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1 Introduction

1.1 Framework for the development of the model SKYLLA

The development of the numerical model SKYLLA began within the framework of the
European research project "MAST-G6 Coastal Structures”. The aim was to develop a physical-
based numerical formulation for water motion on a smooth slope and also on-and-in
permeable structures. This formulation lead to the numerical model SKYLLA!. Due to the
inspiring results obtained in this European project, The Road and Hydraulic Division
(Rijkswaterstaat) of the Dutch Ministry of Transport and Public Works was prepared to lead
the continuation of the development (see contracts DWW 743 and DWW 745). This further
development, outside the European MAST-project, started in 1993.

The research comprised the following tasks:

1) Boundary conditions, (Petit et al. 1993)

2) Rubble mound structures and porous flow, (van Gent et al. 1993)
3) Downward slopes and overtopping, (this report)

4) Treatment of turbulence,

5) Treatment of air-entrapment,

6) Treatment of roughness.

The planning of those tasks is described in detail in (Klein Breteler and Petit, 1993). This
report describes the research dealing with Task 2.

1.2 Considerations for the development of SKYLLA

Numerous coastal structures are studied using small-scale physical models. Physical
modelling can be influenced by scale effects, due to which various phenomena can be
different under prototype conditions compared to conditions present in small-scale physical
models. These problems, as well as the complexity of measurements in breaking waves, can
be overcome by numerical modelling of breaking waves on-and-in coastal structures. So,
on the one hand the development of a numerical model as a research tool is very important;
on the other there are disadvantages such as the simplification and discretization of the
involved physical processes.

Existing one-dimensional models use simplified formulations of, for example, the free
surface. For many applications these simplifications are undesirable. The development of
a three-dimensional model able to simulate the complete breaking of waves within the near
future, seems unrealistic. Therefore, it was decided to develop a two-dimensional (vertical)
numerical model that can simulate breaking waves on various types of coastal structures,
first for wave motion on smooth impermeable slopes and, at a later stage, for wave motion
on-and-in permeable structures. A proper representation of the wave impact will not yet be
included.

1 The model SKYLLA is named after the sea monster from the Greek mythology, being a mistress of
Poseidon and living on a rock eating shipwrecked sailors.
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1.3 Description of the numerical model SKYLLA

The studies performed within the European MAST-project resulted in the research tool
SKYLLA, which is able to simulate breaking waves on impermeable smooth slopes. These
studies are described in (Broekens and Petit, 1992) and in (Petit and Van den Bosch, 1992)
and are summarized by (Van der Meer et al., 1992). A brief summary is given below.

The model solves the two-dimensional Navier-Stokes equations in two dimensions with a
constant turbulence viscosity. The technique for solving these equations is based on the
"Volume of Fluid method" (VOF), see (Nichols and Hirt, 1980). The fluid is considered
incompressible. The model uses a staggered, non-equidistant grid where for each cell the
fluid fraction can vary between zero (empty) and one (full)(Eulerian approach).

The model uses a complex description of the free surface based on an adapted flux-method
known as "FLAIR", see (Ashgriz and Poo, 1991) and is capable of simulating free surfaces
that can become multiple-connected, while air-entrapment can be dealt with. Those two
aspects are essential for the simulation of plunging waves. The entrapped air is modelled
as if it were vacuum.

The model includes the option to model a smooth impermeable climbing slope with a
*free-slip’ boundary condition. The choice of the grid is independent of the lay out of the

slope.

In the previous phases of the development of SKYLLA, incident waves as prescribed by
(Rienecker and Fenton, 1981) were implemented. Both the left-hand side boundary and the
right-hand side boundary can be made weakly reflective, enabling waves to leave the
computational domain with an acceptably small disturbance of the wave motion in the
computational domain.

Furthermore, in SKYLLA the nption was introduced to model flow through porous material,
thus allowing the modelling of structures that are permeable or contain permeable parts.

For both the flow on and in a porous structure and for the flow on an impermeable structure,
numerical results were compared with measurements to validate the program; see (Van Gent
et al., 1993) and (Van Gent et al., 1994).

1.4 Required program modifications

The result of the European MAST project was a description of the numerical method to model
an impermeable climbing slope in a VOF solver. The numerical formulations for both
"free-slip’ and 'no-slip’ boundary conditions were examined. The new boundary conditions
for the *free-slip’ case were implemented in the SKYLLA code. Results of the numerical work
were presented in (Petit and Van den Bosch, 1992).

The limitation to climbing slopes was found to be too-great a limitation for the possible
applications of SKYLLA. Overtopping a dike, submerged impermeable structures, a toe of
a structure, and structures with a berm reservoir, are examples of cases where the option
of modelling a falling slope in SKYLLA is required.

In the case where overtopping is to be modelled and where the velocities at the top of the
structure can be assumed supercritical the computation can be done in two steps. The first
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computation is used to simulate the process in a domain which contains the top of the
structure but not far beyond. The second computation uses the results of the first which were
recorded as a time signal on a vertical line which is located at the top of the structure. This
location is the inflow boundary of the second model where the flow of the water which
overtopped is simulated. Both the recording of the relevant data as time signals and the use
of these signals as input for SKYLLA had to be implemented.

The implementation of falling slopes and overtopping boundary conditions will be described
in this report.

1.5 Outline

The physical and short numerical description of the free-slip boundary conditions, a
description of overtopping boundary conditions, and tests for the implemented program
extensions are given in Chapter 2. Conclusions and recommendations are given in Chapter 3.

In appendix A an extensive description is given of the free-slip boundary conditions for all
cell categories which can be used to model a slope.

Appendix B describes a possible solution for shortcomings of the implemented boundary
conditions.

Better stability conditions which were implemented in SKYLLA are derived in Appendix C.
Improved weakly reflective boundary conditions are discussed in Appendix D.
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2 Implementation of free-slip
boundary conditions

2.1 Mathematical and physical description of the
free-slip boundary conditions

Flow parallel to a solid wall causes a boundary layer as the water on the solid wall cannot
move relative to the wall. Internal friction in the water will tend to slow down the fluid
particles near the boundary. If the velocity at some distance from the boundary is oscillating,
the boundary layer cannot fully develop and the region where the effect of the boundary is
felt remains relatively small. If the generation of turbulence energy at the boundary and the
loss of this energy are not modelled the free-slip boundary condition is a good approximation
of the effect of the boundary on the flow at some distance from the boundary. What it does
is disregarding altogether the velocity reduction caused by the boundary.

As in this approximation there is no wall friction, the velocity component which is parallel
to the boundary does not vary locally in the direction perpendicular to the boundary. As the
boundary is impermeable the normal component of the velocity is zero at the boundary.
These conditions can be expressed by:

T

=0 and u, =0 at the boundary

Here u_ is the velocity component parallel to the boundary, u, is the component
perpendicular to the boundary and 7 is the local coordinate perpendicular to the boundary.

2.2 Numerical implementation of the free-slip
boundary conditions

In (Petit & van den Bosch, 1992) a description of how the free-slip boundary conditions can
be implemented, is given for the four cell categories that can be used to model a climbing
slope.

Here ten new cell categories are introduced to enable a more flexible definition of the
impermeable structure. Within the boundaries of a cell the impermeable surface of the
structure is approximated by a straight line.

For each of the 14 cell categories an example is given in Figure 1.

Here we see that we also allow for horizontal and vertical parts in the structure to be
modelled.
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Figure 1 Examples of the 14 impermeable-boundary cell categories

In Appendix A a detailed description is given of the discretization of the free-slip boundary
conditions for each of the 14 cell categories. The discretizations allow the combination of
an impermeable boundary and an isotropic porous medium. The case when the boundary
cell also contains a part of the free surface needs special attention. For these cases a
discretization of the Navier-Stokes equations is not possible. The boundary conditions for
the pressure at the slope can therefore not be based on physics. Here we chose the boundary
conditions such that stability of the numerical treatment would be guaranteed.

In this section we will give a derivation of the numerical treatment for a cell of category 7.
Here we assume that the free surface is not in the proximity of the boundary cell.

In the general case when porous material is included the modified Navier-Stokes equations
are, see (Van Gent, Petit & van den Bosch, 1993) and (Van Gent, 1991):
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gu._+§_v=0 (3)
dx ay

where

u filter velocity in x-direction (m/s)

v filter velocity in y-direction (m/s)

n porosity (-)

p, : specific density of water (kg/mz)

p : pressure (N/m?)

a dimensional coefficient (s/m)

b dimensional coefficient (s2/m?)

C coefficient for "added mass" (y (1-n)/n)

g,  gravitational acceleration in x direction (mlsz)
g, gravitational acceleration in y-direction (m/s?)
g : modulus of the gravitational acceleration (m/s?)

For the discretization we introduce:

_ Axn,, . +Ax,,n,

n;‘..‘.j
2 Ax,.+Ax‘.,,
ijnij+l * ijﬂ nij

A+ A

n.1=
:j+-2—

nl'+.%j
Yij = 1 +CM(nio-lj)
2

n.i
u+;

}_U.:_—_
1+Cp(n

- 4)
1

i g Pij
We discretize the reduced pressure P;;=—
P

w

Note that in the absence of porous material (n=1) the modified Navier-Stokes equations
reduce to the well-known N-S equations.

In Figure 2 we show a cell of category 7 and several x- and y-velocity components in the
staggered arrangement used in SKYLLA. The velocity components indicated by the dotted lines
(and a name with an overbar) are the so-called ’virtual velocities’. These velocities do not
represent real flow but are merely introduced to satisfy both boundary conditions at the
collocation point indicated by the small circle.
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Figure 2 Boundary cell of category 7

We introduce the normal and the tangential unit vectors at the impermeable slope » and
t with x- and y components indicated by the subindex 1 and 2 respectively.

In order to find the velocity components u and v at the collocation point at the slope we
use a linear approximation:

o _ ou 1 ou
u=u,;-(Ax ﬁx)-é;+(6y ;ij)b—y

and
v v
v=vU-(ij—6y)—-(%Axi—bx)—é;

The partial derivatives in these expressions are approximated by:
Ou _Yy%iaj ouw_ YiajHicja v ViV

, . and
ox Ax, dy %(ij+ij_l) ox %(Ax,.+AxH)

av _ Vi~ Vi1

—_—

dy Ay

Using the relations above, the impermeability condition u, =u.n =0 can now be approximated
by:

il /
n[u;-(Ax-8 “y~ "J+25__ Yy~ Bicjor
[u,-(Ax,-b0x) —— o (8y y)A+A)}1]

I

+ny[v,~(Ay;- 8Y) % y‘“+2(ox-Eij)A—“”$1 =0 (4)
J i
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Ou
The zero shear-stress condition 5’ =0 can be approximated by:

ou
on

= =n.V(u.t) =n, g—(utl +V1,) +n2%(u1:l +V1,)
x

- ou ov u ov
=n T, ax"'"lrza""z lay”'zfzay

=n,T %_av ntzav-hnrgE-O
j B | ax ZIay

By again using the relations above we find:

V.= V. Vyi1i— Vi U,

U, U 4
n.t g iy Ty -l +2n.7 i+l iy +2n.1 i1 %i-1j-1 =0 5
1%4( s Ay, ) +2n, 2—."1*5-"'; 1 A'y'j+—“ij 1 (5)

Equations (4) and (5) form a linear set of equations for the unknown virtual velocities
Ui gy and v,

The mass conservation equation for this cell is an approximation of:

f u.ndl

aw

where the integral is determined over dw which is the boundary of the quadrilateral part of
the cell that can contain fluid.

The discretization now becomes:

(yj—yr)utJ -, -y)u; lj+AJ:v"1-0

The pressure boundary condition can be derived from this by substituting:

. Pl-P L. Pl -pP
vit=p 280, Yyt g 2 At ,_—-—’ ¥ U and
"AyJ+AyM "Ax +Ax,

n+l n+l
Plj Pf—lj

n+l _ -
e~y Ay
we find
2At()’1‘)’) +1 +1 At(y-yl) o i
. ", ’Pn " B4 ) P" _Pn =
A'xhl"'Ax Y ( i ) AI,""Ax.’-I Y,-U( " lj)
2AtAx, el i ) )
m AEJ(PIJH 'P )= ()’j—y,)u,-j—(yj-y,)ul._lﬁAx‘,vij 6)
Jf
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The ’tilde’ velocities represent the result of a part of the discretization of the Equations (1)
and (2) (see van Gent, Petit & van den Bosch, App.A, 1993).

2.3 Adapting a user-supplied polygon

Since there are only 14 cell categories that can be used to model a slope in SKYLLA, a general
user-supplied polygon cannot directly be used to describe the surface of the impermeable
structure. An example of where things go wrong inside a cell is given in Figure 3. Here we
see that within the cell the slope is not modelled as a single straight line. A second example
is given in Figure 4 where the line inside the cell is straight but there is also a part of the
polygon which coincides with the cell boundary. In appendix A all cell categories and special
cases which can be dealt with in SKYLLA are given.

In order to avoid that a user of the program has to model a slope by defining all cell
intersections, SKYLLA can adapt a user-supplied polygon to fit the requirements. Here we
will give a brief description of the method used for that purpose.

When a polygon is supplied by the user the following steps are followed.

By traversing the polygon from knot to knot it is first checked if the polygon has more than
one knot per cell. If so, the excess number of knots is removed from this cell, thereby
changing the polygon.

Figure 3 Angle inside cell Figure 4 Part of boundary on edge

In the second step each of the remaining knots in the polygon is replaced by a new knot
which is the projection on the nearest grid line. The polygon thus created may still not satisfy
all the requirements as is shown by the example in Figure 5.

delft hydraulics 9
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Figure 5 Non-existing cell category

In Appendix A a list is given of the possible categories of the neighbours of a cell of a given
category. In the following we will schematically show how the polygon is changed (by the
subroutine SLPCTR) in those cases where problems still occur.

Note that in many of these cases new knots are introduced.

Figure 8 Vertical to horizontal Figure 9 Horizontal to vertical

.............

...............................

Figure 10 Vertical to climbing Figure 11 Falling to vertical

delft hydraulics 10
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Figure 12 Climbing to vertical

Figure 13 Vertical to falling

Figure 14 Climbing to falling

Figure 15 Falling to climbing

In the following cases no new knots are introduced.

Figure 16 Climbing to vertical

Figure 17 Vertical to falling

Figure 18 Vertical to climbing

delft hydraulics

Figure 19 Falling to vertical
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Figure 19a Horizontal to falling Figure 19b Horizontal to climbing

Figure 19c¢ Falling to horizontal Figure 19d Climbing to horizontal

2.4 Tests with impermeable structures
In the following we shall show the results of tests with impermeable structures.
In the first four tests we show that for a slope with both falling and climbing parts the

numerically implemented boundary conditions work well.

Figure 20 shows a symmetrical structure and the resulting velocity field of the flow
computations.

In Figures 21 and 22 the left and the right parts of this symmetrical structure are shown.
Going from left to right along the slope in Fig. 21 we encounter cells of category:
3,%3.2,2,12,12,3,3,3,3,3,3. 3,2, 10, and 10

respectively.

The fifth boundary cell (on the interval 1.4 < x ! ! :
< 1.5) was generated by the program because a e [ se— SR
cell containing a climbing slope as well as a
vertical part does not fall into one of the B2 ________ ___________________
categories. The slope in this cell is modelled as a : b ‘
diagonal (category 2) as is shown in Figure 20a. : e

Figure 20a Adjusted slope
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The polygon shown in Figure 21 is the polygon supplied by the user.

Again going from left to right in Figure 22 we encounter the cells of category:
10, 10,6,7.7.7.7. 7.7, 7,14, 14, 6, 6, 7, 7, and 7

respectively.

The thirteenth cell was again generated by the program because the configuration as given
by the user for the cell in the interval 4.5 < x < 4.6 cannot be modelled using the 14 cell
categories we use. The program replaces the given configuration by a cell with a diagonal
slope.

The components of the velocity vectors shown in Figures 21 and 22 were determined by
averaging the horizontal and vertical velocity components which were determined at the
cell boundaries. The result is a velocity vector at the centre of each cell. Virtual velocity
components were also used to determine this vector plot. As can be seen in Figure 21 and 22
this also results in velocity vectors inside the structure.

Near the surface of the structure we see that velocity has no component normal to the slope.
This shows that the impermeability condition is numerically satisfied. Furthermore, we see
that at the slope the tangential component hardly changes in the direction normal to the slope
indicating that the implemented free-slip condition is also satisfied.

In Figures 23 and 24 we see the same slopes (climbing and falling) as in the last test. In
this test, however, we reduced the cell size in the vertical direction by a factor 1/2.

The lists of cell categories encountered by going from left to right along the slope are for
Figures 23 and 24 respectively:

3,2,3,2,3,12,12,12,12,12,3,3,3,3,3,3,2,1, 2, 10, 10
and
10, 10,6, 5,6,7,7,7,7,7,7,14, 14, 14, 14, 14,6,6, 7, 6, 7.

Again we see that the boundary conditions are satisfied. Near the edge of the vertical part
just above the gently sloping part of the slope, however, we find that the vertical component
of the velocity is too large.

Figures 25 and 26 which show the result of a computation where the flow along the same
slope was modelled using cells in which the vertical size was reduced by a factor 1/4. The
same effect can be seen here near the edge of the vertical part of the slope.

It is caused by the fact that the virtual velocity at the bottom of the boundary cell at the edge
was determined by the free-slip condition at the vertical part.

In the Figures 27 and 28 we show the results of a computation with a slightly changed slope
in order to introduce cells of categories 4 and 8.

13
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The cell categories in this test are for Figures 27 and 28 respectively:

2:2,2;2,2,12,;12, 12,12, 12, 12,12, 12, 12, 12. 12, 3,3, 3.3, 3. 2,4, 4, 4,
1,2,4,4,4,1,2,4,4,4,10, 10

and

10, 10, 8, 8,8,6,5,8,8,8,6,5,8,8,8,6,7,7,7,7,7, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 6,6, 6, 6, 6

We see that the virtual velocities introduced by the cells of category 4 (Figure 27,
2.0 < x < 2.3) are relatively large in this case. However inside the wet domain they look
fine. In Figure 28 the same happens for cells of category 8 (3.7 < x < 4.0).

In Figures 29 to 36 we show snapshots of a computation with waves on a low crested berm.
Figure 29 shows the initial still-water condition. Figures 30 and 31 show how the incoming
wave runs up and overtops the left part of the structure, runs down the falling part of the
structure and runs up on the second climbing part. The rest of the figures show the backwash
which fills up the canal on the structure and starts running down the left climbing slope
where it meets the second incoming wave which reverses the direction of the flow.

14
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Figure 29 Initial condition

Figure 30 Overtopping wave

Figure 31 Overtopping and second run up

Figure 32 Backwash on second slope

Figure 33 Canal filled up
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Figure 34 Second wave meets backwash

Figure 35 Velocity reversed on the top of the structure

Figure 36 Start of run up on second slope

2.5 Overtopping-boundary conditions and applicability

By modelling a low crested structure, overtopping can be simulated by SKYLLA. Since the
kind of flow conditions left and right of the top can be very different, the computational costs
can grow dramatically. This problem can, for example, arise if at the right of the top a thin
layer of water runs down the slope. In order to accurately model this thin layer, the size of
the cells should be small over the entire length of the falling part of the slope. However,
the grid dimensions cannot be defined locally in SKYLLA, so that a necessary reduction in
cell size at the right of the top will automatically introduce smaller cells at the left. Here
larger cells could for example suffice for an accurate computation. As the CPU time per
simulated time step is approximately proportional to the third power of the number of wet
cells in the domain, care should be taken not to define very small cells in regions in which
the velocity remains relatively small.

Under certain conditions this problem can be dealt with in an economical way.

In order to simulate overtopping in SKYLLA the problem is now split into two separate

problems, the seaward part and the polder part. The two models in which these problems
are to be solved are numbered 1 and 2 in Figure 37.
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Figure 37 Two-model approach

As the Navier-Stokes equations describing incompressible flow are essentially parabolic, there
is an interdependence of all quantities in a connected wet region.

By describing the flow at the top of the structure using the shallow water equations, one can
show that in the case of horizontal velocities which are larger than /gh the fluid at the left
is not influenced by fluid quantities at the right. As the overtopping layer of water is
expected to be relatively thin, the vertical velocities within the layer at the top are expected
to be small. Furthermore, the free-slip boundary condition and the small viscosity justify
the approximation using depth-averaged shallow water approximation.

Since the shallow water equations suggest that flow quantities do not depend on downstream
flow in the supercritical case we assume the dependence to be small in the case when Navier-

Stokes equations are used.
The criterion u>y/gh is now used as a sufficient condition for the use of the two-model

approach.

2.6 Numerical implementation

We assume that at the right boundary of model 1 the flow of the overtopping water is
supercritical. In order to minimize the influence of the boundary treatment at the right we
impose the following boundary conditions: '

du
—_— = 7
™ 0 7
av _
a_l:) (8)

Furthermore, we will set the F function equal to 0 in the last (virtual) column. All fluid
fluxed into this column will immediately vanish, effectively simulating a black hole.

In Figure 38 the two last columns are indicated. In the registration column the velocities and

F values are stored during the computation. These values are to be used as input for the
second model.
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registration column ——7
black hole column —— "

]
i

Figure 38 Virtual cells and registration cells

The continuity equation at the last wet column becomes:

ij(ulmaxj lrmu ) A Vi q” fn:;; =0
Boundary condition (2.5.1) is discretized as:

gl _ e
ul’mnj imax-1j =0

reducing the continuity equation to:

g+1 g+1
Vimaxj ~ Vimazj-1 =0

Boundary condition (2) is discretized as:

q |
vimxﬂj - vx‘mj

The velocities needed to determine &, j are now available.

The pressure boundary condition becomes:

4"1 P?*l pal _pil

At imax,rfl imaxj _ © imaxj imaxj-1 ~ =

E(ijq"'ij) ‘2'(ij+ij_1)

delft hydraulics

9

(10)

23



SKYLLA: Wave motion in and on coastal structures H 1780 October 1994

delft hydraulics

In Figure 39 we show the velocities and the positions of the F values (the small circles). The
values found at these locations have to be stored at each time step.

Since the time steps and the grid sizes in the calculations for the right and the left part of
the problem will not be the same, the data written onto the file used in the second calculation
cannot directly be used as input. We use linear interpolation in time and space to determine
the values of u,v and F at the overtopping inflow boundary.

—_—

— = F-8

—t= O

—= F=0

—t O

imax

Figure 39 Black holes in virtual column

The condition that the flow has to be supercritical at the top can be relaxed by taking
different positions for the registration column and the black hole column as shown in
Figure 40.

black hole column

registration column

MODEL 1 - =
MODEL 2

Figure 40 Registration and black hole column at different locations
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We use the assumption that flow at the top of the dike is not influenced by the flow at the
’black hole’ boundary.

By defining model 1 as indicated in Figure 40 we can use the model in which the velocity
of the overtopping water is subcritical. With the use of this boundary condition we only need
to enlarge slightly the domain for the first calculation compared to the two-model approach
as shown in Figure 37. The extra CPU time needed will not be significant if relatively large
cells are used at the right of the registration column.

We should realize, however, that in a strict sense the registered velocities and F-values at
the boundary can not be used to prescribe them at the boundary of model 2 unless the
overtopping is supercritical. The problem is caused by waves which travel in the direction
opposite to the subcritical overtopping flow. On arrival at the inflow boundary these waves
will fully reflect. However, in reality these waves should be transmitted through the
boundary and leave model 2.

In practical situations the approach with a boundary as indicated in Figure 40 will probably
suffice provided the velocity of the overtopping water will not become much smaller than
the critical velocity u, =\/gh where h is the thickness of the overtopping layer.

2.7 Tests with overtopping-boundary conditions

In this section we will show the results of two tests that were used to verify the overtopping
boundary condition.

In the first of these tests we used the inflow boundary condition with a hand made file where
the influx was prescribed as a constant over a small section of the left boundary. The other
boundaries of the computational domain were closed. In Figure 41 the snapshots taken from
the animation show the incoming jet of water until it hits the shallow layer of water on the
bottom of the tank. The parabolic shape of the jet matches exactly the prescribed horizontal
inflow velocity.

In the second test overtopping is simulated with the two-model approach. In Figure 42 we
see the structure the way it is modelled for the "left" SKYLLA computation. The column in
which the velocities and the F values are registered, is located left of the edge where the
slope begins to fall. The first overtopping wave was just at that position when the snapshot
was taken. At the right boundary of the left model we use a black hole outflow boundary.
As can be seen in Figure 42 there is initially fluid at rest right from the structure. As long
as the fluid is at rest, it is not influenced by the black hole condition as all this condition
does is prescribe the outflow velocity to be independent of x near the boundary.

Figure 43 shows the overtopping wave some time later. Here we see that the water on the
right, which was initially at rest, is now vanishing through the black hole boundary. The
jet of water generated by the overtopping wave is also vanishing into the black hole
boundary.
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Figure 41 Test for overtopping inflow boundary

Figure 42 First overtopping wave
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Figure 43 Jet vanishes into black hole column

Figure 44 First water entering the right model

The right part of the model is shown in Figure 44. The left boundary is located at the
position of the registration column in the computation for the left part of the model. The
velocities and F values, which were registered there, are now used to prescribe these
quantities at the inflow boundary.

At the right we also use a black hole boundary condition to get rid of the water which has
entered the model. In Figure 44 we also see that the falling slope modelled here is somewhat
steeper than the slope used in the computation for the left part of the model. Note that all
which is on the downstream side of the registration column, is only used to make the water
leave the model. It should not affect what is registered if the assumption holds that the flow
on the top of the structure is supercritical.

delft hydraulics 27
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In Figure 45 we see that the water which was initially at rest on the right of the left model
has vanished. Furthermore, we see from the shape of the parabola that the velocity of the
overtopping water has decreased. The situation in the right model at approximately the same
time is shown in Figure 46. Here we see that the jet generated by the overtopping water
looks quite different from the result in the left model. The differences are caused by the fact
that the grid used in the right model is much smaller than the grid used in the left model.
The fact that the jet has split into a part which is falling freely and a part which is running
down the slope, is explained in the next section.

Figure 45 Decreasing velocity at the top

Figure 46 Jet has split
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In Figure 47 the velocity of the overtopping water has decreased even more and the layer
of water now remains stuck to the slope. The same can now be seen for the right part of
the computation in Figure 48. Here a second jet of water is released from the slope before
it vanishes into the black hole column.

Figure 47 Reduced velocity of overtopping layer of water

Figure 48 Second jet on falling slope
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In Figure 49 we see the second overtopping wave, a part of which is released from the slope
at the edge. A snapshot of the resulting flow in the right model is given in Figure 50.
The last two figures 51 and 52 show the situation some moments later.

Figure 49 Second overtopping wave

Figure 50 Second overtopping wave in right model

Figure 51 Jet of water after overtopping
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Figure 52 Split jets at edge in right model

Figure 53 which is a snapshot of the situation in the right model some moments later, shows
that the black hole boundary can cause disturbances. Although they seem serious the
disturbance leaves the domain rather quickly. However it is advisable to take some distance
between the black hole boundary and the registration column.

Figure 53 Disturbance at boundary

delft hydraulics 31




SKYLLA: Wave motion in and on coastal structures H 1780 October 1994

delft hydraulics

2.8 Unresolved problems at sharp edges

If water flows in a region bounded by a slope as indicated in Figure 54, the contradicting
boundary conditions at the edge where the direction of the slope is discontinuous can pose
problems.

Let us first consider the case in which the entire domain above the slope is filled with water
and assume free-slip boundary conditions at the slope. Left of the edge the impermeability
condition states that the velocity at the slope has no component in normal direction:

\—&
n

Figure 54 Angle in a slope

u.n; =0

At the right part of the slope the condition becomes:
u.ny=0

If we assume the velocity to be a continuous function of the arc length of the curve which
represents the slope, this immediately leads to:

u =0 at the edge.

In the case when there is no water on the right of the edge, a jet of water coming from the
left should separate from the slope after reaching the edge. In that case the water is not
influenced by the boundary conditions on the right of the edge.

In SKYLLA this is not realized as is illustrated in Figure 55. Here we see the virtual velocities
indicated by double arrows with a different line style for the cells on the left and right of
the edge. At the moment that the cell on the right of the edge receives water from the left
or the top neighbouring cell, the virtual velocities which prescribe the impermeability and
the free-slip boundary condition will be set. In discretizing the momentum equation for the
velocity components at the top and the right boundary of this cell these conditions will be
prescribed and the fluid will remain in contact with the slope.

If the layer of water streaming down the slope is thick measured in cell heights, it may well

be the case that a part of the jet will separate from the slope; another part however, will
remain on the slope.

32




SKYLLA: Wave motion in and on coastal structures H 1780

October 1994

4—1—--

Figure 55 Virtual velocities at edge

In Appendix B some suggestions are given on how the problems at the sharp edges could
be dealt with.

delft hydraulics
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3 Conclusions and recommendations

The results of the work presented here show how the free-slip and the impermeability
boundary conditions were implemented in SKYLLA. They also show that these conditions are
indeed satisfied at the boundaries.

The SKYLLA code we started with enabled the modelling of climbing slopes using cell
categories 1 to 4. By implementing ten new categories the kinds of slopes that can now be
modelled in SKYLLA has increased significantly. In addition, the program has been made
more user-friendly by allowing the user to model a slope by giving a polygon which
prescribes the impermeable surface of the structure.

In order to reduce the computational effort needed to simulate overtopping waves the option
to split the domain in two has been introduced in SKYLLA. This allows the user to define a
fine grid in one part of the model without influencing the grid in the other part. The
boundary conditions introduced for this purpose can also be used without the coupling with
another computation. The tests show that the overtopping boundary condition works properly.

However, the tests have also revealed shortcomings of the boundary conditions now
implemented. At an edge on a slope the boundary conditions tend to attract the water to the
boundary of the slope refusing a jet of water to be released from the slope at the edge. This
is a direct result of prescribing the normal velocity of the water at the slope to be zero.

If the program is to be used for the modelling of overtopping waves this problem should be
addressed first.

The same shortcomings will also hinder the modelling of a recirculation zone behind a
submerged structure which can become important for future applications.
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Numerical treatment of climbing and falling slopes in SKYLLA

In order to be able to model a more general structure in SKYLLA the program has to be

extended with the option of falling slopes. The types of cells that should enable us to do that
are indicated in Figure Al.

Some special cases where the slope intersects
the cell at a corner point can be categorized in
the categories as shown in Figure Al, with
respect to the equations that state the
impermeability of the slope and the free slip
property. These cells are shown in Figure A2
for the case of a climbing slope. In the case of

A . :
%}\ a falling slope these special cases are indicated
%/’@ in Figure A3.
18
v i
I 1 I
I | |
I I
I i |
t 1 U
12 13 14
Figure Al General cell categories Figure A2  Special cases / climbing slope

Figure A3 Special cases / falling slope
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NEIGHBOURS NEIGHBOURS
ANTI-CLOCKWISE CLOCKWISE
2,2B,4,11 1 2,2C,3,9
1,3,3A,9 2 1,4,4A,11
2A,2C,4A,10,12 2A 2A,2B,3A,10,12
2A,2C,4A,10,12 2B 1,4,4A,11
1,3,3A,9 2C 2A,2B,3A,10,12
1,3,3A.9 3 2,2C,3,9
2A,2C,4A,10,12 3A 2,2C,3,9
2,2B,4,11 4 1,4,4A,11
2,2B,4,11 4A 2A,2B,3A,10,12
6,6C,7,9 5 6,6B,8,13
5,8,8A,13 6 5,7,7A,9
6A,6B,7A,10,14 6A 6A,6C,8A,10,14
5,8,8A,13 6B 6A,6C,8A,10,14
6A,6B,7A,10,14 6C 5,7,7A,9
6,6C,7,9 7 5,7,7A,9
6,6C,7,9 TA 6A,6C,8A,10,14
5,8,8A,13 8 6,6B,8,13
6A,6B,7A,10,14 8A 6,6B,8,13
1,3,3A,6,6C,7,9 9 2,2C,3,5,7,7A,9
2A,2C,4A,6A,6B,7A,10 10 2A,2B,3A,6A,6C,8A,10
2,2B,4,11 11 1,4,4A,11
2A,2C,4A,12 12 2A,2B,3A,12
5,8,8A,13 13 6,6B,8,13
6A,6B,7A, 14, 14 6A,6C,8A,14

In the table above we can see which cells can be coupled by traversing in clockwise or anti-
clockwise direction along the surface of the structure with respect to a point inside the
structure. Here it can be seen that we made the choice that in going from a climbing part
of the surface to a falling part, or the other way around, we always encounter a horizontal
part.

We will now give the equations from which the virtual velocities can be determined. The
pressure boundary conditions for these cells will be given as well.
In order to be able to model the combination of an impermeable slope and a rubble structure
we introduce n; which is the porosity of cell (ij). We define
o Axm, ;+Ax,ny, S Ayn +Ay. 0y
e Ax,+Ax,, U2 Ay;+Ay,,

?

n i
l+ij

ny‘l
e (NS :
1+ Cu("ui;)

2

= Ay=————.
Yy y 1+c“(nu+!)
2
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Category 1: No virtual velocities.
A %y
——
A o
1 Yp
AY - N S
] 0 U
-1 1
' }
X X X |
i-1 “b v
1j-1
Figure A4

For this cell the continuity equation becomes:

+1 +1 1
(yj—y,)u; 'Ay)“itu"'Axf"a - (=%, )vy1 =0

From this equation we can derive the pressure boundary condition:

2At(y -yf) + + ZAIAy +1 +1
s M AP " T Wt B pl_phtly
Ax, +Ax, s Py =Py ) Br i, Yiy@®y ~Piy)
2AtAx, w1 _pel 2At(x,-x,_,) S el
Dby, e ) B RS
Yi1 Yt 8Y
(yj- Y~ Ay i+ Axiﬁu- (Jcb—xi_l)f,y_l (A-1)
Appendix A - 3

delft hydraulics




SKYLLA: Wave motion in and on coastal structures H 1780 October 1994

delft hydraulics

Category 2:
Ax Bx, Let n=(n,n,)" be the unit normal
vector at the slope and < =(1:1,t,)7' be
A the unit tangential vector. Linear
Ay L extrapolation of u and v velocity com-
& ) Xy | ponents is used and yields a first order
| ] Yy accurate expression for the free-slip
Vi-y Y1y i
Y, o equation —~ =0 at the collocation
Ay ] — I on
Ui-1 Uy 4y  point which is indicated at the slope in
A Figure A6. Here u,=(u.1).
i X
b i
Figure A5
U,~U,_ . V=V, V-V, u, . ,-u
na (LY - _Fly,opg, Y Y yopp, 1 Y -0 (A-2)
85 Ay, Ax+Ax; Ay, + Ay,

By using linear extrapolation a second order expression is found for the normal component
of the velocity at the collocation point on the slope, which must equal zero:

li k. ' U uq U 1
u, .+ Sx+2(dy - A — 1+

+n,y[v, +2(ax——Ax,)—u—+(ay Ay) Y~ “‘] 0 (A-3)
Ax+Ax, | yj

In the program the collocation point is chosen in the centre of cell (i,j) so 6x-..Ax and
oy= Ay,

In this cell conservation of mass is expressed by:
+1 +1
% vy =0y Uy =0

The pressure boundary equation now becomes for this cell:

2At(x,-x % g 2At(y- - 2
AJ’jq"'ij Axl+Axl—l
=%, )%, 0=y (A-4)
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Category 3.
P X1 A %4
'JJ \‘
AY,
B Yy -1~ .o
: ' Ul]*l
Xi-1 %y
- e
b x
Figure A6
U..—u. V.-V V.-V, .. W, ~u
T T | g"1)+2n‘r g i-lj +2n.t i -1 =0 (A-5)
1*1 A A 1 ZA +A 2 IA +A
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The continuity equation for this cell is:

Oy uy "+ Axp " = -y =0

The pressure boundary condition derived from this is:
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Category 4.
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The continuity equation for this cell is:

+1 +1 +1
(x,'x‘-1)vﬁn 'ijuf.lj + (xb_xi-l)vi;-l =0
from which the pressure condition at the boundary can be derived:
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Category 5:
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Figure A8

No virtual velocities have to be set for this category.
The mass conservation equation for this cell becomes:

Ay -yl A - (- x vt =0
j J

From this equation and the momentum equations we can derive the pressure boundary
condition for this cell:

2AtAy 2At(y,~y) " .
j n+l_ pn+l j 2 n+l  pn+l
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Category 6:
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In the program the collocation point is chosen at the centre of cell (i,j) so 5x=_;.Ax,- and

The continuity equation for this cell is:
(:cf—x,)wyi;,"l -+-(yj,—y,,)u!",."'l =0

we find the pressure boundary condition:

2At X=X + + 2At - + +
221075 Ay(Ppi-Py)+ /B Y, PLy-P )=
Ay, +Ay; Ax,, . +Ax,
(xj-x,)v-o'+ (yj_y,)ﬁy (A-14)
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Category 7
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The mass conservation equation for this cell becomes:

Oy Uy - Oy uly+ Axyy ™ =0

The pressure boundary condition derived from this is:

2At6’ -y’\) +1 +1 2A!0 —y[) +1 +1
—— Ly (PP - —L Ly, Py - PR +
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APy~ Py ) ==y iy~ 0=y i,_yy+ Ax, v, (A-17)
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Category 8:
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Mass conservation in this cell is expressed by:
x-x vy & -(x,-xb)v;_'ll - iju; ‘-0

The pressure boundary condition now becomes:

2At(x,-x . . 2At(x;-x ne .
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Category 9:
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For horizontal and vertical surfaces the virtual velocities are not coupled. Depending on the
neighbouring impermeable surface cells the free-slip condition can be used to determine a
virtual velocity. The impermeability condition has to be set in all cases.

V.= V.
v~ (Ay~8y) L1 =0 (A-21)
Ay;
Uy 1=y left (A-22)
Ey_l=uu right (A-23)

The continuity equation for this cell becomes:

n+1 +1 +1
(ug —u,’iv)(ij-byVAxiv; =0
from which we can derive the pressure equation at the boundary:

Ay;-8y

Ay;-Ay
Ax+Ax,

Ax,,, +Ax,

2A1 Yoy Py - Pl -2t ¥, (PaL P} +
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Category 10:
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The equation of continuity for this cell becomes:
Ay, (uy" -ul) + Ax,v ™ =0
Y\l i-1j Vi T

and the pressure boundary condition:

2AtAy; ¥ 2AtAy 1 pnel

ek pMl_pMhy_ 1 P -P0 )+
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Category 11:

V. -
i
J V1+1J
— - O - Agj
Ce-1 Yij
} A
&
v v
| I"l 'V1+1]_1
Ex
Figure Al4
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From the continuity equation for this cell

n+l

‘V;::) ~Ay;u; ;=0

n+l

6x(vv

we can derive the pressure boundary equation:

2Atdx n+1 n+l 2Atdx n+1 n+l
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Category 12:
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The continuity equation for this cell is

n+l n+l

n+l
Ax(v; —Vjy) ~ Ay, =0

from which we find the pressure boundary equation:

2AtAx 1 " 2 AtAx, " -
By ey, W R g e PR
Vi * BY; Y+ Ay,
2AtAy
_ / n+l _ pn+l - - = _ o
Ax,+Ax, Yiy®y ~Picy) = Ax 0=V ) - Ay,
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Category 13:
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u,-u
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Ax,
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For this cell conservation of mass is expressed by:

(Ax,-8x)(vy ' -vy D) + Ayug =0

The pressure boundary condition now becomes:

2AH(Ax,-bx . .. 2AHAx.-dx . "
__t(_f_);_ﬁ(p;”'_pg ‘)H_t(—‘_).;tﬁ_l(p; i ;-11)"

ij+1+ij ij"'ij_[
M P -PFYy=(Ax,- 8x)F,-, )+ Aydi A-40
A, = oz, Wi Fy ) =(Bxm 000,90 Ay (A-40)
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Category 14.
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Figure A17

u, ;=0 (A-41)

Vi~V top (A-42)

Viij-1=Vij-1 bottom (A-43)
For this cell the continuity equation is:

n+1

+ +1
Ax(vy —v,;_ll)+iju; =0

The precsure boundary condition now becomes:

2AtAx . 2AtAx .
o BBy~ ey 1 BB
Ay, + Ay, Ay+Ay,
2AtAy
J n+l _ pa+ly ~ = ~
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Since in some cases where horizontal or vertical slopes are involved, virtual velocities can
be defined twice (see example in Figure A18), we choose to give up the free slip condition
at the end point of the horizontal or vertical slope in these cases.

In the program this could be realized by, first dealing with the categories 9 to 14, setting
3 virtual velocities for each of these cells. After that the other categories are dealt with,
which results in overwriting in conflicting cases.

category 3 category 9

————
e

Figure A18 Conflicting boundary conditions
Treatment of surface cells at the slope

In order to set velocities at those cell interfaces which are dry and belong to a surface cell,
we first try to meet the combined impermeability condition and continuity condition at the
slope. At the point where the free surface and the slope meet we also need to make some
adjustment in the pressure equation.

Empty cell at the RIGHT

Category 3: Wi=t;_yj, jb".jzpi.*l
Category 5: Wi=Uj_yj» pjjzo
Xi~%
Category 6: U= s Pj=P;,
yj-yr
Category 7: Uij=Ui_y;, p’.j= Pij+l
X:=Xp) Vi 1 —=(X:=X,)V:.
R ij=(; ) Vi1~ (X;=%)) i py=0
Ay;
Category 9: Uij=Uj_yj, P;‘j= p[,j+ {
Category 10:  u;i=u;_y;, P;=0
Ax‘—ﬁx
Category 13:  u=- =+ (v‘-j—v,-j_l), P;=0
Yj
. Ax;
Category 14: u,-j=-—A_)y(vjj-vU_l), P;=0
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Empty cell at the roP

Category 1: Vij =Vij-1 Pij=P,-_1J,-
Yi=¥
Category 2: vf'fzxiTuf—U’ P;=P,_y;
! 1=
(yj-yrsu,'-l,--(yj“y,)u,j
Category 3: Vij= Ax; , Pg=Pi-1j
Category 4: Vi=Vyo1 Pu =P1._U
Category 5: Vi=VYi-1- P“=P“u.
yj-yr
Category 6: vy, =- u,., P.=P,
gory (e URREY
. _ 0 Wu =0y _
Category 7: V= A%, " Pi=P,
Category 8: V‘j:vu_l ’ PU=P'+1J
Ay~ 8y
Category 9: y, = u,-u,_.), P.=0
gory i Ax, ( i Y1) [l
, Ayj i}
Category 10: ij=-z;(u‘-j—u,-_1j), PU—O
]
Category 11:  w;=v,,, P;=P_,,
Category 12: Vi=Vy-1r P”---I"‘_1 ;
Category 13: Vi=Vy1» Py--—PM j
Category 14: vij= I'j-l’ Plj=Pi+lj
Empty cells at the RIGHT and TOP
Category 1: Vi=Vy1 Uy =Wy Py=Pi-u
. S _ _
Category 3: = ;\x, s Uy =ty P,=P,
Category 5: Vy=Vy1 U=t 4 P".=O
Category 6:  u;=0, v;=0, P;=0
: = 0 _
Category 7: Uy=u;_y, V= A%, Uiy PU-O
Category 8:  v,=v L i P,=0
gory & Vy=Vy-1» YT ay, b0 U
J
Category 9: Uy =W 1, v; =0, P;=0
Category 10: W=ty vii=0, P;i=0

delft hydraulics Appendix A - 18




SKYLLA: Wave motion in and on coastal structures H 1780 October 1994
Category 13:  v;=v,,, u; =0, P;=0
Category 14: Vl-j=v’~j_], u"j=0, P'U=0
Empty cell at the LEFT
Category 1: Uy =Wy, P,;=0

X~ %1
Category 2:  u_;,=———v,, Py=P;,
Yi™¥
Category 3: Uiy =Wy Py=P;,,
(=2, ) vy = =% )V _
Category 4: Uy = By, i P;=0
Category 5:  u_;=uy, P;=0
Category 7: Uy 3=y, P, =Py,
Category 9: Uiy =Wy, P;=0
Category 10: Uiy j =W P,-j=0
8x
Category 11:  u, ;= A—y vy vy P,=0
J
X
Category 12:  u, ;= Ky—‘ vy P,=0
]
Empty cells at the RIGHT and LEFT
Category 1: u”=0, u,_u=0, Pti:O
Vi Ax,
Category 3:  u;=0, Ui y;= P;=0
yj_y'{
Category 5: u; =0, u,_;=0, PU=O
) Vi Ax, ~ P =0
Category 7: Uy=-—-, "1-11“0’ V=
yj yr
. 1 Yo _
Category 9: Mees oy ; Uy =Wy PH—O
Category 10: u v,.j{'lx,-r /] -u P;;=0
gory : ij 2ij ’ i-1j i ij
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Empty cells at the 7oP and LEFT

Category 1:
Category 2:
Category 3:
Category 4:
Category 5:
Category 7:
Category 9:
Category 10:
Category 11:

Category 12:

Vy=Vyo1»

u, ..=0,

i-1j

_yr-y]
e

Empty cells at the RIGHT, LEFT and TOP

Category 1:
Category 3:
Category 5:
Category 7:
Category 9:

Category 10:

Empty cell at sBoTTOM

Category 1:
Category 4:
Category 5:

Category 8:

Vij-1 =Yy
Vij-1=Vij»
Vii-1= Vi

Vij-1 =Yy

Uiy =Wy p;=0

v;=0, P,=0

Uiy =Uyo P,=0

Ui 1= %) vu;(;‘;b—xi—l) Vi1 P,-0

Uiy =Wy Py=P,,,
v":—y:&_::ru”’ Py=Py,;

L STRLE P;=0

H=a, P;=0

4 =0, P;=0
u_;=0, P;=0
Yy=Vij-1s 4, ,;=0, P,=<0
vy=0. 4 =0, P;=0
vﬂ=vu_1, ui_u=0, Pu=0
V,-j=0, H,_U=0, Py=0
vq=0, "3-1,=0= py=0
u;_1;=0, v;;=0, P,;=0
P,=0

P!J=Pl-u

P,=0

Py=P,,;
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Category 11:
Category 12:
Category 13:

Category 14:

Vij-1 = Vi
Vij-1= Vi
Vij-1=Vij»

Vij-1= Vi

iy
Pijzpi-]j

P

i+lj

Py

ij

Empty cells at the RIGHT and BoTTOM

Category 1:
Category 5:
Category 8:
Category 13:

Category 14:

By =iy
Vi1 =Yg

-1 Vij»

vii—l =VU ’

Vij-1=VYij»

Vi1 =V Py=0
U=y, Pu=0
X=X, -
Uy=- ij Yy Py'Pyu
uﬁ=0, Py=0
a"j=0, PU=0

Empty cells at the 70P and BoTTOM

Category 1:
Category 4:
Category 5:
Category 8:
Category 11:
Category 12:
Category 13:

Category 14:

A yj(uu—u,_1 j)

v; =0, V= K P;=0
Ay.u
_ 1%i-1j -

v, = , V. ==V, P. =0
¥ xvx,-2x, v-1 AU e v
v‘.":o’ o i yju.{}' (y, yl)ui-u , P‘“ =0

X% ¥
'“Uij
v,=——L, V==V, P,=0
V' 2x-x,-x, L v
_4i4;8Y - -
TR it = Fu=0
_ Ay )
Vo™ 2Ax, Yi-1= Yy g0
—uuij
VY, — Vv, ==V, P.=0
Y 2(Ax,-8x) LRI y
_ 4i-1j8Y; _
Ty Vij-1="Vij» P;;=0
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Empty cells at 70P, RIGHT and BOTTOM

Category 1: v; =0, U=ty v =0, Pii=0
Category 5: vu=0, U=ty Vi1 =0, P,.]=0
Category 8: vv=0, uij=0, vij_1=0, P‘,j=0
Category 13: vu=0, uy=0, qu:o: Py=0
Category 14:  v;;=0, Vii-1=0, u;=0, P;;=0
Empty cells at LEFT and BOTTOM
Category 1: v, =V, Uy g =W, P;=0

XXy
Category 4: V1=V Uiy = _AT)';_ Vi Pb. =P|!,.+1
Category 5: v, =V, Uy =Wy, P,=0
Category 11: Vg =Vys U s =0, P& =0
Category 12: Viy-1=Vy» u,_u=0, Pu=0
Empty cells at LEFT, RIGHT and BOTTOM
Category 1: “1-1;:0* uu=0, Vij1 =V Pu=0
Category 5:  u; ,;=0, u; =0, v 1=vy, P,;=0
Empty cells at LEFT, TOP and BOTTOM
Category 1: V-1 =0, v‘,=0, Uiy =Wy, Pﬂ=0
Category 4: Vi1 =0, Yy =0, Uiy =0, Pu =0
Category 5: v, =0, v; =0, Ui ;=W P;=0
Category 11: V-1 =0, v“=0, “:-u=0’ Py=0
Category 12: v”_1=0, vv=0, "1-u=0’ Py=0
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Empty cells at the LEFT, RIGHT, TOP and BOTTOM
Category 1: u; =0, u;4;=0, v, =0, V=0,

Category 5:  u,;=0, u,_;;=0, v;=0, vi1=0,
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Suggested approach for releasing a jet of water
at an edge on the slope

Especially in the case of overtopping waves where the horizontal velocity is large, problems
can occur with the implemented boundary conditions for the impermeable slope. At the edge
near the top just where the slope becomes falling the jet of overtopping water should be
released from the slope. The SKYLLA boundary conditions however tend to prevent this as
they just model that the velocity component in a direction normal to the boundary must be
zero.

In Figure B1 we show a situation which can cause problems in SKYLLA.

DRY

Figure Bl Overtopping jet is released from the slope

In this appendix a method is suggested to overcome the problems mentioned. This method
has not been implemented in the SKYLLA code and it is only concentrated on a selection of
cell categories.

We will only consider the simple case of 5 different cell categories where a jet of water
should be released from or attached to the slope. For each of these cells the outgoing mass
flux is one of the quantities which determine what kind of boundary condition is to be used
in that particular cell. It is defined as:

M:= f u.n dl where the integral is taken over the boundary of that part of the cell which can
contain water.

Another quantity which is used to determine the kind of boundary condition to be used is
the pressure.

If a cell at the slope does not contain water (F=0) but is approached by a free surface, The
velocity components at the boundary of the cell are at first determined by the velocities of
the free surface as soon as it is close enough. In that case the velocity components u and v
are copied into the dry cell. From these velocities it can be determined whether the oncoming
water is initially going to fill up the cell or not. In the situation sketched in Figure B1 this
is clearly not the case for the first cell right from the top. In Figure B2 assumed copied
velocities are shown for a cell of category 6A which is the first cell on the falling part of
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the slope. Since we know that the horizontal velocity components will be greater than the
vertical components M >0 in this case. Here the cell should be treated as a free surface cell.

i
S Y
.w_‘\\
™ -
Figure B2  Copied velocities at edge

In Table B1 we show whether the cell is to be treated as a free surface cell (release) or as
a cell in which the impermeability- and free slip conditions must be applied (attach).

M<-M, -My<M<M, M<M,
P< ‘PO attach release release
P> PO attach attach release

Table B1

By choosing a negative value for P, a flow which is in contact with the slope on both sides
of the edge will not be released from the slope too easily. Taking a positive value for M,
will prevent a jet of water, which is released from the slope at the edge, to be forced back
to the slope too soon.

In the following the actions to be taken for cell categories 12, 2A, 10, 6A and 14 will be
discussed for the case in which the water is to be released from the slope. Note that the F
values which are set here are defined in virtual cells. Setting these values to zero guarantees
that the cell where the water is released is treated as a free surface cell.

Category 12
M:=-u, Ay +(v;-v;_ )Ax,

release: F. i 0

+]j:=
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Category 24
M:=-u, Ay +v;Ax,

release: u,_u<0-—Fij_1:=0
v;>0-F,,,;:=0

Category 10
M:=(uﬂ—ui_1j)ij +VUA.I£

release: F, 1= 0

Category 64
M:=uUAyI. +v;Ax
release: u”>0—-Fu_1:=0
VU>0"F1-U:=0
Category 14
M:=uuij+(v” 'Vu-1)A’-’t
release: F; ,;:=0
The actions suggested here only cope with the simple cases where the edge coincides with

a grid point. The problem with the more general situation where an edge is located on the
boundary of a grid cell has not been studied yet.
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Stability considerations

Internal stability considerations

A stability analysis for the discretized Navier-Stokes equations in SKYLLA is extremely
difficult as the equations are nonlinear. By linearizing the equations however a simpler
problem can be studied which can still provide us with conditions to determine restrictions
to the time-step or space-steps. Although the conditions derived from linearized equations
do not warrent stability, experience has shown that in most practical applications these kind
of conditions suffice.

The model equation we study looks like:

oo (S, P o
ax? ay?

Here 4 and ¥ are the so called frozen coefficients of the equation and should be regarded
as constants.

Our model equation is a special case of the problem studied by Hindmarsch et al.(1984).

In their article they derive a necessary and sufficient stability criterion for the time-explicit
central discretization of the advection diffusion equation in M dimensions:

2
a(b +E mt”l 6x E i ¢ (C-2)

m=1 m=1 o
where

K, >0 for m=1(1)M.
With the definitions v, =K, Atlef, and p_=u At/Ax_ they find after substitution of the

Fourier mode ¢; =£"exp

M
13, Bml into their scheme:

m=1

M M
E-1+IY p,sinB, =Y 2y,(cosB,-1) (C-3)

m=1 m=1
where j is a multi-index.

The scheme is defined to be stable if |£ | <1 for all 6,€[0,n].
They find the following
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Theorem:

The central space forward time scheme for Eq.(C-2) is stable (in the von Neumann sense)
if and only if:

Y tuss (C-4)

and

M 2
Y f22a, (C-5)
m=1 Yn

s

When a partial upwind scheme is used which discretizes umg— for positive values ofu,
as: m

-l
e 220

A:-d’j '-An_rld)j
2Ax

m m
xm m

Equation (C-3) has to be replaced by:

M M
E-1+IY p,sin6, =Y 2y, +u, a,)(cosb, -1).

m=1 m=1

Here a_ is the upwind fraction used in the scheme in space direction m and A, is a shift
operator which operates on the m-th index:

q =
A’” ¢j1eruJ.»Jy - d)fllp---J.‘q---Jy E

Obviously their theorem now can now be replaced by our

Corollary:

The partial upwind scheme for Equation (C-2) is stable if and only if:

M
Y @y, to,p)s<1 (C-6)
m=1

and

M 2
be .1, (C-T)

by setting M =2 the conditions for our model equations are recovered.
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Free surface stability considerations

Experience in the use of SKYLLA shows that instabilities during the calculations are almost
exclusively generated at the free surface.

At the free surface the same space discretizations are used as elsewhere in the fluid. Some
of the velocities which are needed for these discretizations are located outside the fluid
domain. The local normal vector at the free surface determines from where inside the fluid
these velocities are copied. There are only four directionds from where the velocities can
be copied as in this operation the free surface is considered either horizontal or verical.

In Figure C1 a situation is sketched where one of the velocities is copied from within the
fluid.
The model equation is given by Eq. (CI).

We assume $>0 and 420 and find with the copied value v;,,:=v;' for the partial upwind
discretization:

Vlj+1 VU
i
: vold
T T S e — [ water
‘ 1
| vy,
o —t |

Figure C1 Fluid below the horizontal free surface

V;'*l 'v;; * P,(“(V; _vitl)') +%(1 - a)("i':lj‘vj:u)) -

Y.y 2V +v1) +(§(1 +a)p, +y ) vy -V =0

Where we use the definitions: p,:=—|£|£ s Byi= AL 5 Y- yaL > ¥yi= "A’_
Ax Ay Ax? Ay?
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By substituting Fourier components v; = E"exp(IBxi)exp(IG,]) , we find:

E-1+Ipsin6, +1(;(1+a)p, +y,)sinG, =

(e, +27,)(cos6, - 1) +(S(1 + @) b, +7,) (cosB, - 1)
If we compare this equation with Eq. (C-3) and apply the theorem we find the following two
stability conditions:

o, + 27, + (1 + @)p, +y, <1 (C-8)

and

2
1 C
_— — — -9
- x"'z(l*a)l..l,""fySl ( )

In Figure C2 we show the case where the velocity at the surface points inward. Here we
have again ¥>0 and 4>0 but now the velocity component v, is copied from v

A
|
A A ¢
| |v1J |
I i Uij water
A A A """""""""""" [ “void
V11—1= Vl]

Figure C2  Fluid above the horizontal free surface

The partial upwind discretization now becomes:

n+l
v, -

i Vg i@y -v )+ %(1 —@)(¥y V)

Y, 00-2v] )+ C - @) by -1 ) - =0 (C-10)
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From the last term in this equation we can see that this is effectively a discretization of a

convection term with propagation velocity 11 -a)yp-v/Ax.

The discretization is downwind if this value 1s positive and will then cause instabilities. This

leads to the first of our stability conditions:
1 . VAy
P 5(1 -a)p,20 or equivalently (I1-a)—=<2
v
Again by substitution of a Fourier component in Eq.(C-10) we find:

E-1 +I(pxsin8x +(; —a)p,,-y,)siney)=

(o 1, +27,)(c080, - 1) + (¥, - 1(1 - ) )(cos, - 1)

By using the theorem we can now find the following two stability conditions:

@, +27, +Y, 5 (1-a)p, <1
and
p.:z
— 4y - i(l-a)p,s1
L ¥y~ 5 (1 -0k,

For the treatment of a vertical free surface similar conditions can be derived.

(C-11)

(C-12)

(C-13)

Conditions like in Eq. (C-11) are very unpleasant as timestep reductions can not be used to
overcome the stability problems. These problems can be overcome however, by changing

the upwind fraction in the discretization in these cases.

Summary of the 2D stability conditions

.. u|Atr V|At vAt vAt
Here we use the definitions: p_:= s B = I i .
Hx Ax Py Ay Yx Ax? Yy Ay?
In the wet region the stability conditions become:
2y, +a p,+2‘y,+a p,s1
and
2 2
P By <1

2y, vap, 2y, rap

(Cs-1)

(Cs-2)
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At the free surface we find the following:
If the free surface is approximately horizontal there are two cases:

vl) The copied v component points toward the free surface; we now find two conditions

agx+21x+§(l+a)py+yysl (Cs-3)
and

p.l
— 4+l +a)p, +y, <1 Cs-4
T Sl rap, +y, (Cs-4)

v2) The copied v component points away from the free surface; we now find three

conditions
Y,~1(1-@)k,20 or equivalently (1- a)$ <2, (Cs-5)
@427, +Y, - %(1 -a)p,s1 (Cs-6)
and
2
—l’-;_ +y —1(1 -a)l.l <1 (Cs-7)
ap,+2y, 7 2 Y

If the free surface is approximately vertical there are again two cases:

ul) The copied u component points toward the free surface; we now find two conditions

ap, +27, +o(1+a)p, +y,<1 (Cs-8)
and

p,2
— _+d+ra)p, +y, sl (Cs-9)
g p'y+2YJ’ 2
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u2) The copied u component points away from the free surface; we now find three

conditions
Y, —%(1 -a)p, 20 or equivalently (1-a) BAx 22 , (Cs-10)
apy+2'yy+yx——;-(1-a)pxsl (Cs-11)
and
2
Hy 1

——+y,-=(1-a)p, sl (Cs-12)
% Wy *+2Y, 2

Problem resolving strategies

The simplest way to satisfy the stability conditions at the free surface is by setting the upwind
fraction equal to 1 for those cells which have an empty neighbour. In that case we do not
need to check the direction in which the free surface is moving.

The resulting 4 stability conditions with a =1 at the free surface then become:

P27, + B, +Y,<1 (C-14)
Bty B, +2Y7,<1 (C-15)
I-12
x
LTS (C-16)
me+2y, 7
ll-z
Py ——51 (C-17)
By +2Y

Another way to solve the stability problems is found by adapting the upwind fraction in those
cases where a cell-Reynolds condition is to be satisfied viz (Cs-5) and (Cs-10). In those cases
the upwind fraction can be chosen to be

2v 2v
or o =max(a,,1-
x) (@ |'.'P|Ay)

o '—‘max(ao,l = W—

respectively. This choice effectively means that the acceleration of the fluid near the free
surface in the direction normal to the free surface is driven by pressure gradients and
gravitational forces only in the two cases mentioned as all derivatives in the direction lateral
to the free surface have been removed.
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With the given choice for a only the remaining conditions need to be satisfied.

source:
"THE STABILITY OF EXPLICIT EULER TIME-INTEGRATION FOR CERTAIN FINITE DIFFERENCE
APPROXIMATIONS OF THE MULTI-DIMENSIONAL ADVECTION-DIFFUSION EQUATION’,

A.C.Hindmarsch, P.M.Gresho and D.F.Griffiths
International Journal for Numerical Methods in Fluids, Vol.4, pp 853-897 (1984)

delft hydraulics Appendix C - 8




Appendix D

Average-prescribing weakly-reflective boundary conditions



SKYLLA: Wave motion in and on coastal structures H 1780 October 1994

delft hydraulics

Average-prescribing weakly-reflective boundary conditions

The weakly-reflective boundary conditions in SKYLLA model the simple wave equation for
the outgoing signals at the boundary. Where the signals are the velocity componentsu,v
and the surface elevation n . For the surface elevation the equation becomes:

oy gl ooa .
g(n N Cax(n N =0 (D-1)

Note that since the outgoing signal is not known it is defined as the difference between the
actual signal n and the incoming signal v, . For the velocity components the equations are
similar. In the rest of this text we will therefore only consider the free surface elevation.

The boundary condition given in Eq. (D-1) does not account for the average value of the
surface elevation because only derivatives to space and time are involved. If during the
calculations inaccuracies cause the average elevation to change by a constant value Eq. (D-1)
is still satisfied. A remedy to this problem (suggested by G. Klopman) is found by replacing

Eg. (D-1) by:
9 mn-n,)-c¢Zn-n,)+rtn-m)=0 (D-2)
ot ox

where 1, is the incoming signal and n is the prescribed average value and r is a small
value.
In order to analyze the new boundary condition we define the incoming signal:

nm=noel(k.¢-ut)
where w and k satisfy the relation C=w/k and I*=-1,

By introducing the function A(x,) =n(x,f) -n,(x,f), we can write Eq.(D-2) as:

aA_ oA Y el I(kx - wt)
5 Ca*"ﬁ-f(ﬂ noe ) (D-3)

By transforming Eq.(D-3) to the new coordinates,
E=x+Ct
T=t

we find:

~

aA =rln — Ik -2wT)
E+rA-r(n N ) (D-4)

Here we renamed J(E,r) = A(x,0).
The solution of the homogeneous problem suggests a solution of the form:

J=D(E,1)e'".
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By substitution in Eq.(D-4) we find the differential equation:

) =re”(ﬁ—n°e

KkE-2w 1)) )
dt

Integrating to t yields:
= r(r+2lw .
D(E,t): n -no_(;__?lef(kﬁ 21) e’" +ﬁE)
r‘+4w

which immediately leads to the solution of Eq.(D-4):

At =n -ng 219D et -2 gy o
r‘+4w

By transforming back to the coordinates x and ¢+ we find:

n(xJ):H-{-nD{l-Lg.:_TzI_(:)]el(kx—mﬂ*_ x+Ct)e'" (D-5)
r'+4w

In the case of an initial value problem where we start with the solution:

nx0)=n

we can find by substitution in Eq.(D-5) that the solution becomes:

202w-Ir (et(kx—ufj - —rtet(knorj)_

x0)=n+
) =n+n, 21402

For the asymptotic behaviour of this solution we find:

M em‘""m for t— oo,

r?+4 o?

n(xn) ~ nxH=1+n,
After some manipulations we get:

—_ 1 lux-mr-Irmn(zL))
Nx) =1+ —————n,e 2

We can conclude that the average (in time or space) indeed has the prescribed value 1 . The
incoming signal has been distorted however.

delft hydraulics Appendix D - 2




SKYLLA: Wave motion in and on coastal structures H 1780 October 1994

With the choice ?z-'— =0.1 we find for the multiplication factor:
w

1

and for the phase shift:

=0.995 (D-6)

arctan({—) =0.0996 rad="5.71° (D-7)
(]

Stability analysis

For the analysis of the upwind scheme to be used at the boundary to discretize equation
(D-2) we take the homogeneous equation:

R .c ira-0. (D-8)
ox

Both C and r are assumed to be positive in this equation.

Note that this is the homogeneous version of equation (D-3) where for reasons of simplicity
the ’-C’ has been replaced by '+C’.

The upwind scheme at the boundary becomes

AT Al v p(Af-A%) + A4 =0 (D-9)
where we used the abbreviations

p=SAL and 2=ras.
Ax

By substituting a Fourier coefficient Af= §%exp(lkjAx) in Eq. (D-9) we find
E=1-A-p(1-cosa)-Ipsina (D-10)
where x =kAx.

Stability in the Neumann sense is defined by |£|<1 Va 6[0,12‘—].

Since cosa takes all values in the interval [-1,1] for « e[O,—’zi] the stability condition
becomes after some manipulations on Eq. (D-10):

(A+p-12+p2-1)-2p(A+p-1)c <0 Yce[-1,1].
From this two conditions can be derived:

A(A-2)<0

(A+2p)(A +2p -2)<0
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As both A and p are positive these conditions can be reduced to only one condition which
is both necessary and sufficient for stability: A +2p<2

The expression for the time step now becomes:

At < 2
C

r+2—
Ax
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