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Abstract 
 

The Automated People Mover (APM) is an important asset for many airports to 
transport passengers inside or between terminal and satellite buildings An APM system 
normally runs on fixed schedules throughout the day, which means that the capacity of the 
APM is pre-determined and not depending on the actual demand. This at times can cause 
either an overcapacity, which leads to a waste of resources, or an under capacity, which 
results in passengers waiting at the station. Especially the latter factor is problematic, as it 
reduced passenger experience and can negatively affect the transfer process between 
airport facilities. In order to better match the offered APM capacity with the demand, it is 
proposed in this paper to use sensor-based predictive control system, which adapts the 
APM system capacity to real-time demand. By means of sensor data, passenger numbers 
are determined before they walk onto the stations platforms, and subsequently the APM 
system capacity is adjusted to the measured demand. In principle there are two methods to 
change the APM system capacity, i.e.: 1) by changing the APM capacity (i.e. more cars 
per train) or 2) by changing the frequency. A simulation test case was designed to provide 
numerical insight in the potential of adaptively changing the capacity of an APM, based 
on sensor derived real-time demand. The test case was derived from a variety of typical 
systems used worldwide and represents a complex APM system. From the simulation 
results it is concluded that an intelligent design of the control system results in significant 
improvements in terms of passenger experience, operational cost, capital cost and emission 
footprint. The favourable method of adjusting capacity to demand is by increase train 
capacity, before reducing the headway between trains. 
 
Key words Automated People Mover, Model Based Predictive Control, Airport Passenger 
Flow Monitoring,  
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1 Introduction 
 

Airports are expanding to meet the increasing demand for passenger air transport. 
Passenger terminal buildings are becoming larger and many airports resort to the construction 
of additional terminals or satellites.  To support the intra-terminal passenger movements and/or 
provide inter-terminal transit, the Automated People Mover (APM) has become an important 
asset for large airports. APMs are used at U.S. airports since the early ’70s and since then a 
variety of system solutions have been introduced to the market (ACRP, 2012b). The majority 
of systems make use of a rubber tire vehicle that runs on a guided track with changes.  
In most cases, this is either a Bombardier Innovia APM (versions C-100, CX-100, 100, 200 or 
300), the Mitsubishi Crystal Mover or the Siemens Airval, of which examples are shown in the 
Figures 1, 2 and 3. 

 

 
 

Figure 1:  The Bombardier Innovia APM (Railway age, 2018). 
 

 

 
 

Figure 2:  The Mitsubishi Crystal Mover (sgtrains, 2018). 
 
 

 
 

Figure 3:  The Siemens Airval (Globalrailnews, 2018). 
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While several physical solutions have been developed for internal transport at airports, 

the operational system characteristics have not changed much since the early systems from 50 
years ago. A large inefficiency is that all systems are designed with a predefined capacity 
(ACRP, 2012a). In many cases, the capacity is fixed throughout the day based on the peak 
demand and in some cases this approach is marginally improved by running a set schedule in 
which capacity is changed at fixed moments in time. Such a design approach inevitably results 
in a possible gap between the actual demand and the available capacity. Especially in airports 
with large demand fluctuations, this will incur overcapacities during down periods. 
Additionally, unforeseen surges in demand (e.g. simultaneous arrival of large aircraft) could 
surpass the available capacity, which results in lower than acceptable service levels for the 
passengers. The latter may affect the transfer process of passengers at airports, which is an 
important instrument to differentiate one airport from another airport. This problem is 
schematically visualised in Figure 4, which shows a hypothetical demand fluctuation for an 
APM at an airport operating with banks (peak period of arriving and departing aircraft) and the 
available capacity if a fixed schedule is used. It shows that the capacity, in terms of People Per 
Direction Per Hour (PPDPH), is set at one of the three levels creating an under capacity at the 
beginning and the end of the day and an overcapacity for the majority of the day. 

 
 
 

 
 

Figure 4:  Schematic example of fluctuating demand and scheduled (fixed) capacity. 
 
The objective of this paper is to design an intelligent control logic that minimises the 

error between the available capacity and the real-time demand. This paper will not only address 
the technical aspect to obtain such an Adaptive Control System (ACS), but will also consider 
the change in the system state compared to a conventional system. Which system state is better 
or worse depends on the requirements set by the system owner (i.e. the airport). These 
requirements will be a trade-off between aspects that concern the economic and sustainability 
impact of the system and the passenger experience.  Summarized, the objective of this paper is 
to determine the feasibility of adapting APM capacity to real-time demand, by taking 
economic, sustainability, passenger comfort and implementation aspects into consideration. 

 
2 An adaptive control system for automated people movers 
 

The ACS is designed in such a way that it utilises the systems currently available in 
APM systems. Adaptive control of the APM is already done to certain extent to have automated 
trains run to fixed time schedule, for which the technological development of Communication 
Based Train Control (CBTC) is the basis. The goal of the ACS is to replace the currently used 
fixed schedule with a flexible schedule that adapts to real-time demand. It is therefore proposed 
that the available CBTC technology that currently controls train movements is combined with 
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a hierarchically higher controller that can change the system capacity in terms of train 
frequency (number of trains per hour) or train capacity (number of cars in a train).  

A known example of a system that already has such a higher-level controller is Personal 
Rapid Transit (PRT), which allocates small vehicles (pods) to a station with demand.  However, 
the problem with the controller type used for this system, is that it reacts to demand initiated 
by a passenger with a push of a button. This is sufficient for a system in which a high number 
of vehicles is available to react but will be problematic in a typical APM system with few trains 
that need more time to anticipate. The result is that passengers have to wait uncomfortably long 
and instead some form of proactive control is required to activate a train in time. 

The recent introduction of Communication Based Train Control (CBTC) has strongly 
increased the operational capabilities. CBTC is a generic concept that is used in a variety of 
guided vehicle transit systems. It can be fitted with Automatic Train Protection (ATP), 
Automatic Train Operation (ATO) and Automatic Train Supervision (ATS) functions (Schifers 
& Hans, 2000). The CBTC’s purpose is to periodically update the system and take adaptive 
actions to keep a train on schedule. Simply put, CBTC has the capability to run fully automated, 
but currently misses the control logic that is able to make adaptive time table changes based on 
system policies and demand measurements. In combination with new airport improvements 
such as Collaborative Decision Making (CDM) and advanced high resolution sensor systems 
that use WiFi, Bluetooth, infrared and CCTV/Facial recognition technology, the 
technological means are available to design such a control logic for an APM system in an 
airport environment (Eriksen, 2002), (Malinovskiy et al., 2012), (Kim et al., 2008), (Woodman 
& Harle, 2008). 

ATC that utilises CBTC can be equipped with Automatic Train Supervision (ATS) that 
automatically supervises and corrects operations (Morar, 2010). A schedule is fed to the ATS 
and based on the network data gathered by the controller on train locations, the error is 
calculated between the scheduled operation and actual operation. A reactive solution is 
thereafter calculated to speed up or slow down trains in the system appropriately. The 
motivation of this paper is that inefficiencies are induced by the static and (daily) repetitive 
nature of a schedule currently used for an APM system. The capacity of the system is 
determined in the design phase of the system and is fully based on expected ridership. As day 
to day operations variate, this results in a design for a relatively constant capacity with only a 
few capacity changes throughout the day. 

To select the correct addition to the control structure of APMs, it is important to first 
outline the measurements and actions that the system should make. The ACS should essentially 
control the system like it is done for PRT, in which demand is measured at a platform and a 
vehicle is redirected to the station. The disadvantage of the logic used in existing PRT systems 
(e.g. Morgantown, Abu Dhabi Masdar City and London Heathrow T5) is that the system will 
only adapt as a reaction to the demand, in line with the action span of a proportional controller 
(Baumgartner & Chu, 2013). The control system will then make a reactive (proportional) trade-
of between the dwell time of that passenger and the total passengers to determine the urgency 
to activate a car (Raney & Young, 2005). 

In the case of a PRT, such a mismatch is a relatively minor problem as capacity is 
always available in the vicinity to the station. This is however not self-evident for APMs that 
run on longer distances and have a limited amount of vehicles. This will make the period to 
adapt to changing demand high (and potentially undesirable). To effectively adapt the system 
to the demand, it is therefore important to somehow forecast the moment that passengers wait 
at the platform and assign the appropriate capacity to the network in terms of train capacity 
and/or train frequency. The only controller type that can obtain such a result is the Model-based 
Predictive Control (MPC). This is in line with the research done by Wang et al. (2010), who 
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conclude that it is possible to implement the MPC logic in current central train control systems 
and that thereby a much better alignment of the scheduled capacity and demand is feasible. 
The proportional controller is therefore upgraded to a simplified Model-Based Predictive 
control (MPC), which makes a good base for the design of an adaptive control system. It allows 
for a combination of sensor-based measurements before the platform entrance and a (short 
period) predictive model to approximate the passenger behaviour between the sensor location 
and the platform area. It can therewith determine a set of future actions that as a combination 
satisfy an overall objective. The prime objective of the ACS is to minimise the difference 
between the system capacity for the next n time steps and the demand forecast for that same 
period n. 

 
2.1 A hierarchical controller structure 
 

Since the MPC will have to calculate the system actions for a certain forecast period, 
the processor requirements can become extensive. It is therefore undesirable to let all actions 
in the system be controlled by one central controller. Instead, a hierarchical controller structure 
is adopted, in which the central MPC determines the required system capacity in terms of train 
capacity or train frequency and translates this in a new destination for a (set of) APM car(s). 
Cars can run independently by means of a closed loop control (i.e. PID) that continuously 
determines the car position, similar to what the CBTC and ATS do today (Siahvashi and 
Moaveni, 2010). The hierarchically lower controllers should control any eventual track change 
and vehicle speed. The complete hierarchical structure is graphically presented in Figure 5. As 
is shown in the scheme, the normal operations on the network are controlled by the ATS and 
CBTC, which measure the system state and communicate this to the hierarchically lower 
controllers of the trains and switches. By means of the system state measurements and the given 
objective, these subsystems perform appropriate actions to minimise the error between the two. 
Whereas normally the objective is a static predefined schedule fed to the CBTC-ATS, this is 
substituted by the MPC controller that uses demand forecasts based on the sensor data and the 
system measurements of the ATS, to determine the optimum combination of train frequency, 
capacity and location.  
 

 
 

Figure 5:  Hierarchical structure with MPC determining the schedule . 
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This optimum combination a driven by two factors: train capacity and train frequency. It is 
possible for the control logic to influence both, by either changing the number of cars per train 
or altering the train headway. What the optimal combination of train frequency and train 
capacity should be, depends on the client requirements. The system can either favour passenger 
experience by increasing the frequency and thereby reducing the average dwell time by calling 
up more trains, or it can favour a solution where frequency is kept low to reduce e.g. operational 
costs and the number of required cars. These two options to obtain an optimal performance are 
visualised in figure 6. 
 

 
a) train capacity  b) train frequency 

 
Figure 6:  ACS capacity change approaches. 

 
 
2.2 Demand matching strategy 
 

In principle there are two main strategies to match the offered capacity with the 
demanded capacity: 
 

1. Increased train frequency favoured over increased train capacity 

2. Increased train capacity favoured over increased train frequency 

  
2.2.1 Increased train frequency favoured over increased train capacity 
 

The central controller will use the measured forecast to determine demand for a period 
n. If the demand takes a value of 1 or more at time n, the decision logic will check if a train is 
scheduled to arrive in time and with enough capacity. If no service is schedule, the controller 
will activate the nearest single car train and redirect it to the appropriate platform. The train 
will not move instantly but will instead wait as long as possible to allow any further changes 
to be made if needed. When at a later time step the demand at n has taken a value that is larger 
than the maximum capacity of the scheduled train, an additional train service is added. This 
train will arrive before the train that is already scheduled, as long as this does not violate the 
minimum headway constraint set. If a train cannot be scheduled before the first train, the 
service will be a minimum headway time later. If it is not possible to add any more train 
services without passengers waiting longer than the maximum dwell time, scheduled trains are 
elongated with additional cars. 

The difficulty with adding extra train services is that schedules are generated 
independently for all platforms. It is therefore important to synchronise a new train service 
with eventual departures planned at the surrounding stations. For instance, a train that is 
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optimally scheduled to depart at time t at station Y, can interfere with the arrival of an already 
scheduled train from station X. This same scheduled departure time at station Y might also 
interfere with the schedule of station Z. There are thus seven options to decide the departure 
time of a next train, which can be: 
 

1. scheduled at the optimal time �𝑡𝑡 + 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 �; 
2. scheduled �𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 � before the arrival of a scheduled train from the last station; 
3. scheduled �𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 � after the arrival of scheduled train from the last station; 
4. synchronized with the arrival and use the scheduled train from the last station; 
5. scheduled to arrive �𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 � before the departure of a scheduled train at the next 

station; 
6. scheduled to arrive �𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 � after the departure of a scheduled train at the next 

station; 
7. scheduled to synchronize with the departure of a scheduled train at the next station. 

  
2.2.2 Increased train capacity favoured over increased train frequency 
 

The second approach is to favour train capacity over train frequency, which logically 
has similarities with the first approach. The main distinction in the decision logic is the priority 
it gives to capacity increasing measures. When the platform demand exceeds the train capacity 
and an increase is required, the action taken is to add an additional car to the train.  Only if no 
more cars can be added or if demand has risen after the planned departure time, will the 
controller add another train to the schedule. Again, it will first increase the capacity of this 
train, before changing the frequency. 
 
2.3 ACS Logic design 

Model-based predictive control is an advanced derivative of the commonly used 
Proportional-Integral-Derivative controller PID. MPC control incorporates PID control and 
combines this with an integral component and a derivative component. As Araki (2002) 
explains, the proportional control only assesses current measurements to make decisions and 
perform an action u(t). The action is proportional to the error e(t) and can take a value from a 
continuous range that is equal to the standard output required in a steady state system (b). The 
rate of adjustment to the error is indicated by the proportional gain factor 𝑘𝑘𝑝𝑝.  

 
𝑢𝑢(𝑡𝑡) = 𝑘𝑘𝑝𝑝 ∗ 𝑒𝑒(𝑡𝑡) + 𝑏𝑏          (1) 

PID control also considers earlier decisions and can to some point predict future 
decisions. This is possible as the integral part of the error will increase if the former action 
made by the controller is too small or too large, thereby tuning the action over time. The 
differential part thereby corrects the following action based on the rate of change in the error, 
which will approach 0. The resulting formula is given in equation 2, where 𝑘𝑘𝑐𝑐 is equal to 𝑘𝑘𝑝𝑝 
and 𝜏𝜏𝐼𝐼 and 𝜏𝜏𝐷𝐷 are the ratio of the integral gain factor 𝑘𝑘𝐼𝐼

𝑘𝑘𝑝𝑝
 and the derivative gain factor 𝑘𝑘𝑑𝑑

𝑘𝑘𝑝𝑝
. 

 
𝑢𝑢(𝑘𝑘) = 𝑘𝑘𝑐𝑐 �𝑒𝑒(𝑡𝑡) + 1

𝜏𝜏𝐼𝐼
∫ 𝑒𝑒(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜏𝜏𝐷𝐷

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

𝑡𝑡
0 �       (2) 
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The model-based predictive control incorporates the fundamental feedback logic to 

measure current state x(t) as is used in the former control solutions and combines this with an 
applicable model C with which it makes a prognosis of the future systems states x(t + n) and 
thereby determines an appropriate action u(t) (equation 3) (Morari & Lee, 1999). 
 
 
𝑢𝑢(𝑡𝑡) = 𝐶𝐶(𝑦𝑦(𝑡𝑡)))          (3) 
 
 
This derives a current action on a forecasted period of n, for which the maximum value is case 
specific and depended on the necessary time period to come to a usable calculation. the 
appropriate action u(t) is determined by an objective function J that considers all future actions 
u(t + n). This objective function J is shown in equation 4 and consists of one or more sub-
objectives which should meet an appropriate value (e.g. minimisation or maximisation). The 
constant α gives a weight to the respective sub-objective. 
 
𝐽𝐽�𝑦𝑦(𝑡𝑡 + 𝑛𝑛),𝑢𝑢(𝑡𝑡)� = ∑ 𝛼𝛼𝐽𝐽𝑖𝑖(𝑦𝑦𝑖𝑖(𝑡𝑡 + 𝑛𝑛),𝑢𝑢𝑖𝑖(𝑡𝑡))𝑁𝑁

𝑖𝑖=1        (4) 
 
2.3.1 Measurements 

 
As was pointed out before, the MPC obtains real-time locations of trains T via the ATS 

and gathers forecast demand information to measure the system state. A train is defined as a 
single or set of cars in operation. An additional system measurement that is required, is the 
status of a car that is a single vehicle. If a car is executing an action or is planned to do so, its 
(active) status is denoted as 1 (Boolean), whereas an inactive car has a status attribute of 0 
(Boolean). The trains run independently of each other and their location and status should 
therefore be measured separately. The same holds for the different entry platforms, which have 
their own demand patterns. The measurements are summarised in equation 5 and together form 
the set y(t+n). It should be noted that an iterative process is required to calculate y(t + n) ∀ n 
≥ 1, as the action taken at t will affect the predicted measurements for t + n. 
 
 
𝑦𝑦𝑐𝑐1(𝑡𝑡 + 𝑛𝑛) = position of train T (network coordinate) 
𝑦𝑦𝑐𝑐2(𝑡𝑡 + 𝑛𝑛) = status of car C (Boolean [1]/[0]) 
𝑦𝑦𝑙𝑙1(𝑡𝑡 + 𝑛𝑛) = last departure at location l (time) 
𝑦𝑦𝑙𝑙2(𝑡𝑡 + 𝑛𝑛) = next departure(s) at location l (time)      (5) 
𝑦𝑦𝑝𝑝1(𝑡𝑡 + 𝑛𝑛) = demand at platform p (persons)  
𝑦𝑦𝑝𝑝2(𝑡𝑡 + 𝑛𝑛) = maximum waiting time at p (time) 
𝑦𝑦(𝑡𝑡 + 𝑛𝑛) = �𝑦𝑦𝑐𝑐1(𝑡𝑡 + 𝑛𝑛),𝑦𝑦𝑐𝑐2(𝑡𝑡 + 𝑛𝑛),𝑦𝑦𝑝𝑝1(𝑡𝑡 + 𝑛𝑛),𝑦𝑦𝑝𝑝2(𝑡𝑡 + 𝑛𝑛)� 
 
2.3.2 Actions 
 

The MPC can adjust the departure time and destination of any car in the system based 
on the measurements y. It can thereby also adjust the train length in terms of cars. Due to the 
hierarchical structure of the control system, all local actions such as vehicle speed, acceleration, 
deceleration and on-line vehicle separation and trip progress are done by the car controller. 
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𝑢𝑢𝑐𝑐1(𝑡𝑡 + 𝑛𝑛) = departure train C (time) 
𝑢𝑢𝑐𝑐2(𝑡𝑡 + 𝑛𝑛) = destination train C (network coordinate)      (6) 
𝑢𝑢𝑐𝑐3(𝑡𝑡 + 𝑛𝑛) = elongate train (cars/train) 
  

While there are three actions that the MPC can execute, they are in fact part of two 
operational choices that combine 2 or 3 of the actions together. The first composed action 𝑢𝑢1(𝑡𝑡)  
is to initiate a single car train to execute a transit to location l at time t. The other composed 
action does the same but initiates the movement of a multi-car train. The resulting actions are 
a function of all measurements and all or a selection of the partial actions combined (equation 
7). 
  
𝑢𝑢1(𝑡𝑡 + 𝑛𝑛) = single car train = f(𝑦𝑦(𝑡𝑡 + 𝑛𝑛),𝑢𝑢𝑐𝑐1(𝑡𝑡 + 𝑛𝑛),𝑢𝑢𝑐𝑐2(𝑡𝑡 + 𝑛𝑛))  
𝑢𝑢2(𝑡𝑡 + 𝑛𝑛) = multi car train = f�𝑦𝑦(𝑡𝑡 + 𝑛𝑛),𝑢𝑢𝑐𝑐1(𝑡𝑡 + 𝑛𝑛),𝑢𝑢𝑐𝑐2(𝑡𝑡 + 𝑛𝑛),𝑢𝑢𝑐𝑐3(𝑡𝑡 + 𝑛𝑛)�   (7) 
𝑢𝑢(𝑡𝑡 + 𝑛𝑛) = (𝑢𝑢𝑐𝑐1(𝑡𝑡 + 𝑛𝑛),𝑢𝑢𝑐𝑐2(𝑡𝑡 + 𝑛𝑛)) 
 
2.3.3 Constraints 
 

The actions that can be executed by the MPC are constrained. These constraints are 
summarised in equation 8 and can either affect availability for, or limit the value range of, the 
action.   

Logically, the status 𝑦𝑦𝑐𝑐2 of a car should be inactive to allow any action to be executed 
and a next departure 𝑦𝑦𝑙𝑙2 at location l should honour a minimal headway 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚. Thereby, the 
dwell time on a platform 𝑦𝑦𝑝𝑝2 should be equal to or lower than a maximum dwell time 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚. 
Lastly, the action 𝑢𝑢𝑐𝑐3 (cars/train) is constrained by a maximum length that is dictated by the 
system platform length. 
 
 
𝑦𝑦𝑐𝑐2(𝑡𝑡 + 𝑛𝑛) = 0 
𝑦𝑦𝑙𝑙2(𝑡𝑡 + 𝑛𝑛) ≥ 𝑦𝑦𝑙𝑙1(𝑡𝑡 + 𝑛𝑛) + 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚         (8) 
𝑦𝑦𝑝𝑝2(𝑡𝑡 + 𝑛𝑛) ≤ 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  
𝑢𝑢𝑐𝑐3(𝑡𝑡 + 𝑛𝑛) ≤ 𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑚𝑚𝑚𝑚𝑚𝑚  
 
 
2.3.4 Sensor based demand forecast 
 

System measurement to forecast the future demand is done by means of a sensor 
system. This sensor system is to be located some distance before the platform entrance, so that 
the MPC can effectively calculate the future demand and adapt the APM capacity. The distance 
required between the sensor location and the platform entrance should be of such a length that 
a passenger only has to wait the maximum acceptable dwell time period. As not all passengers 
walk at the same speed, the forecast time 𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑡𝑡 of the passenger entering should be corrected 
with a walking speed distribution. This implies that the larger the distance between the sensor 
location and the platform is, the larger the uncertainty becomes in the forecast. 

As there is always a marginal share of the population that walks at significantly fast 
speeds, it is possible to choose the distance such that a minimum percentage of the population 
instead of everybody will have to wait longer than 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 . Thereby, a simple method to reduce 
the uncertainty is to use continuous systems such as escalators or moving walkways for which 
the transit time is much more precise (𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), realizing that some passengers walk on the 
escalator or moving walkway. Equation 9 summarises the calculation required for the precise 
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distance between the sensor and platform (assuming that the walking speed is normally 
distributed). 
  
  
𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = (𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)(𝑍𝑍𝑍𝑍 + 𝜇𝜇)      (9) 
  
 
If Z is a standard normal deviate, then (𝑍𝑍𝑍𝑍 + 𝜇𝜇) will have a normal distribution with expected 
value μ and standard deviation σ. 
 
3 Measuring the effectiveness of adaptive control 
 

It is important to have measurable criteria, also known as Key Performance Indicators 
(KPIs), to quantify and compare the ACS with conventional APM operations. A distinction 
can be made between three KPIs: 

 
- Passenger experience 

- Costs (capital & operational) 

- Environmental impact 

 
The KPIs give an overall indication of the respective system aspects and are combinations of 
several supporting Performance Indicators (PIs). 
 
3.1 Passenger experience 
 

The overall passenger experience is measured by means of three PIs. The most basic PI 
is that passengers are transported in a reasonable time that is composed of a dwell time and a 
transit time. However, the assumption is made that trains run at 100% certainty, which 
automatically means that transit times will never differ. Therefore, only platform dwell time 
should be measured in this research to test the effective transit of passengers. The period of the 
acceptable waiting time is case specific and relies heavily on the customer requirements. 

The two other Passenger Experience PIs concern the space that passengers have during 
their APM transit period on the platform while waiting, and the area available to them in the 
APM vehicle. By means of the IATA/Fruin standards it is possible to determine the Level Of 
Service (LOS) in the respective areas with which a ranking can be made (IATA, 2019). 
  
3.2 Costs 
 

A large infrastructural project like an APM system affects the airport owner financially 
and it is therefore important to measure and compare the financial implications of the 
alternatives. This financial impact is partly based on capital costs and partly on operational 
costs. 

 
3.2.1 Capital cost performance indicators 
 

The typical capital cost factors that are applicable to an APM system are: 
 

- Tunnel system 
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- Guidance network 

- Switch systems 

- Control system 

- Platforms 

- Platform access 

- Passenger sensor systems 

- APM Vehicles 

 
Not all capital cost factors are considered in this paper because the ACS does not require 

physical adaptions to the APM network, compared to a conventional system. Only differential 
cost factors are considered which are the amount of passenger sensor systems and the required 
amount of APM vehicles. With the assumption that no failures occur, the number of vehicles 
will not consider a surplus for maintenance and/or backup as it would in reality. To determine 
the costs, the PIs should be multiplied with their respective cost value. 
  
3.2.2 Operational cost performance indicators 
 

Human labour cost will not be considered as PI. The APM is an automated system and 
only a handful of employees reside in the control room to supervise the system, which will be 
the same for the ACS and conventional operation. Operational costs are instead dictated by the 
usage of the system, which is expressed in vehicle energy cost, vehicle maintenance cost, and 
nowadays important, emission compensation cost. All three factors are PIs in this paper and 
can be measured with the run distance or run time. 
 
3.3 Environmental impact 
  

The last aspect that should be measured is the environmental impact of the APM 
system, which is in this case is characterised by the ambient pollution of the system. This PI is 
calculated by multiplying the energy consumption with the average CO2 emission of the energy 
production that is characteristic for the airport region. Pollution can be expressed in more 
emission types, such as NO2 and particulate matter, but these emissions are just as CO2 directly 
proportional to the energy consumption. It is therefore chosen to only monitor the effect in 
terms of CO2. 

Another form of ambient pollution which is becoming substantially more important in 
airport projects is noise. The experienced noise levels for an APM depend on the noise 
generated by the trains, the layout, form and materials used in the train, and the building and 
environment that surrounds the APM system. It is assumed that the noise impact in this 
particular research can be deemed negligible. Recent implementations of APM systems at 
airports (e.g. PHX, PEK, LHR, MAD) are fully electric, and running on rubber tires. In all 
recent examples, the system network is either underground or elevated above terminal 
facilities, thereby shielding passenger environments from noise exposure. 
 
4 Test case characteristics 
 
 The conceptual control logic described in section 2 is a generic one. Irrespective of the 
complexity of the APM system and network, it is expected that the control logic in principle 
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will improve the operation of the system and reduce the discrepancy between demand and 
capacity. A simulation test case is designed to give insight in the potential of adaptively 
changing the schedule for an APM, based on sensor derived real-time demand. The test case is 
derived from a variety of typical APM systems used worldwide and represents a complex APM 
system. Table 1 presents the key parameters of the test case and Figure 7 shows the lay-out of 
the test case. 
 

 Parameter Value 
Network 

Stations 3 
Distance station T1-satalite 1,800 m 
Distance station T2-satalite 900 m 

Parking locations 2 
Vehicle performance 

Maximum speed 70 km/hour 
Operational speed 50 km/hour 

Acceleration 1 m/s2 

Deceleration -1 m/s2 
Service standards 

Platform personal space 1.2 m2 
Vehicle personal space 0.36 m2 
Maximum dwell time 180 s 

Boarding time 35 s 
Table 1: Key parameters test case. 

 
 

 
 

Figure 7: Lay-out of the test case. 
 
4.1 Test case outline 
 
4.1.1 Network 
 

The reference network is a derivative of a design study for a non-disclosed airport, which 
is representative of large airport developments that include an APM. The assumption is made 
that the APM network is operated in a European environment, as to express KPI results against 
European cost, energy and emission levels. The European region shows a relative stable 
environment and represent a region in which airport developments typically are confined to all 
three KPIs identified in this research. The choice is made to test the model on a network of 
certain complexity, to test and compare the two approaches to capacity changes (favouring 
train frequency or capacity). The test case furthermore holds a set of parking locations, which 
is of pertinent importance to change train composition. Nonetheless, a network without parking 
locations would still benefit from the ACS, albeit only by an adaptive change of frequency. It 
should that the network design incorporates the three typical station configurations found in 
APM systems: 
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- Terminal 1 contains the most common layout used, with a platform at either side, and 
a change behind the station to move from arrivals (blue) to departures (red).  

- Terminal 2 replicates a simpler head station with one track, allowing passengers to 
deboard first on one side (blue), and board from the other side after (red).  

- The Satellite station uses the most adaptable and flexible operation, with a middle 
platform for arriving passengers (blue) and side platforms from which departing 
passengers can board after (red). It should be noted that this typical configuration 
requires substantially larger capital investments. 

 
The network connects two landside accessible terminal buildings and a mid-field 

satellite building, with passenger traffic only between the satellite and the terminals, but never 
between both terminals. This kind of configuration is quite typical for airport satellites and is 
part of the design of e.g. Seoul Incheon (INC), Bangkok Suvarnabhumi (BKK), Atlanta 
Jackson-Hartfield (ATL), and the new Beijing Daxing airport (PKX). The total track length is 
approximately 2,700 meters, with T1 and the satellite 1,800 meters and T2 and the satellite 900 
meters apart. The round-trip time of a single service is shown in Table 2. 
 

Location Time (s) Cum. Time (s) 
Station T1 start 0 0 
Station T1 boarding 35 35 
Station Satellite enter 142 177 
Station Satellite boarding 35 212 
Station T2 East enter 78 290 
Station T2 de-boarding 35 325 
Station T2 West enter 22 347 
Station T2 West boarding 35 382 
Station Satellite enter 77 459 
Station Satellite boarding 35 494 
Station T1 Enter  636 

 
Table 2: Round trip Single Service  (v=50km/hour, acc=1m/s2, dec=1m/s2). 

 
 

4.1.2 Reference vehicle 
 

To allow for free movement through the network (i.e. forwards, backwards and between 
tracks), a train with rubber tires is the only available solution. The APMs that have such a 
feature are built by either Mitsubishi (Crystal Mover), Bombardier (Innovia APM 
100/200/300) and Siemens (AirVal) and all share primary characteristics. A single car is guided 
by a central rail and is roughly 12.00 metres in length, 2.80 metres in width and 3.40 metres in 
height. One car can transport about 60 passengers, based on a personal space of 0.36 m2/pax, 
which is adequate for a short transit in peak periods.  Energy and environmental information is 
based on the most recent APM developed by Bombardier (Innovia APM 300), which consumes 
2.56 kWh/km, and has an economical life of 30 years (Bombardier, 2015). The acquisition 
value of an APM train car is $2.4 million, which corresponds with a single car cost for the 
Innovia APM CX-100 system (Kimley Horn, 2014). The speed and acceleration that a vehicle 
can attain varies per system. It is hereby important to distinguish operational speed and 
maximum design speed, which can differ substantially. The maximum design speed of an APM 
vehicle is mostly 80 km/hour (Bombardier, Siemens, Mitsubishi), but due to the distinctively 
short distances of an APM system, the operational speed is generally around 50 km/hour. For 
the acceleration and deceleration of the vehicles, the assumption is made that both are 1 m/s2. 
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4.2 Simulation methodology 
 

The system is modelled with the Rockwell Arena Simulation software, further referred 
to as 'Arena'. This software allows the user to build a Discrete Event Model/Simulation 
(DEM/S) in which decisions in the system are based on individual entities. The software uses 
the SIMAN language which was developed in the early '80s to SIMulate and ANalyse 
(SIMAN) manufacturing processes (Pegden, 1983). Whereas the SIMAN language is 
dedicated to pure discrete event systems (i.e. decisions are made at prede_ned time intervals), 
the Arena software incorporates continuous simulation capabilities. Herewith it becomes 
possible to accurately simulate vehicle/conveyor/entity movements and/or instantly react to 
continuous processes such as filling a tank (Kelton et al., 1998). 

 
4.2.1. Model Structure 

 
The model uses a moduled 5-step approach to simulating the system. The Passenger 

Generation module creates passenger entities based on aircraft movement data, which is taken 
from an undisclosed airport that includes a satellite. The demand reflects a typical two-bank 
operations, with continuous demand throughout the day, and is expressed in at the gate demand 
of passengers.  

A second module is used to distribute passengers to the different stations, by 
transforming at the gate demand to a demand profile to be expected at the sensor locations. For 
this, typical show-up profiles are used to transpose demand numbers from the gates. For 
departing passengers, a normal distribution is used in which passengers enter the terminal 
building between 180 and 45 minutes before departure. It is assumed that after check-in and 
security, the passenger directly enters the APM. For arriving passengers, the deboarding 
process is assumed to be uniform over a 5 to 10-minute period (depending on the aircraft size). 
Passengers will directly go to the APM, walking anywhere between 50 and 500 meter which 
is assumed a typical distance from gate to satellite station entry. 

The third module translates the demand numbers at the sensors to actions to be executed 
by the ACS. As such it shall allocate the APM vehicles to the different stations, based on the 
demand figures. This module also provides the KPIs relating to the rolling stock, i.e. costs and 
environmental impact.  

Modules four and five simulate the passenger behaviour of dwelling, boarding and 
deboarding, and essentially output most of the KPIs on passenger experience. 

 

 
 

Figure 8: Modules 
 

4.2.2 Simulation run setup 
 

The Run length is (logically) the time period that is simulated. The run length should 
be long enough to present all possible event at least 5 times (Al-Aomar et al., 2015). In the 
modelled environment the most important events are the arrival and departure of aircrafts, the 
entering and exiting of a vehicle, including the coupling of vehicles and synchronisation of the 
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train scheduling at one platform with the train scheduling with the former and next station. As 
the system is driven based on a (fixed) schedule on when aircraft should depart and arrive every 
day, it is however appropriate to take a run length of 24 hours to also represent the daily 
fluctuations. 

The simulation run starts with an empty input set, which is an unrealistic situation in a 
continuously operating system. In the case of an APM system, the simulation run will start at 
12:00 p.m. with no vehicles, aircraft and/or passengers. In reality it is however very well 
possible that an event has happened before the start time which should influence the PIs when 
the system is started. Kelton and Law (2000) propose to take the simulation run length for the 
warm up period also to eliminate any bias in the system, which is 24 hours. 

Replications are required to diminish the effects of variation on the model. Every 
individual replication runs with a different seed and delivers different outputs. As it is possible 
that some runs are far from an actual representation, it is best to run multiple replications to 
even out all excesses. Hoad et al. (2007) states that the half width of the confidence interval for 
any criteria should be smaller than a predefined percentage of the cumulative mean, which is 
taken as 5%. This process is repeated until all PIs are within the limits. As some PIs are 
influenced differently in the alternatives, a run replication test is done for all alternatives, and 
the highest number of replications is taken for all models. 
 
4.3 Reference case:  Fixed schedule 
 

The schedule for the reference case is determined by calculating the demand per 
direction for the design day over a specific time period. The most common unit used in 
literature is Passengers Per Direction Per Hour (ppdph) (ACRP, 2012b), but this does not 
suffice to calculate the actual capacity required in a peak period. Instead, the time period should 
be reduced the minimum acceptable headway during peak operations, which is 180 seconds, 
to ensure that during that period nobody has to wait excessively.  

To even out any extreme values, the design peak is determined on the average 
maximum value of 10 model runs of generating passenger flows based on arrival pattern of 
aircraft for arriving passengers. The resulting average peak value is 293 and should therefore 
be covered by an appropriate capacity in the system. 

The vehicle combinations and headway periods that can be run on the network are 
summarized in Table 3 and it shows that there is a total of 6 combinations capable to meet the 
demand. For the base alternative the choice is made to use trains composed of 4 cars that run 
with 135 seconds of headway, as this requires the least number of cars. 

 
  

Headway Trains 1 car 2 cars 3 cars 4 cars 
90 8 120 140 360 480 
105 7 102 205 308 411 
120 6 90 180 270 360 
135 5 80 160 240 320 
150 5 72 144 216 288 
165 4 65 130 196 261 
180 4 60 120 180 240 

 
Table 3:  Headway and train composition combinations. 
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However, a correction is made to replicate a more realistic scheduled operation. The 
135 seconds frequency is a must if the airport wants to have an absolute 0% chance that a 
passenger has to wait more than 180 seconds (during day time). This requirement is in reality 
a less rigid boundary to the system design and should be met for a majority of passengers, 
which is generally assumed as 95% for airport systems (ACRP, 2012a), (Sloboda, 2009). The 
standardised frequency could therefore be decreased (i.e. increase of headway) to positively 
affect sensitive output parameters such as the required number of vehicles and run distances, 
as long as the maximum waiting time is sufficiently met. 

Two simulation test runs are therefore conducted for a scheduled frequency of 135 
seconds as is deemed appropriate to meet peak capacity and for a scheduled frequency of 180 
seconds as is the maximum allowable waiting time. The results confirm that no passengers 
have to wait longer than 180 seconds when a frequency is taken of 135 seconds. When this 
frequency is changed to 180 seconds, there is only a very marginal share of passengers that 
will have to wait for an extended period <0.5% of passenger; average of 10 replications). It can 
therefore be concluded that a scheduled operation of 4 cars running on a 180 seconds interval 
is sufficient. The model will run this headway/train length combination for most of the day; 
with the exception of 2 hours between 2 am and 4 am. Demand during this period is consistently 
low in all replications, with only 1 or 2 aircraft arriving. In this period, trains run every 15 
minutes to serve any passengers that need transit during the down time. 
 
4.4 ACS alternative 1: Change frequency before capacity 
 

The first ACS alternative incorporates the adaptive logic for an APM system. The trains 
are now called up based on sensor data that is collected some distance before the passenger 
enters the platform area. When demand exceeds the capacity of the first train with 1 car (60 
passengers), a second train with one car is requested and put into service before or after the 
first scheduled train. If no more trains can be added due to waiting time constrictions, scheduled 
trains are extended with additional cars, as long as these cars can be routed to the platform in 
time. 

The system requires an extended forecast period to call up vehicles when required. This 
period is 370 seconds, which is equal to the transit time of the longest parking position to the 
platform connection, including a minimum boarding period of 35 seconds. This means that the 
sensor system should be located at a location which is passed by passengers 190 seconds before 
they enter the platform (equation 9). 
 
𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ⇔ 
 
𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 370𝑠𝑠 − 180𝑠𝑠 = 190𝑠𝑠     (9) 
 
  

The behaviour of passengers should be appropriately modelled to prepare the vehicles 
in time for boarding. The assumption is made that in the example, a dedicated hallway is 
available through which the passengers walk. According to Young (1999), the average speed 
of a passenger in an airport environment is 1.347 m/s, with a standard deviation of 0.255 m/s 
for free-flowing environments. 
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4.5 ACS alternative 2: Change capacity before frequency 
 

The second ACS alternative is similar to the first ACS alternative in a way but the logic 
that calls up new trains and cars. Different to the first ACS alternative, in this alternative trains 
will primarily be extended with additional vehicles, before increasing the frequency. 

 
5 Test case results 
 

The simulations generated several output parameters to measure the (K)PIs. For most 
(K)PIs, output parameters must be transformed into the correct unit and/or need to be 
multiplied with another output parameter.  

The general effect of the two alternatives is shown in Figure 9. The figure displays a 
one-hour sample of the simulation and it can be concluded that both alternatives significantly 
reduce the offered capacity (grey), with trains running at a certain frequency and capacity, only 
when demand (red) is measured in the system. The total system results are the average of 18 
full day simulation runs (which is tested to give an insignificant standard deviation). For any 
simulation run, the last of a four-day cycle simulation is measured, to account for any system 
start-up effects. 

 
 

Figure 9: One-hour example of simulation results and effect of alternatives (red is demand, grey is train 
frequency/capacity). 

 
5.1 Passenger experience 

The passenger experience KPI is supported by three PIs that are measured for the 
replication average peak operations. The dwell time is shown in Table 4 and it shows that both 
alternatives have a lower average dwell time than the reference case. The average is near to 90 
seconds, which is logical as the scheduled system runs a 180 second headway and the basic 
principle of the ACS is to wait as long as is allowable (i.e. 180 seconds). However, the average 
dwell time for the ACS alternatives is some 10 seconds lower due to the effect of the control 
logic. With the large demand for the system, frequency changing choices are being made to 
lower average dwell times.  
 
 Average Minimum Maximum % Change 
Reference Case 92.31 0.00 900.00 - 
ACS Alternative 1: Frequency 80.00 0.00 180.00 -12.5% 
ACS Alternative 2: Capacity 80.42 0.00 179.99 -12.5% 

*excludes passengers that walk too slow and take the next train (± 1%) 
Table 4:  Results dwell time. 
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The PIs platform space and vehicles space are measured with the output parameters 

maximum passenger waiting on the platform and maximum car load factor. These values are 
composed of the average maximum of the 10 replications and translated in the appropriate 
Level-of-Service as defined IATA ADRM 10th edition (2019). The results are shown in Table 
5 for the separate alternatives and it can be concluded that all three deliver an excellent 
(‘Optimum’ or ‘over-designed’) experience for most areas.  

Due to the nature of the ACS to wait for extra passengers, the LoS drops down to ‘sub-
optimum’ for both ACS alternatives. The trains are filled to their maximum capacity in all 
alternatives, which results in a ‘sub-optimum’ in all cases. While both ACS alternatives show 
a slightly lower LoS on the aforementioned system aspects during peak periods, the system is 
used more effective. It is true that passengers have to stand in more crowded areas, but in none 
of the cases do these passengers have to endure exceptional discomfort. The result is that the 
load factor of the trains is higher. 
  

Reference case 
Aspect Average Peak Area m2 m2/Pax  LoS 

Platform Level-of-Service 
Platform T1 22 124 477 3.85  Over-design 
Platform T2 5 37 248 6.70  Over-design  
Platform Sat (W) 23 311 248 0.79  Optimum 
Platform Sat (E) 5 68 248 3.65  Over-design 

Train Level-of-Service 
Train (per car) 6 60 22 0.36  Sub-Optimal 

 
Table 5a: Results Level-of-Service – reference case. 

 
ACS Alternative 1: Frequency 

Aspect Average Peak Area m2 m2/Pax % Change LoS 
Platform Level-of-Service 

Platform T1 67 205 477 2.32 -39.7% Over-design 
Platform T2 23 88 248 2.81 -58.1% Over-design 
Platform Sat (W) 68 466 248 0.53 -32.3% Sub-Optimal 
Platform Sat (E) 23 154 248 1.62 -55.6% Over-design 

Train Level-of-Service 
Train (per car)  32  60  22   0.36  - Sub-Optimal 

 
Table 5b: Results Level-of-Service – alternative 1: frequency. 

 
 
 
 
 
 

 
ACS Alternative 2: Capacity 

Aspect Average Peak Area m2 m2/Pax % Change LoS 
Platform Level-of-Service 

Platform T1 67 208 477 2.30 -40.3% Over-design 
Platform T2 23 78 248 3.17 -52.7% Over-design 
Platform Sat (W) 67 448 248 0.55 -30.4% Sub-Optimal 
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Platform Sat (E) 23 159 248 1.56 -57.3% Over-design 
Train Level-of-Service 

Train (per car) 30 60 22 0.36 - Sub-Optimal 
 

Table 5c: Results Level-of-Service – alternative 2: capacity. 
 

5.2 Costs 
 

The system costs are composed of capital and operational costs, of which a selection is 
measured in the model. The capital costs are summarised in the upper part of Table 6 and are 
expressed in one-time capital costs and daily depreciation costs. It is hereby assumed that the 
airport is able to finance the investments costs itself and is therefore not influenced by interest 
or discount rates.  The operational costs are given in the lower part of the same table and a 
summation of the daily costs is given as well. It should be noted that the percentage changes 
given in the results only considers the measured costs and will be smaller when total project 
costs are considered. 
  
5.2.1 Capital cost 
 

The capital cost is composed of the cost of sensor systems and APM vehicles. However, 
recent technological developments at most airports render the actual capital investments for 
sensor systems negligible. Most major airports have acknowledged the importance of data 
gathering and passenger flow monitoring and have implemented airport wide sensor systems 
using movement sensors, CCTV/facial recognition and wireless signal monitoring to create 
high resolution profiles throughout the terminal. As such it is assumed that the implementation 
of a sensor location for the ACS can be done for a couple of thousands of US$, rendering it 
insignificant in an APM implementation plan. Nonetheless, it is important to acknowledge the 
capital expenditure, in case an airport would not have installed a monitoring sensor system. 

The cost of the rolling stock is significant compared to the sensors, with a single car 
costing in the range of $2.4 million (Kimley Horn, 2014). It is assumed that the economic life 
of the APM vehicle is 30 years (Bombardier, 2015), and that there is no market for second-
hand APM vehicle, so the residual value is assumed $0.  

The capital costs are significantly lower for both ACS alternatives. The maximum 
required number of cars is consistently a bit higher for ACS alternative 1 (frequency) than ACS 
alternative 2 (capacity), as in some cases increasing the frequency before increasing the train 
capacity results in an uneven spread of passengers over the two scheduled services results in 
an additional vehicle required. If per example 100 passengers require a train service within 180 
seconds, the system will in both alternatives initially activate 2 vehicles. If, however, only ±30 
passengers make it to the train scheduled extra after 90 seconds, this means that the second 
train still has to run a 2-car train to transport the remaining 70 passengers. 
 
 
 
 
5.2.2 Operational Costs 

 
The operational costs are composed of the cost of energy, cost of emission and the cost 

of maintenance. Energy is used by a moving APM car and it consumes 2.56 kWh/km, as 
explained in section 4.1.2. The price of energy is fluctuating as a result of many factors such 
as changing oil prices. To get a representative and relatively stable sample value, the European 
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Power benchmark is consulted for 2018, which valued the average industrial electricity price 
of a 1 MWh at ± €70.- or US$ 80.- (European Commission, 2019). The cost per kilometre is 
thus 2.56 ∗ 80/1000 = 0.20$/km.  

Emission costs can be estimated with the compensation rate for energy consumption, 
at $40,- per tonne of CO2. As indicated by the European Environment Agency (2018), the 
average is 300 grams CO2/kWh energy production. Consequently, the cost per km is 
2.56*(300/1,000,000)*40=0.03$/km. 

The maintenance costs are approximately 70% of the power costs, which translates to 
a value of 0.2 ∗ 0.70 = 0.14$/km (Kimley Horn, 2014). The whole operational cost is thus 
directly proportional to the total distance travelled by the cars in the system.  

In the reference case, the 16 cars together covered a distance of 9,834km or 614km/car 
per day. In both ACS alternatives this reduced to well below 4,000km, with car utilisation 
dropping under 300 km/car. Hence, both alternatives result in a large cost and emission 
reduction compared to the reference case. This has several reasons: 
 

1. trains do not run when there is no demand, 
2. if there is demand they only serve the connection on which transport is required, after 

which they return to their idle parking location, 
3. train combinations are a lot smaller, with on average just over 1 car per train for both 

ACS alternatives (instead of a fixed 4 cars per train in the reference case). As can be 
expected, the number of cars per train is (slightly) higher in the second ACS alternative 
(Capacity) compared to the first (frequency). 

 
The ACS is beneficial to reduce costs in terms of both capital investment and daily operation. 
Especially the reduction in vehicles required and the distance run on the system are effective. 
The results are summarized in Table 6. 
 

Reference case 
Cost Units Unit cost Total costs Depreciation 

Capital costs 
Sensor system  0 0 $ 0 $ 0 
APM cars 16 $ 2,400,000 $ 38,400,000 $ 3,500/day 
Total   $ 38,400,000 $ 3,500/day 

Operational costs 
Energy 9,830km $ 0.20 $ 1,970/day N.A. 
Emission 9,830km $ 0.03 $ 290/day N.A. 
Maintenance 9.830km $ 0.14 $ 1,380/day N.A. 
Total   $ 3,640/day N.A. 
Total daily costs   $ 7,140  

 
Table 6a: Results Costs – reference case. 

 
 

 
ACS Alternative 1: Frequency 

Cost Units Unit cost Total costs Depreciation 
Capital costs 

Sensor system  3 Negligible Negligible Negligible 
APM cars 14 $ 2,400,000 $ 33,600,000 $ 3,070/day 
Total   $ 33,600,000 $ 3,070/day 
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Operational costs 
Energy 3,700km $ 0.20 $ 740/day N.A. 
Emission 3,700km $ 0.03 $ 110/day N.A. 
Maintenance 3,700km $ 0.14 $ 520/day N.A. 
Total   1,370$  N.A. 
Total daily costs   $ 4,440  

(-37.8%) 
 

 
Table 6b: Results Costs – alternative 1: frequency. 

 
 

ACS Alternative 2: Capacity 
Cost Units Unit cost Total costs Depreciation 

Capital costs 
Sensor system  3 Negligible Negligible Negligible 
APM cars 13 $ 2,400,000 $ 31,200,000 $ 2,850 
Total   $ 31,200,000 $ 2,850 

Operational costs 
Energy 3,880km $ 0.20 $ 780 N.A. 
Emission 3,880km $ 0.03 $120 N.A. 
Maintenance 3,880km $ 0.14 $ 540 N.A. 
Total   $ 1,440 N.A. 
Total daily costs   $ 4,290  

(-40.0%) 
 

 
 

Table 6c: Results Costs – alternative 2: capacity. 
 
5.3.  Environmental impact 
  

The KPI external effect is solemnly measured with the PI CO2 pollution. As the APM 
propulsion is electric, the train itself does not expel any foul gasses. The energy is however 
sourced indirectly from a power plant which, if not renewable, impacts the environment. 
Additionally, the vehicle manufacturing intensive, and it is therefore important to assess full 
life cycle energy consumption.  The study performed by Bombardier (2015) on the pollution 
of their Innovia APM 300 product states that a single car manufacturing required 89,000 kWh 
to produce, and is designed for a 107,000km life cycle. This translates in 0.83 kWh/km or 250 
grams CO2/km. In addition, the vehicle consumes 2.56 kWh/km, or 770 grams CO2/km, for a 
total of 1,020 grams CO2 combined. 

The resulting CO2 pollution per day is summarised in table 7, from which is clear that 
the environmental impact of an ACS is significant, with a possible reduction for both ACS 
alternatives of more than 60% compared to the reference case. 

 
  
 Distance (km) gr/km CO2 Total ton CO2 % Change 
Reference case 9,830 1,020 10.0 - 
ACS Alternative 1: Frequency 3,700 1,020 3.8 -62% 
ACS Alternative 2: Capacity 3,900 1,020 4.0 -60% 

 
Table 7: Results daily CO2 pollution. 
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6 Conclusions 
 

Automated People Movers (APMs) are an important asset for large airports to support 
intra-terminal passenger movements and/or provide inter-terminal transit. The objective of this 
research is to utilise new technologies such as CBTC and design a comprehensive control 
method to adapt the network capacity availability of an APM in an airport environment to the 
real-time demand. The outcome of the research shows that the implementation of an adaptive 
Control System has the potential to effectively reduce. The design is thereby not only tested on 
a technological level, but also includes economic, passenger comfort and sustainability aspects 
to determine the feasibility of such a control type. To design an adaptive control system, it is 
determined that model-based predictive control is the most favourable method. The MPC 
calculates a set of future actions based on passenger demand forecast models that as a 
combination satisfies an objective. 

The prime objective of the MPC is to minimise the difference between the system 
capacity for the next n time steps and the demand forecast for that same period n. While demand 
characteristics can roughly be calculated based on historical data and airport forecasts, it is 
preferred to place a sensor system at an appropriate distance before the platform such that the 
minimum forecast period is met. The capacity can either be changed by running more/less 
trains or increase/decrease the number of cars per train. The sequence of such capacity 
changing actions depends on the system owner’s requirements and can favour changing train 
capacity over train frequency or vice versa. 

The test case results of a typical (complex), multi-station, dual-track, pinched-loop 
APM network show that real-time adapting of capacity to demand results in a significant 
improvement of passenger experience, operational costs, capital costs and emission footprint. 
By operating only to the demand that is required, the system will run with less cars per train 
over shorter distances. This results in a significantly lower run distance of the system, thereby 
reducing the energy consumption and energy costs, as well as operational cost drivers such as 
vehicle and infrastructure maintenance.  

By optimally placing a sensor threshold before the platform entrance, the system will 
have enough time to prepare a train at the station, so that no passenger has to wait more than 
the maximum dwell time defined by the APM operator. Capital expenditures are reduced as 
the peak demand is better served.  

The typicality of an Automated People Mover at an airport is that the peak is 
unidirectional, due to surges of passengers arriving by plane. By allocating train capacity only 
to the busy route(s), while maintaining a lower capacity on the others, less vehicles are needed 
during this time period. This is significantly different compared to the conventional operation, 
in which train capacity is kept the same on all parts of the network. As a result, the intelligent 
allocation of vehicles during the peak will lower capital expenditures. 

Overall, the usage of an intelligent adaptive control system, to adapt capacity to real-
time demand, shows potential to significantly improve APM operations at an airport. In terms 
of the KPIs passenger experience, cost and environmental impact, all can be significantly 
improved. 

On the basis of the results of the simulation with a representative model it can be 
concluded that from an economical point of view the favourable method of adjusting capacity 
to demand is to increase train capacity, before increasing the frequency of trains (ACS 
Alternative 2: Capacity). 
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