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A B S T R A C T

The main contribution of this paper is the derivation of the asymptotic behavior of the out-
of-sample variance, the out-of-sample relative loss, and of their empirical counterparts in the
high-dimensional setting, i.e., when both ratios 𝑝∕𝑛 and 𝑝∕𝑚 tend to some positive constants
as 𝑚 → ∞ and 𝑛 → ∞, where 𝑝 is the portfolio dimension, while 𝑛 and 𝑚 are the sample
sizes from the in-sample and out-of-sample periods, respectively. The results are obtained for
the traditional estimator of the global minimum variance (GMV) portfolio and for the two
shrinkage estimators introduced by Frahm and Memmel (2010) and Bodnar et al. (2018). We
show that the behavior of the empirical out-of-sample variance may be misleading in many
practical situations, leading, for example, to a comparison of zeros. On the other hand, this
will never happen with the empirical out-of-sample relative loss, which seems to provide a
natural normalization of the out-of-sample variance in the high-dimensional setup. As a result,
an important question arises if the out-of-sample variance can safely be used in practice for
portfolios constructed from a large asset universe.

. Introduction

Mean–variance analysis of Markowitz is a well established tool for optimal portfolio selection which is one of the most popular
pproaches today in financial literature (see, e.g., Markowitz (1952, 1959), Britten-Jones (1999), Ao et al. (2019), Bodnar et al.
2021b) and Ding et al. (2021)). The idea behind the approach is to invest in the portfolio which has the smallest variance for
given level of the expected return. In the limiting case of the fully risk-averse investor, the so-called global minimum variance

GMV) portfolio is selected. The latter portfolio possesses the smallest variance among all mean–variance optimal portfolios and lies
n the vertex of the efficient frontier which is a parabola in the mean–variance space (see, Merton (1972), Kan and Smith (2008)
nd Bodnar and Schmid (2009)).

One of the important challenges, which arise when the Markowitz theory is implemented in practice, is related to the estimation
rror which appears when unknown parameters of the data-generating process are replaced by their sample counterparts in the
xpressions of the optimal portfolio weights (see, Okhrin and Schmid (2006), El Karoui (2010), Cai et al. (2020) and Bodnar et al.
2022a, 2023)). The impact of the parameter uncertainty on the performance of optimal portfolios is usually comparable to or
ven larger than the one described by the model uncertainty which is determined by using the covariance matrix in Markowitz
ptimization problem. Moreover, the estimation error present in an estimator of the mean vector has even a larger influence on the
erformance of optimal portfolios than the error related to the estimation of the covariance matrix (see, e.g., Merton (1980), Best
nd Grauer (1991) and Chopra and Ziemba (1993)). This is usually used in financial literature as an argument to hold the GMV
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portfolio whose weights only depend on the covariance matrix (see, Chan et al. (1999), Jagannathan and Ma (2003), Frahm and
Memmel (2010), Bodnar et al. (2022b)).

Let 𝐲 denote the 𝑘-dimensional vector of the asset returns and let 𝝁 = E(𝐲) and Σ = V𝑎𝑟(𝐲) be its mean vector and covariance
matrix. Then the expected return and the variance of the portfolio with the weights 𝐰 are given by

𝑅𝑝 = 𝐰⊤𝝁 and 𝑉𝑝 = 𝐰⊤Σ𝐰,

respectively. The weights of the GMV portfolio are found by minimizing 𝑉𝑝 given that the whole investor wealth is invested in the
selected assets, i.e., under the constraint 𝐰⊤𝟏 = 1 where 𝟏 denotes the 𝑝-dimensional vector of ones. They are given by

𝐰𝐺𝑀𝑉 = Σ−1𝟏
𝟏⊤Σ−1𝟏

, (1.1)

while the variance of the GMV portfolio is expressed as

𝑉𝐺𝑀𝑉 = 𝐰⊤
𝐺𝑀𝑉 Σ𝐰𝐺𝑀𝑉 = 1

𝟏⊤Σ−1𝟏
. (1.2)

e refer to 𝐰𝐺𝑀𝑉 and 𝑉𝐺𝑀𝑉 as the population weights and the population variance of the GMV portfolio, since they both depend
n the unknown parameter Σ of the data-generating model. It has to be noted that 𝑉𝐺𝑀𝑉 is also called the in-sample variance in
inancial literature (see, Frahm and Memmel (2010)).

In practical applications, the population GMV portfolio cannot be constructed since its weights 𝐰𝐺𝑀𝑉 depend on the unobservable
uantity Σ. Given historical realizations of the asset returns, 𝐲1,… , 𝐲𝑛, the population covariance matrix is estimated by its sample
ounterpart expressed as

𝐒𝑛 =
1

𝑛 − 1

𝑛
∑

𝑖=1
(𝐲𝑖 − 𝐲̄𝑛)(𝐲𝑖 − 𝐲̄𝑛)⊤ with 𝐲̄𝑛 =

1
𝑛

𝑛
∑

𝑖=1
𝐲𝑖. (1.3)

Then, the traditional GMV portfolio is determined as the sample estimator of 𝐰𝐺𝑀𝑉 where the unknown Σ is replaced by 𝐒𝑛, i.e.,

𝐰̂𝑛;𝑆 =
𝐒−1𝑛 𝟏

𝟏⊤𝐒−1𝑛 𝟏
. (1.4)

If the portfolio dimension 𝑝 is considerably smaller than the sample size 𝑛, then 𝐒𝑛 consistently estimates Σ under weak conditions
imposed on the data-generating model of the asset returns and, consequently, the traditional GMV portfolio provides a good
approximation of the population GMV portfolio.

The situation is completely different in the high-dimensional setting when the portfolio dimension is comparable to the sample
size such that 𝑝∕𝑛 → 𝑐 ∈ [0, 1) as 𝑛 → ∞ where the constant 𝑐 is called the concentration ratio (see, Bai and Silverstein (2010)
and Bodnar et al. (2019a)). In this case the sample covariance matrix 𝐒𝑛 is not longer a consistent estimator for Σ. As a result, the
traditional GMV portfolio might deviate considerably from the population GMV portfolio. In order to ensure a good performance
of the holding portfolio, the weights of the traditional GMV portfolio have to be adjusted by taking the parameter uncertainty into
account (see, e.g., Jagannathan and Ma (2003), Glombek (2014), Ao et al. (2019), Bodnar et al. (2019b), Cai et al. (2020) and Ding
et al. (2021)).

In order to define an improved estimator of the high-dimensional GMV portfolio in terms of out-of-sample variance,1 the
optimization problem has to be formulated. As a performance measure, the out-of-sample variance is usually used which is given
by

𝑉𝐰̂𝑛
= 𝐰̂⊤

𝑛Σ𝐰̂𝑛, (1.5)

where 𝐰̂𝑛 is an estimator of 𝐰𝐺𝑀𝑉 based on the asset returns 𝐲1,… , 𝐲𝑛. Alternatively, one can use the out-of-sample relative loss

𝐿𝐰̂𝑛
=

𝑉𝐰̂𝑛
− 𝑉𝐺𝑀𝑉

𝑉𝐺𝑀𝑉
= 𝟏⊤Σ−1𝟏𝐰̂⊤

𝑛Σ𝐰̂𝑛 − 1, (1.6)

as a performance measure. By definitions of 𝑉𝐰̂𝑛
and 𝐿𝐰̂𝑛

, one directly gets that the portfolio which minimizes the out-of-sample
ariance also minimizes the out-of-sample relative loss and vice versa.

Unfortunately, due to the presence of Σ in (1.5) and in (1.6), both the performance measures can only be used in theoretical
erivations or in the comparison study based on the simulated data where the covariance matrix Σ is known. In practice, Σ is

usually replaced by its estimator 𝐒𝑛+1,𝑚 constructed by using the asset returns 𝐲𝑛+1,… , 𝐲𝑛+𝑚 from time 𝑛+1 to 𝑛+𝑚 and defined by

𝐒𝑛+1∶𝑛+𝑚 = 1
𝑚 − 1

𝑛+𝑚
∑

𝑖=𝑛+1
(𝐲𝑖 − 𝐲̄𝑛+1∶𝑛+𝑚)(𝐲𝑖 − 𝐲̄𝑛+1∶𝑛+𝑚)⊤ with 𝐲̄𝑛+1∶𝑛+𝑚 = 1

𝑚

𝑛+𝑚
∑

𝑖=𝑛+1
𝐲𝑖. (1.7)

onsequently, the out-of-sample variance and the out-of-sample relative loss are replaced by the sample counterparts, the so-called
mpirical out-of-sample variance and the empirical out-of-sample relative loss expressed as

𝑉𝐰̂𝑛;𝑚 = 𝐰̂⊤
𝑛 𝐒𝑛+1∶𝑚+𝑛𝐰̂𝑛, (1.8)

1 Actually, what the literature typically uses as a measure to compare different estimators/strategies is the Sharpe ratio of the portfolio. But this case is much
2

ore complex and should be considered separately because of the influence of the sample mean. This important topic will be treated in a separate paper.
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𝐿̂𝐰̂𝑛;𝑚 =
𝑉𝐰̂𝑛

− (1 − 𝑐)−1𝑉𝑛+1∶𝑛+𝑚;𝐺𝑀𝑉

(1 − 𝑐)−1𝑉𝑛+1∶𝑛+𝑚;𝐺𝑀𝑉
= (1 − 𝑐)𝟏⊤𝐒−1𝑛+1∶𝑚+𝑛𝟏𝐰̂

⊤
𝑛 𝐒𝑛+1∶𝑚+𝑛𝐰̂𝑛 − 1, (1.9)

espectively, with 𝑝∕𝑚 → 𝑐 as 𝑚 → ∞. In (1.9), (1−𝑐)𝑉𝑛+1∶𝑛+𝑚;𝐺𝑀𝑉 is a consistent estimator for 𝑉𝐺𝑀𝑉 in the high-dimensional setting
see, Lemma 1.3 in Bodnar et al. (2023)).

We contribute in this paper by deriving the asymptotic behavior of the out-of-sample variance, of the out-of-sample relative
oss, and of their empirical counterparts in the high-dimensional setting, i.e., when 𝑝∕𝑛 → 𝑐 as 𝑛 → ∞ and 𝑝∕𝑚 → 𝑐 as 𝑚 → ∞.
he results are obtained for the sample estimator (1.4) of the GMV portfolio (1.1) and for two shrinkage estimators introduced
y Frahm and Memmel (2010) and Bodnar et al. (2018). We show that the empirical out-of-sample variance might tend to zero
ndependently of chosen estimator of the GMV portfolio, which makes hard to distinguish between the estimators in practice. In
ontrast, the empirical out-of-sample losses of the considered estimators of the GMV portfolio tend to deterministic finite quantities.
s such, a decision about the ranking of the estimators can be drawn. Moreover, one needs milder conditions for the derivation of

he asymptotic properties of the empirical out-of-sample relative loss in comparison to the empirical out-of-sample variance, which
s an additional advantage for the application of the former in practice.

The rest of the paper is structured as follows. In Section 2, the asymptotic behavior of the out-of-sample variance and of the out-
f-sample relative loss is established for the traditional sample estimator and for the two shrinkage approaches. Section 3 presents
he corresponding results in the case of the empirical performance measures. The results of a comprehensive simulation study are
rovided in Section 4, while the theoretical findings are implemented to real data in Section 5. Concluding remarks are drawn in
ection 6. The proofs of the theoretical results are postponed to the supplementary material.

. Out-of-sample variance and relative loss

Let the vector of asset returns, 𝐲1,… , 𝐲𝑛, 𝐲𝑛+1,… , 𝐲𝑛+𝑚 be independent and identically distributed with the following stochastic
epresentation

𝐲𝑡 = 𝝁 +Σ1∕2𝐱𝑡, (2.1)

here the components of 𝐱𝑡 are independent and identically distributed with zero mean, unit variance, and finite 4+ 𝜖 moments for
ome 𝜖 > 0. No specific distributional assumptions are imposed on the components of 𝐱𝑡. The symbol Σ1∕2 denotes the square root
f a positive definite matrix Σ, i.e., Σ = Σ1∕2(Σ1∕2)⊤. Finally, we note that only 𝐲𝑡, 𝑡 = 1,… , 𝑛+𝑚, are observable, while 𝝁, Σ, and
𝑡, 𝑡 = 1,… , 𝑛 + 𝑚, are all unknown.

Depending on the performance measure different assumptions on the covariance matrix Σ and on the weights 𝐛 of the target
ortfolio are imposed. They are summarized as follows:

A1) The variance of the GMV portfolio 𝑉𝐺𝑀𝑉 as given in (1.2) is uniformly bounded in 𝑝.

A2) The variance of the target portfolio 𝑉𝐛 = 𝐛⊤Σ𝐛 is uniformly bounded in 𝑝.

A3) The relative loss of the target portfolio

𝐿𝐛 =
𝑉𝐛 − 𝑉𝐺𝑀𝑉

𝑉𝐺𝑀𝑉
= 𝟏⊤Σ−1𝟏𝐛⊤Σ𝐛 − 1,

is uniformly bounded in 𝑝.

The considered assumptions are very general and are fulfilled in many applications. For instance, all three assumptions are
ulfilled when the eigenvalues of Σ are uniformly bounded in 𝑝 and the Euclidean norm of the target vector 𝐛 is uniformly bounded

in 𝑝. Assumptions (A1) and (A2) will be needed when the out-of-sample variance (1.5) and its empirical counterpart (1.8) are
nalyzed, while Assumption (A3) is only required in the case of the out-of-sample relative loss (1.6) and its empirical counterpart
1.9). This is not surprising, since the relative loss functions are already normalized and for that reason less restrictive assumptions
re needed to study their asymptotic behavior. Furthermore, the normalization constant does not depend on an estimator of the
MV portfolio weights and thus, the normalization has no impact on the selected estimator.

Two shrinkage estimators for the GMV portfolio weights were derived in Frahm and Memmel (2010) and Bodnar et al. (2018),
nd they are given by

𝐰̂𝑛;𝐹𝑀 = 𝛼̂𝑛;𝐹𝑀 𝐰̂𝑛;𝑆 + (1 − 𝛼̂𝑛;𝐹𝑀 )𝐛 (2.2)

ith

𝛼̂𝑛;𝐹𝑀 = 1 −
𝑝 − 3

𝑛 − 𝑝 + 2
(

𝟏⊤𝐒−1𝑛 𝟏𝐛⊤𝐒𝑛𝐛 − 1
)−1 . (2.3)

and

𝐰̂ = 𝛼̂ 𝐰̂ + (1 − 𝛼̂ )𝐛 (2.4)
3

𝑛;𝐵𝑃𝑆 𝑛;𝐵𝑃𝑆 𝑛;𝑆 𝑛;𝐵𝑃𝑆
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𝛼̂𝑛;𝐵𝑃𝑆 =
(1 − 𝑝∕𝑛)

(

(1 − 𝑝∕𝑛) 𝟏⊤𝐒−1𝑛 𝟏𝐛⊤𝐒𝑛𝐛 − 1
)

𝑝∕𝑛 + (1 − 𝑝∕𝑛)
(

(1 − 𝑝∕𝑛) 𝟏⊤𝐒−1𝑛 𝟏𝐛⊤𝐒𝑛𝐛 − 1
) , (2.5)

espectively.
Next, we present the asymptotic behavior of the out-of-sample variance (Theorem 2.1) and of the out-of-sample relative loss

Theorem 2.2) calculated for the sample estimator 𝐰̂𝑛;𝑆 of the GMV portfolio weights and for two shrinkage estimators 𝐰̂𝑛;𝐹𝑀 and
̂ 𝑛;𝐵𝑃𝑆 in the high-dimensional setting. The proofs of the theorems are given in the supplementary material. To this end, we note
hat the out-of-sample variance and the out-of-sample loss of the target portfolio 𝐛 are, by definition, expressed as

𝑉𝐛 = 𝐛⊤Σ𝐛 (2.6)

nd

𝐿𝐛 =
𝑉𝐛

𝑉𝐺𝑀𝑉
− 1 = 𝟏⊤Σ−1𝟏𝐛⊤Σ𝐛 − 1, (2.7)

espectively.

heorem 2.1. Let 𝐲𝑡, 𝑡 = 1,… , 𝑛 follow model (2.1). Then,

(i) under Assumption (A1), for the out-of-sample variance of the sample GMV portfolio 𝐰̂𝑛;𝑆 it holds that
|

|

|

𝑉𝐰̂𝑛;𝑆
− (1 − 𝑐)−1𝑉𝐺𝑀𝑉

|

|

|

𝑎.𝑠.
→ 0, (2.8)

(ii) under Assumptions (A1) and (A2), for the out-of-sample variance of the shrinkage GMV portfolio 𝐰̂𝑛;𝐵𝑃𝑆 it holds that
|

|

|

|

𝑉𝐰̂𝑛;𝐵𝑃𝑆
−
(

𝑉𝐺𝑀𝑉 + 𝛼2𝐵𝑃𝑆
𝑐

1 − 𝑐
𝑉𝐺𝑀𝑉 + (1 − 𝛼𝐵𝑃𝑆 )2(𝑉𝐛 − 𝑉𝐺𝑀𝑉 )

)

|

|

|

|

𝑎.𝑠.
→ 0 (2.9)

with

𝛼𝐵𝑃𝑆 =
(1 − 𝑐)𝐿𝐛

𝑐 + (1 − 𝑐)𝐿𝐛
, (2.10)

(iii) under Assumptions (A1) and (A2), for the out-of-sample variance of the shrinkage GMV portfolio 𝐰̂𝑛;𝐹𝑀 it holds that
|

|

|

|

𝑉𝐰̂𝑛;𝐹𝑀
−
(

𝑉𝐺𝑀𝑉 + 𝛼2𝐹𝑀
𝑐

1 − 𝑐
𝑉𝐺𝑀𝑉 + (1 − 𝛼𝐹𝑀 )2(𝑉𝐛 − 𝑉𝐺𝑀𝑉 )

)

|

|

|

|

𝑎.𝑠.
→ 0 (2.11)

with

𝛼𝐹𝑀 = 1 − 𝑐
1 − 𝑐

((1 − 𝑐)−1(𝐿𝐛 + 1) − 1)−1 =
𝐿𝐛

𝐿𝐛 + 𝑐
, (2.12)

or 𝑝∕𝑛 → 𝑐 ∈ (0, 1) as 𝑛 → ∞.

Theorem 2.1 reveals an interesting fact that the asymptotic variance of the traditional estimator as well as other considered
stimators of GMV portfolio are the linear combinations of 𝑉𝐺𝑀𝑉 and 𝑉𝐛 − 𝑉𝐺𝑀𝑉 . These quantities, however, could be very small
f the number of assets is large. Indeed, taking for example 𝑉𝐺𝑀𝑉 we can get the following upper bound using the trace inequality

𝑉𝐺𝑀𝑉 = (𝟏⊤Σ−1𝟏)−1 ≤ (𝑝 ⋅ 𝜆𝑚𝑖𝑛(Σ−1))−1 = (𝑝 ⋅ 𝜆−1𝑚𝑎𝑥(Σ))−1 =
𝜆𝑚𝑎𝑥(Σ)

𝑝
,

which obviously is vanishing for 𝑝 → ∞ in case the maximum eigenvalue of Σ, namely 𝜆𝑚𝑎𝑥(Σ), is of smaller order than 𝑝. Similarly,
this may happen for 𝑉𝐛 by taking, for example, the naive portfolio 𝐛 = 𝟏∕𝑝. Nevertheless, as the next theorem shows, it is not the
case if the relative loss is taken instead.

Theorem 2.2. Let 𝐲𝑡, 𝑡 = 1,… , 𝑛 follow model (2.1). Then,

(i) for the out-of-sample relative loss of the sample GMV portfolio 𝐰̂𝑛;𝑆 it holds that
|

|

|

|

𝐿𝐰̂𝑛;𝑆
− 𝑐

1 − 𝑐
|

|

|

|

𝑎.𝑠.
→ 0, (2.13)

(ii) under Assumption (A3), for the out-of-sample relative loss of the shrinkage GMV portfolio 𝐰̂𝑛;𝐵𝑃𝑆 it holds that
|

|

|

|

𝐿𝐰̂𝑛;𝐵𝑃𝑆
−
(

𝛼2𝐵𝑃𝑆
𝑐

1 − 𝑐
+ (1 − 𝛼𝐵𝑃𝑆 )2𝐿𝐛

)

|

|

|

|

𝑎.𝑠.
→ 0, (2.14)

(iii) under Assumption (A3), for the out-of-sample relative loss of the shrinkage GMV portfolio 𝐰̂𝑛;𝐹𝑀 it holds that
|

|

|

|

𝐿𝐰̂𝑛;𝐹𝑀
−
(

𝛼2𝐹𝑀
𝑐

1 − 𝑐
+ (1 − 𝛼𝐹𝑀 )2𝐿𝐛

)

|

|

|

|

𝑎.𝑠.
→ 0, (2.15)

for 𝑝∕𝑛 → 𝑐 ∈ (0, 1) as 𝑛 → ∞ where 𝛼𝐵𝑃𝑆 and 𝛼𝐹𝑀 are given in (2.10) and (2.12), respectively.
4



Finance Research Letters 54 (2023) 103807T. Bodnar et al.

l
t
M
e
o

f
l

r
f

C

The findings of Theorem 2.2 show that the relative loss of shrinkage portfolios is present as a linear combination of the relative
oss of the corresponding target portfolio and of the limiting relative loss of the traditional GMV portfolio. The relative loss of the
raditional GMV portfolio 𝐰̂𝑛;𝑆 tends to a constant 𝑐∕(1 − 𝑐) that does not depend on the covariance matrix of the asset returns.
oreover, if 𝑐 tends to 1, then the relative loss of the traditional GMV portfolio tends to infinity showing that the impact of the

stimation error could be drastically large in the high-dimensional setting. Furthermore, using (2.10) and (2.12) the limiting values
f relative loss computed for two shrinkage estimators can be rewritten as

𝛼2𝐹𝑀
𝑐

1 − 𝑐
+ (1 − 𝛼𝐹𝑀 )2𝐿𝐛 =

𝐿2
𝐛

(𝑐 + 𝐿𝐛)2
𝑐

1 − 𝑐
+ 𝑐2

(𝑐 + 𝐿𝐛)2
𝐿𝐛 (2.16)

for the shrinkage estimator of Frahm and Memmel (2010) and

𝛼2𝐵𝑃𝑆
𝑐

1 − 𝑐
+ (1 − 𝛼𝐵𝑃𝑆 )2𝐿𝐛 =

(1 − 𝑐)𝐿2
𝐛

(𝑐 + (1 − 𝑐)𝐿𝐛)2
𝑐 + 𝑐2

(𝑐 + (1 − 𝑐)𝐿𝐛)2
𝐿𝐛 (2.17)

or the shrinkage estimator of Bodnar et al. (2018). As a result, expressions (2.16) and (2.17) show that the out-of-sample relative
oss of the shrinkage estimator (2.2) tends to infinity as 𝑐 approaches one, similarly to the traditional estimator 𝐰̂𝑛;𝑆 , while the

out-of-sample relative loss of the shrinkage estimator (2.4) tends to the relative loss of the target portfolio when 𝑐 tends to one.
The results of Theorem 2.2 lead also to some dominance statements presented in Corollary 2.3 in terms of the out-of-sample

elative loss. Due to the relationship between the out-of-sample variance and the out-of-sample loss the same statements also hold
or the out-of-sample variance by using the findings of Theorem 2.1.

orollary 2.3. Let 𝐲𝑡, 𝑡 = 1,… , 𝑛 follow model (2.1). Then, under Assumption (A3) it holds that

(i)

𝐿𝐰̂𝑛;𝑆
− 𝐿𝐰̂𝑛;𝐹𝑀

𝑎.𝑠.
→

𝑐2(𝑐 + 𝐿𝐛 + 𝑐𝐿𝐛)
(1 − 𝑐)(𝑐 + 𝐿𝐛)2

≥ 0, for 𝑝
𝑛
→ 𝑐 ∈ (0, 1) as 𝑛 → ∞,

with equality if and only if 𝑐 = 0 or 𝐿𝐛 = ∞, i.e., when the sample size is considerably larger than the portfolio dimension or the
target portfolio deviates too strong from the true GMV portfolio;

(ii)

𝐿𝐰̂𝑛;𝑆
− 𝐿𝐰̂𝑛;𝐵𝑃𝑆

𝑎.𝑠.
→

𝑐2

(1 − 𝑐)(𝑐 + (1 − 𝑐)𝐿𝐛)
≥ 0 for 𝑝

𝑛
→ 𝑐 ∈ (0, 1) as 𝑛 → ∞,

with equality if and only if 𝑐 = 0 or 𝐿𝐛 = ∞, i.e., when the sample size is considerably larger than the portfolio dimension or the
target portfolio deviates too strong from the true GMV portfolio;

(iii)

𝐿𝐰̂𝑛;𝐹𝑀
− 𝐿𝐰̂𝑛;𝐵𝑃𝑆

𝑎.𝑠.
→

𝑐4𝐿2
𝐛

(1 − 𝑐)(𝑐 + 𝐿𝐛)2(𝑐 + (1 − 𝑐)𝐿𝐛)
≥ 0 for 𝑝

𝑛
→ 𝑐 ∈ (0, 1) as 𝑛 → ∞,

with equality if and only if 𝑐 = 0 or 𝑐 > 0, 𝐿𝐛 = 0 or 𝑐 > 0, 𝐿𝐛 = ∞, i.e., when the target portfolio coincides with the true GMV
portfolio or the target portfolio deviates too strong from the true GMV portfolio when the concentration ratio is positive.

The findings of Corollary 2.3 show that the shrinkage estimator of Bodnar et al. (2018) outperforms the other two estimators,
while the shrinkage estimator of Frahm and Memmel (2010) is always better than the sample estimator 𝐰̂𝑛;𝑆 . The exception is present
when the sample size 𝑛 is considerably larger than the portfolio dimension 𝑝 such that the concentration ratio is equal to zero or
when the target portfolio is very poorly chosen such that its relative loss is infinity. In the latter situation, the investor might consider
a different target portfolio in order to get the advantage of the shrinkage approaches over the sample estimator. Interestingly, when
the target portfolio coincides with the population GMV portfolio, then both shrinkage estimators perform similarly.

3. Empirical out-of-sample variance and relative loss

The out-of-sample variance is one of the performance measures which are widely used to compare trading strategies between
each other. However, it cannot directly be applied in practice, since its definition depends on the unknown population covariance
matrix Σ. As a result, different portfolio strategies are compared between each other based on the empirical counterparts of the out-
of-sample performance measures as presented in (1.8) and (1.9), respectively, where the sample of the asset returns 𝐲𝑛+1,… , 𝐲𝑛+𝑚 is
used to construct an estimator of the covariance matrix denoted by 𝐒𝑛+1∶𝑛+𝑚 as in (1.7). In this section we show that the empirical out-
of-sample variance can be an improper performance measure in the high-dimensional setting, since it may tend to zero independently
of the used trading strategy due to the dimensionality effect. As a solution, the empirical out-of-sample relative loss is suggested
and asymptotic properties are derived.

In Theorems 3.1 and 3.2 we derive the asymptotic properties of the empirical out-of-sample variance and of the empirical out-
of-sample relative loss computed for the four portfolios discussed in Section 2. The proofs of the theorems are presented in the
supplement. It is remarkable that the results of Theorems 3.1 and 3.2 are deduced under the same conditions as given in the
statements of Theorems 2.1 and 2.2, even though additional randomness is taken into account in the derivations of the results.
Moreover, both the empirical out-of-sample variances and the out-of-sample relative losses converge to the same limiting values as
5

given in Theorems 2.1 and 2.2.
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Theorem 3.1. Let 𝐲𝑡, 𝑡 = 1,… , 𝑛 + 𝑚 follow model (2.1). Then,

(i) under Assumption (A1), for the empirical out-of-sample variance of the sample GMV portfolio 𝐰̂𝑛;𝑆 it holds that
|

|

|

𝑉𝐰̂𝑛;𝑆 ;𝑚 − (1 − 𝑐)−1𝑉𝐺𝑀𝑉
|

|

|

𝑎.𝑠.
→ 0, (3.1)

(ii) under Assumption (A2), for the empirical out-of-sample variance of the target portfolio 𝐛 it holds that
|

|

|

𝑉𝐛;𝑚 − 𝑉𝐛
|

|

|

𝑎.𝑠.
→ 0, (3.2)

(iii) under Assumptions (A1) and (A2), for the empirical out-of-sample variance of the shrinkage GMV portfolio 𝐰̂𝑛;𝐵𝑃𝑆 it holds that
|

|

|

|

𝑉𝐰̂𝑛;𝐵𝑃𝑆 ;𝑚 −
(

𝑉𝐺𝑀𝑉 + 𝛼2𝐵𝑃𝑆
𝑐

1 − 𝑐
𝑉𝐺𝑀𝑉 + (1 − 𝛼𝐵𝑃𝑆 )2(𝑉𝐛 − 𝑉𝐺𝑀𝑉 )

)

|

|

|

|

𝑎.𝑠.
→ 0, (3.3)

with 𝛼𝐵𝑃𝑆 as in (2.10),
(iv) under Assumptions (A1) and (A2), for the empirical out-of-sample variance of the shrinkage GMV portfolio 𝐰̂𝑛;𝐹𝑀 it holds that

|

|

|

|

𝑉𝐰̂𝑛;𝐹𝑀 ;𝑚 −
(

𝑉𝐺𝑀𝑉 + 𝛼2𝐹𝑀
𝑐

1 − 𝑐
𝑉𝐺𝑀𝑉 + (1 − 𝛼𝐹𝑀 )2(𝑉𝐛 − 𝑉𝐺𝑀𝑉 )

)

|

|

|

|

𝑎.𝑠.
→ 0, (3.4)

with 𝛼𝐹𝑀 as in (2.12),

or 𝑝∕𝑛 → 𝑐 ∈ (0, 1) and 𝑝∕𝑚 → 𝑐 ∈ (0,∞) as 𝑛 → ∞.

heorem 3.2. Let 𝐲𝑡, 𝑡 = 1,… , 𝑛 + 𝑚 follow model (2.1). Then,

(i) under Assumption (A3), for the empirical out-of-sample relative loss of the sample GMV portfolio 𝐰̂𝑛;𝑆 it holds that
|

|

|

|

𝐿̂𝐰̂𝑛;𝑆 ;𝑚 − 𝑐
1 − 𝑐

|

|

|

|

𝑎.𝑠.
→ 0, (3.5)

(ii) under Assumption (A3), for the empirical out-of-sample relative loss of the target portfolio 𝐛 it holds that
|

|

|

𝐿̂𝐛;𝑚 − 𝐿𝐛
|

|

|

𝑎.𝑠.
→ 0, (3.6)

(iii) under Assumptions (A3), for the empirical out-of-sample relative loss of the shrinkage GMV portfolio 𝐰̂𝑛;𝐵𝑃𝑆 it holds that
|

|

|

|

𝐿̂𝐰̂𝑛;𝐵𝑃𝑆 ;𝑚 −
(

𝛼2𝐵𝑃𝑆
𝑐

1 − 𝑐
+ (1 − 𝛼𝐵𝑃𝑆 )2𝐿𝐛

)

|

|

|

|

𝑎.𝑠.
→ 0, (3.7)

with 𝛼𝐵𝑃𝑆 as in (2.10),
(iv) under Assumptions (A3), for the empirical out-of-sample relative loss of the shrinkage GMV portfolio 𝐰̂𝑛;𝐹𝑀 it holds that

|

|

|

|

𝐿̂𝐰̂𝑛;𝐹𝑀 ;𝑚 −
(

𝛼2𝐹𝑀
𝑐

1 − 𝑐
+ (1 − 𝛼𝐹𝑀 )2𝐿𝐛

)

|

|

|

|

𝑎.𝑠.
→ 0, (3.8)

with 𝛼𝐹𝑀 as in (2.12),

for 𝑝∕𝑛 → 𝑐 ∈ (0, 1) and 𝑝∕𝑚 → 𝑐 ∈ (0, 1) as 𝑛, 𝑚 → ∞.

Since the empirical out-of-sample losses 𝐿̂𝐰̂𝑛;𝑆 ;𝑚, 𝐿̂𝐰̂𝑛;𝐵𝑃𝑆 ;𝑚, and 𝐿̂𝐰̂𝑛;𝐹𝑀 ;𝑚 possess the same high-dimensional asymptotic behavior

as the corresponding out-of-sample losses 𝐿𝐰̂𝑛;𝑆
, 𝐿𝐰̂𝑛;𝐵𝑃𝑆

, and 𝐿𝐰̂𝑛;𝐹𝑀
in Theorem 2.2, the results of Corollary 2.3 remain also valid.

Namely, we get

Corollary 3.3. Let 𝐲𝑖, 𝑖 = 1,… , 𝑛 + 𝑚 follow model (2.1). Then, under Assumption (A3) it holds that

(i)

𝐿̂𝐰̂𝑛;𝑆;𝑚
− 𝐿̂𝐰̂𝑛;𝐹𝑀 ;𝑚

𝑎.𝑠.
→

𝑐2(𝑐 + 𝐿𝐛 + 𝑐𝐿𝐛)
(1 − 𝑐)(𝑐 + 𝐿𝐛)2

≥ 0

for 𝑝∕𝑛 → 𝑐 ∈ (0, 1), 𝑝∕𝑚 → 𝑐 ∈ (0, 1) as 𝑛, 𝑚 → ∞, with equality if and only if 𝑐 = 0 or 𝐿𝐛 = ∞, i.e., when the sample size is
considerably larger than the portfolio dimension or the target portfolio deviates too strong from the true GMV portfolio;

(ii)

𝐿̂𝐰̂𝑛;𝑆;𝑚
− 𝐿̂𝐰̂𝑛;𝐵𝑃𝑆;𝑚

𝑎.𝑠.
→

𝑐2

(1 − 𝑐)(𝑐 + (1 − 𝑐)𝐿𝐛)
≥ 0

for 𝑝∕𝑛 → 𝑐 ∈ (0, 1), 𝑝∕𝑚 → 𝑐 ∈ (0, 1) as 𝑛, 𝑚 → ∞, with equality if and only if 𝑐 = 0 or 𝐿𝐛 = ∞, i.e., when the sample size is
considerably larger than the portfolio dimension or the target portfolio deviates too strong from the true GMV portfolio;

(iii)

𝐿̂𝐰̂ − 𝐿̂𝐰̂
𝑎.𝑠.
→

𝑐4𝐿2
𝐛 ≥ 0
6
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for 𝑝∕𝑛 → 𝑐 ∈ (0, 1), 𝑝∕𝑚 → 𝑐 ∈ (0, 1) as 𝑛, 𝑚 → ∞, with equality if and only if 𝑐 = 0 or 𝑐 > 0, 𝐿𝐛 = 0 or 𝑐 > 0, 𝐿𝐛 = ∞, i.e., when
the target portfolio coincides with the true GMV portfolio or the target portfolio deviates too strong from the true GMV portfolio when
the concentration ratio is positive.

Corollary 3.3 provides the limiting behavior of the differences of the empirical out-of-sample losses and, consequently, the
ame ranking between the three estimators of the GMV portfolio weights as previously obtained in Corollary 2.3. Furthermore, the
ifference between the asymptotic behavior of the three estimators is negligible only when the concentration ratio is zero, i.e., the
ortfolio size is considerably smaller than the sample size, or when the target portfolio is poorly chosen such that its relative loss
ecomes infinity.

. Simulation study

In this section we will investigate the finite sample behavior of the high-dimensional asymptotic results presented in Corollary 3.3
ia an extensive Monte Carlo study. The aim of the study is twofold: (i) first, we investigate how fast the difference of the empirical
ut-of-sample relative loss functions tend to the corresponding limiting value provided in the statement of Corollary 3.3; (ii) second,
e study the impact of the presence of non-linear time dependence in the data-generating model on the performance of the three

onsidered trading strategies.
For each fixed value of the portfolio size 𝑝 we first simulated the elements of the mean vector 𝝁 as 𝜇𝑖 ∼ 𝑈 (−0.1, 0.1), 𝑖 = 1, 2,… , 𝑝

nd the elements of the covariance matrix Σ using the RandCovMtrx function from the HDShOP package (Bodnar et al., 2021a).
hen these values were used in simulating samples of the asset returns from the following data-generating models:

cenario 1: 𝑡-distribution The elements of 𝐱𝑡 are drawn independently from the 𝑡-distribution with 5 degrees of freedom, that is
𝑥𝑡𝑗 ∼ 𝑡(5) for 𝑗 = 1,… , 𝑝, while 𝐲𝑡 is constructed according to (2.1). Moreover since the variance of the t-distribution with 5
degrees of freedom is equal to 5∕3 we, additionally multiply the vector 𝐱𝑡 in (2.1) by

√

3∕5. As such, all
√

3∕5𝑥𝑡𝑗 have mean
zero and variance one.

Scenario 2: CAPM The vector of asset returns 𝐲𝑡 is generated according to the CAPM (Capital Asset Pricing Model), i.e.,

𝐲𝑡 = 𝝁 + 𝜷𝑧𝑡 +Σ1∕2𝐱𝑡,

with independently distributed 𝑧𝑡 ∼ 𝑁(0, 1) and 𝐱𝑡 ∼ 𝑁𝑝(𝟎, 𝐈). The elements of vector 𝜷 are drawn from the uniform
distribution, that is 𝛽𝑖 ∼ 𝑈 (−1, 1) for 𝑖 = 1,… , 𝑝.

cenario 3: CCC-GARCH model of Bollerslev (1990) The asset returns are simulated according to

𝐲𝑡|Σ𝑡 ∼ 𝑁𝑝(𝝁,Σ𝑡)

where the conditional covariance matrix is specified by

Σ𝑡 = 𝐃1∕2
𝑡 𝐂𝐃1∕2

𝑡 with 𝐃𝑡 = diag(ℎ1,𝑡, ℎ2,𝑡,… , ℎ𝑝,𝑡),

with

ℎ𝑗,𝑡 = 𝛼𝑗,0 + 𝛼𝑗,1(𝐲𝑗,𝑡−1 − 𝝁𝑗 )2 + 𝛽𝑗,1ℎ𝑗,𝑡−1, for 𝑗 = 1, 2,… , 𝑝, and 𝑡 = 1, 2,… , 𝑛 + 𝑚.

The coefficients of the CCC-GARCH model are generated by 𝛼𝑗,1 ∼ 𝑈 (0, 0.1) and 𝛽𝑗,1 ∼ 𝑈 (0.6, 0.7) which implies that the
stationarity conditions, 𝛼𝑗,1 + 𝛽𝑗,1 < 1, are always fulfilled. The intercepts 𝛼𝑗,0, 𝑗 = 1,… , 𝑝 is thereafter chosen such that the
unconditional covariance matrix is equal to Σ.

The model under scenario 1 fulfills the assumptions imposed in Section 2 by drawing the vector 𝐱𝑡 independently each of other.
Scenario 2 considers a common model in asset pricing, namely the CAPM model. In this scenario, the tails are less fat than Scenario
1, but the largest eigenvalue of the covariance matrix is of order 𝑝. Furthermore, CAPM has the potential to capture many different
market regimes and structures, such as cyclical patterns through its conditional distribution. In contrast to these two, scenario 3
possesses some time dependence structure, thus violating the assumption imposed on the data-generating model in Section 2. Here a
complicated non-linear time dependence structure is assumed in scenario 3 which is accompanied with conditionally time-dependent
covariance matrix Σ𝑡. This model captures cyclical patterns seen in market data, such as volatility clustering. Finally, the equally
weighted portfolio is used as a target portfolio in all scenarios.

In Figs. 1 to 3 we present the relative differences of empirical out-of-sample losses as considered in Corollary 3.3 divided by
the corresponding asymptotic limit determined for each difference in the statement of the corollary in the right hand-side of each
inequality. For each scenario we set 𝑛 = {100, 250, 500, 750, 1000}, 𝑐 = {0.5, 0.9} and 𝑐 = {0.5, 0.9}. The portfolio size 𝑝 and the sample
size 𝑚 are thereafter determined by 𝑝 = 𝑛𝑐 and in turn 𝑚 = 𝑝∕𝑐. If necessary we round to the closest integer. The results in the
figures are based on the 1000 independent repetitions and present the corresponding average values.

Fig. 1 depicts the results of the simulation study obtained under scenario 1. The relative differences in the empirical out-of-
sample losses converge quickly to one, indicating that the results of Corollary 3.3 may also be used when samples of asset returns
of moderate size are used. As expected, the fastest convergence is observed in the case 𝑐 = 𝑐 = 0.5, while the largest deviations from
7

one is present in the case of 𝑐 = 0.5 and 𝑐 = 0.9, when the sample size is small. Finally, we note that all computed values in the plots
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Fig. 1. Relative differences in the empirical out-of-sample losses divided by the corresponding asymptotic limit as given in Corollary 3.3 for 𝑛 =
{100, 250, 500, 750, 1000}, 𝑐 = {0.5, 0.9} and 𝑐 = {0.5, 0.9}. The samples of asset returns are drawn following scenario 1.

Fig. 2. Relative differences in the empirical out-of-sample losses divided by the corresponding asymptotic limit as given in Corollary 3.3 for 𝑛 =
{100, 250, 500, 750, 1000}, 𝑐 = {0.5, 0.9} and 𝑐 = {0.5, 0.9}. The samples of asset returns are drawn following scenario 2.

are positive and, as such, the shrinkage estimator of Bodnar et al. (2018) outperforms the other two trading strategies followed by
the shrinkage approach of Frahm and Memmel (2010) in all of the considered cases.

In Fig. 2 the results of the simulation study obtained under scenario 2 are presented. All values are positive, which is in line
with the ordering presented in the previous section. At first glance, the results seem slightly more volatile for the upper left hand
8
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Fig. 3. Relative differences in the empirical out-of-sample losses divided by the corresponding asymptotic limit as given in Corollary 3.3 for 𝑛 =
{100, 250, 500, 750, 1000}, 𝑐 = {0.5, 0.9} and 𝑐 = {0.5, 0.9}. The samples of asset returns are drawn following scenario 3.

figure, i.e. 𝑐 = 𝑐 = 0.5, though that is simply a matter of scale. As 𝑐 and 𝑐 grow, all simulations illustrate the pattern as in scenario
1.

Fig. 3 illustrates the results of the simulation study under the third scenario. In this setting, the returns are simulated from a
CCC-GARCH model which captures volatility clustering and also introduces a non-linear time dependence structure in the vectors
of the asset returns. Here the relative differences do not converge to one, although the departure from one is not considerably large.
Moreover, the relative losses converge to the values which are larger one and the computed values are all positive. As such, the
ranking between the three trading strategies is preserved and one can also use the expression of the limiting values of Corollary 3.3
as the corresponding lower bounds for the differences under the assumption of the CCC-GARCH model.

5. Empirical illustration

In the empirical application we use 10 years of daily data for 100 and 190 stocks included in the S&P500 index from the first
of June 2011 to the seventh of January 2021. During the considered period of time, 380 stocks were continuously included in the
S&P500 index from which we randomly choose 100 and 190 stocks to build the GMV portfolio. The first 𝑛 = 200 observations
were used to estimate the weights of the GMV portfolio by employing the traditional estimator and the two shrinkage estimators
introduced in Section 2, while the next 𝑚 = 200 observations were used to compute the values of the empirical out-of-sample
variances and the empirical out-of-sample relative loses for each trading strategy. Then, using the rolling window approach the
same computations, related to the short-term prediction of risk measures, are subsequently performed over the time period from
the fourteenth of February, 2013 to the seventh of January 2021. As a target portfolio in the construction of the two shrinkage
estimator, the equally weighted portfolio was used.

Fig. 4 depicts the values of the empirical out-of-sample variances and of the empirical out-of-sample relative losses computed
for three estimators of the GMV portfolio considered in the paper. The result are presented for two portfolio sizes which correspond
to 𝑐 = 𝑐 = 0.5 and 𝑐 = 𝑐 = 0.95. A considerable increase in both the empirical out-of sample variances and losses of each estimator
is observed in March 2020 which corresponds to the crisis on international financial market caused by the beginning of COVID-19
spread over the world. The rapid increase of volatility is more pronounced in the case of the smaller dimensional portfolio, i.e., when
𝑝 = 100. In the case of the portfolio which is based on 𝑝 = 190 stocks the jump in the values of the two considered performance
measures is smoothed due to higher variability of these two measures presented during the whole period of observation. Another
rapid increase in the loss functions for 𝑝 = 100 occurs in late December 2020. This date can be related to the second wave of
the COVID-19 spread. Similar increases in the behavior of the relative loss function are also present for the portfolio consisting of
𝑝 = 190 stocks, although they are somehow hidden by the more volatile behavior of the loss function in the latter case.

In general, the results in Fig. 4 confirm the ordering of the three trading strategies which is deduced in Corollary 3.3 and
confirmed in the finite-sample case in the simulation study of Section 4. Namely, the shrinkage estimator of Bodnar et al. (2018)
9
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Fig. 4. Empirical out-of-sample variance and out-of-sample relative loss of the traditional GMV portfolio and the two shrinkage estimators based on the rolling
window approach with window size equal 200 and computed for two portfolios which consist of 100 and 190 stocks traded in the S&P 500 index.

shows the smallest values of both the empirical out-of-sample variance and the empirical out-of-sample relative loss, while the
shrinkage estimator of Frahm and Memmel (2010) is ranked on the second place. On the other side, when the empirical out-of-
sample variance is used as a performance measure, the distinction between the strategies become visually negligible in almost all
cases presented for 𝑝 = 100 and in majority of cases when the portfolio with 𝑝 = 190 is constructed. This empirical finding can be
explained by noting that most of the values of the empirical out-of-sample variance were computed during the stable period on the
capital market and as such, the true value of the global minimum variance was very small at that time. In contrast, the usage of
the empirical out-of-sample loss can lead to the obvious conclusion about the performance of each of the considered three trading
strategies. Finally, the impact of portfolio dimensionality which is accompanied with a huge amount of estimation error becomes
more pronounced when the empirical relative loss is used, especially during the turbulent period on the capital market.

6. Summary

The sample variance of the GMV portfolio is known to be biased and to significantly underestimate the true population variance
of this portfolio, especially when the portfolio size is comparable to the sample size. In many practical situations it is not a good
measure for the portfolio performance and the out-of-sample variance is usually used instead. However, its value could be very
close to zero in a high-dimensional asset universe. That is why many researchers use its annualized version by multiplying the out-
of-sample variance by the square root of periods (see, e.g., Zhao et al., 2021). Still, it is not clear what is the natural normalization
of risk, when big number of assets is involved. The only way to find this out is to consistently estimate the risk of the true GMV
portfolio and construct a unit-free measure of the out-of-sample variance, i.e., its relative loss with respect to the true risk.

For this purpose we derive the asymptotic properties of the out-of-sample variance and of the out-of-sample relative loss as well
as of their empirical counterparts. Under weak conditions imposed on the data-generating model it is shown that the out-of-sample
variance and the empirical out-of-sample variance might tend to zero independently of chosen estimator of the GMV portfolio
10
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weights, which can make the comparison between the trading strategies intractable. This is not, however, an issue when the out-of-
sample relative loss and the empirical out-of-sample relative loss are used instead. In the latter case a clear ordering between the
estimators of the three considered estimators can be made.

As a by-product of the derived theoretical findings, we also prove by way of example that the shrinkage estimator of Bodnar
t al. (2018) outperforms the shrinkage estimator of Frahm and Memmel (2010) and the traditional estimator of the GMV portfolio.
oreover, we quantify the difference in the performance of the three trading strategies by deducing the asymptotic difference of

heir empirical out-of-sample relative loss functions. Within a comprehensive numerical study it is shown that the derived asymptotic
imits can still be used when the sample of moderate size is present and when the asset returns possess a non-linear time dependence
tructure. As a result a new measure of risk, i.e., the out-of-sample relative loss, could be used by practitioners, which is always
ounded away from zero and infinity, and provides a natural ordering between investment strategies in terms of their out-of-sample
erformance.
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