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Abstract

We present a large-scale empirical study of Bootstrapped DQN (BDQN) and
Randomized-Prior BDQN (RP-BDQN) in the DeepSea environment, aimed at charac-
terizing their scaling properties. Our primary contribution is a unified scaling law that
accurately models the probability of reward discovery as a function of task hardness and
ensemble size. This law is parameterized by a method-dependent effectiveness factor,
ψ. Under this framework, RP-BDQN demonstrates substantially higher effectiveness
(ψ ≈ 0.87) compared to BDQN (ψ ≈ 0.80), enabling it to solve more challenging tasks.
Our analysis reveals that this advantage stems from RP-BDQN’s sustained ensemble
diversity, which mitigates the posterior collapse observed in BDQN. Furthermore, we
demonstrate diminishing returns in performance for ensemble sizes K > 10. These
results offer practical guidance for ensemble configuration and raise new theoretical
questions surrounding the effectiveness parameter ψ.

1 Introduction
In many areas of machine learning, algorithms learn from what are known as ’dense’ rewards.
This typically means that for every input the algorithm processes, there is a clearly defined
desired output, or a straightforward way to calculate a ’goodness’ score for the algorithm’s
prediction. Such a setup simplifies learning process, allowing for the direct application of
backpropagation-based algorithms to adjust the model parameters. In contrast, the objective
of Reinforcement Learning (RL) algorithms is to maximize the total reward accumulated over
a sequence of interactions with an environment (Montague, 1999). Unlike typical supervised
learning, successful RL algorithms must address two fundamental challenges stemming from
this interaction model (Osband et al., 2020):

• Exploration-exploitation tradeoff : The agent needs to decide whether to exploit
actions known to be effective or to explore new, potentially better (or worse) actions.
This involves strategically prioritizing which feedback to learn from.

• Long-term consequences: The agent must consider how its current actions might
affect opportunities and outcomes far into the future, beyond the immediate next step.

One approach to tackle the exploration-exploitation tradeoff is posterior sampling, where
an agent maintains a distribution over optimal policies and acts according to samples from this
belief. While effective in simpler settings, maintaining an exact posterior is computationally
intractable for high-dimensional, non-linear function approximators, such as deep neural
networks. This has driven the development of approximate methods that can capture the
benefits of posterior sampling without the prohibitive computational cost.

In this work, we investigate the behavior of bootstrap-based posterior sampling for
exploration. Bootstrapped DQN (BDQN) (Osband et al., 2016a) is a prominent example,
training an ensemble of Q-value functions on different subsets of experience. While empirically
successful, BDQN is known to suffer from posterior collapse, where all ensemble members
converge to a single, overconfident estimate, thereby losing the diversity needed for sustained
exploration. As a remedy, Randomized-Prior BDQN (RP-BDQN) (Osband et al., 2018)
was introduced, which adds a unique, frozen prior network to each ensemble member. This
modification is designed to anchor each member in a different part of the parameter space,
thereby enforcing diversity and improving exploration, as illustrated in Figure 1.
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Figure 1: Schematic parameter-space view of how bootstrap ensembles form surrogate posteriors.
A - Bootstrapped DQN with ensemble size K = 3. All ensemble members are attracted toward
the same low-loss basin (hatched region in WBDQN). The training dynamics (black arrows) funnel
all members into the single low-loss region, causing the surrogate posterior to become sharply
concentrated and epistemic uncertainty to collapse.
B - Bootstrapped DQN with Randomized Priors, ensemble size K = 3. Each ensemble member WRP1,
WRP2, WRP3 carries an independent, frozen prior network that shifts its loss surface, producing
distinct low-loss regions. The diversity is naturally preserved, and the posterior collapse is structurally
prevented by the hard constraint on the parameter space.

In this work, we address the following research questions:

1. How do BDQN and RP-BDQN scale with the ensemble size and a task-specific hardness
parameter?

2. Can we describe the probability of these methods discovering a solution using a
closed-form scaling law that holds robustly across different hyperparameter settings?

3. Where does the identified scaling law break down, and are there any properties of the
ensemble that affect it?

Contributions

• We present a systematic analysis of BDQN and RP-BDQN across over 40,000 con-
figurations, revealing that a single, unified scaling law governs the convergence
behavior of both methods. We show that the performance difference is captured by a
single, method-dependent effectiveness parameter, ψ, which we link to the algorithm’s
ability to maintain ensemble diversity.

• We provide evidence that RP-BDQN extends the performance boundary beyond where
BDQN breaks down and exhibits consistently more robust convergence.

• We offer a diagnostic framework and have open-sourced our experimental setup1 to
facilitate future studies on epistemic exploration.

1Accessible at https://github.com/knyazer/bootstrapped-dqn-scaling
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Taken together, our results offer an easy-to-follow guide for practitioners: RP-BDQN
consistently outperforms BDQN, and the effect of using ensemble sizes larger than 10
diminishes significantly. For theorists, our findings raise an intriguing question: What
algorithmic properties are captured by the effectiveness parameter ψ, and why do the
proposed scaling laws break down beyond a certain point? Can this scaling law inspire new
exploration methods that directly optimize for the parameter ψ?

2 Background
Markov Decision Process. A further layer of complexity arises in many RL scenarios
where the environment is a ’black box.’ We model the environment as a Markov Decision
Process (MDP) (S,A, P,R, γ), where S is a set of states, A is a set of actions, P (s′ | s, a) is
the state transition probability, R(s, a) is the reward function, and γ ∈ [0, 1] is the discount
factor. The optimal policy in such an environment is

π⋆ = argmax
π

E at∼π(·|st),
st+1∼P (·|st,at)

[ ∞∑
t=0

γtR(st, at)
]
,

The internal dynamics, P (s′ | s, a), of such an environment are usually hidden from the
learning algorithm, preventing methods that might, for instance, differentiate through the
environment to directly calculate how changes in actions would affect rewards (Suh et al.,
2022). This paper is concerned with epistemic exploration, a problem of tackling the
exploration-exploitation dilemma by systematically reducing an agent’s uncertainty about
the environment’s rewards. The goal is to gather just enough knowledge to make informed
decisions about which actions are optimal without excessive exploration.

Q-Learning. Q-learning is a model-free algorithm that attempts to learn the optimal
action-value function, Q⋆(s, a), which quantifies the expected return of taking action a
in state s and acting optimally thereafter Montague (1999). It operates by iteratively
updating its estimate Q(s, a) using observed transitions (s, a, r, s′). The update is based
on the temporal-difference target, r + γmaxa′ Q(s′, a′), which is derived from the Bellman
optimality equation Bellman (1966). In simple cases with discrete states and actions, Q can
be represented as a table, which simplifies the learning. Once learned, the optimal policy is
to greedily select the action with the highest Q-value in a given state.

Deep Q-Learning. Deep Q-Networks (Mnih et al., 2013) combine Q-learning with non-
linear function approximation. A neural network with parameters θ represents Qθ(s, a), with
(s, a) being the state-action pair. Training proceeds by stochastic gradient descent on the
one-step temporal-difference error:

L(θ) = E(s,a,r,s′)∼D

[(
r + γ max

a′
Qθ−(s′, a′)−Qθ(s, a)

)2]
,

where γ is a TD factor, r is an immediate reward, (s′, a′) is the next-step state-action pair,
θ− are periodically updated (lagged) target-network parameters and D is a replay buffer of
experience tuples.
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Posterior sampling for exploration. Reinforcement learning agents often grapple with
a data-collection bottleneck because the reward signals are frequently sparse and delayed.
Consequently, agents must actively probe and experiment within their environment to uncover
behaviors that lead to high cumulative returns. One of the issues with the greedy DQN
approach is that it chooses the optimal action based on its belief. This leads to DQN getting
stuck using a locally optimal policy and failing to conduct any exploration. In simpler,
small-scale, tabular MDPs, where all states and actions can be explicitly enumerated, the
exploration-exploitation tradeoff is well-understood and can be managed using principled
methods like posterior sampling (Osband et al., 2016b; Strens, 2000). During posterior
sampling, the agent maintains a posterior distribution (belief) over plausible value functions
(or models), and acts according to samples drawn from this distribution. However, for
the complex, non-linear function approximations (typically deep neural networks) that
are central to modern deep reinforcement learning, performing exact posterior inference
is computationally prohibitive. This creates a need for tractable surrogates: practical
methods that can (i) approximate Bayesian-like exploration closely enough to guide the agent
effectively and (ii) scale to models with potentially millions of parameters.

Several approaches aim to approximate the Bayesian posterior to achieve efficient explo-
ration. Some methods aim for direct approximation, for instance, using Markov Chain Monte
Carlo techniques (Hastings, 1970; Ishfaq et al., 2023), Sequential Monte Carlo (Van der
Vaart et al., 2024) or variational approximations to the Bayesian posterior (Srivastava et al.,
2014; Fortunato et al., 2018). In contrast, an alternative line of research, and a focus of this
work, utilizes the stationary distribution of the optimization algorithm itself as a surrogate
posterior (Osband et al., 2016a, 2018). While it has been shown that stochastic gradient
descent iterates can yield a posterior that is approximately Bayesian under certain conditions
(Mandt et al., 2017), the properties of stationary distributions for more complex optimizers,
such as Adam (Kingma and Ba, 2015), are less characterized. Nevertheless, a significant
benefit of using such surrogate posteriors is the simplicity and efficiency of sampling from
them, making them an attractive choice for driving exploration.

Bootstrap Ensembles as Approximate Posterior Distributions. A prominent line
of work in this area uses bootstrap sampling to mimic Thompson sampling (Thompson,
1933). This involves maintaining K different estimates of the value function (which predicts
future rewards), each trained on a stochastically resampled subset of the collected data.
In the linear setting (where value functions are linear models), Randomized Least-Squares
Value Iteration (RLSVI) (Osband et al., 2016b) provided an early analytical connection,
showing that bootstrap-style perturbations can approximate Gaussian posteriors and achieve
polynomial sample efficiency. Osband et al. (2016a) extended this concept to deep neural
networks. The method attaches a separate output head (a linear layer) for each of the K
Q-value estimates and uses masks so that gradients for each head flow only through a specific
subset of data mini-batches. This results in an ensemble of DQNs whose stationary weight
distribution can approximate a Bayesian posterior, particularly in the limit of small learning
rates (Mandt et al., 2017). In general, however, this method does not necessarily approximate
a Bayesian posterior; notably, this does not make it less useful for efficient exploration. Each
ensemble member is trained on its own target network, allowing for the correct propagation
of time-discounted uncertainties (Osband et al., 2016a).

Injecting priors. Despite its empirical success, vanilla BDQN has a limitation: its belief
about the environment is formed from the same training data for all the models. Consequently,
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in regions of the state-action space that the agent has not visited, its uncertainty can diminish
too quickly due to the alignment of training gradients for different ensemble members. To
address this, Osband et al. (2018) proposed adding a frozen, untrainable prior network to each
member of the ensemble. The resulting Randomized-Prior BDQN (RP-BDQN) maintains
computational tractability while restoring a more robust (non-degenerate) posterior, and it
maintains theoretical guarantees under linear function approximation. Meng et al. (2023)
attempted to replace the priors with white noise; however, we were unable to reproduce
their results. Therefore, our work focuses on the canonical and widely adopted RP-BDQN
formulation. In RP-BDQN, each of the K ensemble members (with parameters θk and the
frozen prior pk) is trained to minimize the following loss:

L(θ) =
1

K

K∑
k=1

E(s,a,r,s′)∼D

[
(yk − (Qk(s, a; θk) + pk(s, a)))

2
]

where yk = r + γmax
a′

(Qk(s
′, a′; θ−k ) + pk(s

′, a′)).

Towards scaling laws for exploration. While BDQN and RP-BDQN are widely used
and have demonstrated strong empirical performance, a systematic understanding of how
their effectiveness scales with factors like task difficulty and ensemble size is still lacking.
Drawing inspiration from the power-law tradition observed in fields like language modeling
(Kaplan et al., 2020) and supervised deep learning (Hestness et al., 2017), our goal is to
identify simple empirical regularities that can help practitioners make informed decisions
about resource allocation when using these methods in deep RL.

3 Experimental Setup
To derive empirical scaling laws for exploration, we must first construct a methodology that
allows us to (1) precisely control the difficulty of the exploration problem and (2) robustly
measure an agent’s ability to solve it. This section outlines our approach, detailing the
environment used to parameterize exploration hardness, the metric used to quantify success,
the specific agents subjected to this test, and the quantitative models that emerge from the
results.

3.1 Parameterizing Exploration Hardness with DeepSea
A core challenge of epistemic exploration is correctly valuing knowledge collection when
extrinsic rewards are sparse. To study this in isolation, we require an environment where
exploration difficulty can be tuned via a single, interpretable parameter. We use the DeepSea
environment for this purpose (Osband et al., 2018, 2020).

The DeepSea environment, depicted in Figure 2, is an n× n grid world where the agent
starts in the state (1, 1) and must navigate to a single, high-reward goal state at (n, n). A
reward of +1 is given only upon reaching this goal; all transitions to the right yield a small
negative reward of −0.01/n, and all transitions to the left yield no reward. The main feature
of DeepSea is that there is a unique path to get a positive reward, and the length of this path
is directly proportional to n. This parameter n thus serves as our hardness parameter:
increasing n creates an exponentially more complex exploration problem by requiring the
agent to commit to a longer, penalized path. This provides a clean, one-dimensional axis of
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difficulty against which we can measure agent performance. To avoid the implicit bias of
deep neural networks, a randomized action map is used: at each state, the action to move
left or right is randomly swapped according to a random action map pre-initialized once
before the training run.

Figure 2: DeepSea(n) environment. The agent starts at the top-left corner; the only rewarding
state is the bottom-right corner, and any right move incurs a small penalty, while any left move
yields no reward. Larger grids require proportionally longer penalized action sequences, making
exploration harder. Diagram adapted from Osband et al. (2020).

3.2 Measuring Exploration: The Probability of Discovery
Our research questions center on the probability of an agent converging to a good solution.
Rather than measuring full convergence to an optimal policy, we focus on the event of
discovery. We define a single experimental run as a ’success’ if the agent finds the goal state
and receives the +1 reward for the first time within a fixed budget of environment steps.

We adopt this metric because it isolates the exploration capability of the agent from its
subsequent policy optimization. We assume that once a high-reward trajectory is discovered
and added to the replay buffer, any standard Q-learning method will eventually learn the
optimal policy. The actual bottleneck is finding that trajectory in the first place. Our metric,
the Probability of Discovery (PoD), is therefore the fraction of runs (over multiple random
seeds for each configuration) that achieve this discovery event within the episode budget,
directly quantifying the likelihood that a given exploration strategy will work for a problem
of a certain hardness.

3.3 Agents and Implementation Details
We use our testbed to compare the scaling properties of two key posterior sampling approxi-
mations: BDQN and RP-BDQN.
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• Bootstrapped DQN (BDQN): An ensemble of K DQN networks. Our implementa-
tion, which does not use a shared network ’core,’ is more aligned with the RP-BDQN
architecture and can be viewed as a no-prior variant of Osband et al. (2018), with
similar performance to that of Osband et al. (2016a).

• Randomized-Prior BDQN (RP-BDQN): An exact reproduction of Osband et al.
(2018), which extends BDQN by adding the output of a fixed, randomly initialized
prior network to each of the K separate ensemble members.

Environment and Compute. All agents are implemented in JAX (Bradbury et al.,
2018) and Equinox (Kidger and Garcia, 2021). Our DeepSea implementation is based on
Gymnax (Lange, 2022) with minor corrections, as shown in Appendix A, enabling fully
GPU-accelerated training. To ensure computational equivalence, we scale both the learning
rate and batch size linearly with ensemble size K. This is required to maintain the same
first and second moments of the per-member updates for different ensemble sizes. For
completeness, we include the derivation of this fact in Appendix B. The replay buffer size is
held constant, and all ensemble members share transitions. For each algorithm and each pair
(n,K), we perform 32 training runs using different seeds, with a limit of 50,000 episodes per
run.

Network Architecture and Hyperparameters. To ensure a fair comparison, all
agents use the same underlying Q-network and prior network architecture: a Multi-Layer
Perceptron (MLP) with two hidden layers of 32 units and GLU activation function (Dauphin
et al., 2017). Most of the hyperparameters are held constant across all experiments and
are listed in Table 1. We train our model using the AdamW (Loshchilov and Hutter, 2019)
optimizer, without learning rate decay.

Table 1: Default hyperparameters used for all agents, with K corresponding to ensemble size.

Hyperparameter Value
Learning rate 3e-4×K
Weight decay 1e-6
Replay buffer size 10,000
Discount factor (γ) 0.99
Batch size 128×K
Target network update frequency 500 steps
Prior scale (for RP-BDQN) 3.0

3.4 Experimental Protocol
Our investigation proceeds from a large-scale grid search in DeepSea across the ensemble
size K ∈ {1, 2, 3, 4, 6, 10, 16, 20, 24, 32, 40}. For each algorithm and value of K, we start from
n = 3 and increase it until we observe zero successful runs (out of 32 random seeds) for three
consecutive values of n.

4 The Scaling Law
To answer the question ’What is the global performance landscape for each method?’, we
visualize the Probability of Discovery as a function of both task hardness (n) and ensemble
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size (K). Figure 3 presents these results as a heatmap and an efficiency frontier.
For both BDQN and RP-BDQN, increasing the ensemble size yields diminishing returns,

offering only a modest extension of the solvability frontier past K = 20. However, even a
small RP-BDQN ensemble can solve problems that are entirely intractable for a BDQN
ensemble 5 times larger. We note that using Randomized Priors increases the maximum
solvable hardness of the problem by a factor of 1.5 using the hyperparameter configuration
specified in Table 1.

Figure 3: Scaling laws of BDQN and RP-BDQN. The probability of discovery (PoD) is the
effective probability that at least one agent in an ensemble of size K solves a problem of hardness n.
Top row: Empirical PoD for BDQN (left) and RP-BDQN (right). Bottom row: Raw experimental
data, where each point is colored according to its PoD. The horizontal axis is logarithmic in ensemble
size. The dashed lines are contours of constant PoD from the fitted model, p = 1− (1− ψn)K , with
ψ = 0.80 for BDQN and ψ = 0.87 for RP-BDQN. The model accurately captures the general scaling
behavior, although a mismatch for large K can be observed: the n ≥ 32,K = 32 interval should
have a probability of 0.4 according to the law but has zero empirical discoveries across all 128 runs.

4.1 A Unified Scaling Law
The observed empirical trends can be captured by the following scaling law:

P (discovery) ≈ 1− (1− ψn)K (1)

This mathematical form has a direct interpretation as a ’best-of-K’ trial model. The law
posits that an ensemble of size K succeeds if at least one of its members solves the task. The
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probability of a single member solving an n-step problem is modeled as ψn, where ψ is the
base probability of success at a single step. This framework models task hardness n as an
exponential challenge for each member, while increasing ensemble size K improves success
probability.

We fit this model to our experimental data for BDQN and RP-BDQN by maximizing the
log-likelihood. The resulting parameters and goodness-of-fit metrics are shown in Table 2,
with the fitted equiprobability curves plotted in the bottom row of Figure 3.

Table 2: Fitted parameters and goodness-of-fit for the unified scaling law. The parameter ψ
represents the base effectiveness of a single ensemble member. The goodness-of-fit (R2) measures the
proportion of variance in the mean performance explained by the model. The Dispersion quantifies
how well the model captures the data’s variability; a value of 1 would indicate a perfect match.
Our dispersions of 4.1 and 8.1 show that the model is oversimplified. Values after ± represent 95%
confidence intervals computed via bootstrap.

Algorithm Parameter (ψ) Goodness-of-fit (R2) Dispersion MSE

BDQN 0.80± 0.02 0.84 4.1 0.024
RP-BDQN 0.87± 0.01 0.69 8.1 0.049

4.2 Model Interpretation and Limitations
While the model’s R2 value of approximately 0.8 indicates it is a useful heuristic, its core
assumption that the K members act as independent agents is flawed. Our experiments reveal
a divergence from this idealized model. When fit to independent DQN runs, the effectiveness
factor is merely ψ ≈ 0.4, in sharp contrast to the ψ ≈ 0.80 achieved by bootstrap-based
variants. By sharing a replay buffer and collectively shaping the data-collection policy,
ensemble members engage in implicit cooperation that isolated agents lack.

This failure of the independence assumption is also exposed by the model’s high dispersion.
Our measured dispersion values indicate that the observed performance is 4 to 8 times more
variable than the simple scaling law anticipates, which would be considered a ’strong lack of
fit’ in natural sciences. This discrepancy is a consequence of the flawed assumption: complex
interactions and shared experiences within the ensemble introduce sources of variability that
a model of non-interacting agents cannot capture.

The parameter ψ should thus be interpreted as an ’effective’ discovery probability that
attempts to capture these emergent properties. The model’s limitations become clearer still
in the analysis of its residuals (Figure 4), which show a distinct U-shaped structure. The
model consistently overestimates performance in two regimes: for small ensembles that lack
cooperative benefits, and for very large ensembles where performance saturates and yields
diminishing returns.

In summary, while the scaling law provides a valuable first-order approximation, its
systematic failures underscore the complex and cooperative dynamics of ensemble-based
exploration, which remain an area for future investigation.

4.3 The Underlying Mechanism: Ensemble Diversity
The performance heatmaps and scaling laws demonstrate that RP-BDQN is substantially
more effective than BDQN, but they do not explain why. We hypothesize that the performance
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Figure 4: Structured Residual errors of the Scaling Law. The plot shows the prediction error,
in terms of Probability of Discovery, of our scaling law as a function of ensemble size K, averaged
over task hardness n. The plot is U-shaped, indicating that the law overestimates the performance
for small and large numbers of ensembles.

gap stems directly from RP-BDQN’s ability to maintain a diverse set of exploratory policies,
whereas vanilla BDQN is prone to premature posterior collapse, where all members converge
to a single, often suboptimal, policy.

To test this hypothesis, we need a quantitative measure of ensemble diversity. While
diversity in the high-dimensional parameter space is difficult to track, we can readily measure
it in the function space of Q-values. We propose the following metric for Q-Diversity:

1. At the beginning of each training run, we sample a fixed set of 64 probe states, Sprobe,
from the environment.

2. Periodically during training, for each state s ∈ Sprobe, we compute the Q-values,
Qk(s, a), for all actions a and for each of the K ensemble members.

3. The Q-Diversity at a given time is the standard deviation of these Q-values across the
ensemble members, averaged over all 64 probe states.

A high Q-Diversity value indicates that the ensemble members disagree on the values of
actions, suggesting they are pursuing different exploratory strategies. A low value signifies
consensus and a collapse in exploration.

We analyze this metric in the most informative regime: a region of task difficulty where
success is uncertain (8 ≤ n ≤ 12 and 3 ≤ K ≤ 6). We partition the runs from this region
into two groups: ’convergent’ (those that successfully find the goal) and ’non-convergent’
(those that do not). Figure 5 plots the evolution of the average Q-Diversity for these groups.

The results provide clear, empirical evidence for our hypothesis. For RP-BDQN, Q-
Diversity remains high throughout the training process; the randomized priors effectively
prevent the ensemble from collapsing. Runs that eventually converge maintain high diversity
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Figure 5: Ensemble Collapse Throughout Training. The plot shows the evolution of Q-Diversity
(standard deviation of Q-values across the ensemble members) throughout training, with shaded
regions corresponding to the standard deviation of the Q-Diversity across distinct training runs.
Data is aggregated from a region where the PoD is approximately 0.5: 8 ≤ n ≤ 12 and 3 ≤ K ≤ 6.
One can observe that the collapse for RP-BDQN happens later, and the overall diversity is higher
even for non-convergent runs, indicating that randomized priors help to avoid posterior collapse.

for a significant portion of the training, only decreasing after the optimal policy is likely
to be found. In contrast, the BDQN runs show a premature drop in diversity, and the
non-convergent runs exhibit tenfold lower variability than RP-BDQN counterparts. This
indicates that the ensemble members quickly agree on a suboptimal greedy policy, effectively
ending meaningful exploration and trapping the agent in a suboptimal solution.

This analysis confirms that the superior performance of RP-BDQN is not merely an
incidental benefit but likely a consequence of its mechanism: the enforced preservation of
ensemble diversity.

4.4 Robustness Across Hyperparameters
An important question is whether our proposed scaling law and the observed performance
gap between BDQN and RP-BDQN are merely artifacts of our chosen hyperparameters
or if they represent a more general principle. To validate the robustness of our findings,
we conducted a series of hyperparameter sweeps around our default configuration. We
systematically varied the learning rate (η ∈ {8 · 10−5, 5 · 10−4, 10−3}), replay buffer size
(|D| ∈ {5000, 20000, 40000}), and, for RP-BDQN, the prior scale (β ∈ {1.0, 5.0, 10.0}).

For each new hyperparameter configuration, we re-ran the entire evaluation across the
lower-resolution range of task hardness (n) and ensemble size (K) and re-fit our scaling law
(Equation 1) to determine the effective best-of-one success parameter, ψ. This allows us
to measure how the fundamental effectiveness of each algorithm changes rather than just
observing performance on a single task. The results, summarized in Figure 6, demonstrate
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the remarkable robustness of our central finding.

Figure 6: Robustness of the Scaling Law Parameter ψ Across Hyperparameters. The
fitted best-of-one success parameter, ψ, is plotted for sweeps over (a) prior scale, (b) learning rate,
and (c) replay buffer size. The error bars represent the 95% confidence interval from the model fit.

To view the complete heatmaps and efficiency frontiers for all hyperparameter settings,
interested readers should consult subsection B.5. While the choice of hyperparameters
modulates the absolute value of ψ, the ψ for RP-BDQN remains consistently higher than
that of BDQN. We observe several secondary trends:

• Learning Rate and Replay Buffer: For both algorithms, performance is sensitive to
these standard hyperparameters. However, the scaling law parameter is not sensitive,
which shows that the scaling law is robust with respect to these hyperparameters.

• Prior Scale (β): The prior scale, which controls the magnitude of the randomized
prior’s contribution, has a notable impact on RP-BDQN’s performance. Our default
value of 3.0 is already strong, but the sweep suggests that, in general, increasing this
prior scale significantly improves performance. The prior work Osband et al. (2018)
suggested that a prior scale of 5 could be optimal. However, we find no saturation of
performance past this value. This could be attributed to the slight differences in our
training pipeline.

5 Responsible Research
Climate Change. All experiments in this paper were conducted on a single Nvidia RTX3090
or Nvidia RTX4090 GPU under 500 hours of total active compute time, which corresponds
to a total of 500 kWh. We estimate the total emissions to be 120kg CO2 (Nowtricity, 2025),
which we compensate for by buying carbon credits. The full certificate is available upon
request.

Unethical Applications. Our paper is concerned with empirical properties of scaling a
certain family of reinforcement learning algorithms. While we are not aware of any existing
applications of these algorithms in any way that could harm people, we are able to conceive
plausible harmful applications. However, we believe the benefit of having this paper published
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outweighs the harm induced by possible unethical applications. If anyone has concerns about
harm induced by this paper, they should immediately contact the author to discuss taking
down the work.

Reproducibility. To support reproducibility, we provide an easy setup to produce all
the plots and results used in the paper. We use uv for Python dependency management and
Nix (Dolstra et al., 2004) for OS dependency management, which we wrap into a Docker
container. The code is released under the MIT License.

6 Discussion
Our large-scale study reveals a simple scaling law, P (discovery) ≈ 1− (1− ψn)K , governing
bootstrapped exploration. This law unifies task hardness (n), ensemble size (K), and
algorithmic effectiveness (ψ), providing a quantitative lens to compare strategies. It reduces
the complex behavior of BDQN and RP-BDQN to a single parameter, ψ, directly measuring
their relative efficacy.

While our BDQN results align with prior work (Osband et al., 2018, 2016a), our RP-
BDQN implementation solves tasks up to n ≈ 30, compared to their reported n ≈ 50.
We attribute this gap to hyperparameter sensitivity rather than a flaw in the algorithm.
Their work aimed to push performance limits, whereas ours focuses on characterizing the
underlying scaling behavior. This highlights that while RP-BDQN is robustly superior to
BDQN, achieving its state-of-the-art potential requires careful tuning.

Practically, our findings are clear: RP-BDQN is the superior algorithm, and ensemble
benefits diminish significantly beyond K = 10. Practitioners with a fixed computational
budget should prefer a moderately-sized RP-BDQN ensemble over an excessively large one.

However, the scaling law is an approximation. U-shaped residuals shown in Figure 4 reveal
that the model’s independence assumption is an oversimplification. For small ensembles,
the model overestimates performance by ignoring cooperative benefits; for large ensembles
(K > 25), it is again too optimistic, likely due to saturated diversity and correlated failures.

The primary limitation of this study is its reliance on the DeepSea grid world. The
clean structure and parameterized hardness of this environment may not generalize to high-
dimensional settings like Atari or robotics, where even defining "hardness" is a challenge.
Nonetheless, this work establishes a methodological template for investigating the scaling
properties of deep RL exploration.

7 Conclusions and Future Work
We presented a unified scaling law that models reward discovery as a function of task hardness
and ensemble size, governed by an effectiveness parameter, ψ, in deterministic, sparse-reward
settings. We showed that RP-BDQN is substantially more effective than BDQN due to its
ability to maintain ensemble diversity, and we offered practical guidance, noting that returns
diminish for ensemble sizes K > 10.

Our findings open several avenues for future research:

• Optimizing for ψ: Moving from a descriptive to a prescriptive use of our scaling law
by designing algorithms or regularization schemes that explicitly aim to maximize ψ.

13



• Generalization to Complex Environments: Verifying whether similar scaling laws
hold in more complex domains, such as Atari games or robotic control, and investigating
how to define task hardness in such settings.

• Refining the Scaling Law: Developing a more nuanced model that incorporates
terms to account for the cooperative effects at small K and the correlated failures at
large K, thereby better capturing ensemble dynamics.

By establishing a quantitative framework for scaling, we hope to advance the field toward
more predictable and practical exploration algorithms.
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A Environment implementation.
Our study required a high-performance implementation of the DeepSea environment to
facilitate large-scale experimentation. We chose to build upon the JAX-based gymnax library
(Lange, 2022) to enable fully GPU-accelerated training and environment stepping, thereby
minimizing CPU-GPU data transfer overhead.

During initial validation, we observed anomalously high performance, with agents solving
tasks of hardness n = 100 with small ensemble sizes. An investigation revealed that the exist-
ing gymnax implementation had the randomized action map disabled by default - a "debug"
configuration from the original environment specification (Osband et al., 2020). We corrected
this discrepancy to enforce the proper exploration challenge. To guarantee correctness, we
verified our fixed implementation against the original by running approximately 20, 000 in
automated tests confirming trajectory-wise reward equivalence between the two versions.

Performance Optimization. To maximize memory bandwidth and training throughput,
we implemented a transparent observation compression mechanism within our replay buffer.
While the agent interacts with standard (n, n)-shaped observation tensors, the buffer internally
represents each observation as a single integer. This optimization resulted in a threefold
improvement in overall training performance.

B Consistent moments of the per-member gradients.

B.1 Implementation: Averaged Loss over Split Batches
For each optimization step:

1. A total data batch of size Btotal = K · B1 is sampled, where K is the ensemble size
and B1 is the baseline batch size.

2. This batch is split into K unique, non-overlapping mini-batches (D1, D2, . . . , DK), each
of size B1.

3. Each ensemble member k, with its independent parameters θk, calculates its loss
ℓk(θk;Dk) on its corresponding mini-batch Dk.
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4. The final loss function to be differentiated is the average of these individual losses:
Lavg = 1

K

∑K
j=1 ℓj(θj ;Dj).

5. The learning rate is scaled linearly: ηK = K · η1.

B.2 Derivation of the Per-Member Gradient
The key insight comes from calculating the gradient of the total average loss Lavg with
respect to the parameters θk of a single, specific member k. Because the members do not
share parameters, the loss of member j (ℓj) does not depend on the parameters of member k
for any j ̸= k. Therefore, ∇θkℓj(θj ;Dj) = 0 for all j ̸= k.

The gradient for member k is:

∇θkLavg = ∇θk

 1

K

K∑
j=1

ℓj(θj ;Dj)


=

1

K

K∑
j=1

∇θkℓj(θj ;Dj)

=
1

K
(∇θkℓ1 + · · ·+∇θkℓk + · · ·+∇θkℓK)

=
1

K
∇θkℓk(θk;Dk)

Let gk = ∇θkℓk(θk;Dk) be the gradient for member k on its own mini-batch. The gradient
used by the optimizer for member k’s parameters is simply 1

K gk.

B.3 Analysis of the Per-Member Parameter Update
The parameter update ∆θk for member k is calculated using the scaled learning rate ηK and
its specific gradient component 1

K gk:

∆θk = ηK ·
(

1

K
gk

)
Substituting the scaled learning rate ηK = Kη1:

∆θk = (Kη1) ·
(

1

K
gk

)
= η1gk

This is a powerful result: the scaling of the learning rate by K and the down-scaling from the
averaged loss by 1/K perfectly cancel. The resulting update rule for an ensemble member,
∆θk = η1gk, is identical in form to the update rule for a baseline single agent, where gk is
computed on a batch of size B1.

B.4 Moment Equivalence
We can now confirm that the moments of the per-step update are identical to the baseline
case.
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• First Moment (Mean): The expectation of the update for an ensemble member is:

E[∆θk] = E[η1gk] = η1µk

This is identical to the baseline agent’s mean update.

• Second Moment (Covariance): The covariance of the update for an ensemble
member is:

Cov(∆θk) = Cov(η1gk) = η21Cov(gk) =
η21
B1

Σk

This is identical to the baseline agent’s update covariance.

B.5 Conclusion
The "split batch" implementation with a scaled learning rate ensures that the statistical
properties (mean and covariance) of the per-step parameter update for each ensemble member
are identical to those of a single agent trained with baseline hyperparameters (B1, η1). The
total batch size is scaled to K · B1 to make efficient use of parallel hardware, allowing K
models to be trained for the wall-clock time of one, thus achieving a K-fold speedup in
terms of data processed over time. This methodology provides a foundation for achieving
computationally equivalent training across different ensemble sizes.

C Hyperparameter sweep details.
This appendix contains the full performance landscape plots (probability of discovery
heatmaps and solvability frontiers) for each configuration tested in the hyperparameter
sweep (Section 4.4).
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C.1 Learning Rate Sweep

Figure 7: Performance landscape for Learning Rate = 8× 10−5.

Figure 8: Performance landscape for Learning Rate = 5× 10−4.
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Figure 9: Performance landscape for Learning Rate = 10−3.

C.2 Replay Buffer Size Sweep

Figure 10: Performance landscape for Replay Buffer Size = 5,000.
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Figure 11: Performance landscape for Replay Buffer Size = 20,000.

Figure 12: Performance landscape for Replay Buffer Size = 40,000.
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C.3 Prior Scale Sweep (RP-BDQN only)

Figure 13: Performance landscape for Prior Scale β = 1.0.

Figure 14: Performance landscape for Prior Scale β = 5.0.
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Figure 15: Performance landscape for Prior Scale β = 10.0.
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