a problem.
The assumption will not affect the results that much. But when λ increases, there exists a
possibility that - in the case of dependency on the departure times - the flow of incoming
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passengers is too large, and thus that it is not possible for a train k to depart. In this case,
the iterative process might not converge and thus not compute the schedule x(k) (or x̆(k)).
Therefore, this will be mentioned as future research.

The iterative procedure can be seen as some kind of ’free run’-principle. The trains run
whenever they are allowed to, mostly because of the very definition in max-plus algebra that
the left side of equation (3-42) is equal to the right side: they are forced to leave at the
maximum value that is found on the right side. This can be ’solved’ by modelling the system
as a ’relaxed’ problem.

7-1-2 Optimization of an MP-LPV system

In chapter 4, the MP-LPV system that was found in chapter 3 was rewritten to a set of linear
inequalities. This directly implies that the MP-LPV could be modelled as a linear constrained
problem which is a lot easier to solve for optimization techniques. Furthermore, by modelling
the MP-LPV as a relaxed problem, trains are allowed to be delayed which can be used as a
control variable to work around disturbances.

Therefore, a linear, a quadratic and a non-linear programming problem were defined to com-
pute the steering control variable ŭ(k) based on minimizing the schedule x̆(k) for M trains
ahead, and on minimizing total passenger travel time. The first optimization problem was a
linear programming problem, while the latter one could be solved as a quadratic programming
problem and non-linear programming problem. It could be seen that, in the case of no dis-
turbance d̆(k), these optimization problems gave the same results as the ’free run’-principle.
But once there is a disturbance somewhere in the planning horizon M , the LP, QP and NLP
frameworks work around the disturbance to avoid that the headway time between two trains
grows out of bound (section 4-1).

Furthermore, it could be observed that minimizing total passenger travel time resulted in an
indefinite matrix H̆ in (4-49). Since it is not positive definite, the QP problem is not convex
and - even though the MATLAB-command ’quadprog’ still computes - a global optimum
can not be guaranteed. It was shown that the non-linear programming problem finds similar
results as the QP problem when the latter one is ’made convex’, i.e. by making H̆ positive
definite by adding the largest negative eigenvalue to the diagonal of the matrix. This indicates
a global optimum, but this is not proven.

Also, the non-linear programming problem can be used to compute the cases that the QP
problem can not compute, which happens when the amount of arriving passengers per second
at the stations is made too large. However, it is relatively slow compared to LP and QP,
which does not make it the most preferred optimization strategy.

7-1-3 Max-plus analysis on MP-LPV systems

Last but not least, an analysis has been done on the stability of MP-LPV systems. In
conventional algebra, stability can be guaranteed by having bounds on the state-dependent
system matrices. But in max-plus algebra, these bounds are hard to define, as could be seen
in chapter 5. A user-defined bound can be implemented as a linear inequality constraint in a
programming problem (6-24), but it is not a system-defined bound that guarantees stability.
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As a consequence of a large disturbance or a very high amount of passengers, an MP-LPV
can grow out of bound which results into a vector x̆(k) with elements j that are growing to
infinity, i.e. x̆j(k) → ∞. When this happens, we find that the system is not upper-bounded
and goes to ∞ as well. More research on this topic is still necessary.

7-2 Future work

From both the conclusion and the fact that this is an exploratory study, it can be concluded
that there is still a lot to be improved and discovered on this new class of max-plus alge-
braic systems, the so-called Max-Plus Linear Parameter Varying systems. These points of
improvement or further investigation will be summarized in this section.

1. Throughout this paper, some mathematical proofs have been provided to show the line
of thought in this work. By proofing certain conditions, it has been motivated that
there was a necessity for controlling disturbed urban railway lines because they might
evolve to grow out of bounds. Furthermore, it has been shown that the MP-LPV
’free run’ schedule is supposed to be the quickest scheduling solution possible, since
there is no quicker x̃(k) when γ > 0. However, it has not been proved that it is also
the quickest solution when not all but only some entries of x̂(k) are sped up. It was
assumed that all entries of γ > 0. But it seems logical that this would also be the case,
since the equality sign in the MP-LPV ’free run’ is supposed to guarantee the quickest
arrival and departure times as possible. But a mathematical proof for this is still missing.

2. Furthermore, the mathematical analysis of the stability of MP-LPV systems requires
more research. It has only been shown that a finite upper bound guarantees stability,
but this is not proven to be a system property.

3. More research is necessary when the assumption that the dwell time can be computed
as the difference between the arrival time of train k and departure time of train k − 1,
is withdrawn. This assumption can be done when the amount of passengers that arrive
between the arrival time of train k and departure time of train k − 1 is relatively very
large compared to the amount of arriving passengers during the dwell time itself. But,
when this is not the case, then it can be shown that there is a turnover-point when too
many passengers arrive per second. When this happens, trains get delayed relatively
more seconds than they can handle. A solution to this is a forced maximum dwell
time, but this is hard to model in max-plus algebra. Wang, Ning, et al. (2015) have
incorporated such a maximum dwell time in their conventional algebra model of an
urban train network.

4. Another reason to incorporate a maximum dwell time would be that trains do not have
unlimited capacity, as has been assumed in this paper. But introducing a maximum
capacity introduces a min-operation in the definition of the dwell time, which directly
influences the parameter p in a way that has not been investigated for this thesis. The
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effects of such a constraint on the MP-LPV system is therefore future work.

5. In this work, the MP-LPV system is considered to only contain a matrix A(p) that is
dependent on the parameter p. For future work, it might be interesting to also find
an application where the matrix B = B(p), or even where the matrices C(p) and D(p)
exist and are state dependent.

6. The computation time of a 10-stops case with a computation horizon of M = 10 trains
has been shown to be low, i.e. around a quarter of a second for the LP and QP problems.
No fair comparison with other papers could be done, since these papers often (also)
consider energy as an (extra) objective. But due to the non-linear optimizations in
most of these papers, the prediction horizon is often shorter than the computation time
which means that these models do not compute quick enough. It seems that writing
out the max-plus system in this paper did result in a very quick optimization strategy,
but more research is necessary if it is actually better than results in conventional algebra.

7. It might be interesting to take a better look at the optimization strategy for the control
of an urban railway line. In this paper, only one M -steps ahead computation of the
schedule x̆(k) is done. But in reality, this has to be repeated every now and then in
order to update x̆(k). One way to do this is by computing x̆(k + l) every time train
x(k + l − 1) has finished, with l = N − M and N as the total amount of trains on
a day. But as can be seen from Figure 5-1, whenever a train is finished, the next
trains have already started their journeys. So a framework has to be implemented that
distinguishes between arrival and departure times that have already taken place, and
arrival and departure times that still can be controlled. Such a framework has not yet
been implemented for this paper, but this is more a practical implementation for urban
railway networks rather than an implementation for MP-LPV systems in general.

8. Last but not least, the disturbances in this paper might not be very realistic. It is
hard to know beforehand when a train will have a problem, but more importantly when
exactly a station is more crowded than it would normally be. For example, because
a football-game just ended and all visitors suddenly enter the train-station. Lately,
urban railway network-operators have access to many data, like the check-in/check-out
data from public transport cards or for example by cameras on the platforms. The
disturbance as modelled in this paper is therefore not considered unrealistic, but rather
very ambitious. It would be interesting to test the model presented in this paper with
actual real data supplied by urban railway operators. This in order to see if the MP-LPV
model handles real-time situations as well.
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Appendix A

The back of the thesis

A-1 Modelling of a railway network in max-plus algebra

In section 3-2, the constraints of the urban railway line were defined. In (Kersbergen et al.,
2016), where this section is based on, the constraints were modelled slightly different. In the
first place because a train network consists of multiple lines and contains scheduled arrival and
departure times as well, but more importantly because this model works with a cycle counter
k instead of a train counter k. Underneath are the constraints as modelled in (Kersbergen et
al., 2016), followed by how these constraints are modelled into an MPL.

A-1-1 Running time constraints

A running time constraint simply deals with the time between arrival and departure of a train
run i. This time is then called the running time, denoted as τr,i(k). Mathematically, we can
write:

ai(k) ≥ di(k) + τr,i(k) (A-1)

In other words; a train can not arrive at the next stop before this minimal traversing time.

A-1-2 Dwell time constraints

The dwell time constraint (also called continuity constraint) is an inequality that tries to
connect different train runs to each other. When the train run from station one to station
two is called pi and the train run from station two to station three is called i, then the
underlying mathematical relation is:

di(k) ≥ api(k − µi,pi) + τd,i,pi(k) (A-2)
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where τd,i,pi(k) is the so-called dwell time. If train run pi continues as i in the same cycle k,
then µi,pi = 0. If train run pi previously was in cycle k − α, but continues as train run i in
cycle k, then µi,pi = α. It can be noted that for a railway network, µi,pi is typically only 0,
−1 or 1, i.e. only the current, previous and future cycles are considered.

A-1-3 Timetable constraints

A timetable constraint is simply a guarantee that trains cannot depart before the actual
departure time according to a predefined timetable. Sometimes, trains are also not allowed
to enter a station before the timetable says they can. Mathematically, we can denote:

di(k) ≥ rd,i(k) (A-3)

ai(k) ≥ ra,i(k) (A-4)

where ra,i(k) and rd,i(k) are the arrival and departure time according to a predefined
timetable, respectively.

A-1-4 Headway constraints

To keep a sufficient (time-)distance between two trains, headway constraints are necessary.
Mathematically, we can write:

di(k) ≥ dl(k − µi,l) + τh,d,i,l(k) (A-5)

ai(k) ≥ al(k − µi,l) + τh,a,i,l(k) (A-6)

Here, µi,l is defined in a similar way as it was for the continuity constraints, and τh,d,i,l and
τh,a,i,l are the departure and arrival headway times respectively, the times between two train
runs.

A-1-5 Coupling constraints

In train networks, it can occur that two trains have to be coupled to each other. If train i

and oi have to be coupled, we can denote:

di(k) ≥ doi(k) (A-7)

doi(k) ≥ di(k) (A-8)

ai(k) ≥ aoi(k) (A-9)

aoi(k) ≥ ai(k) (A-10)

which basically reads as di(k) = doi(k) and ai(k) = aoi(k).
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A-1-6 Connection constraints

Another important constraint for railway networks is the connection constraint, which guar-
antees that passengers are able to transfer from one train to another. In practice, this means
that one train cannot leave if the other train did not arrive yet. Besides that, it is necessary to
have some extra connection time τc,i,e(k) for the passengers to change trains. Mathematically,
we denote:

di(k) ≥ ae(k − µi,e) + τc,i,e(k) (A-11)

where e and i are different train runs and µi,e is defined similarly as for the continuity and
headway constraints.

A-1-7 Max-plus linear modelling

Now that (A-1) up until (A-11) represent all the constraints of the train network, the max-plus
linear system can be formulated. This can be done by writing all inequalities that represent
the arrival and departure times of train run i into two different expressions. As all equations
are ”equal or greater than”, the actual departure and arrival times are the maximums of all
these expressions, as following:

di(k) = max

(

(api(k − µi,pi) + τd,i,pi(k), max
l∈Hi

(
dl(k − µi,l) + τh,d,i,l(k)

)
,

max
m∈Si

(
am(k − µi,m) + τs,i,m(k)

)
, max

e∈Ci

(
ae(k − µi,e) + τc,i,e(k)

)
, doi(k), rd,i(k)

) (A-12)

ai(k) = max

(

max
l∈Hi

(
al(k − µi,l) + τh,a,i,l(k)

)
, di(k) + τr,i(k), aoi(k), ra,i(k)

)

(A-13)

From the very definition of max-plus algebra, we can replace the max-expressions with ⊕ and
the summation-expressions with ⊗, which will lead to the following expressions:

di(k) = (api(k − µi,pi)⊗ τd,i,pi(k)⊕
⊕

l∈Hi

(
dl(k − µi,l)⊗ τh,d,i,l(k)

)
⊕

⊕

m∈Si

(
am(k − µi,m)⊗ τs,i,m(k)

)
⊕
⊕

e∈Ci

(
ae(k − µi,e)⊗ τc,i,e(k)

)
⊕ doi(k)⊕ rd,i(k)

(A-14)

ai(k) = max

(
⊕

l∈Hi

(
al(k − µi,l)⊗ τh,a,i,l(k)

)
⊕
(
di(k)⊗ τr,i(k)

)
⊕ aoi(k)⊕ ra,i(k)

)

(A-15)

M.Sc. thesis Ben Zwerink Arbonés



84 The back of the thesis

By defining a network with n trains, a state vector x(k) and timetable vector r(k) can be
defined as

x(k) =

















d1(k)
d2(k)

...
dn(k)

a1(k)
a2(k)

...
an(k)

















∈ R
2n
ǫ r(k) =

















rd,1(k)
rd,2(k)

...
rd,n(k)

ra,1(k)
ra,2(k)

...
ra,n(k)

















∈ R
2n
ǫ (A-16)

then we can finally find the max-plus linear model to be

x(k) = r(k)⊕

µmax⊕

µ=0

Aµ(k)⊗ x(k − µ) (A-17)

with Aµ(k) ∈ R
2n×2n
ǫ for µ = 0, 1, · · · , µmax, where µmax = maxi,j µi,j. The matrix Aµ(k)

now contains all the constraints and relates the arrival and departure times of the current
and previous cycles to those of the current cycle.
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