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SUMMARY

The present study is concerned with the dyaamic response ana-
lysis of gravity platforms subjected to random wave excitation.

structure and the sea. The modeling was planned so as to obtain
a linear system. The structure is treated as the primary system,
for which the response is to be determined. The dynamic behaviour
of the soil and sea is represented by appropriate boundary con-
ditions.

stem. The concrete caisson of the gravity platform is assumed
to be rigid while the flexibility of the steel/concrete super-
structure is modelled by beam elements accounting for bending and

shear flexibility.

The transformation of the modal damping ratio for a fixed base
structure into an equivalent modal damping ratio for the inter-
action system is commented upon.

The soil is assumed to contribute to the stiffness and the damping
of the system. The soil behaviour is represented by equivalent
spring and viscous damping coefficients in the point where the
structure and soil interface.In general, the stiffness and damping

coefficients are frequency dependent.

An elastic half-space model is adopted for the soil. The shear
modulus then becomes the principal characteristic parameter.

Hysteretic losses in the soil are accounted for by an equivalent
viscous damping coefficient. The effect of a potential embedment
of the foundation can also be taken into account by egineering

corrections devised by Novak and co-workers.



VI

The sea primarily represents the excitation forces, but con-
tributes also to the damping and the mass of the dynamic system.

The excitation forces are conveniently separated into forces on
the slender superstructure and the caisson, respectively. The
forces acting on the superstructure by a harmonic wave component
is represented by the Morrison formula. The diffraction effects
occuring by a short wave-length to shaft-diameter ratio are
accounted for by appropriately varying the mass coefficient.
Drag forces are in most cases negligible. The forces on the
caisson are due to potential effects and are obtained from labo-
ratory experiments and analysis applying source and sink techni-
ques. Diffraction effects are accounted for.

The added mass of the surrounding water is determined in a
similar way. Simplified estimates for the damping resulting

from the generation of surface waves and drag are given.
The resulting linear dynamic model is utilized to compute trans-
fer-functions (i.e. steady-state response by a harmonic wave

with amplitude 1 m) for actual response quantities.

The transfer-functions provide a convenient basis for a sta-
tistical treatment of the response in the frequency domain.

In the statistical analysis the sea elevation is described as a

Gaussian process with zero mean.

A stationary (short-term) sea state has a duration of some hours
and is conveniently characterized by the significant wave-
height, the mean wave period and the assumed duration of the
storm. The first two parameters determine a wave spectrum.
Pierson-Moskowitz-, Jonswap-, Derbyshire-Scott and Modified
Derbyshire Scott-spectra were selected to be representative
choices in the present context. A directional functicn to
account for short-crested waves may also be included.
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The long-term variation of the sea may be described as a
series of short-term states with gradually changing spectrum.
A complete long-term description requires the long-term dis-
tributions of the wave-spectrum parameters to be known. In
addition, long-term directionality of the weather states is

necessary.

The following three long-term models are discussed

- continuous distribution of short-term parameters
(conventional method) [a crude approximation for
the directionality of weather is proposed.]

- modified continuous distribution of short-term
parameters to avoid unphysical combinations of
waves [a crude approximation for long-term direction-
ality of the weather is proposed.]

- a three-dimensional discrete "distribution" of wave
parameters (Hl/3’ T and direction, a). Each of the
three axes is subdivided into classes ("blocks"), and
a probability is associated to each three-dimensional
"block", as recorded by wave observations.

The statistical treatment of the #tesponse may either be
carried out as a short-term or a long-term analysis. Both

approaches are considered herein.

Numerical studies are carried out. The structural characterics
are the same in all cases. The shear modulus of the soil is
varied and the effect of the direction of wave progress is in-
vestigated.

Dynamic amplification is found to be significant and must be
tanken into account by the design of the actual type of struc-
tures. The magnitude of the shear modulus is of paramount
importance for the response level.




Besides the magnitude of the lowest eigenfrequencies, the
phase differences of forces on different shafts and the
direction of wave progress are found to have a major in-

fluence on the response.

Preliminary parameter variations have been accomplished to
study the effect of the choice of wave-spectrum and spectrum
directionality. Significant scatter in results obtained by
various spectra is found. BAmong the four spectra utilized
none gave consistently the largest response value.

The conventional continuous long-term model and its modified
Yersion - by suppressing unphysical combinations of H1/3 and
T occuring in the conventional approach - were applied and
considerable deviations were found in the respective long-
term distributions. Further research will be needed in
establishing reliable long-term models. The simplest and
most reliable model is believed to be the discrete model,

although it excludes the most extreme sea conditions.




IX

Notation
5
a, - Dimensionless frequency a, = ar v/ %i
A - Area ) '
A - Parameter in the general wavespectrum
AH - Parameter in relation between Hl/3 and Hv
AT = Parameter " " w T and Tv
AL = Work done by the damping force during a cycle
AT = Maximum kinetic energy
BH - Parameter " » » ?l/3 and Hv
BT -~ Parameter " w L T and T
B - Parameter in the general wavespectrum !
B¢ - Constant defining The torsianal damping coef.
(8! - Parameter in the Derbyshire Scott wave spectra
CH - Coefficient for the horisontal force on the caisson
Cr - Total inertial force coefficient
cj & Dimensionless damping coefficient
o Optimal damping coefficient
CMi = Inertial force coefficient
i=1 Froude-Kryloft force coefficient
i=2 Inertia force vcefficient
CD = Drag forec coefficient
CMD — Damping force cocificient
CMT - Coefficient taking into account the overall
modification of the pressure on top of the
structure due to the presence cf tha structure
CMB = Coefficient taking into account the overall
modification of the pressure cn the bottom
of the structure due to the presence of the
structure
CT - Coefficient which takes into account the overall
modifications of the pressure on the top of the
structure
CB - Coefficient which takes into account the overall

modifications of the pressure under the bottom

of the structure
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Diameter (caisson, ﬁile etc)

Hysteretic damping ratio

Damping ratio for the j'th mode of vibration
of loading on the caisson

Eccentricity of loading on the caisson

e = sR/sl

Young moduius

Statistical expectation ("average")
Statistical marinal expectation

Probability density function

Cuniulative probability function

Coefficient for horizontal caisson force
accounting for the shape and size of the
structure. For each shape (eylindric, tri-
angular etc), the coefficient is a function
of YA/,

Coefficient for overturning mom=nt on the
caisson

Coefficient for vertical caisson force

Flexibility functions

Distance from equilibrium line ih the joint

distribution for H1/3 and T
Directional function
Accelration of gravity

Dimensionless dampingcoefficient
Shear modulus

Sea depth
Depth from sea surface to the top of the caisson

Unit impulse response function
Wave height (peak to through distance)
Significant wave height

Parameters in the Weibul distr. of visual wave height

Parameters in the Weibul distp, of visual wave height
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The imaginary number i = /-1
Moment of inertia

Number of intervals of T
Number of intervals-of HlIS
Wave number, k = 2u/X
Parameter in the wave spectrum

Parameter in the directional function of the
wave spectrum

Stiffness functions

Parameter in the wave spectrum

Duratian of a short term period

Mass
o -
Moments of the spectrum, m, = S w*S(w)dw
0

Constant in the directional function
Number of maxima (peaks)

Number of recordings in a block (I, J)
in intervall ID

Total number of recordings in interval ID

Number of directional intervals

Pressure in the water
(3P/3x)max-(distance from vertical centerline
to the edge of the structure)

Force per unit length (of a shaft)
Nodal force

Force
Drag force

Inertial force
Amplitude value of Pr
Horisontal force on the caisson

Vertical force on the caisson

ProBability that the main direction will
fall within a given interval

Probability that visual waveperiod, Tv’ fall

within a given interval
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Probability exceed a value x

Pavameter in Rayleigh distribution, r=2-mg

Radius of disc (caisson)

Nodal displacement

Coef. accounting for the embeddement of the caisson

Coef. accounting for the embeddement of the caisson

Allcwable area of pairs of Hy/3 and T
Autoccrrelation function

Vertical distance from_sea bottom
Distance from bottom.to the wave force
resultant on the caisson

Height of the czisscn

S(w,u+@) Directional spectrum

Sw,u)

S —
c

L= (I B

]

TLIM -

Ju/at

Unidirectional spectrum
Conditional standard deviation
Time

Wave period

Average mean wave period

Period between: i=2 - crests
i=3 - zero upcrossing

Boundary value according to equilibrium concept
Yelocity in the water perpendicular to the shafts
Acceleration due to wave motion perpendicular

to the shafts

Volume of eylindrical (caisson) structure
Sectional modulus of the horizontal area of the
structure (caisson)

Respons level

Stochastic variable
Cartesian coordinates

Embeddement

Dist. from caisson bottom to its center of gravity
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Notation (Greek letters)

a - Angle of incoming windj; Equilibrium parameter
o - Constants defining the dyn. stiffness coef.
Bi - Frequency ratio = ™
- Constants defining the dyn. stiffness coef.
¥ - Angle defining the orientation of the structure
Yo - Parameter in the Weibul distr. of visual wave height

Y; - Constants defining the dyn. stiffness coef.

~ Phase angle

50 - Coef. accounting for the embeddement of the caisson
2
m
€ - Parameter defined as, €% = 1 - —2
m m,
€ " Constant defining the accurancy in calculating FF
n - Parameter in wave spectrum
0 - Angle between an elementary wave and incomming

wind direction

K - Parameter in wave spectrum

A - Wave length

o - Coef. accounting for the embeddement of the caisson
Vg - Frequency of zero upcrossing

g - Damping ratio (relative to the critical damping)
P - Density

o] - Standard deviation

Time interval

Transfer function

© =
1 !

o* - Complex conjugated of ¢

¢PS - Pseudotransfer function

¢;S - Comp}ex conjugated of ¢PS

] - Rotation about x-axis

8 - " " y-axis

$ = i " z-axis

xj - Corrective coefficient to structural damping

ratio




w - Circular wave frequency w = 2w/T

£1
1

Average mean wave frequency

Q - Circular frequency of applied loading

mp - Peak frequency in the wave spectrum

3 Peak frequency in the Derbyshire Scott wave spectra
Matrix notation

C - Damping matrix - equivalent viscous damping
matrix

- Flexibility matrix

- Unity matrix

Stiffness matrix

- Mass matrix

- Force vector

o v =2 R H M
1

(t) - Load vector (dynaﬁic)
- Internal force matrix
- Displacement vector

- Velocity vector
Acceleration vector

- Normal coordinate wvector
- Modal matrix
2

€ W =< = T3 O
I

- Diagonal matrix of eigenfrequencies

Subscript notation

- ref. to the structure (platform)
drag force

m o0
|
|

q - =¥ equilibrium wave spectrum

- =M= fluid (environmental water)
horizontal direction

- -"- inertia force

— I Fh
]
I

D - == dircctional interval no. ID




- interval of H1/3

I
J - ="a interval of T

; = - i or j the degree of freedom
L - - interval no. L of visual wave period
m - == mass
R = =3 response spectrum
s - - soil
v - =1 vertical direction
v = i visually estimated wave parameters
w — M waves pectrum
XS,
ys, - ol static values indirectiens:x,y,z and 0
zs
0s
xQ
e - -"- dynamic values in directions:x,y,z and 0
z8
i1}
X - -"- x-direction
- =" y-direction
z - ~ e z-direction
v - =r- rotacion aboul: the x-axis
[} = B n " the y-axis
¢ = = n " the z~daxis

Superindex notation
- (bar) "statistical average"
* (dot) diff. with respect to time

* quantities in normalized eqs. of motions.



1 INTRODUCTION

Presently, numerous offshore oil and gas drilling platforms
are being designed for deep water areas where environmental
loadings are severe. Due to high investment and present
public policy which emphasizes protection of environment
against oil spills an accurate structural design is needed.

Fixed platforms of current interest in the North Sea are steel
jackets and so-called gravity structures. The steel jacket is
mostly a steel trusswork on a pile foundation. The gravity
structure, Ref.(l) consists of a concrete caisson resting on
the bottom, and a simple framed super-structure made in con-
crete or steel or both. The height of the caisson is typi-
cally 1/3 - 1/2 of the water depth. The frame consists of 3 -
6 shafts. Typical examples are shown in Fig. 1.1.

The platform is subjected to loadings of different types.
Functional loading, e.g. equipment on the deck etc.- and en-
vironmental loading like wind and current are assumed to be
static. This assumption is not correct for the wind, but since
wind forces are relatively small, this simplification is pre-
missible.

The wave loading is, however, dynamic and random in nature.

The need for more accurate prediction of response, together

with the dynamic nature of the environmental loads, calls for
dynamic analysis methods instead of the static analysis methods
which were used in the design of shallow platform structures in
the Gulf of Mexico. The need for more accurate prediction of the
dynamic response of offshore platforms due to wave loading is
emphasized by the fact that tall, slender structures with flex-
ible foundations are susceptible to significant dynamic magni-

fication of the response.




It is pertinent to know the range of fundamental periods of

typical deep-water oil production platforms.
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Fig. 1.4 Typical gravity type platforms
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Gravity type platforms in 100 - 150 m water depth in the North
Sea have fundamental periods in the range of 3.0 - 6.5 seconds
depending on the foundation stiffness, which has a significant
influence on the eigenfrequencies.

In the design of structures subjected to dynamic loading two
different statements in the response is generally requires,
depending on the corresponding mode of failure, Refs.(2.3):

- the single extreme peak response(in connection with

ultimate collapse mode)

- the complete response history (in connection with

fatigue or cumulative damage design)

While the prediction of a single extreme peak response is
a well-defined task, the evaluation of the response for

fatigue design needs some comments.

For a time history it is not obvious how relative maxima and
minima should be paired to fatigue contributing stress cycles.
Dowling, Ref.(8) investigated the applicability of a number of
counting methods by making laboratory experiments with steel
specimens' subjected to irregular strain histories. No similar
investigation is known for prestressed concrete.

In high cycle fatigue the simple mean crossing-peaks counting

methods may be utilized. The range-pair and the (more complex)
rain-flow method was shown to be the best fitted where most of
the damage is due to a few major reversals (low cycle fatigue).

Usually the response spectrum of stresses is known. What is
needed, however, is a relation between one distribution function
of stress cycles and the stress spectrum. The distribution
corresponding to the actual counting method must thus be deter-

mined.
When the response is a sufficiently narrow band process,




it is assumed that the number of cycles for each amplitude-
level is accurately described by the number of peaks associ-
ated with each positive peak level. This assumption is

made in this investigation.

By the structural design a satisfactory safety of the structure
is ensured by introducing partial safety factors on loading,
material and production tolerances, using a semi-probabili-

stic design method, Refs.(2-3), or by a complete probabili-

stic consideration of the safety, Ref.(5). The fully probabili-
stic methods have not been completely accepted in design codes as
yet. In a semi-probabilistic design the response at a certain
(low) probability level is necessary for a single excursion
failure design, whilst most of the load history in a life of

the structure is necessary in case of fatigue design.

The objactive of this report is to present a response analysis
method which reflects the dynamic and random nature of the

wave loading.

2. DYNAMIC MODELING

2.1 General Remarks

A fixed offshore structure interacts with the soil and the ocean
and each of these media has to be duely considered to obtain a
correct representation of the dynamic behaviour. A numerlcal,
discrete model representing all media could be developed by
means of a numerical technique such as the finite element
method, Refs.(1l4-16).

However, in the process of formulation of the model the analyst
is faced with the two conflicting requirements, namely
- make the model as aimpfe as possible for case of inter-
pretation and checking of results and for reduction of




analysis cost.

- make the model compfex enough to represent all the
possible modes of dynamic response as long as the
capacity of the computer program and computer

facilities is not exceeded.

The choice of model will in general depend upon the phase of
design which is of interest, and the accuracy of data to put

in the mathematical model.

In the present context the platform is considered to be the
principal system for which response is to be evaluated. There-
fore only the concrete/steel structure will be modelled. The
environmental media - soil and ocean - are represented by
boundary conditions for the structure. The boundary conditions
are determined by imposing disturbances (corresponding to
typical behaviour of the structure) on the surrounding media.

The dynamic behaviour of the soil and the ocean are determined

by separate analyses or experiments.

Soil-structure interaction modelling has previously been con-
sidered for instance by Clough and Penzien, Ref.(16), Sarrazin,
Roesset and Whitman, Ref.(23), Krizak, Gupta and Parmelee, Ref.
(24) and Roesset, Whitman and Dobry, Ref.(25), Novak, Ref.(36)
among others.

Soil-structure-ocean interaction modelling has been treated by
Bell, Ref.(102);Moan, Ref.(104), Holand, Ref.(105), Eatock-
Taylor, Ref.(106), Moan, Haver and Vinje, Ref.(107) and Larsen,
Ref.(110) among others.

The structure-ocean interaction problem for fixed offshore

structures has been investigated by Dean and Harleman, Ref.(66),
Nath and Harleman, Ref.(67), Wilson and Muga, Ref.(68),
Malhotra and Penzien, Ref.(69), Foster, Ref.(70), Selna and Cho,
Ref. (71) and Berge, Ref. (72) among others.




2.2 Equations of Motion

The equations of motion for a multi-degree-of-freedom system
(see e.g. Fig. 2.1) with viscous damping may be expressed in
matrix notation as, Refs.(l4 - 16):

Mr + Cr + Kr = R(t) (2.2

The finite element method has proven to be the most effective
technique for general matrix formulation of governing equa-
tions and subsequently digital computer analysis, and it will
be assumed here that the discretization is of this type. In
this method, the structure is formulated by idealizing the
structure into an assemblage of discrete finite elements with
mass, damping and stiffness properties.

2.3 Structural Idealization

General Remanks

The structure contributes to the stiffness, mass and damping
properties of the system. The caisson in general is made of
concrete. The superstructure is of steel or concrete or a
combination of both materials.

Stiffness and Mass

The slender superstructure is modelled by beam elements account-
ing for axial-, bending- and shear flexibility.

The cross-sectional stiffness of the concretfe members is con-
stituted by the concrete itself and the reinforcement steel.
It must, however, be recognized that part of the concrete cross-

section may crack even in serviceability limit state.

Fig. 2.2 displays the variation of rigidity of a hollow circular

cross-section with the relative magnitude of axial force and




aisson

Equivalent soil stiffness ond
demping constant for translation
in x - direction ond rocking
about y - axis.

Fig: 2.1 Structural idealization of a three-cciumn
concrete gravity type platform




moment, and the percentage of steel reinforcement.

a2 (UNCRACKED)

M« BENDING MOMENT

o N = AXIAL FORCE
T t ‘,\.’l

STFFNESS COEFFISIENT ¢

a 02 03
STEEL PERCENTAGE ny —3=

Pig. 2.2 Bending stiffness of cracked circular ring
section subjected to bending and axial force

The diagram is based on the assumption that the concrete has

no tensile strength.

The effect of repeated loading on Youngs modulus must also be

accounted for.

The stiffness properties of a potential ateel superstructure is
well defined as loag as the behaviour is within the elastic

range.

The main motion of the platform is rocking and sliding. Thus,
horizontal grillages may be considerably simplified. For instance
the deck structure which may consist of several crossing girders




may be simplified as shown in Fig. 2.1 by making the ori-

ginal and new one equivalent by flexibility considerations.

A primary assumption is that the caisson is completely rigid.
Only six degrees of freedom (in one node) are thus needed to
describe the behaviour of the caisson. Even if the caisson

is almost rigid the nodes of the superstructure and the bottom
node are connected by elements with stiffness 50 times the
stiffness of the column. This introduces satisfactory rigidity
without causing numerical ill-conditioning by the solution of
the governing equations. The choice of mesh in the superstruc-
ture primarily depends on the ability of the beam element to
represent variation in stiffness and mass. A particular point
is whether "lumped" or "consistent" mass is used. In general
the "lumped" mass formulation yields a larger discretization
error than the consistent formulation for the same number of
degrees of freedom. For the same computer costs, a more re-
fined mesh can be applied for the "lumped" mass formulations;
thereby compensating for the initial benefit of the "consistent"
formulation. For the modeling shown in Fig. 2.1 the lower
eigenfrequencies will be . insignificantly influenced by this
approximation. As later will be shown, it is the lower (few)
eigenmodes that give the major contribution to the dynamic
behaviour. This fact justifies a lumped mass formulation even

with a rather coarse beam idealization.

Damping

Structural damping is due to internal friction within the
material itself (hysteretic damping) and is proportional to

the deflection. The structural damping is small as compared
to the damping in soil and surrounding waters. Reported values
for damping in uncracked prestressed concrete beams are -3 =

1 % of critical damping, Refs (10-12)

The damping, however, varies significantly with the development
of cracking. Therefore, the damping is indirectly related to




- 10 -

the amount of prestress since the level of prestressing governs
the extent of cracking. The references quoted report damping
ratio in the range 1 - 2 % for beams with extensive cracks

but still with linear overall behaviour.

Bare sfeelf has an exrtremely low value of damping, namely
in the range 0.05 - 0.15 %. Damping of full-scale structures is
found to be of the order 0.2 ~ 0.8 %, Refs.(12,13). A reason-
able damping ratio may be 0.5 % for a steel frame.

If the structure is not of monolitic type additional damping

may occur in the joints, Ref.(13).

When accounting for the structural damping in the system equation
for the interaction problem.the damping ratio must be appropriately

modified, cfr. Appendix A.

2.4 Soil Idealization
Za433 General Remarks

In the present case the soil is treated as a substructure of
the dynamic model, i.e. it is necessary to know the relation
between the stress resultants Pj(t) and the corresponding dis-
placements u.(t) at the contact area between the soil and the
structure. This relation is clearly dependent upon the proper-
ties of the soil and the geometry of the structure-soil inter-
face. A rigid structure and a perfect bond between the footing
and the soil will be assumed.

The primary soil property is the dynamic stress-strain reiations.
Other important dynamic soil characteristics such as excess pore
pressure deve.opmrat, vibratory compaction and liquefaction etc.

are not considered.

The cyclic shear stress-strain relationship in most soils is
a2 hysteresis curve, Fig. 2.3a, which is conveniently described

in terms of the iwn parameters
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- the peak-to-peak siope, or, the equivalent shear
modulus, Gs

- the emergy absorbed per cycle, non-dimensicr.alized by
analogy to a véscous material, as expressed by the

damping ratio D (see below).

The soil will basically be treated as a £4inean Lscinopdc
efastic half-space. However, hysteretic energy losses will

be considered in a simplified manner.

The extreme cross-section shapes of the footing of current
interest are the circie and the square. A rigid-footing has
6 degrees of freedom. The elastic soil is characterized by
density (ps), the shear moduius (Gs) and Poisson's ratio (us)
and contributes to the stiff§ness and the damping in the lower

nod. of the discretized structure oniy. The eiastic haif-space
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assumption provides an equivalent spring-dashpot model. The
response of the soil to harmonic oscillations should be deter-
mind for the following modes of motion:

- vertical motion

- rotation about a vertical axis

- horizontal displacement (sliding)

- rotation about a horizontal axis (rocking)

In the case of wave-excitation the rocking motion is most
important. The sliding and rocking motion will in general

be coupled, but uncoupled behaviour is often assumed, when the
structure is resting on the soil (with no embedment).

Impedance functions for dynamic soil behaviour have been con-
sidered in Refs.(17,40).

2.4.2 Stiffness and (geometrical) Damping of the Soil

Vertical Motion

Let P. be the amplitude of a generalized (horizontal or
tonsional) harmonic moment acting on the disc along the j
coordinate, and let u. be the amplitude of the corresponding
displacement, see Fig. 2.4. The relationship between the

force and displacement may be stated as

P.. = K. = u. (2.2)

or

be = FLor Pl (2.3)
J J J

in which Kj is a complex valued stiffness (impedance) function

of the form

A iaocﬂﬂ) (2.4)
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and

1
. = ——(f. i . 2.5
Fj kjs(fjQ * 1aogjn) (
The quantity k represents the static stiffness of the disc.

jﬂ’cjﬂ’fjﬂ and g.q are dimensionsless functions of Poisson's
ratio for the half-space material, M and of the dimensionless

frequency parameter

Ps
ap = Qry T (2.6)
s
where
@ - shear modulus of the soil

- density of the soil
r, - radius of the disc
@ - circular frequency of the applied harmonic loading

Coupled SLiding and Rocking Motion

Consider the (coupled) translation and rocking motion in the
x-z (or y-z) plane(s).

Having described ccmpletely the mathematical model for the
soil material the relation between reaction force P (t) and
moment P (t) and the footing displacements u and 6, may now
be obtalned by superposition of the various components of the
total soil reaction. The following form

|
=

Px(t) = xx(“) Kxe(“) ulw)
(2.7)

P
g (t) Ko (@) Kee(w) 8(w)
or

P = KU

expresses the relation between steady-state-harmonic force to

produce displacements, u and 6 at frequency w.

For the footing and soil material under consideration the
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impedance functions are

Kxx = kx(ao) + iaocx(ao)
KBB = ke(ao) + 1aoce(au) (2.8a-c)
Kxe = Kex = kxe+ 1a0cxe(a°)

Hsieh, Ref.(17) has shown that the ky, ke g may be

interpreted as the stiffness of frequency-dependent linear

and k
X

springs, whereas Sy Cq and C.g are associated with viscous
dampers, also functions of frequency.

The stiffness and damping coefficients (kj,cj) may be written
as

k] = kjskjﬂ(a")
(2.9a-b)
P
_ /s X
€3 T T g, Kye7eyq(a0)

3 = X,¥,2,8,
x8, yy,
It is convenient to have the dynamic properties of the soil
by an equivalent spring-, dashpot-model. The coefficients may

then be directly added into the system stiffness and damping
matrix, respectively.

2.4.3 Equivalent Stiffness and Damping Coefficients
Stifgness for an Embedded Circulan Footing on an Etastic Half-

Space

In this investigation kj and cj were calculated from the app-

roximate closed-form soiutions presented by Veletsos and Wei,
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Ref. (20), Luco and Westman, Ref.(26) and Veletsos and
Verbic, Ref.(31), and Novak, Ref.(36)

The equivalent spring stiffnesses may be expressed as

kx = kxs (ka + Akxg) (sliding)
k =k
y %
kz = kZS (kZQ + Akzg) (vertical)
kg = kgg (ken + Aken) (rocking) (2.10a-h)
Ko™ Xxs (Akxeﬂ) (coupled sliding and rocking)
kw = ke
kY\P: Kxo
k¢ = k¢s (k¢Q - Ak¢9) (torsion)
X % sk and k are the static constants defined by
Xs zs 6s ¢s
_ 8
kxs - Z—US Gs T
k = o G r
zs 1-u g (2531 a=¢)
_ 8 3
Kgs = 3(l-us Eg Te
- 8 3
k¢s T 3(1-p Gs To

The coefficients k g, kg5 Kgg and koﬂ all express the
variation of stiffness with the frequency @ (frequency of
applied harmonic loading). The coefficients Bk g bk o> bkgq
and Ak¢ﬂ are corrections due to the embedment of the structure.
The frequency dependence of the stiffnesses ka are displayed
in Figs.(2.5-7). The functions in Eqs. (2.12a-d) represent
fits to the actual functionms.




The coefficients Bi and Y;

ka = 1.0
(yz2ap)?
k,o = 1.0 - sz:?;:;:;Z - vs:ad
B B2ag 5
kSQ = 1.0 - Bl;:zg:;:;; = Biapj
k¢9 = 1.0

(2.12a-d)

X!
o
w

I

Values of k Q

1 1 1 1

1

Quantity He = 0 Ug = 1/3 Mg= 0.u5 Mg = 0.5
a1 0.775 0.65 0.60 0.60
B2 0.525 0.5 0.45 0.4
B1 0.8 0.8 0.8
B3 0 0.023 0.027
Y1 0.25 0.35 - 0
Y2 1.0 0.8 - 0
Y3 0 0 - 0.17
Yu 0.85 0.75 - 0.85

M 0 U= 1/2
1.9

0

Fig. 2.5

2 L)

6

Variation of stiffness coefficient kxQ

with frequency a,

are displayed in the Table 2.1.

Table 2.1 Values of a;, Bi and Y; in Eqs. (2.12a-d,2.17a-d)
From Ref.(31).

ag
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The effect of embedment on damping and stiffness coeffi-
cients was studied in Ref.(22.32-36). Introducing the
simplification proposed by Novak, Ref.(36) give the following

correction coefficients:

AkxQ = O.Séer(Z-us)
Akzg = 0.66¢rG(l—us)
2l_us §2 5
bkgo = 3AA2_uS + 8 rgl0.9+41.5(3 - 8x+2)] (1-u)
= == i
Bk, gg = M-+ 0.58 rg(A=38)(2-u)
Ak¢Q = 3.758 rG(l-us) (2.13a-e)
where
% Z G
= & - _C6 - -

§ = e S = » Tg = g (2.14a-c)

The above formulas are based on fully effective "backfill".
If the backfill has cohesion the rocking motion may push the
soil away from the foundation permanently so that the bene-
ficial effects of embedment are lost. The effect of the em-
bedment should be carefully judged.

Geometrnical Damping for an Embedded Circulan Footing on an
Elastic Half-space

The geometrical damping may be described as

e, = cxs(cxQ # Acxn) (sliding)

By = cy

e, © czs(cZQ + Aczg) (vertical)

cy = ces(ceg + Acen) (rocking) (2.15a-h)
Cyg-= st(ACer) (coupled siiding/rocking)

cy =

Cyp T “xe

c, = e, e + b0c, ) (torsion)

¢ LY o0




where

XS
3
= 3.’4!"0 Y
Czs 1-p_ Ps"Cs (2.16a-4d)
Cos kSs Ep ps/Gs
Vi, *m i
c = o5 . B = —0
WEC L Teamy ® oS
where
I¢ - torsional moment of inertia with respect to z-axis
m - mass of the whole structure including "added mass"

The variation of the coefficients c c¢ with © is shown in
Figg.2.8 - 2.10.

Analytical function fits to these functions are displayed in
Egs.(2.17a-d).
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Fig. 2.8 Variation of damping coefficient Cyxa
with frequency a,
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CXQ o
(yz2a0)?
5 Ylhl*(“a”z (2.17a-d)
(Bzag)?
Cgq = BiB2 E:?;:;:;Z
c¢Q = 1.0

The constants a;, B. and Y; depend on Poisson's ratio and

i
may be found in Table 2.1.

The effect of embedment yields the following corrections:

Ach = 1.18 rm(2-us)
AczQ = 0.36:rm
-
= 2 2 Lo
Aceg = G,Pm(0.7+§— GAAS V(L us)
l-us
- 32'”5 40 A2 (2.18a-e)
Acxeﬂ = Cp Ail.l&’rm(xri&)(z—us)
Ac¢9 = 8.0 &;rm
where —
p G
L s s
LA _— (2.19)
P- G :

A typical range for a, in connection with offshore gravity
platforms may be 0 - 0.4. It is seen that while stiffness

and geometrical damping coefficients for translational motions
vary little with frequency, the rocking motion coefficients
and particularly the damping coefficient are sensitive to a

change in frequency.




Stiffness and Damping Coefficients fon Foundations of
othen Shapes

The equivalent stiffness and damping for a strip foundation
and a rectangular footing resting on an elastic half-space

may be found in e.g. Refs.(19,26-29), respectively.

Some guidelines for the choice of equivalent radius of rec-

tangular footings can be found in Refs. (19.28).
Stiffness and Damping Coefficients in the Case of Soil Layering

The elastic half-space approach was applied to determine the
impedance functions for a circular foundation on a layered
elastic medium in Ref.(30). In general, the rocking impedances
are the least affected by layering, while the vertical impe-
dances are the most affected. The impedances for a layered
medium show a stronger frequency dependence than the impedances
for the half-space. For an intermediate or a high contrast be-
tween elastic properties of the layers there is a considerable
reduction in radiation damping and the effect should be properly
accounted for.

2.4.4 Hysteretic Energy Dissipation

The geometrical damping is due to the fact that energy forced
onto the footing and then transmitted into the half-space, is
not reflected from the boundaries infinitely far away from the
source of excitation, see Ref.(19), pp.91 - 92.

If the sonil were a linear elastic body, the shear modulus, Gs’
Poisson's ratio, Mg and the mass density, Pes characterize its

dynamic response using elastic half-space theory.

While linearity is ensured when the cycle strain level is low,
the stress-strain relation depends significantly on the ampli-
tude of cyclic strain for higher load levels. In the present
context linearity is assumed by introducing equivalent elastic

characteristics, characterized by the hysteretic damping ratio,




- g, =

(loss factor), Refs. (2la-b)
D = AL/QHAT (2.28)

Ay is the area of the closed hysteresis loop during a cycle
of deformation, and AT is the strain energy density at maximum

shear strain, see Fig. 2.3.

This type of damping is in particular associated with the
rocking motions. The damping ratio D is a function of several

soil and loading parameters.

Hal§-space Models with Hystenetic. Losses (Simplified Approach)

The hysteretic energy loss can be accommodated by assuming a
linear vicsoelastic material in the half-space.
The following equivalent shear modulus is then introduced

- mGé
GS = Gs[l + l'QW—G;] (2.21)
where
" wG; ” ﬁé ' €2.22)
e
s T

G_ and Gé are the shear moduli of elasticity and viscosity,

respectively.
Experiments have justified the assumption of a constant

hysteretic soil, (i.e. wGY is constant) and hence AL/AT is
independent of w. Veletsos and Verbic, Ref.(39), have shown
that the principal effects of the hysteretic ("structural')
damping are to 4increase the damping capacity of the foundation

and to neduce the stiffness.

For normalized frequencies (ao) below 2.0 the effect is
principally to increase the damping. For low frequency
excitations the hysteretic damping may be introduced by trans-
forming it into an equivalent viscous damping coefficient, Ej’
by assuming the dissipated energy in one cycle for the two
models to be equal for a one-degree-of-fredom system, Ref.(39).
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The equivalent viscous damping coefficient for the j'"th degree

of freedom for the foundation then is
g, = —Ll— 3 J = Xs8,X0,5 ... (2.23)

In this manner the equivalent damping coefficient is determined
for each of the six degrees of freedom (in the node at the SO} . =
structure interface). However, oniy the contribution to rota-

tional degrees of freedom is significant.

It is clear that the steady-state response of two 1-DOF systems
with the same mass and stiffness but one with viscous damping

and the other with (equivalent) hysteretic damping, the motions
will be equal only at one frequency. However, if the D is not
too large this error is negligible, Ref.(25).

The above (simplified) approach to incorporate the effect of
internal damping should be used with caution when extreme soil

layering and a high level of internal damping is present.

2.4.5 C-mments or. the Parameters in the Present Soil Idealization

Genenal Commenits

Among the parameters Gs’us and ps, Gs is the most important
one. Satisfactory evaluation of Gs is difficult. A general
approach is devised by Richart et al, Ref, (19). Poisson's
ratio may simply be estimated at a value ranging from 0.3 for
dry granular soil to 0.5 for soft saturated clay. The error
made by ‘ising M in all calculations is small compared to other

uncertainties. The determination of I is straight forward.

Comments on the Sheanr Modufus and the Hystenretic Damping Ratic

Fig. 2.3b shows the infliuence of shear strain amplitude on
the dynamic properties graphicaily. As strain ampiitude in-

crecsses, the effective shear modulus decreases while the

damping ratio increases.
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In strong-motion earthquake problems (Y€ llJ_2 - 1%) and the

analysis of offshore facilities under severe storm conditions
(v€ 107%-107%%) the reduction in G with load amplitude must
be duely considered.

Further, Gs max(at Y = 0) varies approximately with 0.5 power
of the mean effective stress (octahedral normal stress) for the
soil. Another important parameter is the void ratio. Hardin
and Drnevich, Refs.(2la-b) proposed empirical relationships for
the shear modulus and the damping ratio as dependent upon the
important soi} properties. A concise summary is recently
presented by Oner, Ref. (109). s
Applying the method proposed in Refs.(2la-b) 5 is estimated

to be in the range 0.02 - 0.05 for North-Sea soils.

2.4.6 Improved Representation of the Soil Behaviour

Better soil modelling is primarily obtained by including a
physically more correct (non-linear) soil material description

and geometry interface description. The variation of soil strength
and stiffness in the half-space also should be accounted for.

The dynamical soil response may be determined either by an
analytical continuum approach, or, numerical techniques such

as finite element methods.

The applicability of the analytical continuum approach is
iimited. Complex material and geometry representation require
numerical tools to be applied. The finite element method may

be adopted in for that purpose.

The level of analysis sophistication must be consistent with the
quality of the input data. For soil-structure interaction
problems, the properties of the soil profile required are the
geometry of fhe‘layering, the shear modulus, Poisson's ratio,

density and damping characteristics of each layer.




Due to a wide scatter of the soil data the analyses with a
range of values is usually recommended. This, together with
the fact that there is inherent non-uniformity in most soil
deposits should be determinant for the choice of methodology
of analysis.



2.5 Representation of the Ocean

2.5.1 General Remarks

The ocean environment contributes to the equations of
motion in several ways. First of all, the waves repre-
sent the source of dynamic excitation (wave forces).
But the ocean environment also contributes to the mass

and damping of the vibratory system.
2.8.2 Wave Forces in Regular Waves

Genenal Comments

In the present section (2.5) the wave forces in the dynamic
interaction problem will be described considering a regular
wave. 1In section 4 the random nature of the sea elevation

is recognized.

The wave forces on a floating or a fixed structure in a
fluid which is supposed to be incompressible, irrotational
and inviscid, can be classified as potential or viscous,
Ref (41). The forces may be determined by analysis or

experiments or both.

The general analytical treatment of the forces is very
difficult. In particular, the determination of viscous
forces is not yet possible. Potential effects are easily
accessible by means of the source-sink techniques, Refs.(45,
45).

Several approximate formulas are used in the evaluation of
inertial and drag forces. The Morrisom formula was origi-
nally developed for circular cylindrical piles, Ref.(42).
The classical Morison formula is applicable when the dimen-
sions of the object is small compared to the wave length.
(which holds true for the superstructure of the gravity

platforms). For larger objects (such as the caisson) the




stronger wave-structure interaction makes the load evaluation
more complex. However, systematic analysis and experiments

for the load evaluation on larger objects are available.

A gravity structure is conveniently splitted into two
parts. The first consists of structural components
which are large enough to diffract waves or otherwise
interact. The second group consists of structural mem-
bers of small diameter. In that case the flow is only
locally affected.

In the subsequent sections various aspects in connection
with analytical and experimental treatment of wave loading

will be summarized.

Before the discussion of wave forces the choice of kine-

matic theory for the waves is commented upon.

Comments on Wave Theony

The analytical determination of forces requires that the
kinematics of the waves must be known. There are a large
number of wave theories to describe particle velocities
and accelerations, ranging from the simple linear Airy
theory to more refined non-linear theories, see e.g. Refs.
(51552).

The choice of theory depends on several factors. The primary
factor is, of course, which theory represents the physical
behaviour most correctly. It is often that the nonlinear
theories are the best. However, there are other reasons for
prefering the linear theory. For instance linearity simplifies
the calculations of forces, in particular when diffraction
effects must be taken into acccunt. Furthermore, for a Morison
type approach to the forces, there must be consistency be-
tween the method for obtaining particle velocities and accele-
rations and the method for determining mass and drag force
coefficients. This statement also may imply preference of the

linear theory.
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Velocity distributions corresponding to the linear Airy theory

and Stokes fifth order theory are compared in Fig. 2.11. Higher
order theories generally predict higher velocities (and drag
forces) although accelerations (inertia forces) are not toco

much different.

Fig. 2.12 shows the distribution of velocity over the depth.
Practically no force will act on the caisson when A/2 < h',

where X is the wave length, see Fig. 2.12.

Finally, the statistical treatment of the response is con-
siderebly simplified by assuming the linear wave theory.
2%/5« 8 Wave Forces on Slender Members in Regular Waves

Genenal Apprcach

The classical Morisom formula, Ref. (42) may be reformulated
to give the distributed forces normal to a cylinder by a drag

and inertia terms, as

dngpchD(u-f«)lu-il+pfcM1-}D2-g—‘:+pfcM2§D2c%%-ﬁ) (2.24)

(symbols are explained in the list of notations)

Max.force Crest elevation
Air
Wave -
height | . N _.— Still water level
Direction of
Distributios , Water wave propagation
of force
Sea floor
x

Fig. 2.13 Definition sketch of wave and wave forces on

single vertical pile
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The problem of wave force prediction is then reduced

to determining u and 3u/8t from wave kinematics, and

the choice of drag and mass coefficients. As a result of
the scatter in the magnitude of these coefficients,a care-
ful consistent choice must be made in an actual case.

The total force on a vertical pile is obtained by inte-

grating the distributed force, dp. The total force consists

of one drag term from viscous effects and two .inertia terms

from potential effects. The two inertia terms are of a

linear harmonic nature whilst the drag term in nonlinear. The
drag and inertia terms are 90° out of phase as shown in Fig. 2.1h.

Comments on Viscous Effects (the Drag Tenm)

The viscous effects are important on structures which are small
compared to the wave height. The first term in Morison formula,
iprDu|u|, represent the viscous drag force. This term is non-
linear due to its proportionality with u|u|. The drag coefficient
CD7
number, Re = uD/v. For the actual structure the drag coeffi-

cient is in the range 0.5 - 1.0. In the present analysis the

is empirically determined and is a function of the Reynold

viscous drag term is neglected. The error this introduces is

discussed in a subsequent subsection.




In addition to the drag term, the viscous effects generates

1ift forces normal to the flow direction. These effects occurs
when the flow separates unsymetrical from the sylinder and oscil-
lating eddies are formed. This 1lift force is also proportional
to u-ru and is accordingly nonlinear. For slender structures

the 1lift force may generat not negligible forces having rela-
tive high frequency compared to the wave frequency. In the

present analysis this force is neglected.
Comments on Potential Effects (the Inentia Tenms)

The forces related to the mass terms in the Morison formula
may be devided into

- undisturbed wave pressure forces (in phase with
(Froude-Krilov force) the absolute accele-
ration)
- inertia force ( in phase with the relative accele-
ration)

In addition a potential damping force in phase with the
velocity acts on a vertical cylinder.

The wave forces on a vertical rigid circular cylinder pier-
cing the water surface and extending to the sea bottom were
obtained in Ref. (44) by means of diffraction theory, based
on the following assumptions.

- frictionless and irrotational (no viscous forces)
- linear wave theory

(i.e.%%%%—%%ﬁé%%—— = sufficient small)

- the wave is reflected at the vertical surface of
the cylinder without loss of energy

The total "mass" force may be written as

Py = [(CM1 + CMZ)cosmt + CMD51nwt]PI° (2.25)




represents the Froude-Krilov and the inertia

CMl and C

force, respectively. Cvp is the potential damping force

M»

coefficient. Due to diffraction of waves, these coefficients

depend upon the ratio mD/A . Fig. 2.15 shows their depence
on wD/A
1.5 F Length of cylinder = water depth = »
’ Diameter of cylinder = D
CM Wave length = A
i CH, CH, = Undisturbed pressure force
: coefficient
cHz CMz = Inertia force coefficient
0.5 Cyp = Damping force coefficient
+ Cvp
1 1
0.5 1.0
mD/k -

Fig. 2.15 Components of wave excited forces on a vertical

cylinder according to Havelock, Ref.(4l.b)

Furthermore, the force coefficients are subjected to
corrections due to the presence of the caisson and inter-
action effects between the different cylinders, Ref.(50).

No such corrections will be made in the applications presented

in this report.

Normally the potential damping force coefficient,

CMD’ for small bodies is negligible as compared to the

terms due to accelerations. Fig. 2.16 shows the error

made by neglecting the damping force. The error is less

than 5% of the total force when wD/A < 0.65, and at
decreasing vaiucs »f 7mD/A  the error is completely negligible.
Thus in the present analysis this potential damping is

neglected.
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and damping)
------ Approximation (neglecting
the damping term in the
potential forces)
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Fig. 2.16 The total horizontal wave excited force Xa on

a vertical circular cylinder

Comments on Relative Magnitude of§ Drag and Inerntia Forces

An estimate of the relative magnitude of wave force com-
ponents may be obtained for a vertical pile in an undis-
turbed regular wave. Since the drag and inertia force are
ninety degrees out of phase, the amplitude of resulting

force may be approximated by

- 2 2 3
Pmax = (PI o + PD max) (2.26)
_ mD? H , cosh kz
PI max pfcI y (Ew sinh kh) (2.27)
= D (H cosh kz,2
PD max prD 2 (Ew sinh kh) (2.28)




= ap =

Equations (2.27) and (2.28) provide a convenient means by
which the relative magnitudes of the maximum inertia and
drag components of the Morison equation may be compared.
The desired camparison ratio is:

h
é. PD max a2
R = o
i B dz
ht I max
.1 p H (sinh 2kh-sinh 2kh")+2k(h=h')y () ,q)
To2m C; D 2(sinh kh-sinh kh') sinh kh T

Let 0.8 and 2.0 be representative values for CD and CI’
respectively. For H/D smaller than 2.5, R then is smaller
than 0.16.

The nature of Eq. (2.26) is such that if any component is
equal to or less than 0.16 times the other, the influence of
the smaller component is only 0.015. This statement on the
relative magnitude of forces is valid for a regular wave.
However, in a random sea the relative effect of the drag
force amounts to a value between 0.16 and 0.015, depending
on the spectrum width.

As a first approximation, the drag forces can be neglected.
An improved representation of the drag forces is obtained
by including a linearized drag term of Eq. (2.24).

Comments on Interaction Effects

When the superstructure consists of several columns, inter-
action effects should be accounted for when using the
Morison formula.




For waves penetrating down to the caisson, the particle
velocity and acceleration will be influenced by the caisson.
A very conservative estimate of the influence of the caisson
may be obtained in the following way: The sea depth in the
actual region may be assumed to be h' (see Fig. .12) and the
wave height may be transformed to an equivalent height, HY ,
assuming continuity. In this way the wave is assumed to
pass the caisson neglecting three-dimensional effects.
Systematic calculations and measurements reported in Ref.(47)
displayed that interaction effects are relatively small.

In the present applications these effects are neglected.

2.5.4 Wave Forces on the Caisson in Regular Waves

Genenal Approach

For waves of length, 2, which is larger than 2h' -
(inertial) forces on the caisson have to be considered,
(see Fig. 2.12.).

Due to the relative dimensions of the caisson the Morison
formula is not directly applicable for this case since
radiation and scattering of the water waves occur. More
elaborate techniques of load evaluation need to be con-
sidered. TFor large objects with smooth surfaces,the forces
may be theoretically evaluated by potential theory and an
approximate numerical method, see for example Refs.(4U-LE).
Alternatively, experimental investigations may be carried

out, Refs.(46-49).

Expernimental Case Study

In the present context the experimental results in Ref.(47)
were used. In the present wave-structure-soil interaction
study the caisson is supposed to be rigid. Thus, the loading
could be conveniently expressed by the wave-pressure resultants:
the horizontal force, and the overturning moment (including the




effect of the horizontal and vertical pressure on the caisson).
For the purpose of illustration a typical pressure distribu-

tion on a caisson is shown in Fig. 2.17.

In the presen{ context the experimental results in Ref.(47)
were used. The results are expressible as an horizontal
force, and an overturning moment, including the effect of
the horizontal and vertical pressure on the caisson. A
typical pressure distribution on a caisson is shown in

Fig. 2.17.

Assuming a structure with cross-section close to a circle,
a hexagon or a triangle the forces may be correlated to a
Morison-type formula using the Airy wave theory.

The coefficients in the formula are determined from the
experiments reported in Ref.(47):
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Fig.2.17 Typical pressure Fig. 2.18 Statically equi-
distribution valent system to the

model in Fig. 2.17

The pressure in the wave then is:

H cos ks

=p B cO5 k8 __ - wt) (2.30)
P =%:3 cosh KA CoDLkX - Wt

The horizontal force is

H k sin ks

PH = -prH 5.‘] ol Ko ksq sin wt (2.31)




The overturning moment is

Mg = PH'Eﬁ-CMTPI(O’ &,t)'W-fM+CMBp1(U,O,I)W-fM

(2.32)

The vertical force is

K CT cosh ks, -C

cosh kh ks,

——
Y

£ e
3 y COS wT

(2.33)

Comments on the Coefficients of the Caisscn Loading

Figs. 2.19 and 2.20 display the variation of the pressure

fici iy R s & Eanetion
resultant coefficients CH’ CT’ Cg» CMT and Chpyy 35 2 function
of the normalized cross-section are (YE/X), for a given height

of the structure *to water depth ratio (si1/h)

The coefficients are also influenced by the steepness
of the waves. Results for three different wave steepnesses

are shown.
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Fig. 2.19 Coefficients CMT’ CMB and CH (From Ref.(47)
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Fig. 2.20 Coefficients CT and Cgy (From Ref.(47))

The coefficient Cy depends on the embedment of the struc-
ture. The value shown in Fig. 2.20 is obtained when the
water pressure is free to act under the structure. If the
structure was embedded in fine soil, the wave induced pres-
sure under the bottom may be neglected, - CB = 0.
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Coefficients fH,fv and fM (From Ref.(47))
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Fig. 2.21 shows the theoretical variation of the coefficients
Ty fM and fv’ which account for the variation of the pressure

gradient over the structure.

To find the owerturning moment, My, the application point
for fH must be determined. The characterizing distance SR

may be obtained from Fig. 2.22.

The variation of the force resultants as dependent upon the

ratio (s;/h) may be found in Refs. (47,49).

Fig. 2.23 shows the phase angles between wave profile,
horizontal- and vertical forces. Defining the time, ty, as
a reference point, the wave height has its maximum at g e
The horizontal force is 90° out of phase and the vertical
force is 180° out of phase. The overturning moment due to
the horizontal force is as the force 90° out of phase.

The overturning moment due to pressure on top of the caisson
is 270° out of phase whilst the moment due to pressure on
bottom of the structure is 90° out of phase.

Vertical force when the
t wave pressure do not act
\ under the bottom sleb.

Vertical force when wave
pressure is acting
\ also under the bottcr

\ \‘slab I /
N\ i/
\\//\&\

Fig. 2.23 Sample of wave and force measurements (From Ref./u47/)




The force and moment calculated according to tihe repcrted
procedure,ape all assumed to be of an harmonic nature. This
implies that drag forces, sloshing and other non-harmonic forces
are neglected. These modifications will generally not effect
the result as their contribution to the overall loading is

negligible.

The reported calculation procedure is based on an experimental
fitment of the theoretical force and moment equations. The
results obtained by this procedure depends to a large extend

of the reliability of the experimental results.

20 55 Hydrodynamical Mass

General Remarnks

The water contributes to the mass by enclosed water and
added mass due to the motions of the platform. The added
mass may be derived from the general expression for the

loading, see the previous sections on wave forces.

SLendern Membens

Neglecting the drag force in the Morison formula, Eq.(2.24)
the intensity (load per unit length) of the inertia wave
loading on the superstructure members may be expressed as

= . . qy.du -
dp = CMl Pe "aAV-FT ¥ Cszfdv 3¥(u ) (2.34%)

By considering this force in conjunction with the equations of
motion, dp can be eeparated into two components, namely an
excitation force:
= . du du
dp = CMlpde At * Cszde Tt (2.35)

and an added mass term (on left hand side of the equations

of motion) |
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dm = C dv (2.36)

M,Pf

Possible magnification of equivalent added mass due to slo-
shing in the tanks, frequency dependency and variation due
to variation in the surface elevation are neglected in the

present applications.

Caisson

The forces on the caisson must be determined by analytical

or numerical methods such as the source-sink technique, Ref.
(45) or by experiments. Similarily, the added mass term must
be determined in a more elaborate way than the Morison
formula. Assuming the caisson to behave as a rigid body

and defining the degrees of freedom as shown in Fig. 2.24,

the added mass matrix may in principle be written as

Vo Myy My2 Mas £2.:37)
Mz; Mz, M2s
Ma; M3z Mas

Pe

when only two-dimensions are considered.

L
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Fig. 2.24 Definition of degrees of freedom for the

caisson motion.

The horizontal tranlation and the rotational motion are
coupled. However, no coupling between the vertical and the
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other motions exists when the body is cylindrical. Hence

the matrix is reduced to the form

v My, M, O (2.38)
Mpy Mzp O
0 0 M3s

Fig. 2.25 displays the mass matrix coefficients associated
with horizontal translation and rotation as determined by
experiments, Ref.(48b)for an actual structure/depth con-

figuration.
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Fig. 2.25 Case Study on Hydrodynamical added mass for

the caisson.

It is clear from Fig. 2.25 that frequency dependency of
the added mass can be neglected. The added mass for vertical
translation, which is of less importance, is also assumed to

be frequency independent.
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245 .6 Hydrodynamical Damping

Genenal Remarnks

The hydrodynamical damping is due to (potential) diff-
raction - and drag effects. The diffraction damping is
due to wave generation from the vibrating structure.
Drag-damping is caused by viscous effects and separation
of the potential flow. Hydrodynamical damping there-
fore is frequency and amplitude dependent.

SLenden supenstructune

Both drag and diffraction damping contribute to the
hydrodynamical damping of the slender members. The drag
damping may be estimated from the Morison equation, while

a diffraction theory must be used to determine the diffrac-
tion damping. To estimate the magnitude of the damping, the
platform can be assumed to rotate as a rigid body about the
mudline. The resulting damping ratio, & = C/ccritical is
then determined. McCamy & Fuchs theory is used to determine

the diffraction damping.

Fig. 2.26 displays the resulting damping ratic for an actual
case. The diffractiun damping depends significantly upon the
frequency, but does not vary with the amplitude. The drag
damping varies with amplitude and frequency. Drag damping

is displayed for 3 different amplitudes. The amplitude,§,

is defined as the horizontal displacement amplitude of the
deck. The upper curve , § = 1 meter, should be regarded as
an upper bound and is only expected to be found at low fre-
quencies. A more realistic displacement amplitude at high
frequencies is § = 0.25 meter or less. Consequently the error
made by neglecting the drag damping is not significant.

Caisson

In the caisson the diffraction damping is predominant. A
source-sink modeli, Ref. (45),should be appiied to deter-

mine this damping. Coupling exists between damping for
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horizontal and rotational motion. The damping matrix

associated with the 1 and 2 degrees of freedom in Fig. 2.24,
may be written as

o d in percen
C/ccrltxcal) iR’ percent

€ =[cyy  Cia (2.39)
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Fig. 2.28 Case Study on hydrodynamical damping associated

with the slender members

where the damping associated with the vertical motion is neg-

lected.

The case displayed in Fig. 2.27 shows that the diff-

raction damping is heavily dependent upon the frequency. It is,

however, noticed that the damping on the caisson is significant

for frequencies below 0.8 in this case.
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3, EVALUATION OF DYNAMIC RESPONSE (transfer functions)

S L Summary of the Dynamic Modeling

The equations of motion, Eq.(2.1l) are based on a lumped

mass matrix (M) which includes the mass of, the members, the
mass of the enclosed or entrapped water, the added or virtual
mass of the surrounding ocean and the mass of the equipment
on the deck.

The damping matrix (C) consists of geometrical and hysteretic
dissipation in the soil and hysteretic and viscous damping in

the structure and the sea,respectively.

The stiffness matrix is the assembled stiffnesses of the
structural members and an egquivalent soil stiffness as re-
presented by springs in the lower node of the model. The

exciting force vector (R(t)) is due to the effect of waves.

The representation of the structfural properties is accomplished
without particular problems. Also the 40if is easily modelled
since it is associated with the lower node of the model.
However, at this point the incorporation of the ocean needs

some comments.

The intensity (load per unit length) of the wave £Lcading on
the supenstructure membens may be expressed by the Morison
formula as

- du < P
dp = chpde =5 ¢ Cszde dt(u bad) .

+ 3Cp pedAGu - v)|u - P

The components of the (nodal) load vector may then be deter-
mined by the corventional procedure (as a lumped or a con-

sistent load vector).

B e B e b e et i el



A typical equation of motion for a node in the superstructure

thus reads

Miri + Ciri + gkijrj = Ri
clui d
an = Cy Pe¥s 7% * O 0eYs FeuPs? (3.2)

- iCDpfAi(ui—ri)lui-ri[

r; may be a translational or a rotational degree

of freedom.
Mi is correspondingly a mass or mass moment, etc.

Rearranging the terms

V.)B., + C.r. + Ik

(B, # Cp pe¥dr, & Cip; + Ik, B,

du.
] : y -
= (Cy, *Cy, 20eV5a% * CpPehs ¥y Tydlugrs]  (3.3)

Eq. (3.3) expresses that the waves besides resulting in exciting

forces provides added mass and viscous damping forces.

The drag term provides a non-linear fluid-structure inter-
action. The hydrodynamical damping forces are small for sub-
merged slender members, although these effects increase with

size and proximity to the free surface.

The drag term in Eqg.(3.1) is assumed to account both for viscous

and turbulence effects. In addition, radiation damping must be

considered.

The Loading on the caisson is primiarily constituted by inertial

effects. Therefore only terms analogous with the first two
terms in Eg.(3.1) will be present. As mentioned in Section
2.5.4, the loading on the caisson is expressed by force resul-
tants (forces and moments) associated with the translational

and potationel degrees of freedom in the lower node, cfr.




Fig. 2.2L.

Having the force on "Morison" type form, Eq. (3.1, the
inertia term consists of a Froude-Kryloff and an "added

mass" type term. The Froude-Krilov mass coefficient can
always be assumed equal to 1.0. The remaining thus represents

the added mass inertia coefficient.

Funthen nemanks on the formulation are given in Section 3.2
where the implications by the choice of method of solution on

the formulation is discussed.

3.2 Solution of the Equations of Motion

3.2.1 General Remarks

The methods for solution of the equations of motion may be

categorized as

- modal superposition techniques
- direct integration by step-by-step procedures

- special methods

Excellent reviews of these methods have been given in Refs.
(14,16,54-57,62-65 and 111).

The choice of numerical solution procedure mainly depends on

three factors, namely

- linearity of the equations of motion

- frequency dependence of stiffness, damping and mass
properties

- the form in which wave (or wind) data for the
structure is to be used (deterministic versus

stochastic and time domain versus frequency domain

approach).



These two aspects will be discussed subsequently.

The principal nonfineanities in the equations of motion may
be summarized by the following list of effects:
- geometrical and material nonlinearities in the
structure
- nonlinear material properties in the soil
- changes of the added (hydrodynamical) mass due
to water surface variation
- wave-structure interaction by drag effects.

It is clear that only a step-by-step procedure can yield an
"exact" solution to problems with pronounced nonlinearities.
However, for some types of nonlinearities modal techniques
with appropriate modifications have been utilized, see for
example Ref. (72).

Further,

- soil stiffness and damping
- hydrodynamical damping

are frequency dependent. The first category is the most im-
portant in this connection. The response to an harmondic
excitation is easily traced both by modal techniques and step-—
by-step techniques in the case of a linear problem with fre-
quency dependent properties. It will be difficult, however, to
achieve the response through a time domain analysis when dealing
with frequency dependent dynamic properties and a random excita-

tion.

The statistical analysis of the wave response may either be
obtained through a time domain or a frequency domain approach.
The latter is generally preferable in linear problems, while the
first often muat be resorted to when the problem involves heavy

nonlinearities.

A frequency domain analysis requires the dynamic analysis to be

carried out for a range of wave frequencies.




Since the response must be traced through several cycles

until the steady-state condition is attained, the use of a
step-by-step procedure will be relatively costly as compared

to modal superposition with a few contributing modes.

However, since the magnitude and type of damping varies consider-
ably within the interaction syatem the classical modal analysis
does not strictly apply. This problem can be circumvented by
turning to damped modal analysis, Ref.(14). The solution of the
governing equations then requires the handling of twice as

many unknowns as in the classical approach. Alternatively,

by modifying the classical modal analysis method it can be

made applicable, see Section 3.2.2.

For a linear problem the response can be rigorously computed by
transform methods such as The Fast-Fourier-Transform, Ref. (54),
or Foss' method, ref. (§5). Step-by-step numerical integration
methods, Ref. (16) can be applied both to linear and nonlinear
problems. However, such methods sacrifice the considerable
advantages of modal superposition. The modal analysis permits

a good visualization from the values of the natural frequencies
and the modal shapes of the significance of the flexible founda- .
tion on the response. Furthermore, the truncation of the number

of degrees of freedom reduces computer costs.

In general, in the case of linear stochastic response analysis

a classical normal mode superposition tecﬁnique with appropriate
modifications or a combination of modal superposition and step-

by-step procedure is prefered. When large nonlinear effects

are present the step-by-step procedure is often the only appli-
cable method.

3.2.2 Modal Superposistion
Formulation and Sofution of the Free Vibration Problem

The stiffness and mass matrices are eatablished in a straight
forward manner and the generalized free vibration problem (ob-

tained by assuming a harmonic motion r = ¢sinwt and putting



damping and excitation forces equal te zero in Eq. (3.1))
K¢ = w?M¢ (3.4)

is solved by a standard subroutine to give the natural circular
frequencies, mi,and the corresponding mode shapes ¢i' In this

case an inverse simultaneous iteration process is used, Ref. (16)

p. 250.

For a, in the range (0-0.5) the frequency dependence of the
soil stiffness coefficients may be neglected with an error

less than 3 percent.

For a wider range of variation of a, the frequency depency of
the soil stiffness can be accommodated by solving Eq . (3.4)
for a few (say 3) frequencies, a,, and storing the corresponding

eigenfrequencies and eigenmodes.

When subsequently the forced response anflysis are undertaken
a linear interpolation procedure may be utilized to determine

the actual eigenfrequencies and the eigenmodes.

It is preferable to normalize the modal matrix. Among the al-
ternatives of current interest it is simplest to normalize such
that the generalized mass matrix is an identy matrix when calcu-
lating structural response. Calling the modal matrix obtained
by solving Eq.(3.4) ¢ and the corresponding generalized mass
matrix M* an identity matrix is obtained by pre- and postmulti-
piying M* by (%)%,

I = (Me) " IMecme)~ 2
= o) EeTMe )% = §TMg (3.5)

where

PR L (3.8)

is the modal matrix wanted.




The relationship between the discretized system coordinates
r and the modal coordinates Y is given by

r o= ¢-Y(t) (3.7)

where ¢ represents the set of significant undamped free-
vibration mode shapes of the combined soil-structure-ocean-
system. In general only a limited number (p) of the modes
will contribute to the response, that is, p << N (total number
of degrees of freedom). Therefore, ¢ is a rectanguliar matrix

with many more rows than column.

Formulation and Solution of the Forced Vibration ProblLem

Now, if Eq.(3.7) is substituted into Eq.(2.1) and both sides
are pre-multiplied by QT, the result is the set of p normai-
coordinate equations of motion which may be written

M*Y+ C*Y + K*Y= px(t) (3.8)

where M*,C*and K* are generalized mass, damping and stiffness
matrix, respectively. Both the generalized mass and stiffness
matrices are diagonal matrices, while the generalized damping
matrix normally is a full matrix.

Assuming that the mode shapes are normalized so that the
generalized mass for each mode is unity

L o Baagn
ME <6 MG =1 (3.9)

Eq.(3.8) may be written as

; +C*Y + w?Y =P*(1) €3.10)

Correspondingly, the generalized stiffness for each mode be-
comcs the modal frequency squared



(3.11)

The generalized damping matrix in Eq.(3.10) is defined by

E*= ¢% C ¢ (3.12)

If the damping matrix of the combined soil-structure-ocean
system is such that the mode shapes are orthogonal with respect
to it, Eq.(3.12) has the form

C*(D)= 281wy

2 Eawz (3.13)

-

In this case Eq.(3.10.) becomes a set of indepéndent modal
response equations which can be solved separately. Since the
actual time variation of the loading is harmonic and only
steady state response is wanted, the solution is explicitly

stated.

For mode (j) the steady state response to the loading

Pi." < Pojeiﬂt €3.14)
is
Y 6ty = fi% [Et;fi:jjtz:T:%j:jccsgt] (3.15)
3 i 373
Bj = %— (3.15a)

(== 1)




Even if the damping matrix does not satisfy the orthogonality
conditions, the transformation to normal coordinates still
may be beneficial. Since the number of (coupled) equations in
Eq.(3.8) is smaller than in the original Eq.(2.1), the solution
of Eq.(3.8) by for instance a step-by-step numerical integration
method is cheaper than solving the complete set (2.1) In this
case the only approximation is the trunctation of (insignificant)
higher modes. The corresponding internal forces in the struc-

ture may, when r is found,be calculated according to
S = Kr + §, (3.16)

where S is the internal force vector. S, is the equivalent
nodal forces due to external loading. By chocsing a rather
fine element mesh, the S; forces become negligible as com-

pared to the"elastic forces"Kr.

Comments on the Modeling of Damping Propenties

The representation of the damping is the most uncertain item by
the dynamic modeling.

All three media- soil, structure and ocean contribute to the

damping in the interaction system.

For the sc¢if an equivalent viscous damping coefficient repre-
senting geometric and hysteretic damping is derived. The

error by representing the hysteretic damping by an equivalent
viscous one is negligible. The damping coefficients are intro-
duced in the C matrix. The corresponding C* matrix (Eq.(3.13))

in general will have large off-diagonal terms.

The damping in the 4tructunre is most often known from measure-
ments as modal damping by pure structural vibrations (i.e. for
fixed base structures). The structural damping - most ofteh known
in lerms of the damping ratio - must be modified when introducing

it into the interaction model. As the foundation Flexibility
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changes the vibration.modés the amount of energy dissipated:in
the structure itself also changes.

The equivalent damping ratio for the interaction mode (j) due
to damping in the structure may be obtained by multiplying the
bare structural damping ratio by a correction factor X., (see
Appendix A.l.). For the modes corresponding to the lowest fre-
quencies Xj may be taken as (w/w)*® where w and w are the corre-
sponéing eigenfrequencies of a structure on rigid and flexible
soil, respectively.

The hydrodynamical (damping) may be treated either in the same
way as the soil or the structural damping.

The conditions under which the C* matrix will be diagonal re-
quires C expressible as a polynomial of K, Refs.(60,61).

A possible full damping matrix, C* may be replaced by a diagonal

matrix C*(D) in various ways, namely

1) The elements C*(D)

are equal to the diagonal elements
of C*, i.e. off-diagonal terms are ignored, Refs. (25,
36).

(D) are determined so that the

2) The diagonal elements in C*
transfer function for a characteristic response quantity
obtained by the rigorous and the classical normal mode
solution match for all eigenfrequencies within the frequency

range of interest.

The transfer function for a given quantity - as defined
in Section 3.3 - for the rigorous and the normal mode solu-

tion is denoted ¢(w) and 5(m),respectively. ¢(w) is given

by the numbers computed while §(w) is a linear combination of

terms of the type (3.15) where the Ej's are unknown. Notice
that §(w) will be a nonlinear function of Ej' The Ej's

are then determined by solving the equations
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l¢Cw )| = |$(mk>| €3.17)
km iaBes mseclh

The set of simultaneous nonlinear, algebraic equations can
be solved by iteration. The iteration is started by
neglecting the contributions from all modes other than the
k'th itself when evaluating la(wk)l 2

The reason for achrieving the matching at the eigenfre-
gquencies, Wy is that the response is most sensitive to
the magnitude of the damping at these frequencies.

Because the response at the deck is usually more sen-
sitive to damping, the deck displacement may be chosen

as the basis for transfer function matching.

The number of frequencies to be considered is in gene-

ral less than 10.

The use of this technique - requiring both a rigorous (step-
by step) and normal modal analysis - is justified when a
large number of transfer functions are to be evaluated

and each transfer function requires the computation of the
response for a number of frequencies of the order 20 - 50

and the technique (1) mentioned above yields too large errors.
The approach was applied by Tsai, Ref.(58) in conjunction
with a soil- structure interaction problem.

For the normal mode approximation there are several
empirical methods available for computing the compo-
site modal damping for the interaction system. Bigg's
method, Ref.(56), computes the composite modal damping
as a weighted average of the respective damping values
of the foundation and the structure, the weighting

factor being the strain energy. Johnson and McCaffey's
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method, Ref.(57), also computes the weighted average
of the respective damping values, but the weighted

factor is the mass, the mode shape or the product of
both.

3.2.2 Step-by-step Integration

Formulation of the Equations of Motion

In this case the stiffness and mass matrices are constructed

in a conventional way. The damping matrix consists of the soil
and ocean damping coefficients which are directly added in the
matrix. The (modal) structural damping is transformed into

the damping matrix by

s s, ' 4ST (3.18)
w Tl $.&n%n m

=)
"nm~M3
-

where g; are the damping ratio for the structural mode number
n.

Alternatively, the damping matrix resulting from structural

damping is calculated, Refs. (60,61) as

L+n - 4
C = £ a.M(M *K)] (3.19)
j=t

in which £ is an arbitrary integer, and the coefficients aj
are obtained from the solution of the system of equations

L2+n 2
2glw; = I a.w? (3.20)
] j=1]l
If the structure consists for instance of materials with
essentially different damping properties the damping (sub-)
matrix may be constructed for each struc*ture separately and
added in the global damping matrix.




Selection of Integration Method

The transient response may be obtained by direct "step-by-
step" method for the coupled equations of motions (2.1). In
connection with stochastic response analyses it will often be
beneficial to contract the general equations (2.1) to the
form (3.10) before carrying out the step-by-step procedure.

It is assumed that the boundary conditions have already been
incorporated into the equation above and that the initial dis-
placements {r(0)} and initial velocities {r(0)} also are known.
The dynamic equilibrium equations are a set of secdénd order
ordinary differential equations in time, which is usually the
highest order encountered in engineering applications.

Time integration of initial value problems has an extensive
literature. The book by Richtmyer and Morton (62) provides

an excellent theoretical foundation. In the context of struc-
tural dynamics Argyris et al, Ref.(63), and Bathe and Wilson,
Ref.(64) Nickell, Ref.(65),and Langen, Ref.(111l) have contri-
buted recent reviews of methods.

The methods are based on numerical differentation (finite

differences) or numerical integration.

Among the finite difference based methods, the second central
difference method and the Houbolt method are the most popular.

Newmark B-methods (including the Wilson modification) are the

most widely used methods based on numerical integration.

The choice ef method should in general be based on an effi-

ciency criterion.

The method which can solve the problem with a given accuracy

for minimum costs is then preferabie.




The accuracy mainly depends on the following factors:

- time discretization (or truncation) error
(degree of consistency of the approximation with
respect to the exact differential equations)

- .time stability

The costs are mainly characterized by the following factors:

- number of calculations for each time step

- computer storage requirements

The choice of solution method is problem dependent. The type
of structure, the spatial and time-wise variation of the load-
ing will influence the choice. A time domain solution through
step-by=steép.methods will be particularily of interest when -
the problem-is.nonlinear. In-the choice of method due con-
sideration should be given to the deégree of nonlinearity.

Since the "best" method depends on the problem to solve, a com-—
puter code should provide for a possible choice between different
step-by-step methods. This is in most cases a simple task.

The commonly used methods can be written on an explicit form.
The coefficient (pseudostiffness matrix) then need only be
triangularized once if the structural problem is linear and
constant time-step is chosen. Due to the large costs of the
triangularization constant time-step is most convenient in
linear problems. ]

3.3 Transfer-functions (response to regular waves)

The structural response (i.e. displacemeunts or stresses in
certain points and directions) may be described by the transfer-
functions, ¢(w,x+8). A transfer-function is the ratio bet-
ween the amplitude of the steady-state response to a regular
wave of arbitrary amplitude and wave amplitude at a given

frequency w and wave direction. The transfer function there-




fore is expressed as a function of the frequency , w, and

the wave direction, a + 6. It is, however, implicit that the
transfer function depends on the dynamical properties (stiff-

ness, mass and damping) of the actual system.

In practice, each transfer function is determined by calculati.g
the harmonic recpsnse for about 20 - 30 wave frequencies. The
harmonic response is for convenience calculated for a wave height
of 2 m (wave amplitude cz 1 m) for all periods. Harmonic nodal
force amplitudes and phase angles are determined for an arbitrary
structure according to Section 2.5.

The response is evaluated by the normal mode technique as
described in Chapter 3.2.2. First, the displacement vector is
determined by solving Eq.(3.10) with C* = C*(D) (uncoupled
equations). Amplitudes and phase angles are stored in the
computer.

The total displacement response is obtained directly by super-
imposing the modal displacements. Forces and moments are
obtained from Eq.(3.16) by determining the forces S for each
mode and superimposing. In practice, the beam element lengths
are chosen so small that the forces and moments, Sy can be dis-
carded in Eq.(3.16).

The transfer functions must, in a general non-symmetric struc-—
ture, be calculated for waves progressing in several directions,
B, in th: range 0 < B < 2n. When the structure exhibits symmetry
about one or two axes, the computations are considerably reduced.

In the present analysis twelve directions have been chosen.
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4. STATISTICAL ANALYSIS

4.1 Description of the Sea as a Random Process

A stochastic process, X(t), is said to be weakly stationary if
its autocorrelation function R({t,t+t) = E(X(t+t) + X(t)) is in-
dependent of t, i.e. R(t,t+t) = R(1).

If R(t,t+T) is slowly varying with +t, the process can be devided
into periods where the autocorrelation function is independent
of t. Hence the long-term stochastic process, in which R(t,t+T)
is slowly varying with t, could be treated as composed of a
series of short-term weakly stationary stochastic processes,
see Refs. (78,81,83), and Section 4.3. Within a period of 30
min. to some hours the sea elevation can be assumed to be a
stationary Gaussian process with zero mean, Ref.(43). The
statistical properties then are completely described by the
spectrum, S(w) of the process, which is the Fourier transform
of R(t), Ref. (73). Defined in this way S(w) is a two-sided
spectrum, i.e. valid for all values of . The physically rea-
lisable one sided spectrum is defined through.
{ZS(w) w20

0

w < 0

It is Sw(m) which may be measured experimentally.

Sw(w) =

4.2 Short-term Description of the Waves
Genenal Remarks

As mentioned above the spectrum is the primary characterization

of a short-term state of irregular waves.

According to the elementary wave theory, the surface elevation

is due to incoming waves from any direction, and hence the spec-
trum has to be given both in terms of the frequency and the angle,
8, which can be divided into two parts: B = a+® , where a is the
mean direction of the incoming waves and 6 is the angular

deviation from o« for the elementary waves, see Fig. u4.l.




Hence the wave spectrum (defined for positive frequencies, w)

is written: Sw(m,a+9). Sw(w,a+9) is commonly assumed to be

given on the form

Sw(w,a+e) = f(8) Sw(w,a) (4.1)
where

Sy(w,a+8) - two-dimensional wave spectrum
Sw(w,a) - one-dimensional wave spectrum
£(8) - directionality function

w - circular frequency

a - angle of incoming waves

] - angle between elementary wave and mean

direction of incoming waves.

It is clear that the moments (mn) of the spectrum can be
utilized tc characterize the sea state instead of the spectrum

x- global

Fig. 4.1 Definitions of angles a,0,Y.
yY-orientation of the structure
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m = Su"S(w,046)dw 3 n = 0,1, .... ® (4.2)
w

Most of the information needed in practice is contained in the

lower order moments (n < 4).

Wave Specitrum

A mathematical model of the real one-dimensional wave spectrum

may be written on the following form, see Refs.(88,92).

Sw(w,a) = Aw-kexp(—Bm—l)
(w-w_)?

exp{ - }
" 2w (4.3)

A,B,k,2,n,k and mp are parameters of the wave spectrum. In gene-
ral A,B,n,k, and mp are functions of the directions a.

Pienson-Moskowitz Spectrum.

Withn = 1, k = 5 and &
Moskowitz spectrum

4, Eq. (4.3) reduces to the Pierson-

S, (W) = Aw “exp(-Bu™ ) (4.y)

It can be shown that the parameters A and B may be written

A= 0.11 B2, (&)
1/3 7
(4.4a)
B = 0.44 (2T)*
T
and the wave spectrum is written (ISSC-form):
- 2 2Ty =5
Sw(w,a) = 0.11 H] 4 (T Y
expl-0.44 (2L)*,""} (4.5)
T
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where
Hl/3 - significant wave height defined as the

mean of the upper third crest to through
wave height (see Fig. 4.2)

i - average mean period, given as
- Mo
LB o= o2m —
T- 2 ™

T is a commonly used estimator for the period between crests,

T,, see Fig. 4.2,

Fig. 4.2 Definition of crest to through wave height,
H, and period between crests T,, and zero-
up crossing period T3

JONSWAP Spectrum.

With k = 5 and 2 = 4 Eq.(%.3) reduces to the sharply peaked
- JONSWAP-spectrum

=" -

Sw(w,a) = Aw exp(-Bw )
(- w_)?

exp{ - e . I

2.2
n *e (4.6)




.68 =

n is a peakedness parameter, mp is the peak frequency, and k
defines the width of the "spectral peak".

n is found to vary between 1 and 7 with an average value of 3.3.
For n = 1 the JONSWAP-spectrum Eq.(4.6) reduces to the shape of
the Pierson-Moskowitz spectrum, Eq.(%.5).

The JONSWAP-spectrum seems to be a better fit to North Sea wave

data. However, little informayion about the statistical distri-
bution of its parameters is available. Hence the Pierson-Mosko-
witz spectrum will be applied in most of the present context.

A possible way to study the influence of this peakedness would
be to use the Pierson-Moskowitz spectrum given as Eq.(4.5) multi-
plied with

exp{- ——E 1} (4.6a)

wp is determined as a function of T as

. = 2% gg.35252 ™ (4.6b)
P T
and k given as
€. = 0.07 w S w
k = 2 P
Ky = 0.09 w > W (4.6c)

Other proposed wave-spectra that have to be mentioned are the
Denbyshine-Scott spectrum and the modified Denbyshine-Scoff.
These spectra are given by

0 w-wy < =-0.26

(w-wg)? 3

Splwsa) = 9§ A-Hi/3 exp {-I[ 12} -0.265w-wes 1.65
B(w-wo+C)

0 w-wo > 1,65 (4.7)
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where
we = 3.15 « T=1 % g.98 - T-2 (4.7a)

The parameters A,B,C are given as:

Derbyshire-Scott spectrum:

"

0.214
0.065 (4.7b)
0.26

W
"

Modified Derbyshire-Scott spectrum:

A = 0.300
= 0.03534 (4.7¢)
€ = 0.26

Up to now there is no general agreement on which formulation that
represents the best fit to the real wave spectrum. Most likely
no spectrum will be the best in any situation. The influence of
the choice of spectrum on the response therefore will be illu-

strated by some example cases.

The Directionality Function

According to Refs.(81,82,92) directionalty function may be

chosen as

& I <B
K(n) cos 6 5 < e 5
f(e) = (4.8)
0 elsewhere

K(n) is determined from Eq.(4.9)

(4.8a)



Most commoniy the following functions have been applied:

Pierson: £(8) = 2 cos?8 —% < g < % (4.9).
m

Mark: f(8) = gr cos*s -Z<g<Z (4.10)
3m - -2 E il

Other directionality functions are given in Ref.(72)

4.3 Short-term Response Statistics

Response Spectrum

The sea is, as mentioned in Section 4.1, assumed to be composed

by a series of stationary Gaussian processes with zero mean.

The response will thus be given as a serieg of stationary pro-
cesses being Gaussian with zero mean. The spectrum of the
response process then completely characterizes its statistics.

The response spectrum, SR(w,a+e) can be obtained from the transfer
function, ¢(w,a+6) and the wave spectrum in the following manner,
Ref.(73):

SR(m,a+6)=¢(m,a+6)¢*(w,a+6) Sw(w,a+6) (4.11)

where the symbol * denotes complex conjugation. ¢ obviously is

independent of T and H , but dependent of a+6, and of the

173
angular orientation y, of the structure (y refered to the same

global axis as a). Hence, ¢ is formally written

¢ = ¢(w,a+0-v) (4.12)

f can be eliminated from the response spectrum in the following
way:

SR(m;a,y)=f¢(w,a+6-y)¢*(w,a+e-y) f(e)Sw(w,u)de (4.13)
0

Introducing the pseudo-transferfunction, ¢Ps(m,a,y), Bg«(4:313)
may be written




SR(w;d,Y)=¢pS(m,a,y) ¢;S(w,a,y)-sw(w,a) it Ly

where

¢ps(w;a,y) ¢;s(w,a,y)=f¢(w,a+9-y)¢*(m,u+9-y).f(e)de
8 (4.14%a)

In the following Yy is chosen equal to zero, see Fig. u.l.
Hence Egs. (4.14) and (4.14a) are written

SR(m,a)=¢ps(m,a) ¢;s(w,a) Sw(w,a) (4.15)

¢ps(w,a) ¢;s(w,a)=g¢(m,u+e) o*(w,a+8)F(0)de (u.iSa)

Distribution of Individual Maxima

The response processes of current interest are characterized

by a wavy form with varying amplitude and frequency. The maximum
value and the number of cycles corresponding to each amplitude
level are the response quantities of primary interest in the design
The distribution of individual maxima ("amplitudes") rather than
the distribution of the wave elevation is the most appropriate
statistical measure for characterizing . these quantities. For
stationary Gaussian processes this distribution has been dis-
cussed in detail in Refs.(73,75,76,82,83), and is found to be

dependent on the parameters mg and € defined as

2
m,
€ =l-mom.. 5 0<E<l (u.lS)

where the moments (mn) of the response spectrum are defined in

the same manner, Eq.(4.2) as the moments of the wave spectrum.

In the case € = o the maxima are Rayleigh distributed, whi.e

€ = 1 gives the Gaussian distribution. For o< e < i the

probability density function for the greater maxima is found to
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become approximately v/1-c? times that of the Rayleigh distribu-
tion. The frequency of the greater maxima for o< €< 1 is found
to be approximately 1//1-€2 of the frequency of maxima for € = o.
Hence the probability of exceedance of some level by a given
number of maxima within a given time interval is the same for all
values of e (reasonably less than 1). Hence the Rayleigh distri-
bution will be assumed for the short-term distribution of indi-
vidual maxima. This distribution is given by the following
probability density function.

2%

o exp(-x2/r?) x 2 0
£o(x) = ¢ ¥ (4.17)
0 elsewhere
where -
r2=2mo=2 ISR(w;u)dw (4.17a)
o

The probability to exceed some amplitude-level x may be cal-

culated from Eq.(4.17) as

-m _ _(Xy2
. QS(ka) = ifR(X)dX = exp{ (r{ } (4.18)
Eq. (4.18) gives the distribution of the response ampfitude when

r is known.

The Rayleigh parameter, r, for the response is a function of
the sea-state parameters H1/3’ T and ®, and the dynamical pro-
perties of the interaction system. Eq. (4.18) may be written as

a conditional probability of exceedance:
= X
Qg(X2x|Hy ,5,T,0) = exp{-(3)?} (4.19)

In Eq. (4.19) only the dependence on the sea-state parameters
are incorporated. This equation will be useful when extending
the statement on probability of exceedance to a long-term state-
in Section 4.5.




Within time-interval where the sea elevation is assumed to be
weakly stationary, the distribution of response is described by
Eq.(4.18). These intervals could be of duration 1 - 24 hours,

a very short period compared with the life-time of the structure.

Extreme Value of the Response

The evaluation of the extreme value of the response is decisive
for the design against ultimate collapse and similar modes of
failures. By means of order statistics, the following quantities
can be computed from the distribution of the largest peak within

the short-term period considered, Refs, (74.-76).

Mean extreme value:

Elx 1 = /ml/2In N+ L3772 (4.20)
/IR N

where N is the number of cycles in the short-term state

1 3 s
N = VL= o %% L , L is the duration of the short term
period.”
Standard deviation of the extreme value
Oy = ¥Ymy — (4.21)
max V/6/21n N

Since the standard deviation (4.21) of the largest peak value
is relatively small as compared to the mean value (4.20) when
N is of the order 104, the mean value is a representative design

value, Ref.( 74).

It should be noticed, however, that the quantity (4.20) is
conditional upon the sea-state. To ensure that (4.20) is the
desired peak response occuring with a return period equal to the
estimated life-time of the structure (20 - 50 years) the
corresponding "worst in the life-time" sea state should be used.

However, no consistent rule exists by which this state can be




found. Therefore the long-term description of the waves (Section
4.3) and the subsequent long-term response statistical treatment
of the response (Section 4.4) are believed to be more consistent

way of establishing the extreme response.

Furthermore, this long-term model yields an estimate on the
response to be used to check against fatigue failure.

4.4 Long-term Description of the Waves

General Remarks

Each set of Hl/
sea, and therefore the long-term description of the sea will be

obtained from a three-dimensional probability density function
of Hl/3’ T and o, f(Hl/a,T,u). The directions at a given loca-

tion is divided into a finite number of intervals, and the pro-

32 T and o, describes a short-term state of the

bability density function may be written as:

£(H) ,5,T,0) = §DfID(Hl/3,T|a) PDIR; (o) (4.22)

where
fID(Hl/a,Tla) - conditional probability density
function of Hl/3 and T given
direction-interval no. ID

(o) - probability that the principal direction
of the incomming wave system fell

PDIRID

within interval no. ID

Conventional Model for Long-tenm Disinibution of Wave Data

In most wave statistics, the data for stationary sea states are
given in terms of wisually estimated wave period, Tv’ and

visually estimat=d wave height, Hv'

The long-term conditional di:tribution of Hv’ (within a given
interval of visual wave period Tv and a given direction interval
aID) is according to Ref. (8l)described by a three-parameter Wei-
bull-distribution.




Prob (H, < H |T within interval no. L, direction no. ID)

H -H %
(H,|T,,a) = l—exp{-(—x——QIQJLL————) DLy

= Fip,L - B
eIn,L Ho1D,L
(4.23)

HOID,L’ HcID,L’ and tID,L are parameters of the distribution.

Nordenstrgm, Ref.(81) has found that there is a relationship

between HV and H satisfying Eq.(4.24)

1/3

- <
Prob(Hl/3 < H s Prob(HV £ 8B) (4.24)

1/3) v

This relationship is on the form

_ g BH
Hv = AH H1/3 (4.295)
Common values for the constants AH and BH are
AH = 0.5
BH = 1.33 (4.25a)

Substituting Eq. (4.25) into Eq.(4.23) gives the long-term

173> Frp,1Hy/3lT,52). The
conditional probability density function for Hl/3 is given by

conditional distribution of H

o Bl I
,00) = (FID’L(H1/3|Tv,u)) (4.26)

£1p,1 8y /3Ty 3E,

Unfortunately, there is no such simple connection between Tv and
T. On the other hand, it is found that f (T3|Tv,a) is

Gaussian or log-normally distributed.

ID,L

T, is average apparent period, defined as the mean of T; see Fig.

4.2. For the Pierson-Moskowitz spectrum it can be shown that

T = 1.086T; (4.27)
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and hence the distribution of T, fID L(T]Tv,a) is Gaussian or
3
log-normally distributed

The expectation of T3is given through

BT
ID L(T,]T ) = AT T ‘ (4.28)

where TV is taken as the class-midpoint and AT and BT are
constants.

From Eq. (4.27) and Eq.(4.28) it is seen that

BT
ID L(TIT »a) = 1.086 AT T (4.29)

Common values of AT and BT are given in Egs. (4.30a - 4.30b)

AT = 0.74 (4.30a)
BT = 1.00

{Am = 2.83 (4.30D)
BT = 0.u44

The conditional standard deviation SC(Ta) of T; was found to be

T = Ts) = 1. ds] 4.31a)
UID,L(TBITV’G) S,(Ts) = 1.0 [secon ( a

By utilizing Eq.(4.27), Eg.(4.31la) can be written as
SC(T) = 1.086 [seconds] (4.31b)

If the Gaussian distribution is assumed, the conditional pro-

bability density function of T is written as:
T-E

1 —exp{-( ID,L

i SC(T) /7 SC(T)

‘ (T|r, ,0)
- \%4
L(TIT ,0)= ¥

(4.32)

If the log-normal distribution is assumed, the condltlonal prob-

ability density function is written as:




= s 4 T 2
£1p LTIT,,0)= ¥ exp{ (ln(BID L)//5 GID,L) }
ID,L i
(%.33)
where
c(T) 2173 (4.33a)
1,1 E1p, L HTyo0) MG g |
ID,L v?
$,(D 3
GID,L={ln[l+(——————:——————)z]} (4.33b)
EID,L(TITV’G)
The joint probability distribution for Hl/3 and T is

£ z = = :
10,1 Fy /50T Tysed = £1p 0 H(TIT 00, ) £rp (B 0T L0
(4.34)

The wave-data available permits only a marginal probability
distribution for T (with respect to Hl/S) to be computed, see
Eq.(4.32) or Eq.(4.33). Using one of the latter equations in
Eq.(4.34) instead of the conditional distribution f1p D,L (Tla,Tv,H1/3)

is equivalent with assuming no correlation between T and Hl/a'

The two-dimensional probability distribution of H and T

1/3
then becomes:

f1p, Ly 5o TITg ) =Ery [ (Hy 5lT s0) £ ) (F|T 5a) e

Modified Modef for Long-temnm Distribution of Wave Data.
Connelation between H1/3 and T 4is assumed.

The above assumption seems to be questionable for structures with
eigenperiods as low as 2.5 - 6.5 [seconds]. By using the two-
dimensional probability density function given in Eq.(4.35), it
is found that the probability of exeeding a given response-level
has significant contributions from pairs of H1/3 and T which have
no physical meaning.



Walden's data, Ref.(91) on waves in the North-Atlantic, clearly
dempnstrate that for a given value of T, there is an upper
limit for Hv. It is gquite reasonable to assume that a similar

situation exists for the parameters H and T.

1/3
The first problem is thus to determine the area of H1/3 and T
where any combination of 'Hl/3 and T is possible from a physi-
cal point of view.

According to Phillips, Refs.(85,86) the wave-spectrum converges
towards following for for large values of w.

- 2 -5
SEq(w) = ag®w (4.36)

The formula above is known as the equilibrium range spectrum(‘g

S(w)
|m*s|
5
C .
r enquilibrium
o range speecirum
i with a = 0.0074%
08
.
.01
o
L s
- .
.003 |
L 1 1 1 ! I\-l
1.0 2.0 3.0 .

Fig. 4.2 Comparison of observed spectrum (?) and
equilibrium range spectrum

(1) The idea of using the equilibrium range spectrum to
determine the possible area of H1/3 and T, was proposed
by Ragnar Sigbjgrnsson, Ref.(108)

(2) §.4.0.P. ~- Stereo Wave Observation Project 1957
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Philiips assumed a to be a universal <cnstant and proposed
@ = 0.0074. In Ref.(86) Phillips compares the actual spectrum
with the equilibrium range spectrum for lower values of w.

T TR T T

Sl fem® - nec)

--_L_I_I_LLuj_._l_l_L.lJ-uﬂ_.l_l—l-l—lm
A . °
’ Wired-sec!l

Fig. 4.3 Comparison of observed spectra and the equilibrium
range spectrum. From Ref.( 81), originally presented
in a report of Hess,G.D., Hidy,G.M., Plate,E.S.)

The conciusion was that actuali wave specira are ngt iikeiy to
exeed the equilibrium range spectrum significantly. Fig. 4.2.,
taken from Ref.(86), shows that the agreement is best for the
iarger values of w, but the actual spégtruq does no- exeed the
equilibrium range spectrum. A‘QOqurison made -by Hiegel in Ref.(87)
supports Phillip's conciusion. Fig. 4.3 quoted from Ref.(87)
dispiays an equilibrium range spectrum with ¢ = 0.008L.




According to recent wave measurements in the North Sea

(JONSWAP), Ref.(88), it is clear that a is not a universal
constant. The value of a seems to be a function of the sea-
state. For mean wave-periods about 10 seconds, a is typically

of the order 0.008, whilst for T ~ 3-5 seconds an a equal to

0.02 seems to be more reasonable. This variation of a with the
mean wave-period should probably have been accounted for in the
modified long-term model. Hovever, as subsequently will be shown
by a parameter variation the influence on the results by the
actual variation of a is negligible.

Pairs of H1/3 and T which are possible from a physical point of
view, must satisfy

S(w) £ ag?w~$ (4.37)

Substituting Eq.(%.5) into Eq.(4.37) gives the following inequa-
lity to be satisfied for admissibility of pairs (H1/3 and T).

T2 2'[_2;1111/4 172 (admissibility

(4.3
a g? 1/3 condition) 8

In the foregoing it was assumed that the increase in a for
smaller values of T would not have any significant influence
on the long-term distribution. This assumption is justified
by Fig. 4.4. The unbroken line defines the area, R, when

a = 0.0081 is assumed for all values of T. The broken line
gives the area, R, when the following values is assumed:

a = 0.0081 T>9s
a = 0.015 T~5s
a = 0.03 T~3s

It is seen that the difference between the broken and unbroken
line is rather small, and would probably have no significant
influence on the long-term distribution.

However, it should be noted : that the results obtained by
assuming @ = 0.008l ape non-conservative.
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Hi/3
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Regions for =
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—— a = 0.0081
0.0081 T > g
10. ---@ = 0.015 T>g§
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Fig. 4.4 Comparison of physically admissible combinations
of H1/3 and T

Using the original assumption of no correlation, and calculating
the expeeted value of T by Eq.(4.29) then E(flTv,a) fall outside
the admissible region in Fig. 4.4, especially for small values
of Tv. Most of the two-dimensional distribution of H1/3, T 1lies
outside R for the lowest classes of Tv'

The coaventional long-term distribution of H1/3 and T can be
improved by constructing an fID,L,J(TITv,u,Hl/a) in the general
equation (4.34) with due consideration of the admissibility
criterion (4.38) and the existing observations. The modeling of
fID,L,J(T'TV’a’Hl/3) is based on the following assumtions:

- for a given H )

173 the distribution of T fID’L,J(TITV,a,H

is either a normal or a log-normal distribution,
Egqs.(4.32-33). "

1/3




- the expectation (mean value) of f is assumed to be a
Ip,L,Jd

function of Hl/S' (conditional upon H1/3). Thus, EID,L

lfITv,u)in Eqs. (4.32-33) is replaced by EID,L,J(TITV’Q'H1/3)

This is the refinement introduced to improve the previous

conventiconal model. To ensure that this modifiéation is in

agreement with the known data, the marginal "expectation"
{with respect to H1,3) of the conditional expectation’
corresponds to the observed value, Eq.(4.29) (A detailed
explanation follows below.)

- the variance of f ( ) 1is constant, independent of
ip,L,Jd

H1/3 and equal to the observed value, Eq.(4.3la-b).

The principal assumption regarding the expectation of T is:

EID,L,J(TITv’a’H1/3)=TLIMJ(H1/3)+FFID,L,J(“’Tv’H1/3) (4.39)
where
TLIHJ(HI/S) - is given through Eq.(%4.38)
FEip 1L.J - is the distance between the expected
’ 2

value of T and the limit of the area R.

?o ?e able to determine ‘PID,L,J ID,L,J
is independzat of H1/3' In other words it is assumed that for

it is assumed that FF

a given direction interval and a given interval of TV,FPID L.J
Lo}
is a constant. Accordingly,Eq.(4.39) is written

)=TLIHJ(H )+FF (u,Tv) (4.43)

Erp,L,a(TITy o008, /5 1732*FFp.L

This is illustrated in Fig. 4.5.

From the conditional expectation of T given in Eq.(4.4g) the

"marginal" expectation (margzinal with respect to H ) of T may

1/3
be calculated as follows:
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EMARG (FlT. 0)=S
V' H

iD,L (TlTv,u,H

Ern. 1.0 173

1/3

£ ,a)dHl (4.41)

0,1 8y /31 T, /3

where

fID,L(Hl/3ITv’°) is given in Eg.(4.26)

To ensure that the modified model is "consistent" with the

known wave data, it is then required that EMARG L(TIT,5a)
£

is equal to the observed marginal expectation, Eq.(4.29).

1/3
i
) with correlation

no correliation

2 5 6 e 1 12 1 T[s]

Fig. 4.5 The expectation of T, with and without correlation

between T and Hl/3'

The program "LONTIM" (Part II of Ref. (104)) do automatically

calculate FF;p such that the following inequality is satisfied
k4

|EHARGID,L('TITv,a)—EID'L('T‘]TV,a)| 5 g, (4.42)
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where
EID L(TITv,a) - "marginal" expectation according to
k]
Ref. (83) given in Eq.(4.29)
€. = a constant, depending on the accuracy that is

wanted. In the program LONTIM, €,= 0.2 seconds.

This determines the only free variable in Eq.(4.39). Thus, the
mean and variance of the normal or lognormal distributions are
known and fID’L(Hlla,TITV,c) is given according to Eq. (4.3%)
where fID,L,J(TIH1/3’Tv’a) is defined by Eqg.(4.32) or Eq.(4.33)
with mean Eq.(4.39) and variance (as before), Eq.(4.31b).

In this resulting modification a major part of the two-dimensional
probability density function given in Eq.(4.34) lies in the area

R, depending on the value of FF . Obviously, this modification

IDh,L
has no influence on the distribution of wave-heights, The most
probable largest wave-height on a given probability level is the
same as for the conventional model.

Modified Modef for Long-tenm Distribution of Wave Data

based on instrumentally obsenved values of H”3 and T

The previous long-term models discussed were based on the visual
estimates of wave-period and wave-height. In addition continuous

distributions of the short-term parameters T and H were assumed.

1/3
As mentioned before great uncertainties are associated with this

long-term model due to potential non-physical combinations of

H1/3 and T.

A more reliable long-term model would be a model which was

directly based on observed values of H and T. In this case

1/3

non-physical combinations of H and T would be completely eli-

1/3
minated. However, in this model the most extreme sea-conditions

will probably not be included.

Let H ,, be divided into JMAX intervals, and T be divided

into IMAX intervals. This gives a totally number of IMAX JMAX
different short-term sea-states. Each observed set of Hl

= /3
and T is associated with one of these blocks.
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The probability of occurence of block number (I, J)
be given as

is assumed to

Prob[((H1/3(J) <Hjy, g <Hy,3(J3+41)) n (T(I) <T <T(I+1)))|direction]

i n+ (T ,3)
_ - D2
= Prp(Hy, g, Tla) = (4.43)
ID
where:
nID(I,J) number of recordings associated to block (I,J)
for direction ID
NID - total number of recordings for direction ID
IMAX JMAX
I=1 J=1

4.5 Long-term Response Statistics

Continuous Distribution for H, 5 and T

The calculation of the long-term distribution of response
maxima will be done according to the assumption that the
stochastic process consists of a serieg of stationary pro-
cesses, characterized by the response spectrum (given by the
parameters T, Hl/3’ a and Yy and the parameters characterizing
the structural dynamical behaviour):

The conditional long-term probability to exceed a response
amplitude for a given interval of visual period and direction
may be calculated from Eqs.(4.19) and (4.35) or (4.34) as

Prob(X>x|Tv,u) = QID,L(xlTv’a)

7 = = —
= J %QS(X-XIHlls,T,u) fID’L(Hlla,TITV,a)deH

1/3
Hy/3

(4.4y)
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The integrals above is evaluated by means of numerical integra-
tion, see Ref.(LlO04).

The marginal distribution of response is calculated according
to Eq.(4.45)

Prob(X>x) = Q(x) =

Z PDIRID(G)(EPVWID’L(TV) QID’L(x|Tv,a)} (4.45)
ID L
where
PVWp L(Tv) - probability that visual wave period T
’ fell within interval no. L for direction
interval no. ID
PDIRID(a) - probability that incomming wind fell

within direction interval no. ID

Discrete Distribution for Hy 4 and T

For each block ( i.e stationary sea-state) the probability to ex-

ceed a given response-amplitude is given through Eq.(4.22). The
long-term distribution 'is given as

; L qux IMAX
PCX>x) = & PDIR. .. (a){ T £ Q_(x|H T, a)P (I,J)}(4.56)
: ID ey g 173> T REgptas
D=1

The reliability of this model is dependent on that Nip is a

great number, for ID = 1,2,..., NUDIR. Up to now data has been
lacking for this model.

Extreme Value of the Response

Eq.(4.45) can be used in connection with extreme values statis-
tics, Ref.(53), and gives, for instance, the most probable
largest value of N maxima, Xyo through:




it
Prob(X>xN) % & (4.47)

Again, the variance of the largest value of N maxima is so small
as to justify the use of a single value, Xy» @s a design value for
ultimate failure modes.

Estimate on the Numbern o4 Response Cycles Associated with a
Given Amplitude Level

In the design against fatigue the information 2n the response
required is the number of cycles corresponding to each amplitude
level.

In the present subsection a simple estimate for this quantity will
be given.

It is assumed that the response process is sufficiently narrow-
banded so as to justify equivalence between a cycle and a (positive)
peak.

Response
X

XA+

Rarrow band
process

Long term distribution of peaks, Q(x)

L 1 L L
-10 -8 -6 -4 -2 o

10g816Q Q - probability

' of exceedance
o

4N - number of cycles

A 1 A L L
> 10?2 10* 10¢ 10*

N - Number of cycles

Fig. 4.6 Determination of the number of cycles corresponding

to a given amplitude interval. A time interval corre-
sponding to 108 cycles is assumed.
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The long-term distribution expresses the probability of exceedance
for a period of the order of the life-time (20 - 50 years) of the

structure. Let the number of cycles in that period be 108. One

cycle then "corresponds" to a probability 10-8.

The number of cycles, AN corresponding to an amplitude level,

(Xo- é%) - (Xo+ é%) then can be obtained from

AN = N(Xo + 2%y - wNexe + 2 (4.48)

when the long-term distribution is displayed in a logaritmic
scale, Fig. 4.6.




5. NUMERICAL STUDIES

Based on the theory evaluated in Chapters 2 - 4 a com-
puter program was developed. Numerical studies carried
out with the computer program are reported in the present

section.
LT Dynamical Modeling.

5+1s1 Description of Example Platform

Consider the platform shown in the Fig. 5.1 in 146 m of
water. The caisson has an equivalent diameter of 90 m
and height of 60 m. The total height from the soil to
the top of the deck is 175 m. The diameter of the

]
|
1
¥ B { S
]
Section :
A-A : shaft (tower)
I
]
h=146 m ! caisson
|
|
p i
l i I
]
; 60m
B ]
udline Sand ballast o

skirt

Section
3-B

Fig. 5.1 Example gravity platform




shafts is in the range 12 - 20 m.

The platform is assumed to rest on the soil surface with

no embedment.

The density and the Poisson ratio of the soil are assumed
to be 2000 kg/m® and 0.5, respectively. The shear modulus,
Gs’ is the most important and uncertain of the soil para-
meters, and a parametric study of G, in the range 1.0-107
N/m? to 6.0-107 N/m? is carried out. In addition, a 6, of
1.0-10° is chosen to simulate a fixed base. Equivalent
spring and dashpot constants are introduced according to
the Chapter 2. The hysteretic damping ratio, B, is

assumed to be 0.05.

The structural and hydrodynamic damping is represented by
& constant damping ratio of 1.5% of the critical for all
(interaction) modes of vibration.

5.342 Structural Idealization

The actual structure, shown in Fig. 5.1, may be divided
into 3 typical parts:

- deck

- shafts

- caisson
Stiffness

The deck structure consists cf a set of steel girders as

shown in Fig. 5.2a, and the idealization is shown in Fig. 5.2b.

Since the deck mainly exhibits horizantal motions, the
model in Fig. 5.2b is justified. Stiffness relations are
obtained by flexibility corsiderations of the actual deck.
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The mass is lumped in the nodal points, and the elements
in the deck is modelled as three-dimensional beams with

cross-sectional properties as given in the Table 5.1.

Material properties for steel:

Modulus of elasticity E = 2.1-10'' [N/m?]
Poisson's ratio = 0.3
i
—0a 4 8 .
17,32 m 17,32 m
Z —e ¥
(D 30 m

.

a) Main girders in the

deck structure

b) Equivalent deck

system

Fig.

Table 5.1

5.2 Deck model

Cross-sectional properties of the deck

structure, (unit [m])
Element no. A Asx(y) Asz Ix(y) IZ It
1 .82 « 18 .32 6.92 4,25 1.5-10""
2, 1.94 .56 1.09 16.4 10.75 6.3-107%
Remarks: In reality the stiffness I, is fictious since the

bottom of the deck provides "infinite" stiffness
in its plane.
x(y) - horizontal; z - vertical; s - shear; t- torsion.




Fig. 5.3 shows one of the concrete shafts and its
idealization. The model consists of 4 beams with con-

stant cross-sectional properties within each element.

Material properties of concrefe:
Youngs modulus E = 2.45-10'°

Poisson's ratio p = 0.25
$12m
T_-TF-‘ | =l
“ |
& | by
= = ~>f-0,4m
£ 7
o
o~
ha
1 ta
10 E _|- - ote0.525m
”™
_"_u,ss:n Section A-A
—f| = =] o= o775m
13 E
L .
2,9m
B . O I R
2 ¢ 20m
Caisson

Fig.' 5.3 ‘Shaft Model

The mass is lumped in the nodal points. Since the lower

order modes predominate this approximation is justified.
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Table 5.2 Cross sectional properties of the shafts

(Unit [m])
Element no. A As Ix(y) I_t
4,5,6,7,8,9 16.0 8.0 274%. 548.
103l 12 4o 23.6 576. 1010.
13,1%,15 45.7 32. 1740. 3230

The caisson consists of 19 cylinders, each with a diameter

of 20 m, see Fig. 5.1. This part of the structure is very

stiff as compared to the stiffness of the other components

of the structure. Thus,it is modelled by 6 beam elements,

and the cross sectional properties are choosen equal to

50 times the value at the lowest shaft element. The masses

are lumped to the nodal points, see Fig. 5.4.

Fig. 5.4 Model of the caisson

Mass

The mass includes the mass of the structure itself, the
mass of equipment on the deck, possible water in the
columns and the caisson and the added mass of the environ-

mental water.

| -
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The mass of the deck itself and maximum functional
equipment on the deck is 25000 tens.

The dimensions of the concrete columns are shown in
Fig. 5.3. The density of the concrete is put equal to
2.4 t/m®. All three columns are assumed to be filled
with water up to 20 m below still water level (Sloshing

effects in the water are neglected).

The added (hydrodynamic mass) of the columns is put equal
to the displaced water.

The cadisson consists of 19 equal cylinders. The dimen-
sion of one of them is shown in Fig. 5.5. Each cylinder

is assumed to contain sand up to a level 4.2 m over the
bottom. In addition, it is
conservatively assumed that
all cells are filled with
water.

=t = .8m The hydrodynamical mass of
the caisson is calculated by

] - applying diffraction theory,
I~ Water

2 Refs.(45-46) and considering

Sand the caisson to be equivalent

to a cylinder of height 60 m

and diameter 90 m. The masses

associated with the lower node
Fig. 5.5 A +typiecal

cylinder in the

(no. 17) of the model are

given in Fig. 5.6b.
caisson




Mass matrix:

M v MxxM

x@

sugpf
Mox Moo |®
. peV [ 2.5 -1.8 u
volume, V
0m -1.5 1.5 0
]
y /N—-.\“ -
T7ITT7 77 77y 77 A7 7z 77 X
90m
a) b) Hydrodynamical masses

associated with the caisson
Fig. 5.6 Hydrodynamical mass for coupled

horizontal and rotational motion

The added mass for vertical translation is put equal to
the volume of a hemisphere with diameter 90 m minus the
displaced volume of the three columns within this hemi-

sphere.

For rotation about the vertical axis, the added mass is
obtained by assuming that it is equivalient to a water
layer with a thickness of 4 m surrounding the caisson.

The corresponding inertia moment is then computed.

The resulting lumped masses are (index refers to nodal

point number, see Fig. 5.8):
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m; = 10.3-10% kg

m; = 6.5-10° kg all directions
my = m, = 5.5-10° kg
ms = mg = my = 3.2-10° kg x&y dir.

= 2.0°10° kg z dir.

Mg = Mg = Myp= 7.2+10° kg x&y dir.
=  J.H-10% kg z dir.

My;= Myz= Myy= 13.3-10° kg  x&y dir.
6.1-10% kg z dir.

mp,= Mys= Mpg=122.5-10° kg  x&y dir.
=135.3-10°% kg z dir.

m;7=393. +10°% kg x&y dir.

268. -10°% kg z dir.

Rotational mass inertia moment in node 17

I =1 .==27.5~10"" kgm?

Ll
1

53.4-10'" kgm?

Damping

The structural damping and hydrodynamical damping are
combined, and assumed to be of 1.5 percent of the critical.

5.1.3 Representation of Boundary Conditions of Surrounding Media

The platform structure is bordered by 3 media. The
appropriate boundary conditions for the platform may be

obtained by considering these media .

- The air
The wind effect is neglected in the present case
- The water
For the dynamic behaviour of the structure, the
effect of the environmental water is included in
the lumped masses represented by the added mass
components as outlined in Chapter 2, and 5.1.2.
Excitation forces are considered in Chapters 2.5
and 5.3.




- The soil
The interaction between the platform and the soil
is of great importance for the dynamic behaviour,

see Chapter 2.

It is assumed that the effect of the soil on the interaction
system may be described by equivalent soil stiffness and
damping coefficients, see Fig. 5.7. The selection of coeffi-

cients are made according to Section 2.4.

Soil Stiffness

The soil stiffness is a function of the shear modulus, Gs’

and the circular frequency, w. In Table 5.3 the equivalent
stiffness coefficients of the soil are given for various shear
moduli and one frequency (eigenfrequency of lower order modes

of the interaction system). In the actual case the soil stiffness

is practically independent of the frequency.

ANANNN

[

AANNANNNRNS

Fig.5.7 Soil stiffness and damping (in x-z plane)
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35 m

) 12

175 m
35 m

60 m

(:)- element no. n

n - node no. n

Fige 5.8 Model of the entire platform structure




2000 kg/m?
Poisson's ratio - ug = 0.5

Density for soil - oy

Tabie 5.3 Equivelent stiffness of the soil for various
shear moduli:. Unit kX -[N/m] , ke-[Nm]

2
G IN/m?]|  w gx,ky Kg » kw k, k¢

1.65°107(1.12 4.00-10° 8.1-10'%? 6.14:10° 8.85-10'2
3.00+307 | 1.43 7:20.20°  15:2-10%% 30.20+30° 15;4%0-10%2
B.00-20" 1,76 | L4.65-10% @0.4-20° 22.3 -10° 32.27-1o?

10%] 2. 04 2.47+10*r  5.3.20'% 3.72-20%° B5.36-10%"

S04l Damping

The damping in the soil is assumed to be viscous and
represented by dashpots for each degree of freedom. For
the actual frequency range only the rocking damping is
really frequency dependent. In the actual frequency range
the damping varies nearly proportionally with frequency

and is zero at zerc frequency.

Table 5.4 displays the values of equivalent damping
coefficients for various shear moduli and the frequency
corresponding to the lowest eigenfrequency of the interaction
system.
Table 5.4 Equivalent damping in the soil at resonance
frequency for various shear moduli ..
Unit c -[Ns/m],ce -[Nms]

6, [N/m] w224 oy a0y 5 c,
1.65-207|2.12 1.18-10% 29.5-10'° 2.87-10° 8.51-10%°
3.0 -107|1.43 1.50°30%. 28.3-10'% @.87-10% 11.23-10"
6.0 =10%)1.76 224307  40.0-20%% 5.09-20°. 16.24-3p'"
10°(2.04 9.01-20% .10.4:10*° 20.79:10%. 663 »20"°




- 100 -

5.2 Determination of Eigenfrequencies and Eigenmodes

The resulting dynamical model was a system governed by
102 equations with a half bandwidth of the stiffness
matrix of 24.

K¢ =

Mow?

The eigenvalue problem

5 1Y

is solved by the use of a subspace iteration algorithm.

10 eigenvalues and eigenmodes were determined.

required for the solution of Eq.(5.1).

With a

convergence tolerance of 10° 27 secs. CPU time was

The eigenvalues were determined for 5 different shear

moduli of the soil, see Table 5.5 The lowest eigen-

frequencies were remarkably sensitive to the magnitude

of the shear modulus.
independent of the shear modulus.

Higher eigenfrequencies were rather

Fig. 5.9 displays the

variation of the lowest eigenfrequency with shear modulus,

The highest shear modulus, Gy= 10°[N/m?] simulates a

fixed platform structure.

The value 10° is chosen to

avoid numerical ill-conditioning of the eigenvalue problem.

In Figs.

5.10a

- d

the four lowest eigenmodes are

shown for a shear modulus of 6+107[N/m2].

Table 5.5

The 10 lowest eigenfrequencies for various

shear moduli

Eigen G71.0°107 GFf1.65-10"7 G=3.0-107 G;s.o-167 GF1.0-10°
fﬁ;?' Woo o Tpooomp BT, W Eg U 8 T L 8OSES
1
1/0.758 8.294 1.104 5.690 1.392 4.515 1.761 3.568 2.041 3.079
2 (0.762 8.247 1.121 5.606 1.436 4.376 1.906 3.296 2.357 2.665
3(1.902 3.303 2.426 2.590 2.670 2.335 3.242 1.938 4.289 1.446
4 | 1.920 3.273 2.589 2.427 3.003 2.093 3.487 1.802 6.491 0.968
5]2.243 2.801 2.878 2.183 3.869 1.624 4.253 1.477 8.422 0.746
6 |2.612 2.405 3.001 2.093 3.931 1.598 5.438 1.156 8.772 0.716
712.707 2.321 3.234 1.943 3.931 1.598 5.556 1.131 9.056 0.694
8 [3.025 2.077 3.424 1.835 4.110 1.529 5.584 1.125 9.160 0.686
9 |4.408 1.425 4.479 1.403 5.018 1.252 6.470 0.971 9.903 0.634
10 | 6.509 0.965 6.510 0.965 6.514% 0.965 6.863 0.91610.650 0.590
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wr 4
[rad/s)

_ Y aEymptote o

1.04

The lowest eigenfrequency

v

1.0 2.0 3.0 4.0 5.0 6.0 77.0 5
Shear modulus in the soil G100 N/m

Fig. 5.9 The variation of the lowest eigenfrequency
with the shear modulus in thé soil.

5.3 Response to Harmonic Wave Excitation
P Hydrodynamical Excitation Forces

Genenal Remanks

When the eigenvalues and eigenmodes are determined, the
next step is to determine the response of the structure in
the form of transfer-functions due to wave forces. Wave
forces are calculated on the basis of Airy's first order
wave theory, see Chapter 2. Equivalent nodal forces are
determined for a harmonic wave with a height of 1 m. One
load vector is calculated for each wave frequency. Waves
having circular frequencies in the range 0.314 to 3.14 are
considered, and calculation is performed for 20 intermediate
frequencies. In particular, three excitation frequencies
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sorresponding to the eigenfrequencies of the three lower order
nodes are included. The forces are calculated separately for
the caisson and the shafts. For wave periods less than 9

secs, the loading on the caisson is negligible, see Fig.(5.1la).
The difference in phase angle between tlie nodal forces on the
caisson and the different shafts is duely accounted for. The
center of the caisson is chosen as the reference position for

the wave loading, see Fig. 5.lla.

. 'r_ T " 'l — "ave propagation ‘
I . 1 |
el T o \
RN <L T |
ISl
: I f —% \*‘-<~vaye in reference
] position
! |
|
] 1
I l I
I F
11 1B E
11 l | |
! | “ 1 |
: | | |
r 1 1 | _L.__._1
| |
| |
| |
| |
| I
: !
—_—

Fig. 5.1la Maximum wave load for wave in reference
position. Dotted line corresponds to maximum
loading on Shaft 1.
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Assuming a long-crested wave with a wave length equal to A
and a direction of propagation with an inclination a with
the x-axis, the phase angle between load on the caisson and
the shafts will be:

861 = 2w %;/X for Shaft 1
82 = 2w L,/2 for Shaft 2
83 = 2m 23/A for Shaft 3

where 21 and %3 are negative and &, is positive, see
Fig. 5+11Ibs

N O&
“ y o’(:_»o \‘0
-»Ca_ ‘Aa ,»00
° P
. o
T ) ‘COQ
<
5
al
: T NXs TR
iXy
2
wave
crest 1
wave
crest 2

Fig. 5.11b The phase angle between maximum loads
on the shafts. Wave propagating at an
angle in a direction forming an angle a
with the x-axis.
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Fonces on the Shagits

The distributed 'inertial wave loading on a typical shaft is
shown in Fig. 5.13 for four wave periods. The distributed
loading is transformed into equivalent nodal forces and
moments by application of the virtual work concept. The
variable stiffness along the beam elements is accounted fur.
The calculation of nodal forces is done automatically in the
computer program for a shaft with specified orientation in

a wave and with given nodal points. The corresponding nodal
forces for four wave periods are listed in Table 5.6.

Table 5.6 Nodal point forces. Wave height 1 m. Units are

[ton] for force and [ton:m] for moment.

T=17 sec T=11 sec T= 7 sec T = 4 sec

Number | Force Moment Force Moment Force Moment Force Moment

11
14

8.4 -42,1 23.6 =-96.8 u47.3 -177.6 38.7 -113.4
37.4 -52.5 56.0 =-17.9 64.0 117.5 20.4% 105.1
50.9 89.1 46.7 182.0 14.5 126.2 0.16 2.4
26.4 196.3 .15.2 117.0 1.0 10.1 0 0

Fig. 5.12 Nodal points along a shaft
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Forces on the Cadisson

The inertial wave loading on the caisson is evaluated by

assuming the caisson to be equivalent to a cylinder with
the following dimensions:

Height Ss3 = 60 m
90 m

Radius ry
Cross-sectio-
6360 m?
3.815°10° m®

nal area

Volume v

Fig. 2.17 and Fig. 2.18 show the idealized structure.

The forces on the caisson are calculated according to

Eqs. 2.31 and 2.32. Maximum load on the caisson appears
when the wave is in reference posistion, see Fig. 5.1la.
Interaction effects between the slender shafts and the
caisson are neglected. In the present case pressure under
the bottom of the structude is assumed to be equivalent to

the pressure corresponding to free water in the soil.

\ — Wave propagation

1ug P
P
\w
£12,
mz Wx
o
=
2041.
.
] —
3] B
£ o848 LY
e o
~
o R
Za.6{=}3
@ <
" &
y4.44d 612
E =
2q.21 1

3 10 11 i2 13 1% 15 16 17 18 19

Period T ’_sec o

Fig. 5.14 Variation of horizontal force, overturning
moment and eccentricity of the horizontal
force resultant with wave period T.
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The resultant horizontal force and moment computed for the
caisson are shown in Fig. 5.14.

The vertical force resultant is neglected, as it is assumed to
have insignificant influence on the behaviour of the structure.

The horizontal force resultant is applied as nodal‘forces.
These forces act in the three nodal points on the top of the
caisson and the node at the soil - caisson interface. The
moment from the pressure distribution on top and bottom of the
caisson is applied in the node at the soil-caisson interface.

Fig. 5.15 Directions for which the hydrodynamical
loading are calculated



Table 5.7 Typical load vectors for wave frequency 0.48
[rad/sec]. Wave propagation in x and y direction,
respectively. Wave height H m.

Direction Node Local degree Force (N] Phase
of load no Moment [Nm] angle [%]
5 2 132847.
6 2 132847. 26.6
7 2 132847. -26.6
5 4 651200.
6 4 651200. 26.6
T y 651200. -26.6
8 2 u66587.
] 2 466587. 26.6
10 2 466587. -26.6
8 y L67400.
g 4 467400. 26.6
10 4 467400. ~26.6
y 1 2 522455,
2 2 §22455. 26.6
13 2 5722455, -26.6
1 4 ~1497200.
12 4 ~-1497200. 26.6
13 L -1497200. ~-26.6
14 2 1132162.
15 2 11313162, 5.%
16 2 1113162. -5.1
14 y -1607800.
15 u ~1607800. 26.6
16 4 -1607800. -26.6
7 s 2031160.
17 u 4389000.
5 A 132847, -27.
6 1 132847. 13.
7 1 1328u47. 13
5 5 -651200. -27.
6 s -651200. 13.
| 5 -651200. 13.
8 3 466587. -27.
9 ;1 466587. x o
10 L 466587. 13,
8 5 ~467400. -27.
9 5 -467400. X3.
10 5 -457400. 19
X a3 ¢ 522455, -27.
12 1 522455. 13.
13 1 522455, 13,
11 5 1437200. -27.
12 5 1497200. 13.
13 5 1497200. 13.
iy 1 1112592. - 5.2
15 1 1127590. 2.8
16 3 11275990. -5
1 5 1607800. =27,
15 5 1607800. 13.
16 5 1607806. 13.
17 1 2031160.
17 5 4389000. 180.
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Resulting Hydrodynamical Loading on the PLatfonm

The resulting environmental hydrodynamic loading consists
of the load on the shafts and the caisson. A load vector
is established for 20 separate wave frequencies in the
range 0.314 to 3.14 [rad/sec] and 12 directions of wave
propagation. However, due to symmetry about a plane only
6 directions were actually calculated. The 12 directions
for wave propagation is shown in Fig. 5.15.

When the load, applied as nodal forces, is combined, the
difference in phase between the load components is

accounted for. The loadvectors for waves progressing in the
x and y direction are listed in Table 5.7 for a typical
frequency. The reference point for zero phase angle is the
center of the caisson. The local degrees of freedom are
defined in Fig. 5.186.

oI — /

¢

Fig. 5.16 Definition of local degrees of

freedom in a nodal point.
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B 2 Transfer-functions

Genenal Remanks

The transfer-functions are determined both with a dynamic
and static model. The harmonic response of the structure

is caliculated according to the procedure outlined in Chapter
3. The harmonic response for nodali displacements is found
by modal superposition. Input to the analysis are eigen-
vectors, eigenfrequeicies, the mass-matrix and the load
vector amplitude and corresponding phase angles. 8 eigen-—
vectors were used in the computations.

As previously mentioned the computation was accomplished for

20 wave frequencies and 6 directions of wave propagation.

In the subsequent part of this section, calculated transfer-
functions for displacement and internai forces in the struc-
ture will be reported and discussed. The results are pre-

sented in the following sequence:

- transfer-functions for displacement of the dec’.
Various shear moduli of the soil. Wave propagating in
x- and y-direction.

- transfer-functions for moments in tcp and bottom of
the shafis. Various shear moduli in the soil. Wave
propagating in x- and y-direction.

- transfer-functions for moments in top and bottom of
shaft no. 2. Shear moduius of the soil equals 3.0-107

[N/m?]. 12 directions of wave propagation.

Trans fer-functions forn Displacement of the Deck.

The transfer-functions for the deck displacement are shown

in Fig, 5.17-18. Dynamic and static transfer-functions arve
displayed for waves.propagating in x- and-y-directions.

The curves in Fig. 5.17 display the effect of the shear moduius
of the soii on the dynamic response.




il 1

The soil-structure interaction has two principal effects:

- the resonant frequency of the system decreases to a
value below that applicable to the fixed-base struc-
ture

- it modifies the magnitude of the peak response, de-
creasing the value for short, quatty structures and

increasing the value for tall slender structures.

The first effect is easy to understand. The second effect,
which appears to be contradictory at first glance reguires
some explanation. The change in magnitude of the peak
response is the result of two opposing mechanisms. Because

of the energy which is dissipated by radiation into the
supporting medium, the effective damping of the flexibly
mounted structure is greater than that of the fixed-base
structure, and this tends to dechease the response of the inter-
acting system. However, the rocking of the foundation in-
creases the acceleration inertia force, and the corresponding
whipping effect leads to a correspcnding {nciease in response.
The first factor is predominate for short structures, whereas

the second factor is predominate for tall structures.

The peaks and throughs in the transfer-functions are asso-
ciated with "resonances" and phase differences in the loading
on different shafts.

A remarkable difference in both the shape and the magnitude

of the transfer-functions are observed for circular frequencies
of the waves higher than 1.0. This is a result of the dif-
ference in phase angle between maximum load on the shafts as
illustrated in Fig. 5.19. For small frequencies this differ-
ence in phase angle is insignificant. Thus, the transfer-
functions show on.y a small difference at low frequencies.
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It is observed from Fig. 5.18 that the transfer-functions et b |
for waves propagating in the x- and y-direction are quite
different. This is principally due to the difference in |

phase angles.

By comparing the response for dynamic and quasistatic
analysis it is observed that the dynamic amplification is
of great importance for the frequency range w= 0T = LaTs
The amplification decreases with decreasing frequency when

the frequency is below the lowest eigenfrequency of the

structure.
[ Cw)|
[cm/m]ls
Dynamic analysis
Shear modulus of the soil
R o= G=1.55-107(N/m?]
o - G=3.0-107
Yo = - G=6.00-107
10

-2 Wb .6 8 1.8 1.2 Ie '1l.6 1.8 2.0 2.5 3.0 w

Fig. 5.17 Dynamic transfer-function for the dis-
placement of the deck in x-direction for
waves in x-direction. Three values of the

shear modulus in the soil were used
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| $Cw) |

- Dynamic analysis
{cm/m] ~=== Static analysis
: R x-displacement for

u
1 waves in x-direct.
y-displacement for
1o waves in v-direct.
mogulus of the soil
- 167N/ m?

Fig. 5.18 Static and dynamic transfer-function for
the displacement of the deck. x-displace-
ment for waves in x-direction, and y-dis-
placement for waves in y-direction

Due to the effect of the phase angle between the forces
on the shafts, the highest response value is obtained
for G_ = 3.0-107 [N/m?].

Recognizing that the peak response is inversely proportio-
nal to the damping ratio in 2 1DOF-system, the maximum
dynamic amplification obviously must be sensitive to the

choice of damping in the system.




= 1S =

Load in x-direction Load in y-direction

Y Orientation
of the shafts 1
O—_ x with respect to ¥

wave propagation

direction O c

el ~L/2 §~L/2 I
X
i ; 1
: | A =L | ! |
T = 4.8 o I |
NL N g H NS
w = 1.3
1_ 3
7 I ;
TIT7TTT TIT7777. fLI 7 ~ NN 4 AR
P1 2p1 L = 3p;y s P -P1 ppL=p
T - T i
| 1 A= 2L | | |
! P T=us7 TN I =
SRR i = 1 —  w = 0.92 '"r" AT
7 - T >
i N
- 4> R R
Bz -2p;  EI=p2 P2 0 -pz L =0
T T ‘ T l l
| ] A = 4L I | |
- _“l Il . T=29,8 ~ | |
L7 w = 0.65 ?:\’ 1
N
I |
! |
) J L | 1
7 777 LT T ~ SNAXXTYTN N ~
Ps 0 ZI=py Pa ps cos 45° 0 I=1.7ps

b) Wave propagating in

a) Wave propagating in
y direction.
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Fig. 5.19 Effect c¢f phase differences of the
loading on various shafts on the total
loading for various wave lengths (-periods).
Only inertial forces on shafts are considered.
(Z denotes the resulting wave force on the

shafts).




Fig. 5.20 Moments for which transfer-functions

are calculated.

Thans fen-functions fon Moments in the Top and Bottom of
the Shafts

The internal moments (and forces) at the top and the bottom
of the shafts are particularly important in the structural
design.

Transfer-functions for moments in Shaft no. 1 and 2 were
determined for waves propagating in the x- and y-direction,
respectively. In addition, the transfer-functions for the
moments, Mx and My at the bottom of Shaft no. 2 and moment MX
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at the top of Shaft no. 2 were computed for waves propagating

in a series of directions in steps of 30°.

Static and dynamic analyses were accomplished. Various

shear moduli of the soil were utilized.

Comparison between the transfer-functions for the moment
in the top of the shafts is made in Figs. 5.21-22. The
principal characteristics of the moment transfer-functions
are quite similar to the displacement transfer-functions.

While the displacement transfer-functions tend to increase

by decreasing frequency, the moments transfer-functions do
not. The increase in the displacement transfer-functions is
primarily due to the fact that forces on the caisson are
activated by lower frequencies (large wave lengths);

thereby introducing significant rigid body motions.

In Figs. 5.23-24 the transfer-function for the moment at

the bottom of Shafts 1 and 2 are shown for waves propagating
in the x- and y directions, respectively. The transfer-
function for the bottom moment is quite similar to the 'moment

at the top of the corresponding shaft.

To investigate into more detail the effect of the direct-
ionality of the wave progress oOn the response, the moments
about x- and y-axis in top and bottom of Shaft 2 were con-
sidered. The shear modulus of the soil was choosen to be
G, = 3.0-107 [N/m?] for all cases. Fig. 5.27 displays the
transfer-functions for the moment at the top of Shaft 2 for
the 12 wave directions. The response is very sensitive to
wave direction. This observation may be explained by the
fact that the phase angle between maximum load on each shaft
is highly influenced by the direction of incoming waves.
Furthermore, the unsymmetric deck-structure indicates
directional dependency of the moments in the top of the
shaft. This effect is not that much pronounced in the moment
at the bottom of the shaft, see Figs. 5.25-26.
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Dynamic analysis
Shear moculus:
=.1.65-107 [N/mm?
g:: 3.00.107 " )
Gs= 6.0C-107

5.2%

© ====— slatic analysis

.40 6 .8 1.0 1.2 14 1.6 18 o o

Transfer-function for the moment M_ at the
top of Shaft no. 1. Wave progressing ir the
x-direction.

Dynamic analysis
Shear modulus:
Gg=-1.65-167[N/mm?]
Gg= 3.00.207 *

Gg= 6.00-107 "

all shear moduli
n=1m

Transfer-function for the moment Mx at the

top of Shafi no. 2. Wave progressing in the

rection.

v
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Dynamic analysis
Shear modulus:
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—-—== static analysis
all shear moduli

n=1m

%00
[

oF
.2 -4 .6 .B 1. 1.2 1.% 1.6 1.8 2.0 2.5 3.0

Fig. 5.23 Transfer-function for the moment M_ at the

bottom of Shaft no. 1. Wave propagating in
the x-direction.

—— Dynamic analysis
Shear modulus:
- G5=.1.65-107[N/mm?
= &I'3i80-1g, Nammt]
- Gs= 6.00-107 v
© ==== static analysis
all shear moduli

n=1m

xo00

Fig. 5.24 Transfer-function for the moment M, at the
bottom of Shaft no. 2. Wave propagating in
the y-direction.
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Fig. 5.25 Transfer-functions for moment about x-axis
at the bottom of Shaft no. 2 for 12 directions
7 [N/m?]

i

Fig. 5.26 Transfer-functions for moment about y-axis at
bottom of Shaft no. 2 for 12 directions wave
propagation. 6 = 3.0-107 [N/m?]

of wave propagation. Gs = 3.0-10
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Figs 5.27

Transfer-functions for moment about the
x-axis s+ the top of Shaft no. 2 for 12
directions of wave propagation. The angle
between each direction is 30°
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5.4 Statistical Analysis
5.4.1 Short- and Long-term Description of the Sea

The statistical response analysis is based on the methods

outlined in Chapter 4.

Short-tenm Sea-state

In the short-term state, the sea is assumed to be described
by the wave-spectrum. In the present analysis several types
of spectra will be considered. Primarily, however, the
Pierson-Moskowitz sepctrum on the ISSC form is adopted.

The analysis is carried out both for long- and short-crested
waves. In the case of two-dimensional spectra both Mark's
and Pierson's representation of the directionality function

f (8) are considered.

Long-Zenm Sea-state

The long-term description of the sea is given through the
long-term distribution of the parameter Hl/j’T and o de-
scribing the short-term states. Three alternative long-term

models were discussed in Chapter Uu.

Only the conventionaf model together with the modi{fication
incorporating correlation between Hl/3 and T will be pursued

in the present context.

In the conventional model the two-dimensional probability
function of H /35 T is determined from the distribution of
the visual parameters H, and TV and no correlation between
Hy,5 @and T is assumed. The relationship between the
visual and instrumental parameters used in the present

analysis is given below.
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(5.2a-b)

E(T) = 1.086.AT.T =

Two different sets of values were used for AT and BT in

the analysis. The values are given below.

AT 2.83 0.74 (5.3
BT 0.44 1.00

The two sets were proposed by Nordenstrgm, in Ref.(81).

The standard deviation is assumed to have a constant

value, given as
Sc (T) = 1.086 [seconds] (5.4)
according to Ref.(81).

The long-term wave data used in this analysis are grouped

in 6 intervals of visual period.

The midpoints of each interval of visual period are listed
in Table 5.9. In addition, the expected value of the average
mean period, T, is given for the two sets of AT,BT. It is
seen that there is a rather great discrepancy in the expected
value for the two sets . Both the normal- and the log-normal-
distribution are considered for the average mean period,T.
The distribution of Hl/3 was assumed to follow a Weibull-

distribution.

Obviously, the sea-state is dependent upon the location.
Even in the North Sea region the weather conditions vary.

The long-term weather data used in this analysis are given
in Tables 5.9-10. The Table 5.9 is quoted from Ref.(97) and
it is based on wave observations on the weather ship "Famita”.




T

The observations have been accomplished over a period of 10

years from 1959 to 1969, and only in the period from october to

march.

Table 5.9 Parameters of Weibull distribution of visual
wave heights on the North Sea, data from
"Famita" (57°30'N, 3°E)

TV Ho Hc Y, P(Tv)
4.5 1.2 1.3 0.62 .3764
6.5 1.2 1.83 1.04 .3425
8.5 2.0 2.80 0.99 .1989
10.5 2.0 3.30 1.32 .0626
12,5 1.5 3.95 1.20 .0164
14.5 .0 4,50 3.15 .0032

Throughout the same l0-years period observations of visual
wave parameters were recorded for 12 separate directions,
Ref.(90). In spite of a rather long observation period

the data are rather insufficient to establish a long-term
distribution of the visual wave heights for each direction.
However, a separate Weibull distribution for each direction
is estimated from the given data. Parameters obtained for
these distributions are given in the Table 5.10. The dis-
tributions are normed so that the average distribution by
integration over all directions gives the same long-term
distribution of wave height as for the marginal distribution

displayed in Table 5.8.

Unfortunately, these distributions are not very reliable, due
to a limited amount of basic data and should be used with
care. In the present report the directional distribution are
applied to obtain some guidance regarding directionality
effects.
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Table 5.10 Parameters in the Weibull-distributions
for 12 directional sectors
Direction
ey il Ho Hy, Yo P(TV)
4.500 .900 1.250 .960 .33710
6.500 1.450 2.150 1.020 .34600
1 8.500 .000 2.800 2.300 .21340
10.500 .000 3.800 2.500 .07450
12.500 .000 2.800 2.100 .02780
14.500 .000 3.600 2.600 .00130
4.500 .000 1.250 2.630 .55140
6.500 .000 1.900 "2.750 .26870
2 8.500 .000 2.650 1.630 .12620
‘10.500 .000 1.950 2.100 .04210
12.500 .000 4.100 3.430 .00930
14.500 .000 3.000 1.750 .00230
4.500 .800 1.200 1.040 44750
6.500 .000 2.000 2.500 .35930
3 8.500 .000 2.600 2.300 .16100
10.500 .000 3.250 1.340 .01190
12.500 .000 3.100 2.000 .01690
14.500 .000 4.600 3.100 .00340
4L.500 .000 1.300 1.900 .28090
6.500 .000 1.300 1.280 .33520
" 8.500 1.450 2.450 .930 «27770
10.500 1.250 2.950 1.080 .08500
12.500 .000 3.400 1.360 .01880
14.500 .000 9.500 10.100 .00240
4.500 .650 1.250 1.100 .26910
6.500 .900 1.800 1270 «35250
5 8.500 1.400 2.770 1.470 .26370
10.500 1.700 3.800 1.400 .09200
12.500 .000 5.200 3.200 .02150
14.500 .000 5.000 3.600 .00110
4.500 .650 1.220 1.200 .36670
6.500 1.000.- 2.000 1.400 .33890
6 8.500 .000 3.030 2.680 .20770
10.500 2.000 4,300 1.500 .06140
12.500 .000 5.000 3.880 .02190
14,500 .000 5.700 3.800 .00340
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Table 5.10 Parameters in the Weibull-distributions
for 12 directional sectors (continued).
Directicn

no. T, Hy Hy Ya P{T. )
4.500 . 450 1.290 1.660 .39630
6.500 1.300 1.750 . 840 .31780
7 8.500 1.000 2. 500 1.440 .22010
10.500 .000 3.000 2230 .05520
12.500 1.000 4.000 1.200 .00990
14.500 .000 3.000 3.750 .00070
4.500 .650 1.400 1.340 41080
6.500 . 800 1.750 1.440 .34980
8 8.500 .000 2.770 2.600 .18780
10.500 .000 3.200 2.430 .04400
12.500 .000 4.800 2.260 .00700
14.500 .000 3.000 1.750 .00050
4.500 « 200 1,359 1.600 L43140
6.500 1.000 1.850 1. 100 . 34450
3 8.500 1.000 2.600 1.400 .17300
10.500 1.400 2.600 1.150 .04230
12.500 .000 3.600 2.000 .00440
14.500 .000 5.200 3.400 .00440
4.500 1.300 1.400 .550 .51790
6.500 .000 1.700 1.750 .32910
10 8.500 .750 2.800 1.940 .09860
10.500 .000 2.700 3+ 170 .02980
12.500 .000 4.300 1.600 .01620
14.500 .000 4.200 8.200 .00850
4.500 1.400 1530 650 . 39530
6.500 .000 2.000 1.750 .33290
8.500 .000 2.750 1.880 .15980
11 10.500 .000 3.500 2.450 .08250
12.500 .000 4.500 2.970 .02310
| 14.500 .000 4.000 7.000 .00630
: 4.500 .000 1.300 1.700 .28190
i 6.500 1.200 1.830 1.040 -37190
12 | 8.500 .000 3.200 2.740 .22330
10.500 . 000 4.100 2.280 .09080
12.500 .000 4.800 3.000 .02410
14.500 .000 3.400 3.250 .00800
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However, the return period for given extreme wave heights
derived from the distributions for each direction compare
fairly well with published data., in Ref.(89).

N Fig. 5.29 Identification

: of directions in

which the Weibull-

distributions are

5 3
6 2 -
\\\\\\\\//////// determined.
o //////,//’“‘\\\\\\\\\\ o
8 / \ 12
9 i
10
S
329 == Marginal Weilbul distr. of H  in all directions
\ o= o= o Average distribution based on separate
C Weibull distribution of H, in each sector.
A\ Limits for longterm distribution of wave height in

281 \\ \_ @=es=e= each separate sector
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a
=
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Q - probability of
exceedance

Fig. 5.30 Long-term distribution of wave height.
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In Fig. 5.30 the long-term distribution of visual wave
heights is displayed. It is seen that the discrepancy
between the original marginal distribution, Table 5.9, and
the marginal distribution calculated from the directional
distributions in Table 5.10, is insignificant. The various
distributions for the directional sectors deviate consider-
ably from the marginal distribution. A more illustrative
display of the directional distributioﬁ is presented in
Fig. 5.31. From South East to North East rather small
waves should be expected, whilst North, South and West

give the largest waves at a given probability level.

N [m]

N
=

2
i. fm] — W

10"6 =7

8.7 level

level

Fig. 5.31 Most probable largest wave height at

probability level 10”87 and 10767
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At last the probability density function of the principal
direction of incoming waves must be determined.

From the weather ship "Famita" information are given both
for the wave- and wind-distribution.

According to Eq.(4.23) the point probability of each
direction section of weather state is required in the
long-term model. From the weather ship "Famita" infor-
mation are given both for the wave- and wind-distribution.
In Fig. 5.32 both wind and wave point probabilities are
quoted. The analysis to follow is based on the wave data.

It is expected that using wind data will give nearly the
same distributions.

Modigied Long-tenm Modef based on Cornnelaifion between

H1/3 and T

The conventional long-term model is modified so as to
avoid un-physical combinations of Hl/3 and T, see Chapter 4.3.

? .
0849
A .0289
—-E W-e—|.0947 0531 |—aE

inceming wind incoming waves

Fig. 5.32 Long-term probabilities of the principal

direction of incoming wind and waves.
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S.4.2 Long-term Distribution of the Response of
the Platform

Genenal Remarks

The long-term distribution of the response is calculated,
using the program "LONTIM" (part II of Ref.(104)), with the
folliowing data as input:

- transfer-functions as calculated in Section 5.3.3

- weather distribution as given in Section 5.4.1

The following long-term distributions are given in terms
of the xesponse-amplitude:

Long-team Distribunion of the Deck Displacement. Con-
ventional Long-Zernm Model with all Waves Propagating

in one Direction,

The transfer-functions are given in Figs. 5.17-18. Static
and dynamic responses were considered. Long-crested waves
described by a Pierson-Moskowitz spectrum is assumed.
Further, the conventional long-term model is assumed implying
no correlations between H, ., and T,

The parameters in the HV-H and TV-T relationships are:

1/3
AH = 0.5
BH = 1.33
AT = 2.83 Gk
BT = 0.u44

and the standard deviation of T is SC(T) = 1.086.

Normal distribution of T is assumed.

All incoming waves are assumed to come from the same direction.
The weather data is therefore given by Table 5.9. In the first
place the waves were assumed to propagate paralell with x-axis,
and then they were assumed “o propagate paralell with the y-

axis.
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The resulting long-term distributions of the displacement

are given in Figg, 5.33-35.

Displacement )
(amplitude) i
[em]

100 J
30 4
604
404

209

Shear modulus of soil: G = 1.55:107N/m*

100 years —O— dynamic

-— ——X— - static

Displacement J

(amplituae)
JAoml

70 1

12,,0Q

-3 -8 -7 -6 -5 -4 -3 =2 -1

Long-term distribution of the displacement of

the deck in the x-direction. Transfer-function

is given in Fig. 5.17. Pierson-Moskowitz spectrum
and conventional long-term model. Weather date
from Table 5.9.

100 years

1 - o 2
Shear modulus of soil: G = 3.0-107N/m?

—O— dynamic

—-—— Y - Statin

1z,,2

Long-term distribution of the displacement in the
x-direction. Transfer-function is given in Fig.5.17.
Pierson-Moskowitz spectrum and conventional long-
term model. Weather data from Table 5.9.
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Big. 5.35 Long-term distribution of the displacement of
the deck in x-direction. Transfer-function is
given in Fig. 5.17. Pierson-Moskowitz spectrum
and conventional long-term model. Weather date
from Table 5.9.
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Fig. 5.36 Long-term distribution of the displacement of

the deck in y-direction. Pierson-Moskowitz
spectrum and conventional long-term model. Weathei
data from .Table 5.9.
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from Table 5.9.
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The response at a probability level of 10_8'7 corre-

sponding to a return period of about 100 years is dis-

played in Fig. 5.39. The'dynamic amplification"varies

from about 10% for load in the y-direction and a shear modulus
6, = 6.0-107 [N/m*] and up to mere than 50% amplification

for a load in the x-direction and a shear modulus of
1.65-107[N/m?]. As might be expected the displacement of

the deck corresponding .c a given probability of occurence
decreases towards a limit for increasing shear modulus of

the soil. This limit represents the fixed base platform.
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© dynamic
X static
80 1
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¥ 2. 3. 4. 5. 6. Shear modulus
[107N/m?]
Fig. 5.29 Displacement of the deck at the probability
- -8.7 %
level 10 » as a functicn of the shear modulus

of the soil
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Long-term Distnibution of the Moments 4in the Shafts.
Conventional Long-tenm Model with alf Waves Propagating
in one Dinection.

The statistical treatment is based on the same assumption
utilized by evaluating the displacement response in the pre-

vious section.

Figs. 5.40-u41 display the long-term distributions of the

moments in the shafts.

The effect of a variation of the shear modulus in the soil
is displayed in Fig. 5.42. The moments are less sensitive
to the variation of the shear modulus than the displacement.
This is due to the rigid body rotation of the platform

which gives rather large contributions to the displacement,
but introduces no internal forces in the structure. It is
interesting to note that the maximum response does not
necessarily occur for the minimum shear modulus in the
actual range of variation. This fact may be explained by
examining the differences in the corresponding transfer-
functions.

When loaded in the x-direction, the maximum dynamic amplifi-
cation is about 82% for the moment in the top of Shaft no. 1,
and about 52% in the bottom of the Shaft, see Fig. 5.42.

Fig. 5 .43-44 display the long-term distribution of the moment
at the top and bottom of Shaft no. 2. A constant shear
modulus in soil 6_= 3.0-107 [N/m?] is used.

There is a remarkable difference in the dynamic amplifica-
tion for the case with waves progressing in the y-direction as
compared to the x-direction. From Figs. 5.43-44 it is seen
that the dynamic amplification for waves in y-direction is

34 % and 22% for the moment in the top and the bottom of

Shaft no. 2 respectively, as expressed on probability level
-8,7
Ig "7,
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Fig. 5.40 Long-term distribution of the moment M_ at the

top of the Shaft no. 1. Transfer-functions are
given in Fig. 5.21. Pierson-Moskowitz spectrum and
conventional long-term model. Weather data from
Table §5.9.

Again,this of ccurse must be explained on the basis of
the transfer functions. As previously emphasized, a
major source for the difference is differences in the

phase angles between maximum wave loads on the shafts.

If the transfer-functions for the moments are more care-
fully examined, it might be seen that maximum response
probably should be expected when the shear modulus in the
soil is in the range 1.5 - 3.0-107 [N/m?]
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Long-term distribution of the moment M at the

top of Shaft no.2. Load in ¥-direction¥ Shear
modulus in s0il,G_ = 3.0-107[N/m?].Transfer-func-
tion is given in Fig. 5.22., Pierson-Moskowitz
spectrum and conventional long-term model. Weather
data from Table 5.9.
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Long-term distribution of the moment Mx at the
bottom of Shaft no.2. Load in y-direction. Shear
modulus in soil, G_ = 3.0-107 [N/m2?]. Transfer-
function is given In Fig. 5.24. Pierson-Moskowitz
spectrum and conventional long-term model. Weather
data from Table 5.9,
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Long-tenm Distrnibutions of the Response for Different
Directions. Conventional Long-ztemm Modelf with alf Waves
propagating in one Dinecition.

In this part of the study, the platform is, as before
located with the x-axis in East direction and the y-axis
in North direction. The shear modulus in soil is fixed,
G, = 3.0-107 [N/m?].

Only long-crested waves are considered and it is assumed

that there is no correlation between H1/3 and T.

Parameters in HV-H1/3 and TV-T relationship are given by
Eq.(5.5) and the standard deviation of the mean wave period
SC(T) is 1.086. Normal distribution of T is assumed.

For a given response quantity the maximum response at a given
probability level can be determined by assuming all weather
to be uni-directional, but vary the direction of the weather

progress to obtain the maximum response.

Consider the moment Mx at the top of Shaft no. 2 and assume
a long-term sea-state as
given by Table 5.9. The actual

N
: directions of wave progress are
S S identified in Fig. 5.45.
6 2
The resulting long-term
W 7 1=E distributions are displayed in
Fig. 5.46
8 12
9 n
10
S

Fig. 5.45 Identification of
direction.
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Marginal Weibull distribution of Hv

in all directions acc. to Table 5.9

T ¥ Rl
=9 -3 = -6 = -4 -3 =2 =1 0 1g10Q

Long-term distribution of the moment M_ at the
top of Shaft nr. 2. Pierson-Moskowitz*spectrum
and conventional long-term model. The marginal
distribution of wave heights (Table 5.9) is
utilized for each of the directions.
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Most probable largest moment M_ at the top of
Shaft no.2, at a probability level 10-8-7. Pier-
son-Moskowitz spectrum and conventional long-term
model. Weather conditions according to Table 5.9
for each of the directions.
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The long-term distributions in Fig. 5.46 clearly express

the effect og directionality on the response.

Furthermore, it should be noted that maximum long-term response
is obtained for incoming weather in the Direction no. 3 and not
normal to the x-axis. Again the worst direction depends on a
combined effect of resonance conditions and phase difference
between loadings on the shafts. Fig. 5.47 displays the most

probable moment amplitude at probability level 10 as

depending on the wave direction.

Rather than letting all weather come from one direction,

a more consistent method wculd be to account for the direct-
ionality (@) of the long-term variation of the weather. By
utilizing the conventional long-term model, the directionality
can be described by establishing "long-term" distribution for
a discrete number of directions. In Table 5.10 a Weibull
dirtribution for the visual wave height for some directions

is established for a region surrounding the location 57°30'N
and 3°E in the North Sea.

Firstly, the long-term distribution of the moment Mx at

the top of Shaft no. 2 is determined by applying the actual
distributions of wave heights associated with each direction
separately. The distributions for the response are shown in
Fig. 5.48. Note that the response for waves progressing for
instance southwards and northwards are determined separately
to illustrate the effect of the difference in weather coming
from North and South, respectively. However, since transfer-
functions are identical for these "two directions™, it is
necessary to consider 6 rather than 12 directions in the
statistical treatment.

Table 5.10 contains directions with both "worse" and "milder"
wave height distributions than the "average" marginal
distribution in Table 5.9. Therefore, the response, M ,at the
top of Shaft no. 2 is about 20 percent greater by applying

the "actual" distribution for Direction no. 4 as compared to
applying the "average" distribution (obtained by combining the
wave height distribution for all directions). Even if the per-
centage of 20 is unreliable due to the lack of information by
preparing trhe directional distribution in Fig. 5.10, it ex-
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presses a correct trend.

Secondly, the long-term distribution of the response is
determined when accounting for the actual directionality

of the long-term sea-state, see Table 5.10. The probability
that the incoming weather fall within a given directional
sector is then given in Fig. 5.32.

The result thus obtained may be compared wi?h the long-term
distribution obtained by using the marginal long-term data
in Table 5.9. By the consistent method the most probable
largest response amplitude on probability level 10-8'7 was
found to be 29.0-107, while the other approach resulted in

30.5 (see Fig. 5.43).

Due to lack of reliable data for the directional distribution
of wave heights all weather is oftenly assumed to come from
one direction, using Table 5.9. Furthermore, it is natural
to let the wave propagate in the most adverse direction for
the actual response quantity of current interest. It might
be expected that the most probable largest response amplitude

32 4 =
Separate Weibull distribution
of H in each sector acc. to
Tabl¥ 5.10
28
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Fig. 5.48 Long-term distribution of moment M, in top of
Shaft no. 2. Pierson-Moskowitz speCtrum and
conventional long-term model. The actual long-
term distribution of wave heights for each direction
is utilized (Table 5.10).




found by this analysis would be very cocnservative. Assuming

all weather to come from direction no. 3 the most probable
moment-amplitude is found to be about 32°107 Nm (probability
level 10-8'7). From the conditional distributions given

in Fig. 5.48 the marginal long-term distribution is found,
and the most probable largest moment-amplitude is about 29.5-
107 Nm (probability level 10_8'7), in other words about 8%
less than the value found by assuming all weather to come
from one directicn. What is said here is valid when the
structure is orientated with the x-axis towards East. In the
next part, it will be shown that the orientation of the

structure seems to be of great importance.

Looking at Fig. 5.48 one would possibly expect the marginai
distribution to give a lower value than given above, but
recognizing that the marginal distribution is given as

Qix) = Z

Q,;~(x|@) - PDIR
Ip 1D

]

N

5.49

Most probable largest moment,

M in top of Shaft no. 2 at

probability level 107827

=Bl 7

and
¥ Moment [107Nm] 10 . Separate Weibull-
s distribution of Hv in each

sector.
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one will see that the marginal distribution is dominated of
the "highest" conditional distributions, specially for greater
response-amplitudes.

The marginal Long-term Distrnibution of Response fox
Varnious Onientations of the PRatfoam. Conventional
Long-team Model.

The marginal long-term distribution of the moment at
top of Shaft no. 2 is calculated for 6 various orienta-
tions of the platform. The statistical treatment is
similar to that outlined in the previous sections.

Two cases of weather data is applied, namely:

- uni-directional,("marginal"), Table 5.9 and Fig. 5.32
- directional data according to Table 5.10 and Fig.5.32.

In the first case, the long-term distribution is nearly
independent of the orientation since the wave height dis-
tribution is the same for all directions. A negligible dif-
ference is found since the direction-probability in Fig. 5.32
is varying with the directions, see Fig. 5.50.

In the second case, the orientation of the platform have

a significant effect. Fig. 5.50 displays the upper and
iower bound for the marginal distribution. The differ-

ence between maximum and minimum moment-amplitude is app-
roximately 15% on a probability level of 10 °*7 for this
case.

In Fig. 5.51 the most probable largest moment amplitude
is given for each orientation At ctwo probability levels.

Furthermore, assuming all weather to come from one direction,
the most probable .argest moment-amplitude at 10”8"7 level
was found to be 32:107 [Nm]. Comparing this value with the
most probable largest vaiue given in Fig. 5.51, probability
level 10-8'7, it is seen that for ¥~ 150° the above value

is Less than the marginal value.
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based on "actual"™ directional data, Table 5.10

and Fig. 5.32.




Since the actual directional distributions constructed
for the present investigation (Table 5.10) is rather un-
certain, no final conclusiens can be made. However, the

results. indicate that:

- the orientation of the structure, y, is an

important parameter

- one should be rather careful to treat the most
probable largest response-amplitude, found by
assuming all weather to come from one direction,

as an overestimated value.

S5o4.3 Parametric Studies on the Statistical

Treatment of the Response

General Remanks
Thusfare, Chapter 5.4 has been devoted to the statisti-
cal treatment of the response by means of a version of

the conventional long-term model.

In this section some preliminary studies will be reported
on the investigation on the uncertainties inherent in the

statistical modeling.

The following items will be considered:

- choice of wave spectrum

- effect of short-crested waves

- parameters in the conventional long-term distri-
bution
In particular the empirical relation between visual
and absolute (instrumental) wave-period and -height

- modified long-term model, Correlation between Hl/3

and T.

In this study a single dynamic model will be considered
for the platform in Fig. 5.1. The shear modulus of the




so0il is assumed to be €, = 3.0-107 [N/m2].

The transfer-functions for the moment M_ at the top of
Shaft no. 1 and the moment Mx at the top 6f Shaft no. 2
will be considered.

Long-term Distributions of the Response fon Different
Wave Spectra, Conventional and Modified Long-term Model
with Unidirectional Long-term Wave Propagation.

The following spectra were considered

Pierson-Moskowitz

Jonswap (with various peakedness factors)
Derbyshire-Scott

Modified Derbyshire Scott

Only long-crested waves were taken into account.

The conventional long-term model is applied with the
data inm Eg.(5.5)

The modified model is applied assuming a correlation between
T - and Hy, g as expressed by Egs. (4.41 - 4.u44). The numerical

value on the equilibrium parameter o is here assumed to be
a = 0.0081 (6.6)

The uni-directional long-term wave data in Table 5.8 were

utilized.

The results are displayed in Figs. 5.52- 53. It is

obsasrved that the discrepancy between the results of the
conventional and modified long-term model is significant.

The conventional and modified long-term model will be dis-
cussed in a subsequent parameter study. Also, the choice

of wave spectrum has a definite influence on the distribution
of response amplitudes. In particular it is observed that
the upper bounds on the long-term response is obtained by
different spectrum models, depending upon the response

quantity considered.
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Fig. 5.52 Long-term distribution of moment ,M_, at the

top of Shaft no. 1. Dynamic analysis. Uni-
directional wave data, Table 5.9.
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Fig. 5.53 Long-term distribution of moment, M_ at the
top of Shaft no. 2. Dynamic analysis. Uni-
directional wave data, Table 5.9.
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Long-team Distnibution of the Response for Different
Dinectional Wave Spectra. Conventional Long-Zeam Model
with Unidirnectional and Directional Long-term wave Propa-

gation.

The platform is orientated with the x-axis in East
direction. The moment response, M  at the top of Shaft

no. 2 is considered.

Up to now long-crested waves have been assumed in the
determination of long-term distributions. A more rea-
listic representation of the sea is to assume short-
crested waves, using a two-dimensional wave-spectrum,
given in Eq. (4.1). Appropriate directional functions
are given in Egs. (4.9 =-10). The present investigation
is accomplished with Plierson's and Mark's representations.

Parameters in the relationships between H -H, . and TV-T
in the conventional long-term model are

AH = 0.5

BH = 1.33 (5.7)

AT = 2.83

BT = 0.44

Two alternative long-term wave-height distributions were
applied
- unidirectional long-term wave propagation, using
Table 5.9. The two directions 3 and 4 in Fig. 5.45

were considered.
- directional long-term distribution assuming a separate

Weibull-distribution of Hv for each direction,Table 5.10.

The resulting long-term distributions for the response are

given in Figs. 5.5u4-55.

In the unidirectional long-term model a strong reduction
in the most probable largest moment amplitude was found for
Direction no. 3. For this direction, which is the most

adverse for the actual response when long-crested waves




are assumed, a reduction of about 17% was found, when

using Pierson's directionality function.

For Direction no. 4, which is close to the most adverse
direction, the corresponding reduction was only about 7%.
Therefore, as can be observed in Fig. 5.54 the Direction
no. 4 (of nos. 3 and 4) is the most adverse direction for
the actual response quantity when short-crestedness is
accounted for.

The reason for the significant reduction found for Direction

no. 3 is that the transfer-functions in the neighbourhood

of Direction no. 3 are considerably smaller than the transfer-

function for Direction no. 3, see Fig. 5.47. For short-
crested waves a part of the energy is put in transfer
functions which have a small response level. Hence the

total response is reduced.

When Direction no. 4 is the principal direction, the
neighbouring directions do not represent a much lower
response level than Direction no. 4 itself, Direction no.
do even represent a higher response level. Hence the re-
duction is less significant than for Direction no. 3.

If the principal direction is chosen to be a direction
corresponding to a small ievel of the transfer-function,
the use of short-crested waves instead of long-crested

waves will increase the response.

For the second case, Fig. 5.55, the most probable largest
moment on probability level 10-8'7, is found to decrease

with about 7%, using Pierson's directionality function.

The sensitivity of the modified model with respect to the
choice of directional spectrum is expected to be of the

same order as for the conventional model. .
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of Shaft no. 2. Pierson-MoskowitzXspectrum with
long- and short-crested waves is considered. Con-
ventional long-term model is assumed. Separate
Weibull-distribution of Hv in each sector, Table
S+ 10
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Long-term Distribution of the Response by varying the
Relationship between T and ¥y

The moments My and Mx in the top of Shaft no. 1 and

Shaft no. 2 respectively are considered.

The statistical analysis is based on the Pierson-Mosko-
witz spectrum and the alternative parameter sets for (AT,
BT) given by Eq.(5.8)

AT = 2.83 BT = 0.u4 (5.8)
AT = 0.74 BT = 1.00

These sets were proposed by Nordenstrgm, Ref.(81l). The
parameters relating Hl/3 and H are given by Eqg.(5.2)

BT
E(T)=AT"T,
15 F

E(T)

-
-

Fig. 5.56 The relations between T and E(T)
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The long-term wave data given in the Table 5.9 are
utilized.

Figs. 5.57 and 5.58 display the effect of the choice
of parameters on the long-term distribution of the

moment .

The variation of the long-term distribution of the
moments with the different parameter sets are rather
small.

The long-term distribution for both response quantities
obtained by quasistatic analysis is particularily insen-

sitive to the parameter variation.

The results displayed show that the parameters in the
relation between T and E(T) might be of great importance
for problems where highly peaked resonance top exists.
When the transfer-function do not have this typical re-
sonance top the choice of parameters seems to be of less

importance with respect to the result.

The two parameter sets recommended by Nordenstrgm re-
presents two different interpretations of existing data
from weather stations in the North Atlantic. The differ-
ence in the result between these two sets is rather small,
- 3 -4 % in Fig. 5.57. However, it is not quite sure that
the relations above are valid for the North Sea.

It is, of course, possible that an actual relation found
for the North Sea might have a greater influence on the
results.
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Figes 5.57 Long-term distribution of moment M_ in top
of Shaft no. 1. Pierson-Moskowitz’spectrum
and conventional long-term model. Long-term
wave data from Table 5.9. Variation of para-
meters relating T and L

Long-tenm Distrnibution of the Response by assuming Con-
nelation beiween H”3 and T (Modified Long-team Model)

The response for the moment My at the top of Shaft no. 1
is considered. The Pierson-Moskowitz spectrum is applied
with no directional spectrum. Parameter sets relating
Hl/S-Hv and T-TV are given by Eg.(5.5), and T is assumed
to be normal distributed. Unidirectional wave data accor-

ding to Table 5.9 are assumed.

The effect of introducing a correlation between H1/3 and
T in their join* probability distribution is investigated,

see Chapter L4.3.

Besides the uncertainty bty assuming an equilibrium spectrum

itself, the constant o in Eq.(4.37) may vary. Two values

for o, namely o = 0.0081 and @ = 0.02 are therefore utilized.
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Fig. 5«58 Long-term distribution of moment in top of
Shaft no.2. Pierson-Moskowitz spectrum and
conventional long-term model. Long-term wave
data from_Table 5.9. Variation of parameters
relating T and Tv.

The result of the analysis is given in Fig. 5.59 and Figs.
5.52-53. The discrepancy between the conventional and
modified model is rather great, in particular for the
dynamic response. Originally, the dynamic amplification
was calculated to about 80% at a probability level of
10-8'7. With the assumption of correlation between Hl/3
and T, the dynamic amplification is reduced to about u0%.
The discrepancy between the results for o = 0.02 and

a = 0.0081 is about 5%, as is seen in Fig. 5.59. In the
reality o will probably vary from 0.008 for T » 10s to

@ ~ 0.03 for T ~ 3 and the most realistic result will pro-
bably lie between the results for o = 0.02 and @ = 0.0081.
Obviously this modified model is associated with uncertain-
ties since the long-term joint distribution for H1/3 and T
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is constructed based on certain assumptions rather than

measured data. The most important incertainties are

- the determination of the area R, see Fig. 4.
- the assumption of FEID,L,J independent of H1/3

As will be shown in the next sections, the modified model
seems to give more realistic "extreme values" than the
original model when comparing with the results from a short-
term analysis. However, further research is necessary before
final conclusions can be made.

Using long-term model on the response of ships and
semisubmersibles, the results will probably not be
influenced by this problem. This is due to the fact
that ships and semisubmersibles have their eigenfrequen-
cies in a very low frequency range.

Mom.
(107Nm)

——— no corralation betueen H,,, and T

28y — —— with corvelation botween H,,, and T
o = 0,008

with correlation bstween H ;5 and T
a = 0,020
o Dynamic

+

2 L

Static

20

. ~
= . %
1 L Q\\‘O\
o3 TN
- -,\:-_
\\\'\
12 F ~. e o
W=, ™
~ I~
- S
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Fig. 5.59 Long-term distribution of dynamic and static
Moment M_ at the top of Shaft no. 1. Pierson-
Moskowit¥ spectrum and conventional long-term
model, and modified model with correlation
assumed. Unidirectional wave propagation, see
Table 5.9.




Long-tenm Distnibution of the Response. Nonmal
vernsus Log-nonmal Distrnibution of Average Mean
Perdod.

The moment M_ in the top of the Shaft no. 1 is considered,
the transfer-function obtained by the dynamic analysis

is utilized.

The conventional parameter set in the relationship between

H -H and between TV-T are utilized, see Eq.(5.5)

1/3

The conventional and modified long-term models are applied.

The long-term distributions are displayed in Fig. 5.60.
The effect by the choice of distribution for the average
mean period is greatest for the conventional long-term
model. Using the log-normal distribution the most prob-
able largest moment-amplitude, on probability level
10_8'7, is reduced with about 10%, for the original long-
term model. Principally this difference is originated
in the lowest classes of visual wave period, and is due
to the skewness of the log-normal probability density
function, and to the fact that the highest eigen—period
is lying in the area where this skewness is causing a
rather great difference between the normal- and the log-

normal probability density functions.

The actual transfer-function is highly peaked for the
lowest eigenfrequency. For responses with less peaked
transfer-functions, the discrepancy will probably be less
than for the example given here.

Using the modified long-term model the difference in the
most probable largest moment-amplitude on probability
level 10_8'7 is less than 3%, and of rather little inter-

est.
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— no correlation between Hy;gand T

—~=—~- with correlaticn between 51/3 and T

o normal distribution for T

log-normal distribution for T

Moment (107 Nm)
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Fig. 5.60 Long-term distribution of moment M_ in the
top of Shaft no. 1. Pierson-MoskoWitz spectrum
with conventional and modified long-term model.
Effect of choice of distribution for average
mean period.

5.4..4 Remarks on the Design Wave Approach and Short-
term Stochastic Response Analysis

Genenal remanks

As mentioned in the introduction the design is in general

concerned with
- a single excursion failure (excessive yielding, or

cracking, collapse,..)

or,

- failure by cumulative damage (fatigue)
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In the first case an extreme value of the response (at
a low probability level) is required. In the second
case the number of cycles for each amplitude (and mean

stress level) is required.

In this section extreme response values obtained by the
design wave, short-term and long-term approach will be

compared.

Design Wave Approach

According to Ref. (2) a platform may be designed by deter-
mining the extreme response by placing the structure in a
sinusoidal long-crested wave with height corresponding to
an extreme wave. The return period is in general chosen
to be 100 years. The wave height is determined by appli-
cation of long-term statistics on wave height data.

In the design against a single excursion failure the wave
period and the location of the structure with respect to
the wave is varied so as to obtain the maximum response
value. In this case dynamic effects can be accounted by
using a dynamic load factor (DLF)- which for the present
platform is in the range 1.05 to 1.25 depending on the
soil conditions. The lower bound of the wave period to
be chosen depends on the limit for wave breaking.

The moments My and Mx at the top of Shaft no. 1 and 2, res-
pectively, are considered. The shear modulus of the soil
is 6_ = 3.0-10" [N/m?].

The wave height is taken to be 29 m, see Fig. 5.30,
corresponding to the data in Table 5.9.

The moment-amplitudes for waves with wave-amplitude 1 m
is taken from the transfer-functions, Figs. 5.21 -5.24.The

response for waves with height 29 m is then found by




T = T60. -

multiplying the values from the transfer-function by
iy,5.

Table 5.11 Deterministic response. Design loads

Wave Moment,M _, in Moment , Mx in
period Shaft ne. 1 Shaft no. 2
[seconds] [107 Nm] [107 Nm]
Dynamic Static Dynamic Static
16 12.8 1%.0 20§ 18
1y 18. 1 12:5 261 22.6
12 18.% 15,9 3.8 2T 2

Short-tenm Response Analysis

The long-term state consists of a series of short-term
states. The short-term state (a single stationary storm
state) may be utilized to estimate the extreme response

vaiue.

The stationary sea-state is then defined by for instance

the two parameters H and T. The important decisions by

1/3
the short-term response analysis is the choice of type of

spectrum, (including directionality function), Hl/3 and T.

Now, there exists a relation between the extreme wave height
Hmax in the storm and the Hl/3 and the mean period T in
the sea-state.

Assuming a (stasionary) storm of duration 12 hours, corre-
sponding to about 3.6’103 maxima with an average mean period
T = 12 seconds. Tle most probable largest maxima ,x, is found
from Eq.(4.20) inserting the Rayleigh parameter r:V?EO

0.5772 }

% = B(x) = logeN +
2/log N
e

(5.8a)




with N = 3.60-103 %X is found to be

b's 2.96+r (5.8b)
The Rayleigh-parameter r for the two sea-states is taken

from the output of LONTIM, and X is given in Table 5.12.

Thus, the sea-state (Hl/S,T) may be chosen so as to yield
the same extreme wave height as mentioned in connection

with the design wave approach.

A storm duration of 12 hours, Hl/s = 13.8 m, T = 12 secs.

corresponds to Hmax =~ 29 m.

Table 5.12 Design response values by short-term
approach. Pierson-Moskowitz wave spectrum
with significant wave height 13.8 [m].

Storm duration 12 hours

Average wave Moment M_ in Moment Mx in
period, i top of Shaft no.l top of Shaft no. 2
[seconds] [107 Nm] [107 Nm]
Dynamic Static Dynamic Static
16 14.2 10.4 2235 1951
1y 16.2 13:8 25.4 22.0
12 18.9 13.3 28.0 24 .Y

Fig. 5.61 illustrates the infiuence of storm duration on

the peak response.

Shont temm nespons for different wave spectra.

A study on the effect the choice of wave spectrum has on the
short term respons was performed. Figs. 5.62 and 5.63 display
the results obtained by applying 5 different wave spectra.
Calculation was performed assuming

- significant wave height H, , = 15[m]

- storm duration L = 12 hours
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Fig. 5.61 Expected peak moment in top of Shaft no. 1,
versus storm duration. T = 12 seconds, Hi 3 =
13.8 meters. 3

The mean period in the wave spectra was varied between 10 and

18 seconds. The dynamic peak response in top of Shaft No. 1
and 2 are considered. As displayed the variation in the re-
sults are significant. The difference between maximum and
minimum peak response varies between 18 and 77 percents of the
minimum peak response. Only parts of the reéion where respons
is calculated should be regarded as siénificant. According to
the admissibility condition, Eg. (4.38), only speétra where T
is greater or equal 14 seconds are physically allowable when
the equilibrium constant is assumed to be 0.01 and Hy/3 = 15[m].

The results states that care must be taken in choise of wave
spectrum when short term respons is calculated.

Companrison between Deterministic, Short-team and Long-Zeam
Response Analysis

The response, for which comparison is made, is the moment

in the top of shafts no. 1 and 2.

Table 5.11 give the deterministic response. Compared to
the short-term peak response given in Table 5.12 no signi-
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Short-term distribution of peak moment -

response in top of Shaft no. 1. Hl/3 = 15 meters,
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+ Pierson Moskowich spectrum
X Jonswap spectrum n=3.3
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Short-term distribution of peak moment-
response in top of Shaft no. 2. Hl/3 = 15 meters, -

Storm duration is 12 hours.
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ficant difference is observed when the periods are 14 and 16
seconds. At a deterministic period T = 12 seconds a
significant difference is obtained. This is probably due
to a physically not permissible period/wave-height ratio.
Accordingly, the deterministic and short-term analysis is
in reasonably good agreement when the Pierson-Moskowitz
spectrum is applied for the present structure/soil/ocean
system. Other wave spectra may, however, give a significant
difference between these two calculation procedures. The
dynamic amplification is also in good agreement for the
deterministic and the short-term model.

A slightly higher amplification is observed in the short-
term model. This should be expected as the short-term
model includes parts of the transfer-function where the
dynamic amplification is high. In the actual analysis

the damping for the fundamental mode is about 10 % of

the critical damping. With a lower value for this damping
the dynamic amplification will increase when short-term
response is considered. The deterministic model, however,
will not be affected when the eigenfrequencies in the
structure is in a high frequency range. Thus greater
difference between deterministic and short-term response

should be expected when the damping is reduced.

The long-term response is as mentioned, affected by several
parameters. The results obtained by short-term and deter-
ministic analysis are herein compared by three variants of
the long-term model. The response in the top of Shaft no. 1

is considered.

Firstly, the conventional long-term with Pierson-Moskowitz
spectrum, with no directional wave spectrum is assumed.

Directional wave height data and a nornal-distribution for
T apre assumed. The most probable largest moment amplitude

on probability level 10-8'7 was found to be
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Dynamic: 28.”-107 Nm
Statie: 16.0-107 Nm
"Dynamic lodafactor": 1.78

Secondly, let T follow a log-normal distribution rather than

a normal one. The corresponding values is then found to be

Dynamic: 25.8'107 Nm
Statiec: 16.0'107 Nm
Dynamic loadfactor: 1.61

Comparing these values with the vaiues from the
deterministic- and short-term model, the following

seems to be cliear:

The original long-term model overestimates the extreme
values, and in particular by application of dynamic analysis.

The reason for this is discussed in Section 4.

Thirdly, using the modified long-term model instead of the
conventional one, (and assuming T to be normal) the most
probable largest moment amplitude on probability level lD-B'7

was found to be:

Dynamic: 16.6-107 Nm
Static: 12.0'107 Nm
Dynamic loadfactor: 1.38

This is of the same order as predicted by the deterministic-
and short-term model. According to the digcussion in Section

L the modified long-term model is expected to be more realistic
for estimating long-term extreme values.
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

Fixed base gravity platforms in water depth'uﬁ to 150 m
have fundamental eigenperiods ranging up to 5.0 seconds.
Dynamic amplification of the response to wave loading
occurs if eigenperiods are increased towards the band of
periods of ocean waves where large energy concentration
is present. This increase of eigenperiods may be due to
extra flexibility provided by the soil foundation and/or
increased water depth. In particular, the sensitivity
analysis of the effect of the shear modulus of the soil
showed that the variation of this parameter has a consider-
able influence on the structural response, due to its

effect on the stiffness (and then eigenfrequency; of the system.

Besides the magnitude of the lowest eigenfrequencies and -the
phase differences of forces on different shafts are found
to have a major influence on the response.

For tall platforms on soft soils it is not sufficient to
design the platform on the basis of static response analysis.

The determination of design values of the response and the
dynamic analysis may basically be obtained either by a
deterministic design wave, a stochastic short-term, or a
stochastic long-term approach. In this report emphasizes
has been placed on the latter approach. 'However, the three
approaches are compared. Parameter studies have been
carried out to investigate the effect of:

- choice of wave spectrum

- short-crested - versus long-crested waves

- assuming all weather to come from one direction
versus assuming a long-term directionality dis-
tribution of incoming weather

- the orientation of the structure for a given long-
term direétionality distribution of weather




- the relation between visual wave-period and expected
value of average mean period
- the joint long-term distribution of the spectrum
parameters (significant wave height and average mean
wave period):
- marginal distribution of average mean period.
- dependence between the parameters or not.

In the parameter studies on the statistical model, the
same dynamical model was utilized. The shear modulus of
the soil was G_ = 3.010 N/m2.

The highest eigenperiod was 4.5 seconds and the modal
damping for the first two modes was about 10% of the

critical damping.

The effect of the type of wave spectrum applied in the
statistical treatment was investigated both through short-
and long-term analyses. In the short-term analysis an
extreme storm situation was considered with significant

wave height of 15 m and various average mean periods.
Discrepancies of the order 25 - 60% in the extreme responses
were observed, depending the choice of spectrum (Pierson-
Moskowitz, Jonswap, Derbyshire-Scott, Modified Derbyshire-Scott.
The effect of the choice of wave spectrum is, as expected,
less as expressed by the extreme values (at a certain
probatility level 10-8'7) obtained through a long-term
analysis. The discrepansies are in the order of 10 - 25%.

The difference between the use of the more realistic
short-crested waves instead of long-crested waves was
investigated by two alternative long-term analyses:

- In the first place all waves were assumed to come

from one direction. Two directions were considered.
The reductions of the response values due to short- ‘

crested waves were 13 and 3 percent, respectively.
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- In the second place it was assumed that the estimated
directionality distribution were describing the weather
conditions. The reduction was found to be about 10 %.
However, the size of the reduction is dependent of the
directionality distribution and the orientation of the
structure, and due to the uncertainity in the distri-
bution it is hard to make any final conclusions for
this part.

Reliable data on the long-term directionality is yet not
available. A common procedure for calculating the long-
term distribution of response have been to assume all
weather to come from one direction. The direction is
normally chosen to be the most adverse direction for the
actual response. To investigate the adequacy of the above
assumption a reasonable long-term directionality distribu-
tion was estimated, and the result of this analysis was
compared to the results obtained under the first assumption.
The most probable largest response amplitude, at probabi-
lity level 1027
100 years, was found to be of the same order for the two

corresponding to a return period of about
analyses.

In the foregoing analysis the orientation of the stfucture
was fixed with all weather coming from the most adverse

direction. However, it is also interesting fo examine the
effect of the orientation of the structure taking the long-

term directionality distribution into account. The orientation

of the structure was changed in steps of 30°. TFor all
orientations the most probable largest response amplitude

e was calculated. The difference

on probability level 10~
between the highest and lowest response-amplitude was found
to be about 15%; the maximum being approximately 10 % larger
than the value obtained by letting all waves come from the
most adverse direction for the actual response quantity.
Although the used directionality distribution is not quite
reliable, it seems to be clear that the orientation of the

structure is an important parameter.
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Investigation on the relation between visual wave-period
and expected average mean period shows that the two rela-
tions recommended of Nordenstrgm, Ref.(81), gives no signi-

ficant difference in the results.

A primary concept in the long-term approach is the

joint long-term distribution of the wave spectrum
parameters (significant wave height Hl/3 and mean average
wave period, T) which completely describe each short-
term state. In the conventional long-term model H1/3

and T are assumed independent. In the modified for-
mulation the expectation of T is assumed to depend on

Hl/3 while the standard deviation of T is a constant. The
relationship between the expectation of T and H1/3 is
determined so as to avoid physically non-admissible com-
binations of T and Hl/3 (according to Phillips' equili-
brium concepts). Using this modified long-term model, the
most probable largest response amplitude was reduced with up
to about 50% compared with the corresponding values for

the original long-term model.

Comparison between a log-normal--and a normal distribution
for T revealed that the most probable largest moment-
amplitude (probability level 10—8'7) was reduced with up to
10% for the original long-term model using the log-normal
distribution, whilst for the modified long-term model the

difference was negligible.

At last a comparison between the deterministic response,
the short-term response and the long-term response was made
for an actual response quantity. The following conclusions

were reached:

- the deterministic model probably underestimates
the dynamic amplification. Using the determini-
stic model is only recommended if the results are
calibrated to the results from a more accurate

method
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method.

- the short-term model can be utilized to estimate
extreme loads. But care must be excercised when
chosing the wave spectrum.

- the original long-term model overestimate the most
probable largest response-amplitude as compared to
the modified long-term model, which is physically a
more realistic model, and gives results of the same
order as obtained by a short-term model.

A long-term model is the only consistent probabilistic
method to obtain response quantities for design against
yielding and fatigue failure. However, up to now it
suffers from lack of appropriate environmental data, i.e.
data for the joint long-term distribution of wave para-
meters (significant wave height and average mean wave
period. In particular instrumental data on:

- the distributions of the average mean period
- the correlations between significant wave-height

and average mean period

are lacking.

For design against yielding a short-term model may be
utilized. But in this method deterministic decisions
regarding the weather conditions have to be made. When it
comes to fatigue design, a long-term model is the only
consistent method. The modified long-term model represents
a possibility both for fatigue design and design against
yielding. However, due to the lack of data, further work
is necessary before final conclusions on the modified model
can be made.

In the future efforts must be directed towards improved
modelling of dynamic soil behaviour. More instrumental
information- and in particular on directionality - on
the statistical distribution of wave-spectrum parameters
is required.
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A fully reliable long-term model will probably not be

found until one is independent of the visual observations.

The effect of scatter in basic data describing the soil,
structure and sea behaviour, together with uncertainties
inherent in the analysis technique can be transformed

into scatter in response values. This information then

may serve as a basis for a consistent reliability analysis.
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APPENDIX A

A.1 EQUIVALENT MODAL DAMPING BY ENERGY CONSIDERATIONS

Soil Damping

The equivalent modal damping due to the soil may also be ob-

tained by energy considerationg, Refs.(25,36,56).

Assume that the structure is free to undergo hordizontal X~z
translations us and rotation, Gi, in the vertical plane x°z,
Coupled sliding and rocking in the y-z plane is treéated

in a similar manner. The torsion about a vertical axis

is denoted by ei. Vertical motion is treated separately.

i = 1 corresponds to the point at the interface between soil

and structure. Further consider the j'th interaction vibration

mode with natural frequency 05 (equal to that of the undamped
system).

The work done during a period of vibration T = 2ﬂ/wj by the
damping forces P(x)

T

A = [ P(x) - dx(t) (A.1)
L " i

The damping forces P and moments acting at the footing during

harmonic motion

L(t) = .51 - 6y.(t) = -si - =
ulj u;j:s:.nm:J ;]( 91351nw3

(A.2., a-c)
¢1j(t) = ¢1jsinwjt
are
Px(ﬁ) = dxxﬁ = O uljmjcosmjt
M(é) = ceeé = Cgg eljchoswjt
M(¢) = c¢¢$ = o4 ¢,jmjcoswjt A.2,d-h)
P(B) = Cxeé = Cxe eljmjcoswjt

U = €. % = & SI8) -
M(u) gx 6 u;Jw]costt
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The total work done by these forces during a period T is

= 2 2
AL = "wj(cxxu‘j + 2cxe6;ju1j + c 0,

2
06 + C¢¢¢1') (A.3)

3 ]
The potential energy of the whole structure can be calculated
as maximum kinetic energy and is

n
A = I im.uf.

2 + L 31..8%.02 + % 17.42.02 (A.4)
T j=1 © 1] = 1 #1153

2
o (RS o i T

in which m. = mass, T mass moment of inertia in the vertical

xi
plane, Ji = mass moment of inertia about the vertical axis and

n the number of masses.

The damping ratio of the structure due to the geometric damping
(and equivalent viscous damping due to hysteretic effects) in the
soil is defined for the response in the j'th mode as:

= Ay 1

- = 2 2 2
%5 7 TmAL T T Gty * Cee®is * Cgefis * Zeqtigfy)
(A.5)
M. = Z(m.u?. + I_.02%2. + J.¢2.) ® Zm.u?. (A.5a)
3] a + 13 X1 1] il S iy | 13

The effect of the mass moments (Ixi) is assumed negligible in
Eq.(A.5a).

Similarily, with vertical vibration the equivalent damping
ratio for the j'th mode is

B, = —2_ 2
b, = T T C,p935 (A.6)

M. = § m.yp?. (A.6a)
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Eq.(A.5) is equivalent to computing the damping matrix
according to ¢TC¢ and neglecting off-diagonal terms.

Supenstructure Damping

The damping in the structure may also be transformed into an
equivalent interaction ‘mode damping. The same
argumentation as utilized by Novak, Ref.(36) in the case of
the soil is adopted. Consider for simplicity the coupled

sliding and rocking motion in the x-z plane.

Fig. A.1 Displaced structure in the x-z plane

Assume that the equivalent viscous structural damping is caused
by the relative velocity of adjointing stations measured with
respect to the translated ani rctated axis of the structure.

xk(t) = (t) - ukj(t) = hkelj(t) (A.7)

Uk+173



ij is the rotation of the footing.

Note that index k is utilized to denote the levels in the

vertical direction.

If the structure at a level (k) is equipped with horizontally
rigid braces it is necessary to associate only one mass and
dashpot to each level. Otherwise, the number of shafts deter-

mine the actual number of masses and dashpots.
The work done by all dampers during period T = 2'rr/mj is

T
A= I Mgy, 5 - U

-h, -81.)%}4t (A.8)
L x=10 X."3

where ¢, is the damping constant of the k'th dashpot.

Assume further that the damping constant C,_ is proportional to

k
the mass el which is attached to the damper from above, and
equal to
¢, = 2om . (A.9)

where a is a constant common for the whole structure.
Obviously, other damping mechanisms than Eq.(A.9) may be
assumed, Refs.(14,16).

The work for the j'th mode then becomes

AL =2nawj2m (u u

= 2
: K+l hk elj) (A.10)

k+l,3 kj

The maximum potential energy (AT) of the interaction problem
is again given by Eq.(A.4).

The effective interaction modal damping due to the structure is

= - L = a
D. = S — ka+l
k

( h e,].)2 (A.11)

1,5 Yk Mk

u
=
5
=1
€
=




Denoting all the magnitudes corresponding to the rigid
foundation bt a "cross", and dividing Eq.(A.l1l) by the same
expression written for the rigid footing yields the struc-
tural damping ratio for the structure on a flexible found-

ation
B. = x.BH
i %33
where
w? S ,
Xj © o Mj(zmk+l(uk+l—ukj-hkelj)
+ o+ y2
/(zmk+l(uk+l,j ukj) (A.13)

In Eqg.(A.13) ﬁ;, w! and ul. are the structural damping ratio,

natural fregquency ind disgiacement amplitude for mode (j) of
a structure with aigid foundation. ﬁj’ w and uij are the
corresponding values for the soil-structure interaction
problem. 8,. is the rotation of the foundation. Mj is com-
puted from Eq.(A.5a) with amplitudes uij’ M; is computed
from the same equation but using amplitudes uij'

The coefficient y. describes the modification of the structural

damping due to foundation flexibility.

Relative Structural Damping in "1 DOF" Modef Structure

An important special case is the correction coefficient, x;

for the first mode.

For the purpose of quantification consider the simple model

problem shown in Fig. A.2.
Consider the simple model problem in Fig. A.2

X1 is then given as

)
.1 _ wl (u-h-8)% _ @i ut, Y1,
XE = '!"’D+ = o2 aZ = E(U) = (wt) (A.14)
1



where the following formula for the 1 DOF system

w? = Eg‘ (A.15)
st

is applied. u_, is the static displacement when a force
of magnitude M-g is applied at the top of the structure.
The formula (A.l4) was arrived at by Bielak, Ref.(35) and

Veletsos and Meek, Ref.(37) in another manner.
u
—
I I Zz-— mass M is con-

centrated here

kg
k

a) Platform vibrating in xz plane b) Model
Uz 1

l.-——---—-—-q
: *u:,l =t
1
I
|
I
I
|
|
I

L P
| Notation:
| U= Uroa = W,
: 0= 0,y
| Fig.A.2 Simple structure
L for evaluation of modifi-

ed damping ratio.

¢) Displacement in the first mude
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APPENDIX B
The program "RESP" consists c¢f two independent parts.

¥ “RESP" - Computation of dynamic response

in terms of transferfunctions.

IT “LONTIM"- Calculation of the long-term

distribution of response.

Simple flowcharts for the two parts
are shown on the following pages.
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READ DATA FOR FINITE ELEMENT
STRUCTURAL IDEALIZATION

SOLUTION OF GENERALIZED
EIGENVALUE PROBLEM

HRITE EIGENFRENUENCIES
AND MASSMATRIX

| WRiTE E1Genmones IWS_)

| ¥RITE STIFFNESSMATRIX FiLe 15

READ DATA FOR STRUCTURAL-.
SOIL, AND OCEAN REPRESEMTATION

1]

READ NUMBER OF LOADVECTORS
(FReEQUENCIES).IFRN. AnD wave-
DIRECTIONS TO CHARACTERIZE
TRANSFERFUNCTION, READ NUMBER
OF EIGENMODES TO BE USED IN
MODAL SUPERPOSITION

[_ngn LOADVECTOR NO. [ ]

LREAD FREAUENCY FOR LOADVECTOR j

DETERMINE-WE IGHTED MODAL DAMPING

Fue 13 )

NorMAL MODES soLuTION OF
EQUATION OF MOTION

— e )

EFILE 17 )

L <NFR

tio

®

WRITE DISPLACEMENT AMPLITUDES E )
AND PHASEANGLES
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READ ELEMENT NO. AND LOCAL DEGREE
OF FREEDOM NO. FOR WHICH FORCES
ARE TO BE CALCULATED

l READ STIFFNESSMATRIX

C=)

| CALCULATE INTERNAL FORCES

Yes

Flow chart

"RESP* - part 1
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Table C.1.
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EXAMPLE COMPUTER TIMES

typical time comsumption (CPU-time) is listed in
The structural model in the prusent case con-
21 beam elements and 6 boundary elements. The total

number of degrees of freedom is 102.

Table C.1

Part 1
1. Solution of generalized eigenvalue problem,

8 eigenvectors. 23 sec.
2. Calculation of loadvectors by WACUFO, Ref.

(36) 20 load conditions. 80 sec.
3. Calculation of transferfunctions for

all displacement components (transfer-

functions were computed for 20 frequencies.)43 sec.
4. Calculation of transferfunctions for

6 force components. 23 sec.
2 min 49 sec.

Part II

Calculaticn of long-term response.

Incoming waves in one direction, long-

crested waves, one transferfunction

(described by 20 values). Long-term

distributions for 6 response guantities

were determined. 21 sec.

Calculation of marginal long-term response

Incoming waves in 12 directions, separate

wave parameters and transferfunctions in

all idrections. Long-term distributions

for 6 response quantities were computed. 3 min. 50 sec.
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