
CRDTs for Fonto
by

Quentin Lee
Martin Li

Cas van Rijn
Wang Hao Wang

to obtain the bachelor degree of Computer Science and Engineering
at the Delft University of Technology

TU Delft Coach: Bart Gerritsen
Bachelor Project Coordinator: Huijuan Wang

Client: Bert Willems (Fonto)
Advisors: Stef Busking and Martin Middel (Fonto)

This report is confidential and cannot be made public until July 1, 2020.

Summary
During this project a research has been done for Fonto whether CRDTs(Conflict-free Replicated Data
Type) can be used to enable collaborative editing in block based documents such as XML. The ap-
proach of this research was to make a prototype as a proof of concept, to show if block-based opera-
tions such as inserting, deleting, moving, merging and splitting blocks can be supported with a CRDT
implementation. Compared to normal text editing, block text editing can lead to more types of conflicts
since it support more types of operations.

CRDTs are used to be able to have multiple replicas of a data structure which can be independently up-
dated and changed whilst guaranteeing that eventually all replicas converge to the same state. CRDTs
are currently being used for counters, timers and other types of data structures. There are also CRDTs
for simple text files, only supporting inserting and deleting characters.

To enable collaborative editing in block based documents, firstly, a CRDT implementation was cho-
sen based upon the research done for different types of CRDTs. After Logoot was chosen as the most
extendable and suitable CRDT implementation for block-based editing, an already existing implemen-
tation was pulled from GitHub as starting point. This implementation already supported the insert and
delete operations for characters, but did not yet support block operations.

The chosen Logoot implementation was extended with block operations. To validate the robustness
of the designed solutions for these operations, tests were written using the Mocha testing framework
and Chai assertion library. For different types of scenarios, tests were written and checked whether
all replicas eventually converged to the same state. The created CRDT was also connected to a text
editor, which was extended with block functionality to enable manual testing and debugging.

The operations insert, delete, move and splitting of blocks were successfully implemented. All repli-
cas converged when using these operations in different test cases. No bugs were found when running
these test cases, even when replicas worked offline for multiple operations. The merge operation is the
most complex operation of all implemented block operations. The merge operation still has situations
in which replicas diverge or even content is lost. As of now, there are still two open issues with merge,
the first is that it is possible to have complex circular merges resulting in loss of content. The second
issue is when splitting and merging multiple times in the same block offline, as this results into diverging
states of replicas.

The research prototype shows that it is possible to support block operations except for the merge
operations. Strengths of the created prototype are that it is easily extendable with different types of
blocks and nested blocks, which are both prevalent in XML structures. The biggest weakness is that
some of the operations are inefficient, resulting in slowdowns for larger documents or big operations
such as copy pasting large amount of text.

Recommendations for Fonto and/or other further research are to investigate whether it is possible
to fix the issues with merge and ensure all operations work in combination with each other. It is also
advised to see if it is possible to lower the complexity of the operations, resulting in better performance.
It is also recommended to investigate other CRDT structures to see whether their design could lead to
other insights regarding complexity and the merge operation.

ii

Preface
This research topic comes from the desire of Fonto to research the possibilities to enable users to
collaboratively work in the same XML document. We want to thank Fonto for giving us the possibility to
dive deeper into the world of collaborative editing and for giving us the opportunity to research CRDTs,
which is a field that is rather new and therefore gave us a lot of freedom. This has been a very exciting
project for all of us where we were able to put our knowledge learned at the university to use in a
practical environment. We want to thank our supervisors from Fonto, Stef Busking, Martin Middel
and Bert Willems for their guidance and effort during the research and Remko Zuiderwijk for helping us
during our time in the office. They were always available and happy to help us and/or give their input on
challenging issues. We also want to thank Bart Gerritsen, our supervisor from the TU Delft for ensuring
that the educational demands from the TU Delft were met. We thoroughly enjoyed this project and our
stay at Fonto.

Quentin Lee
Martin Li

Cas van Rijn
Wang Hao Wang
Delft, June 2020

iii

Contents

1 Introduction 1
1.1 About the project . 1
1.2 Fonto . 1
1.3 Problem definition . 1
1.4 CRDT . 1
1.5 Development process . 2

2 Research report 3
2.1 Introduction . 3
2.2 CRDTs . 4

2.2.1 What are CRDTs? . 4
2.2.2 What does conflict-free mean? . 4
2.2.3 What does replication mean? . 4
2.2.4 What are the use cases of CRDTs? . 5

2.3 CRDTs versus other collaborative editing algorithms . 6
2.3.1 Operational Transformation (OT) . 6
2.3.2 Comparison between OT and CRDT . 6
2.3.3 Conclusion . 7

2.4 Commutative vs Convergent CRDT . 8
2.4.1 Commutative CRDT . 8
2.4.2 Convergent CRDT . 8
2.4.3 Commutative CRDT versus Convergent CRDT. 9

2.5 What known CRDTs are available? . 10
2.5.1 Tree-based CRDTs vs Set-based CRDTs . 10
2.5.2 G-Counter. 10
2.5.3 PN-Counter . 10
2.5.4 Non-Negative-Counter . 10
2.5.5 Growth Only Set . 10
2.5.6 2P-Set. 10
2.5.7 U-Set . 10
2.5.8 Last-Writer-Wins-Element-Set (LWW) . 11
2.5.9 Observed Remove Set . 11
2.5.10 PN-Set . 11
2.5.11 Sequence CRDTs . 11

2.6 Best CRDTs for our use case . 12
2.7 Conclusion Research Report . 12

3 Requirements and problem analysis 13
3.1 Requirements. 13
3.2 Problem Analysis . 14

3.2.1 Types of sequence CRDTs. 14
3.2.2 Time and Space Analysis . 16
3.2.3 Degree of implementation difficulty . 17
3.2.4 Chosen CRDT . 18

4 Design 19
4.1 Basic Logoot implementation . 19

4.1.1 Insert and delete nodes . 19
4.2 Approaches for block operations . 20
4.3 Detailed design . 21

iv

Contents v

5 Implementation 28
5.1 Validating the basic implementation . 28
5.2 Implementing block functionality . 28

5.2.1 Insert and delete nodes in the CRDT . 29
5.2.2 Insert and delete blocks . 29
5.2.3 searchBlock. 30
5.2.4 Insert and delete content in blocks . 30
5.2.5 Moving blocks . 30
5.2.6 Merge blocks . 30
5.2.7 Splitting blocks . 40

5.3 Validating the block functionality . 42

6 Testing the prototype 44
6.1 Editor . 44

6.1.1 Editor design . 44
6.1.2 Editor features . 44

6.2 Testing . 45
6.2.1 Automatic tests . 45
6.2.2 Manual tests . 46

6.3 Known bugs. 46

7 Results 48
7.1 Test results . 48
7.2 Discussion . 48

7.2.1 CRDT . 48
7.2.2 Feedback Software Improvement Group . 49
7.2.3 Evaluation. 50

7.3 Recommendations . 50
7.4 Prototype to Production . 51
7.5 Ethical Implications . 51

8 Conclusion 52
8.1 Our CRDT implementation . 52
8.2 Future Implications . 52

9 Project Evaluation 53

Bibliography 54

A Info Sheet 57

B Legend 59

C Project Description 60

D Project Plan 65

1
Introduction

1.1. About the project
The Bachelor End Project (TI3806) is the last course in the bachelor program for Computer Science and
Engineering at the Delft University of Technology. During this project, all knowledge that was acquired
throughout the years will have to be applied. The topic of the project is about Conflict-Free Replicated
Data Types (CRDT). In short CRDTs are a data structure which allows itself to be replicated, where
each replica has the exact same state, even after one replica applies changes. This data structure will
be the backbone for a real-time concurrent editing feature for the client.

1.2. Fonto
The client for this project is Fonto. Fonto is a company that started in 2013 and their product is an
online structured content editor. Some clients of Fonto are: SDL, Huawei and Spotify. Fonto aims to
make editing XML as easy as editing a Word document. The Fonto editor provides a rich text, What
You See Is What You Mean (WYSIWYM) editing experience which can be configured to fit any XML
schema.

1.3. Problem definition
Currently, the ability for clients to work together on one document is very limited. The Fonto editor can
load multiple documents at the same time and it is possible for multiple users to connect to the same
editor and work on distinct documents. When someone starts working in a document, the document
will be locked for every other user until it gets unlocked again by the user who first got the lock. So
only one author can work on any part of a document at a time. Fonto would like to lift this limitation in
the future and enable true concurrent editing, as seen in Google Docs. The difference in complexity
between Google Docs and Fonto lies in the support of many extended features that the Fonto editor
has, e.g. support for arbitrary XML schemata and the ability for Fonto’s partners to write any custom
mutation to manipulate the XML model. CRDTs could be used to add this functionality to the Fonto
editor.

1.4. CRDT
A conflict-free replicated data type (CRDT) is a data structure which can be replicated across multiple
machines in a network, where the replicas can be updated independently and concurrently without
coordination between the replicas, and where it is always mathematically possible to resolve inconsis-
tencies between the data structures.

The CRDT concept was formally defined in 2011 by Marc Shapiro, Nuno Preguiça, Carlos Baquero
and Marek Zawirski. Development of CRDTs was initially motivated by collaborative text editing and
mobile computing, but CRDTs have also been used in online chat systems, online gambling, and in
online games.

1

2 1. Introduction

In this project, CRDTs will be used for real-time collaborative editing. Although CRDTs are fairly new
concepts, there are already a few known CRDT implementations. The main goal of this project is to
conduct a research about CRDTs and to create a research prototype of a CRDT that fits Fonto’s needs.
First, research was conducted about CRDTs to gain general knowledge about the problem. After that,
an in-depth problem analysis was done and requirements were formed. Then based on the analysis
and the requirements, a proof of concept prototype was made to show that it is possible to support
block operations with a CRDT.

1.5. Development process
For this project the Scrum methodology was used for the development process. At the end of each
one-week sprint, a planning was made with issues to work on for the next sprint. There was no dedi-
cated Scrum master, prioritisation of issues was done together. The product owner was the client of the
project, but a lot of freedomwas given to the development team on how the final product would look like.

The development team worked with a pull-based development model. The code is hosted on GitHub,
where one ’master’ branch contains the production version of the product. All new functionalities should
be merged with the master branch through pull-requests which should be reviewed by other develop-
ers. This ensures high code quality and a lower chance of bugs occurring in the master branch.

To improve the development process, Travis CI has been used as a continuous integration (CI) tool.
The CI runs all tests and checks for code style errors to ensure all code is written in the same style.
Finally, Codecov has been added to this CI, so one can ensure that new functionality will also be tested
without dropping the code coverage.

2
Research report

2.1. Introduction
In this research report, research will be done about real-time collaborative editing. Fonto currently has
a product, which is an editor for structured documents. Fonto does not have a single universal editor.
Clients are free to use their own XML schema and add their own custom operations. XML schemas
are the set of rules, which the XML structure has to respect. However, one limitation is that it does not
support real-time collaborative editing. Currently, writers have to lock files to ensure that no one else
is editing the file. This research will take a look at different algorithms which can be used to implement
real-time collaborative editing and what algorithm would fit best for the current editor used by Fonto.

Creating a collaborative editor nowadays requires quite some time and effort to implement as these
editors need to support all kinds of different operations, ranging from removing characters to undoing
previous changes. Designing and implementing such system may take up to two years and therefore
would not be suitable for this project. In order to fit this into the given time frame of ten weeks, re-
search is conducted in the first two weeks to find key points of already defined systems. The most
commonly used systems for collaborative editing are operational transform (OT) and conflict-free repli-
cated data type (CRDT). As the title of this graduation project implicates, Fonto suggests to look further
into CRDTs. However, the possibility to use other approaches should still be considered as it might be
a better and more fitting approach. This research report will mainly compare all kinds of possibilities
and will serve as support for the decisions made for Fonto.

This research will tackle three research questions:

1. Why CRDT over other collaborative editing algorithms?

2. What types of CRDTs are there?

3. Which CRDTs are the best fit for Fontos purpose?

The first research question will discuss why CRDTs should be used instead of other collaborative editing
algorithms such as OT. The second research question will go over different types of CRDTs and their
use case, advantages and disadvantages. Finally, the last research question will discuss the different
CRDTs and decide what CRDTs fit best for Fonto’s purpose.

3

4 2. Research report

2.2. CRDTs
2.2.1. What are CRDTs?
A conflict-free replicated data type (CRDT) is a data structure where replication is the main aspect.
The data structure behind a CRDT can be replicated across multiple devices in a network, where
each replica can be updated independently and concurrently. A CRDT should always mathematically
be possible to resolve inconsistencies and different replicas should eventually converge to the same
state. CRDTs are the answer to the problem of synchronising data in distributed environments [26].

2.2.2. What does conflict-free mean?
Conflict-free has a very broad description, but in distributed systems it means that for a data structure,
that it does not need exclusive write access and it is able to detect concurrent updates and perform
deterministic, automatic conflict resolution. This means that the output is always able to be deter-
mined upfront, based on the metadata contained within the data structure itself [26]. For a real-time
collaborative CRDT to be considered correct, it has to respect the CCI criteria [28]:

• Causality: All operations are ordered by a precedence relation

• Convergence: The system converges if all replicas are identical when the system is idle.

• Intention: The expected effect of an operation should be observed on all replicas.

For CRDTs, the core structures are sets, registers, and counters, but from these structures complex
structures like trees, maps, graphs, and even XML can be composed.

2.2.3. What does replication mean?
In essence, replication means the act copying or reproducing something. So for ”replication” in the
context of CRDTs and real-time collaborative editing, it is about copying documents. This means that
several peers can edit a document from different places. Each peer hosts its own replica of the collab-
orative document. The replica contains elements visible to the end user as well as metadata required
to manage eventual consistency [5].

There are different replication types. There is a difference between pessimistic, optimistic replication,
active and passive replication, and operation-based and state-based replication [7].

• Pessimistic replication: In pessimistic replication, the system simulates that there is a unique copy
of the object despite all clients working on different replicas, but because every replica has the
exact same content, it creates the illusion of having one single document. This method requires
synchronisation among replicas to guarantee that no stale data is retrieved.

• Optimistic replication: Optimistic solutions allow replicas to diverge. This means that clients can
read/write different values, for the same object, if they contact different replicas. When using such
level of consistency the application must be aware of this fact.

• Active replication: In active replication (or synchronous), all replicas are contacted inside a trans-
action to get their values updated. This replication mechanism can be implemented using a
peer-to-peer approach, where all replicas have the same responsibilities and can be accessed
by any client. Alternatively, a primary replica may have the responsibility of coordinating all other
replicas.

• Passive replication: Passive replication (or asynchronous) model assumes a replica will propa-
gate the updates to the other replicas outside the context of a transaction. As usual, replicas
must receive all the updates.

• Operation-based versus State-based replication: There are two fundamental methods to propa-
gate updates among replicas. In state-based replication, updates contain the full object state (or
in optimised versions, a delta of the state). In operation-based, the updates contain the opera-
tions that modify the object and must be executed in all replicas. The size of an object is typically
larger than the size of an operation. Transmitting the whole state of an object can introduce a

2.2. CRDTs 5

large overhead in message size. On the other hand, if the number of operations is high it can be
better to transmit the whole state instead of all operations. Operation-based replication is used
by commutative CRDTs and state-based replication is used by convergent CRDTs.

2.2.4. What are the use cases of CRDTs?
CRDTs can be used in situations that have to deal with multi-master scenarios, where multiple replicas
can update an object, either at different times or on the exact same moment. There are CRDTs for
counters, sets, trees and other types of objects. An example would be a rating system where users
can give their opinion about a product. When a user gives a product a rating, the rating will be shared
with all other replicas and the user receives all updates from the other replicas so that all the replicas
converge to the same state, and all users sees the same rating for the product [26]. Some commercial
implementations of CRDT are:

• Amazon uses CRDTs to keep their order cart in sync [23]

• League of Legends uses CRDTs for their in game chat system [19]

• TomTom uses CRDTs to manage navigation data and user actions and sync them with a server
or other devices [11]

One of the biggest use cases of multi-master scenario is collaborative text-editors in which multiple
people can edit one document at the same time. As of this moment a lot of research is done to see if
CRDTs are a viable option to make commercial collaborative text-editors, but there are no commercial
implementations as of yet.

6 2. Research report

2.3. CRDTs versus other collaborative editing algorithms
There are a lot of algorithms which enable collaborative editing; Woot, Logoot, key-locking, Jupiter, and
SOCT 3/4 are some examples. Out of all the collaborative editing algorithms most fall into one of two
categories; Operational Transformation (OT) or CRDT. During this project a CRDT will be implemented
but it is important to elaborate on the differences between CRDT and OT, the other dominant form of
implementing collaborative editing.

2.3.1. Operational Transformation (OT)
OT is a technique originally invented to support collaborative editing in text editors, while maintaining
consistency across all users. Originally it only supported concurrent insertion and deletion of charac-
ters in text documents. After a few years just supporting deletion and insertion of characters was not
enough when collaborative working on a document due to the rise of word processors. Word proces-
sors support more options than just adding and removing text, such as styling text, the use of images,
tables, lists and many more features. For this to be made possible OT was improved with the update
and undo operations alongside other features [25].

OT was proposed in 1989, and has been in development ever since. Multiple forms of OT were pro-
posed of which some were proven wrong, because OT had too many edge cases. As of right now,
the only versions of OT that had not been proven to be wrong are Jupiter, SOCT 3/4 and TTF. These
can be categorised into two forms; server-based OTs and OT with a so called ”transform property 2”,
this means that for every three concurrent modifications, no matter in which order they are executed,
the result state is always the same. OTs with transform property two turned out to be so complex, that
there are very few data structures that have a working implementation [9].

OT has been in development for more than twenty years now and supports a wide range of opera-
tions such as insert, delete, update and undo. It also supports many different applications such as
HTML/XML and other tree-structured document editing, office productivity tools, 3D digital media de-
sign tools and many more [24].

As of right now, all commercial real-time collaborative editors use OT with a central server to handle
multiple operations of different users and ensure everyone ends up in the same state. Some example
of collaborative editors are Google Docs and Etherpad.

In OT, whenever a user executes an action, it is broken down into one or more operations. Every
operation is processed in four steps [9, 17]:

• execute locally

• broadcast to other sites

• reception by other sites

• execution on other sites

These four steps can be categorized in two components [17]

• Integration, which takes care of reception, diffusion (breaking down) and execution of operations

• Transformation, merging of concurrent modification in order to execute them in serial order

Most practical OTs use a central server to decide an order of operation execution and to ensure that all
sites get the same document state (The transformation step). By using a central server, the difficulty of
transform property two gets eliminated, since operations are executed in the same order on every site
[9].

2.3.2. Comparison between OT and CRDT
The difference between OT and CRDT relies mostly on the implementation of the chosen algorithm.
An OT implementation with a central server is chosen since this is a proven concept and is currently

2.3. CRDTs versus other collaborative editing algorithms 7

being used commercially.

Currently OT is the main algorithm used to implement collaborative editing. OT guarantees eventual
consistency and gives a good user experience, both in speed as well as in usage. It is also very light
on the client side, so it does not require a lot of resources from the users computer. The main disad-
vantage for OT, is the complexity of the transformation function. For every new operation that is added
to the function, the function becomes quadratically larger. For 𝑁 operations the functions requires 𝑁
x 𝑁 conflict resolutions, since for every combination of operations, a conflict resolution is needed. In
Fonto’s editor, clients can add an infinite amount of operations which could cause the transformation
function to be infinitely large. One of the other disadvantages of OT is that it requires a central server,
this can be a privacy threat since most central servers do not only store the operation, but also some
personal information for history or other purposes. A central server is also a cost which needs to be
accounted for. Also, most OTs do not scale well in cloud and peer-to-peer environments with dynamic
groups where a lot of users leave and join quickly. The document users work on is also only saved
on the server, so the users need a connection with the network to be able to open and work in the
document. [2, 3, 9].

CRDT tries to tackle the downsides of OT. It is a decentralised algorithm that scales well with a lot
of users and peer-to-peer environments. Since it does not require a central server, its implementation
also has the potential to cost less and is less of a threat to privacy since no data is saved in a centralised
point. With CRDT, it is also possible to work without an active connection. With CRDTs the users can
work offline, make changes and eventually all replicas will synchronise when the connection is active
again, while OT needs an active connection with the server. CRDTs can also potentially outperform
OTs in both time as well as space-complexity [2]. OT is also at the limit of its potential, while CRDTs
are relatively new and have a lot of room for improvements [9].

However, CRDTs also have downsides. There is a reason why they are not widely used yet. CRDTs
only support two main types of data as of now, namely; plain text and arbitrary tree structured doc-
uments such as JSON and XML, while OT supports a wide range of data types. CRDTs also do not
have an implementation which supports all types of operations, most CRDT implementations only sup-
port deletion and insertion. There are CRDTs that support update operations [2] and research is being
done into supporting the undo operation [31]. As of this moment there is no CRDT implementation that
supports all these types of operations.

CRDTs also have an inferior user experience compared to OTs. CRDTs have a harder time captur-
ing the user intent due to the way how it breaks down operations in incredibly small pieces, such that
the user intent is easily lost. OT is more complex, but it is better at capturing the users intention when
applying operations. Currently available CRDTs can also give users a poor experience when applying
operation such as splitting text or updating elements [9].

All in all, CRDTs currently provide a decentralised solution to collaborative editing, gives better of-
fline support and potentially can outperform OT. CRDTs are cheaper than OT to implement and have
a lot of room for improvement. OT supports a wider range of operations and data types, gives the user
a better experience and is better at capturing the user intent, but has reached the limits of its potential.

2.3.3. Conclusion
OTs currently support more functionality, but are more complex and expensive than CRDTs. From the
comparison between CRDT and OT, it can be concluded that CRDTs are a better fit for Fonto’s purpose.
They require a flexible solution which allows clients to add their own operations. In their case, clients
would have to define the transformation function for the custom operations themselves, which should
guarantee consistency. Fonto does not want to require clients to specify these functions themselves,
since as mentioned before, they could become complex and very time consuming. Fonto also prefers a
good support for offline working, so that clients can work on their documents while traveling and having
limited access to internet. CRDTs have more potential to be more flexible and allow clients to add their
own operations by breaking them down into smaller operations which can be merged. Fonto’s editor
only uses XML-format, therefore there is no need for a wider support of data types. CRDT can also be

8 2. Research report

faster than OT.

2.4. Commutative vs Convergent CRDT
CRDTs have two approaches, either commutative (operation-based) or convergent (state-based). This
section is dedicated to explaining the differences between the two approaches and what the benefits
and possible drawbacks are for each approach [21].

2.4.1. Commutative CRDT
The general idea of commutative CRDTs is that it only sends the operations done by every replica. So
if one CRDT inserts a string at a certain position, this CRDT broadcasts the string and the position of
this string to all other CRDTs. Each CRDT has its own local state and updates its state based on local
operations and operations broadcasted to the CRDT.

A challenge that has to be solved when using commutative CRDTs, is that operations can arrive at
other CRDTs in a different order [4]. To achieve that all CRDTs are in the same state, one should
ensure that CRDTs can decide a total orders on all operations. This can be achieved for example by
using clocks and timestamps when broadcasting operations. There are different algorithms for clocks
available and each comes with its disadvantages. There are several different clocks which can be used
[6]:

• Logical clocks: The causality relation is captured when using logical clocks. So there will be
captured which event happened before the other event instead of sending a timestamp. A dis-
advantage here is, that all nodes need to receive all communication to decide the happen before
relationship of all operations. One example implementation of a logical clock is vector clocks.
Here every CRDT saves a list of timestamps of all other CRDTs.

• Physical time: Here, the clocks are synchronised using the Network Time Protocol [6]. One
disadvantage when using this would be that there exists a chance that updates might occur at
the same time and that CRDTs can therefore not decide on an order.

• TrueTime: TrueTime makes use of GPS clocks and atomic clocks to decide time. The disadvan-
tage here is that to make use of this type of clock, the system needs to have an atomic clock and
in the use case of the client, this would not be feasible.

• Hybrid Logical clocks: Hybrid Logical clocks is the type of clock that combines logical and physical
clocks together [6]. Hybrid Logical Clocks guarantees that causal information is captured and
CRDTs are not bounded on how fast they send new updates.

A disadvantage of using commutative CRDTs is that each operation will be broadcasted exactly once
(efficient synchronization of state-based CRDTs). Therefore, it needs to be ensured that everymessage
can be received by the client. Undelivered messages can lead to different states in multiple CRDTs and
this is not the expected behavior in CRDTs. Another disadvantage is that it might be too complex to
update the CRDT whenmany operations are sent [8]. When many operations are sent, it might become
difficult for the CRDT to find the correct solution while making sure all CRDTs will find the same solution

However, commutative CRDTs have as advantage, that they do not send a lot of data on every up-
date and that it will be easier to track history, because to track history of the CRDT, the CRDT only
needs to save the operations. So commutative CRDTs will be able to perform updates and track history
at a low cost.

2.4.2. Convergent CRDT
The general idea of convergent CRDTs is that all replicas occasionally send its own state to some other
replica. Every update will then (in)directly be reached by every replica, where they can update their
state to match with all the other replicas. The most important part of the convergent CRDT is the merge
method, which essentially takes two corresponding replicas of the same logical entity, resolving any
conflicts, and produce an updated state as an output [26]. The merge method must conform to three

2.4. Commutative vs Convergent CRDT 9

properties: commutativity, associativity, and idempotency. The properties commutativity and associa-
tivity essentially points out that the order of the merge operations does not matter, since a state can
be achieved through multiple different ways. The property idempotency states that it is not needed to
care about potential duplicates.

For tracking updated objects, a vector clock or dotted version vectors can be used, using logical time
rather than chronological time [8]. For distributed systems, a physical clock approach would not be
suited since synchronizing the clocks is a very hard task to do and would require an additional server
with synchronization algorithms [14]. Therefore, vector clocks would be a very suitable option. How-
ever, using vector clocks, the entire vector needs to be sent for every message, which means that
synchronizing the vector clocks would be pretty expensive depending on the amount of processes
[10]. There are several methods for reducing such overhead like the Singhal-Kshemkalyani’s differen-
tial technique, which drastically reduces the space complexity from O(𝑛) to O(𝑛) [12].

The downside of convergent CRDTs is that state-based CRDTs can introduce a large overhead due to
the size of the object [7]. However, this can be optimized by introducing deltas instead of sending the
whole state [8].

2.4.3. Commutative CRDT versus Convergent CRDT
Whether to use commutative CRDT or convergent CRDT depends on the type of application and de-
sired features. Both types have its advantages and limitations which both should be considered before
making the decision which approach would be the most suited for that particular application. Commu-
tative CRDTs send smaller messages, which gives less overhead and would make it easier to track
history. However, the commutative CRDTs have to decide on a total order between all received oper-
ations.

Convergent CRDTs on the other hand would not consider the order of the messages important since the
merge method must have the three properties: commutativity, associativity, and idempotency. These
properties would make it harder to implement the CRDT. Aside from the hard-to-implement merge
method, convergent CRDTs introduces a large overhead since the messages need to contain the en-
tire state, without optimisations such as delta CRDTs. The downside of commutative CRDTs is that
the operations are only broadcasted once, which means that if the communication channel is not re-
liable, the operation might not be received by the client properly, which might result in diverged replicas.

Finally, when adding new operations to the CRDT, it would be easier to implement this for commu-
tative CRDTs instead of convergent CRDTs, since for commutative CRDTs, only an operation should
be added to the CRDT, while for convergent CRDTs, the merge method should be changed to support
the new operation while maintaining the idempotency property. Whether to use commutative CRDTs
or convergent CRDTs for this project depends on what CRDTs are already available online and what
features would be necessary for the use case of this project.

10 2. Research report

2.5. What known CRDTs are available?
This section will discuss different types of CRDTs. Use cases, advantages and disadvantages will be
mentioned and finally there will be a conclusion on what CRDT will fit best for the use case of this
project.

2.5.1. Tree-based CRDTs vs Set-based CRDTs
When discussing CRDTs, they are mainly defined as either set CRDTs or tree CRDTs. Set consists of
elements at least contain a unique ID. This ID might be a tag or position ID. In tree-based CRDTs, every
element is a node. There are one or more root nodes and every node has zero or more children. When
using trees, operations may not only have effect on the element itself, but also on the children of the
element. Therefore a removal of an element will also lead to a removal of the child, while something
like this will not happen in set-based CRDTs.

2.5.2. G-Counter
Simple types of CRDTs are with counters and registers. A counter is a replicated integer supporting
operations such as increment, decrement and value to query it. The G-counter, also known as the
state-based increment-only counter, does not make use of the decrement operation. The idea of the
G-counter is to make use of vectors of integers to track, where each replica has its own designated
entry. The sum of all the integers in the vector would then be the value and the merge operation would
then return the maximum of each entry. An important point which should be considered when using
G-Counters, is that the payload is assumed to never overflow. This kind of CRDT would be useful for
peer to peer applications which counts certain attributes, such as likes [20].

2.5.3. PN-Counter
The PN-Counter CRDT is a commutative CRDT which is practically the same as the G-Counter, but
with an additional feature to decrement the counter. This can be achieved by using two G-Counters,
one for increments, another one for decrements. With this additional vector, the value should not be
the sum of both vectors, but the difference between the two G-Counters. The merge step merges both
vectors into one. Such CRDT would be used in applications such as Skype for counting the numbers
of logged in users. Due to asynchrony, the count may diverge temporarily from its true value, but will
eventually converge and be exact [20].

2.5.4. Non-Negative-Counter
A non-negative counter is a counter that can only be positive. For instance, this can be used to count
the remaining credits of an avatar in World of Warcraft. It is quite difficult for this counter to preserve
the CRDT properties. If the current value is one, and two different users decrement the value at the
exact same time, the value converges to minus one, which should not be possible in a non-negative
counter. As counters in general are not really convenient for real-time collaborative editing, there is no
real use case of non-negative counters for this graduation project [20].

2.5.5. Growth Only Set
A G-set is a CRDT where only elements can be added. One disadvantage of this CRDT, is that it
cannot remove elements. On the other hand, code will be less complex, so if it does not have to deal
with remove operations, a growth only set would be useful [20].

2.5.6. 2P-Set
A 2P-Set CRDT is a CRDT with the same functionality as a G-set CRDT, but with the remove function-
ality added [20]. The remove functionality is often implemented using tombstones. Using tombstones,
instead of removing the element from the set, the CRDT will mark the element as invisible.

2.5.7. U-Set
U-Set is the simplified version of 2P-set under two assumptions. If elements are unique, a removed
element will never be added again. Furthermore, if a downstream precondition ensures that 𝑎𝑑𝑑(𝑒)
is delivered before 𝑟𝑒𝑚𝑜𝑣𝑒(𝑒), there is no need to record removed elements, and the removed-set is

2.5. What known CRDTs are available? 11

redundant [20].

2.5.8. Last-Writer-Wins-Element-Set (LWW)
The LWW CRDT is based on timestamps. All operations and elements in the CRDT get a timestamp
assigned and all operations will be executed in the order of the timestamps [20]. When trying to update
an element, the timestamp of the operation will be compared with the timestamp of the element. Only
if the timestamp of the operation is more recent than the timestamp of the element itself, the operation
will be executed.

So if there are two operations which will be executed sequentially, then after the first operation is ex-
ecuted, the timestamp of the element will be more recent than the timestamp of the second operation
and therefore the second operation will not be executed.

2.5.9. Observed Remove Set
In an Observed Remove set, instead of giving elements unique timestamps or position identifiers, each
element will get a unique tag. This tag is now used to add or remove elements and since each tag is
unique, no conflicts should occur [1]. However, one constraint is that operations should be executed in
a causal order at every CRDT.

2.5.10. PN-Set
The PN-Set algorithm is used for collaborative editing sets. Every element gets its own counter, initially
zero. When Adding an element, its associated counter is incremented and when removing an element
its counter is decremented. When an elements counter is positive, it is part of the set, when its counter
is negative, it is not. [20, 29].

2.5.11. Sequence CRDTs
Sequence CRDTs are sequences, lists or ordered sets CRDTs. These CRDTs can be used to build
a collaborative text-editor. Sequence CRDTs have a lot of different implementations such as treedoc,
RGA, WOOT, Logoot, LSEQ and many more.

All these algorithms use a different type of implementation, but the general idea is the same. Each
element gets a unique position in the document and this position is saved somewhere, when adding an
element, it gains a unique position and is added to the data structure in which the positions are saved.
When deleting an object, it is either deleted and the data structure is reorganized, or the position is
kept in the data structure and the element is marked as deleted and/or invisible to keep the structure
intact. Updating an element is not supported by all sequence CRDTs, most only support deletion and
insertion of elements [2].

WOOT for example, uses a linear structure in which every element gets a unique id. When remov-
ing an element, the element is marked as deleted. It is not removed to keep the linear structure intact.

All these algorithms have the same characteristic in that they all guarantee that eventually every replica
will end up in the same state. The difference of all the different type of sequence algorithms is mostly
in flexibility, some versions only support deletion and insertion while others also support the update
operations of elements. There is also a difference in time-complexity for these algorithms. The same
holds true for space-complexity[2, 5].

12 2. Research report

2.6. Best CRDTs for our use case
Out of all the above mentioned CRDTs, sequence CRDTs would be the most suitable choice for our use
case. All CRDTs based on counters are designed for the use case of likes or views for example. They
are useful when a certain object receives multiple updates in a short amount of time. When dealing
with text-editors, one can deal with a lot of objects, each character can be seen as a single object, and
the text document is the a sequence or set of objects. The issue with set CRDTs is that they do not
account for order. In a text document, there is a certain structure that the document must adhere to.
Set CRDTs only check whether an element should be in the set or not and do not have any complexity
that guarantees the order of the set, which is required to guarantee in a text document.

Sequence CRDTs have many different type of implementations of which all potentially could fit our
use case. In the next chapter all the versions of sequence CRDTs will be analysed and evaluated.
Both theoretical models as well as practical implementations of the different types will be researched.
Based on this in-depth research on sequence CRDTs a type of implementation will be chosen and
possibly extended with extra functionality to supplement extra functionality required for our use case.

2.7. Conclusion Research Report
In this research report, the following research questions have been discussed:

1. Why CRDT over other collaborative editing algorithms?

2. What types of CRDTs are there?

3. Which CRDTs are the best fit for Fonto’s purpose?

Regarding the first research question, it can be concluded that for Fonto’s use case, CRDTs are indeed
the most suitable option. Collaborative editing currently knows two approaches, namely CRDTs and
OTs. Although currently OTs support more functionalities, CRDTs are far more flexible, which would
fit Fonto’s current system better than OTs. OT’s transformation function also grows quadratically for
every new operation added. Since Fonto allows infinitely many operation from many different clients,
it would become too complex for the editor.

When discussing different types of CRDTs, it can be concluded that there are currently two known
types of CRDTs, namely commutative and convergent CRDTs. Commutative CRDTs are operation-
based and convergent CRDTs are state-based. The difference is that commutative CRDTs send oper-
ations to other replicas while convergent CRDTs send their state to other replicas. When talking about
the inner structure of a CRDT, sets and trees can be used for both types. These structures can be
used to implement different CRDTs such as G-Set, 2P-Set and sequence CRDTs.

Out of all different CRDTs mentioned in this report, it should be decided which CRDT is the best fit
for Fonto’s purpose. First, it should be decided whether a commutative or convergent CRDT should be
used. It can be concluded that commutative CRDTs would fit best for Fonto’s purpose since commuta-
tive CRDTs offer easier to update the current state and it would be easier to add different operations to
the CRDT in comparison with convergent CRDTs. Convergent CRDTs also require more overhead for
each operation in comparison with commutative CRDTs. Sequence CRDTs would fit the best for this
project, since Fonto uses a XML-based editor and sequence CRDTs are the best to use for collaborative
editing.

3
Requirements and problem analysis

3.1. Requirements
The goal of this project is to find a solution for Fonto to add support for real-time collaborative edit-
ing in their block-based editor. Based upon research done in chapter 2 and the project description,
requirements have been formulated. These requirements were formulated with the idea that if these
requirements are met, Fonto would have the answer to their question whether it is possible to use
CRDTs to add real-time collaborative editing to their editor. The requirements are split up in mandatory
and optional requirements. The mandatory requirements form the basics, which show that the CRDT
is able to be support block-based text editing, while the optional requirements are extra functionalities
to work on if there is time left.

Mandatory

1. Insert text

1.1. Text can be inserted into the document

2. Delete text

2.1. Text can be deleted from a document

3. Move text on block level

3.1. Block-level text (e.g. a paragraph) can be moved in the document

4. Splitting text

4.1. Block-level text (e.g. a paragraph) can be split into multiple blocks

5. Merge text

5.1. Multiple block-level texts (paragraphs) can be merged into one block

6. Convergent

6.1. Every replica needs to converge to the same state after all operations have been processed

7. Offline support

7.1. Operations can be saved locally and sent through the network to other replicas later while
still converging

8. Extendable and modifiable

8.1. It should be easy to add new operations or functionality to the CRDT

13

14 3. Requirements and problem analysis

8.2. It should be easy to modify operations of the CRDT
8.3. It should be easy to test whether such modifications still ensure convergence

9. The CRDT supports a minimum of two concurrent editors for research purposes

10. The CRDT can be given an initial state

Optional

11. XML Data Model

11.1. Extend the CRDT to implement other aspects of the XML data model, such as attributes

12. Optimisations

12.1. Automatically reorder operations into a sequence that minimizes the number of times the
“current author” switches

12.2. Insert or delete large amounts of text

13. XML Schema

13.1. Investigate approaches for dealing with restrictions placed on the document

14. User Intent

14.1. When a user is typing in a block and the block is moved, the user cursor will be moved to
the new position of the block

14.2. When two authors write at the same time in the same position, the edits should be inserted
as two separate blocks of text instead of having both edits mixed within each other

14.3. When text is inserted or removed, the cursor of other authors should stay at the same position
relative to the surrounding text, not in terms of a number of characters

Two other well-known operations within editors, are undo and redo. These two operations are however
out of scope for this project due to the complexity of these operations.

3.2. Problem Analysis
Designing and developing a CRDT from scratch would either take too much time or would have many
imperfections at the end of this project. As suggested by our client and (former) coach, looking into
already existing CRDTs and using the CRDT as a base to extend the CRDT to meet the requirements
formed by the client is the go-to method. From the research report, it was quite obvious that sequence
CRDTs will be used for this project. Currently many forms of sequence CRDTs are known, such as
Logoot, WOOT, and RGA. Looking into the repositories on GitHub, a selection of already-implemented
CRDTs are chosen to be looked further into. These types of CRDTs and its implementation will be
discussed in the following sections.

3.2.1. Types of sequence CRDTs
As mentioned in the research report, there exists many types of CRDTs nowadays. For this problem,
it would be ideal to find a CRDT with the purpose of editing text. The CRDTs that are found on GitHub
and interesting enough are of the following types: Logoot, WOOT, RGA, YATA, and TreeDoc.

Logoot is essentially an operation-based CRDT (commutative). This means that the operations done
by different replicas should somehow have a total order such that the order of operations are the same
for every replica. The Logoot model is composed by so-called ’lines’, which consists out of a position
id and the content (line). The order of the operations should be decided by the values of the id and
the site in which the operation is performed on [27]. Out of the ordinary, the implementations found
for this model contains an additional Leeds Sleep Evaluation Questionnaire (LSEQ) algorithm and a
tree structure, for faster character lookup. The LSEQ algorithm is used for allocating nodes at the most
efficient place in the tree [13]. This implementation however is character-based instead of line-based.

3.2. Problem Analysis 15

WOOT is a fairly easy approach. Each operation directly sends the orderings since this is known,
unlike Logoot. Each insert between two letters will include this in the broadcasting message, which
makes it easier for each replica to find the correct spot. When one or more of these letters are deleted,
it will be marked as invisible (tombstones), so finding the correct spot will still be fairly easy. When
multiple users insert text at the same location, a topological order is adhered such that all the replicas
will converge to the same state [16].

RGA, also known as Replicated Growable Array, is essentially a sequence, implemented with a linked
list. An element has an identifier, which corresponds to a timestamp, which is assumed to be unique.
When conflicts happen, two users insert at the same position, the operation with a higher timestamp
occurs to the left of the operation with the lower timestamp. RGA makes use of tombstones upon dele-
tion, in order to accommodate a concurrent add operation [22].

YATA uses graphs, lists, and objects for collaborative editing. The core idea of YATA is enforcing a
total order on the shared data types. An insertion contains a left and right value, such that it knows
where to insert the newly added character. When conflicts occur upon insertion, the insertion with the
smaller creator id will be inserted first. An extra constraint is that no crossing connections are allowed
between conflicting insertions. The left and right value of the operations should not cross each other.
The two permitted operations are shown in figure 3.1 [15].

Figure 3.1: No line crossing

TreeDoc, as the name implies, uses a binary tree to use paths in an efficient way. The characters
which comes before a certain character will be placed on the left with a 0, whilst the characters which
comes after will be placed on the right with a 1. The binary tree identification structure is insufficient
for concurrent edits. When there are two insertions at the same position, internal mini-nodes will be
created. The node containing the mini-nodes is called the major node. To keep the tree balanced, an
explode and flatten method can be used, to keep the path as efficient as possible [18].

16 3. Requirements and problem analysis

3.2.2. Time and Space Analysis
In this subsection there will be a time and space analysis of the following implementations: Woot,
Logoot, YATA and RGA. No information on time and space complexity has been found for TreeDoc,
therefore it is excluded in this section. For a user to comfortably notice and respond to changes, the
time it takes for remote and local operations to be processed is 50𝑚𝑠 [2]. Therefore a CRDT should
be able to process an operation in a certain amount of time. For space, it is desired to limit the amount
of space a CRDT uses. For every operation the CRDT saves a piece of metadata to be able to com-
municate to every replica what operations to execute so that all replicas converge. Depending on the
implementation both space and time complexity can greatly vary. The time and space analysis can
help to substantiate a choice for a CRDT.

All CRDTs have different types of implementation, therefore space usage and execution time is de-
pendent on different variables, here is a list of variables important for space and time for different
algorithms. [2, 15]

• 𝐻 = The number of operations that has affected the document, affects all CRDTs when comparing
worst cases

• 𝑐 = The amount of operations that are executed at the same time can impact RGA

• 𝑛 = The size of the document, has an influence on RGA and Logoot (non deleted characters)

• 𝑁 = The total number of inserted characters, both non-deleted as well as deleted characters
(tombstones) impacts RGA, WOOT, and YATA, since these CRDTs use tombstones

• 𝑘 = The average size of the identifier is of importance for the space usage of Logoot, which gives
every character a unique identifier

• 𝑡 = 𝑁 − 𝑛, The amount of tombstones

• 𝑑 = (𝑡 + 𝑐)/𝑛 The average number of elements found between successive document elements
(tombstones included), important for WOOT implementations.

Time complexity
For time complexity, the worst and average case have been researched. For the worst case scenarios,
all CRDTs are reliant on the number of operations that have affected a document. In average case
scenarios, the complexity is more reliant on the implementation of the CRDT and how it scales with the
type of executed operations.

CRDT Local Insert Local Delete Remote Insert Remote Delete
WOOT 𝑂(𝐻) 𝑂(𝐻) 𝑂(𝐻) 𝑂(𝐻)
WOOTO 𝑂(𝐻) 𝑂(𝐻) 𝑂(𝐻) 𝑂(𝐻)
Logoot 𝑂(𝐻) 𝑂(1) 𝑂(𝐻 ∗ 𝑙𝑜𝑔(𝐻)) 𝑂(𝐻 ∗ 𝑙𝑜𝑔(𝐻))
RGA 𝑂(𝐻) 𝑂(𝐻) 𝑂(𝐻) 𝑂(𝑙𝑜𝑔(𝐻))
YATA 𝑂(𝑙𝑜𝑔(𝐻)) 𝑂(𝑙𝑜𝑔(𝐻)) 𝑂(𝐻) 𝑂(𝑙𝑜𝑔(𝐻))

Table 3.1: Worst case time complexity of certain CRDT implementations [15]

However, due to the versatile use of collaborative real-time editing, worst case scenario almost never
represent the actual achieved complexity. A more precise representation, which also is better at show-
ing the bottlenecks for most CRDTs, is represented by the average time complexity. There is no infor-
mation available for the average time complexity of YATA, therefore it is not in the table.

3.2. Problem Analysis 17

CRDT Local Insert Local Delete Remote Insert Remote Delete
WOOT 𝑂(𝑁 ∗ 𝑑) 𝑂(𝑁) 𝑂(𝑁 ∗ 𝑑) 𝑂(𝑁)
WOOTO 𝑂(𝑁 ∗ 𝑑) 𝑂(𝑁) 𝑂(𝑁 + 𝑑) 𝑂(𝐻)
Logoot 𝑂(𝑘) 𝑂(1) 𝑂(𝑘 ∗ 𝑙𝑜𝑔(𝑛)) 𝑂(𝑘 ∗ 𝑙𝑜𝑔(𝑛))
RGA 𝑂(𝑁) 𝑂(𝑁) 𝑂(1 + 𝑐/𝑛) 𝑂(1)

Table 3.2: Average case time complexity of certain CRDT implementations [2]

From these tables it can derived that the time complexity of both WOOT implementations are bad in
both the worst as well as the average case. WOOT is reliant on the amount of inserted characters and
the distance between successive document elements, so the more deletion the user does, the worse
WOOT is. Logoot has decent worst case time complexity and its average time complexity is reliant
on its identifier size. So if it is possible to keep the identifier small, Logoot is a good candidate. RGA
worst-case is decent and it is mostly reliant on the amount of inserted characters (including deleted).
YATA has a decent worst case time complexity, together with Logoot and RGA. Since YATA also uses
tombstones it can be concluded that it is also mostly reliant on the amount of inserted characters (in-
cluding tombstones).

Space complexity
For space complexity the most important part is what the CRDT needs to save. If a CRDT uses tomb-
stones, then every tombstone requires a certain amount of space, even if its character is not in the
document anymore. Therefore the space complexity of all WOOT implementations, YATA, and RGA
are 𝑂(𝑁) on average and in worst case 𝑂(𝐻). Logoot does not require tombstones, but requires some
extra metadata per character. So the space complexity of Logoot is 𝑂(𝑛 ∗ 𝑘) and in worst case (𝐻).

Algorithm Worst Space Complexity Average Space Complexity
WOOT-WOOTO 𝑂(𝐻) 𝑂(𝑁)

Logoot 𝑂(𝐻) 𝑂(𝑛 ∗ 𝑘)
RGA 𝑂(𝐻) 𝑂(𝑁)
YATA 𝑂(𝐻) 𝑂(𝑁)

Table 3.3: Worst and average case space complexity of certain CRDT implementations [2]

It is possible to implement a garbage collector to remove tombstones. A possible solution for a garbage
collector would be to use a vector clock to verify whether all users are up-to-date with previous opera-
tions. This would imply that when a delete operation has been received by all replicas, the tombstone
can be removed to improve the space complexity of tombstone based CRDTs. It is however, hard to
determine whether all replicas have received a remove operation and thus hard to implement [15].

Overview time and space complexity
To conclude this section, WOOT and all its implementations have bad worst and average time com-
plexities. Logoot, RGA and YATA have good worst case time complexities, where each CRDT excels
in certain operations. No results were found for YATA on average time complexities, but since it also
uses tombstones it will most likely be close to RGA.

For space complexity, Logoots worst case is 𝑂(𝐻), which is worse than the others, but since Logoot
does not use tombstones, it scales better when a lot of deletions are executed. Therefore it can be
better than WOOT, RGA and YATA when comparing average space complexities, but then it depends
on the size of the identifier used by Logoot.

3.2.3. Degree of implementation difficulty
When searching for different already-implemented CRDTs, implementations of WOOT, Logoot, YATA
and RGA have been found. When deciding whether a CRDT is suitable to use as a starting point, these
are the requirements used as criteria:

18 3. Requirements and problem analysis

• Is the CRDT easy modifiable and extendable? (8)

• Does the CRDT always converge? (6)

• Is the CRDT operation-based?

• Can the CRDT insert text? (1)

• Can the CRDT delete text? (2)

The implementation of YATA is already very complete regarding functionality. Regarding the re-
quirements, this CRDT supports insertions and deletion and the provided editor has decent user intent.
This CRDT also converged on all different manual tests performed when testing this CRDT. This CRDT
however, has a very large code base and looking at the code, it would be very difficult and very time
consuming to extend and modify this code base. Since the code base is not easy extendable and mod-
ifiable. This implementation would not be very useful for this project, although it has all other criteria.

The implementation of RGA worked decent and was simple. However, it is a state-based CRDT and
therefore not useful for this project.

The implementation of Treedoc did not work properly and contained several bugs. Since the imple-
mentation contained bugs, it would not be suitable to use for this project since solving these bugs may
take more time than actually implementing the desired functionalities.

The implementation of WOOT was decent, but WOOT has a lot of overhead and uses a lot of mem-
ory. The developer of this WOOT implementation also developed a Logoot implementation and the
developer stated that Logoot has a much better memory performance in addition to some other small
improvements. Both implementations are very bare boned and therefore easy to extend and modify.
Logoot is preferred over WOOT, because of the lower memory overhead. The Logoot implementation
has more functionalities that are required in comparison to the WOOT implementation. Logoot already
has the insert and delete functionality and is, as mentioned before, easy to extend and modify. Finally,
When manually tested, no bugs has been found and the CRDT always converged.

3.2.4. Chosen CRDT
Based on the found implementations, it had to be decided which implementation would be used to build
on for the proof of concept prototype. The implementation that is going to be used is the Logoot im-
plementation of Thomas Mullen (https://github.com/t-mullen/logoot-crdt). This Logoot implementation
passed all criteria as mentioned in the previous section. This CRDT supports insert and delete func-
tionality and is easy to modify and extend. Additionally, the implementation is character-based which is
beneficial for this project, since it is easier to insert nodes in between characters. If it is line-based and
an insertion is performed somewhere in the line, the line needs to be split, and an additional identifier
needs to be created. Finally, when manual testing the implementation of Logoot, no situation has been
found where the CRDT did not converge. The following mandatory requirements are still missing in the
CRDT:

• Move text on block level (3)

• Merge text on block level (5)

• Split text on block level (4)

• Offline support while still converging (7)

In the following sections, it will be discussed how these requirements will be implemented.

4
Design

In this chapter, the design of the CRDT will be described. The content of this chapter will elaborate
on the already existing Logoot implementation and the changes implemented in its design. Next, the
design of the features required by Fonto will be explained, and how the Logoot instance is extended with
extra functionality. Since this report is a proof of concept, chapter 4 and chapter 5 will discuss which
concepts of CRDTs were used to achieve the requirements and how these have been implemented
in the research prototype. Chapter 6 will describe how it has been proved that the described concept
indeed meets the requirements.

4.1. Basic Logoot implementation
The chosen Logoot implementation uses a tree structure to support the insertion and deletion of text.
Initialising a Logoot instance creates a basic tree consisting out of one root node with two child nodes,
which serves as a begin and end node of the document. The child nodes of the starting root node
always have the Id 0 and 256. An example of such tree is shown in figure 4.1. Originally, every node
has an identifier, which consists out of an Id, site and a clock. The Id is an integer that is mainly used
for the position. The site is a string used to identify which user performed the operation. The clock
is an integer which represents the count of operations performed by that particular user. All three
components are used for determining the placement for the node. So when the Ids are the same, the
site is the next value to compare with. Similarly, when the sites are identical, the clock will be compared.
Since the clock is the operation count, if all three are the same, it means that it is the same operation.
However, to simplify this in this report, when an Id is mentioned, the Id of the identifier of that particular
node is meant.

Figure 4.1: Basic tree

4.1.1. Insert and delete nodes
Every insert operation must have an index, such that the CRDT knows where to insert the value. Based
on the index (depth-first search), a position is generated using the identifiers of the neighbour nodes.
The neighbour nodes are the current node at the given index and the node at the given 𝑖𝑛𝑑𝑒𝑥 + 1.
The index will firstly be checked whether it is out of bounds. When this is the case, the index of the

19

20 4. Design

last node will be used, such that the insertion will be performed at the end of the block. Once the
two neighbour nodes have been found, the CRDT will generate a random integer for the Id, which is
between the two Ids of the neighbour nodes. Cases can occur when there exists no integer between
the two Ids of the neighbour nodes. In these cases, the node would be inserted into the tree as a child
of the left neighbour node and would have a randomised Id (figure 4.2). When a node is inserted in
the CRDT from one client, it emits a message containing the path (sequence of identifiers) and the
content of the node. In the case of figure 4.2, the users emits the path [255, 58] (simplified to only
Ids) to the other CRDTs in the network. The receiving client receives this message and builds on the
exact same location a node with the same content, if there exists no node on that path. When the
exact same location already contains a node, where the identifiers are exactly the same, the insert
operation will be aborted. Since the clock is the operation count, an operation can only be aborted if
that operation is already executed. This means that the Id, site and clock are exactly the same as the
incoming operation.

Figure 4.2: Inserting B after A with no integer existing between the identifiers of the neighbour nodes

Similar to the insert operation, the delete operation must have an index. The index will lead to a node
in depth-first manner, which should be removed from the tree. However, when this node contains child
nodes, the node is set to empty with an ’empty’ attribute set to true and this node will now basically
function as a tombstone. When the node does not have children, it can directly be deleted from the
tree. The CRDT will recursively go over the parent nodes of this node to check if the parent can be
deleted from the tree as well. If removing the node from the tree results in a tombstone parent node not
having any children anymore, this parent node will also be removed from the tree. Just like the insert
operation, a message is sent containing the path of the deleted node, such that the receiving client can
delete the exact same node from the tree.

As noticed, both the insert and the delete operations will send messages to other CRDTs with their
respective path of the inserted or deleted node. This means that all the CRDTs will contain the exact
same tree structure with the same content since all nodes will be inserted or deleted on the same path.
Because all CRDTs contain the same tree structure, convergence is guaranteed.

4.2. Approaches for block operations
For the block operations, two approaches had been thought of. One approach (approach one) would
insert special block characters at the start and end of a group of characters to define a block. The order
of these blocks would then be managed by a new CRDT, specially designed for handling the order of
the blocks. The other approach (approach two) would introduce ’block’ nodes. The idea is to make
every block node have its own Logoot instance, such that inserting characters in the block would be
easy. Considering both approaches, the decision is mainly based on how the block operations would
be integrated. In approach one, moving and splitting blocks would be easy to implement. Merging
blocks on the other hand, would require many special adjustments to the Logoot since the blocks might
have been moved before. Aside from implementing these operations, an additional CRDT should be

4.3. Detailed design 21

created to manage the order of the blocks for approach one. For approach two, the block operations
would be relatively easy to implement. The main issue with approach two is that splitting a block would
need to keep the tree intact, since each insertion emits a path to the other clients, the path would be
lost and therefore not executed properly. Based on these criteria and considering the given time span,
approach two had been chosen. Creating a new CRDT for managing the blocks would consume too
much time. Even when the new CRDT is completed, the time left for adjusting the Logoot to function
properly for the split functionality would be very limited. Aside from time management, approach two
would have better scalability for Fonto’s purpose. For example the XML tags and attributes for certain
texts, a block node can be created with the XML attributes in the class itself.

4.3. Detailed design
Approach two starts with a Logoot instance, which will be referred to as the main Logoot. This Logoot
has the same basic tree structure as figure 4.1. This Logoot instance serves as the communication
channel for the all other replicas which are connected. All messages would be handled with this Logoot
instance. Since the document would consist out of blocks with text, only block nodes are inserted in
this Logoot. The block nodes are inserted in exactly the same fashion as the basic Logoot instance
for characters, but rather than characters, block nodes are inserted. Each block node, additionally,
contains a special blockId and its own Logoot instance, where the blockId is independent of the main
Logoot structure. The blockId is a unique randomised string of length five, which allows the Logoot to
search on on blockId instead of using the identifier. The idea behind the Logoot instance in the block
node is to insert text into blocks easily, since the code for Logoot already exists and had been tested
for correctness when inserting and deleting text. Since each block of text should be in a block, upon
emitting the message, the blockId can be included, which allows the text to be inserted in the Logoot
instance of that particular block. Similar to the original Logoot, when a user inserts text, an emit mes-
sage is sent with the path and the blockId. The blockId will then be used to search the corresponding
block and the character node would then be inserted into the Logoot of that particular block node.

Block operations
As for the block operations (moving, merging, and splitting), new approaches had to be thought of
in order to guarantee convergence, since CRDTs should also support operations which are executed
offline. This drastically boosts the complexity of the code, since the order of the operations can differ
per replica. Every operation should be able to converge when order of execution is different. When
no delay (offline operations) is taken into account, these block operations could easily be implemented
just by using the insert and delete operations. As moving blocks could be performed by inserting a new
block, deleting the original block, and changing the blockId of the newly created block into the original
blockId. Merging blocks A and B could be performed by taking the value of block B and inserting it
at the end of block A and deleting block B afterwards. Splitting block A could then be performed by
creating a new block B and insert part of A into B whilst deleting that part in A. These methods do not
work for offline operations, since the order in which the operations are performed needs to be the same
for some operations. For example, insert operations are performed before someone split a block, but
that someone worked offline, so the order is flipped for this user. This means that at one replica the in-
sert operations are split correctly, while the other replica inserts the insertion in the wrong block (figure
4.3). Since these approaches do not support offline operations, a new approach had to be thought of
to support these operations.

22 4. Design

Figure 4.3: Two CRDTs diverge when both CRDTs are working offline using the split and insert operation

Move block operation
The approach for moving a block is as following. Moving block A requires an index, which is used
for determining the position. When the move operation is called, it generates a new block B at that
particular position. Block B has a different blockId compared to block A. When block B is generated,
the Logoot of block A is transferred to block B, such that all the content is moved safely. Afterwards,
block A is deleted and block B will take over the blockId of block A (figure 4.4). Since the inner Logoot
stays the same, the CRDTs converges even after offline insert or delete operations since all insert and
delete operations require the blockId. This means that when the offline operations arrives, the block
would first be searched and the operation would then be performed on the found block.

4.3. Detailed design 23

Figure 4.4: Moving block with blockId: abcde after block with blockId: vwxyz

Merge blocks operation
For the merge blocks operation, three approaches had been thought of. The first approach works for
certain cases, which do not include two or more CRDTs that are merging the same blocks in different
order. The second approach has fixed this issue, but has complications in combination with the split
operation. In order to make it easier to function with the split operation, a third approach had been
thought of. All these approaches will be elaborated in this sub-section and a more detailed description
and flaws of each approach will be given in the next chapter.

The essence of the first approach for the merge operation is to set the status of the merged block
to ’merged’ and move its tree to block A. The CRDT adds two ’additional’ nodes to the root node of the
tree in block A and appends the original tree structure of A and B to these two nodes. To make this
more clear, an example will be given. In this example, block A and block B will be merged. Block A will
generate two additional nodes, attached to the root of block A and moves the original content to one
of the two newly appended nodes as children. The other additional node will be used to transfer the
tree structure of block B. Since the tree structure stays the same, for block A and block B, offline inser-
tions before the merge operations can be redirected by appending the corresponding additional node
to the path of the operation (figure 4.5). However, this approach could lead to some complex states,
where two offline replicas merge three blocks, both in different orders. The aforementioned approach
could not solve this problem since the additional nodes are permanent, which results in different states
(diverges). Thus, a different approach had been thought of, which uses reference nodes.

24 4. Design

Figure 4.5: Merging block B into block A with first approach using sub-nodes

The second approach used for merging blocks is as following. Merging blocks A and B only inserts a
’MergeNode’ at the end of block A. The status of block B will be set to merged, which practically makes
it invisible for the user. The MergeNode has a reference to block B. This approach is shown in figure
4.6. This method does not actually merge the two blocks, but rather simulate the block as if they are
one block. For this approach to work, the length of block A needs to be taken into account. Since
the content is not in block A, but rather simulated, the maximum length of the index (which is used
for inserting characters) of that block is incorrect, because it does not take the content of block B into
account. This means that the usage of the index should change for this problem to be solved.

4.3. Detailed design 25

Figure 4.6: Merging block B into block A final approach using references

For the final approach, which is very similar to the second approach, the end node of block A will be
changed into a merge node. So when block A and block B are merged, block A will change its end node
to a merge node, which contains a reference to block B. This guarantees the state of the block where
the merge node will be put at the end of the block. Complications about the second approach was that
when a split operation is performed in block B, the content of block B and block A after the merge node
should be moved whilst keeping the tree intact (figure 4.7). By guaranteeing that the merge node is
at the end of the block, the content after the split node in block A does not exist. This makes the split
easier by just splitting in the merged block B. An example of a valid state of a merged block is given in
figure 4.8.

26 4. Design

Figure 4.7: Splitting in a merged block with content ’ABCD’ on B and C, will need to move node C in block B and node B in block
A to a new block

Figure 4.8: A valid state of the blocks when block A and block B are merged

4.3. Detailed design 27

Split block operation
The approach for splitting a block is as following. Splitting a block requires an index, such that the
CRDT can determine where to split the block. The block (A) will insert a ’SplitNode’ according to the
index, just like the normal insertion, which represents the split of the block. A block B, with a new
blockId, will be created right next to block A and copies the exact same tree structure of block A into
block B. For block A, the blockId will stay the same and all nodes on the right side of the SplitNode
will be removed, whilst for block B, all nodes on the left side, including the SplitNode, will be removed
(figure 4.9). When offline operations happen at the same time as the split operation, it might happen
to be an operation which should be performed on the right side of the SplitNode in block A. In these
cases, the operation should be delegated to block B. Since every operation is sent individually, it can
easily be checked whether it should be delegated since the first-left node should be the SplitNode in
these cases. A more detailed implementation will be described in the next chapter.

Figure 4.9: Splitting block A using references

In this chapter, the design was introduced of how the operations would be implemented. This should
give a global view of what the CRDT does and which methods were applied to achieve this. In the
upcoming chapter, a more detailed description about how these methods were implemented and the
issues that arose during the implementation will be given.

5
Implementation

The previous chapter gave a more high-level explanation of the concepts that were used. This chapter
will discuss the implementation of these concepts and will therefore give a more detailed explanation
about the concepts. This chapter will also discuss the issues that arose during the implementation and
how it has been verified that this implementation is correct.

5.1. Validating the basic implementation
Before writing the code for new functionalities such as inserting, moving and splitting blocks, the func-
tionality of inserting and deleting plain text had to be validated beforehand to be sure that it actually
works as expected. Tests were written for the following functionalities:

1. Insert text

2. Delete text

3. Set CRDT initial state

4. Replace text

5. Offline support

6. Network delays

When writing tests, the Mocha test framework and Chai assertion library have been used. Since the
most important property of CRDTs is convergence, every test case has at least an assertion which tests
if the state of different CRDTs are still equal after several operations. If it is clear what the expected
value of the CRDT should be, an assertion to test the result value to the expected value has been added
as well. It turned out that when testing network delays and offline support, the result after performing
the same set of operations can differ when executed multiple times. For example when two CRDTs
insert one character offline, the final order of these two characters will be based on the identifier and
since the Id of the identifier is randomly generated, the order between these two characters might differ
when executed multiple times. Therefore, it could not be tested that the value is as expected, but it can
be tested that the states of the two CRDTs should always be the same. When asserting on states, it
can be concluded that the state when testing delays and offline support, is always the same.

5.2. Implementing block functionality
As discussed in the previous chapter, the block functionality will be implemented using different types
of nodes in the tree for characters and blocks. A BlockNode and CharacterNode class were created
which extends from the already existing Node class. The BlockNode serves as a node to represent
blocks. A BlockNode has an extra blockId field, which makes it easier to find specific blocks, and
therefore the Logoot field. The Logoot field in the BlockNode represents the content of the BlockNode.
The CharacterNode represents a character. It has an extra value field, which represents the character

28

5.2. Implementing block functionality 29

of the CharacterNode. For the merge and split operations, additional MergeNode and SplitNode were
created, which both extend from Node as well. The MergeNode and the SplitNode both contain a
referenceId, which should refer to a blockId. The MergeNode is being used to simulate that the block
is actually at that position, whilst the SplitNode serves as a check for whether insertions and deletions
should be delegated. A class diagram for these classes are shown in figure 5.1.

Figure 5.1: Class diagram for the node classes

According to the requirements, the BlockNodes should support the following operations:

1. Inserting blocks

2. Deleting blocks

3. Moving blocks

4. Splitting blocks

5. Merging blocks

6. Inserting content in blocks

7. Removing content from blocks

5.2.1. Insert and delete nodes in the CRDT
Before discussing the implementation of the operations described above, one should first know how to
actually insert and delete nodes from the CRDT, since this method would be used in almost all of the
above mentioned operations. The method to insert and delete nodes, is described in section 4.1.1.

5.2.2. Insert and delete blocks
For inserting blocks, the insert function for nodes can be reused, which is described in section 4.1.1.
However, instead of creating a CharacterNode, a BlockNode must be created. This is done by creating
a new method, specially developed for this sole purpose of creating blocks. This method creates the
BlockNode and assigns a randomised blockId of length five. Just like the insertion for CharacterNodes,
an emit message must be sent when inserting a BlockNode. This emit message contains the path to
the BlockNode and the corresponding blockId. When the other replicas receive this emit message, it
will traverse through the path and construct a BlockNode at the exact same position. The blockId which
was sent will be assigned to this newly created BlockNode.

For deleting blocks on the other hand, it does not use the index, unlike the above mentioned method.
Rather than using an index, the blockId is being used, since this is more compatible with offline oper-
ations. Cases exists when one tries to delete a block, but it is moved by someone else who worked
offline. Since the previous delete operation was based on the path, the deletion would not delete the
actual block since this has an other path. Therefore, it was decided to use the blockId instead of in-
dices. The delete operation makes use of the searchBlock method for finding the block. When the

30 5. Implementation

specific block is found, the block will be deleted in the same manner as the previous mentioned delete
method. One difference with the previous mentioned method is that deleting a block will always result
in a tombstone, even if the BlockNode does not have any children. This has been decided, because
the CRDT does not know if any offline split or merge operations have been performed on this block on
other CRDTs. Always using tombstones for BlockNodes will allow CRDTs themselves to decide what
content should be kept and what content should be removed. The emit message sent upon deleting
blocks contains the blockId. The other replicas which receive this message will search for the block
with this blockId through the searchBlock method and deletes it in the same manner.

5.2.3. searchBlock
Searching for blocks is necessary for these operations: deleting blocks, moving blocks, splitting blocks,
merging blocks, and inserting and deleting characters in blocks. The searchBlock function has one ar-
gument, the blockId. The search algorithm that is being used is the breadth-first search (BFS) algorithm.
This means that it starts scanning every block after the root node from left to right on the same level,
before it goes to the next level until it finds the desired block. BFS has a time complexity of 𝑂(∣𝑉∣+∣𝐸∣).
BFS is not the most efficient algorithm to search for a block, but BFS is the least complex to imple-
ment. In chapter 7, a more in-depth discussion about this searchBlock algorithm and other alternative
algorithms will be given.

5.2.4. Insert and delete content in blocks
Inserting and removing content from blocks is implemented using the searchBlock function. First, the
CRDT searches for the block. On the Logoot of the block, the CRDT can simply call the insert and
delete methods described in section 4.1.1. After an insertion, the local CRDT sends the blockId and
the path within the block to the other replicas along with the value. The other replicas search for that
block and insert the node in that block at the given path. After a deletion, the CRDT sends the blockId
and the path of the deleted node to other replicas. These replicas search for the block and delete the
node at the given path as described in section 4.1.1.

5.2.5. Moving blocks
As explained in chapter 4, moving blocks has been implemented by locally deleting the block one wants
to move and inserting a new block with the same blockId at the given index. To actually move the con-
tent of the block to the new block, the CRDT can simply transfer the Logoot of the old block to the newly
inserted block. Since deleting a node does not necessarily remove the node from the tree, the CRDT
also has to remove the blockId when deleting the block from the node, so one can ensure that there
will not be duplicate blockIds in the CRDT. To send the move operation to other replicas, the message
consists out of the blockId of the moved block and the path of the newly inserted block. The receiving
CRDT can then delete the block, when inserting a new block at the given path while transferring the
Logoot from the deleted block to the inserted block.

One problem occurred when two offline CRDTs move the same block to a different index. When both
CRDTs go online, they will move the block to the index of the other CRDT, which results in diverging
states. To solve this problem, timestamps were introduced. For every insert of a block, a timestamp
will be saved. When receiving a move block operation from a different CRDT, this operation will only
be executed if the timestamp is higher than the current timestamp of the block. This approach is based
on the Last-Writer-Wins approach and will resolve the previous mentioned issue, since all CRDTs will
have the move operation of the most recent timestamp.

5.2.6. Merge blocks
As explained in chapter 4, three different approaches have been designed and tested. In this chapter,
the implementation of all three implementations will be elaborated upon. It will be explained how these
approaches have been implemented and the challenges of all these approaches, as well as the reason
why some approaches had been replaced. In this chapter the terms base block and merge block are
used. The base block is the first block of the merge and the merge block is the block that is being
merged into the base block.

5.2. Implementing block functionality 31

First Approach
The first approach uses two additional nodes. These additional neighbouring nodes will be created
under the root node and the Logoot structure of base block will be copied to the left additional node
and the Logoot structure of the merged block will be copied to the right additional node. As shown in
figure 5.2. The purpose of these two additional nodes, is that the path of the Logoot structure of the
merged block does not change. Delayed or offline insertions or deletions in the merged block will be
propagated to the right additional node.

Figure 5.2: Merging block B into block A with first approach using additional nodes

In figure 5.2 there is a so-called ’MergedBlock’. During a merge, the block that is being merged into
another block is replaced with a MergedBlock to indicate that it has been merged into another block.
All the nodes that are part of that blocks Logoot are removed and inserted as children of the right addi-
tional node, keeping the exact same tree structure (node Add2 in figure 5.2). When the CRDT receives
an operation for the block that has been merged, the MergedBlock will propagate the operation to the
base block where the additional nodes are (block A in figure 5.2). When propagating the operation
to the base block, the MergedBlock adds the identifier of the right additional block to the path in the
operation. Since the right additional block has exactly the same tree structure as the MergedBlock, the
operation will be performed on the correct position in the tree. In figure 5.2 for example, if the CRDT
receives a delayed insertion in block B on path [3,4], the MergedBlock B will propagate this insertion
to block A and add id 2 to the path. So the MergedBlock B will propagate an insertion of path [3,4] to
block A with path [2,3,4].

32 5. Implementation

However, this approach does not work very efficient with delayed and offline merge operations. When
looking at the scenario described in figure 5.3, when two offline CRDTs merge different blocks with
block A, then after both CRDTs go online, they have to merge the other block with block A and with this
approach. Achieving a convergent state would not be an easy task. This would require using times-
tamps and removing and merging the blocks again in the order of the timestamps. However, removing
sub-trees and inserting these trees again at a different position is very complex to do while keeping the
tree intact. Therefore, it has been decided to not move trees when merging blocks, but create refer-
ences, such that it would be more efficient and easier to solve scenarios as described in figure 5.3. A
more detailed explanation of using references will be described in approach two and three of merging
blocks.

Figure 5.3: CRDT with block A, B and C and one CRDT merging block A and B and the other CRDT merging block A and C

Second Approach
The second approach uses the so-called ’MergeNode’ in a block to indicate that a block has been
merged into that block. The merged block will then be marked as merged, so when reading the content
from the CRDT, the merged block will only be accessed through the reference node (MergeNode). So
for example see figure 5.4 below, where two blocks are merged and will output the word ’Fonto’.

Figure 5.4: A tree containing 2 merged blocks

5.2. Implementing block functionality 33

The tree is read in depth-first order and will only print CharacterNodes which are not set to empty.
When a MergeNode is read, the content of the merged block will be read instead of the MergeNode.
When a merged block is read through the depth-first search (DFS), it will not be read since the merged
block can only be read through a MergeNode. In figure 5.4 the merged block is only read through the
MergeNode. The word which will be outputted would be ’Fonto’.

One problem that occurred was that two offline CRDTs can merge the same two blocks before go-
ing online. When both CRDTs go online, this will result in a duplicate merge, since both CRDTs will
also execute the received merge. This has been solved by adding a timestamp to the merged block and
using the Last-Writer-Wins approach. When a block is already merged and it receives another merge
operation, the merge overwrites the current merge if the timestamp of the received merge operation is
higher than the timestamp of the current merge. Overwriting a current merge is done by deleting the
current MergeNode and inserting a new MergeNode. This way, all CRDTs will only merge the block
with the most recent timestamp.

To support insertion of characters with the merge functionality, it should be checked whether the in-
serted CharacterNode should be placed inside the base or merged block. As explained in 4.1.1, to
insert text, the CRDT searches the block in which the CharacterNode needs to be inserted. The posi-
tion for the node to be inserted would be generated by the Logoot of that particular block. To generate
this position, the left and right neighbour of the new node are looked for. Based on the ids of these
neighbours, a new CharacterNode is inserted between them. When inserting in a block, which was
merged before, four cases had to be considered:

1. Insert between two CharacterNodes in the base block

2. Insert between two CharacterNodes in the merged block

3. Insert between the base and MergeNode

4. Insert after the MergeNode

Insert between two CharacterNodes in the base block
Finding the index for an insertion in the base block is the same as a normal insert. A previous and next
CharacterNode are found and the new CharacterNode is inserted between these two nodes.

Insert between two CharacterNodes in the merged block
When the given index for an insertion falls in the merged block, then the insertion must be propa-
gated to the merged block with an adjusted index. To achieve this, the Logoot of the base block is
traveled in depth-first order and a counter keeps track at which node the DFS currently is. When a
MergeNode is discovered and (𝑖𝑛𝑑𝑒𝑥 − 𝑐𝑜𝑢𝑛𝑡𝑒𝑟) < 𝑠𝑖𝑧𝑒_𝑜𝑓_𝑚𝑒𝑟𝑔𝑒𝑑_𝑏𝑙𝑜𝑐𝑘, then the node must be
inserted in the merged block. Then the insert is propagated to the merged block with a new index
(𝑖𝑛𝑑𝑒𝑥 − 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1). The (+1) is needed to make sure that the index is correct. Insertions between
the StartNode and the first CharacterNode of the merged block should not happen, since that is the
same as inserting between the last CharacterNode and the MergeNode in the base block, therefore
the index needs to be corrected with +1.

Insert between the base and merged block (end of the first block)
When inserting characters between the base and the merged block the situation arises that there are
two places the node can be placed to obtain the exact same result. The new CharacterNode can either
be inserted between the CharacterNode just before the MergeNode and the MergeNode itself or it can
be inserted in the merged block between the StartNode and the first CharacterNode of the merged
block. The decision had been made to insert the new CharacterNode between the CharacterNode
before the MergeNode and the MergeNode to limit the amount of operations in the merged block, since
that block does not really ’exist’ anymore.

Insert after the merged block
When inserting after the merged block, there are two possible solutions. Placing it at the end of the
merged block or placing the insertion after the MergeNode in the base block. To limit the amount of

34 5. Implementation

operations required in the merged block, the decision had been made to insert in the base block after
the MergeNode.

When deleting a CharacterNode in a block that has been merged there are two cases to consider:

1. Delete CharacterNode in the base block

2. Delete CharacterNode in merged block

When deleting a CharacterNode, the Logoot travels through the tree in DFS order, while keeping track
of a counter. When the counter is equal to the index of the delete operation the CharacterNode can
be deleted. When a MergeNode is discovered, a check is done to see whether the deletion is in
the merged block or not with (𝑖𝑛𝑑𝑒𝑥 − 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝑠𝑖𝑧𝑒_𝑜𝑓_𝑚𝑒𝑟𝑔𝑒𝑑_𝑏𝑙𝑜𝑐𝑘). If (𝑖𝑛𝑑𝑒𝑥 − 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 <
𝑠𝑖𝑧𝑒_𝑜𝑓_𝑚𝑒𝑟𝑔𝑒𝑑_𝑏𝑙𝑜𝑐𝑘) is true, the deletion is in the merged block and the operation will be propa-
gated to that block. If (𝑖𝑛𝑑𝑒𝑥 − 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝑠𝑖𝑧𝑒_𝑜𝑓_𝑚𝑒𝑟𝑔𝑒𝑑_𝑏𝑙𝑜𝑐𝑘) is false then there is text after the
merged block and the deletion is not in the merged block, so the deletion stays in the base block with
a corrected index, 𝑖𝑛𝑑𝑒𝑥−𝑠𝑖𝑧𝑒_𝑜𝑓_𝑚𝑒𝑟𝑔𝑒𝑑_𝑏𝑙𝑜𝑐𝑘, since all nodes in themerged block can be skipped.

Moving a merged block has no influence on merge, when the base block is moved, all contents of
the Logoot instance is moved with it, including the MergeNode. When the merged block is accidentally
moved, for example when someone is working offline, it does not matter, since the merged block is only
accessed through the MergeNode, thus its position in the tree does not matter for the other operations.

Issue with approach two
Splitting blocks in combination with this approach had some issues as explained in chapter 4. The
reason for this is that it is not possible to guarantee that the merged block is also the last content, since
characters added at the end of the block would be inserted in the first block. An idea to propagate all
insertion on the edges of the merged block into the merged block would not work, since then replicas
would diverge because of different order of execution. Therefore the split implementations would not
work since split takes the content in a block from the split index to the end of the block and places that
content in a new block and removing it from the split block. So if the split would happen in a merged
block, then if there was content written after the merge and at the end of the merged block it would still
be in the first block but it should have been added to the block created with split. See figure 5.5 for
details.

5.2. Implementing block functionality 35

Figure 5.5: Merge and split operation conflict

Approach two also had issues when multiple replicas do the same merges offline, since this approach
had no way to detect identical merges, which have been merged in different order. It was possible
to gain duplicate references. This would result in text being displayed multiple times. As example, if
there is a CRDT consisting out of three blocks. Replica one merges the block in the order: block 1 with
block 2 and then block 1 with block 3. Replica two merges the block in the order: block 2 with block
3 and block 1 with block 2. Both should result in the same outcome (all two blocks merged into one).
But since the CRDT cannot detect that this sequences of commands are exactly the same, duplicate
references will appear in the CRDT. See figure 5.6 for details.

36 5. Implementation

Figure 5.6: Multiple Offline Merges Conflict

Due to these and other bugs/flaws in the second approach, a third approach has been designed to
tackle mostly these two problems.

Third Approach
The third approach is based on the second approach, but with adjustments to tackle the issues discov-
ered in the second approach. To make split and merge compatible with each other, when two blocks
are being merged, the end node of the base block is being converted into a MergeNode. A merged
block has also been expanded with a timestamp, to check when two blocks have been merged. This
timestamp will be used for keeping track of the order of merges. Since the MergeNode is now at the
end of a block it is no longer needed to check if a merge was in a merged block or not. Insertions
and deletions done outside of the base block can be automatically propgated to the merged block.
Each block can only have one MergeNode since each block has only one end node. When multiple
blocks are being merged into one block, a daisy chain has been formed instead of adding multiple
MergeNodes in one block, as you can see in figure 5.7.

5.2. Implementing block functionality 37

Figure 5.7: Merge third approach daisy chain

Since now it is impossible to have nodes in a block after the MergeNode, splitting will not result in
unexpected behaviour, as in approach two.

To fix the issue of duplicate references, a new method has been created when merging two blocks.
When a merge command is received, the CRDT rebuilds the entire block to see if there have been mul-
tiple merges which attain the same result. To clarify this method it will be explained with an example
where replica one has the state shown below in figure 5.8 and receives a merge command from replica
two, which has been working offline.

Figure 5.8: State of replica one

When the merge from replica two is received by replica one, one list is created, this list contains all
merges in the base block, the merge command and all merges in the merged block. First, the list

38 5. Implementation

containing all the merges in the base block is created, figure 5.9. This list contains objects existing out
of; from block, to block and timestamp.

Figure 5.9: List created from the base block

Then, the received command will be converted to an object, which could be added to the list, figure
5.10.

Figure 5.10: Object created from the merge received from Replica two

First, it is checked if object in the list from the base block have the the same ’to’ location as the received
merge. If so, then the block is already merged into this block and it gets ignored, so in the example
the merge command can be ignored, since there already is a merge from block A to block C, and the
merge command wants to merge block C into it, which is already merged.

If there is no matching ’to’ location in the list from the base block then the blocks can be merged.
Another list is created from the merged (to block), containing all the merges in this block, these lists
are then appended to each other and ordered based on timestamp.

To complete the operation, all merges in the list are removed from the CRDT and re-inserted, based on
timestamp. This is needed to ensure that all replicas have the same order of merges, which is needed
to ensure convergence. See figure 5.11 for an entire oversight of a merge.

5.2. Implementing block functionality 39

Figure 5.11: Overview of a received merge with approach 3

This approach fixed the issue of duplicates and ensured convergence when replicas merge blocks in
different orders, since now every replica will order merges based on timestamp.

One issue that is still not solved with this approach is the creation of circular merges, when replica
one merge block A with block B for example, and replica two merges block B with block A, then they
both have a MergeNode referencing each other at the end. This creates a circular merge, a circular
merge means all merges are connected to each other and there is no ’starting’ point for the CRDT to
enter this merged block. Therefore, when asking for the value of the CRDT, all of the content in the
merged blocks is not printed, since the CRDT cannot find an entrance point. A more detailed explana-
tion about this issue will be discussed in section 6.3.

40 5. Implementation

5.2.7. Splitting blocks
As briefly explained in chapter 4, splitting blocks makes use of a so-called ’SplitNode’. When splitting
block A at a certain index, the SplitNode is inserted in the same fashion as normal character nodes on
that index. Afterwards, a new block B is created with a different blockId, and the content is copied over
to block B. In block A, all the nodes on the right side of the SplitNode will be removed, whilst in block B,
all the nodes, including the SplitNode, on the left side will be removed as explained in chapter 4. The
SplitNode in block A serves as a reference to block B for operations which are delayed and performed
before the split operation. If a delayed operation occurred after the index of the split, this operation will
be redirected to block B using the SplitNode. In such case, when the SplitNode is absent, the delayed
operation would be performed in the wrong block (figure 5.12). In this figure, TREE A and TREE B
are a generalisation of Nodes. So TREE A and TREE B, could be a tree with the CharacterNodes
a and b, but could also contain other CharacterNodes or SplitNodes. If delayed messages were no
issue, the SplitNode was not needed, because one can assume that all received operations can be
executed on the mentioned block in the received message. Delayed messages, however, are an issue
since one can potentially have slow internet or work offline. The introduction of the SplitNode solves
this problem. The SplitNode can be removed, when it is verified that all users have received this split
operation. However, with this current approach, this is not verifiable. As described earlier, vector clocks
could be used to verify if every user has received the split operation.

5.2. Implementing block functionality 41

Figure 5.12: Receiving a delayed insert ’B’ operation after splitting, which should be placed in block B

42 5. Implementation

Zooming in on the insert operation shown in figure 5.12. The insert operation performed on the first
tree sends a message that it inserted a node with value ’B’ on that particular location. To illustrate
this, see figure 5.13. Note that this figure includes the SplitNode. For this example, the SplitNode can
be ignored. When CRDT 2 receives the message of CRDT 1, the node would be built in block A on
the location with the id equal to 4. When CRDT 1 receives the split operation of CRDT 2, the node
with value ’B’ will also be moved to the second block. The latter outcome seems more user friendly,
and easier to maintain. To ensure that both CRDTs converge to the same state, the SplitNode plays
an important role. When a SplitNode is present, an operation which should be delegated to block B
always has this same characteristic. This characteristic is that all paths of these operations are referring
to the neighbour of the SplitNode. So in this figure, CRDT 2 receives the insertion. When the path is
checked, it can be seen from the figure that the node would be inserted in block A after the SplitNode.
This means that the content was already moved to block B. Since the tree structure of block B was an
exact copy of the tree structure in block A, the path of the insertion is still valid, even for block B. So for
every insert operation, it will be checked whether the left neighbour of the given path is a SplitNode.
When this is the case, the insertion will be delegated to where the SplitNode is referenced to. The
exact same scenario also applies for the delete operations. Each delete operation would check on the
path whether the left neighbour is a SplitNode. If this is the case, then the deletion would, just like the
insertion, be delegated to the referenced block.

Figure 5.13: The message exchange between two CRDTs where one replica inserts the value ’B’, while the other replica splits
block A

5.3. Validating the block functionality
To validate the functionality described in the previous section, many tests had been written using the
same Mocha test framework. When writing tests for these operations, tests had been written for the

5.3. Validating the block functionality 43

simple cases, edge cases and combinations between different operations. Most edge cases include
multiple operations in a row or operations executed when CRDTs are working offline.

When analysing time and space complexity of the block operations, there are a few operations, which
might affect the performance of the block operations. The inefficiencies of these block operations will
be discussed in section 7.2.1.

To make it easier to write tests where CRDTs are offline, a simple framework had been implemented to
simulate offline CRDTs. This framework can easily be used without having to know how the CRDT itself
sends message to other CRDTs. The framework contains functions such as createCRDT, setOnline
and setOffline to create a CRDT or to set a CRDT online or offline.

After writing many tests for all the block functionality, it turned out that most functionality works if all
CRDTs stay online and that most bugs appear when CRDTs start working offline. The chapter 7 will go
deeper on what bugs have been found when CRDTs work offline.

6
Testing the prototype

In addition to writing tests, a research prototype has been developed to showcase the functionalities
of the CRDT implementation by making use of a custom-made editor. This chapter will discuss what
features the editor has and what bugs have been found when (manual) testing the CRDT. This editor
and the written tests are being used to proof that the described concept in chapter 4 and 5 do meet the
requirements.

6.1. Editor
6.1.1. Editor design
When implementing a block-based editor, one could use newlines or other identifiers to identify blocks
of text. In this approach, it would be difficult to visualise merge, move and split operations. Therefore,
it has been decided that the block-based editor will contain multiple text areas, where each text area
represents a block of text. Using this approach, it will be clear what a block is and how the document
structure changes after specific operations have been applied. The merge, split and move operation
will be executed using a button click instead of a hotkey.

To send messages to different online editors, WebSockets have been used. This report will not go
deeper on how WebSockets have been used in this editor, since WebSockets are not relevant for this
project. WebSockets make it possible for this editor to show real-time collaborative editing on different
devices. It has been decided that the server also has a CRDT, which will be updated based on all op-
erations received from all CRDTs. This CRDT on the server will be used to give new users the current
state of editor.

6.1.2. Editor features
The editor contains all functionality that is necessary to perform all implemented operations in the CRDT.
These operations include:

1. Inserting text in a block

2. Deleting text in a block

3. Inserting a block

4. Deleting a block

5. Splitting a block at a given index

6. Merging two blocks

7. Moving a block to a given index

44

6.2. Testing 45

In addition to these features, offline support and some extra visualisations were added to simulate sit-
uations where one or multiple users work offline and to give users a better view of what happens with
the CRDT when editing blocks.

Offline support
The first additional feature added, is offline support. In the editor, there is a button, which can be used
to toggle the user to either offline or online without actually having to turn off the WiFi.

When a user is offline, it will enqueue all operations to send to other users until the user toggles the
offline button to online. When a user is offline, all received operations will not be executed locally until
the user toggles the offline button to online.

Extra visualisations
After that, some visualisations have been added. First, two columns have been added, which shows
the blocks as HTML and parsed HTML. This has been added to show that this editor is indeed a rep-
resentation of XML and that this block-based approach could indeed be used by Fonto.

Finally, the user can get the state of the CRDT of the server after every operation. This makes it
easier to find out what happened with the state once a bug appears.

6.2. Testing
To ensure correctness of the CRDT, tests have been written for automatic testing, but also manual
testing has been done to find edge cases.

6.2.1. Automatic tests
For testing the CRDT implementation, a test environment was created. The approach at the beginning
was to create simple test cases where only text characters were inserted and deleted, like plain-text,
at a certain index, where exceptions should correctly throw whenever indices were out of range. When
the CRDT was further developed to support blocks, tests were written for inserting and deleting blocks
at a given index. These test were pretty straightforward and tests cases were easily created.

Afterwards the tests also contained insertions and deletion of characters inside a block. The differ-
ence between adding plain text, as described above, and adding text in blocks, is that it also has to
specify the blockId. For this subtle difference, tests have been written to check whether characters
have been inserted and deleted from the correct block.

When testing the CRDT with offline operations, instead of immediately executing a received message,
the CRDT will push this message to a queue. Once the CRDT is online again, the CRDT will execute
all received messages from the queue in the received order.

Once the CRDT also supported moving, merging and splitting of blocks, it became quite harder to
create test cases. Since a user can freely move, merge and split blocks multiple times, there were a
lot of edge cases that had to be considered. With the introduction of offline operations it became very
difficult to write tests to exhaust all possible combinations. When writing tests, it was also important to
test combinations of different type of operations, since one operation could break the functionality of a
different operation. An improvement for the future could be to write a utility function to create all per-
mutations given a sequence of operations, so one does not have to think of all possible combinations.

Currently, these tests do not completely prove correctness of all operations, since it could not be con-
cluded yet that all possible combinations of operations has been tested. To prove correctness of all
operations, one could write a utility function, as described above, to generate all possible permutations
of operations. If all these tests pass, it could be concluded that the CRDT is working as expected, since
all possible combinations of operations are covered.

46 6. Testing the prototype

6.2.2. Manual tests
Throughout the development of the CRDT implementation, the editor was mostly used for exploratory
testing. After finding a bug where the content of the CRDT did not converge or when the user intent
was not captured correctly, it was much easier to create test cases for the automatic tests.

With the editor it was a lot easier to find edge cases for the test environment, since the testers could put
themselves into a position as if they are working on a document. As said in the previous section about
offline support, the editor has a button to quickly simulate offline and online states. This also makes it
a lot easier to test the features while being offline.

6.3. Known bugs
In this section, bugs that still appear in the research prototype will be discussed. It will be discussed
why the bug occurs, what has been tried to solve it and how it could potentially be solved in the future.

One bug that could not be solved yet, is a circular merge. What happens here, is that two CRDTs
move the same blocks while being offline in the opposite order. So if the CRDTs have block 1,2 and
3 and one CRDT merges block 1 and 2 and block 1 and 3 sequentially and the other CRDT merges
block 3 and 2 and block 3 and 1 sequentially, when applying all these merges together, the final CRDT
will have blocks with references which result in a circle, see figure 6.1 for an example.

Figure 6.1: A situation in which a circular merge occurs

An approach which has been tried to solve this, is using timestamps. Each merge operation gets an as-
signed timestamp, and after each merge operation, all merge operations will be reverted and reordered
based on timestamp. All merge operations will be applied again in this new order. Before applying all
merge operations, the algorithm will check if there are circular references. It will check if for example,

6.3. Known bugs 47

block 1 has a reference to block 2 and block 2 has a reference to block 1. If a circular reference has
been found, the timestamps will be compared and the merge operation with the highest timestamp will
not be applied, hence removing the circular reference.

Currently, this bug has not been resolved yet, but it could not be concluded yet if this approach does not
work or whether the implementation of the approach still contains some bugs, unrelated to this method.

The final bug found in the current implementation is that when splitting a block and merging the two
resulting blocks from the split, that the content from the right block could be lost on some replicas, while
not on other replicas, resulting in diverging replicas. Most likely, this bug occurs because there will be a
MergeNode after a SplitNode. Since every insertion and deletion after the SplitNode will be redirected
to the reference block, the MergeNode will be inserted in the reference block, causing content loss. It
has however not been verified that this is indeed causing the bug when merging a split block.

7
Results

In this chapter, the results found for the proof of concept will be described and discussed. Then based
on these results, a recommendation is given for Fonto and future research.

7.1. Test results
All automated tests created to verify the functionality of standalone operations, combinations of oper-
ations and offline functionality passed when ran 1000 times (with exclusion of the tests covering the
known merge bugs).

With manual testing no bugs were found in all operations except for the merge operation when testing
with the final version of the created CRDT.

The remaining bugs for the merge operation are circular references and the split and merge opera-
tion combined as described in section 6.3. The mentioned test results are only based on the known
test cases. There is a possibility where some edge cases are not found yet. Generating all kinds of
permutations of the available operations will potentially find more edge cases, which have never been
thought of.

The remainder of this chapter will discuss the design and implementation of the CRDT, what the
strengths and weaknesses are and how the CRDT can be improved.

7.2. Discussion
7.2.1. CRDT
After implementing all mandatory requirements, there are two known bugs left. One where the merge
operation causes circular references and one occurs when merging and splitting one block multiple
times.

The remainder of this section will further discuss the strengths and weaknesses of the design choices
and implementation of the CRDT. One of the disadvantages the skeleton code has, is that each char-
acter is a node itself and therefore the tree size can become extremely large when editing large docu-
ments. Large trees will most likely result in slower insertions and deletions of characters. Since clients
of Fonto can have large documents, it is important, that the tree size will be optimised.

Another weakness, also in the field of tree size, is that deleting nodes might create tombstones. A
tombstone will be created if the node the user is trying to delete has child nodes or if a user tries to
delete a block. For small documents, this does not matter, but once users start deleting lots of text,
there could exist a lot of tombstones. This might result in unnecessary slower insertions and deletions
of text, since the CRDT might have to traverse all the tombstones to find a node.

48

7.2. Discussion 49

Another weakness of the current approach, is that the searchBlock method uses a BFS algorithm.
This is not the most efficient algorithm to find a block as quick as possible and when the amount of
blocks in the document increases, this algorithm will also get slower.

With the final approach of merging blocks, when a large amount of blocks is merged in one block,
the complexity of this approach might increase since every previous merge operation related with the
blocks will be removed and inserted again after every merge operation.

One weakness in the split block approach, is that for every split operation, the whole block is copied
to the newly inserted block. When splitting extremely large amounts of content, every node has to be
created again and this might take some time if the size of the block is large. This is unwanted behavior,
since with real-time collaborative editing, users expect operations to be visible immediately.

One strength of this CRDT is how blocks have been implemented. Since basically each block has
its own CRDT for the content in the block as a Logoot field. Therefore, it should not be difficult to imple-
ment nested blocks in this CRDT. This would however increase the complexity of the move, merge and
split operations, but adding the functionality of nested blocks itself would not be difficult to implement
since each CRDT already has the ability to create blocks.

This approach of implementing blocks also creates smaller sub-trees in the different blocks. This would
help in the aforementioned problem of tree size, since the total tree size of the document will be divided
over all blocks in the document. If the searchBlock algorithm is optimised as well, this will partially solve
the problem of large tree size. The problem of large tree sizes would in this case only be a problem if
the blocks itself have a large amount of content.

Another strength of this CRDT implementation is that new types of nodes could easily be added to
the CRDT. If special nodes must be added to represent other XML tags for example, these could easily
be added. Therefore, this CRDT implementation is easily extendable.

Finally, this CRDT implementation uses JSON objects to send messages to other replicas. This means
that there is a lot of freedom to decide how to implement the network layer. This could be done the
same way it is implemented in the editor using WebSockets, or any other way which supports sending
strings over the internet.

7.2.2. Feedback Software Improvement Group
In the sixth week, code was delivered to the Software Improvement Group (SIG) for evaluation. The
code base was mainly taken from an online Git repository. This repository is the skeleton of the whole
code base that was submitted. The provided code could not be removed for the evaluation, since that
would result in just a few functions without showing relevance. The feedback given from SIG were
overall quite moderate. The metrics that are relevant for this project and the evaluation scores are:
code duplication (4.0), unit size (2.9), unit complexity (3.3), unit interfacing (3.7), and module coupling
(5.5). The places that needs to be improved mainly regards the sizes of the functions. The amount of if-
statements, parameters and lines should be reduced in order to score higher for the second evaluation.

Regarding code duplication, duplicated code has been moved to separate methods, which can be
reused. However, not all duplicated code has been refactored. Some duplicated code had small
changes in indices or parameters. Although it could be possible to create different methods for this
duplicated code as well, it has been decided to not add those methods, since most of the duplicated
code was subject to change.

The biggest contributor to the grade of unit complexity was the receive method. This method could
however not be refactored, since it contains a switch statement which checks what kind of message
has been received. For each kind of message, a separate method was created. The cases of these
messages can not be decreased, since each type of message needs to be handled respectively.

The unit interfacing metric could not really be improved, since for most methods, all parameters are

50 7. Results

necessary. Although improving unit interfacing could be achieved by putting multiple parameters to-
gether into one object, it has been decided to not do this, since this will add some unnecessary space
allocation to the code. The product is a prototype and improving the unit interfacing metric with the
above described method, would not improve the software development cycle for this project.

Finally, the unit size of several methods have been reduced. The unit size has been reduced by moving
blocks of code which tried to achieve the same sub-goal into one method. Since code has been split
based on sub-goals, moving some blocks of code would not be logical to move into separate methods.
Therefore it has been decided to keep these methods as is.

7.2.3. Evaluation
Overall the project went well, the tasks were clearly defined by Fonto. An overview of the entire project
was made, dividing the entire project in a research (two weeks), investigation, implementation, mod-
ifying and documentation (two weeks) phase, with one week left for the presentation. This planning
has been followed over the entire project, making it overall easy to poll our progress and ensure that
we did not fall behind. Each week we also made a small scrum planning for that week and at the end
of each week there was a meeting with our coaches from Fonto to discuss findings and asks questions.

In the first week, the planning was made and research question were though of, also some brain-
storm sessions were held for how we wanted to tackle the implementation phase. During the research
phase we focused the first week on CRDTs in general, what are CRDTs and how do they function?
The investigation week was an in-depth analysis of CRDTs and find the type of CRDT which would
be the best for our purpose. We also researched if there was an existing CRDT on GitHub which we
could extend, since that would allow us to focus more on the research requirements which were not
yet available, instead of already existing features.

At the start of the implementation the basis for the research prototype was created and a test envi-
ronment was build. A text-editor was extended and combined with our CRDT for manual testing and
the start was made with the insert and delete functionality for characters. The second week a start
was made to support blocks of text and the insertion, deletion and moving of blocks, also brainstorm
sessions were held for the merge, and split functionality. The modifying week were solely used for split
and merge functionality. The split functionality was completed quickly, but the merge implementation
was more difficult than anticipated, therefore we tried multiple approaches. At the end of the implemen-
tation phase, merge still contained some bugs and was not entirely compatible with the split operation.
Still, the decision was made to stop with implementing and continue with the documentation phase.

7.3. Recommendations
In this section it will be discussed how the still existing weaknesses or bugs of the CRDT described
earlier could be optimised or solved. Due to time constraints, it has not been possible to implement
these optimisations, so therefore they will be described in this section.

The first optimisation is regarding the tree size. As mentioned before, the tree size could extremely
grow once the document size improves. The tree size could drastically be reduced by storing a string
in a node instead of a separate character in each node. However, when a user wants to insert in that
string, the string still needs to be split in two nodes. Research has already been done about this in the
following paper [30].

Another way to reduce the tree size, is to perform cleanups once no user is editing the document.
Such clean up could function as a garbage collector and could remove tombstones from the tree, re-
move split references and remove all merge references from the CRDT by adding them to the block
the refer to. Cleaning up the merge references will also optimise the previous described weakness re-
garding merges, since after every clean up, there are no merged blocks in the tree anymore. Cleanups
will also optimise the split operation, since tree size will be reduced, less content has to be copied to
the new block.

7.4. Prototype to Production 51

To optimise the searchBlock algorithm, a different algorithm could be used to find the blocks. Instead
of using BFS to find the block, a CRDT could keep track of a map containing the blockId and the path
to the block. This would optimise the searchBlock algorithm to O(1). To make this algorithm work how-
ever, one should ensure that the map will be updated correctly after every block operation.

The last approach for solving the circular references is to immediately remove the edge which has
the highest timestamp in the circle. However, this approach is rather ineffective for solving more than
one circular reference, since multiple CRDTs of multiple replicas can form different cycles, which will
then converge to different circular references. An approach which might work is to save all merge
references and construct a directed graph which contains all the references. The only problem left to
solve, is to commonly find the same path with all CRDTs, including all the connected nodes (if possi-
ble). Since each replica contains the same references, if a common path can be found, then all replicas
would merge the same blocks and therefore the replicas would converge.

As described in the previous chapter, the current bug with the merge and split operation, is that some
merge nodes might be redirected since it is inserted after a split node. This however could be undesired
behaviour, but also desired behaviour for some cases. When a block is already split, the merge with
that block would be redirected to the new block created by the split operation. This is undesired since
the block was already split and the expected behaviour would be to merge that block. To solve this
problem however, some distinction should be made for whether something was done before the split
operation or after. When this distinction can be made, this problem can be solved.

It is also recommended to research other types of CRDT structures. For this project Logoot was chosen
as the base structure, but researching other structures could lead to more insight in the functioning of
CRDTs and might be beneficial for the merge operation and increasing performance.

7.4. Prototype to Production
Tomake this prototype production-ready, first of all the current known bugs must be resolved. After that,
one should use amethod to prove the correctness of the current implementation of the CRDT. This could
be done as described earlier by creating all different permutation. Once, the current functionality of the
CRDT has been proven correct, nested blocks should be implemented. Finally, benchmarks should
be used to check whether the mentioned optimisations in the section above are indeed necessary
for Fontos purpose. If necessary, these optimisations should be implemented as well. Based on our
current experience with implementing CRDTs, it could be expected that it would take about 10 weeks
to achieve the above.

7.5. Ethical Implications
The use of real-time collaborative editing in the editor of Fonto does not introduce new security issues
or privacy concerns. Currently, companies using the product of Fonto host the product on their own
servers, so anyone who is not connected to the internet of the company or using a virtual private
network, cannot access the documents on their database. Therefore, they cannot use the Fonto editor
to edit these documents. Using CRDTs would not change this, since one should still be connected to
the internet of the company to get access to the documents. Therefore it can be concluded that there
are no ethical implications if Fonto would introduce real-time collaborative editing to their editor. Other
ethical implications which can occur when using real-time collaborative editing in the Fonto editor are
not caused by the CRDT itself, but by the implementation of the Fonto editor. One example is tracking
document history and which user made specific changes. This ethical implication is not a part of the
CRDT, but of the Fonto editor and how they decide to implement their editor.

8
Conclusion

During this research project, a CRDT has been built as a proof of concept to see whether CRDTs can
be used to enable collaborative editing of block-based text in Fonto’s editor.

8.1. Our CRDT implementation
After verifying the CRDT implementation, the following requirements have been met: inserting charac-
ters in blocks, deleting characters in blocks, inserting blocks, deleting blocks, moving blocks, splitting
blocks, and the offline support for these operations. On the contrary, the merge operation is imple-
mented, but does not function as expected for a small set of edge cases. There exists the possibility
of having circular merges, due to offline support, and a possibility for content loss when performing
multiple split and merge operations on the same block.

Implementing the merge functionality was the most time consuming functionality to implement, be-
cause merging blocks in combination with moving and splitting blocks and offline support has a huge
amount of edge cases which should be covered. It could not be concluded yet if the current approach
for merging blocks can cover all edge cases for merging blocks in combination with all other operations.

Regarding all other operations, it could be concluded that either the implementation is already effi-
cient or that an optimisation could be implemented to make the algorithm more efficient. However, no
benchmarks have been performed to check how fast this implementation is with different tree sizes.
Therefore, it could not be concluded yet at what tree size the CRDT does not perform operations in a
reasonable time.

8.2. Future Implications
This project has shown that it is indeed possible to use CRDTs for real-time collaborative editing in
block-based text. Although this might be a small step for real-time collaborative editing in the Fonto
product, this prototype showed that there are possibilities in using CRDTs for block-based text when
implementing real-time collaborative editing in other block-based editors.

The first next step, is to research merging blocks and find a solution which can solve all edge cases.
After that the time and space complexity of the CRDT should be measured using benchmarks and
optimised if necessary. When it has been proven that the CRDT is indeed fast enough for a smooth
user experience, one could look at adding other functionality such as undo and redo of operations as
well as catching user intent to improve the editing experience.

52

9
Project Evaluation

To reflect on the project, the overall planning and weekly plannings made over the entire project were
very helpful for conducting the research as it gave a good indication on where the difficulties were and
whether we were ahead or behind on planning.

The orientation and research phase all went perfect according to the plan, the research was done
in time, an already existing CRDT and a text editor which we could extend and combine with our CRDT
were found.

During the implementation and modifying phase, we deviated a little bit from the original plan. Instead
of implementing all functionality in the implementation phase and using the modifying phase to improve
our CRDT and implement extra functionality, all four weeks were used for implementation where the last
week was solely used for the merge functionality and bug fixes and the first three weeks for creating a
test environment and implementing all required functionality. During the implementation phase we got
a little bit overzealous. At the start it went really well, implementing insert and deletion of characters,
insertion, deletion and moving of blocks all went fairly easy. So after week two of implementing we
thought we maybe would even have a spare week for implementing extra functionality. During the last
two weeks however, we discovered that implementing the merge functionality in combination with all
other functionality was very complex. Additionally, when working on the merge operation, we learned
more about CRDTs and how to implement one. Other bugs were found which also needed to be fixed.
We underestimated the complexity of the merge operations and all the problems it could give in our
design.

During the documentation phase all our findings, recommendations, design decisions and implemen-
tation have been documented in this report.

What we would do better is when we discover a new problem, instead of trying to immediately fix
it, we should do some more extra research into the topic. For merge we used three approaches, and
after implementing an approach another flaw was found with that approach. It would have been better
if we would have taken more time to research the topic of merging blocks using CRDT and have a
better overview of all the issues that could arise. For the rest of the project we are happy how it went
and are satisfied with the result.

53

Bibliography
[1] Mehdi Ahmed-Nacer. Abstract unordered and ordered trees crdt, December 2011. URL https:

//www.academia.edu/26308619/Abstract_unordered_and_ordered_trees_CRDT.

[2] Mehdi Ahmed-Nacer, Claudia-Lavinia Ignat, Gérald Oster, Hyun-Gul Roh, and Pascal Urso. Eval-
uating CRDTs for Real-time Document Editing. In ACM, editor, 11th ACM Symposium on Doc-
ument Engineering, pages 103–112, Mountain View, California, United States, September 2011.
doi: 10.1145/2034691.2034717. URL https://hal.inria.fr/inria-00629503.

[3] Mehdi Ahmed-Nacer, Pascal Urso, Valter Balegas, and Nuno Preguiça. Merging OT and CRDT
Algorithms. In 1st Workshop on Principles and Practice of Eventual Consistency (PaPEC), Am-
sterdam, Netherlands, April 2014. doi: 10.1145/2596631.2596636. URL https://hal.
inria.fr/hal-00957167.

[4] Baquero, Carlos, Almeida, Paulo Sergio, and Ali. Pure operation-based replicated data types, Oct
2017. URL https://arxiv.org/abs/1710.04469.

[5] Loïck Briot, Pascal Urso, and Marc Shapiro. High Responsiveness for Group Editing CRDTs.
In ACM International Conference on Supporting Group Work, Sanibel Island, FL, United
States, November 2016. doi: 10.1145/2957276.2957300. URL https://hal.inria.fr/
hal-01343941.

[6] Murat Demirbas, Marcelo Leone, Bharadwaj Avva, Deepak Madeppa, and Sandeep S. Kulkarni.
Logical physical clocks and consistent snapshots in globally distributed databases, 2014.

[7] Paul Frauzee. Crdt notes, 2015. URL https://github.com/pfrazee/crdt_notes.

[8] Simon Guindon. Convergent replicated data types, n.d. URL http://simongui.github.io/
distributed-systems/crdt.html.

[9] Andrew Herron. To ot or crdt, that is the question, Jan 2020. URL https://www.tiny.cloud/
blog/real-time-collaboration-ot-vs-crdt/.

[10] Joe Honour. Distributed systems: Physical, logical, and vec-
tor clocks, Dec 2018. URL https://levelup.gitconnected.com/
distributed-systems-physical-logical-and-vector-clocks-7ca989f5f780.

[11] Dmitry Ivanov and Nami Naserazad. Practical demystification of crdt (lambda days 2016), 2016.

[12] Ajay Kshemalyani and Mukesh Singhal. Logical time, 2008. URL https://www.cs.uic.edu/
~ajayk/Chapter3.pdf.

[13] Brice Nédelec, Pascal Molli, Achour Mostefaoui, and Emmanuel Desmontils. LSEQ: an Adap-
tive Structure for Sequences in Distributed Collaborative Editing. In 13th ACM Symposium on
Document Engineering (DocEng), pages 37–46, Florence, Italy, September 2013. doi: 10.
1145/2494266.2494278. URL https://hal.archives-ouvertes.fr/hal-00921633.
10 pages.

[14] Mikhail Nesterenko. Managing physical clocks in distributed systems, 2002. URL http://vega.
cs.kent.edu/~mikhail/classes/aos.f02/l06physicalclocks.PDF.

[15] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. Near real-time peer-to-peer
shared editing on extensible data types. pages 39–49, 11 2016. doi: 10.1145/2957276.
2957310.

54

https://www.academia.edu/26308619/Abstract_unordered_and_ordered_trees_CRDT
https://www.academia.edu/26308619/Abstract_unordered_and_ordered_trees_CRDT
https://hal.inria.fr/inria-00629503
https://hal.inria.fr/hal-00957167
https://hal.inria.fr/hal-00957167
https://arxiv.org/abs/1710.04469
https://hal.inria.fr/hal-01343941
https://hal.inria.fr/hal-01343941
https://github.com/pfrazee/crdt_notes
http://simongui.github.io/distributed-systems/crdt.html
http://simongui.github.io/distributed-systems/crdt.html
https://www.tiny.cloud/blog/real-time-collaboration-ot-vs-crdt/
https://www.tiny.cloud/blog/real-time-collaboration-ot-vs-crdt/
https://levelup.gitconnected.com/distributed-systems-physical-logical-and-vector-clocks-7ca989f5f780
https://levelup.gitconnected.com/distributed-systems-physical-logical-and-vector-clocks-7ca989f5f780
https://www.cs.uic.edu/~ajayk/Chapter3.pdf
https://www.cs.uic.edu/~ajayk/Chapter3.pdf
https://hal.archives-ouvertes.fr/hal-00921633
http://vega.cs.kent.edu/~mikhail/classes/aos.f02/l06physicalclocks.PDF
http://vega.cs.kent.edu/~mikhail/classes/aos.f02/l06physicalclocks.PDF

Bibliography 55

[16] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. Real time group editors
without Operational transformation. Research Report RR-5580, INRIA, 2005. URL https:
//hal.inria.fr/inria-00071240.

[17] Gérald Oster, Pascal Molli, Pascal Urso, and Abdessamad Imine. Tombstone Transformation
Functions for Ensuring Consistency in Collaborative Editing Systems. In IEEE Conference on
Collaborative Computing: Networking, Applications and Worksharing - CollaborateCom 2006,
Collaborative Computing: Networking, Applications and Worksharing, 2006. CollaborateCom
2006. International Conference on, pages 1–10, Atlanta, Georgia, USA, November 2006. IEEE.
doi: 10.1109/COLCOM.2006.361867. URL https://hal.inria.fr/inria-00109039.
http://ieeexplore.ieee.org/.

[18] Nuno Preguiça, Joan Manuel Marquès, Marc Shapiro, and Mihai Le�ia. A commutative replicated
data type for cooperative editing. In 29th IEEE International Conference on Distributed Computing
Systems (ICDCS 2009), pages 395–403, Montreal, Québec, Canada, June 2009. IEEE Computer
Society. doi: 10.1109/ICDCS.2009.20. URL https://hal.inria.fr/inria-00445975.

[19] Michal Ptaszek. Chat service architecture: Persistence, Jan 2016. URL https://technology.
riotgames.com/news/chat-service-architecture-persistence.

[20] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive study of
Convergent and Commutative Replicated Data Types. Research Report RR-7506, Inria – Centre
Paris-Rocquencourt ; INRIA, January 2011. URL https://hal.inria.fr/inria-00555588.

[21] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free Replicated Data
Types. Research Report RR-7687, Inria – Centre Paris-Rocquencourt ; INRIA, August 2011. URL
https://pages.lip6.fr/Marc.Shapiro/papers/RR-7687.pdf.

[22] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive study of
Convergent and Commutative Replicated Data Types. Research Report RR-7506, Inria – Centre
Paris-Rocquencourt ; INRIA, January 2011. URL https://hal.inria.fr/inria-00555588.

[23] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive study of
Convergent and Commutative Replicated Data Types. Research Report RR-7506, Inria – Centre
Paris-Rocquencourt ; INRIA, January 2011. URL https://hal.inria.fr/inria-00555588.

[24] D. Sun and C. Sun. Context-based operational transformation in distributed collaborative editing
systems. IEEE Transactions on Parallel and Distributed Systems, 20(10):1454–1470, 2009.

[25] David Sun, Steven Xia, Chengzheng Sun, and David Chen. Operational transformation for col-
laborative word processing. In Proceedings of the 2004 ACM Conference on Computer Sup-
ported Cooperative Work, CSCW ’04, page 437–446, New York, NY, USA, 2004. Associa-
tion for Computing Machinery. ISBN 1581138105. doi: 10.1145/1031607.1031681. URL
https://doi.org/10.1145/1031607.1031681.

[26] Bartosz Sypytkowski. An introduction to state-based crdts, Dec 2017. URL https://
bartoszsypytkowski.com/the-state-of-a-state-based-crdts/.

[27] Stéphane Weiss, Pascal Urso, and Pascal Molli. Logoot: A Scalable Optimistic Replication Al-
gorithm for Collaborative Editing on P2P Networks. In 29th IEEE International Conference on
Distributed Computing Systems - ICDCS 2009, 2009 29th IEEE International Conference on
Distributed Computing Systems, pages 404–412, Montreal, Canada, June 2009. IEEE. doi:
10.1109/ICDCS.2009.75. URL https://hal.inria.fr/inria-00432368.

[28] Stéphane Weiss, Pascal Urso, and Pascal Molli. Logoot: a p2p collaborative editing system. Jan
2008.

[29] Michael Whittaker. Crdt visualization, Nov 2016. URL https://github.com/mwhittaker/
crdts#state-based-pn-counter.

[30] Weihai Yu. A string-wise crdt for group editing. pages 141–144, 10 2012. doi: 10.1145/
2389176.2389198.

https://hal.inria.fr/inria-00071240
https://hal.inria.fr/inria-00071240
https://hal.inria.fr/inria-00109039
https://hal.inria.fr/inria-00445975
https://technology.riotgames.com/news/chat-service-architecture-persistence
https://technology.riotgames.com/news/chat-service-architecture-persistence
https://hal.inria.fr/inria-00555588
https://pages.lip6.fr/Marc.Shapiro/papers/RR-7687.pdf
https://hal.inria.fr/inria-00555588
https://hal.inria.fr/inria-00555588
https://doi.org/10.1145/1031607.1031681
https://bartoszsypytkowski.com/the-state-of-a-state-based-crdts/
https://bartoszsypytkowski.com/the-state-of-a-state-based-crdts/
https://hal.inria.fr/inria-00432368
https://github.com/mwhittaker/crdts#state-based-pn-counter
https://github.com/mwhittaker/crdts#state-based-pn-counter

56 Bibliography

[31] Weihai Yu, Luc André, and Claudia-Lavinia Ignat. A CRDT Supporting Selective Undo for Col-
laborative Text Editing. In Alysson Bessani and Sara Bouchenak, editors, 15th IFIP Interna-
tional Conference on Distributed Applications and Interoperable Systems (DAIS), volume LNCS-
9038 of Distributed Applications and Interoperable Systems, pages 193–206, Grenoble, France,
June 2015. Springer International Publishing. doi: 10.1007/978-3-319-19129-4_16. URL
https://hal.inria.fr/hal-01246212.

https://hal.inria.fr/hal-01246212

A
Info Sheet

57

Title: CRDTs for Fonto
Client: Fonto
Presentation date: 2 July 2020

Problem description:
Fonto has a rich What You See Is What You Mean text editor for structured XML content in which the client can
easily create structured text with the use of an easy to understand user interface. Currently, no real-time
collaboration functionality is provided for this rich editor, which led to this graduation project. Fonto wanted to
know if CRDTs could be used to make collaborative editing of structured content possible. The core challenge of
this project is that CRDTs are relatively new, whereas little to no information was found on block operations.
Going through the research phase, lots of insights were acquired on how CRDTs work. This allowed us to
understand the core of CRDTs and helped us more in problem-solving. A proof of concept prototype has been
developed for showing whether CRDTs could potentially be used for the client. This prototype used automated
tests to verify whether the block operations had been implemented correctly. Also, the created CRDT has been
connected to a block-based text-editor for manual testing and visualising the behaviour. Whilst developing this
prototype, the Scrum methodology was used, whereas each week, a list of tasks was picked from the backlog,
which was created at the start of the project. The created prototype showed that most block operations can be
supported by this current implementation. Only the merge functionality contained inconsistencies. Other
challenges were guaranteeing convergence which had been solved by introducing timestamps for certain
operations. Our recommendations are to do more research to see if the merge functionality can be supported by
CRDTs and to optimise the time complexity.

Introduction team members
Quentin Lee
Interest: Programming, Data science, Web development
Role & Contribution: Back-end developer, Front-end developer, and Tester

Martin Li
Interests: Software engineering
Role & Contribution: Back-end developer, Tester, Scrum Master, and Contact person

Cas van Rijn
Interests: Embedded systems, User interaction and Web development
Role & Contribution: Back-end developer and Tester

Wang Hao Wang
Interests: Algorithms and Optimisation
Role & Contribution: Back-end developer and Tester

Client, advisors, and coach
Name of the client: Bert Willems (Fonto)
Names of the advisors: Stef Busking (Fonto) and Martin Middel (Fonto)
Name of the TU coach: Bart Gerritsen

Contact person
Name and email of the contact person: Martin Li, martinchunho@gmail.com

The final report for this project can be found at: https://repository.tudelft.nl/

58 A. Info Sheet

B
Legend

Figure B.1: Legend

59

C
Project Description

60

Bachelor project: CRDTs for Fonto
Researchers: Martin Li, Wang Hao Wang, Cas van Rijn, Quentin Lee
Client: Bert Willems (Fonto)
Supervisor: Bart Gerritsen
Advisor: Stef Busking (Fonto)

Introduction
At Fonto we aim to make editing XML as easy as editing a Word document. Our editor
provides a rich text, what you see is what you mean (WYSIWYM) editing experience which can
be configured to fit any XML schema. When multiple authors collaborate on the same
document, Fonto currently relies on the CMS to provide locking functionality to ensure only
one author can work on any part of the document at a time. To provide for a more intuitive
editing experience, we would like to lift this limitation in the future and enable true
concurrent editing, as seen in Google Docs. Furthermore, in our work to enable IME input in 1

Fonto we have identified a very similar problem where both the IME and Fonto will make
concurrent edits on the same state, which have to be resolved to avoid discarding either. As
both of these problems involve handling concurrent editing operations into a single
consistent state, we believe a single solution may fit both cases.

We have previously investigated several approaches to dealing with concurrent edits, and
have concluded that CRDTs, or Concurrent Replicated Data Types, provide the best fit.
However, it appears there is no CRDT currently that fits our content models. In Fonto, content
is stored as XML trees. In the process of editing, text within the XML tree will frequently be
split, joined with other text and moved around together with the surrounding XML elements.
While CRDTs exist that model documents as a run of possibly annotated text, we have not
found any CRDTs that allow blocks of text to be freely split, joined and moved around while
maintaining the results of concurrent edits within each block.

Requirements
1. Develop a prototype implementation of a CRDT that supports the following operations:

inserting and deleting text, splitting and merging blocks of text, moving blocks around.

1 Input Method Editor, a common way to insert characters from non-western scripts.

61

2. Develop tooling for manual and automated testing of the CRDT to confirm its
correctness, robustness and user-friendliness in terms of preservation of user intent.

3. Document implementation and report findings.

Suggested approach
1. Investigate CRDT literature. Pick one or more existing CRDTs on which to base the

work.
2. Implement prototype of the base CRDT for text-level operations, including a simplified

editor environment.
3. Implement tooling to test the CRDT implementation.
4. Design and implement extensions to the CRDT to support block-level operations.
5. Evaluate and document your results.

Possible extensions
● Extend the CRDT to implement other aspects of the XML data model, such as

attributes. In addition to movable blocks of text, representing actual XML documents
requires modeling several other aspects, including the ability to nest elements and
assign attributes. If time allows, the students can investigate and experiment with
ways to extend the CRDT to model such aspects.

● Automatically reorder operations into a sequence that minimizes the number of
times the “current author” switches. Fonto is usually integrated with an existing
content management system that is not aware of collaboration in the true concurrent
sense. Several of these CMSes track edits to a document in terms of revisions, created
whenever a new author makes changes. We would like to investigate ways to minimize
the number of revisions created for concurrent editing sessions by taking advantage
of the possibility offered by CRDTs to reorder concurrent but independent operations.

● Investigate approaches for dealing with restrictions placed on the document. XML
documents are usually subject to restrictions imposed by a schema. This includes not
only restrictions on which elements may occur where, but also on things like the
number of child elements under some parent. Even if individual edits obey such
restrictions, the result of merging concurrent edits may not. If time allows, the
students can investigate approaches to resolve such violations in a way that
converges to the same result for all users in the editing session.

62 C. Project Description

Other information
Fonto (formerly Liones) has more than 7 years of experience in offering internships to
students of The Hague University of Applied Sciences. We have helped over dozens of
students with their graduation over the years, and many of them are still employed by us
today. This bachelor project is our first project at TU Delft, but we are super enthusiastic and
convinced that we can offer them a great challenge with the best supervision possible.

The students receive an internship allowance of EUR 450.00 per month. The students can
work with us on location.

References
1. CRDTs and the Quest for Distributed Consistency =>

https://www.infoq.com/presentations/crdt-distributed-consistency/
2. CRDTs in Production => https://www.infoq.com/presentations/crdt-production
3. A comprehensive study of Convergent and Commutative Replicated Data Types =>

https://github.com/papers-we-love/papers-we-love/blob/master/data_replication/a
-comprehensive-study-of-convergent-and-communative-replicated-data-types.pdf

4. Notes on Splicing CRDTs for Structured Hypertext =>
https://lord.io/blog/2019/splicing-crdts/,
https://www.figma.com/blog/how-figmas-multiplayer-technology-works/#the-details-
of-figma-s-multiplayer-system

5. https://blog.acolyer.org/2019/03/11/efficient-synchronisation-of-state-based-crdts/a
mp/

6. Evaluating CRDTs for real-time document editing
https://dl.acm.org/citation.cfm?id=2034717
Let Bert known if you need the PDF.

7. Real Differences between OT and CRDT in Correctness and Complexity for Consistency
Maintenance in Co-Editors => https://arxiv.org/ftp/arxiv/papers/1905/1905.01302.pdf

8. Delta State Replicated Data Types => https://arxiv.org/pdf/1603.01529.pdf
9. Supporting String-Wise Operations and Selective Undo for Peer-to-Peer Group Editing

=> https://dl.acm.org/citation.cfm?doid=2660398.2660401
10. CRATE: Writing Stories Together with our Browsers =>

https://dl.acm.org/citation.cfm?doid=2872518.2890539
11. Real time group editors without Operational transformation - Gérald Oster, Pascal

Urso, Pascal Molli, Abdessamad Imine => https://hal.inria.fr/inria-00071240/document

63

12. LSEQ: an adaptive structure for sequences in distributed collaborative editing=>
https://dl.acm.org/citation.cfm?doid=2494266.2494278

13. Logoot: a P2P collaborative editing system - Stéphane Weiss, Pascal Urso, Pascal Molli
=> https://hal.inria.fr/inria-00432368/document

14. Replicated abstract data types: Building blocks for collaborative applications -
Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, Joonwon Lee =>
http://csl.skku.edu/papers/jpdc11.pdf

15. Replicated data types: specification, verification, optimality =>
https://dl.acm.org/citation.cfm?doid=2535838.2535848

16. Making operation-based CRDTs operation-based =>
https://dl.acm.org/citation.cfm?doid=2596631.2596632

17. Conflict-Aware Replicated Data Types => https://arxiv.org/abs/1802.08733v1
18. Real-time Collaborative Editing with CRDTs

64 C. Project Description

D
Project Plan

65

Project Plan:
Conflict-free replicated data types

(CRDTs) for Fonto

Researchers: Martin Li, Wang Hao Wang, Cas van Rijn, Quentin Lee
Client: Bert Willems (Fonto)

Advisor: Stef Busking (Fonto)
TU Delft coach: Bart Gerritsen

22 April, 2020

66 D. Project Plan

Introduction
For the graduation project: CRDTs for Fonto, our task is to find and implement a prototype
of a CRDT variant, with modifications, which would meet the minimum requirements given
by Fonto. For this to be realized, a project plan is made which describes how the
upcoming ten weeks will be spent. The Project Plan will serve as an agreement between
the project leader, the formal client, and other personnel associated with or affected by
the project. The following chapters will provide an overview of the project and the phases
of development.

Project Description
Fonto aims to make editing XML as easy as editing a Word document. The Fonto editor
provides a rich text, what you see is what you mean (WYSIWYM) editing experience which
can be configured to fit any XML schema. When multiple authors collaborate on the same
document, Fonto currently relies on the CMS to provide locking functionality to ensure
only one author can work on any part of the document at a time. To provide for a more
intuitive editing experience, Fonto would like to lift this limitation in the future and
enable true concurrent editing, as seen in Google Docs. The difference in complexity
between Google Docs and Fonto lies in the support of many extended features that Fonto
supports, e.g. support for arbitrary XML schemata and the ability for Fonto’s partners to
write any custom mutation to manipulate the XML model.

Some of the limitations of using conflict-free replicated data types (CRDTs) with XML
editing is that XML is a tree-based structure which needs to be kept intact. In the editor of
Fonto, it is possible to swap blocks of text around. This can result in loop references when
two parts are swapped with each other and start pointing to each other as parent,
resulting in a loss of text.

The following questions are defined to facilitate this research:

The main research question for this project is:
How can CRDTs be used to implement concurrent editing of XML files using a text-based
editor?

Subquestion:

1. Why use CRDT over other collaborative editing algorithms?
2. What types of CRDTs are there?
3. Which CRDT is the best fit for Fontos purpose?

67

Deliverables
During this project, there are mandatory and optional deliverables. These deliverables are
either code, a prototype, document or a presentation.

Mandatory deliverables:

● Project plan (22-04)
○ This document, a plan of execution for the project during the upcoming 10

weeks.
● Research report (08-05)

○ Report that summarizes the results of the research phase and will
elaborate on the approach of the rest of the project based on those results.

● Final report (TBD)
○ The final report for the entire project. This report will contain the research

report mentioned above, a problem definition and analysis. The design of
the solution, implementations (if applicable), conclusions, discussions and
recommendations based upon the findings during the project.

● Bachelor Project Info Sheet (TBD)
○ A standard A4 sheet containing a summary and the highlights of the

project.
● Code for review by the Software Improvement Group (First submission 31-05,

Second submission 14-06)
○ Two times during the project we will submit our code to the Software

Improvement Group of the TU Delft. This will be all our code we have
written up to that point.

● Final Presentation (TBD)
○ A 30-minute presentation at the end of the project containing motivation,

process, evaluation, conclusion, and demo.

Optional deliverables:

● A prototype CRDT where a collaborative editing of a tree-based document
containing text is possible and the structure is kept intact when moving text
around. The aim is to add as much as possible of the following functionalities:

○ adding and removing text
○ splitting of text
○ merging of text
○ moving blocks of text while preserving a tree model and without losing or

duplicating text

68 D. Project Plan

Project Roadmap
Throughout the whole project we will document our findings and work on our report.

Week 1-2 Research Phase
The first two weeks will be focused on research. In this research, research will be done on
different CRDTs, what CRDTs already exist and what CRDT is most suitable for our
implementation. The findings will be written in the research report.

Week 3 Investigation Phase
After researching the papers, based on our findings a selection of CRDTs is made which
we will dive further into. This means that the selected CRDTs will be reviewed on what
they are capable of, what the limitations are, how it fits within Fonto’s model, and the
degree of difficulty. We will also start looking into existing implementations of CDRTs
fitting for our purpose and see if we can use those. The main goal of this week is to find
an already existing CRDT, which is sufficient enough for us to build further on. At the end
of the investigation phase we will select which CDRT we are going to use and have defined
a strategy for implementation.

Week 4-6 Implementation Phase
After selecting a CRDT, we will fork this CRDT, modify the implementation to our needs
and add functionality if needed. In addition, we will write tests to validate the
functionality of the CRDT using the Mocha testing framework. At the end of this phase, we
want to have a CRDT that satisfies the minimum requirements. (inserting and deleting
text, splitting and merging blocks of text, moving blocks around)

Week 7-8 Modifying Phase
Create a text editor in which we will implement our CRDT for manual testing. Improve our
CRDT and implement extra functionality if there is enough time left.
Some of the extra functionality we could implement is:

● Extend the CRDT to implement other aspects of the XML data model, such as
attributes.

● Automatically reorder operations into a sequence that minimizes the number of
times the “current author” switches.

● Investigate approaches for dealing with restrictions placed on the document.

Finally, in the modifying phase, we will start writing the report, based on the findings from
the implementation phase.

Week 9 - 10 Report and Presentation
In the last week, we will finish the report and make the final modifications on the CRDT, if
necessary. Furthermore, we will work on the final presentation and give the final
presentation in week 10.

69

Communication Plan
For, at least, the first two weeks we will be working remotely from home, because of the
COVID-19 pandemic. We will mainly use WhatsApp and Slack for our internal
communication.

For communication with the client, we use Slack for messaging and Google Meet for
meetings. Every business day at 9:15 AM a daily stand-up is planned whereas all members
are required to pitch about what they have done the past day and how they will continue
to work for the next day. Additionally, every Friday, there will be a meeting with the client
to discuss about encountered problems and updates about the progress. Whenever
urgent problems arise, a meeting will be planned as soon as possible to resolve those
problems.

For communication with the TU Delft coach, we have a weekly Skype meeting where we
will discuss our progress of the project.

For the planning of the project, we will use the scrum methodology. Every week we will
define new goals to achieve at the end of the week. At the end of each week we will have a
retrospective in which we will review our progress and adjust our goals accordingly.

70 D. Project Plan

	Introduction
	About the project
	Fonto
	Problem definition
	CRDT
	Development process

	Research report
	Introduction
	CRDTs
	What are CRDTs?
	What does conflict-free mean?
	What does replication mean?
	What are the use cases of CRDTs?

	CRDTs versus other collaborative editing algorithms
	Operational Transformation (OT)
	Comparison between OT and CRDT
	Conclusion

	Commutative vs Convergent CRDT
	Commutative CRDT
	Convergent CRDT
	Commutative CRDT versus Convergent CRDT

	What known CRDTs are available?
	Tree-based CRDTs vs Set-based CRDTs
	G-Counter
	PN-Counter
	Non-Negative-Counter
	Growth Only Set
	2P-Set
	U-Set
	Last-Writer-Wins-Element-Set (LWW)
	Observed Remove Set
	PN-Set
	Sequence CRDTs

	Best CRDTs for our use case
	Conclusion Research Report

	Requirements and problem analysis
	Requirements
	Problem Analysis
	Types of sequence CRDTs
	Time and Space Analysis
	Degree of implementation difficulty
	Chosen CRDT

	Design
	Basic Logoot implementation
	Insert and delete nodes

	Approaches for block operations
	Detailed design

	Implementation
	Validating the basic implementation
	Implementing block functionality
	Insert and delete nodes in the CRDT
	Insert and delete blocks
	searchBlock
	Insert and delete content in blocks
	Moving blocks
	Merge blocks
	Splitting blocks

	Validating the block functionality

	Testing the prototype
	Editor
	Editor design
	Editor features

	Testing
	Automatic tests
	Manual tests

	Known bugs

	Results
	Test results
	Discussion
	CRDT
	Feedback Software Improvement Group
	Evaluation

	Recommendations
	Prototype to Production
	Ethical Implications

	Conclusion
	Our CRDT implementation
	Future Implications

	Project Evaluation
	Bibliography
	Info Sheet
	Legend
	Project Description
	Project Plan

