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SUMMARY

The present study is concerned with the dynamic response ana-

lysis of gravity platforms subjected to random wave excitation.

The dynamic modeling involves three media, namely the soil, the

structure and the sea. The modeling was planned so as to obtain

a linear system. The structure is treated as the primary system,

for which the response is to be determined. The dynamic behaviour

of the soil and sea is represented by appropriate boundary con-

ditions.

The structure represents stiffness, mass and damping in the sy-

stem. The concrete caisson of the gravity platform is assumed

to be rigid while the flexibility of the steel/concrete super-

structure is modelled by beam elements accounting for bending and

shear flexibility.

The transformation of the modal damping ratio for a fixed base

structure into an equivalent modal damping ratio for the inter-

action system is commented upon.

The soil is assumed to contribute to the stiffness and the damping

of the system. The soil behaviour is represented by equivalent

spring and viscous damping coefficients in the point where the

structure and soil interface.In general, the stiffness and damping

coefficients are frequency dependent.

An elastic half-space model is adopted for the soil. The shear

modulus then becomes the principal characteristic parameter.

Hysteretic losses in the soil are accounted for by an equivalent

viscous damping coefficient. The effect of a potential embedment

of the foundation can also be taken into account by egineering

corrections devised by Novak and co-workers.

V
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The sea primarily represents the excitation forces, but con-

tributes also to the damping and the mass of the dynamic system,

The excitation forces are conveniently separated into forces on
the slender superstructure and the caisson, respectively. The

forces acting on the superstructure by a harmonic wave component

is represented by the Morrison formula. The diffraction effects

occuring by a short wave-length to shaft-diameter ratio are

accounted for by appropriately varying the mass coefficient.

Drag forces are in most cases negligible. The forces on the

caisson are due to potential effects and are obtained from labo-

ratory experiments and analysis applying source and sink techni-

ques. Diffraction effects are accounted for.

The added mass of the surrounding water is determined in -a

similar way. Simplified estimates for the damping resulting

from the generation of surface waves and drag are given.

The resulting linear dynamic, model is utilized to compute trang-

fer-functions (i.oe. steady-state response by a harmonic wave

with amplitude 1 m) for actual response quantities.

The transfer-functions provide a convenient basis for a sta-

tistical treatment of the response in the frequency domain.

In the statistical analysis the sea elevation is described a5

Gaussian process with zero mean,.

A stationary (short-term) sea state has a duration of some hours

and is conveniently characterized by the significant wave

height, the mean wave period and the assumed duration of the

storm. The first two parameters determine a wave spectrum.

Pierson-Moskowitz-, Jonswap-, Derbyshire-Scott and, Modified

Derbyshire Scott-spectra were selected to be representative

choices in the present context. A directional functicn to

account for short-crested waves may also be included.

a
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The long-term variation of the sea may be described as a

series of short-term states with gradually changing spectrum.

A complete long-term description requires the long-term dis-

tributions of the wave-spectrum parameters to be known. In

addition, long-term directionality of the weather states is

necessary.

The following three long-term models are discussed

continuous distribution of short-term parameters

(conventional method) La crude approximation for

the directionality of weather is proposed.]

modified continuous distribution of short-term

parameters to avoid unphysical combinations of

waves [a crude approximation for long-term direction-

ality of the weather is proposed.]

a three-dimensional discrete "distribution" of wave

parameters (H1/3. T and direction, a). Each of the

three axes is subdivided into classes ("blocks"), and

a probability is associated to each three-dimensional

"block", as recorded by wave observations.

The statistical treatment of the hebpon4e may either be

carried out as a short-term or a long-term analysis. Both
approaches are considered herein.

Numerical studies are carried out. The structural characterics

are the same in all cases. The shear modulus of the soil is

varied and the effect of the direction of wave progress is in-

vestigated.

Dynamic amplification is found to be significant and must be

tanken into account by the design of the actual type of struc-

tures. The magnitude of the shear modulus is of paramount

importance for the response level.

-

-
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Besides the magnitude of the lowest eigenfrequencies, the

phase differences of forces on different shafts and the

direction of wave progress are found to have a major in-

fluence on the response.

Preliminary parameter variations have been accomplished to

study the effect of the choice of wave-spectrum and spectrum

directionality. Significant scatter in results obtained by

various spectra is found. Among the four spectra utilized

none gave consistently the largest response value.

The conventional continuous long-term model and its modified

version - by suppressing unphysical combinations of H113 and

T occuring in the conventional approach - were applied and

considerable deviations were found in the respective long-

term distributions. Further research will be needed in

establishing reliable long-term models. The simplest and

most reliable model is believed to be the discrete model,

although it excludes the most extreme sea conditions.

-



Notation

IX

ao - Dimensionless frequency a, Qr0/$
's

A Area

A - Parameter in the general wavespectrum

AH-ParameterinrelationbetweenH,,,and Hy
AT Parameter " " T and Tv

A, - Work done by the damping force during a cycle

A - Maximum kinetic energy

BH - Parameter "
H1/3 and 11,

BT - Parameter " " T and Tv
B - Parameter in the general wavespectrum

Constant defining the torsianal damping cocf.

Parameter in the Derbyshire Scott wave spectra

CH
Coefficient for the horisontal force on the caisson

CI
- Total inertial force coefficient

C. - Dimensionless damping coefficient

C Optimal damping coefficient
rr

C . - Inertial force coefficient
Mi

i=1 Froude-Kryleft force coefficient

i=2 Inertia force uefficient

CD
- Drag force coefficient

CMD - Damping force coefficient

CMT - Coefficient taking into account the overall

modification of the pressure on top of the

structure due to the presence of the structure

CMB - Coefficient taking into account the overall

modification of the pressure on the bottom

of the structure due to the presence of the

structure

CT
Coefficient which takes into account the overall

modifications of the pressure on the top of the

structure

CB
Coefficient which takes into account the overall

modifications of the pressure under the bottom

of the structure

-

-

-



X

D - Diameter (caisson, pile etc)

Hysteretic damping ratio

Damping ratio for the j'th mode of vibration

of loading on the caisson

Eccentricity of loading on the caisson

e SR/Si

Young modulus

Statistical expectation ("average")

EMARG Statistical marinal expectation

f(x) - Probability density function

F(x) - Cumulative probability function

fH Coefficient for horizontal caisson force

accounting for the shape and size of the

structure. For each shape (cylindric, tri-

angular etc), the coefficient is a function

of /A/X.

fM Coefficient for overturning moment on the

caisson

fv
- Coefficient for vertical caisson force

f.,F. Flexibility functions

FE - Distance from equilibrium line ih the joint

distribution for H113 and T

f(8) - Directional function

- Accelration of gravity

Dimensionless dampingcoefficient
- Shear modulus

- Sea depth

h' Depth from sea surface to the top of the caisson

h(t) - Unit impulse response function

- Wave ileight (peak to through distance)

- Significant wave height

Ho
- Parameters in the Weibul distr. of visual wave height

Hc
- Parameters in the Weibul distr. of visual wave height

-

-

-
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XI

The imaginary number i V-1

I,J - Moment of inertia

IMAX - Number of intervals of T

JMAX - Number of intervals of
H113

- Wave number, k 2R/A

- Parameter in the wave spectrum

K(n) - Parameter in the directional function of the

wave spectrum

k. ,1<. Stiffness functions
J

- Parameter in the wave spectrum

Duration of a short term period

Mass

m. Moments of the spectrum, m. I colS(w)dw
I o

- Constant in the directional function

Number of maxima (peaks)

DID, Number of recordings in a block Cl, J)

in intervall ID

NID Total number of recordings in interval ID

NUDIR - Number of directional intervals

Pressure in the water

Pi (P/Dx)max.(distance from vertical centerline

to the edge of the structure)

dp - Force per unit length (of a shaft)
Pi Nodal force

- Force

PD
- Drag force

PI
- Inertial force

I0
1)Amplitude value of ,

PH
- Horisontal force on the caisson

P - Vertical force on the caisson

PDIR - Prol5ability that the main direction will

fall within a given interval

PVW - Probability that visual waveperiod, Tv, fall
within a given interval

k,

L -

-

-

-

-
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XII

Q(Xx) Probability exceed a value x

- Parameter in Rayleigh distribution, r=2 .m,

r, - Radius of disc (caisson)

Nodal displacement

rG
Cocf. accounting for the embeddement of the caisson

rm
- Coef. accounting for the embeddement of the caisson

- Allowable area of pairs of and T

R(f) - Autoccrrelation function

- Vertical distance from sea bottom

Distance from bottom to the wave force

resultant on the caisson

s, - Height at the caisson

S(w,a+0) Directional spectrum

S(w,u) Unidirectional spectrum

Sc
- Conditional standard deviation

- Time

- Wave period

- Average mean wave period

- Period between: i=2 - crests
i=3 - zero uncrossing

TLIM - Boundary value according to equilibrium concept

- Velocity in the water perpendicular to the shafts

3u/at Acceleration due to wave motion perpendicular

to the shafts

- Volume of cylindrical (caisson) structure

- Sectional modulus of the horizontal area of the

structure (caisson)

Xo
- Respons level

X(t) - Stochastic variable

x,y,z Cartesian coordinates

e
- Embeddement

zCG
- Dist. from caisson bottom to its center of gravity

R

T

T. -
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'Notation (Greek letters)

- Angle of incoming wind; Equilibrium parameter

a, constants defining the dyn, stiffness coef-
a

Frequency ratio
Oi CO&

1
Constants defining the dyn., stiffness coef.

Angle defining the orientation of the structure

Yo - Parameter in the Weibul distr, of visual wave height

Yi ' Constants defining the dyn. stiffness coef.

- Phase angle

6 Codf.. accounting for the embeddement of the caisson
m2

Parameter defined as, t2 = 1
.

2

MOM4

Co Constant defining the accurancy in calculating Fr

- Parameter in wave Spectrum

ngle between an elementary wave and incomming

wind direction

K, - Parameter, in wave spectrum

- Wave length

o
- Coef. accounting for the embeddement of the caisson

Frequency of zero uperossing

Damping ratio (relative to the critical damping)'

Density

Standard deviation

Time interval

Transfer function

Complex conjugated of 0

Pseudotransfer function

Complex conjugated of ,PS

Rotation about x-axis

y-axis

z'-ax is

CorreCtive coefficient to structural damping

a

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-
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XIV

- Circular wave frequency w . 2711T

C - Average mean wave frequency

- Circular frequency of applied loading

- Peak frequency in the wave spectrum
P

wo - Peak frequency in the Derbyshire Scott wave spectra

Matrix notation

Damping matrix equivalent viscous damping

matrix

Flexibility matrix

Unity matrix

Stiffness matrix

Mass matrix

Force vector

R(t) - Load vector (dynamic)

S - Internal force matrix

- Displacement vector

1." - Velocity vector

Acceleration vector

Normal coordinate vector

- Modal matrix

co2 - Diagonal matrix of eigcnfrequencies

Subscript notation

ref. to the structure (platform)

D - drag force

equilibrium wave spectrum

fluid (environmental water)

horizontal direction

inertia force

ID - directional interval no. ID

K,

-

-

-

-

-
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interval of H113

interval of T

i or j the degree of freedom

interval no. L of visual wave period

mass

response spectrum

soil

vertical direction

visually estimated wave parameters

wavespectrum

xs,

Ys static values in directions :x,y,z and 9

zs

Os

YQ dynamic values in directions:x,y,z and 0
2.0

OQ

x- direction

y7direction

z-direction

rota-cion about the x-axis
/I " the y-axis

0 the z-axis

Super index notation

- (bar) "statistical average"

(dot) diff. with respect to time

quantities in normalized eqs. of motions.
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INTRODUCTION

Presently, numerous offshore oil and gas drilling platforms

are being designed for deep water areas where environmental

loadings are severe. Due to high investment and present

public policy which emphasizes protection of environment

against oil spills an accurate structural design is needed.

Fixed platforms of current interest in the North Sea are steel

jackets and so-called gravity structures. The steel jacket is

mostly a steel trusswork on a pile foundation. The gravity

structure, Ref.(1) consists of a concrete caisson resting on

the bottom, and a simple framed super-structure made in con-

crete or steel or both. The height of the caisson is typi-

cally 1/3 - 1/2 of the water depth. The frame consists of 3 -

6 shafts. Typical examples are shown in Fig. 1.1.

The platform is subjected to loadings of different types.

Functional loading, e.g. equipment on the deck etc.- and en-

vironmental loading like wind and current are assumed to be

static. This assumption is not correct for the wind, but since

wind forces are relatively small, this simplification is pre-

missible.

The wave loading is, however, dynamic and random in nature.

The need for more accurate prediction of response, together

with the dynamic nature of the environmental loads, calls for

dynamic analysis methods instead of the static analysis methods

which were used in the design of shallow platform structures in

the Gulf of Mexico. The need for more accurate prediction of the

dynamic response of offshore platforms due to wave loading is

emphasized by the fact that tall, slender structures with flex-

ible foundations are susceptible to significant dynamic magni-

fication of the response.

- 1
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It is pertinent to know the range of fundamental periods of

typical deep-water oil production platforms.

Fig. 1.1 Typical gravity type platforms
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Gravity type platforms in 100 - 150 rn water depth in the North

Sea have fundamental periods in the range of 3.0 - 6.5 seconds

depending on the foundation stiffness, which has a significant

influence on the eigenfrequencies.

In the design of structures subjected to dynamic loading two

different statements in the response is generally requires,

depending on the corresponding mode of failure, Refs.(2.3):

the single extreme peak response(in connection with

ultimate collapse mode)

the complete response history (in connection with

fatigue or cumulative damage design)

While the prediction of a single extreme peak response is

a well-defined task, the evaluation of the response for

fatigue design needs some comments.

For a time history it is not obvious how relative maxima and

minima should be paired to fatigue contributing stress cycles.

Dowling, Ref.(8) investigated the applicability of a number of

counting method by making laboratory experiments with steel

specimens subjected to irregular strain histories. No similar

investigation is known for prestressed concrete.

In high cycle fatigue the simple mean crossing-peaks counting

methods may be utilized. The range-pair and the (more complex)

rain-flow method was shown to be the best fitted where most of

the damage is due to a few major reversals (low cycle fatigue).

Usually the response spectrum of stresses is known. What is

needed, however, is a relation between one distribution function

of stress cycles and the stress spectrum. The distribution

corresponding to the actual counting method must thus be deter-

mined.

When the response is a sufficiently narrow band process,

-



it is assumed that the number of cycles for each amplitude-

level is accurately described by the number of peaks associ-

ated with each positive peak level. This assumption is

made in this'investigation.

By the structural design a satisfactory safety of the structure

is ensured by introducing partial safety factors on loading,

material and production tolerances, using a semi-probabili-

stic design method, Refs.(2-3), or by a complete probabili-

stic consideration of the safety, Ref.(5). The fully probabili-

stic methods have not been completely accepted in design codes as

yet. In a semi-probabilistic design the response at a certain

(low) probability level is necessary for a single excursion

failure design, whilst most of the load history in a life of

the structure is necessary in case of fatigue design.

The objective of this report is to present a response analysis

method which reflects the dynamic and random nature of the

wave loading.

2. DYNAMIC MODELING

2.1 General Remarks

A fixed offshore structure interacts with the soil and the ocean

and each of these media has to be duely considered to obtain a

correct representation of the dynamic behaviour. A numerical,

discrete model representing all media could be developed'by

means of a numerical technique such as the finite element

method, Refs.(14-16).

However, in the process of formulation of the model the analyst

is faced with the two conflicting requirements, namely

- make the model as 6impte as possible for case of inter-

pretation and checking of results and for reduction of
-
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analysis cost.

- make the model compZex enough to represent all the

possible modes of dynamic response as long as the

capacity of the computer program and computer

facilities is not exceeded.

The choice of model will in general depend upon the phase of

design which is of interest, and the accuracy of data to put

in the mathematical model.

In the present context the platform is considered to be the

principal system for which response is to be evaluated. There-

fore only the concrete/steel structure will be modelled. The

environmental media - soil and ocean - are represented by

boundary conditions for the structure. The boundary conditions

are determined by imposing disturbances (corresponding to

typical behaviour of the structure) on the surrounding media.

The dynamic behaviour of the soil and the ocean are determined

by separate analyses or experiments.

Soil-structure interaction modelling has previously been con-

sidered for instance by Clough and Penzien, Ref.(16), Sarrazin,

Roesset and Whitman, Ref.(23), Krizak, Gupta and Parmelee, Ref.

(24) and Roesset, Whitman and Dobry, Ref.(25), Novak, Ref.(36)

among others.

Soil-structure-ocean interaction modelling has been treated by

Bell, Ref.(102),Moan, Ref.(104), Holand, Ref.(105), Eatock-

Taylor, Ref.(106), Moan, Haver and Vinje, Ref.(107) and Larsen,

Ref.(110) among others.

The structure-ocean interaction problem for fixed offshore

structures has been investigated by Dean and Harleman, Ref.(66),

Nath and Harleman, Ref.(67), Wilson and Muga, Ref.(68),

Malhotra and Penzien, Ref.(69), Foster, Ref.(70), Selna and Cho,

Ref. (71) and Berge, Ref. (72) among others.



2.2 Equations of Motion

The equations of motion for a multi-degree-of-freedom system

(see e.g. Fig. 2.1) with viscous damping may be expressed in

matrix notation as, Refs.(14 - 16):

Mr + Cr + Kr r R(t) (2.1)

The finite element method has proven to be the most effective

technique for general matrix formulation of governing equa-

tions and subsequently digital computer analysis, and it will

be assumed here that the discretization is of this type. In

this method, the structure is formulated by idealizing the

structure into an assemblage of discrete finite elements with

mass, damping and stiffness properties.

2.3 Structural Idealization

Gene4a.t. Remahk6

The structure contributes to the stiffness, mass and damping

properties of the system. The caisson in general is made of

concrete. The superstructure is of steel or concrete or a

combination of both materials.

Stii6ne44 and Ma44

The slender superstructure is modelled by beam elements account-

ing for axial-, bending- and shear flexibility.

The cross-sectional stiffness of the conc./tete members is con-

stituted by the concrete itself and the reinforcement steel.

It must, however, be recognized that part of the concrete cross-

section may crack even in serviceability limit state.

- 6 -

Fig. 2.2 displays the variation of rigidity of a hollow circular

cross-section with the relative magnitude of axial force and



Shaft I

L-\: Deck

N

Shaft 2

Caisson

Equivalent soil stiffness and
damping constant for trarslarion
in x - direction and rocking
about y - axis.

Fig. 2.1 Structural idealization of a threc-:-olum,
concrete gravity type platform

-
-
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moment, and the percentage of steel reinforcement.

41 0
STEEL PERCENTAGE n,

Fig. 2.2 Bending stiffness of cracked circular ring

section subjected to bending and axial force

The diagram is based on the assumption that the concrete has

no tensile strength.

The effect of repeated loading on Youngs modulus must also be

accounted for.

The stiffness properties of a potential Stest. superstructure is

well defined as 1g as the behaviour is within the elastic

range.

The main motion of the platform is rocking and sliding. Thus,

horizontal griliages may be considerably simplified. For instance

the deck structure which may consist of several crossing girders
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may be simplified as shown in Fig. 2.1 by making the ori-

ginal and new one equivalent by flexibility considerations.

A primary assumption is that the caisson is completely rigid.

Only six degrees of freedom (in one node) are thus needed to

describe the behaviour of the caisson. Even if the caisson

is almost rigid the nodes of the superstructure and the bottom

node are connected by elements with stiffness SO times the

stiffness of the column. This introduces satisfactory rigidity

without causing numerical ill-conditioning by the solution of

the governing equations. The choice of mesh in the superstruc-

ture primarily depends on the ability of the beam element to

represent variation in stiffness and mass. A particular point

is whether "lumped" or "consistent" mass is used. In general

the "lumped" mass formulation yields a larger discretization

error than the consistent formulation for the same number of

degrees of freedom. For the same computer costs, a more re-

fined mesh can be applied for the "lumped" mass formulation;

thereby compensating for the initial benefit of the "consistent"

formulation. For the modeling shown in Fig. 2.1 the lower

eigenfrequencies will be insignificantly influenced by this

approximation. As later will be shown, it is the lower (few)

eigenmodes that give the major contribution to the dynamic

behaviour. This fact justifies a lumped mass formulation even

with a rather coarse beam idealization.

Damping

Structural damping is due to internal friction within the

material itself (hysteretic damping) and is proportional to

the deflection. The structural damping is small as compared

to the damping in soil and surrounding waters. Reported values

for damping in uncracked pte6ttezaed conctete beams are 0.5 -

1 % of critical damping, Refs (10-12)

The damping, however, varies significantly with the development

of cracking. Therefore, the damping is indirectly related to
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the amount of prestress since the level of prestressing governs

the extent of cracking. The references quoted report damping

ratio in the range 1 - 2 % for beams with extensive cracks

but still with linear overall behaviour.

Bare 6test has an extremely low value of damping, namely

in the range 0.05 - 0.15 %. Damping of full-scale structures is

found to be of the order 0.2 - 0.8 %, Refs.02,13). A reason-

able damping ratio may be 0.5 % for a steel frame.

If the structure is not of monolitic type additional damping

may occur in the joints, Ref.(13).

When accounting for the structural damping in the system equation

for the interaction problem,the damping ratio must be appropriately

modified, cfr. Appendix A.

2.4 Soil Idealization

2.4.1 General Remarks

In the present case the soil is treated as a substructure of

the dynamic model, i.e. it is necessary to know the relation

between the stress resultants P,(t) and the corresponding dis-
J

placements u,(t) at the contact area between the soil and the

structure. This relation is clearly dependent upon the proper-

ties of the soil and the geometry of the structure-soil inter-

face. A rigid structure and a perfect bond between the footing

and the soil will be assumed.

The primary soil property is the dynamic stress-strain relations.

Other important dynamic soil characteristics such as excess pore

pressure deve.opm,,It, vibratory compaction and liquefaction etc.

are not considered.

The cyclic shear stress-str,--ln relationship in most soils is

a hysteresis curve, Fig. 2.3a, which is conveniently described

in terms of the twc parameters
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Fig. 2.3 Cyclic shear deformation

the peak-to-peak slope,. or, the :equivalent shear

modulus, Gs

.= the energy absorbed per cycle, non-dimensionalized by

analogy to a viscous material, as expressed by the

damping ratio D (see below).

The soil will basically be treated a' aZinea.4 izot4opic

eta6tic half-space. However, hysteretic energy' losses will

be considered in a simplified manner.

The extreme cross--section shapes of the. footing of current

interest are the circle and the square. A rigid-footing hae

6 degrees of freedom. The elastic soil is characterized by

density (ps), the shear modulus (Gs) and Poisson's ratio (4s)

and contributes to the 4titi6ne66 and the damping in, the lower

nod,, of the discretized structure only. The elastic half-space

G smalior

b. larger

stress

-

0
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assumption provides an equivalent spring-daahpot model. The

response of the soil tO harmonic oscillations should he deter-

mind for the following modes of motion:

vertical motion

rotation about a vertical axis

horizontal displacement (sliding>

rotation about a horizontal axis (rocking)

In the case of wave-excitation the rocking motion is most

important. The sliding and rocking motion will in general

be coupled, but uncoupled behaviour is often assumed, when the

structure is resting on the soil (with no embedment).

Impedance functions for dynamic soil behaviour have been con-

sidered in Refs.<17,4D.).

2,4.2 Stiffness and (geometrical) Damping of the Soil

Vetticat Motion

Let be the amplitude of a generalized thotizontat or

totaionat) harmonic moment acting on the disc along the j

coordinate, and let u be the amplitude of the corresponding

displacement, see Fig. 2-4. The relationship between the

force and displacement may be stated as,

K. - u. 'C2:2

. 3

U. F. P. (2-3)
3 1 3

inwhichK-3
complex valued stiffnes3 (impedance). function

-

of the form

1(.=k.(k.41a0,c..) (2.4)
3s 3,46 3

P.
3



and

where

F _1_(f + iaog. )

kj, jO

The quantity k the static stiffness of the disc.

k c ,f and g are dimensionsless functions of Poisson's
j ,j C2 j 0 j C2

ratio for the half-space material, ps and of the dimensionless

frequency parameter

ao = Oro 7;1Ps (2.6)

Gs - shear modulus of the soil

ps - density of the soil

ro - radius of the disc

- circular frequency of the applied harmonic loading

Coupted Stiding and Rocking Motion

Consider the (coupled) translation and rocking motion in the

x-z (or y-z) plane(s).

Haying described completely the mathematical model for the

soil material the relation between reaction force P(t) and

moment P6 (t) and the footing displacements u and 6, may now

be obtained by superposition of the various components of the

total soil reaction. The following form

P = KU

expresses the relation between steady-state-harmonic force to

produce displacements, u and 0 at frequency w.

For the footing and soil material under consideration the

- 13 -

K(w) Kxe(to)

K (a)) K (w)ex Kee (w)

(2.5)

P(t)

Pe(t)

or

(2.7)

0(w)

represents
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impedance functions are

K k(a0) + iaocx(ao)xx

Kee k0(a0) + ia0ce(a0)

- 15 -

K K
k + ia

x8 x0
0cxe(a0)Ox

Hsieh, Ref.(17) has shown that the ky, ke and k8 may be
x

interpreted as the stiffness of frequency-dependent linear

springs, whereas cx, ce and cxe are associated with viscous

dampers, also functions of frequency.

The stiffness and damping coefficients (kj ,cj ) may be written

as

k. k. k. (ao)3s 3f2

(2.9a-b)
/-15-

c. rob/ ^s k. c. (a0)bs 3s 3s4

j r x,y,z,e,
xe, 574),

It is convenient to have the dynamic properties of the soil
by an equivalent spring-, dashpot-model. The coeffic-7ents may
then be directly added into the system stiffness and damping
matrix, respectively.

2.4.3 Equivalent Stiffness and Damping Coefficients

St.q6ne.64 4oIL an Embedded CiAcutat Footing on an Etaatie Hat6-
Space

In this investigation k and c were calculated from the app-

roximate closed-form solutions presented by Veietsos and Wei,

(2.8a-c)

x



k = k +Akx,)
x xs x

k = kx

kt kzs (kzQ "zQ)

=
8

k Gs ro
xs

2-us
4

k G ro
Szs

1-ps

8
k G r3
Os 3(1-us)

s 0

8
k = G r3

cl,s 3(1-p) s 0
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Ref. (20), Luco and Westman, Ref.(26) and Veletsos and

Verbic, Ref.(31), and Novak, Ref.(36)

The equivalent spring stiffnesses may be expressed as

(sliding)

(vertical)

ke = ices (k0, + Ake,) (rocking) (2.10a-h)

kxe= kxs (Akx0) (coupled sliding and rocking)

kg, =

k= kx0

ko = k + Akcb) (torsion)

kxs, kzs, kOs
and k are the static constants defined by

(Ps

(2. 11a-d)

The coefficients kxQ kzQ, k00 and k all express the
(1)

variation of stiffness with the frequency Q (frequency of

applied harmonic loading). The coefficients Akx,, Akz, Ake,

and Ak02 are corrections due to the embedment of the structure.

Thefrequencyclependenoeofthestiffnesses k.are displayed

in Figs.(2.5-7). The functions in Eqs. (2.12a-d) represent

fits to the actual functions.

x

+

(k

-



kxS)
1.0

(Y2ao)2
1.0 Y3aikz, = Yil.(y2a0),

132a0
Ices, = 1.0 Br 634

1+(32a0)2

k = 1.0
(g2

The coefficients 8i and yi are displayed in the Table 2.1.

Table 2.1 Values of al, 8i and yi in Eqs. (2.12a-d,2.17a-d)

1.0

C

0.5

ft1

6 8

Fig. 2.5 Variation of stiffness coefficient kx,

with frequency ao

(2.12a-d)

From

Quantity

Ref.(31).

Ps = 0 Ps = 1/3 Ps= 0.45 Ps= 0.5

0i 0.775 0.65 0.60 0.60

82 0.525 0.5 0.45 0.4

81 0.8 0.8 0.8 0.8

83 0 0 0.023 0.027

Ii 0.25 0.35 - 0

12 1.0 0.8 - 0

13 0 0 0.17

Y4 0.85 0.75 0.85

17 -

1/2

a

-

-
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Fig- 2-6 Variation of stiffness coefficient kza

with frequency ao;

Fig. 2-7 Variation of ,tiffness coefficient kwa

with frequency ay.

0

0

.

0 2

0 . 5



where

.Ak =. 3.756 rGs)
Oa

e

ra
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The effect of embedment on damping and stiffness coeffi=

cients was studied in Ref.(22.32-36). Introducing the

simplification proposed by Novak, Ref.(35) give the following

correction coefficients:,

AkQ = 0.56orc(2-ps)

Ak F 0.66, rG(1-ps)

1-p
Ak = 3)(2-p s + 6 rG[01..9+1.5(A2- 0,1-2)11 (1-p )19R 3 ,s,

Akxeo - L4 .0,56 rc(A-16,)(2,-LI )

zCGsr- =
ra ' G

Gs

The above formulas are based on fully effective "backfill".

If the backfill has cohesion the rocking motion may push the

soil away from the foundatiOn permanently so that the bene-
ciat effects of embedment are lost. The effect of the em--

bedment should be carefully judged...

GeometiLicat Damping 6ok an Embedded CiAcuEat Footing on an
Etcustic Hmt6-4pace

The geometrical damping may be described g.s

Ac) (sliding)cx Cxs(cx0

C- . C.y
c = c (c+ Ac (vertical)
-z, zs z2 zSY.

ce cas (cea + Ace) (rocking) (2.15a-h)

cxe C-'5(54,Aci0S-2
(coupled sliding/rocking)

=

= cco, x&

c = cos + Y
7:

(torsionY
4 00. 0

(2 .13a-e)

14a- c)

+

=



where

where

c = k r045-7
xs xs s s

3
3.4ro

zs 1 -ps S S

CeS = kes r047;77s-

477;
Os B

c(Ps
-

01+2B0

p rst,

I - torsional moment of inertia with respect to z-axis
0

m - mass of the whole structure including "added mass"

The variation of the coefficients cc with 2 is shown in
x 0

Figs.2.8 - 2.10.

Analytical function fits to these functions are displayed in

Eqs.(2.17a-d).

- 20 -

ao

2 4 6 8

Fig. 2.8 Variation of damping coefficient cx,
with frequency ao

(2. 16a-d)

-



2

Fig. 2.9 Variation of damping coefficient cz2

with frequency ao

- 21 -

FIg. 2.10 Variation of damping coefficient cm
with frequency ao

2 4 6

1. 0

0

0

0.15

- r

4 6



cx,.2 = a,

Czo Y4 Y1Y2

The constants al, and yi depend on Poisson's ratio and

may be found in Table 2.1.

The effect of embedment yields the following corrections:

Ac 1.16 r
m (2-p s)x0

Acz2 = 0.36.r

Acei.2 = 6,rm(0.7+--6.A0-A)(1-ps)

(Y2ao)2

i+(y2a0)2

(82a0)2

1-p
+ 3

2-11 cxQ X3

Ac.cm c.2 A.+1.16,,rm(A,16-)(2-ps)

Ac = 8.0 60rm

where

- 22 -

(2.17a-d)

(2.18a -e)

coc, - 8032
1+(32ao)2

Coo 1.0

r =
PSGS

(2.19)
p, G

A typical range for ao in connection with offshore gravity

platforms may be 0 - 0.4. It is seen that while stiffness

and geometrical damping coefficients for translational motions

vary little with frequency, the rocking motion coefficients

and particularly the damping coefficient are sensitive to a

change in frequency.

=

-
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Sti66ne44 and Damping Coe66icients 6ot Foundationa oi

°theft Shape

The equivalent stiffness and damping for a strip foundation

and a rectangular footing resting on an elastic half-space

may be found in e.g. Refs.(19,26-29), respectively.

Some guidelines for the choice of equivalent radius of rec-

tangular footings can be found in Refs. (19.28).

Sti66nezz and Damping Coe66icient4 in the Caze o6 Soit Layvting

The elastic half-space approach was applied to determine the

impedance functions for a circular foundation on a layered

elastic medium in Ref.(30). In general, the rocking impedances

are the least affected by layering, while the vertical impe-

dances are the most affected. The impedances for a layered

medium show a stronger frequency dependence than the impedances

for the half-space. For an intermediate or a high contrast be-

tween elastic properties of the layers there is a considerable

reduction in radiation damping and the effect should be properly

accounted for.

2.4.4 Hysteretic Energy Dissipation

The geometrical damping is due to the fact that energy forced

onto the footing and then transmitted into the half-space, is

not reflected from the boundaries infinitely far away from the

source of excitation, see Ref.(19), pp.91 - 92.

If the soil were a linear elastic body, the shear modulus, Gs,

Poisson's ratio, ps and the mass density, ps, characterize its

dynamic response using elastic half-space theory.

While linearity is ensured when the cycle strain level is low,

the stress-strain relation depends significantly on the ampli-

tude of cyclic strain for higher load levels. In the present

context linearity is assumed by introducing equivalent elastic

characteristics, characterized by the hysteretic damping ratio,

-
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(loss factor), Refs. (21a-b)

D AL/47AT (2.20)

A is the area of the closed hysteresis loop during a cycle

of deformation, and AT is the strain energy density at maximum

shear strain, see Fig. 2.3.

This type of damping is in particular associated with the

rocking motions. The damping ratio D is a function of several

soil and loading parameters.

Hat. -,space Modal, with Hyateketic Lveset, (SimpZi6ied Apphoach)

The hysteretic energy loss can be accommodated by assuming a

linear vicsoelastic material in the half-space.

The following equivalent shear modulus is then introduced

where

wG'

as Gs[l + i-27--1]
Gs

wG' AL
27 --g; T;

(2.21)

(2.22)

Gs and G' are the shear moduli of elasticity and viscosity,

respectively.
Experiments have justified the assumption of a constant

hysteretic soil, (i.e. wq. is constant) and hence AL/AT is

independent of w. Veletsos and Verbic, Ref.(39), have shown

that the principal effects of the hysteretic ("structural")

damping are to inctease the damping capacity of the foundation

and to heduce the stiffness.

For normalized frequencies (a0) below 2.0 the effect is

principally to increase the damping. For low frequency

excitations the hysteretic damping may be introduced by trans-

forming it into an equivalent viscous damping coefficient, Ci,

by assuming the dissipated energy in one cycle for the two

models to be equal for a one-degree-of-fredom system, Ref.(39).

L
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The equivalent viscous damping coefficient for the j'th degree

of freedom for the foundation then is

2k .D-
c . j x,e,x9, (2.23)

In this manner the equivalent damping coefficient is determined

for each of the six degrees of freedom (in the node at the

structure interface). However, only the contribution to rota-

tional degrees of freedom is significant.

It is clear that the steady-state response of two 1-DOF systems
with the same mass and stiffness but one with viscous damping

and the other with (equivalent) hysteretic damping, the motions

will be equal only at one frequency. However, if the 5 is not

too large this error is negligible, Ref.(25).

The above (simplified) approach to incorporate the effect of

internal damping should be used with caution when extreme soil

layering and a high level of internal damping is present.

2.4.5 Csmments on the Parameters in the Present Soil Idealization

Genetat Comment6

Among the parameters Gs,us and ps, Gs is the most important

one. Satisfactory evaluation of Gs is difficult. A general

approach is devised by Richart et al, Ref, (19). Poisson's

ratio may simply be estimated at a value ranging from 0.3 for

dry granular soil to 0.5 for soft saturated clay. The error

made by .sing ps in all calculations is small compared to other

uncertainties. The determination of ps is straight forward.

Comments on the Sheat ModutiLA and the Hote/Letic Damping Ratio

Fig. 2.3b shows the influence of shear strain amplitude on

the dynamic properties graphically. As strain amplitude in-

crePses, the effective shear modulus decreases while the

damping ratio increases.
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In strong-motion earthquake problems (yE 10-2 - 1%) and the

analysis of offshore facilities under severe storm conditions

(yE 10-3-10-1%) the reduction in Gswith load amplitude must

be duely considered.

Further, Gs max(at y 0) varies approximately with 0.5 power

of the mean effective stress (octahedral normal stress) for the

soil. Another important parameter is the void ratio. Hardin

and Drnevich, Refs.(21a-b) proposed empirical relationships for

the shear modulus and the damping ratio as dependent upon the

important soil properties. A concise summary is recently

presented by Oner, Ref. (109).
-

Applying the method proposed in Refs.(21a-b) D is estimated

to be in the range 0.02 - 0.05 for North-Sea soils.

2.4.6 Improved Representation of the Soil Behaviour

Better soil modelling is primarily obtained by including a

physically more correct (non-linear) soil material description

and geometry interface description. The variation of soil strength

and stiffness in the half-space also should be accounted for.

The dynamical soil response may be determined either by an

analytical continuum approach, or, numerical techniques such

as finite element methods.

The applicability of the analytical continuum approach is

limited. Complex material and geometry representation require

numerical tools to be applied. The finite element method may

be adopted in for that purpose.

The level of analysis sophistication must be consistent with the

quality of the input data. For soil-structure interaction

problems, the properties of the soil profile required are the

geometry of the layering, the shear modulus, Poisson's ratio,

density and damping characteristics of each layer.

-

0



- 27 -

Due to a wide scatter of the soil data the analyses with a

range of values is usually recommended. This, together with

the fact that there is inherent non-uniformity in most soil

deposits should be determinant for the choice of methodology

of analysis.
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2.5 Representation of the Ocean

2.5.1 General Remarks

The ocean environment contributes to the equations of

motion in several ways. First of all, the waves repre-

sent the source of dynamic excitation (wave forces).

But the ocean environment also contributes to the mass

and damping of the vibratory system.

2.5.2 Wave Forces in Regular Waves

Genetat Comment4

In the present section (2.5) the wave forces in the dynamic

interaction problem will be described considering a regular

wave. In section 4 the random nature of the sea elevation

is recognized.

The wave forces on a floating or a fixed structure in a

fluid which is supposed to be incompressible, irrotational

and inviscid, can be classified as potential or viscous,

Ref (41). The forces may be determined by analysis or

experiments or both.

The general analytical treatment of the forces is very

difficult. In particular, the determination of viscous

forces is not yet possible. Potential effects are easily

accessible by means of the source-sink techniques, Refs.(45,

46).

Several approximate formulas are used in the evaluation of

inertial and drag forces. The Morrisom formula was origi-

nally developed for circular cylindrical piles, Ref.(42).

The classical Munsoni formula is applicable when the dimen-

sions of the object is small compared to the wave length.

(which holds true for the superstructure of the gravity

platforms). For larger objects (such as the caisson) the
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stronger wave-structure interaction makes the load evaluation

more complex. However, systematic analysis and experiments

for the load evaluation on larger objects are available.

A gravity structure is conveniently splitted into two

parts. The first consists of structural components

which are large enough to diffract waves or otherwise

interact. The second group consists of structural mem-

bers of small diameter. In that case the flow is only

locally affected.

In the subsequent sections various aspects in connection

with analytical and experimental treatment of wave loading

will be summarized.

Before the discussion of wave forces the choice of kine-

matic theory for the waves is commented upon.

Comment!, on Wave Theoity

The analytical determination of forces requires that the

kinematics of the waves must be known. There are a large

number of wave theories to describe particle velocities

and accelerations, ranging from the simple linear Airy

theory to more refined non-linear theories, see e.g. Refs.

(51,52).

The choice of theory depends on several factors. The primary

factor is, of course, which theory represents the physical

behaviour most correctly. It is often that the nonlinear

theories are the best. However, there are other reasons for

prefering the linear theory. For instance linearity simplifies

the calculations of forces, in particular when diffraction

effects must be taken into account. Furthermore, for a Morison

type approach to the forces, there must be consistency be-

tween the method for obtaining particle velocities and accele-

rations and the method for determining mass and drag force

coefficients. This statement also may imply preference of the

linear theory.
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Fig. 2.11 Velocity distribution at the crest in a

regular wave.

Fig. 2.12 Schematic representation of the
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Velocity distributions corresponding to the linear Airy theory

and Stokes fifth order theory are compared in Fig. 2.11. Higher

order theories generally predict higher velocities (and drag

forces) although accelerations (inertia forces) are not too

much different.

Fig, 212 shows the distribution of velocity over the depth.

Practically no force will act on the caisson when A/2 < hr,

where k ,is. the wave length, see Fig. 2.12-

Finally, the statistical treatment of the response is con-

siderably simplified by assuming the linear wave theory.

2-5,3 'Wave Forces on Slender Members in Regular Waves

Genekat AppAcAch

The classical Morison formula, Ref, (42) may be reformulated

to give the distributed forces normal to a cylinder by a drag

and inertia terms, as

1
Tr 3u

1

dp.lbfCDD(u-f0Du-Pl+pfemiD2R+pfC1,121TD2(TT-i;) (2.24)

(symbols are explained in, the list of notations)

Wave

height

Max. force

DistribuTio

of force

Crest elevation

Air

Sea floor

Still .water level

Direction of

Water wave propagation

Fig 2-13 Definition sketch of wave and wave forces on

single vertical pile
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Inertia force

Fig. 2.14 The relation between wave-height, drag- and

total inertia-force

The problem of wave force prediction is then reduced

to determining u and 3u/3t from wave kinematics, and

the choice of drag and mass coefficients. As a result of

the scatter in the magnitude of these coefficients,a care-

ful consistent choice must be made in an actual case.

The total force on a vertical pile is obtained by inte-

grating the distributed force, dp. The total force consists

of one drag term from viscous effects and two inertia terms

from potential effects. The two inertia terms are of a

linear harmonic nature whilst the drag term in nonlinear. The

drag and inertia terms are 900 out of phase as shown in Fig. 2.14.

Comments on Viscous Eiiects (the Dnag Felon)

The viscous effects are important on structures which are small

compared to the wave height. The first term in Morison formula,

ip,CDulul, represent the viscous drag force. This term is non-

linear due to its proportionality with ulul. The drag coefficient

CD, is empirically determined and is a function of the Reynold

number, Re uD/v. For the actual structure the drag coeffi-

cient is in the range 0.5 - 1.0. In the present analysis the

viscous drag term is neglected. The error this introduces is

discussed in a subsequent subsection.

ave Dragforce

Time
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In addition to the drag term, the viscous effects generates

lift forces normal to the flow direction. These effects occurs

when the flow separates unsymetrical from the sylinder and oscil-

lating eddies are formed. This lift force is also proportional

to uu and is accordingly nonlinear. For slender structures

the lift force may generat not negligible forces having rela-

tive high frequency compared to the wave frequency. In the

present analysis this force is neglected.

Comments on Potentiat E66ect4 (the Inettia Tetms)

The forces related to the mass terms in the Morison formula

may be devided into

undisturbed wave pressure forces (in phase with

(Froude-Krilov force) the absolute accele-

ration)

inertia force ( in phase with the relative accele-

ration)

In addition a potential damping force in phase with the

velocity acts on a vertical cylinder.

The wave forces on a vertical rigid circular cylinder pier-

cing the water surface and extending to the sea bottom were

obtained in Ref. (44) by means of diffraction theory, based

on the following assumptions.

frictionless and irrotational (no viscous forces)

linear wave theory

(i.e.wave
height

wave length
- sufficient small)

the wave is reflected at the vertical surface of

the cylinder without loss of energy

The total "mass" force may be written as

PI r [(CMi + Cm2)coswt + Cmpsinwt)PTo (2.25)

-



Cm, and Cu represents the Froude-Krilov and the inertia.2
force, respectively. Cm, is the potential damping force

coefficient. Due to diffraction of waves, these coefficients

depend upon the ratio 7D/A . Fig. 2.15 shows their depence

on 7D/A .

1.5

CM

1.0

0.5

irD/h

- 34 -

Length of cylinder water depth r
Diameter of cylinder = D
Wave length A

C1 Undisturbed pressure force
coefficient

CM2 . Inertia force coefficient
Cmp Damping force coefficient

Fig. 2.15 Components of wave excited forces on a vertical

cylinder according to Havelock, Ref.(41.b)

Furthermore, the force coefficients are subjected to

corrections due to the presence of the caisson and inter-

action effects between the different cylinders, Ref.(50).

No such corrections will be made in the applications presented

in this report.

Normally the potential damping force coefficient,

CMD for small bodies is negligible as compared to the
'

terms due to accelerations. Fig. 2.16 shows the error

made by negjecting the damping force. The error is less

than 5% of the total force when ID/A < 0.65, and at

decreasing valuc, ,f 7D/A the error is completely negligible.

Thus in the present analysis this po7ential damping is

neglected.

0.5 1.0
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Lenght of cylinder water depth

Diameter of cylinder Dc

Exact solution (inertia
and damping)

Approximation (neglecting
the damping term in the
potential forces)

Total force coefficient

Fig. 2.16 The total horizontal wave excited force Xa on

a vertical circular cylinder

Comment4 on Retative Magnitude oi Duty and Inettia Foitee4

An estimate of the relative magnitude of wave force com-

ponents may be obtained for a vertical pile in an undis-

turbed regular wave. Since the drag and inertia force are

ninety degrees out of phase, the amplitude of resulting

force may be approximated by

P = (p2 P2 );max (2.26)I max D max

r 71-D2 (El 2 cosh kz) (2.27)
21I max m Pfs'I 4 s-'' sinh kh

r D cosh kz)2 (2.28)PD max Pf-D 7 '7' sinh kh

2.0

1.5

1.0

.5

D/7 2

D/2Deep water



I PD max dz
h'Rrh
I P dz
h'

I max

1 CD H( (sinh 2kh-sinh 2kh')+2k(h-h') )
2s CI D 2(sinh kh-sinh kh') sinh kh

(2.29)

Let 0.8 and 2.0 be representative values for CD and CI,

respectively. For H/D smaller than 2.5, R then is smaller

than 0.16.

The nature of Eq. (2.26) is such that if any component is

equal to or less than 0.16 times the other, the influence of

the smaller component is only 0.015. This statement on the

relative magnitude of forces is valid for a regular wave.

However, in a random sea the relative effect of the drag

force amounts to a value between 0.16 and 0.015, depending

on the spectrum width.

As a first approximation, the drag forces can be neglected.

An improved representation of the drag forces is obtained

by including a linearized drag term of Eq. (2.24).

Comments on Intehaction E66ect4

When the superstructure consists of several columns, inter-

action effects should be accounted for ,hen using the

Morison formula.

- 36 -

Equations (2.27) and (2.28) provide a convenient means by

which the relative magnitudes of the maximum inertia and

drag components of the Morison equation may be compared.

The desired comparison ratio is:
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For waves penetrating down to the caisson, the particle

velocity and acceleration will be influenced by the caisson.

A very conservative estimate of the influence of the caisson

may be obtained in the following way: The sea depth in the

actual region may be assumed to be h' (see Fig. 2.12) and the

wave height may be transformed to an equivalent height, IV,

assuming continuity. In this way the wave is assumed to

pass the caisson neglecting three-dimensional effects.

Systematic calculations and measurements reported in Ref.(47)

displayed that interaction effects are relatively small.

In the present applications these effects are neglected.

2.5.4 Wave Forces on the Caisson in Regular Waves

Genehat. Apptoach

For waves of length, A, which is larger than 2h,

(inertial) forces on the caisson have to be considered,

(see Fig. 2.12.).

Due to the relative dimensions of the caisson the Morison

formula is not directly applicable for this case since

radiation and scattering of the water waves occur. More

elaborate techniques of load evaluation need to be con-

sidered. For large objects with smooth surfaces,the forces

may be theoretically evaluated by potential theory and an

approximate numerical method, see for example Refs.(44-46).

Alternatively, experimental investigations may be carried

out, Refs.(46-49).

Expetimentat Caze Study

In the present context the experimental results in Ref.(47)

were used. In the present wave-structure-soil interaction

study the caisson is supposed to be rigid. Thus, the loading

could be conveniently expressed by the wave-pressure resultants:

the horizontal force, and the overturning moment (including the



effect of the horizontal and vertical pressure on the cdisson).

For the purpose of illustration a typical pressure distribu-

tion on a caisson is shown in Fig. 2.17.

In the present context the experimental results in Ref.(47)

were used. The results are expressible as an horizontal

force, and an overturning moment, including the effect of

the horizontal and vertical pressure on the caisson. A

typical pressure distribution on a caisson is shown in

Fig. 2.17.

Assuming a structure with cross-section close to a circle,

a hexagon or a triangle the forces may be correlated to a

Morison-type formula using the Airy wave theory.

The coefficients in the formula are determined from the

experiments reported in Ref.(47).

The horizontal force is

k sin ksi sin wt (2.31)-P
PH fCH 2 cosh kh ksi
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H cos ks
p =IDi2 cosh kh cos(kx - wt)

PH

reTh

i\\ N., -,.. N. \\ \ \\N., \N. N..\\\\\\\\

(2.30)

Fig.2.17 Typical pressure Fig. 2.18 Statically equi-

distribution valent system to the

model in Fig. 2.17

The pressure in the wave then is.

-



The overturning moment is

Mo = P H SB-CmTp1(0,s1,t).W.fm+CmBp1(0,0,t)Wfm

(2.32)

The vertical force is

CT cosh ksi -CB
P V fv cos cot

Pv f 2 cosh kh ks,

(2.33)

Comment on the Coed4icient6 o4 the Cais4on Loading

Figs. 2.19 and 2.20 display the variation of the pressure

resultant coefficients CH, CT, CB, CmT and C. as a function

of the normalized cross-section are (iTiX), tor a given height

of the structure to water depth ratio (sill)

The coefficients are also influenced by the steepness

of the waves. Results for three different wave steepnesses

are shown.

h/A
0,1 fl,2 0,3 0,4

Wave 0
S ,/h=0.44

- 39 -

Open symbols are
for

Solid symbols are
for

0.1 0.2 0.3 0.,
VT/A

A-horizontal area of the structure

A-wave height

o - wave steepness 0.03

A - wave steepness 0.05

- wave steepness 0.07
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-
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2,0

CH

1,0

1.5

0,1 0,3 013

way4.

0,1

sdh. 0.44
Wave

si/h=0.44

0,2 0,3
177),

A-horizontal area of the structure

5-wave height

- wave steepness 0.03

6 - wave steepness 0.05

0 - wave steepness 0.07

0,4

Fig. 2.19 Coefficients CMT, CMB and CH
(From Ref.(47)

A-horizontal area of the structure

A-wave height

- wave steepness 0.03

A - wave steepness 0.05

- wave steepness 0.07

Fig. 2.20 Coefficients CT and CB (From Ref.(47))

The coefficient CB depends on the embedment of the struc-

ture. The value shown in Fig. 2.20 is obtained when the

water pressure is free to act under the structure. If the

structure was embedded in fine soil, the wave induced pres-

sure under the bottom may be neglected, i.e. CB 0.

0 2 0,3 Al
./.7J5

Open symbols are for CT

Solid symbols are for C,

0.5

o -

-

0,1
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Fig. 2.21 Coefficients fm,fv and fm (From Ref.(47))
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Fig. 2.22 Point of application of horizontal force

(From Ref. (47))
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Fig. 2.21 shows the theoretical variation of the coefficients

fH' fM and fv, which account for the variation of the pressure

gradient over the structure.

To find the overturning moment, Mo, the application point

for fH must be determined. The characterizing distance

may be obtained from Fig. 2.22.

The variation of the force resultants as dependent upon the

ratio (si/h) may be found in Refs. (47,49).

Fig. 2.23 shows the phase angles between wave profile,

horizontal- and vertical forces. Defining the time, to, as

a reference point, the wave height has its maximum at to.

The horizontal force is 90° out of phase and the vertical

force is 1800 out of phase. The overturning moment due to

the horizontal force is as the force 900 out of phase.

The overturning moment due to pressure on top of the caisson

is 270' out of phase whilst the moment due to pressure on
bottom of the structure is 900 out of phase.

Vertical force when the
wave pressure do not act

Time

\ under the bottom slab.

\ Vertical force when wave
pressure is acting

Wave profile / \ also under the bottoir
slab
\

I/\N"--"/ Horizontal fore

Fig. 2.23 Sample of wave and force measurements (From Ref./47/)

/

/



The force and moment calculated according to the reported

procedure,are all assumed to be of an harmonic nature. This

implies that drag forces, sloshing and other non-harmonic forces

are neglected. These modifications will generally not effect

the result as their contribution to the overall loading is

negligible.

The reported calculation procedure is based on an experimental

fitment of the theoretical force and moment equations. The

results obtained by this procedure depends to a large extend

of the reliability of the experimental results.

2.5.5 Hydrodynamical Mass

Genenat Rematk4

The water contributes to the mass by enclosed water and

added mass due to the motions of the platform. The added

mass may be derived T,om the general expression for the

loading, see the previous sections on wave forces.

Stendet Membetz

Neglecting the drag force in the Morison formula, Eq.(2.24)

the intensity (load per unit length) of the inertia wave

loading on the superstructure members may be expressed as

du
dp CMif 'dV.-- + CM2 pf clV --(u-Z)

dt dt

By considering this force in conjunction with the equations of

motion, dp can be separated into two components, namely an

excitation force:

du du
dip r cmipfdv aT cm,pfdv

dt

(2.34)

(2.35)

and an added mass term (on left hand side of the equations

of motion)

- 43'
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dm
CM2 pf dV

(2.36)

Possible magnification of equivalent added mass due to slo-

shing in the tanks, frequency dependency and variation due

to variation in the surface elevation are neglected in the

present applications.

CaL4.6on

The forces on the caisson must be determined by analytical

or numerical methods such as the source-sink technique, Ref.

(45) or by experiments. Similarily, the added mass term must

be determined in a more elaborate way than the Morison

formula. Assuming the caisson to behave as a rigid body

and defining the degrees of freedom as shown in Fig. 2.24,

the added mass matrix may in principle be written as

when only two-dimensions are considered.

Fig. 2.24 Definition of degrees of freedom for the

caisson motion.

The horizontal tranlation and the rotational motion are

coupled. However, no coupling between the vertical and the

M = pfV M11

M21

M31

M12

M22

M32

M13

M23

M33

(2.37)

=
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other motions exists when the body is cylindrical. Hence

the matrix is reduced to the form

Fig. 2.25 displays the mass matrix coefficients associated

with horizontal translation and rotation as determined by

experiments, Ref.(48b)for an actual structure/depth con-

figuration.

11,

5 2 2

M 1 2 -

2 . t,

Fig. 2.25 Case Study on hydrodynamical added mass for

the caisson.

It is clear from Fig. 2.25 that frequency dependency of

the added mass can be neglected. The added mass for vertical

translation, which is of less importance, is also assumed to

be frequency independent.

(2.38)M = pfV M1,

M21

MI,
M22

0

0

0 0 H33

a

0

- M2
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2.5.6 Hydrodynamical Damping

GenehaZ Rematk&

The hydrodynamical damping is due to (potential) diff-

raction - and drag effects. The diffraction damping is

due to wave generation from the vibrating structure.

Drag-damping is caused by viscous effects and separation

of the potential flow. Hydrodynamical damping there-

fore is frequency and amplitude dependent.

SZendet supe44tAuctune

Both drag and diffraction damping contribute to the

hydrodynamical damping of the slender members. The drag

damping may be estimated from the Morison equation, while

a diffraction theory must be used to determine the diffrac-

tion damping. To estimate the magnitude of the damping, the

platform can be assumed to rotate as a rigid body about the

mudline. The resulting damping ratio, E ciccritical is
then determined. McCamy & Fuchs theory is used to determine

the diffraction damping.

Fig. 2.26 displays the resulting damping ratio for an actual

case. The diffractiun damping depends significantly upon the

frequency, but does not vary with the amplitude. The drag

damping varies with amplitude and frequency. Drag damping

is displayed for 3 different amplitudes. The amplitude,6,

is defined as the horizontal displacement amplitude of the

deck. The upper curve , 6 I meter, should be regarded as

an upper bound and is only expected to be found at low fre-

quencies. A more realistic displacement amplitude at high

frequencies is 6 r 0.25 meter or less. Consequently the error

made by neglecting the drag damping is not significant.

Cai6son

In ihe caisson the diffraction damping is predominant. A

source-sink model, Ref. (45),should be applied to deter-

mine this damping. Coupling exists between damping for

-



C.

1. 0a

C.
0

0

n

0

C.

CO

a

C = C/I C121

C21 C22i
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horizontal and rotational motion. The damping matrix

associated with the 1 and 2 degrees of freedom in Fig. 2.24,

may be written as

Diffraction
damping

Drag damping

6 =im

0 . 5 1.0 .0 2 . 5

(2.39)

= 05m

-- 6 = 0. 2 5m

Fig. 2.26 Case Study on hydrodynamical damping associated

with the slender members

where the damping associated with the vertical motion is neg-

lected. The case displayed in Fig. 2.27 shows that the diff-

raction damping is heavily dependent upon the frequency. It is,

however, noticed that the damping on the caisson is significant

for frequencies below 0.8 in this case.

0

1.5 2 .

.
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0.5 1.5 2.0

Fig. 2.27 Case Study on hydrodynamical damping associated

with the caisson.
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3. EVALUATION OF DYNAMIC RESPONSE (transfer functions)

Summary of the Dynamic Modeling

The equations of motion, Eq.(2.1) are based on a lumped

mass matrix OM) which includes the mass of the members, the

mass of the enclosed or entrapped water, the added or virtual

mass of the surrounding ocean and the mass of the equipment

on the deck.

The damping matrix (C) consists of geometrical and hysteretic

dissipation in the soil and hysteretic and viscous damping in

the structure and the sea,respectively.

The stiffness matrix is the assembled stiffnesses of the

structural members and an equivalent soil stiffness as re-

presented by springs in the lower node of the model. The

exciting force vector (R(t)) is due to the effect of waves.

The representation of the ,stkuctutat properties is accomplished

without particular problems. Also the 4oig is easily modelled

since it is associated with the lower node of the model.

However, at this point the incorporation of the ocean needs

some comments.

The intensity (load per unit length) of the wave goading on

the 6upet4ttuctuke membene may be expressed by the Morison

formula as

dudp CmipfdV aT + Cm pf dV(u - i")
2 dI

+C0 pf dA(u - i")Iu2

The components of the (nodal) load vector may then be deter-

mined by the ::.rventional procedure (as a lumped or a con-

sistent load vector).

(3.1)

-



A typical equation of motion for a node in the superstructure

thus reads

M.r. * Cr_ ; Ek .r. .='' T.1 i 1 1 , l.3 3 1
, J

dui d
eA . CtillpfVi -aT + cm,p,ei acui-to

r. may be a translational or a rotational degree
a

of freedom.

M. is correspondingly a mass or mass moment, etc,

Rearranging the termS

(M. I. C pVi..+ + Ek..r.
M2 f 1 1 j. 1.3 3

da.
(C +C 7^1p.V.--1 C

Mil M2 fldt Dpf1 1 1 1 1.

Eq.. (3.3) expresses that the waves besides resulting in exciting,

forces provides added mass and viscous damping forces.

The drag term provides a non-linear fluid-structure inter-

action. The hydrodynamical damping forces are small for sub=

merged slender members, although these effects increase with

size and proximity to the free surface..

The drag term in Eq.3.1D is assumed to account both for viscous

and turbulence effects. In addition, radiation damping must be

considered,

The Zouding on the ectis-6.cm is primiarily constituted by inertial

effects. Therefore only terms analogous with the first two

terms in Eq.(3.1) will be present. As mentioned in Section

2.5.4, the loading, on the caisson is expressed by force resul=

tants (forces and moments) associated with the translational

and rotational degrees of freedom in the lower node, cfr.

(3-2Y
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Cr.
1

(3.3)
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Fig. 2.24.

Having the force on "Morison" type form, Eq. (3.1), the

inertia term consists of a Froude-Kryloff and an "added

mass" type term. The Froude-Krilov mass coefficient can

always be assumed equal to 1.0. The remaining thus represents

the added mass inertia coefficient.

Fukthet Aematkz on the formulation are given in Section 3.2

where the implications by the choice of method of solution on

the formulation is discussed.

3.2 Solution of the Equations of Motion

3.2.1 General Remarks

The methods for solution of the equations of motion may be

categorized as

modal superposition techniques

direct integration by step-by-step procedures

special methods

Excellent reviews of these methods have been given in Refs.

(14,16,54-57,62-65 and ill).

The choice of numerical solution procedure mainly depends on

three factors, namely

linearity of the equations of motion

frequency dependence of stiffness, damping and mass

properties

the form in which wave (or wind) data for the

structure is to be used (deterministic versus

stochastic and time domain versus frequency domain

approach).
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These two aspects will be discussed subsequently.

The principal nontineatitieb in the equations of motion may

be summarized by the following list of effects:

geometrical and material nonlinearities in the

structure

nonlinear material properties in the soil

changes of the added (hydrodynamical) mass due

to water surface variation

wave-structure interaction by drag effects.

It is clear that only a step-by-step procedure can yield an

"exact" solution to problems with pronounced nonlinearities.

However, for some types of nonlinearities modal techniques

with appropriate modifications have been utilized, see for

example Ref. (72).

Further,

soil stiffness and damping

hydrodynamical damping

are Pcequeney dependent. The first category is the most im-

portant in this connection. The response to an hakmonic

excitation is easily traced both by modal techniques and step-

by-step techniques in the case of a linear problem with fre-

quency dependent properties. It will be difficult, however, to

achieve the response through a time domain analysis when dealing

with frequency dependent dynamic properties and a random excita-

tion.

The 4tatizticat ancaoi4 of the wave response may either be

obtained through a time domain or a frequency domain approach.

The latter is generally preferable in linear problems, while the

first often muat be resorted to when the problem involves heavy

nonlinearities.

A frequency domain analysis requires the dynamic analysis to be

carried out for a range of wave frequencies.
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Since the response must be traced through several cycles

until the steady-state condition is attained, the use of a

step-by-step procedure will be relatively costly as compared

to modal superposition with a few contributing modes.

However, since the magnitude and type of damping varies consider-

ably within the interaction syatem the classical modal analysis

does not strictly apply. This problem can be circumvented by

turning to damped modal analysis, Ref.(14). The solution of the

governing equations then requires the handling of twice as

many unknowns as in the classical approach. Alternatively,

by modifying the classical modal analysis method it can be

made applicable, see Section 3.2.2.

For a linear problem the response can be rigorously computed by

transform methods such as The Fast-Fourier-Transform, Ref. (54),

or Foss' method, ref. (.65). Step-by-step numerical integration

methods, Ref. (16) can be applied both to linear and nonlinear

problems. However, such methods sacrifice the considerable

advantages of modal superposition. The modal analysis permits

a good visualization from the values of the natural frequencies

and the modal shapes of the significance of the flexible founda.

tion on the response. Furthermore, the truncation of the number

of degrees of freedom reduces computer costs.

In general, in the case of linear stochastic response analysis

a classical normal mode superposition technique with appropriate

modifications or a combination of modal superposition and step-

by-step procedure is prefered. When large nonlinear effects

are present the step-by-step procedure is often the only appli-

cable method.

3.2.2 Modal Superposistion

Fotmutation and Sotution oi the Fnee Vibitation Pkobtem

The stiffness and mass matrices are established in a straight

forward manner and the generalized free vibration problem (ob-

tained by assuming a harmonic motion r .sinwt and putting



5,4 -

damping and excitation forces equal to zero, in Eq., (3.2))

w2Mcp

is solved by a standard subroutine to. give the natural circular

frequencies, wand the corresponding mode shapes In this

case an inverse, simultaneous iteration process is used, Ref. (10

P. 25a.

For a.,0 in the range (0-11.5) the frequency dependence of the

soil stiffness coefficients may be neglected with an error

less, than 3 percent.

For a wider range of variation of ao the frequency depency of

the soil stiffness can be accommodated by solving Eq (3.4)

for a few (say 3)1 frequencies, aa, ,and storing the corresponding

eigenfrequencies and eigenmodes..

When subsequently the forced response anAlysis are undertaken

a linear interpolation procedure may be utilized to, determine

the actual eigenfrequencies and the eigenmodes..

It is preferable to normalize the modal matrix. Among the al-

ternatives of current interest it is simplest to normalize such

that the generalized mass matrix is an identy matrix when calcu-

lating structural response. Calling the modal matrix obtained

by solving Eq.(3.4) (1) and the corresponding generalized mass

matrix Mr* an identity matrix is obtained by pre- and postmulti-

plying M* by (M4)-1.

I (M*)-3M*EM*),-

= CM*)-lcbTMO(N*)-

'Where

0.(14*)-3 (3.6)

IS the Modal matrix Wanted.

TM
O

-

K (3.4)

.

(3.5)
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The relationship between the discretized system coordinates

r and the modal coordinates Y is given by

r = 0Y(t) (3.7)

where represents the set of significant undamped free-

vibration mode shapes of the combined soil-structure-ocean-

system. In general only a limited number (p) of the modes

will contribute to the response, that is, p<< N (total number

of degrees of freedom). Therefore, is a rectangular matrix

with many more rows than column.

Fohmulation and SoLution oi the Fohced VibiLation Pkobtem

Now, if Eq.(3.7) is substituted into Eq.(2.1) and both sides

are pre-multiplied by OT, the result is the set of p normal-

coordinate equations of motion which may be written

M*Y+ C*Y + K*Y= p*(t) (3.8)

where M*,C*and K* are generalized mass, damping and stiffness

matrix, respectively. Both the generalized mass and stiffness

matrices are diagonal matrices, while the generalized damping

matrix normally is a full matrix.

Assuming that the mode shapes are normalized so that the

generalized mass for each mode is unity

-T -M* th = 1
nn n 'n

Eq.(3.8) may be written as

+C*Y + to2Y .1)*(t) (3.10)

(3.9)

Correspondingly, the generalized st,iffness for each mode be-

COMCJ the modal frequency squared



2

-

(3.11)

The generalized damping matrix in Eq.(3.10) is defined by

(3.12)

If the damping matrix of the combined soil-structure-ocean

system is such that the mode shapes are orthogonal with respect

to it, Eq.(3.12) has the form

is

*(D)
C = 2ico1

2 21.02

2 pp

In this case Eq.(3.111) becomes a set of independent modal

response equations which can be solved separately. Since the

actual time variation of the loading is harmonic and only

steady state response is wanted, the solution is explicitly

stated.

For mode (j) the steady state response to the loading

Po, [(1-13)sin2t-24.cosOt]
Y (t) J

2
w. ((is)2+2s. .)23I J J

=

3

(3.13)

(3.14)

(3.15)

(3.15a)

-

-

C
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Even if the damping matrix does not satisfy the orthogonality

conditions, the transformation to normal coordinates still

may be beneficial. Since the number of (coupled) equations in

Eq.(3.8) is smaller than in the original Eq.(2.1), the solution

of Eq.(3.8) by for instance a step-by-step numerical integration

method is cheaper than solving the complete set (2.1) In this

case the only approximation is the trunctatlon of (insignific...1t)

higher modes. The corresponding internal forces in the struc-

ture may, when r is found,be calculated according to

S Kr + So (3.16)

where S is the internal force vector. So is the equivalent

nodal forces due to external loading. By choosing a rather

fine element mesh, the So forces become negligible as com-

pared to the"elastic forces"Kr.

Comments on the Modeting oti Damping Pacpettiez

The representation of the damping is the most uncertain item by

the dynamic modeling.

All three media- soil, structure and ocean contribute to the

damping in the interaction system.

For the acit an equivalent viscous damping coefficient repre-

senting geometric and hysteretic damping is derived. The

' error by representing the hysteretic damping by an equivalent

viscous me is negligible. The damping coefficients are intro-

duced in the C matrix. The corresponding C* matrix (Eq.(3.13))

in general will have large off-diagonal terms.

The damping in the Sthuetute is most often known from measure-

ments as modal damping by pure structural vibrations (i.e. for

fixed base structures). The structural damping - most Often known

in Levms of the damping ratio - must be modified when introducing

it into the interaction model. As the foundation flexibility

-

-
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changes the vibration-modes the amount of energy dissipated in

the structure itself also changes.

The equivalent damping ratio for the interaction mode (j) due

to damping in the structure may be obtained by multiplying the

hare structural damping ratio by a correction factor xj, (see

Appendix A.1.). For the modes corresponding to the lowest fre-

quenciesx.may be taken as (w/c7)3 where (7) and w are the corre-

sponding eigenfrequencies of a structure on rigid and flexible

soil, respectively.

The hydtodynamicat. (damping) may be treated either in the same

way as the soil or the structural damping.

The conditions under which the C. matrix will be diagonal re-

quires C expressible as a polynomial of K, Refs.(60,61).

A possible full damping matrix, C. may be replaced by a diagonal

matrix Cc various ways, namely

The elements C.(D) are equal to the diagonal elements

of C*, i.e. off-diagonal terms are ignored, Refs. (25,

36).

The diagonal elements in C*(D) are determined so that the

transfer function for a characteristic response quantity

obtained by the rigorous and the classical normal mode

solution match for all eigenfrequencies within the frequency

range of interest.

The transfer function for a given quantity - as defined

in Section 3.3 - for the rigorous and the normal mode solu-

tion is denoted (PM and Y-1,(wrespectively. 0(w) is given

by the numbers computed while Cw) is a linear combination of

terms of the type (3.15) where the 's are unknown. Notice

thatCpAwillbean,nlinearfunctionofThe
are then determined by solving the equations

in

1)

-

Ei's
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lq)(wk,1 = 1 (0,k)1
(3.17)

k 1,2,....

The set of simultaneous nonlinear, algebraic equations can

be solved by iteration. The iteration is started by

neglecting the contributions from all modes other than the

k'th itself when evaluating I(wk)1 .

The reason for achrieving the matching at the eigenfre-

quencies, wk, is that the response is most sensitive to

the magnitude of the damping at these frequencies.

Because the response at the deck is usually more sen-

sitive to damping, the deck displacement may be chosen

as the basis for transfer function matching.

The number of frequencies to be considered is in gene-

ral less than 10.

The use of this technique - requiring both a rigorous (step-

by step) and normal modal analysis - is justified when a

large number of transfer functions are to be evaluated

and each transfer function requires the computation of the

response for a number of frequencies of the order 20 - 50

and the technique (1) mentioned above yields too large errors.

The approach was applied by Tsai, Ref.(58) in conjunction

with a soil- structure interaction problem.

3) For the normal mode approximation there are several

empirical methods available for computing the compo-

site modal damping for the interaction system. Bigg's

method, Ref.(56), computes the composite modal damping

as a weighted average of the respective damping values

of the foundation and the structure, the weighting

factor being the strain energy. Johnson and McCaffey's

2,

-

-



4- GO

method, Ref.(57), AlSo computes the Weighted average

of the respective damping values, but the weighted

factor is the mass, the mode shape or the product of

both.

3,23 Step-by-step Integration

fohmutatidon ,06 the Equationso Motion

In this case the stiffness and mass matrices are constructed

in a conventional way. The damping matrix consists of the soil

and ocean damping coefficients which are directly added in the

matrix. The (modal) structural damping is transformed into

the damping matrix by

s ' sT
4.1M[ E 0_cn=1 n n n

where are the damping ratio for the structural mode number

Alternatively, the damping matriX resulting from structural

damping is calculated, Refs,. (60,61J. as

k+n.
C E a.M(,1171X)i

3

in which R. is an Arbitrary integer, and the coefficients r3t.

are obtained from the solution of the system of equations

9.,+n

20s. E a.wi
1

If the structure conSists for instance of materials with

essentially different damping properties the damping (sub-)

matrix may be constructed for each structure separately and

added in the global damping matrix,

r319)

0-20)

-

n.

=

(3.18)
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Selection o6 4nte9itation Method

The transient response may be obtained by direct "step-by-

step" method for the coupled equations of motions (2.1). In

connection with stochastic response analyses it will often be

beneficial to contract the general equations (2.1) to the

form (3.10) before carrying out the step-by-step procedure.

It is assumed that the boundary conditions have already been

incorporated into the equation above and that the initial dis-

placements {r(0)} and initial velocities fi"(0)) also are known.

The dynamic equilibrium equations are a set of second order

ordinary differential equations in time, which is usually the

highest order encountered in engineering applications.

Time integration of initial value problems has an extensive

literature. The book by Richtmyer and Morton (62) provides

an excellent theoretical foundation. In the context of struc-

tural dynamics Argyris et al, Ref.(63), and Bathe and Wilson,

Ref.(64) Nickell, Ref.(65,and Langen, Ref.(111) have contri-

buted recent reviews of methods.

The methods are based on numerical differentation (finite

differences) or numerical integration.

Among the finite difference based methods, the second central

difference method and the Houbolt method are the most popular.

Newmark s-methods (including the Wilson modification) are the

most widely used methods based on numerical integration.

The choice of method should in general be based on an effi-

ciency criterion.

The method which can solve the problem with a given accuracy

for minimum costs is then preferable.
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The accuracy mainly depends on the following factors:

time discretization (or truncation) error

(degree of consistency of the approximation with

respect to the exact differential equations)

time stability

The costs are mainly characterized by the following factors:

number of calculations for each time step

computer storage requirements

The choice of solution method is problem dependent. The type

of structure, the spatial and time-wise variation of the load-

ing will influence the choice. A time domain solution through

step-by-rstep methods will be particularily Of interest when -

the probleM.-is-nonlinear. In the choice of method due con-

sideration should be given to the degree of nonlinearity.

Since the "best" method depends on the problem to solve, a com-

puter code should provide for a possible choice between different

step-by-step methods. This is in most cases a simple task.

The commonly used methods can be written on an explicit form.

The coefficient (pseudostiffness matrix) then need only be

triangularized once if the structural problem js linear and

constant time-step is chosen. Due to the large costs of the

triangularization constant time-step is most convenient in

linear problems.

3.3 Transfer-functions (response to regular waves)

The structural response (i.e. displaceme:As or stresses in

certain points and directions) may be described by the transfer-

functions, cl)(w,a+0). A transfer-function is the ratio bet-

ween the amplitude of the steady-state response to a regular

wave of arbitrary amplitude and wave amplitude at a given

frequency w and wave direction. The transfer function there-
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fore is expressed as a function of the frequency , w, and

the wave direction, a + 6. It is, however, implicit that the

transfer function depends on the dynamical properties (stiff-

ness, mass and damping) of the actual system.

In practice, each transfer function is determined by calculati_g

the harmonic rebDpnse for about 20 - 30 wave frequencies. The

harmonic response is for convenience calculated for a wave height

of 2 m (wave amplitude o; 1 m) for all periods. Harmonic nodal

force amplitudes and phase angles are determined for an arbitrary

structure according to Section 2.5.

The response is evaluated by the normal mode technique as

described in Chapter 3.2.2. First, the displacement vector is

determined by solving Eq.(3.10) with C. C*(D) (uncoupled

equations). Amplitudes and phase angles are stored in the

computer.

The total displacement response is obtained directly by super-

imposing the modal displacements. Forces and moments are

obtained from Eq.(3.16) by determining the forces S for each

mode and superimposing. In practice, the beam element lengths

are chosen so small that the forces and moments, So can be dis-

carded in Eq.(3.16).

The transfer functions must, in a general non-symmetric struc-

ture, be calculated for waves progressing in several directions,

a, in th.. range 0 < 6 < 27. When the structure exhibits symmetry

about one or two axes, the computations are considerably reduced.

In the present analysis twelve directions have been chosen.
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4. STATISTICAL ANALYSIS

4.1 Description of the Sea as a Random Process

A stochastic process, X(t), is said tobe weakly stationary if

its autocorrelation function R(t,t+T) E(X(t+T) X(t)) is in-

dependent of t, i.e. R(t,t+T) C R(7).

If R(t,t+T) is slowly varying with t, the process can be devided

into periods where the autocorrelation function is independent

of t. Hence the long-term stochastic process, in which R(t,t+T)

is slowly varying with t, could be treated as composed of a

series of short-term weakly stationary stochastic processes,

see Refs. (78,81,83), and Section 4.3. Within a period of 30

min. to some hours the sea elevation can be assumed to be a

stationary Gaussian process with zero mean, Ref.(43). The

statistical properties then are completely described by the

spectrum, S(w) of the process, which is the Fourier transform

of R(T), Ref. (73). Defined in this way S(w) is a two-sided

spectrum, i.e. valid for all values of w. The physically rea-

lisable one sided spectrum is defined through.

S (w) =j2S(w) w 0

1 0 w < 0

It is Sw(w) which may be measured experimentally.

4.2 Short-term Description of the Waves

Genetat Remaitha

As mentioned above the spectrum is the primary characterization

of a short-term state of irregular waves.

According to the elementary wave theory, the surface elevation

is due to incoming waves from any direction, and hence the spec-

trum has to be given both in terms of the frequency and the angle,

6, which can be divided into two parts: e a+e , where a is the

mean direction of the incoming waves and e is the angular

deviation from a for the elementary waves, see Fig. 4.1.

=

=



where
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Hence the wave spectrum (defined for positive frequencies, w)

is written: Sw(w,a+e). Sw(w,a+e) is commonly assumed to be

given on the form

Sw(w,a+e) f(e) Sw(w,a) (14.1)

Sw(w,a+0) - two-dimensional wave spectrum

Sw(w,a) - one-dimensional wave spectrum

f(e) directionality function

circular frequency

a - angle of incoming waves

O angle between elementary wave and mean

direction of incoming waves.

It is clear that the moments (inn) of the spectrum can be

utilized tc characterize the sea state instead of the spectrum

Fig. 4.1 Definitions of angles a,e,y.

y-orientation of the structure

-

-



s.- - 66 -

m = IwnS(w,a+0)dw ; n = 0,1, .... (4.2)

Most of the information needed in practice is contained in the

lower order moments (n 4).

Wave Speettum

A mathematical model of the real one-dimensional wave spectrum

may be written on the following form, see Refs.(88,92).

S (w,a) = Aw-kexp(-Bw)

(w-w )2
expf }2K w

A,B,k,Z,n,K and w are parameters of the wave spectrum. In gene-

ral A,B,n,K, and a are functions of the directions a.

Pienzon-Mozkowitz Spect,Lum.

With n = 1, lc = 5 and i = 4, Eq. (4.3) reduces to the Pierson-

Moskowitz spectrum

Sw(w,a) = Aw-sexp(-Bw-k)

It can be shown that the parameters A and B may be written

(4.3)

A = 0.11 H2 ( I)"
1/3 -

T

27 4B = 0.44 (--)

and the wave spectrum is written (ISSC-form).

27 -5
S (w,a) = 0.11 H2 (--)4w1/3 -

T

expf-0.44 (11)'w-4} (4.5)

(4.4a)

w



where

Hli, - significant wave height defined as the

mean of the upper third crest to through

wave height (see Fig. 4.2)

- average mean period, given as

Ma

.T = 27 --
mi

T is a commonly used estimator for the period between crests,

T2, see Fig. 4.2 .

Fig. 4.2 Definition of crest to through wave height,
H, and period between crests T,, and zero-
up crossing period T

3

JONSWAP Specttum.

With k r 5 and R. = 4 Eq.(4.3) reduces to the sharply peaked

.JONSWAP-spectrum

_s
Sw(w,a) = Aw exp(-Bw )

(w- w )2
expf P

2K2w2
(4.6)

- SWL



is a peakedness parameter, to is the peak frequency, and
P

defines the width of the "spectral peak".

is found to vary between 1 and 7 with an average value of 3.3.

For n = 1 the JONSWAP-spectrum Eq.(4.6) reduces to the shape of

the Pierson=Moskowitz spectrum, Eq.(4.5),..

The JONSWAP-spectrum seems to be a better fit to North Sea wave

data. However, little information about the statistical distri-

bution of its parameters is available. Hence the Pierson-Mosko-

witz spectrum will be applied in most of the present context.

A possible way to Study the influence of this peakedness would

be to use the Pierson-Moskowitz spectrum given as Eq.(4.5) multi-

plied with

to

68 -

(

Ka
. 0.07 a 4 ay

P

Kb = 0.09 w '> wp
(.4.6,c)

Other proposed wave-spectra that have to be mentioned are the

DenbohiAe-Seott 4pectAur, and the modi6ied Iletbyshine-Scott,

These spectra are given by

w-wo < -0.26

(a-a0 )12

w(w,a) = A-H2/3 exp {-( 265.w-c4,0 1.66
1 Hfw-wo+C)

> 1-65 ()4,7)

q.) is determined' as a function of f as

wp = -al (0.3,52)114 t4,61aii

and K given AS

(w- w
exp{-

21(11.12

(4.6a)

-

K

K

0



A = 0.214

= 0.065

C = 0.26

Modified Derbyshire-Scott spectrum:

A = 0.300

= 0.03534

C 0.26
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where

(wv = 3.15 + 81.98. t-2 (4.70

The parameters A143C are given as:

Derbyshire-Scott spectrum:

Up to now there is no general agreement on which formulation that

represents the best fit to the real wave spectrum- Most likely

no spectrum will be the best in any situation. The influence of

the choice of spectrum on the response therefore will be illu-

strated by some example cases.

The D.aectionatity Function

According to Refs.(8182,92) directionalty function may be

chosen as

K(n) ' cosn6 -E <IT
2

f,(6) = (4.8):

elseWhere

K(1.01 is determined from Eq.(4.9)

7

ff(6,) de = a
Tr

-2

(4.8a)

(4.7b),

(4.7c)

B

B

0



Pierson:

Mark:

iT
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Most commonly the following functions have been applied:

f(0) = cos2e0 -7 7
2 - 2

f(e) = 8 cos'e -7 0 7
37 7

Other directionality functions are given in Ref.(72)

4.3 Short-term Response Statistics

Respon6e Specthum

The sea is, as mentioned in Section 4.1, assumed to be composed

by a series of stationary Gaussian processes with zero mean.

The response will thus be given as a series of stationary pro-

cesses being Gaussian with zero mean. The spectrum of the

response process then completely characterizes its statistics.

The response spectrum, SR(w,a+0) can be obtained from the transfer

function, 0(w,a+e) and the wave spectrum in the following manner,

Ref. (73):

SR'a+13)=0(co,a+0)0*(co,a+e) Sw(co,a+e)
(4.11)

where the symbol * denotes complex conjugation. 0 obviously is

independent of T and H113, but dependent of a+e, and of the

angular orientation y, of the structure (y refered to the same

global axis as a). Hence, is formally written

0(w,a+0-y) (4.12)

e can be eliminated from the response spectrum in the following

way:

SR "(co*ct y)=f4)(w,a+0-y)(1)*(w,a.0-y) f(0)S (wo)de (4.13)

Introducing the pseudo-transferfunction, 0ps(w,a,y), Eq.(4.13)

may be written

(4.10)

R



SR(w;a,y)=4) (w,a,y) e (w,a,y).S (w,a)ps ps

where

In the following y is chosen equal to zero, see Fig. 4.1.

Hence Eqs. (4.14) and (4.14a) are written

SR(w,a)=c1) (w,a) (P* (w,a) S (w,a)ps ps
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(4.14)

cPps(wa,y) cl)* (w,a,y).1(w,a+e-y),*(w,a+0-y) .f(e)deps
(4.14a)

(4.15)

(w,a) (b* (.,0)=f4)(w,a+e) (1)*(w,a+e)f(e)de (4.15a)Ps ps

DiZttibution o6 Individua Maxima

The response processes of current interest are characterized

by a wavy form with varying amplitude and frequency. The maximum

value and the number of cycles corresponding to each amplitude

level are the response quantities of primary interest in the design

The distribution of individual maxima ("amplitudes") rather than

the distribution of the wave elevation is the most appropriate

statistical measure for characterising. these quantities. For

stationary Gaussian processes this distribution has been dis-

cussed in detail in Refs.(73,75,76,82,83), and is found to be

dependent on the parameters mo and E defined as

(4.16)
manly

where the moments (mn) of the response spectrum are defined in

the same manner, Eq.(4.2) as the moments of the wave spectrum.

In the case s o the maxima are Rayleigh distributed, whi,.e

c 1_ gives the Gaussian distribution. For o < < the

probability density function for the gheatek maxima is found to

0 <
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become approximately 7:77 times that of the Rayleigh distribu-

tion. The frequency of the gteatea maxima for o < E < 1 is found

to be approximately 11/1-62 of the frequency of maxima for = o.

Hence the probability of exceedance of some level by a given

number of maxima within a given time interval is the same for all

values of e (reasonably less than 1). Hence the Rayleigh distri-

bution will be assumed for the short-term distribution of indi-

vidual maxima. This distribution is given by the following

probability density function.

r2
exp(-x21r2) x 0

(4.17)

0 elsewhere

where

r2=2m =2
ISR (u'ra)dw

(4.17a)

The probability to exceed some amplitude-level x may be cal-

culated from Eq.(4.17) as

Qs(Xx) = ffR(x)dx = exp{-(2E)2} (4.18)

Eq. (4.18) gives the distribution of the response amplitude when

r is known.

The Rayleigh parameter, r, for the response is a function of

the sea-state parameters H113, T and a, and the dynamical pro-

perties of the interaction system. Eq. (4.18) may be written as

a conditional probability of exceedance:

Qs(Xx1H1/3,T,a) = expC-()21 (419)

In Eq. (4.19) onl, the dependence on the sea-state parameters

are incorporated. This equation will be useful when extending

the statement on probability of exceedance to a long-term state-

in Section 4.5.

=



Within time-interval where the sea elevation is assumed to be

weakly stationary, the distribution of response is described by

Eq.(4.19). These intervals could be of duration 1 - 24 hours,

a very short period compared with the life-time of the structure.

Extteme Vatue oti the Re4ponse

The evaluation of the extreme value of the response is decisive

for the design against ultimate collapse and similar modes of

failures. By means of order statistics, the following quantities

can be computed from the distribution of the largest peak within

the short-term period considered, Refs, (74.-76).

Mean extreme value:

E[X] irTIT[,/7,77-1 O.5772 ]

/117777

where N is the number of cycles in the short-term state

1 m,NrvL. ,[17L,Lis the duration of the short term
3 27 ma

period.-

-tandard deviation of the extreme value

TT

= ArtiT
oXmax VT77T7N-
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(4.20)

(4.21)

Since the standard deviation (4.21) of the largest peak value

is relatively small as compared to the mean value (4.20) when

N is of the order 104, the mean value is a representative design

value, Ref.( 74).

It should be noticed, however, that the quantity (4.20) is

conditional upon the sea-state. To ensure that (4.20) is the

desired peak response occuring with a return period equal to the

estimated life-time of the structure (20 - 50 years) the

corresponding "worst in the life-time" sea state should be used.

However, no consistent rule exists by which this state can be

-
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found. Therefore the long-term description of the waves (Section

4.3.) and the subsequent long-term response statistical treatment

of the response (Section 4,4) are believed to be more Consistent

way of establishing, the extreme response.

:Furthermore, this long-term model yields an estimate on the

response to be used to check against fatigue failure.

Long-term Description of the 'Waves

denotat Rtmaich4

Each set of H113' t and a, describes a shortterm state of the

sea, and therefore the long-term description of the sea will be

obtained from e three-dimensional probability density function

of H1' t and a, f(H1,t'a). The directions at a given loca-

tion is divided into a finite number of intervals, and the pro-

bability density function may be written as

1,(H1T3't,m) = E fH1/3'tlu) PDIR (a)
ID

where

fID(1i1/3
,t1a) - 'conditional probability density

function of H1/3, and t given

direction-interval no. ID

PDIRID' (a) - probability that the principal diredtion

of the incoming wave system fell

,within interval no. ID

Dijolventionat, M.odei .60A. Long-teiLM DatiCatiticm o Matie Data

In most wave statistics, the data for stationary sea states are

given in terms of wisually estimated wave period, Ty, and

visually eStimatd wave height, H.

The long-term conditional ditribution of Hy, :(within a given

interval Of visual wave period Ty and a given direction interval

aID) is according to Ref. (81)described by a three-parameter Wei-

bull-distribution..

(4.22)

-

-
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Prob (Hy
H IT within interval no. L, direction no. ID)

V

H -H

FID L (H
a) 1-exp[-( )

L
1

, v'
HcID,L-HoID,L

(4.23)

0IDL HcID,L' and parameters of the distribution.
,' are

NordenstrOm, Ref.(81) has found that there is a relationship

between
Hy

and H113 satisfying Eq.(4.24)

Prob(H1/3 H1/3) Prob(H S H)
v

This relationship is on the form

BH
Hy AH.H1/3

Common values for the constants AH and BH are

AH = 0.5

BH 1.33

(4.24)

(4.25)

(4.25a)

Substituting Eq. (4.25) into Eq.(4.23) gives the long-term

conditional distribution of H1/3' FID,L(H1/3ITy'a). The

conditional probability density function for H1/3 is given by

fID,L(H1/3ITvdH1/3 (FI0,L(H1/3ITv'a))
(4.26)

Unfortunately, there is no such simple connection between Tv and

T. On the other hand, it is found that fID,L(T,ITv,a) is

Gaussian or log-normally distributed.

T, is average apparent period, defined as the mean of T, see Fig.

4.2. For the Pierson-Moskowitz spectrum it can be shown that

T 1.086T3 (4.27)

vID,L.

=
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and hence the distribution of T, fID,L(TITv,a) is Gaussian or

log-normally distributed

The expectation of t,is given through

E (T,IT a) AT TvBTID,L v' (4.28)

where Tv is taken as the class-midpoint and AT and BT are

constants.

From Eq. (4.27) and Eq.(4.28) it is seen that

EID,L(TITv'a) 1.086 AT TvBT (4.29)

Common values of AT and BT are given in Eqs. (4.30a - 4.30b)

j AT r 0.74
(4.30a)

1 BT 1.00

AT = 2.83
(4.30b)

BT = 0.44

The conditional standard deviation S(T3) of T3 was found to be

0ID,L(T31Tv'al = Bc(T3) = 1.0
[seconds] (4.31a)

By utilizing Eq.(4.27), Eq.(4.31a) can be written as

Sc(Y')
1.086 [seconds]

If the Gaussian distribution is assumed, the conditional pro-

bability density function of T is written as:

T-EIDL(TITv,a)
fID,L(TITv,a)- 1

,

exp{ (
)21

/77 S(T)
VT sca)

(4.32)

(4.31b)

If the log-normal distribution is assumed, the conditional prob-

ability density function is written as:

-



where

S CT) _1
BID,LEID,L(TIT ,m) 11+( )21 2

EID,I(Trv'a)

S (T)
)2l12

ID,L.f1n[1+(
EID,L(TITv'a)

The joint probability distribution for H113 and T is
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1 exp(-(1n(!
T 6ID,L

)//7 6ID,L)21f (TIT - 'ID,LID,L v v27

(4.33)

(4.33a)

(4.33h)

ITv,a,H_
irdv. fiD,L(H1/31 T ,P)aID,L(H1/3'T1 Tv'a) fID,L,J(T

(4.34)

The wave-data available permits only a marginal probability

distribution for T (with respect to HI13) to be computed, see

Eq.(4.32) or Eq.(4.33). Using one of the latter equations in

Eq.(4.34) instead of the conditional distribution fID,L(TIa,Tv,H1/3)

is equivalent with assuming no correlation between T and H173.

The two-dimensional probability distribution of H1/3 and T

then becomes:

fID,L(H1/3,T1Tv'a)rfID,L(H1/3 ITv'a) fID,L(TITv'a)
(4.35)

Mod-Led Modet Icor. Long-teAm DistAibution olf Wave Data.

Cmhetation between H1/3 and i is a44umed.

The above assumption seems to be questionable for structures with

eigenperiods as low as 2.5 - 6.5 [seconds]. By using the two-

dimensional probability density function given in Eq.(4.35), it

is found that the probability of exeeding a given response-level

has significant contributions from pairs of H1/3 and T which have

no physical meaning.

v

E

-



Walden's data, Ref.(91) on waves in the North-Atlantic, clearly

demonstrate that for a given value of Tv there is an upper

limit for H. It is quite reasonable to assume that a similar

situation exists for the parameters H113 and T.

The first problem is thus to determine the area of H173 and T

where any combination of H113
and T is possible from a physi-

cal point of view.

According to Phillips, Refs.(85,86) the wave-spectrum converges

towards following for for large values of w.

The formula above is known as the equilibrium range spectrum?

equilibrium
range spectrum

with a 0.0074

.03

.01

.003

- 78 -

The idea of using the equilibrium range spectrum to

determine the possible area of and T, was proposed

by Ragnar SighjOrnsson, Ref.(I08)

S.W.O.P. - Stereo Wave Observation Project 1957

Fig. 4.2 Comparison of observed spectrum (2) and

equilibrium range spectrum

SEq(w) = 0g2w-5 (4.36)

1.0 2.0 3.0
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Phillips assumed a to be a universal ,,onstant and proposed

a 0.0074. In Ref.(86) Phillips compares the actual spectrum

with the equilibrium range spectrum for lower values of w.

1,,,,.. r......1............ I. /.......r.g.v.
pf /

Cr*" 1,, 1 I. i
,....4.- ,.-4 ... OW I *NI
2,..=.19.6, r

I l'

i,..r.,L,-..7='-'-'

1111111 I 1 I 1_111.1

(I! !!- !.." !

Fig. 4.3 Comparison of observed spectra and the equilibrium

range spectrum. From Ref.( 81),, originally presented

in a report of Hess,G.D.., Hidy,G.M., Plate,E.S.)

The conclusion was that 4c94-3.- w4vespectri are net 01$a.y to

peed the equilibrium range spectrum significantly. Fig. 4.2.,

1.4).(en from Ref.(86), shows that the agreement is pest for the

i4rger values of (9, but the actual spectrum does no exeed the

equilibrium range spectrum. A comparison made -by Wiegel in Ref.(87)

supports Phillip's conclusion. Fig. 4.3 quoted from 1ef.(87.

displays an equilibrium range spectrum with a 0.0001.



a 0.0081

a = 0.015

a 0.03
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According to recent wave measurements in the North Sea

(JONSWAP), Ref.(88), it is clear that a is not a universal

constant. The value of a seems to be a function of the sea-

state. For mean wave-periods about 10 seconds, a is typically

of the order 0.008, whilst for T - 3-5 seconds an a equal to

0.02 seems to be more reasonable. This variation of a with the

mean wave-period should probably have been accounted for in the

modified long-term model. Hovever, as subsequently will be shown

by a parameter variation the influence on the results by the

actual variation of a is negligible.

Pairs of H113 and T which are possible from a physical point of

view, must satisfy

sco 5 ag2:4-5 (4.37)

Substituting Eq.(4.5) into Eq.(4.37) gives the following inequa-

lity to be satisfied for admissibility of pairs (H113 and T).

T 27rE 0 11,1/4 1/2 (admissibility
H1/3 (4.38)

a g2 condition)

In the foregoing it was assumed that the increase in a for

smaller values of T would not have any significant influence

on the long-term distribution. This assumption is justified
by Fig. 4.4. The unbroken line defines the area, R, when

a = 0.0081 is assumed for all values of T. The broken line

gives the area, R, when the following values is assumed:

It is seen that the difference between the broken and unbroken
line is rather small, and would probably have no significant
influence on the long-term distribution.

However, it should be noted that the results obtained by
assuming a 0.0081 are non-conservative.
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Regions for
physicaLly admissible
combination of

Hi/3 and T

'0,0081

0.0081 T > 9 sec=--b . 0.015 T > 5 sec0.0/ T , 3 sec

2. 4, 6. 8. 10. 12. 14.

(seconds]

Fig. 4.4 Comparison of physically admissible combinations

of H113 and t

Using the original assumption of no correlation, and calculating

the expected value of t by Eq,(4.29) then E(tiTv,a) fall outside

the admissible region in Fig. 4.4, especially for small values

Of T. Most of the two-dimensional distribution of H1/3' T lies

outside R for the lOwest classes. of

The conventional long-term distribution of H1/3 and t Can be

improved by constructing an fiD,L,J(tITv,a,H1/3) in the general

equation (4.34) with due consideration of the admissibility

criterion (4.3S) and the existing observations,. The modeling of

f(t1Tvl n,'H1/ ,3
) is based on the following assumtions

--

T

= for a given H1/3 the distribution of t fiD,Loj(tiT,a,H1/3)1

is either a normal or a log-normal distribution,

Eqs.(4.32-33).

H1/3
[m]

1Y.

12.

10.

8

/4

2.

a =

T.

6.
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- the expectation (mean value) of fiD,L,J is assumed to be a

function of H113, (conditional upon H1/3). Thus, E,,,,

JITv,a)in Eqs. (4.32-33) is replaced by EI,,,,,,(tIT,,,a,H1/3)

This is the refinement introduced to improve the previous

conventional model. To ensure that this modifiaation is in

agreement with the known data, the marginal "expectation"

(with respect to H113) of the conditional expectation

corresponds to the observed value, Eq.(4.29) (A detailed

explanation follows below.)

- the variance of
ID I.

) is constant, independent of

H1/3 and equal to the observed value, Eq.(4.31a-b)..

The principal assumption regarding the expectation of t is:

EID,L,J(TITv,a,H1/3)=TLIMJ(H1/3)+FF1D,L,J(a'Tv,H1/3)
(4.39)

where

TLIM,(H1/3) - is given through Eq.(4.38)

FFIDLJ - is the distance between the expected
, ,

value of T and the limit of the area R.

To be able to determine FFID,L,J it is assumed that FFID,L,J
is independaat of H1/3. In other words it is assumed that for

a given direction interval and a given interval of Tv,FFID,Lo.

is a constant. Acdordingly,Eq.(4.39) is written

EID,L,J(TITv,a,H1/3)=TLIMJ(H1/3)+FFID,L(a,Tv)
(4.40)

This is illustrated in Fig. 4.5.

From the conditional expectation of T given in Eq.(4.40) the

"marginal" expectation (marginal with respect to H113) of T may

be calculated as follows:



where

EMARG (tiT E (t1T
ID,L v v

-113

f (H IT' a)dH
ID,L -1/3 v' 113

- 8-3 -

fID,L(H1/3ITI,a) is given in Eq.04,261

'To ensure that the modified model is "consistent" with the

known wave data, it is then required that
LAEMARG,11.) - ,(T1Tv,a1

,

is equal to the observed marginal expectation, Eq.(4.29),

HlY3 t
no correlation .

rrq

with correlation

ic4..41)

Fig. 4.5 The expectation of t, with and without correfation

between T and H1/3'

The program "LONTIM" (Part II Of Ref.. (110A)) do automatically

calculate, FF- such that the following inequality is satisfied

EMARGID,L(tiTv '13)-EID,LCNTv'al) "5' co
14.42Y

.2' 12 14 T Cs:

E(T)

6

12

10

4

20



where
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EID,L(TIT ,a) - "marginal" expectation according to

Ref. (83) given in Eq.(4.29)

c, a constant, depending on the accuracy that is

wanted. In the program LONTIM, co= 0.2 seconds.

This determines the only free variable in Eq.(4.39). Thus, the

mean and variance of the normal or lognormal distributions are

known and fID,L(H1/3'TjTv,a) is given according to Eq. (4.34)

where fID,L,J(T1H1/3,T,,a) is defined by Eq.(4.32) or Eq.(4.33)

with mean Eq.(4.39) and variance (as before), Eq.(4.31b).

In this resulting modification a major part of the two-dimensional

probability density function given in Eq.(4.34) lies in the area

R, depending on the value of FFID,L. Obviously, this modification

has no influence on the distribution of wave-heights, The most

probable largest wave-height on a given probability level is the

same as for the conventional model.

Modied Modet 6ofr. Long-tekm Distkibution o6 Wave Data

based on instAumentatty obse&ved vatues ot5 H713 and t

The previous long-term models discussed were based on the visual

estimates of wave-period and wave-height. In addition continuous

distributions of the short-term parameters T and H113 were assumed.

As mentioned before great uncertainties are associated with this

long-term model due to potential non-physical combinations of

H113 and T.

A more reliable long-term model would be a model which was

directly based on observed values of H1/3 and T. In this case

non-physical combinations of H1/3 and T would be completely eli-

minated. However, in this model the most extreme sea-conditions

will probably not be included.

LetH713 be divided into JMAX intervals, and T be divided

into IMAX intervals. This gives a totally number of IMAXJMAX

different short-term sea-states. Each observed set of
H1/3

and t is associated with one of these blocks.



where:

nID(I'J) - number of recordings associated to block (I,J)
for direction ID

NID - total number of recordings for direction ID

IMAX JMAX

NID =E ; nID(I'j)

In J=1

4.5 Long-term Response Statistics

Continuoub Disthibution 6o/L H1/3 and t

The calculation of the long-term distribution of response

maxima will be done according to the assumption that the

stochastic process consists of a series of stationary pro-

cesses, characterized by the response spectrum (given by the

parameters t, H1/3, a and y and the parameters characterizing

the structural dynamical behaviour):

The conditional long-term probability to exceed a response

amplitude for a given interval of visual period and direction

may be calculated from Eqs.(4.19) and (4.35) or (4.34) as

Prob(X>xjTv,a)
QID,L(x1Tv'a)

= I as(Xa'xIii. a) f-ID,L(H1/3 ,t1Tv,a)dtd111/3
H1/3 T

(4.44)

= PID(H1/3' tla) =
NID
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The probability of occurence of block number (I, J) is assumed to
be given as

Probj(thi"(J) < Hi/3 < Hi/3(J+1)) fl (TM < T < T(1+1))) direction]

nI (I,J)D
.(4.43)



The integrals above is evaluated by means of numerical integras-':

tion, see Ref.(104).

The marginal distribution of response is calculated according

to ,Eq ( 4. 45,)

Prob(px) = Q(x) =

PDIRID(a)(EPWID(Tv) QID,L(xID
,L 11Tv,a)..}

" where

PVWID,L(Tv -

PDIRID(a)

- 8&

(4.45)

probability that visual Wave period Tv

fell within interval no, L, for directio&

interval no. ID

probability that incomming wind fel1

within direction interval no. ID

Diactete Di4thibut.Lon '604 E113 and t'

For each block ( i.e stationary sea-state) the probability to ex-'

ceed a given response-amplitude is given through Eq.(4.22. The

long-term distribution is given as

NUDIR
IMAX JMAX

P(X > x) = E P DIRID,(a){ I E Q,s(X1H1/3,T, a)PID(I ,J)K4.46)
In J=1

=1

The reliability of this model Li:6 dependent on that Nib is a.
great number, for ID = 1_, 2, NUDIR. Up to now data has been
lacking for this model..

Extteme VALue o the Reaponee

Eq.(4.45) can be used in connection with extreme values, statis-

tics, Ref .(53), and gives, for instance, the most probable

largest value of N maxima, x14, through:

-

-

...,



-10 .,g,.Q Q - probability
of exceedance

ON - number of cycles
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Prob(X>xN)
1 (4.47)

Again, the variance of the largest value of N maxima is so small

as to justify the use of a single value, xN, as a design value for

ultimate failure modes.

E6timate on the Numbek o.6 Re'sponze Cycler) Azsociated with a

Given Amptitude Levet

In the design against fatigue the information on the response

required is the number of cycles corresponding to each amplitude

level.

In the present subsection a simple estimate for this quantity will

be given.

It is assumed that the response process is sufficiently narrow-

banded so as to justify equivalence between a cycle and a (positive)

peak.

Response

Narrow band
process

Long term distribution of peaks. Q(x)

lo' 10' 10. 10.
N - Number of cycles

Fig. 4.6 Determination of the number of cycles corresponding

to a given amplitude interval. A time interval corre-

sponding to 108 cycles is assumed.

0 -
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The long-term distribution expresses the probability of exceedance

for a period of the order of the life-time (20 - 50 years) of the

structure. Let the number of cycles in that period be 108. One

cycle then "corresponds" to a probability 10-8.

The number of cycles, AN corresponding to an amplitude level,

(X0- LC) -(X0+ LI) then can be obtained from
2 2

AX
AN . N(Xo + 4) - N(X0 + (4.48)

when the long-term distribution is displayed in a logaritmic

scale, Fig. 4.6.
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5. NUMERICAL STUDIES

Based on the theory evaluated in Chapters 2 - 4 a com-

puter program was developed. Numerical studies carried

out with the computer program are reported in the present

section.

5.1 Dynamical Modeling.

5.1.1 Description of Example Platform

Consider the platform shown in the Fig. 5.1 in 146 m of

water. The caisson has an equivalent diameter of 90 in

and height of 60 m. The total height from the soil to

the top of the deck is 175 m. The diameter of the

Sdnd ballast

Fig. 5.1 Example gravity platform
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shafts is in the range 12 - 20 m.

The platform is assumed to rest on the soil surface with

no embedment.

The density and the Poisson ratio of the soil are assumed

to be 2000 kg/m9 and 0.5, respectively. The shear modulus,

Gs, is the most important and uncertain of the soil para-

meters, and a parametric study of Gs in the range

N/m2 to 6.0.107 N/m7 is carried out. In addition, a Gs of

1.0.109 is chosen to simulate a fixed base. Equivalent

spring and dashpot constants are introduced according to

the Chapter 2. The hysteretic damping ratio, 5, is

assumed to be 0.05.

The structural and hydrodynamic damping is represented by

a constant damping ratio of 1.5% of the critical for all

(interaction) modes of vibration.

5.1.2 Structural Idealization

The actual structure, shown in Fig. 5.1, may be divided

into 3 typical parts:

deck

shafts

caisson

Stit5/ine4s

The deck 4tAuctulte consists cf a set of steel girders as

shown in Fig. 5.2a, and the idealization is shown in Fig. 5.2b.

Since the deck mainly exhibits horizontal motions, the

model in Fig. 5.2b is justified. Stiffness relations are

obtained by flexibility considerations of the actual deck.



The mass is lumped in the nodal points, and the elements

in the deck is modelled as three-dimensional beams with

cross-sectional properties as given in the Table 5.1.

Material properties for A-te:

Modulus of elasticity E 2.1.10" [N/m2]

Poisson's ratio p 0.3

in its plane.

x(y) - horizontal; z - vertical; s - shear; t- torsion.

a

Element no. A
As.(y) Asz x(y) It

1 .82 .13 .32 6.92 4.25 1.5.10-4

2 , 3 1.94 .56 1.09 16.4 10.75 6.3.10-4

Remarks: In reality the stiffness 1.z is fictious since the
bottom of the deck provides "infinite" stiffness

) Main girders in the b) Equivalent deck

deck structure system

Fig. 5.2 Deck model

Table 5.1 Cross-sectional properties of the deck

structure, (unit (m))

- 91

- -



Fig. 5.3 shows one of the conchae Ahalits and its

idealization. The model consists of 4 beams with con-

stant cross-sectional properties within each element.

Material properties of concAete:

Youngs modulus E = 2.45.l0'°

Poisson's ratio p = 0.25

10 g

13 E

1

- 92 -

Sect ion A-A

'Caisson

Fig. 5.3 Shaft Model

The mass is lumped in the nodal points. Since the lower

order modes predominate this approximation is justified.

A

,166m

-,*e7Sm

0

hr'

Caisson,.



- 93 -

Table 5.2 Cross sectional properties of the shafts

(Unit Em])

of 20 m, see Fig. 5.1. This part of the structure is very

stiff as compared to the stiffness of the other components

of the structure. Thus,it is modelled by 6 beam elements,

and the cross sectional properties are choosen equal to

50 times the value at the lowest shaft element. The masses

are lumped to the nodal points, see Fig. 5.4.

Fig. 5.4 Model of the caisson

Mas6

The mass includes the mass of the structure itself, the

mass of equipment on the deck, possible water in the

columns and the caisson and the added mass of the environ-

mental water.

Element no. A
As Ix(y) It

4,5,6,7,8,9 16.0 8.0 274. 548.

10,11,12 40 23.6 576. 1010.

13,14,15 45.7 32. 1740. 3230.

The c1i4son consists of 19 cylinders, each with a diameter



Fig. 5.5 A typical

cylinder in the

caisson
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The mass of the deck itself and maximum functional

equipment on the deck is 25000 tons.

The dimensions of the conc,tete cotumnz are shown in

Fig. 5.3. The density of the concrete is put equal to

2.4 t/m3. All three columns are assumed to be filled

with water up to 20 m below still water level (Sloshing

effects in the water are neglected).

The added (hydrodynamic mass) of the columns is put equal

to the displaced water.

The ectibzon consists of 19 equal cylinders. The dimen-

sion of one of them is shown in Fig. 5.5. Each cylinder

is assumed to contain sand up to a level 4.2 m over the

bottom. In addition, it is

conservatively assumed that

all cells are filled with

water.

The hydrodynamical mass of

the caisson is calculated by

applying diffraction theory,

Refs.(45-46) and considering

the caisson to be equivalent

to a cylinder of height 60 m

and diameter 90 m. The masses

associated with the lower node

(no. 17) of the model are

given in Fig. 5.6b.



VOillfue V
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Mass matrix:

= psub fV
M xx Mxe

M M
Ox ee

=

pe 2 . 5 -1.5 u

-1.5 1.5 0

b) Hydrodynamical masses
associated with the caisson

Fig. 5.6 Hydrodynamical mass for coupled

horizontal and rotational motion

The added mass for vertical translation is put equal to

the volume of a hemisphere with diameter 90 m minus the

displaced volume of the three columns within this hemi-

sphere.

For rotation about the vertical axis, the added mass is

obtained by assuming that it is equivalent to a water

layer with a thickness of 4 m surrounding the caisson.

The corresponding inertia moment is then computed.

The resulting lumped masses are (index refers to nodal

point number, see Fig. 5.8):
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Rotational Mass inertia Moment in node 17

I I - .27.5,-10" .kgm2
x y

Iz 53.4.10," kgm?

Damping

The structural dating and hydrodynamicAl.damping are

combined, and assumed to be of 1.5 percent of the critical;

5,.1.3 Representation of Boundary Conditions of Surrounding, MedIA

The platform structure is bordered by 3 media. The

appropriate boundary conditions for the platform may be

obtained by considering these media

- The air

The wind effect is neglected in the present case

The water

For the dynamic behaviour of the structure, the

effect of the environmental water' is included in

the lumped masses represented by the added mass

components as outlined in Chapter 2, and 5.1.2.

Excitation forces are considered in Chapters 2.5

and 5.3.

mi 10.3-u04 kg

m2 6.5.106

ms .= m4 5.5-106

kg,

kg

all directions

ms = ms = m-7 a 3.2.10 kg x&y dir.

2.0.10,6 kg z dir.

m8 m . m10. 7.2.106

3.4.106

kg,

kg

x&y dir,

z dir.

17141= may2= 13.3.106 kg x&y dir.

m04= mss=

6.1.106

m16=122.5.106

kg

kg

z. dir,

x&y dir.

=135.3.10.6' kg t dir.

m17=3,93. '106 kg x&y dir.

268, .106 kg z

- -

=

dir.
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- The soil

The interaction between the platform and the soil

is of great importance for the dynamic behaviour,

see Chapter

It is assumed that the effect of the soil on the interaction

system may be described by equivalent soil stiffness and

damping coefficients, see Fig. 5.7. The selection of coeffi-

cients are made according to Section 2.4.

Soil

The soil stiffness is a function of the shear modulus, Gs,

and the circular frequency, a. In Table 5.3 the equivalent

stiffness coefficients of the soil are given for various shear

moduli and one frequency (eigenfrequency of lower order modes

of the interaction system). In the actual case the soil stiffness

is practically independent of the frequency.

Fig.5.7 Soil stiffness and damping (in x-z plane)



0- element no. n

n - node no. n

Fig. 5.8 Model of the entire platform structure

72

-



Density for soil - Os nee kg/m5

Poisson's ratio ps 01.5

'Table 5.3 Equivalent stiffness or the soil for various

shear moduli, Unit kx,-[N]m]

Soit Damping

The damping in the Soil

represented by dashpots

Gs C IC
X ' y cz

cch

1.65-102 1.12 1,18.109' 291.5.10" 2,87.109 8.51-1012

3.0 -107 1.43 1.50.105 28,.3-1022 '3.37.109 11.23.10"

6.0' .107 2.24'105,1.76 40.10.1025 S.09-102 16.24.1010

109 2.04 9.01.109 10.41012 20.79109 616.3 .1015

GsIN/m2] k ,k
,x y

k k
EP_ kz

k.

1.6,5..107 1.12 4.00-105 8.1-1022 6.14:109 8.85.1012

3.00.1D7 1.43 7.210-109 15.2.1022 11.201-109 15.40.1l012

6.00.107 1.76 14.65-109 30.4.1012 22.3 .10'9 32.17.1012

109 2.04 2.47.1011 5,3-1010 3.72-1011 51.36,.1.04

the actual frequency range only the rocking damping

really frequency dependent. In the actual frequency range

the damping varies nearly proportionally with frequency

and is zero at zero frequency.

Table 5.4 displays the values Of equivalent damping

coefficients for various shear moduli and the frequency

corresponding to the lowest eigenfrequency of the interaction

system.

Table 5.4 Equivalent damping in the soil at resonance

frequency for various shear moduli._

Unit tx -(Ns/mi,oe -ENmsJ

is assumed to be viscous and

for each degree of freedom. For

- 99 -

-

,

z

is

[N/m]
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5.2 Determination of Eigehfrequericies and EigenEddes

The resulting dynamical model was a system governed by

102 equations with a half bandwidth of the stiffness

matrix of 24. The ej_genvalue problem

KO = MOw2 0.5.1r

is solved by the use of a subspace iteration algorithm,

10 eigenvalues and eigenmodes were determined. With a

convergence tolerance of 10-9 27 secs. CPU time was

'required for the solution of Eq.4(5.1),

The eigenvalues were determined for 5 different shear

moduli of the soil, see Table 5,5 The lowest eigen-

frequencies were remarkably sensitive to the magnitude

of the shear modulus. Higher eigenfrequencies were rather

independent of the shear modulus. Fig. 5.9 displays the

variation of the lowest eigenfrequency with shear modulus,

The highest shear modulus, Gs= 109[N/m2] simulates a

fixed platform structure. The value 109 is chosen to

avoid numerical ill-conditioning of the eigenvalue prOblem.

In Figs. 5-10a - d the four lowest eigenmodes ace

shown for a shear modulus of 6.107[N/m2].

Table 5.5 The 10 lowest eigenfrequencies, for variouS

Eigen
freq.
no.

shear moduli

G. 1.81107 'Gi=1.65.107

Ti wius. T.

GF3.0,10177

w.

G6,0107
co. T..

1

G,=1-41,169

Jav, T.

1 0.758 8.294 1.104 5.698 1.392 4.515 1.761 3.568 2.041 3.079

2 0.762 8.247 1.121 5.606 1.436 4.376 1.906 3.296 2.357 2.665

3 1.902 3.303 2.426 2.590 2.670 2.335 3.242 1.938 4.289 1.446

4 1.920 3.273 2.589 2.427 3.003 2.093 3.487 1.802 6.491 0.968

5 2.243 2.801 2.878 2.183 3.869 1.624 4.253 1.477 8.422 0.746

6 2.612 2.405 3.081 2.093 3.931 1.598 5.438 1.156 8.772 0.716

7 2.707 2.321 3.234 1.943 3.931 1.598 5.556 1.131 9.056 0.694

8 3.025 2.077 3.424 1.835 4.110 1.529 5.584 1.125 9.160 0-686

9 4.408 1.425 4.479 1.403 5.018 1.252 6.470 0.971 9.903 0.634

10 6.509 0.965 6.510 0.965 6.514 0.965 6.863 0.91610.650 0.590

-

T.
1
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0.2
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S7aamptote

1.0 2.0 3.0 4.0 5.0 6.0 7.0
Shear modulus in tha soil G;102 N/m2

Fig. 5.9 The variation of the lowest eigenfrequency

with the shear modulus in the soil.

5.3 Response to Harmonic Wave Excitation

5.3.1 Hydrodynamical Excitation Forces

Genetat Remakkb

When the eigenvalues and eigenmodes are determined, the

next step is to determine the response of the structure in

the form of transfer-functions due to wave forces. Wave

forces are calculated on the basis of Airy's first order

wave theory, see Chapter 2. Equivalent nodal forces are

determined for a harmonic wave with a height of 1 m. One

load vector is calculated for each wave frequency. Waves

having circular frequencies in the range 0.314 to 3.14 are

considered, and calculation is performed for 20 intermediate

frequencies. In particular, three excitation frequencies

1

WI

frad/s]

2.0



1. vibration mode

a) First and second eigenmode

3. vibration mode
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60.1o'pum=l

6,7.10'Enlm21

2. vibration mode

4. vibration mode

b) Third and fourth eigenmode

Fig. 5.,.0 Eigenmodes for a shear modulus of Gs = 6.0.107 N/m7
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corresponding to the eigenfrequencies Of the three lower order

modes are included. The forces are calculated separately for

the caisson and the shafts- For' wave periods less than 9

secs, the loading on the caisson is negligible, see Fig.0.11a)]..

The difference in phase angle between the nodal forces on the

caisson and the ..different shafts is duely accounted for. The

center of the caisson is chosen as the reference position for

the wave loading, see Fig. 5.11a.

Vave propagation

11,

Wave in reference
position

x

Fig,. 5,11a Maximum wave load for wave in reference

position. Dotted line corresponds to maximum

loading on Shaft 1.

- -
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Assuming a long-crested wave with a wave length equal to A

and a direction of propagation with an inclination a with

the x-axis, the phase angle between load on the caisson and

the shafts will be:

where la and 13 are negative and 2.2 is positive, see

Fig. 5.11b.

wave

crest 2

Fig. 5.11b The phase angle between maximum loads

on the shafts. Wave propagating at an

angle in a direction forming an angle a

with the x-axis.

wave
crest 1

Si 27 9,i/A for Shaft 1

(52 27 92/A for Shaft 2

63 27 t3/A for Shaft 3
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Fohced on the Sha4
The distributed inertial wave loading on a typical shaft is

shown in Fig. 5.13 for four wave periods. The distributed

loading is transformed into equivalent nodal forces and

moments by application of the virtual work concept. The

variable stiffness along the beam elements is accounted

The calculation of nodal forces is done automatically in the

computer program for a shaft with specified orientation in

a wave and with given nodal points. The corresponding nodal

forces for four wave periods are listed in Table 5.6.

Table 5.6 Nodal point forces. Wave height 1 m. Units are

[ton] for force and [ton-m] for moment.

Node T=17 sec T=11 sec T= 7 sec T = 4 sec

Number Force Moment Force Moment Force Moment Force Moment

Fig. 5.12 Nodal points along a shaft

5 8.4 -42.1 23.6 -96.8 47.3 -177.6 38.7 -113.4

8 37.4 -52.5 56.0 -17.9 64.0 117.5 20.4 105.1

11 50.9 89.1 46.7 182.0 14.5 126.2 0.16 2.4

14 26.4 196.3 15.2 117.0 1.0 10.1 0 0
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Foltcea on the CaieSon

The inertial wave loading on the caisson is evaluated by

assuming the caisson to be equivalent to a cylinder with

the following dimensions:

Height 60 m

Radius ra 90 m

Cross-sectio-

nal area A, 18360 m2

Volume V 3-815'105 ml

Fig, 2,17 and Fig, 2.18 show the idealized structure.

The forces on the caisson are calculated according to

Eqs. 2.31 and 2.32. Maximum load on the caisson appears

when the wave is in reference posistion, see Fig. 5.11a.

Interaction effects between the slender shafts and the

caisson are neglected. In the present case pressure under

the bottom of the structue is assumed to be equivalent to

the pressure corresponding to free water in the soil.

Wave propagation

- _

10 11 12 13 14 IS 16 J8 19

Period T sec._

Fig. 5.14 Variation of horizontal force, overturning
moment and eccentricity of the horizontal
force resultant with wave period T.

=

17
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The resultant horizontal force and moment computed for the

caisson are 'shown in Fig. 5.14.

The vertical force resultant is neglected, as it is assumed to

have insignificant influence on the behaviour of the structure.

The horizontal force resultant is applied as nodal forces,

These forces act in the three nodal points on the top of the

caisson and the node at the soil - caisson interface. The

moment from the pressure distribution on top and bottom of the

caisson is applied in the node at the soil-caisson interface..

Fig. 5.15 Directions for which the hydrodynamical

loading are calculated



Table 5-7 Typical load vectors for wave frequency 01.48

Erad/secl. Wave propagation In and y direction,

respectively: Wave height = m-

Direction Node ,Local degree. Force i[N] Phase

of load no of freedom Moment [Nm] angle At]

i 2 132847.
,6 2 132847. 26;6
7 2 132847.
5 4 651200.
6 4 551200. 26.6
7 It 651200. -26.6
8 2 466587.
9 2 466587. 26.6

10 2 466587. -26.6
8 4 467400.
9 4 467400. 26.6

10 4 467400. -26.6
11. 2 522455.
12. 2 522455. 26.6
13 2 522455.. -26.6
11 4 -1497200.
12 4 -1497200. 26.6
13 4 -1497200. -26.6
14 2 1137162.
15 2 1113162. 54
16 7 1113162.. =5.1
14 4 -1607800.
15 a -1607800. 26.6
16 4 -1607800. -26.6
17 2. 2031160.
17 4 4389000.

5 1 132847. -27.
6 1 132847. 13.
7 1 132847. 13.
5 5 -651200- -27.
6
7

5,

Si

-651200.
-651200.

13.
13.

B .1. 466587. -27.
9 1 466587. 13.

10 1 466587. 13.
8 5 -467400. -27.
9 5 -467400- 13.

10 S -467400. 13.
11 1 522455. -27.
12 1 522455. 13.
13' i 522455. 13.
11
12

5, 1497200.
1497200.

-271
13.

13 5 1497200. 13.
14
15

1,

a
1112592-
1127590-

- 5.2
2.5

16
14

1
5

1127590.,
1607800.

2.5
i. -27.

15 5 1607800. 13.
16. 5 1607800. 13.
17 1. 2031160.
17 5 4389000'. 180-

_ ,

- 109 -

x

H 1

-26.6

5

-
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Re4atting Hydtodynamicat Loading on the Ptat6otm

The resulting environmental hydrodynamic loading consists

of the load on the shafts and the caisson. A load vector

is established for 20 separate wave frequencies in the

range 0.314 to 3.14 [rad/sec] and 12 directions of wave

propagation. However, due to symmetry about a plane only

6 directions were actually calculated. The 12 directions

for wave propagation is shown in Fig. 5.15.

When the load, applied as nodal forces, is combined, the

difference in phase between the load components is

accounted for. The loadvectors for waves progressing in the

x and y direction are listed in Table 5.7 for a typical

frequency. The reference point for zero phase angle is the

center of the caisson. The local degrees of freedom are

defined in Fig. 5.16.

Fig. 5.16 Definition of local degrees of

freedom in a nodal point.



5.3.2 Transfer-functions

GeneAat Remakke

The transfer-functions are determined both with a dynamic

and static model. The harmonic response of the structure

is calculated according to the procedure outlined in Chapter

3. The harmonic response for nodal displacements is found

by modal superposition. Input to the analysis are eigen-

vectors, eigenfrequeicies, the mass-matrix and the load

vector amplitude and corresponding phase angles. 8 eigen-

vectors were used in the computations.

As previously mentioned the computation was accomplished for

20 wave frequencies and 6 directions of wave propagation.

In the subsequent part of this section, calculated transfer-

functions for displacement and internal forces in the struc-

ture will be reported and discussed. The results are pre-

sented in the following sequence.

transfer-functions for displacement of the dec .

Various shear moduli of the soil. Wave propagating in

x- and y-direction.

transfer-functions for moments in tcp and bottom of

the shafts. Various shear moduli in the soil. Wave

propagating in x- and y-direction.

transfer-functions for moments in top and bottom of

shaft no. 2. Shear modulus of the soil equals 3.0..107

[N/m7]. 12 directions of wave propagation.

Than4ieA-6unction6 6c,A Ditptacement o6 the Deck.

The transfer-functions for the deck displacement are shown

in Fig. 5.17-18. Dynamic and static transfer-functions are

displayed for waves propagating in x- and y-directions.

The curves in Fig. 5.17 display the effect of the shear modulus

of the soil on the dynamic response.
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The soii-structure interaction has two principal effects:

the resonant frequency of the system decreases to a

value below that applicable to the fixed-base struc-

ture

it modifies the magnitude of the peak response, de-

creasing the value for short, quatty structures and

increasing the value for tall slender structures.

The first effect is easy to understand. The second effect,

which appears to be contradictory at first glance requires

some explanation. The change in magnitude of the peak

response is the result of two opposing mechanisms. Because

of the energy which is dissipated by radiation into the

supporting medium, the effective damping of the flexibly

mounted structure is greater than that of the fixed-base

structure, and this tends to dechecuse the response of the inter-

acting system. However, the rocking of the foundation in-

creases the au2eleration inertia force, and the corresponding

whipping effect leads to a correspcnding incheabe in response.

The first factor is predominate for short structures, whereas

the second factor is predominate for tall structures.

The peaks and throughs in the transfer-functions are asso-

ciated with "resonances" and phase differences in the loading

on different shafts.

A remarkable difference in both the shape and the magnitude

of the transfer-functions are observed for circular frequencies

of the waves higher than 1.0. This is a result of the dif-

ference in phase angle between maximum load on the shafts as

illustrated in Fig. 5.19. For small frequencies this differ-

ence in phase angle is insignificant. Thus, the transfer-

functions show on_y a small difference at low frequencies.
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It is observed from Fig. 5.18 that the transfer-functions

for waves propagating in the x- and y-direction are quite

different. This is principally due to the difference in

phase angles.

By comparing the response for dynamic and quasistatic

analysis it is observed that the dynamic amplification is

of great importance for the frequency range co. 0.7 - 1.7.

The amplification decreases with decreasing frequency when

the frequency is below the lowest eigenfrequency of the

structure.

Dynamic analysis
Shear modulus of the soil

- G...1.65.10'[N/m2]
- qr3.0.10'
-

.6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 w

Fig. 5.17 Dynamic transfer-function for the dis-

placement of the deck in x-direction for

waves in x-direction. Three values of the

shear modulus in the soil were used

12

10

4

2

-

-
-
- G,r6.00
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8

6
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.2 .4 .6 .5 1,0 1.:

Dynamic analysis
---- Static analysis

x-displacement for
" waves in x-direct.
o y-displacement for

waves in y-direct.

Shear modulus of the soil
G0r3.0.1G7N/e

1.6 1.9 2.0 2.5

Fig. 5.18 Static and dynamic transfer-function for

the displacement of the deck. x-displace-

ment for waves in x-direction, and y-dis-

placement for waves in y-direction

Due to the effect of the phase angle between the forces

on the shafts, the highest response value is obtained

for Gs 3.0107 [N/m2].

Recognizing that the peak response is inversely proportio-

nal to the damping rcitio in a 1D0E-system, the maximum

dynamic amplification obviously must be sensitive to the

choice of damping in the system.

3.0



Ps 2p, E = 3p1.

a) Wave propagating in
x direction.

Orientation
of the shafts
with respect to
wave propagation
direction

x

T . 4.8 sec.
W = 1.3

A =

T =
= 0.92

A =

T = 9,6
w = 0.65
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Ps

P2

-Ps

0 -Ps E = 0

b) Wave propagating in
y direction.

Fig. 5.19 Effect cf phase differences of the

loading on various shafts on the total

loading for various wave lengths (-periods).

Only inertial forces on shafts are considered.

(E denotes the resulting wave force on the

shafts).

P3 0 E=p, P3 p cos 45° 0 E=1.7p3

Load in x-direction Load in y-direction
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Fig. 5.20 Moments for which transfer-functions

are calculated.

Ttan,67iet-Sunction4 6oa Momenta in the Top and Bottom o6

the Sha6t4

The internal moments (and forces) at the top and the bottom

of the shafts are particularly important in the structural

design.

Transfer-functions for moments in Shaft no. l and 2 were

determined for waves propagating in the x- and y-direction,

respectively. In addition, the transfer-functions for the

moments, Mx and M at the bottom of Shaft no. 2 and moment Mx



- 117 -

at the top of Shaft no. 2 were computed for waves propagating

in a series of directions in steps of 300 .

Static and dynamic analyses were accomplished. Various

shear moduli of the soil were utilized.

Comparison between the transfer-functions for the moment

in the top of the shafts is made in Figs. 5.21-22. The

principal characteristics of the moment transfer-functions

are quite similar to the displacement transfer-functions.

While the displacement transfer-functions tend to increase

by decreasing frequency, the moments transfer-functions do

not. The increase in the displacement transfer-functions is

primarily due to the fact that forces on the caisson are

activated by lower frequencies (large wave lengths);

thereby introducing significant rigid body motions.

In Figs. 5.23-24 the transfer-function for the moment at

the bottom of Shafts I and 2 are shown for waves propagating

in the x- and y directions, respectively. The transfer-

function for the bottom moment is quite similar to the moment

at the top of the corresponding shaft.

To investigate into more detail the effect of the direct-

ionality of the wave progress on the response, the moments

about x- and y-axis in top and bottom of Shaft 2 were con-

sidered. The shear modulus of the soil was choosen to be

G5= 3.0-10 [N/m2] for all cases. Fig. 5.27 displays the

transfer-functions for the moment at the top of Shaft 2 for

the 12 wave directions. The response is very sensitive to

wave direction. This observation may be explained by the

fact that the phase angle between maximum load on each shaft

is highly influenced by the direction of incoming waves.

Furthermore, the unsymmetric deck-structure indicates

directional dependency of the moments in the top of the

shaft. This effect is not that much pronounced in the moment

at the bottom of the shaft, see Figs. 5.25-26.



Fig, 5-2 Transfer-function for the moment M at the

top of Shaft no 1. Wave progressing in the

x-direction.

Dynamic analysis
Shear modulus:

- G5=.1.65.107IN/mm2]
- Gs. 3.00.10'- Gs= 6.00-10'

---- static analysis
all shear moduli
09 2 1 111

= 118 =

.13 1.0 1.2 L4 1.6 1.8 2.0 2.5 3.0

Dynamic analysis
Shear modulus:

- Gs = 1 .65.107IN/mm2
- Gs= 3.00.10!
- G, 6.00-13.

---- static analysis
all shear moduli
n = in

Fig. 5..22' Transfer-Eunctioh for the moment M; at the

top of Shaft no. 2. Wave progressing in the

y-djrection-

3.0,2 .4 -8 1-0 5.2 1..4 .1.6 1...8 2..0 2-S

2

.6



1 20

16

12

Dynamic analysis
Shear modulus:

32 - Gs= 1.65.107[N/mm3)
- Gs= 3.00.10: .

Gs= 6.00.10' .
28 static analysis

all shear moduli
n m24

20

a,

g 16

Fig. 5.23 Transfer-function for the moment M at the

bottom of Shaft no. i. Wave propagating in

the x-direction.

- Dynamic analysis
Shear modulus:

12

- 119 -

a - G5=.1.65.107[N/mm2]
o - Gs= 3.00.10: .

28 Gs= 6.00-10' .---- Static analysis
all shear moduli

24
S im

1.2 1.4 1.6 1.8 2

.8 1.0 1.2 1.4 1.6 2.0 2.5 3.0

Fig. 5.24 Transfer-function for the moment Mx at the

bottom of Shaft no. 2. Wave propagating in

the y-direction.

-

8

4

-
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Fig. 5.25 Transfer-functions for moment about x-axis

at the bottom of Shaft no. 2 for 12 directions

of wave propagation. Gs = 3.0.107 [N/m2.]

Transfer-functions for moment about y-axisat

bottom of Shaft no. 2 for 12 directions wave
7

propagation. Gs = 3.0'10 EN/m2]
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Fig. 5.27 Transfer-functions for moment about the

x-axis at the top of Shaft no. 2 for 12

directions of wave propagation. The angle

between each direction is 300
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5.4 Statistical Analysis

Short- and Long-term Description of the Sea

The statistical response analysis is based on the methods

outlined in Chapter 4.

Shott-teAm Sea-Atate

In the short-term state, the sea is assumed to be described

by the wave-spectrum. In the present analysis several types

of spectra will be considered. Primarily, however, the

Pierson-Moskowitz sepctrum on the ISSC form is adopted.

The analysis is carried out both for long- and short-crested

waves. In the case of two-dimensional spectra both Mark's

and Pierson's representation of the directionality function

f (0) are considered.

long-tenm Sea-a-tate

The long-term description of the sea is given through the

long-term distribution of the parameter H,/,,T and a de-

scribing the short-term states. Three alternative long-term

models were discussed in Chapter 4.

Only the conventiona model together with the modiiication

incorporating correlation between H113 and T will be pursued

in the present context.

In the conventional model the two-dimensional probability

function of H1/3' T is determined from the distribution of

the visual parameters Hy and Tv and no correlation between

H1/3
and T is assumed. The relationship between the

visual and instrumental parameters used in the present

analysis is given below.
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Hv = 0.5.H1/31.33 (5.2a -b)

E(T) = i.086.AT.T
BTv

Two different sets of values were used for AT and BT in

the analysis. The values are given below.

AT 2.83 0.74 (5.3:
BT 0.44 1.00

The two sets were proposed by NordenstrOm, in Ref.(81).

The standard deviation is assumed to have a constant

value, given as

Sc (T) = 1.086 [seconds] (5'.4)

according to Ref.(81).

The long-term wave data used in this analysis are grouped

in 6 intervals of visual period.

The midpoints of each interval of visual period are listed

in Table 5.9. In addition, the expected value of the average

mean period, T, is given for the two sets of AT,BT. It is

seen that there is a rather great discrepancy in the expected

value for the two sets . Both the normal- and the log-normal-

distribution are considered for the average mean period,T.

The distribution of H113 was assumed to follow a Weibull-

distribution.

Obviously, the sea-state is dependent upon the location.

Even in the North Sea region the weather conditions vary.

The long-term weather data used in this analysis are given

in Tables 5.9-10. The Table 5.9 is quoted from Ref.(91) and

it is based on wave observations on the weather ship "Famita".
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The observations have been accomplished over a period of 10

years from 1959 to 1969, and only in the period from october to

march.

Table 5.9 Parameters of Weibull distribution of visual

wave heights on the North Sea, data from

"Famita" (57°30'N, 3oE)

Tv Ho Hc P(Tv)

Throughout the same 10-years period observations of visual

wave parameters were recorded for 12 separate directions,

Ref.(90). In spite of a rather long observation period

the data are rather insufficient to establish a long-term

distribution of the visual wave heights for each direction.

However, a separate Weibull distribution for each direction

is estimated from the given data. Parameters obtained for

these distributions are given in the Table 5.10. The dis-

tributions are normed so that the average distribution by

integration over all directions gives the same long-term

distribution of wave height as for the marginal distribution

displayed in Table 5.9.

Unfortunately, these distributions are not very reliable, due

to a limited amount of basic data and should be used with

care. In the present report the directional distribution are

applied to obtain some guidance regarding directionality

effects.

4.5 1.2 1.3 0.62 .3764

6.5 1.2 1.83 1.04 .3425

8.5 2.0 2.80 0.99 .1989

10.5 2.0 3.30 1.32 .0626

12.5 1.5 3.95 1.20 .0164

14.5 .0 4.50 3.15 .0032



- 125 -

Table 5.10 Parameters in the Weibull-distributions

for 12 directional sectors

Direction
no. Ho Y°

P(Tv)

4.500 .900 1.250 .960 .33710

6.500 1.450 2.150 1.020 .34600

1
8.500

10.500
.000
.000

2.800
3.800

2.300
2.500

.21340

.07450

12.500 .000 2.800 2.100 .02780

14.500 .000 3.600 2.600 .00130

4.500 .000 1.250 2.630 .55140

6.500 .000 1.900 2.750 .26870

2
8.500

10.500
.000
.000

2.650
1.950

1.630
2.100

.12620

.04210

12.500 .000 4.100 3.430 .00930

14.500 .000 3.000 1.750 .00230

4.500 .800 1.200 1.040 .44750

6.500 .000 2.000 2.500 .35930

3
8.500

10.500
.000
.000

2.600
3.250

2.300
1.340

.16100

.01190

12.500 .000 3.100 2.000 .01690

14.500 .000 4.600 3.100 .00340

4.500 .000 1.300 1.900 .28090

6.500 .000 1.300 1.280 .33520

4
8.500 1.450 2.450 .930 .27770

10.500 1.250 2.950 1.080 .08500

12.500 .000 3.400 1.360 .01890

14.500 .000 9.500 10.100 .00240

4.500 .650 1.250 1.100 .26910

6.500 .900 1.800 1.270 .35250

5
8.500

10.500
1.400
1.700

2.770
3.800

1.470
1.400

.26370

.09200

12.500 .000 5.200 3.200 .02150

14.500 .000 5.000 3.600 .00110

4.500 .650 1.220 1.200 .36670

6.500 1.000- 2.000 1.400 .33890

6
8.500
10.500

.000
2.000

3.030
4.300

2.680
1.500

.20770

.06140

12.500 .000 5.000 3.880 .02190

14.500 .000 5.700 3.800 .00340

Tv
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Table 5.0 Parameters in the Weibull-distributions

for 1.2 directional sectors (:continued)..

Direction
no. Tv Ho,

Hc TXTv)

4.500 .450 1.290 1.660 .39630
6.500 1.31001 1.750 .840 .31780
8.500 1.000 2.500 1.440 .22010

10.500 .000 3.000 2.230 .05520
12.500 1.000 4.000 1.200 .00990
14.500 .000 3.000 1.750 .00070

4.500 .650 1.400 1.340 ,41090
6.500 AGO 1.750' 1.440 ..34980
8.500 .000 2.770 2.600 .18780

10.500,
12.500

.000

.000
3.200
4.800

2.430
2.260

.04400

.00700
14.500 .000 3.000 1.750 _00050

4.500 .550 1.350 1.600 .4-3140
6.500 1.000 1.850 1.10.0 .34450
8.500 1.000 2.600 1.400 .17300

10.500 1.400 2.600 1.150 .04230
12.500 .000 3.600 2.000 .00440
14.500 .000 5.200 3.400 .00440

4:500 1.300 1.400 .550 .51790
6.500 .000 1.700 1.750 .32910

10
8.500

10.500
.750
.000

2.800
2.700

1.940
3.170

.09860

.02980
12.500 .000 4.300 1.600 .016201
14.500 .0:00 4.200 2.200 .00850

4.500 1.400. 1.530 .650 .39530
6.500 .000- 2.000 1.750 .33290

11
8.500

10.500
.000
.0001

2.750'
3.500

1.880
2.450

.15980

.08250
12.500 .000 4.500 2.970 .02310
14.500 .000 4.000 7.000 .00630

4.500 .000 1.300 1.700 .28190
6.500 1.200 1.830 1.040 .37190

12 8.500
10.500

.000

.000
3.200
4.100

2.740
2.280

.22330

.09080
12.500 .000 4.800 3.000 .02410
14.500 .000 3.400 3.250 .008001

7

8

9
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However, the return period for given extreme wave heights

derived from the distributions for each direction compare

fairly well with published data., in Ref ..(89).

Fig, 5.29 Identification

of direCtions in

which the Weibull-

distributions are

determined.

II g' 1W ilb 1 distr. f Hy in, all directions'

Average distribution based on separate
Weibull distribution of Hv in each sector.

Limits for longterm distribution of vave height in
each separate Sector

-1
1g 0Q

- probability of
exceedance

ng, 5.-30 Long-term distribution of wave height.

28'

12'

.

. \

-

-7 -5 -3 -2 0

Q -
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In Fig. 5.30 the long-term distribution of visual wave

heights is displayed. It is seen that the discrepancy

between the original marginal distribution, Table 5.9, and

the marginal distribution calculated from the directional

distributions in Table 5.10, is insignificant. The various

distributions for the directional sectors deviate consider-

ably from the marginal distribution. A more illustrative

display of the directional distribution is presented in

Fig. 5.31. From South East to North East rather small

waves should be expected, whilst North, South and West

give the largest waves at a given probability level.

N fin]

-8.7
[M]

10 level

10-6.7 level

Fig. 5.31 Most probable largest wave height at
-8.7 -6.7probability level 10 and 10

.
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At last the probability density function of the principal

direction of incoming waves must be determined.

From the weather ship "Famita" information are given both

for the wave- and wind-distribution.

According to Eq.(4.23) the point probability of each

direction section of weather state is required in the

long-term model. From the weather ship "Famita" infor-

mation are given both for the wave- and wind-distribution.

In Fig. 5.32 both wind and wave point probabilities are

quoted. The analysis to follow is based on the wave data.

It is expected that using wind data will give nearly the

same distributions.

Modi6ied Long-tetm Modes bated on ConAetation between

H1/3 and t

The conventional long-term model is modified so as to

avoid un-physical combinations of H113 and T, see Chapter 4.3.

Fig. 5.32 Long-term probabilities of the principal

direction of incoming wind and waves.

inccming wind incomIng waycs
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5.4.2 Long-term Distribution of the Response of

the Platform

Genekat Re5ath4

The long-term distribution of the response is calculated,

using the program "LONTIM" (part II of Ref.(104)), with the

following data as input:

transfer-functions as calculated in Section 5.3.3

weather distribution as given in Section 5.4.1

The following long-term distributions are given in terms

of the 4e4pon4e-amptitude:

Long-um 1Li4tkibution o6 the Deck Di4Oacement. Con-

ventional Long-teton Model with att. Wave4 Ptopagating

in one Dinection.

The transfer-functions are given in Figs. 5.17-18. Static

and dynamic responses were considered. Long-crested waves

described by a Pierson-Moskowitz spectrum is assumed.

Further, the conventional long-term model is assumed implying

no correlations between H113 and T.

The parameters in the Hv-H1/3 and Tv-T relationships are:

and the standard deviation of T is S(T) 1.086.

Normal distribution of T is assumed.

All incoming waves are assumed to come from the same direction.

The weather data is therefore given by Table 5.9. In the first

place the waves were assumed to propagate paraleil with x-axis,

and then they were assumed o propagate paralell with the y-

axis.

AU

BH

AT

BT

=

=

0.5

1.33

2.83

0.44

(5.5)



The resulting long-term distributions of the displacement

are given in Figs,,

Displacement
(amplitude)

[cm]
Shear ,modulus of soil: Gs,=, 1_9510'Mtm2

- 131 -

dynamic

static

Fig. 5.33 Long-term distribution of the displacement of
the deck in the x-direction. Transfer-function
is given in Fig. 5.17. Pierson-Moskowitz spectrum,
and conventional long-term model. Weather data
from Table 5.9.

dynamic
static

Fig. 5.34 Long-term distribution of the displacement in the
x-direction. Transfer-function is given in Fig.5.17,
Pierson-Moskowitz spectrum and conventional long-
term model. Weather data from Table 5.9.
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Fig. 5.35 Long-term distribution of the displacement of
the deck in x-direction. Transfer-function is
given in Fig. 5.17. Pierson-Moskowitz spectrum
and conventional ]ong-term model. Weather data
from Table 5.9.

100 years
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Shear modulus of soil:. Gs= 6..0,15710ml

Wave
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static

igQ

Shear modulus of soil'r Gs = 1.65 11/m2

dynamic,
static

.35
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-10 -9 -8 -7 -6 -5 -4 -3 -2 -' 0 1810

Fig. 5.36 Long-term distribution of the displacement of
the deck in y-direction. Pierson-Moskowitz
spectrum and conventional long-term model. Weatile:
data from .Tabl 5.9.
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Fig. 5.37

Displacement
(ampli:tude)

lcm]

-10 .9' ne,

no years'

I.

100 years

-, 133 -

7 -Sitear modulus of soil: Gs= 3.0 - 0 /m2

dynamic
static

-1

Long-term distribution of the displacement of
the deck in y-direction. Transfer-function is
given in Fig. 5.18. Pierson-Moskowitz spectrum
and conventional long-term model. Weather data
from Table 5.9.
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Fig. 5.318 Long-term distribution of the displacement of the
deck in y-direction. Pierson-Moskowitz spectrum
and conventional long-term model. Weather data
from Table 5.9.
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The response at a probability level of 10-8.7 corre-

sponding to a return period of about 100 years is dis-

played in Fig. 5.39. The"dynamic amplification"Yaries

from about 10% for load in the y-direction and a shear modulus

Gs 6.0.10 (N/m2] and up to more than 50% amplification

for a load in the x-direction and a shear modulus of

1.65.107[N/m2]. As might be expected the displacement of

the deck corresponding c a given probability of occurence

decreases towards a limit for increasing shear modulus of

the soil. This limit represents the fixed base platform.

Dis,lacement
(amplitude)

(cm]

100

90

TO

60

SO

40

30

20

10

load in x-direct ion

----load in y-direction
0 dynamic

static

Ow

1 2 3 4 s. Shear modulus. . . 5.
[lo'N/m2]

Fig. 5.29 Displacement of the deck at the probability

level 10-8.7, as a functicn of the shear modulus

of the soil.
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Long-tetm DidtAibution o6 the Moments in the Shat.

Conventionat Long-teAm Model with att. Waved Phopagating

in one DiAection.

The statistical treatment is based on the same assumption

utilized by evaluating the displacement response in the pre-

vious section.

Figs. 5.40-41 display the long-term distributions of the

moments in the shafts.

The effect of a variation of the shear modulus in the soil

is displayed in Fig. 5.42. The moments are less sensitive

to the variation of the shear modulus than the displacement.

This is due to the rigid body rotation of the platform

which gives rather large contributions to the displacement,

but introduces no internal forces in the structure. It is

interesting to note that the maximum response does not

necessarily occur for the minimum shear modulus in the

actual range of variation. This fact may be explained by

examining the differences in the corresponding transfer-

functions.

When loaded in the x-direction, the maximum dynamic amplifi-

cation is about 82% for the moment in the top of Shaft no. 1,

and about 52% in the bottom of the Shaft, see Fig. 5.42.

Fig. 5 .43-44 display the long-term distribution of the moment

at the top and bottom of Shaft no. 2. A constant shear

modulus in soil Gs 3.0.10 [N/m2] is used.

There is a remarkable difference in the dynamic amplifica-

tion for the case with waves progressing in the y-direction as

compared to the x-direction. From Figs. 5.43-44 it is seen

that the dynamic amplification for waves in y-direction is

34 % and 22% for the moment in the top and the bottom of

Shaft no. 2 respectively, as expressed on probability level

10-8'7.



- 136 -

--- dynamic
o G .1.65.107(N/m21
o r.,'.3.00 io'[Dihn2

Gss.6.001o7(m/m2J
-- static

Wavc,

181,Q

Fig. 5.40 Long-term distribution of the moment M at the
top of the Shaft no. 1. Transfer-functions are
given in Fig. 5.21. Pierson-Moskowitz spectrum and
conventional long-term model. Weather data from
Table 5.9.

Again,this of course must be explained on the basis of

the transfer functions. As previously emphasized, a

major source for the difference is differences in the

phase angles between maximum wave loads on the shafts.

If the transfer-functions for the moments are more care-

fully examined, it might be seen that maximum response

probably should be expected when the shear modulus in the

soil is in the range 1.5 - 3.0.10 [1,17m2)

-9 -8 -7 -6 -5 -4 -3 -2 -1 0

X
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Fig, 5.41
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16

16

.344

12

10

Long-term distribution of the moment M al the
bottom of the Shaft no.l. Transfer-fuXctions are
given in Fig. 5.23. Pierson-Moskowitz spectrum and
conventional long-term model- Weather data from
Table 5.9.
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,--- dynamic
o =1.65-1071N/m7g
o G1=3.00.101(N/e1
%

static

0
1g10(21

Sheaf"
modulus

5. 6. [10'N/m2]

no. 1 at probability level
Lo 2. 31.

Fig, 5.42 Moments My

10 , as a function of the shear modulus in

soil. Wave propagating in x-direction.
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-8.7
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Fig. 5..443 long-term distribution of the moment M at the
top of Shaft no.2. Load in y-direction).( Shear
modulus in soil,G = 3.0.107[N/m2):Transfer-func=
tion is given in fig. 5.22. Pierson-Moskowitz
spectrum and conventional long-term model.. Weather,
data from Table 5.9.

-- dynamic
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Long-term distribution of the moment Mx at the
bottom of Shaft no.2. Load in y-direction. Shear
modulus in soil, Gs = 3.0107 (N/m2)

i
. Transfer-

function is given n Fig. 5.24. Pierson-Moskowitz
spectrum and conventional long-term model. Weather'
data from Table 5.9.
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Long-tettn Disttibutions o6 the Response 6oli. Diekent
Nitection.o. Conventionat Long-tekm Model with cat Waves

ptopagating in one Ditection.

In this part of the study, the platform is, as before

located with the x-axis in East direction and the y-axis

in North direction. The shear modulus in soil is fixed,

Gs
3.0107 [N/m2].

Only long-crested waves are considered and it is assumed

that there is no correlation between H113 and

Parameters in Hv-H113 and Tv-t relationship are given by

Eq.(5.5) and the Gtandard deviation of the mean wave period

Sc(t) is 1.086. Normal distribution of i is assumed.

For a given response quantity the maximum response at a given

probability level can be determined by assuming all weather

to be uni-directional, but vary the direction of the weather

progress to obtain the maximum response.

Consider the moment M at the top of Shaft no. 2 and assume

W 7

Fig. 5.45 Identification of

direction.
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a long-term sea-state as

given by Table 5.9. The actual

directions of wave progress are

identified in Fig. 545.

The resulting long-term

distributions are displayed in

Fig. 5.46

=



Fig. 5.47

= 14,0 -

3-9

Fig, 5,46 Long-term distribution of the moment M at the
top of Shaft nr. 2. Pierson-Moskowitzxspectrum
and conventional long-term model. The marginal
distribution of wave heights (Table 5.9) is
utilized for each of the directions.

IN

Marginal Weibull distribution of Hv

in all directions acc. to Table 5.9

Most probable _Largest moment M at the top of
Shaft no.2, at a probability level 10-8-7. Pier-
son-Moskowitz spectrum and conventional long-term
model. Weather conditions according to Table 5.9
for each of the directions.
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The long-term distributions in Fig. 5.46 clearly express

the effect og directionality on the response.

Furthermore, it should be noted that maximum long-term response

is obtained for incoming weather in the Direction no. 3 and not

normal to the x-axis. Again the worst direction depends on a

combined effect of resonance conditions and phase difference

between loadings on the shafts. Fig. 547 displays the most

probable moment amplitude at probability level 10-8'7 as

depending on the wave direction.

Rather than letting all weather come from one direction,

a more consistent method would be to account for the direct-

ionality (a) of the long-term variation of the weather. By

utilizing the conventional longterm model, the directionality

can be described by establishing "long-term" distribution for

a discrete number of directions. In Table 5.10 a Weibull

dirtribution for the visual wave height for some directions

is established for a region surrounding the location 57°30'N

and 3°E in the North Sea.

Firstly, the long-term distribution of the moment M. at

the top of Shaft no. 2 is determined by applying the actual

distributions of wave heights associated with each direction

separately. The distributions for the response are shown in

Fig. 5.48. Note that the response for waves progressing for

instance southwards and northwards are determined separately

to illustrate the effect of the difference in weather coming

from North and South, respectively. However, since transfer-

functions are identical for these "two directions", it is

necessary to consider 6 rather than 12 directions in the

statistical treatment.

Table 5.10 contains directions with both "worse" and "milder"

wave height distributions than the "average" marginal

distribution in Table 5.9. Therefore, the response, M.,at the

top of Shaft no. 2 is about 20 percent greater by applying

the "actual" distribution for Direction no. 4 as compared to

applying the "average" distribution (obtained by combining the

wave height distribution for all directions). Even if the per-

centage of 20 is unreliable due to the lack of information by

preparing the directional distribution in Fig. 5.10, it ex-

141 -



presses a correct trend.

Secondly, the long-term distribution of the response IS

determined when accounting for the actual directionality

of the long-term sea-state, see Table 5.10. The probability
that the incoming weather fall within, a given directional

sector is then given in Pig, 5.32.

The result thus obtained may be compared with the long-terth

distribution obtained by using the marginal long-term data

in Table 5-9.. By the consistent method the most probable

largest response amplitude on probability level 10-8'7 was

found to be 29.0.107, while the other approach resulted in

ao -s (see Fig- 5.43).

Due to lack of reliable data for the directional distribution

of wave heights all weather is oftenly assumed to come from

one direction, using Table 5.9. Furthermore, it is natural
to let the wave propagate in the most adverse direction for

the actual response quantity of current interest. It might

be expected that the most probable largest response amplitude

Separate Weibull distribution
of H in each sector acc. to
Tablg 5.10

142

-9 -8 17 -6 -5 -4 -1 -2 -1 0 log IA

Fig. 5.4,8 Long-term distribution of moment Mx in top of
Shaft no. 2. Pierson-Moskowitz spectrum and
conventional long-term model. The actual long-
term distribution of wave heights for each direction
is utilized (Table 5.10)_
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found by this analysis would be very conservative. Assuming

all weather to come from direction no. 3 the most probable

moment-amplitude is found to be about 32107 Nm (probability

level 10-8.7). From the conditional distributions given

in Fig. 5.48 the marginal long-term distribution is found,

and the most probable largest moment-amplitude is about 29.5.

107 Nm (probability level 10-8'7), in other words about 8%

less than the value found by assuming all weather to come

from one direction. What is said here is valid when the

structure is orientated with the x-axis towards East. In the

next part, it will be shown that the orientation of the

structure seems to be of great importance.

Looking at Fig. 5.48 one would possibly expect the marginal

distribution to give a lower value than given above, but

recognizing that the marginal distribution is given as

Q(x) = QID(xla) PDIR,D
ID

Most probable largest moment,

Mx in top of Shaft no. 2 at

probability level 10-8'7 and

10-6'7. Separate Weibull-

distribution of Hv in each

sector.

Fig. 5.49



one will see that the marginal distribution is dominated of

the "highest" conditional distributions, specially for greater

response-amplitudes.

The matginat Long-tetm Diattibution o6 Re4pon4e 6ok

Vatiouz Otientations oti the Reat6otm. Conventionat

Long-tetm Mode.

The marginal long-term distribution of the moment at

top of Shaft no. 2 is calculated for 6 various orienta-

tions of the platform. The statistical treatment is

similar to that outlined in the previous sections.

Two cases of weather data is applied, namely:

uni-directional,("marginal"), Table 5.9 and Fig. 5.32

directional data according to Table 5.10 and Fig.5.32.

In the first case, the long-term distribution is nearly

independent of the orientation since the wave height dis-

tribution is the same for all directions. A negligible dif-

ference is found since the direction-probability in Fig. 5.32

is varying with the directions, see Fig. 5.50.

In the second case, the orientation of the platform have

a significant effect. Fig. 5.50 displays the upper and

.ower bound for the marginal distribution. The differ-

ence between maximum and minimum moment-amplitude is app-

roximately .L5% on a probability level of 10- 7 for this

case.

In Fig. 5.51 the most probable largest moment amplitude

is given for each orientation at cwo probability levels.

Furthermore, assuming all weather to come from one direction,
-8,7the most probable . drgest moment-amplitude at 10 level

was found to be 32.10 [Nm]. Comparing this value with the

most probable largest value given in Fig. 5.51, probability

level 10-8.7, it is seen that for Y- 150o the above value

is te44 than the marginal value.

144 -
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Fig. 5.50
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Upper and lower limit for the long-term dis-

tribution of the moment Mx at the top of

Shaft no. 2 for various orientations of the

platform. The platform is turned 180° in steps

of 30°.
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limits for m,mentvariation
when marginal Weibull distri-
bution of :4, is assumed in
all directions

limits for momentvriation
when ceparat Weibull distri-
butions arc assumed in each
sector

Prob.level 10-8'7

Prob.level 10-6.7

S
I i I - I.L0 I

30 60 90 120 150 180 r
Fig. 5.51 Variation in the most probable largest moment,

Mx, in Shaft no. 2 by varying the orientation of

the platform in steps of 300. Long-term analysis

based on "actual" directional data, Table 5.10

and Fig. 5.32.
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Since the actual directional distributions constructed

for the present investigation (Table 5.10) is rather un-

certain, no final conclusions can be made. However, the

results indicate that:

the orientation of the structure, y, is an

important parameter

one should be rather careful to treat the most

probable largest response-amplitude, found by

assuming all weather to come from one direction,

as an overestimated value.

5.4.3 Parametric Studies on the Statistical

Treatment of the Response

Genetat Remaths

Thusfare, Chapter 5.4 has been devoted to the statisti-

cal treatment of the response by means of a version of

the conventional long-term model.

In this section some preliminary studies will be reported

on the investigation on the uncertainties inherent in the

statistical modeling.

The following items will be considered:

choice of wave spectrum

effect of short-crested waves

parameters in the conventional long-term distri-

bution

In particular the empirical relation between visual

and absolute (instrumental) wave-period and -height

modified long-term model, Correlation between H113

and T.

In this study a single dynamic model will be considered

for the platform in Fig. 5.1. The shear modulus of the

-
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soil is assumed to be Gs = 3.0107 [N/m2].

The transfer-functions for the moment M at the top of

Shaft no. 1 and the moment M at the top Of Shaft no. 2

will be considered.

Long-tetm DistAibution4 o6 the Re6ponSe iot Di66etent

Wave Spectka, Conventional and Modi6ied Long-tetm Modes

with Uniditectional Long-tetm Wave PAxpagation.

The following spectra were considered

Pierson-Moskowitz

Jonswap (with various peakedness factors)

Derbyshire-Scott

Modified Derbyshire Scott

Only long-crested waves were taken into account.

The conventional long-term model is applied with the

data in Eq.(5.5)

The modified model is applied assuming a correlation between

T and H1/3 as expressed by Eqs. (4.41 - 4.44). The numerical

value on the equilibrium parameter o is here assumed to be

a = 0.0081 (5.6)

The uni-directional long-term wave data in Table 5.9 were

utilized.

The results are displayed in Figs. 5.52- 53. It is

observed that the discrepancy between the results of the

conventional and modified long-term model is significant.

The conventional and modified long-term model will be dis-

cussed in a subsequent parameter study. Also, the choice

of wave spectrum has a definite influence on the distribution

of response amplitudes. In particular it is observed that

the upper bounds on the long-term response is obtained by

different spectrum models, depending upon the response

quantity considered.

-
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Fig. 5,53 Long-term distribution of moment, Mx at the

top of Shaft no.. 2_ Dynamic analysis. Uni-

directional wave data, Table 5.9.
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Long-tom Dizttibution o6 the Respon4e 6ok Di66etent

Ditectionat Wave SpectAa. Conventionat Long-tekm Model

with Uniditectionat and Ditectionca Long-tekm wave Pkopa-

gation.

The platform is orientated with the x-axis in East

direction. The moment response, Mx at the top of Shaft

no. 2 is considered.

Up to now long-crested waves have been assumed in the

determination of long-term distributions. A more rea-

listic representation of the sea is to assume short-

crested waves, using a two-dimensional wave-spectrum,

given in Eq. (4.1). Appropriate directional functions

are given in Eqs. 04..9 -10 ). The present investigation

is accomplished with Pierson's and Mark's representations.

Parameters in the relationships between H-H1/3 and Tv-T
in the conventional long-term model are

AH 0.5

BH 1.33 (5.7)

AT 2.83

BT 0.44

Two alternative long-term wave-height distributions were

applied

unidirectional long-term wave propagation, using

Table 5.9. The two directions 3 and 4 in Fig. 5.45

were considered.

directional long-term distribution assuming a separate

Weibull-distribution of Hy for each direction,Table 5.10.

The resulting long-term distributions for the response are

given in Figs. 5.54-55.

In the unidirectional long-term model a strong reduction

in the most probable largest moment amplitude was found for

Direction no. 3. For this direction, which is the most

adverse for the actual response when long-crested waves

=

v
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are assumed, a reduction of about 17% was found, when

using Pierson's directionality function.

For Direction no. 4, which is close to the most adverse

direction, the corresponding reduction was only about 7%.

Therefore, as can be observed in Fig. 5.54 the Direction

no. 4 (of nos. 3 and 4) is the most adverse direction for

the actual response quantity when short-crestedness is

accounted for.

The reason for the significant reduction found for Direction

no. 3 is that the transfer-functions in the neighbourhood

of Direction no. 3 are considerably smaller than the transfer-

function for Direction no. 3, see Fig. 5.47. For short-

crested waves a part of the energy is put in transfer

functions which have a small response level. Hence the

total response is reduced.

When Direction no. 4 is the principal direction, the

neighbouring directions do not represent a much lower

response level than Direction no. 4 itself, Direction no. 3
do even represent a higher response level. Hence the re-
duction is less significant than for Direction no. 3.

If the principal direction is chosen to be a direction

corresponding to a small level of the transfer-function,

the use of short-crested waves instead of long-crested

waves will increase the response.

For the second case, Fig. 5.55, the most probable largest

moment on probability level 10-8.7, is found to decrease

with about 7%, using Pierson's directionality function.

The sensitivity of the modified model with respect to the

choice of directional spectrum is expected to be of the

same order as for the conventional model.



Fig. 5.54 Long-term distribution of moment Mx in the top
of Shaft no. 2. Pierson-Moskowitz spectrum with
long- and short-crested waves is considered. Con-
ventional long-term model with unidirectional
waves, Table 5.9 is assumed.
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Fig. 5.55 Long-term distribution of moment M in the top
of Shaft no. 2. Pierson-Moskowitzxspectrum with
long- and short-crested waves is considered. Con-
ventional long-term model is assumed. Separate
Weibull-distriVution of Hyn each sector, Table

30

20

0

-9 -8 -4 -1 1g,

5.10.

lgiaQ-4 -3 -2 -1 0



- 152 -

Long-tetm Disttibution oi the Re4pon4e by vatyZng -tire

Retationzhip, between T and Ty

The moments M and Mx in the top of Shaft no. 1 and

Shaft no. 2 respectively are considered.

The statistical analysis is based on the Pierson-Mosko-

witz spectrum and the alternative parameter sets for (AT,

BT) given by Eq,(5.8)

AT 2.83 BT 0.44
<5.8/0

AT 0.74 BT 1.00

These sets were proposed by NordenstrOm, Ref.(81), The..

parameters, relating K113 and Hy are given by Eq.(5.2)

20

.15

5

10 15 20

Tv

Fig, 558 The relations between Ty and D(t)

E(T)=AT.Tv

10

E(T)=T

AT=0.2N
BT .00
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The long-term wave data given in the Table 5.9 are

utilized.

Figs. 5.57 and 5.58 display the effect of the choice

of parameters on the long-term distribution of the

moment.

The variation of the long-term distribution of the

moments with the different parameter sets are rather

small.

The long-term distribution for both response quantities

obtained by quasistatic analysis is particularily insen-

sitive to the parameter variation.

The results displayed show that the parameters in the

relation between Tv and E(T) might be of great importance

for problems where highly peaked resonance top exists.

When the transfer-function do not have this typical re-

sonance top the choice of parameters seems to be of less

importance with respect to the result.

The two parameter sets recommended by NordenstrOm re-

presents two different interpretations of existing data

from weather stations in the North Atlantic. The differ-

ence in the result between these two sets is rather small,

- 3 - 4 % in Fig. 5.57. However, it is not quite sure that

the relations above are valid for the North Sea.

It is, of course, possible that an actual relation found

for the North Sea might have a greater influence on the

results.

- -
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Fig. 5.57 Long-term distribution of moment M ifs top

of Shaft no. 1. Pierson-MoskowitzYspectrum
and conventional long-term model. Long-term
wave data from Table 5.9. Variation of para-
meters relating T and Tv

Long-tekm Diattibution og the Response by aAsuming Con-

tetation between H and t ModiAed Long-tetm Mode-EA
T/3 -

The response for the moment M at the top of Shaft no. 1

is considered. The Pierson-Moskowitz spectrum is applied

with no directional spectrum- Parameter sets relating

H1/3-Hv and T-Tv are given by Eq.(5.5), and T is assumed

to be normal distributed. Unidirectional wave data accor-

ding to Table 5-9 are assUmed-

The effect of introducing a correlation between H113 and

T in their join probability distribution is investigated,

See Chapter 4.34

Besides the Uncertainty by assuming an equilibrium spectruM

itself, the constant a in Eq.(4.37) may vary. Two values

for a,, namely a = 0,0081 and = 0.02 are therefore utilized..,

Av.
nen

dynamic
static

- -

8 7 6 3 2 1

a
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M 1.00

AT=2.83

AT=0.75
BT=1.00

AT=2.83
F2=0.44

t 1

-9 -8 -7
o

-6 -5 -4 -3

dynamic
static

Mx

4 6
Waves

0
1g1 0Q

Fig. 5.58 Long-term distribution of moment in top of
Shaft no.2. Pierson-Moskowitz spectrum and
conventional long-term model. Long-term wave
data from_Table 5.9. Variation of parameters
relating T and Tv.

The result of the analysis is given in Fig. 5.59 and Figs.

5.52-53. The discrepancy between the conventional and

modified model is rather great, in particular for the

dynamic response. Originally, the dynamic amplification

was calculated to about 80% at a probability level of

-8.7. With the assumption of correlati10 on between H113

and T, the dynamic amplification is reduced to about 40%.

The discrepancy between the results for a = 0.02 and

a = 0.0081 is about 5%, as is seen in Fig. 5.59. In the

reality a will probably vary from 0.008 for T > los to

a - 0.03 for T - 3 and the most realistic result will pro-

bably lie between the results for a = 0.02 and a = 0.0081.

Obviously this modified model is associated with uncertain-

ties since the long-term joint distribution for H1/3 and T

35
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, 20
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is constructed based on certain assumptions rather than

measured data. The most important incertainties are

the determination of the area R, see Fig. 4.

the assumption of FFia,L,. independent of H113

As will be shown in the next sections, the modified model

seems to give sore realistic "extreme values" than the

original model when comparing with the results from a short-

term analysis. However, further research is necessary before

final conclusions can be made.

Using long-term model on the response of ships and

semisubmersibles, the results will probably not be

influenced by this problem. This is due to the fact

that ships and semisubmersibles have their eigenfrequen-

cies in a very low frequency range.

no correlArion between H and t

?OtitLtion between H and fov

----with correlation between Hii, and f
0 Dynamic

4. Static

Fig. 5.59 Long-term distribution of dynamic and static

Moment M at the top of Shaft no. 1. Pierson-
Moskowit spectrum and conventional long-term
model, and modified model with correlation

assumed. Unidirectional wave propagation, see
Table 5.9.
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Long-tetm Di4thtbution aA the Rezponze. Notmat

vehau6 Log-noxmat V tLbtJo o Avehage Mean

Petiod.

The moment M in the top of the Shaft no. 1 is considered,

the transfer-function obtained by the dynamic analysis

is utilized.

The conventional parameter set in the relationship between

Hv-H1/3 and between Tv-T are utilized, see Eq.(5.5)

The conventional and modified long-term models are applied.

The long-term distributions are displayed in Fig. 5.60.

The effect by the choice of distribution for the average

mean period is greatest for the conventional long-term

model. Using the log-normal distribution the most prob-

able largest moment-amplitude, on probability level
.

10 , is reduced with about 10%, for the original long-

term model. Principally this difference is originated

in the lowest classes of visual wave period, and is due

to the skewness of the log-normal probability density

function, and to the fact that the highest eigen-period

is lying in the area where this skewness is causing a

rather great difference between the normal- and the log-

normal probability density functions.

The actual transfer-function is highly peaked for the

lowest eigenfrequency. For responses with less peaked

transfer-functions, the discrepancy will probably be less

than for the example given here.

Using the modified long-term model the difference in the

most probable largest moment-amplitude on probability
-8.7

level 10 is less than 3%, and of rather little inter-

est.
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no correlation between H1/3 and 7'

___ with correlation between H1/3 and T

o normal distribution for T

log-normal distribution for I

4r,

Fig. 5.60 Long-term distribution of moment M in the
top of Shaft no. 1. Pierson-Moskr4itz spectrum
with conventional and modified long-term model.
Effect of choice of distribution for average
mean period.

5.4.4 Remarks on the Design Wave Approach and Short-

term Stochastic Response Analysis

Gene/La 4ema4124

As mentioned in the introduction the design is in general

concerned with

a single excursion failure (excessive yielding, or

cracking, collapse,..)

or,

failure by cumulative damage (fatigue)

-9 -8 -7 -6 -4 -2 -1

4

-3
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In the first case an extreme value of the response (at

a low probability level) is required. In the second

case the number of cycles for each amplitude (and mean

stress level) is required.

In this section extreme response values obtained by the

design wave, short-term and long-term approach will be

compared.

Design Wave Apptoach

According to Ref. (2) a platform may be designed by deter-

mining the extreme response by placing the structure in a

sinusoidal long-crested wave with height corresponding to

an extreme wave. The return period is in general chosen

to be 100 years. The wave height is determined by appli-

cation of long-term statistics on wave height data.

In the design against a single excursion failure the wave

period and the location of the structure with respect to

the wave is varied so as to obtain the maximum response

value. In this case dynamic effects can be accounted by

using a dynamic load factor (DLF)- which for the present

platform is in the range 1.05 to 1.25 depending on the

soil conditions. The lower bound of the wave period to

be chosen depends on the limit for wave breaking.

The moments M and Mx at the top of Shaft no. 1 and 2, res-

pectively, are considered. The shear modulus of the soil

is Gs 3.0.107 [N/m2].

The wave height is taken to be 29 m, see Fig. 5.30,

corresponding to the data in Table 5.9.

The moment-amplitudes for waves with wave-amplitude 1 m

is taken from the transfer-functions, Figs. 5.21 -5.24.The

response for waves with height 29 m is then found by



Shott-tetm Re4pon4e Ancay6i4

The long-term state consists of a series of short-term

states. The short-term state (a single stationary storm

state) may be utilized to estimate the extreme response

value.

The stationary sea-state is then defined by for instance

the two parameters H1/3 and T. The important decisions by

the short-term response analysis is the choice of type of

spectrum, (including directionality function), H113 and T.

Now, there exists a relation between the extreme wave height

Hmax in the storm and the H1/3 and the mean period T in

the sea-state.

Assuming a (stasionary) storm of duration 12 hours, corre-

sponding to about 3.6.103 maxima with an average mean period

I . 12 seconds. Tie most probable largest maxima ,x, is found

from Eq.(4.20) inserting the Rayleigh parameter r42m0

- 160 -

multiplying the values from the transfer-function by

14,5.

Table 5.11 Deterministic response. Design loads

= E(x) = rl[i]=61-71
0.5772

2/27i71
(5.8a)

Dynamic Static Dynamic Static

16 12.8 11.0 21.5 19.7

14 15.1 12.5 26.1 22.6

12 18.7 15.9 31.9 27.2

Wave Moment,M , in Moment, M. in

period Shaft no. 1 Shaft no. 2

[seconds] [107 Nm] [107 Nm]

+



Average wave

period, T

[seconds]

Moment M in

top of Shaft no.1

[107 Nm]

Dynamic Static
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3 -
with N = 3.60-10 x is found to be

= 2.96r (5.8b)

The Rayleigh-parameter r for the two sea-states is taken

from the output of LONTIM, and F is given in Table 5.12.

Thus, the sea-state (H113,T) may be chosen so as to yield

the same extreme wave height as mentioned in connection

with the design wave approach.

A storm duration of 12 hours, H113 = 13.8 m, T 12 secs.

corresponds to H 29 m.

Table 5.12 Design response values by short-tem

approach. Pierson-Moskowitz wave spectrum

with significant wave height 13.8 [m].

Storm duration 12 hours

Moment Mx in

top of Shaft no. 2

[107 Nm]

Dynamic Static

Fig. 5.61 illustrates the influence of storm duration on

the peak response.

Shott tenm ne4pon6 ion diiienent wave spectna.

A study on the effect the choice of wave spectrum has on the

short term respons was performed. Figs. 5.62 and 5.63 display

the results obtained by applying 5 different wave spectra.

Calculation was performed assuming

significant wave height H113 = 15[m]

storm duration L r 12 hours

16 14.2 10.4 22.5 19.1

14 16.2 11.5 25.4 22.0

12 18.9 13.3 28.0 24.4

-
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10 15 20

Storm duration [hours]

Fig. 5.61 Expected peak moment in top of Shaft no. 1,

versus storm duration. T 12 seconds, H113

13.8 meters.

The mean period in the wave spectra was varied between 10 and

18 seconds. The dynamic peak response in top of Shaft No. 1

and 2 are considered. As displayed the variation in the re-

sults are significant. The difference between maximum and

minimum peak response varies between 18 and 77 percents of the

minimum peak response. Only parts of the region where respons

is calculated should be regarded as significant. According to

the admissibility condition, Eq. (4.38), only spectra where T

is greater or equal 14 seconds are physically allowable when

the equilibrium constant is assumed to be 0.01 and H1/3 15[m].

The results states that care must be taken in choise of wave

spectrum when short term respons is calculated.

Compatizon between Detexminiztic, Shont-tekm and Long-tetm

Re4ponze AnatysiA

The response, for which comparison is made, is the moment

in the top of shafts no. 1 and 2.

Table 5.11 give the deterministic response. Compared to

the short-term peak response given in Table 5.12 no signi-

=
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Admissible region for
according to Eq. (4.38)
with a = 0.01

Short-term distribution of peak

1

28tf
29

sj

moment -

response in top of Shaft no. 1. H113 = 15 meters,

Storm duration is 12 hours

Admissible region for
according to Eq. (4.38)
With a = 0.01

Fig. 5.63 Short-term distribution of peak moment-

response in top of Shaft no. 2. H1/3 = 15 meters,

Storm duration is 12 hours.

-

-

-J



- 164 -

ficant difference is observed when the periods are 14 and 16

seconds. At a deterministic period T r 12 seconds a

significant difference is obtained. This is probably due

to a physically not permissible period/wave-height ratio.

Accordingly, the deterministic and short-term analysis is

in reasonably good agreement when the Pierson-Moskowitz

spectrum is applied for the present structure/soil/ocean

system. Other wave spectra may, however, give a significant

difference between these two calculation procedures. The

dynamic amplification is also in good agreement for the

deterministic and the short-term model.

A slightly higher amplification is observed in the short-

term model. This should be expected as the short-term

model includes parts of the transfer-function where the

dynamic amplification is high. In the actual analysis

the damping for the fundamental mode is about 10 % of

the critical damping. With a lower value for this damping

the dynamic amplification will increase when short-term

response is considered. The deterministic model, however,

will not be affected when the eigenfrequencies in the

structure is in a high frequency range. Thus greater

difference between deterministic and short-term response

should bc expected when the damping is reduced.

The long-term response is as mentioned, affected by several

parameters. The results obtained by short-term and deter-

ministic analysis are herein compared by three variants of

the long-term model. The response in the top of Shaft no. 1

is considered.

Firstly, the conventional long-term with Pierson-Moskowitz

spectrum, with no directional wave spectrum is assumed.

Directional wave height data and a nomal-distribution for

T are assumed. The most probable largest moment amplitude

on probability level 10-8.7 was found to be
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Dynamic: 28.4.107 Nm

Static: 16.0107 Nm

"Dynamic lodafactor": 1.78

Secondly, let T follow a log-normal distribution rather than

a normal one. The corresponding values is then found to be

Dynamic: 25.8107 Nm

Static: 16.0.107 Nm

Dynamic loadfactor: 1.61

Comparing these values with the values from the

deterministic- and short-term model, the following

seems to be clear:

The original long-term model overestimates the extreme

values, and in particular by application of dynamic analysis.

The reason for this is discussed in Section 4.

Thirdly, using the modified long-term model instead of the

conventional one, (and assuming T to be normal) the most

probable largest moment amplitude on probability level 10-8'7

was found to be:

Dynamic: 16.6.107 Nm

Static: 12.0.107 Nm

Dynamic loadfactor: 1.38

This is of the same order as predicted by the determini-stic-

and short-term model. According to the discussion in Section

4 the modified long-term model is expected to be more realistic

for estimating long-term extreme values.
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

Fixed base gravity platforms in water depth up to 150 in

have fundamental eigenperiods ranging up to 5.0 seconds.

Dynamic amplification of the response to wave loading

occurs if eigenperiods are increased towards the band of

periods of ocean waves where large energy concentration

is present. This increase of eigenperiods may be due to

extra flexibility provided by the soil foundation and/or

increased water depth. In particular, the sensitivity

analysis of the effect of the shear modulus of the soil

showed that the variation of this parameter has a consider-

able influence on the structural response, due to its

effect on the stiffness (and then eigenfrequency) of the system.

Besides the magnitude of the lowest eigenfrequencies and-the

phase differences of forces on different shafts are found

to have a major influence on the response.

For tall platforms on soft soils it is not sufficient to

design the platform on the basis of static response analysis.

The determination of design values of the response and the

dynamic analysis may basically be obtained either by a

deterministic design wave, a stochastic short-term, or a

stochastic long-term approach. In this report emphasizes

has been placed on the latter approach. However, the three

approaches are compared. Parameter studies have been

carried out to investigate the effect of:

choice of wave spectrum

short-crested - versus long-crested waves

assuming all weather to come from one direction

versus assuming a long-term directionality dis-

tribution of incoming weather

the orientation of the structure for a given long-

term directionality distribution of weather

-

-

1
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the relation between visual Wave-period and expected

value of average mean period

the joint long-term distribution of the spectrum

parameters (significant wave height and average mean

wave period):

marginal distribution of average mean period.

dependence between the parameters or not

In the parameter studies on the statistical model, the

same dynamical model was utilized. The shear modulus of
the soil was Gs r 3.0-107 N/m2.

The highest eigenperiod Was 4,5 seconds and the modal

damping for the first two modes was about 101%, of the

critical damping.

The effect of the type of wave spectrum applied in the

statistical treatment was investigated both through short=.

and long-term analyses. In the short-term analysis an

extreme storm situation was considered with significant

wave height of 15 m and various average mean periods.

Discrepancies of the order 25 - 60% in the extreme responses

were observed, depending the choice of spectrum (Pierson-

Moskowitz, Jonswap, Derbyshire-Scott, Modified Derbyshire-Scott.

The effect of the choice of wave spectrum is, as expected,

less as expressed by the extreme values (at a certain

probatility level 10-8.7) obtained through a long-term

analysis. The discrepansies are in the order of 10 -

The difference between the use Of the more realistic

short-crested waves instead of long-crested waves was

investigated by two alternative long-term analyses:

- In the first place all waves were assumed to come

from one direction. Two directions were considered.

The reductions of the response values due to short-

crested waves were 13 and 3 percent, respectively.

-

- 25%.
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-In the second place it was assumed that the estimated

directionality distribution were describing the weather

conditions. The reduction was found to be about 10 %.

However, the size of the reduction is dependent of the

directionality distribution and the orientation of the

structure, and due to the uncertainity in the distri-

bution it is hard to make any final conclusions for

this part.

Reliable data on the long-term directionality is yet not

available. A common procedure for calculating the long-

term distribution of response have been to assume all

weather to come from one direction. The direction is

normally chosen to be the most adverse direction for the

actual response. To investigate the adequacy of the above

assumption a reasonable long-term directionality distribu-

tion was estimated, and the result of this analysis was

compared to the results obtained under the first assumption.

The most probable largest response amplitude, at probabi-

lity level 10-8.7 corresponding to a return period of about

100 years, was found to be of the same order for the two

analyses.

In the foregoing analysis the orientation of the structure

was fixed with all weather coming from the most adverse

direction. However, it is also interesting fo examine the

effect of the orientation of the structure taking the long-

term directionality distribution into account. The orientation

of the structure was changed in steps of 300. For all

orientations the most probable largest response amplitude

on probability level 10-8.7 was calculated. The difference

between the highest and lowest response-amplitude was found

to be about 15%; tne maximum being approximately 10 % larger

than the value obtained by letting all waves come from the

most adverse direction for he actual response quantity.

Although the used directionality distribution is not quite

reliable, it seems to be clear that the orientation of the

structure is an important parameter.
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Investigation on the relation between visual wave-period

and expected average mean period shows that the two rela-

tions recommended of NordenstrOm, Ref.(.811, gives .no signi-

ficant difference in the results.

A primary concept in the long-term approach is the

joint long-term distribution of the wave spectrum

parameters (significant wave height H1I3 and mean average

wave period, T") which completely describe each short-

term state. In the conventional long-term model H113

and t are assumed independent. In the modified for-

mulation the expectation of t is assumed to depend on

H1/3 while the standard deviation of t is a constant. The

relationship between the expectation of t and H113 is

determined so as to avoid physically non-admissible com-

binations of T and H173 (according to Phillips' equili-

brium concepts). Using this modified long-term model, the

most probable largest response amplitude was reduced with up

to about 50% compared with the corresponding values for

the original long-term model.

Comparison between a log-normal--and a normal distribution

for t revealed that the most probable largest moment-
-

amplitude (probability level 10-8'7) was reduced with up to

10% for the original long-term model using the log-normal

distribution, whilst for the modified long-term model the

difference was negligible.

At last a comparison between the deterministic response,

the short-term response and the long-term response was made

for an actual response quantity. The following, conclusions

were reached:

the deterministic model probably underestimates

the dynamic amplification. Using the determini-

stic model is only recommended if the results are.

calibrated to the results from a more accurate

!method

-

-
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method.

the short-term model can be utilized to estimate

extreme loads. But care must be excercised when

chosing the wave spectrum.

the original long-term model overestimate the most

probable largest response-amplitude as compared to

the modified long-term model, which is physically a

more realistic model, and gives results of the same

order as obtained by a short-term model.

A long-term model is the only consistent probabilistic

method to obtain response quantities for design against

yielding and fatigue failure. However, up to now it

suffers from lack of appropriate environmental data, i.e.

data for the joint long-term distribution of wave para-

meters (significant wave height and average mean wave

period. In particular instrumental data on:

the distributions of the average mean period

the correlations between significant wave-height

and average mean period

are lacking.

For design against yielding a short-term model may be

utilized. But in this method deterministic decisions

regarding the weather conditions have to be made. When it

comes to fatigue design, a long-term model is the only

consistent method. The modified long-term model represents

a possibility both for fatigue design and design against

yielding. However, due to the lack of data, further work

is necessary before final conclusions on the modified model

can be made.

In the future efforts must be directed towards improved

modelling of dynamic soil behaviour. More instrumental

information- and in particular on directionality - on

the statistical distribution of wave-spectrum parameters

is required.

-
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A fully reliable long-term model will probably not be

found until one is independent of the visual observations.

The effect of scatter in basic data describing the soil,

structure and sea behaviour, together with uncertainties

inherent in the analysis technique can be transformed

into scatter in response values. This information then

may serve as a basis for a consistent reliability analysis.
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APPENDIX A

A.1 EQUIVALENT MODAL DAMPING BY ENERGY CONSIDERATIONS

Soit Damping

The equivalent modal damping due to the soil may also be ob-

tained by energy considerations, Refs. (25,35,56)'.

Assume that the structure is free to undergo honizontat .-z
translationsu.androtation,6.,in the vertical plane x-z,

Coupled sliding and rocking in the'y-z plane is ti.eLted

in a similar manner. The torsion about a vertical axis

is denoted by Vertical motion is treated separately.

i 1 corresponds to the point at the interface between soil

and structure. Further consider the jith interaction vibration

mode with natural frequency w, (equal to that of the undamped

system).

The work done during a period of vibration T 211w by the

damping forces P(X)

T

AL
I P(x) - dx(t)
0

The damping forces P and moments acting at the footing during

harmonic motion

u1.")=u1.sirw."(31.(t) = 81.sinw.t
: 7 J J 3 3

0/j(t) . chjsinwjt

- 185 -

are

Px(u) = XXu = c ui.w.cosw.I
xx 3 3

M(e) cee6 cee eijwicoswit

M(0) = co$ = co Oijwjcoswit

P(e) "xee = cOL.w cosw.tx6 3 j

M(u) = cext:'
cxe uliwjcosy

(A.1)

(A.2 , a -c)

A.2,d-h)

-
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The total work done by these forces during a period T is

A, = Irwi(cxxuij + 2cx0833,13j + c0e eij + c4,00j) (A.3)

The potential energy of the whole structure can be calculated

as maximum kinetic energy and is

A + E I + (A.4)T in 1 13 in, xi 13 j in, 1 13 j

in which m. = mass, I . mass moment of inertia in the vertical1 xi
plane, J. = mass moment of inertia about the vertical axis and

n the number of masses.

The damping ratio of the structure due to the geometric dampin

(and equivalent viscous damping due to hysteretic effects) in the

soil is defined for the response in the j'th mode as:

%

A,
5. . - (c u'. + 02. 2c.oul iel j3

+ coqqj +2w.m. xx 1D ee 13WITAT

(A.5)

where

M. = E(m.u. + I .0. + J...)
3 n 1 13

xi 13 1 13 1 13

M = E m.w2
n 1 13

(A. 5a)

The effect of the mass moments (I .) is assumed negligible in
xi

Eq.(A.5a).

Similarily, with vertical vibration the equivalent damping

ratio for the j'th mode is

5 1 w'
j 2w.M. zz ij

3 3

(A.6)

(A.6a)

c
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Eq.(A.5) is equivalent to computing the damping matrix

according to 4,TCO and neglecting off-diagonal terms.

Supetzthuctu4e Damping

The damping in the structure may also be transformed into an

equivalent interaction mode damping. The same

argumentation as utilized by Novak, Ref.(36) in the case of

the soil is adopted. Consider for simplicity the coupled

sliding and rocking motion in the x-z plane.

uk+1,j

Fig. A.i Displaced structure in the x-z plane

Assume tnat the equivalent viscous structural damping is caused

by the relative velocity of adjointing stations measured with

respect to the translated an r,tated axis of the structure.

xk(t)
r u1,j(t) - u (t) - h 01.(t)

k+ kj k j
(A.7)- -
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81 . is the rotation of the footing.

Note that index k is utilized to denote the levels in the

vertical direction.

If the structure at a level (k) is equipped with horizontally

rigid braces it is necessary to associate only one mass and

dashpot to each level. Otherwise, the number of shafts deter-

mine the actual number of masses and dashpots.

The work done by all dampers during period T 27/..

A, I f{ c

k=1 0
k k+l,j uki-hIceij)2)dt

where ok is the damping constant of the k'th dashpot.

Assume further that the damping constant ck is proportional to

the mass mk+1 which is attached to the damper from above, and

equal to

ck 2amk+1 (A.9)

where a is a constant common for the whole structure.

Obviously, other damping mechanisms than Eq.(A.9) may be

assumed, Refs.(14,16).

The work for the j'th mode then becomes

AL .2Traw.Em (u -u -h e, )2
3k k+1 k+1,j kj k j

The maximum potential energy (AT) of the interaction problem

is again given by Eq.(A.4).

The effective interaction modal damping due to the structure is

= A
a

Emk+1(uk+1,j-ukj-hk 8,j)2T 3 k

(A.8)

(A.10)

(A.11)=T



Denoting all the magnitudes corresponding to the rigid

foundation bt a "cross", and dividing Eq.(A.11) by the same

expression written for the rigid footing yields the struc-

tural damping ratio for the structure on a flexible found-

ation

where

- 189 -

wt
-2- -2(Em (u -u .-h ei.)2

xj w. M. k+1 k+1 k3 k 3
J J

/(Em (u+ ' )2
k+1 k+1,j kj

Xi is then given as

/ at (u-h'0)2 wI042 r (L)3XI = "FT =
DI wl u2

w, u wri

(A.13)

In Eq.(A.13) 15, 04 and u are the structural damping ratio,

natural frequency and displacement amplitude for mode (j; of

a structure with higid foundation. tj, w and uij are the

corresponding values for the soil-structure interaction

problem. 0'j is the rotation of the foundation. M is com-

puted from Eq.(A.5a) with amplitudes uij, M-3! is computed

from the same equation but using amplitudes . .ulj

The coefficient xj describes the modification of the structural

damping due to foundation flexibility.

Retative Stauctutat Damping in "1 DOF" Modes Stkuctuhe

An important special case is the correction coefficient, Xi

for the first mode.

For the purpose of quantification consider the simple model

problem shown in Fig. A.2.

Consider the simple model problem in Fig. A.2

(A.14)

=
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where the following formula for the 1 DOF system

(A.15)
St

is applied. ust is the static displacement when a force

of magnitude Mg is applied at the top of the structure.

The formula (A.14) was arrived at by Bielak, Ref.(35) and

Veletsos and Meek, Ref.(37) in another manner.

a) Platform vibrating in 22 plane

U2

hk3

I I

.1

I

I

I i oio
I I Notation:
I! U = u2,1 -
I/ 0 0,0

u

c) Displacement in the first 7,,de

b) Model

Fig.A.2 Simple structure

for evaluation of modifi-

ed damping ratio.

==mass is con-

centrated here
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APPENDIX F

The program "RESP" consists of two independent parts.

"RESP" - Computation of dynamic response

in terms of transferfunctions.

II "LONTIM"- Calculation of the long-term

distribution of response.

Simple flowcharts for the two parts

are shown on the following pages.
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( STAR

". READ DATA FOR FINITE ELEMENT

STRUCTURAL IDEALIZATION

SOLUTION OF GENERALIZED

I.

E/GENVALUE PROB F

WRITE EIGENFREnUENCIES

AND MASSmATRIX

'3RITE EIGEN ODES FITE-77)

WRITE STI FNESSIA RIX

'READ DATA FOR STRUCTURAL-,

SOIL, AND OCEAN REPRESENTATION.

READ NUMBER OF LOADVECTORS

(FREQuENcIES),IFRO, Ann WAVE-
DIRECTIONS TO CHARACTERIZE

TRANSFERFUNCTION, READ NUMBER

OF EIGENMODES TO BE USED IN

MODAL SUPERPOSITION

READ LOADVECTOR NO, If

READ FREQUENCY FOR LOADVECTOR

DETERMINE-WEIGHTED MODAL DAMPING

IORMAL MODES SOLJTION OF

EQUATION OF MOTION

WRITE DISPLACEME, AMPLITUDES

AND PHASEANOLES

FILE 12

XIIF 13 )

)FILE

I! ))

---------') FILE 1,4 )
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1 1_

READ ELEMENT NO, AND LOCAL DEGREE

OF FREEDOM NO. FOR WHICH FORCES

ARE TO BE CALCULATED

READ STIFFNESS A RIX

CALCULATE INTERNAL FORCES

STOP

tlo

Fig }3, 1 Flow chart 'RESP"" --_ part

F 15 )

- 1



APPENDIX C EXAMPLE COMPUTER TIMES

Display of typical time comsurTtion (CPU-time) is listed in

Table C.1. The structural model'in the pr:.aent case con-

sists of 21 beam elements and 6 boundary elements. The total

number of degrees of freedom is 102.

Table Cl.

Part 1

Solution of generalized eigenvalue problem,

8 eigenvectors. 23 sec.

Calculation of loadvectors by WACUFO, Ref.

(36) 20 load conditions. 80 sec.

Calculation of transferfunctions for

all displacement components (transfer-

functions were computed for 20 frequencies.)43 sec.

Calculation of transferfunctions for

6 force components. 23 sec.

2 min 49 sec.

Part Ii
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Calculation of long-term response.

Incoming waves in one direction, long-

crested waves, one transferfunction

(described by 20 values). Long-term

distributions for 6 response quantities

were determined. 21 sec.

Calculation of marginal long-term response

Incoming waves in 12 directions, separate

wave parameters and transferfLnctions in

all idrections. Long-term distributions

for 6 response quantities were computed. 3 min. SO sec.
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02. fSRiw,a/cha

(It is implicit that

02 is a function of
and f and a)

CD
Fig.B.2 Flow chart "RESP" part 2

- mail, directian

Of sea

co,0 - dire,ion of

elementary Wave

Wave-spectrum, one- or

twO-dimensional (long-

er shortcrested waves.)

Tables on long-term

wave data, one table

for each direction,.

liven interval of Tv
l,re in the form of:

ilNcrmal-distribution
of average apparant

period, T.

,aibull-distribution
of visual- and sign-

ificant wavehaight.

Trao,ertunctiun cal-

calat, lwr earl°,

wave-d!reetionn

Response-spectrum

Variance:

Short term estimation

of respchse-emplitudes.

Rayleigh-distribution

is assumed, and the

Rayleigh parameter

r2 2o2

Long-term estirnation

of response,

Q(s) - probability of

excoedin, the response

amplitude

-

-


