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Abstract

The front-end of a compiler reads the source program and performs analyses such
as type checking. The goal of the front-end is to check for the presence of syntactic and
semantic errors before the program is passed to the back-end of the compiler for tasks
such as optimization and code generation.

WebDSL is a domain-specific language for web programming that is being used for
over 15 years. With WebDSL, many applications have been developed which have thou-
sands of daily users. While the language has evolved over the years, the core of its im-
plementation remains unchanged and is starting to show signs of a legacy system. The
current WebDSL syntax is defined in SDF2 and all other parts of the compiler are imple-
mented in Stratego.

This thesis presents a modernized front-end of the WebDSL compiler, utilizing the
meta-languages of the Spoofax language workbench. Specifically, we introduce a syntax
definition of WebDSL in SDF3 that is implemented without the use of post-parse filters,
and an executable declarative specification of the WebDSL static semantics in Statix.

We use the modernized front-end as the largest case study to date for the meta-
languages SDF3 and Statix, in order to evaluate their expressiveness, performance, and
elegance when they are used to implement a real world language.
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Chapter 1

Introduction

Computer programming is an essential skill that is increasingly important in diverse disci-
plines (Rafalski et al. 2019). To this end, many programming languages exist, each with
different properties and advantages. Over time, the popularity of programming languages
changes and developers tend to have preferences for one language over the other. In addition
to preference, the implementation of a language and the tools that come with it can greatly
boost the productivity of developers, if done well.

Another key to boost the productivity of software engineers is abstractions. Abstractions
allow developers to think in terms closer to the domain rather than the implementation. In
other words, the ideal level of abstraction increases the focus on the what, and steers away
from the how. In this thesis, we will conduct a case study using domain-specific languages
(DSLs). As opposed to a general-purpose language such as Java, C, or Python, a domain-
specific language does not intend to provide solutions for problems from all domains, but
instead focus on a single domain. This restriction allows for a high level of abstraction in the
language itself, in an attempt to boost developer productivity. Examples of popular domain-
specific languages are CSS for styling web pages and SQL for efficient database querying.

In this thesis, we use the domain-specific language WebDSL as a large case study for
the domain-specific languages SDF3 and Statix. WebDSL is a domain-specific language for
developing web applications, developed and maintained by the Programming Languages
research group of the Delft University of Technology.

When inspecting the implementation of a programming language, it can be split up in
multiple parts such as parsing, static analysis, code generation and optimization. The pars-
ing, desugaring and static analysis is often called the front-end of a programming language,
and this is the part developers face directly. The code generation and code optimization is
called the back-end, and is required to make the programming language operational. While
the back-end of a programming language makes it work, the front-end plays a large role in
how developers experience a programming language. Early feedback in the form of good er-
ror messages and hints are required to make the interaction with a programming language
efficient (Becker et al. 2019).

Because of the language-based approach ofWebDSL for encodingdomain concepts,many
features that would be a library or an external tool in a general purpose language, are linguis-
tically integrated into WebDSL. Examples of such features are fuzzy search and defining the
datamodel. The linguistic integration of these features allows for better consistency checking
and more precise error descriptions.

Currently, the WebDSL implementation is composed of multiple definitions in meta-
languages supported by the Spoofax LanguageWorkbench (Kats andVisser 2010). Spoofax is an
environment in which multiple meta-DSLs are used to declaratively specify a programming
language. WebDSL is developed in Spoofax. In particular, the WebDSL syntax is defined
in SDF2 and the desugaring, type checking, optimization and code generation is defined in

1



1. INTRODUCTION

the term transformation language Stratego. In the current Stratego implementation of the
WebDSL language, the compilation steps are not clearly separated, which poses a threat to
the readability and maintainability of the WebDSL language.

Continuous improvement of the Spoofax languageworkbench has introducedmoremeta-
languages specialized in different parts of the language development chain. In this thesis, we
will be modernizing the WebDSL front-end, by using the Spoofax meta-languages SDF3 to
specify and disambiguate theWebDSL syntax fromwhich a parser is generated, and Statix to
declare the WebDSL static semantics from which a type checker is automatically generated.

1.1 Case Study Description
In this section we describe the design of the case study conducted in this thesis, according to
the framework described by Runeson and Höst (2009).

Objective The objective of the case study is of exploratory nature, namely to gain insight
into the meta-languages SDF3 and Statix. Specifically, we aim to gain insight into their ex-
pressiveness, performance and maintainability. With these insights, we hope to generate
suggestions for improvements of the meta-languages.

TheCase WebDSL is used as the case in this case study. Through implementing theWebDSL
syntax in SDF3 and its static semantics in Statix we aim to gain insights as described in the
objective.

Background Both WebDSL and the meta-languages of the Spoofax language workbench
are created and maintained by the Programming Languages research group of the TU Delft.
WebDSL is used in practice to make web applications with thousands of daily users, and its
current front-end implementation is one of the largest projects in SDF2 and Stratego.

Research Questions In this thesis, we aim to answer the following research questions.

• RQ1 Is it possible to define the WebDSL syntax in SDF3, without the use of post-parse
filters?

• RQ2 How does the run time efficiency of the parser generated from WebDSL in SDF3
compare to the current WebDSL parser generated from SDF2?

• RQ3Howdoes themaintainability ofWebDSL in SDF3 compare to theWebDSL syntax
definition in SDF2?

• RQ4 Is a Statix implementation of the WebDSL static semantics able to catch the same
errors and warnings as the current implementation in Stratego?

• RQ5Howdoes the run time efficiency of theWebDSL static semantics in Statix compare
to the current WebDSL implementation?

• RQ6 How does the maintainability of the WebDSL static semantics in Statix compare
to the current implementation?

2



1.2. Contributions

Methods To answer the research questions, we implement a modernized WebDSL front-
end using SDF3 and Statix. We evaluate the generated parser and type-checker on multiple
targets. The current WebDSL compiler contains large test suites that contain hundreds of
test programs for the parser and static analysis. Most of these test programs stem from real
life production bugs of the compiler. We use the test suites to evaluate the completeness and
run time performance of the parser generated from SDF3, and the static analysis generated
from Statix.

Why WebDSL? WebDSL is an interesting case study for SDF3 and Statix because of two
main reasons. Firstly, WebDSL has a large amount of language features inspired by multiple
paradigms of programming languages. As a consequence, the SDF3 and Statix specifications
we present in this thesis are arguably the largest specifications to date. Accompanied by the
large amount of publicly available source code for evaluation purposes, we aim to make
observations about the elegance of the resulting specifications and the scalability of their
performance. Since this thesis is a case study, we cannot use the result tomake general claims
about the performance of SDF3 and Statix, but only reveal and analyze results of theWebDSL
specification. Secondly, WebDSL contains language features that have never been modelled
in Statix before such as extension of built-in types, generated functions and classes and an
unconventional module and scoping system.

1.2 Contributions
In this thesis, the following contributions are made.

• We present a modernized WebDSL front-end through an implementation of its gram-
mar in SDF3 and its static analysis in Statix and document the challenges of this process.

• We assess the expressiveness of SDF3 and Statix by attempting to model all language
features of WebDSL, evaluating the result on existing test suites.

• We assess the run time performance of SDF3 and Statix by benchmarking the new
WebDSL front-end using test suites and large codebases of existing applications.

• We provide the SDF3 and Statix language engineers with a large specification which
can be used for evaluation purposes in their research.

1.3 Outline
The rest of this thesis is structured as follows. In Chapter 2 we describe WebDSL, its features
and its current implementation. Next, Chapter 3 and Section 4.1 go in detail about the new
implementation of the WebDSL front-end in SDF3 and Statix respectively. The result of this
implementation is evaluated in Chapter 5 and compared with related work in Chapter 6.
Finally, Chapter 7 concludes this thesis.
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Chapter 2

WebDSL

In this chapter we describe WebDSL. WebDSL is a domain-specific language for developing
web applications. The language incorporates ideas from various web programming frame-
works and produces code for all tiers in a web application (Groenewegen, E. v. Chastelet,
and Visser 2020). Ever since its introduction over 15 years ago (Visser 2007), WebDSL has
been a vehicle for research and on top of that, it is the programming language underpinning
several applications used daily by thousands of users. Examples of WebDSL applications
include:

• WebLab: An online learningmanagement system, used by theDelft University of Tech-
nology.

• conf.researchr.org: A domain-specific content management system for conferences,
used by most ACM SIGPLAN and SIGSOFT conferences.

• researchr.org: A platform for finding, collecting, sharing, and reviewing scientific com-
puter science related publications.

InWebDSL, all aspects of web programming are defined in the same language which cre-
ates an opportunity for strong static consistency checking (Hemel, Groenewegen, et al. 2011).
The data model is defined using entities, which are automatically translated to a database
representation. These entities can be passed as arguments of pages without the need to ex-
plicitly fetch data from the database. Large amounts of boilerplate code are abstracted over
byWebDSL, by providing built-in but customizable functionality for access control, relations
between entities and data validation. This combination of features allows WebDSL develop-
ers to efficiently create functioning prototypes while providing the functionality to make it
scale and customizable.

The rest of this chapter showcases the different aspects of WebDSL and zooms in on
its non-trivial features. First, in Section 2.1 we will describe how WebDSL offers function-
ality for creating web user interfaces. Next, in Section 2.2 we illustrate how the language
manages data models. Thirdly, Section 2.3 contains information about WebDSL’s solution
for access control and in Section 2.4 we highlight interesting aspects of its general-purpose
object-oriented function code. We conclude this chapter by elaborating on the current imple-
mentation of the WebDSL static analysis in Section 2.6.

2.1 User Interfaces
The user interface of an application is the part of the system that the user interacts with.
Through the user interface, users are able to navigate the system and manipulate its data.
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2. WEBDSL

application app
page root {
title { "Cookbook" }

header { "Recipes" }

linkToRecipe("Lasagne")
linkToRecipe("Pancakes")
linkToRecipe("Tomato Soup")

}

page recipe(s : String) {
title { "Cookbook: ~s" }

navigate root() {
"Back to homepage"

}

header { "~s" }

"Welcome to the recipe page for ~s!"
}

template linkToRecipe(s : String) {
par {
navigate recipe(s) {
"View recipe for ~s"

}
}

}

(a) WebDSL code

(b) Root page

(c) Recipe page

Figure 2.1: An example of a simple WebDSL application with two pages, navigation and
reusable templates.

2.1.1 Building Blocks: Pages, Templates and Template Elements

In aWebDSL application, the user interface is exposed to the user via pages that are accessible
from the browser. In WebDSL, pages are defined by their unique name and can optionally
take arguments that directly correspond with the path of the webpage.

Templates are reusable definitions of user interface code that can be included on pages
and can be nested in other templates. Figure 2.1 shows an example of an application with
two pages, the root page and the recipe page, with navigation between them and a reusable
template called linkToRecipe that creates a link to the recipe page with an argument of type
string. The recipe page also takes one argument of type string which is visible in the URL
path.

The navigate calls are references to other pages in the application. Because all pages
are known at compile time, WebDSL ensures that all navigation within an application refers
to existing pages, and that the passed types are correct. Referring to a non-existing page
or passing the wrong argument types would show an error in the WebDSL development
environment and while compiling the application.
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Other than pages and templates and navigation between pages, the application uses vari-
ous calls to built-in template such as title, header and par. These built-in templates are trans-
lated to their respective HTML elements <title></title>, <h1></h1> and <p></p>. WebDSL
also supports directly usingHTMLelementswith their usual syntax such as <div>"text"</div>,
but using template-style code such as div { "text" } is the convention in WebDSL.

Outputting text on a webpage in WebDSL can be done by typing the text between quotes
in a template or page, as is shown in the example cookbook application of Figure 2.1.

Using the concepts described in this subsection, developers are able to create static web-
sites with WebDSL. However, a powerful aspect of WebDSL is its ability to create dynamic
pages without requiring much boilerplate code.

2.1.2 Request Processing and Action Code

HTML has a notion of forms and inputs that can be submitted to a web server, after which
the web server returns a result. WebDSL code compiles to HTML forms and takes away the
responsibility ofmanually linking the input data to variables. Figure 2.2 shows an example of
the cookbook application where the user is able to enter a name in an input field and browse
to that recipe.

Figure 2.2 no longer contains a fixed list with links to all possible recipes as in Figure 2.1
but nowuses a formwith an input and submits an actionwhen the user presses a button. The
root page contains a variable declaration as the first line, which defaults to an empty string.
In the form later on the page, this variable is passed to an input element. After the input, the
form has a button that send a request to the web server to execute the action toRecipe when
it is pressed. When this request is sent to the server, the data entered in the input field is
linked to variable s byWebDSL, and the action code is able to use this in its body. The return
value of an action is the page that should be shown as response. In the example of Figure 2.2,
the result of executing the action is to show the recipe page with the input that the user has
entered in the form.

WebDSL also sanitizes the input that the user submits using the form. If the user was
to submit the form with input another/path/, this input would be sanitized and rendered
correctly on the recipe page, instead of navigation to an unknown path.

Note that WebDSL usually has declare-before-use semantics inside in page, templates or
function bodies, but actions can be declared and resolved anywhere in a page or template
definition.

2.1.3 Template Overloading

Templates in WebDSL must have a unique combination of name and argument types. This
means that, similar to functions in Java, WebDSL supports overloading the same template
with different arguments. The built-in input template that is used in previous subsection is
an example of this. In Figure 2.2, a string argument is passed to the input template which
rendered a text field on the resulting web page.

Figure 2.3 shows an example of template overloading. The describe template is defined
multiple times for different argument types. The input template is provided by the WebDSL
standard library and also defines different input elements for different types.

In WebDSL, multiple text-based types such as String, Text, WikiText and Secret are all
compatible with the base type String. When the arguments are passed to a template, it
resolves the most specific template. An example of this is that describe(t) in Figure 2.3
is compatible with String and Text, but it resolves to the definition with a Text argument.

When a template call has multiple arguments, it resolves to the template where all ar-
guments are the most specific. If there is one template definition where the first argument
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application app
page root {
var s : String

title { "Cookbook" }

header { "Recipes" }

form {
par {
"Enter a recipe name:"
input(s)

}
submit toRecipe() { "Go!" }

}

action toRecipe() {
return recipe(s);

}
}

page recipe(s : String) {
title { "Cookbook: ~s" }

navigate root() { "Back to homepage" }

header { "~s" }

"Welcome to the recipe page for ~s!"
}

(a) WebDSL code

(b) Root page

(c) Recipe page

Figure 2.2: An example of a WebDSL application that uses a form for navigation.

is more specific, and another definition where the second argument is more specific, this is
incorrect code and the WebDSL development environment shows an error to the developer.

2.1.4 Ajax
To enable refreshing or replacing parts of a page with new content that is fetched from the
server, WebDSL has support for placeholders that can be populated with content using asyn-
chronous JavaScript and XML (ajax). Without ajax functionalities, refreshing data on a page
would require a full page reload.

Figure 2.4 shows an example WebDSL application that defines an initially empty place-
holder named ph. On the bottom of the page, a clickable link with an inline action is defined.
When the action is executed, it will replace the content of the placeholder with the content of
the ajax-enabled template hello(). The calling of the action does not incur a full page refresh,
but instead fires an asynchronous request that returns the content of the ajax template, after
which the placeholder content is replaced using JavaScript.

WebDSL automatically takes care of the necessary structure to enable this functionality,
such as identifiers of DOM elements, JavaScript code to query the server and JavaScript code
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application app
page root {
var s : String
var b : Bool
var t : Text
var d : Date

title { "Input Examples" }

header { "Input Examples" }

form {
par {
describe(s)
input(s)

}
par {
describe(b)
input(b)

}
par {
describe(t)
input(t)

}
par {
describe(d)
input(d)

}
}

}

template describe(s : String) { "String input:" }
template describe(b : Bool) { "Bool input:" }
template describe(t : Text) { "Text input:" }
template describe(d : Date) { "Date input:" }

(a) WebDSL code

(b) Resulting page

Figure 2.3: An example of template overloading in WebDSL with inputs and descriptions.
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application app
page root {
title { "Ajax Example" }

header { "Ajax Example" }

par {
placeholder ph {}

}

submitlink action {
replace(ph, hello());

} { "Replace" }
}

ajax template hello {
"Hello!"

}

(a) WebDSL code

(b) Resulting page

(c) After clicking the link

[t]

Figure 2.4: An example of placeholders and ajax actions in WebDSL.

to replace the correct elements.
As opposed to regular templates, ajax-enabled template can be requested on the server

using a specific endpoint. The exact details of how this endpoint looks is only relevant for
generated code of the WebDSL compiler, but WebDSL developers should pay attention to
the fact that ajax-enabled content must be protected with proper access control rules (see
Section 2.3) to prevent exposing sensitive content.

2.1.5 Dynamically Scoped Redefines

As last part of the user interface section, we give an example of dynamically scoped redefines
in WebDSL. WebDSL templates can be redefined (i.e. overridden) inside another template.
The redefined contentwill be shownwhen the redefined template is usedwithin the template
that redefines it. This also holds for calls to the redefined template, nested arbitrarily deep.

Figure 2.5 shows an example of a dynamically scoped redefinition of a template. In the
figure, templateB redefines templateA, resulting in the overridden template being rendered
when it is called within templateB. To prove that this is scoped, templateA is called before
and after templateB and it renders the same (original) text. In the example of Figure 2.5, the
redefined template is called directly from the template where it is redefined, but it has the
same effect when it would be called in nested templates.

Apart from this redefinition of templates inside the context of other templates, WebDSL
also has a notion of a one-time global redefinition. This is done using the keyword override
on a template in the global scope. The WebDSL standard library contains many definitions
that are able to be used by developers, such as an access-denied page, a login template or the
input templates that are used in Figure 2.3. Using the override keyword, developers are able
to customize the style and behavior of these templates.
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application app
page root {
title { "Override Template" }

header { "Override Template" }

templateA
templateB
templateA

}

template templateA {
par {
"I'm Template A!"

}
}

template templateB {
// override template A
template templateA {
par {
"I'm Template A inside template B!"

}
}

par {
"I'm Template B!"

}
templateA

}

(a) WebDSL code

(b) Resulting page

Figure 2.5: An example of template overriding in WebDSL.

2.2 Data Model
The data model of a WebDSL application is defined using entities. Entities can have prop-
erties and relations with other entities. WebDSL translates the entities to database tables
and columns such that any data stored in entities is persisted. The communication with the
database is abstracted byWebDSL, allowingWebDSLdevelopers to easily access, manipulate
and pass around entity values.

Figure 2.6 shows an example of an application with stored recipes. A Recipe has two
properties: a name and a duration. The application is similar to the earlier representation
from Figure 2.1 where a recipe was simply defined by its name, encoded as a String. The
representation using entities now defines the recipe page which takes a Recipe as argument,
demonstrating how entities are represented in the WebDSL type system.

The init{} block in the global scope of Figure 2.6 is executed only once, and often used
to seed the database.

Furthermore, the root page of Figure 2.6 uses a for-loop to iterate over all existing in-
stances of an entity; Recipes in our case. It is uncommon to loop over all entities, thusWebDSL
supports a filter in the for-loop similar to SQL syntax.
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application cookbook

section data model
entity Recipe {
name : String
minutesRequired : Int

}

init {
var r1 := Recipe {
name := "Lasagne",
minutesRequired := 60

};
var r2 := Recipe {
name := "Pancakes",
minutesRequired := 20

};
var r3 := Recipe {
name := "Tomato Soup",
minutesRequired := 40

};
}

section user interface
page root {
title { "Cookbook" }
header { "Recipes" }
for (r : Recipe) {
par {
navigate recipe(r) { "View recipe for ~r.name" }

}
}

}

page recipe(r : Recipe) {
title { "Cookbook: ~r.name" }
navigate root() { "Back to homepage" }
header { "~r.name" }
par {
"Welcome to the recipe page for ~r.name!"

}
par {
"Minutes required: ~r.minutesRequired"

}
}

(a) WebDSL code

(b) Root page

(c) Recipe page

Figure 2.6: An example of template overriding in WebDSL.
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2.3. Access Control

2.2.1 Entity Inheritance
WebDSL allows entity inheritance, meaning that an entity can be a sub-entity of another
entity. Similar to subclasses in Java, sub-entities inherit all properties from their parent and
are able to define properties of their own.

2.2.2 Entity Extension
In the process of developing applications with WebDSL, entities tend to grow in size. For
new features in an application, additional properties and functions are added to existing
entities. To prevent having a single large entity declaration, WebDSL supports extending
existing entities in multiple declarations, similar to partial classes in C#. Entity extensions
are able to use all properties from other extensions and are not self-contained.

During compilation all entity extensions are merged, resulting in a large entity definition
that is represented in the database in a single table.

2.3 Access Control
Almost all web applications use a form of access control. Examples of access control are

using a log-in system, allowing users to only edit content of which they are the author, or the
assigning of roles to groups of users in a large organization.

WebDSL recognizes the need for secure access control and provides a functionalitywhere
an entity is appointed as the user entity with some credentials. A policy can be assigned to
all pages, templates and actions in WebDSL in a declarative way and separated from the
implementation. Using the built-in access control functionality, WebDSL developers do not
have to deal with communication and security details such as cookies and hashing.

Figure 2.7 shows an example of a WebDSL application with access control rules. The en-
tity User is declared as the entity for access control using its properties username and password.
Declaring the principal causes some properties to be exposed for handling access control
such as loggedIn of boolean type and principal of type User. Multiple rules are declared for
the root page, the templates and the action within a template.

In addition to these individual rules,WebDSL allows reuse of access control rules through
predicates that can be called from individual rules or pointcuts to which multiple pages and
templates are assigned. Furthermore, the matching of access control rules may contain wild-
cards in the name or arguments to prevent specifying the same rule multiple times for an
overloaded template.

WebDSL infers the visibility of pages and elements on a page from the access control
rules. For example, in case a page features a link to another page and the user does not have
access to the other page according to the access control rules, the link will not be shown. If a
user explicitly browses to the other page, it will show an access denied page that is provided
by WebDSL by default but is customizable.

2.4 Functions
MostWebDSL constructs in previous sections are specifieddeclaratively. However,WebDSL

also supports imperative code using functions. Similar to Java functions, WebDSL functions
can be scoped globally, or belong to a certain entity. These functions are able to take argu-
ments and return a value of a certain type. Additionally, WebDSL generates many functions
based on the declared entities and properties, some of which serve as hook and can be ex-
tended.

Figure 2.8 showcases some function behavior of WebDSL. It demonstrates extending a
generated setter-function of the entity Recipe. The setAuthor function, including its exten-
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application accesscontrol

section data model
entity User {
username : String
password : Secret
role : String

}

section user interface
page root {
welcome
secureContent

}

template welcome {
if (loggedIn) { "Hello ~principal.username" }
else { "Hello unknown user" }

}

template secureContent {
"This is only visible while logged in "
"due to access control"

submit a() { "Click!" }
action a() {
adminOnlyFunction();

}
}

access control rules
principal is User
with credentials username, password

// pages are hidden by default
rule page root() { true }

// templates are visible by default
rule template secureContent() {
loggedIn
rule action a() {
principal.role == "admin"

}
}

Figure 2.7: Access control in WebDSL
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2.4. Functions

application cookbook
entity Recipe {
name : String
minutesRequired : Int
author : User

// extend generated setter
extend function setAuthor(u : User) {
log("Set the author to ~u.username");

}
}

entity User {
username : String
password : Secret

function appendUsername(s : String) {
this.username := this.username + s;

}
}

// sub-entity Admin of with parent User
entity Admin : User {
// override behaviour
function appendUsername(s : String) {
this.username := this.username + "admin" + s;

}
}

function globalFunction() : Int {
var x := 40;
return x + 2;

}

template outputFortyTwo {
var i := globalFunction();

"~i"
}

Figure 2.8: Functions in WebDSL
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sion, will be called when the author of a recipe is changed. Next, the entity User has an
entity function appendUsername, of which the behavior is overridden in the Admin sub-entity.
Lastly, a global function is defined, and a template demonstrates how the template body and
function code can interact.

2.5 Advanced WebDSL Features
In the previous sections we listed the fundamental concepts ofWebDSL that are necessary to
create everyday systems. However, WebDSL enjoys more features which give the developer
even more customization options.

Native Java Code WebDSL compiles to Java and abstracts over necessary boilerplate code
to make a functioning web application with Java. However, these abstractions prevent some
concepts from being expressible in WebDSL code. For this reason, it is possible to create
Java files in a WebDSL project and provide an interface in the WebDSL code such that the
definitions in the Java code are able to be typed andusable inWebDSL code. Such a definition
of an interface in WebDSL is called a Native Java Class.

Built-in Type Extension In Section 2.2.2 we described the possibility of extending entities
in WebDSL across multiple files. This same feature is available for extending built-in types
such as String, Bool and the root of the type hierarchy Object. The built-in types translate
to their respective Java types, and with type extension it is possible to expose additional
functions of the Java type to the WebDSL code, that are not exposed by default.

Search Van Chastelet (2013) extended WebDSL with a search-feature based on Lucene1.
For applications with a large quantity of data such as researchr.org2 it is useful to make the
data discoverable through search. As the amount data increases, implementing a search
feature through querying the database becomes infeasible. The WebDSL search features
allows entity properties to be annotated with a searchable annotation, declaring that they
should be indexed. Through these annotations and advanced searchmappings, it is possible
to for example use fuzzy search on enormous amounts of data and search on multiple entity
properties at the same time.

Routing By default, WebDSL translates pages to URLs as follows.

https : // ă domainname ą / ă pagename ą / ă arg_1 ą / ă arg_2 ą /.../ ă arg_n ą

For most cases this suffices, but it is possible to declare a routing block in WebDSL where
the developer is able to intercept the requested URL, extract the page name and arguments,
apply logic based on those and return the desired page in WebDSL.

2.6 Current Implementation of WebDSL
In the paper where Visser first introduced WebDSL (2007), it is presented as a large case
study in domain-specific language engineering. Visser describes the implementation of the
language with its syntax definition and code generation by term transformation using the
Stratego/XT toolset.

The Stratego/XT toolset (Bravenboer, Kalleberg, et al. 2008) offers a set of features for
syntax definition (with SDF2), program transformation (with Stratego) and various tools

1https://lucene.apache.org/
2https://researchr.org/
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2.6. Current Implementation of WebDSL

1 strategies
2 constraint-error-all = bottomup(try(constraint-error))
3
4 constraint-error = constraint-error-ac
5 constraint-error = constraint-error-data
6 constraint-error = constraint-error-action
7 constraint-error = constraint-error-ui
8 constraint-error = constraint-error-search
9 // ...

Figure 2.9: Definition of the WebDSL type checking framework in Stratego. Some rules are
ommitted for brevity.

such as parser and pretty-printer generators. Stratego/XT is the predecessor of the Spoofax
language workbench (Kats and Visser 2010). Spoofax offers an IDE for language engineers
using an Eclipse plugin and features more meta-languages, each specialized for different
components of a language definition.

The core of the current WebDSL implementation is still the same, 15 years later. While
the language has matured and is extended in many useful ways, the syntax is still defined in
SDF2 and the rest of the compilation chain is implemented in Stratego, using the Stratego/XT
toolset which is not actively developed anymore.

An application in WebDSL is compiled to a Java program, and a persisted data model
through the use of the Hibernate Query Language (HQL) in the generated Java code. Before
the correct target code can be generated, theWebDSL code has to pass the compilation chain
that consists of components such as the parser, desugaring, type checking. In the rest of this
section we discuss the implementation of the WebDSL static analysis in Stratego. In the next
chapter (Chapter 3), we describe the parser generated from the WebDSL SDF2 definition.

2.6.1 WebDSL in Stratego
Apart from the syntax definition, every component of theWebDSL compiler is implemented
in Stratego. For the scope of this thesis, we will focus on the implementation of the WebDSL
static analysis in Stratego and we will not discuss the implementation of code generation.

Stratego (Bravenboer, Dam, et al. 2006; Visser, Benaissa, and A. P. Tolmach 1998) is a
transformation language based on term rewriting. Stratego enables the definition of strate-
gies that traverse an abstract syntax tree (AST) and applies rewrite rules. These rewrite rules
may be conditional and are of the form r : t1 -> t2 where c with r being the name, t1 and
t2 are terms and c is the condition. For a complete overview of the capabilities of Stratego,
we refer to its documentation3.

The Stratego code for WebDSL consists of many Stratego rules that match an AST term
with some conditions in the where clause that define the analysis. The static analysis is done
through returning the same term as matched, but storing errors or warnings in the process.
The rule that aggregates the individual rules is called constraint-error and this is applied
in a bottom-up fashion. The bottom-up traversal strategy means that the rule will first be ap-
plied to subterms, and then to the term itself. The constraint-error rule is composed ofmany
rules for specific WebDSL features. The implementation and usage of constraint-error is
shown in Figure 2.9.

Stratego aggregates all definitions of the same rule frommultiple files and combines them
into one rule. TheWebDSL implementation in Stratego relies on this feature by definingmul-

3https://www.spoofax.dev/references/stratego/
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1 rules
2 constraint-error-ac =
3 ?AccessControlPrincipal(_,_)
4 ; where(principals := <bagof-PrincipalDecl; uniq; length>)
5 ; where(<gt> (principals, 1))
6 ; add-error(|["Only one access control principal can be defined."])
7
8 add-error(|msgs) =
9 rules(

10 FoundErrors := <inc> <FoundErrors <+ !0>
11 )
12 ; try(AddError(|msgs))
13
14 AddError(|msgs): node -> node
15 where rules(
16 AllErrors :+= (node, <error-to-string> msgs)
17 )

Figure 2.10: Definition of Stratego rule that shows an error message when two principals are
declared in the access control rules of WebDSL.

tiple rules with the same name, but matching on different elements with different conditions.
An example of a WebDSL static analysis rule in Stratego is shown in Figure 2.10.

The add-error and AddError in Figure 2.10 utilize dynamic rules in Stratego using the
rules(...) block. Similar to (normal) rules in Stratego, a dynamic rule matches a term,
returns a term and is able to have conditions. When dynamic rules are added during the
execution of a Stratego program, it is added to the possible set of rules that can be applied. In
the case of the WebDSL implementation, dynamic rules are (ab)used to store data, possibly
limited to a certain scope, about the WebDSL program that is being compiled.

In the implementation, scoped dynamic rules are heavily utilized to store the internal
state of the compiler. We argue that the extensive use of (scoped) dynamic rules obstructs
the elegance, readability and maintainability of the WebDSL implementation in Stratego, be-
cause the effect of the dynamic rules are hard to predict before running the compiler without
extensive experience with the codebase.

2.7 Modernization Goal
As discussed in the previous section, WebDSL is implemented in the Stratego/XT toolset
which is not actively maintained anymore. Spoofax is the successor of the deprecated Strate-
go/XT toolset and features an extensive set of meta-languages, each specialized for defining
different components of a language in a declarative way.

SDF3 (Vollebregt, Kats, and Visser 2012; Souza Amorim and Visser 2020) is the meta-
language in Spoofax for syntax definition in a declarative way. From an SDF3 grammar,
Spoofax generates a parser, a pretty-printer and syntactic code completions. Statix (Antwer-
pen, Bach Poulsen, et al. 2018) is a constraint-based declarative language for the specification
of type systems in Spoofax, using the concept of scope graphs (Neron, A. Tolmach, et al. 2015)
to model programs.

In this thesis we modernize the WebDSL front-end by defining the WebDSL grammar in
SDF3without post-parse filters and theWebDSL static semantics in Statix. Using this process
and result, we hope to gain insight into the completeness, expressiveness and elegance of
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2.7. Modernization Goal

Statix and SDF3 when they are used to implement a real world language by answering the
following research questions.

• RQ1 Is it possible to define the WebDSL syntax in SDF3, without the use of post-parse
filters?

• RQ2 How does the run time efficiency of the parser generated from WebDSL in SDF3
compare to the current WebDSL parser generated from SDF2?

• RQ3Howdoes themaintainability ofWebDSL in SDF3 compare to theWebDSL syntax
definition in SDF2?

• RQ4 Is a Statix implementation of the WebDSL static semantics able to catch the same
errors and warnings as the current implementation in Stratego?

• RQ5Howdoes the run time efficiency of theWebDSL static semantics in Statix compare
to the current WebDSL implementation?

• RQ6 How does the maintainability of the WebDSL static semantics in Statix compare
to the current implementation?

19





Chapter 3

WebDSL in SDF3

In computer science, parsing is the process of analyzing a piece of text according to a gram-
mar, and converting the textual representation to a more structured representation that is
convenient for other processes such as a compiler or interpreter.

In this chapter we discuss the definition of the WebDSL grammar in SDF3, a meta-DSL
in Spoofax for syntax definition. Currently, the WebDSL grammar is defined in SDF2, the
predecessor of SDF3. The goal of defining the WebDSL grammar in SDF3 instead of SDF2
is to serve as a large case study for SDF3, while allowing the WebDSL parser to benefit from
the regular updates of SDF3, compared to the deprecated SDF2.

We start by giving a brief introduction to parsing in general and introducing the SDF3
language. Then, we discuss the migration of the WebDSL syntax from SDF2 to SDF3, and
we end this chapter by elaborating on the disambiguation of the WebDSL SDF3 grammar
without the use of post-parse filters.

3.1 Introduction to LR Parsing
Every programming language can be described by a grammar that specifies what a syntac-
tically correct program looks like. Given a specific program, this grammar can be used to
analyze whether the program belongs to the language described by the grammar. A parser
is a piece of software that is able to recognize whether a program belongs to the grammar
described by the parser. Additionally, parsers create a structured representation of the input
program, derived from the textual representation.

In this thesis, wewill focus on LRparsers. LR stands for Left-to-right Rightmost-derivation,
meaning that an LR parser reads the input from left to right and produces a rightmost
(bottom-up) derivation. Knuth 1965 presents an LR parsing algorithmwhich is able to parse
most languages that can be described by a context-free grammar.

Before an LR parser can parse an input stream, it must also receive a parse table that
describes a context-free grammar. In practice, the parse tables are usually generated from a
syntax definition. Figure 3.1 shows an example of a context-free grammar describing a small
language that features addition and multiplication. The parse table describes a push-down
automaton that represents the LR parser. Using this parse table, an LR parser can build a
parse tree as shown in Figure 3.2. A parse tree, or an Abstract Syntax Tree (AST) that we
will discuss in Section 3.1.1 is a more structured way of representing a program, that can be
used by other components of a compilation chain to analyze and transform the program.

LR parsers cannot handle ambiguous context-free grammars. The parse tables of am-
biguous context-free grammars contain multiple state transitions for certain states and input
tokens. The Generalized LR (GLR) parsing algorithm by Rekers (1992), is able to handle
such parse tables and as a result is able to handle all context-free grammars. Visser 1997
introduced Scannerless GLR (SGLR) parsing. As opposed to LR and GLR parsers, SGLR
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3. WEBDSL IN SDF3

S ÝÑ E

E ÝÑ E + T

E ÝÑ T

T ÝÑ T ˚ F

T ÝÑ F

F ÝÑ x

(a)

State Action Goto
+ * x $ S E T F

0 S(4) 1 2 3
1 S(5) Accept

2 R(ET ) S(6) R(ET )

3 R(TF ) R(TF ) R(TF )

4 R(Fx) R(Fx) R(Fx)

5 S(4) 7 3
6 S(4) 8
7 R(EE+T ) S(6) R(EE+T )

8 R(TT˚F ) R(TT˚F ) R(TT˚F )

(b)

Figure 3.1: Example context-free grammar with its parse table

S

E

T

T

F

x

˚ F

x

Figure 3.2: An example of a parse tree for the input ”x ˚ x”

parsers do not have a separate lexing and parsing phase, but instead merge these through
the use of grammars that are defined in terms of single characters.

3.1.1 SDF3

Syntax Definition Formalism 3 (SDF3) (Vollebregt, Kats, and Visser 2012; Souza Amorim
and Visser 2020) is a meta-language in the Spoofax language workbench that makes use of
the SGLR parsing algorithm. It is the latest version of the syntax definition formalism SDF
(Heering et al. 1989; Visser 1997b). Language engineers are able to define context-free gram-
mars in SDF3, which are transformed into parse tables and used by the JSGLR21 parsing
algorithm. JSGLR2 (Denkers 2018) is the successor of the JSGLR algorithm; an implementa-
tion of the SGLR parsing algorithm in Java.

SDF3 is the successor of SDF2, in which the WebDSL syntax is currently defined. Souza
Amorim and Visser 2020 argue that the SDF3 syntax is more similar to other grammar for-
malisms such as EBNF.

1https://github.com/metaborg/jsglr
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3.1. Introduction to LR Parsing

1 module ThesisTest
2
3 context-free start-symbols
4 Start
5
6 context-free sorts
7 Start Expr Lit
8
9 context-free syntax

10 Start.Expr = <<Expr>>
11
12 Expr.Add = <<Expr> + <Expr>>
13 Expr.Mul = <<Expr> * <Expr>>
14 Expr.Lit = <<Lit>>
15
16 Lit.Int = <<INT>>
17
18 lexical sorts
19 INT
20
21 lexical syntax
22 INT = [0-9]+
23 LAYOUT = [\ \t\n\r]

Figure 3.3: An SDF3 specification of a language that allows addition and multiplication of
integers.

A syntax definition in SDF3 is a declarative specification of syntactic sorts and their pro-
ductions. Figure 3.3 shows an example grammar features a language that supports multipli-
cation and addition of integers. The SDF3 definitionmust define a start-symbol that specifies
what a syntactically valid program looks like. In our example, every program that can be de-
rived from the Start sort, is a valid program. Line 11 contains the first production of the
specification. It states that the sort Start can be derived by deriving something of the sort
Expr. The identifier behind the dot in the production (Expr in this case) declares the con-
structor in the AST. Figure 3.4 shows the AST of an example input, according to the SDF3
specification of Figure 3.3. Line 12-14 defines the productions of the expression sort. It de-
fines that an expression is either two expressions with a plus or asterisk in between, or it
is something of the sort Lit. The production of literal sort on line 16 references the lexical
sort INT. Lexical sorts do not appear in the AST with constructors, but instead are parsed
into a string. The lexical sort INT is defined on line 22 with the regular expression [0-9]+,
describing one or more characters in the range of 0 to 9. Finally, the production describing
the built-in concept of LAYOUT on line 23 states that a space, tab, carriage return and line feed
character are layout (whitespace) characters and do not have to be parsed.

Figure 3.4 shows the abstract syntax tree of an example input for the SDF3 specification
of Figure 3.3. In the Spoofax LanguageWorkbench, abstract syntax trees are described in the
Annotated Terms Format (ATerm) (Brand et al. 2000).

In addition to the basics as explained in the previous paragraph, SDF3 supports features
such as injections, optional sorts and repetition to enhance the language engineers productiv-
ity. Figure 3.5 shows the SDF3 specification of Figure 3.3, but now enhanced with injections,
repetition and optional sorts. Figure 3.6 shows the ATerm of the input 0 + 0; 1 * -1. The
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3. WEBDSL IN SDF3

Expr

Add

Lit

Int

"0"

Lit

Int

"1"

(a)

Expr(
Add(
Lit(Int("0")),
Lit(Int("1"))

)
)

(b)

Figure 3.4: The AST andATerm representation of the expression 0 + 1 according to the SDF3
specification of Figure 3.3

repetition on line x of Figure 3.5 allows multiple expressions in a list, delimited by a semi-
colon. The injection on line 14 allows a literal to be derived in the place of an expression,
effectively omitting the Lit(...) constructor in the AST. Lastly, the optional minus sign of
line 16 and 18 allows negative integers to be parsed by this language. The AST contains
Some(...) and None() constructors for the optional sorts.

Disambiguation

The simple grammar described by the SDF3 specification of Figure 3.3 is functional, but is
ambiguous. For example, the input 1 + 2 + 3 can be parsed as (1 + 2) + 3 or as 1 + (2 + 3).
The process of altering and annotating the grammar such that this there is only one way of
parsing this, is called disambiguation. The example listed in the previous section (Figure 3.1)
contains a grammar with expressions, terms and factors that is inherently unambiguous.
However, disambiguating a grammar by introducing new sorts and productions is tedious
and time-consuming. SDF3 provides multiple options for disambiguating a grammar.

First, SDF3 provides the {bracket} annotation, allowing the developer to disambiguate
the program himself. To clarify, the input 1 + (2 + 3) is not valid according to our grammar,
because the ”(” and ”)” symbols are not part of the grammar. If we add the production
Expr = "(" Expr ")" {bracket}, SDF3 allows brackets around arbitrary expressions without
it introducing new AST nodes.

Reject rules allow language engineers to filter derivations. A reject rule is simple a regular
production, followed by the {reject} annotation. For example, appending our grammar
with the rule Expr = <<Expr> + <Expr>> {reject} makes the set of valid derivations of Expr
smaller, namely bydisallowing any construction described by the right-hand side of the reject
rule.

Another possibility for disambiguating SDF3 grammars is by indicating the associativity,
either as annotation or using priority groups. If we add the annotation {left} to the pro-
duction that specifies addition, 1 + 2 + 3 is no longer ambiguous but instead will always be
parsed as (1 + 2) + 3. It is also possible to declare the associativity in groups. Figure 3.7
contains such groups. Line 8 shows that both addition and subtraction are left associative,
and in the same group. The input 1 + 2 - 3 + 4 will now be parsed as ((1 + 2) - 3) + 4,
whereas declaring the associativity annotation on both rules instead of the group would still
make this input ambiguous.
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3.1. Introduction to LR Parsing

1 module m
2
3 context-free start-symbols
4 Start
5
6 context-free sorts
7 Start Expr Lit Minus
8
9 context-free syntax

10 Start.Exprs = <<{Expr "; "}+>>
11
12 Expr.Add = <<Expr> + <Expr>>
13 Expr.Mul = <<Expr> * <Expr>>
14 Expr = Lit
15
16 Lit.Int = <<Minus?> <INT>>
17
18 Minus.Minus = <->
19
20 lexical sorts
21 INT
22
23 lexical syntax
24 INT = [0-9]+
25 LAYOUT = [\ \t\n\r]

Figure 3.5: An SDF3 specification of a language that allows addition and multiplication of
integers, showcasing injections, repetition and optional sorts.

Exprs([
Add(
Int(None(), "0"),
Int(None(), "0")

),
Mult(
Int(None(), "1")
Int(Some(Minus()), "1")

)
])

Figure 3.6: The ATerm of input 0 + 0; 1 * -1 according to the SDF3 specification of Fig-
ure 3.5
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3. WEBDSL IN SDF3

1 context-free syntax
2 Expr.Mul = <<Expr> * <Expr>>
3 Expr.Add = <<Expr> + <Expr>>
4 Expr.Sub = <<Expr> - <Expr>>
5
6 context-free priorities
7 {left: Expr.Mul} >
8 {left: Expr.Add Expr.Sub }

Figure 3.7: An SDF3 specification of a simple language with disambiguation rules.

1 "var" Id ":" Sort ";" -> VarDeclStat {cons("VarDecl")}
2 "var" Id ":" Sort ":=" Exp ";" -> VarDeclStat {cons("VarDeclInit")}
3 "var" Id ":=" Exp ";" -> VarDeclStat {cons("VarDeclInitInferred")}

Figure 3.8: An example of productions in SDF2. This example specifies the syntax of variable
declaration in WebDSL.

Figure 3.7 also shows the declaration of priorities. In the example, multiplication has
priority (e.g. binds tighter) over addition and subtraction. This results in the input 1 + 2 -
3 * 4 being parsed as (1 + 2) - (3 * 4).

SDF3 also provides the option of indexed priorities in the form of p1 i .> p2. This can
be explained intuitively as the subterm with index i of production p1 may not be derived
by production p2. In our example, the rule Expr.Add <0> .> Expr.Mul would imply that the
left-hand side of an addition may never be a multiplication.

Lastly, SDF3 provides the ability to disambiguate through the use of post-parse filters
annotated by {prefer} and {avoid}. When the parser encounters an ambiguous input, it will
continue parsing and store all possibilities. At the end of parsing, it will use the annotations
to prune the multiple ASTs according to these annotations. The {prefer} and {avoid} anno-
tations are working but deprecated in the current version of SDF3 and will be removed in
the future. Using the post-parse filtersmakes the disambiguation less transparent than using
the other methods described in this section.

3.2 WebDSL Grammar Specification

The current grammar of WebDSL is specified in SDF2, the predecessor of SDF3. Similar to
SDF3, a production in the grammar consists of terminals and terminals. In contrast to SDF3,
it is optional to provide a constructor to appear in the abstract syntax tree. Figure 3.8 shows
an example of productions in SDF2.

TheWebDSL language SDF2 specification consists of 26 files that each describe a different
part of theWebDSL syntax, ranging from the data model with entities to user interfaces with
HTML and JavaScript. Additionally, theWebDSL syntax incorporates stand-alone grammars
of other languages, such as HQL, Java and Stratego using mix syntax. Out of these mixed
syntaxes, only theWebDSL andHQL syntax can bewritten by developers. The Java and Strat-
ego syntax are used in other components of the WebDSL compiler, such as writing concrete
WebDSL and Java syntax during desugaring, optimization and code generation.
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3.3. Migration from SDF2 to SDF3

1 context-free syntax
2 "section" SectionName Definition*
3 -> Section {cons("Section")}
4
5 "application" QId Definition+ Section*
6 -> Application {cons("ApplicationDefs")}
7
8 "application" QId Section*
9 -> Application {cons("Application")}

(a)
1 simplify-application-constructor :
2 ApplicationDefs(qid, defs, sections)
3 -> Application(qid, [Section("definitions", defs)|sections])

(b)

Figure 3.9: WebDSL Syntax and desugaring for sections and definitions

3.2.1 Desugaring WebDSL Syntax

In WebDSL, the root of the abstract syntax tree is the application or module definition. A
project is allowed to have one application and the other files should be modules that are
(transitively) imported by the main application file.

A file is divided in sections, which have no semantic meaning but are purely for code
organization. The sections contain the top-level definitions such as pages, templates and
entities. However, these sections are optional, and it is possible to list definitions without
dividing them in sections.

To prevent an explosion of cases in the analysis and code generation, these constructs are
normalized (desugared) to a core WebDSL syntax. Figure 3.9 shows an example of desugar-
ing different definitions of a file.

3.3 Migration from SDF2 to SDF3
SDF2 is still supported by the Spoofax languageworkbench, but no longer actively developed.
SDF3 is the most recent member of the Syntax Definitions Formalisms. In a sense, SDF3
is a high-level version of SDF2 with additional features. In the initial versions of SDF3, it
compiled down to SDF2.

Spoofax contains tool to migrate SDF2 specifications to SDF3 specifications but not all
constructs of the lower level SDF2 are expressible in SDF3. The WebDSL SDF2 specification
requires manual adjustment before this transformation tool can be utilized. Additionally,
the generated SDF3 definition is suboptimal, as not all features of SDF3 are utilized in the
generated code.

3.3.1 Preparing the WebDSL SDF2 definition for migration

Not all SDF2 constructs can be expressed in SDF3. For this reason, the WebDSL SDF2 must
be adjusted manually to be able to use the tool provided by Spoofax that transforms SDF2
specifications to SDF3 specifications.
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3. WEBDSL IN SDF3

1 lexical syntax
2 [a-zA-Z\_][a-zA-Z0-9\_]* -> ID
3 lexical restrictions
4 ID -/- [a-zA-Z0-9\_]
5 "in" -/- [a-zA-Z0-9\_]

Figure 3.10: Follow restrictions are used to for example ensure the longest-match of an iden-
tifier and enforcing whitespace after keywords.

Sorts Non-terminals are named Sorts in SDF2 and SDF3. A production in SDF2 reduces
a sequence of terminals and non-terminals to a certain sort, as listed in the example of Fig-
ure 3.9. In SDF2 the sort does not have to be declared in a separate sorts section, while it
does in SDF3. Additionally, SDF2 does not differentiate lexical sorts from context-free sorts.
The result of this difference in design is that SDF2 sorts cannot be migrated to SDF3, since
the transformation tool does not know if an SDF2 sort is used as lexical or context-free sort.
To be able to translate the SDF2 specification to SDF3, we must remove the sort declarations.

Alternations Another manual adjustment we must make to the SDF2 specification is re-
moving alternations. An alternation is a production of the form "a" | "b" -> S. This con-
struct is not supported anymore in SDF3 and therefore the transformation tool is not able
to handle this construct. Fortunately, the alternation can easily be split in two production
rules. However, the transformation tool does not automate this process because the origi-
nal production may contain a constructor annotation ("a" | "b" -> S {cons("AorB")}) and
the duplicate constructors for the same sort are not allowed in SDF3. For this reason must
manually remove alternations in SDF2 productions.

Follow Restrictions The transformation tool does also not include support for follow re-
strictions in the grammar. A follow restriction indicates what symbols are not allowed to be
parsed after a production. A typical use case of this is ensuring the longest match for identi-
fiers, or enforcing whitespace after a keyword. An example of follow restrictions are shown
in Figure 3.10. For the migration to SDF3, these sections have to be manually copied.

3.3.2 Manual Adjustment of Generated WebDSL SDF3
The generated SDF3 specification of WebDSL according to the manually adjusted SDF2 is
suboptimal SDF3 code. SDF2 can be seen as a more low-level version of SDF3 and not all
constructs of SDF2 transform into the most elegant SDF3 code. Parts of the generated SDF3
code do not even adhere to the static semantics of SDF3. For this reason, the generated SDF3
code has to be manually adjusted.

Missing and duplicate constructors In SDF2, constructors are defined as an annotation on
a production. An example of the different production syntax of SDF2 and SDF3 is shown in
Figure 3.9. The constructor annotation is not required in SDF2, but in SDF3 it is necessary to
provide a constructor for every production. In the WebDSL SDF2 definition, some construc-
tors are missing and there are duplicate constructors that denoted alternative syntax for the
same construct, essentially providing syntactic sugar. The SDF2 definition and generated
SDF3 definition for the ascending and descending ordering is shown in Figure 3.11.

In the newly generated SDF3, duplicate constructors must be changed, in order for them
to be unique. Additionally, missing constructorsmust be added for the pretty-printer to func-
tion correctly. Injections do typically not require a constructor, but preferably constructors
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3.3. Migration from SDF2 to SDF3

1 context-free syntax
2 "asc" -> AscendingOrDescending {cons("Ascending")}
3 "ascending" -> AscendingOrDescending {cons("Ascending")}
4
5 "desc" -> AscendingOrDescending {cons("Descending")}
6 "descending" -> AscendingOrDescending {cons("Descending")}

(a)
1 context-free syntax
2 HQLAscOrDescOpt.HQLAscending = <ascending>
3 HQLAscOrDescOpt.HQLAscending = <asc> // Error: duplicate constructor
4
5 HQLAscOrDescOpt.HQLDescending = <descending>
6 HQLAscOrDescOpt.HQLDescending = <desc> // Error: duplicate constructor

(b)

Figure 3.11: SDF2 and generated SDF3 for the ascending and descending keyword inWebDSL.
Duplicate constructors within the same sort are not allowed in SDF3.

1 context-free priorities
2 {left:
3 Expr "*" Expr -> Expr
4 } >
5 {left:
6 Expr "+" Expr -> Expr
7 Expr "-" Expr -> Expr
8 }

(a)

1context-free priorities
2 {left: Expr.Mul} >
3 {left: Expr.Add Expr.Sub }

(b)

Figure 3.12: Difference between priority chains in SDF2 and SDF3. The transformation tool
does not perform the analysis to properly transform this.

should be added there as well to reduce the length of the abstract syntax tree in Statix, as we
will explain in Section 3.4.

Priority chains Priority chains are used to disambiguate grammars in SDF specifications.
A typical example and an explanation is given in Figure 3.7. Both SDF2 and SDF3 use the
concept of priority chains, but the SDF2 variant requires a repetition of the production inside
the chain, whereas SDF3 uses a reference to the production. This causes the SDF2 priority
chains to not be migrated to the SDF3 priority chains and requires them to be manually
rebuilt. An example of the difference between priority chains in SDF2 and SDF3 is shown in
Figure 3.12.

Transferring comments Comments are highly recommended and important for the read-
ability and maintainability of large software projects. However, most grammars specified
in SDF2 and SDF3 declare comments as part of the layout of a program and are not repre-
sented in the abstract syntax tree. For this reason, the transformation tool does not transfer
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3. WEBDSL IN SDF3

1 context-free syntax
2 "if" "(" Expr ")" "{" Expr* "}" -> Expr {cons("If")}

(a)

1 context-free syntax
2 Expr.If = <if ( <Expr> ) { <Expr*> }>

(b)

1 context-free syntax
2 Expr.If = <
3 if ( <Expr> ) {
4 <Expr*>
5 }
6 >

(c)

Figure 3.13: An example of an SDF2 production, the generated SDF3 and the manually ad-
justed SDF3 for template productions.

comments fromSDF2 grammars to the generated SDF3. Commentsmust bemanually copied
from the SDF3 and pasted in the correct parts of the SDF3 specification.

Template productions A major change in SDF3 compared to SDF2 are template produc-
tions, that allow for nice pretty printing and syntactic code completion. The productions in
the generated SDF3 files are all template productions, but do not have the proper surround-
ing layout and indentation because there is no way to extract this information from the SDF2
source, as it is not present there. Adding the correct layout in template productions is tedious
work but causes the pretty-printer to function properly. An example of SDF2, generated
SDF3 and manually adjusted SDF3 is shown in Figure 3.13.

Deeply Embedding HQL Grammar in WebDSL The HQL syntax definition in SDF2 is a
stand-alone definition, and is used in theWebDSL SDF2 using parameterized imports. SDF3
has no support for this feature, which means the syntax definition has to be transformed to
be a part of the WebDSL grammar. Otherwise, WebDSL applications that use HQL syntax,
which are all real world applications, would no longer parse correctly. Deeply embedding
the HQL syntax in the WebDSL syntax causes sorts and constructors to overlap, and this
must be adjusted manually.

3.4 Preparation for Statix
Statix is a constraint-based meta-language in which we implement the modernized WebDSL
static analysis. In Chapter 4 Statix will be explained in detail. Even though the parsing and
the static analysis are separate components of the compilation chain, the Spoofax language
workbench contains a tool that extracts the sorts and constructors from an SDF3 definition,
and generates these signatures in the Statix language to be able to use them while defining
the static analysis. This tool is called the Statix signature generator. Using the Statix signature
generator imposes additional constraints on the SDF3 definition.

3.4.1 Sorts and Constructors in Statix
To understand the role of the Statix signature generator, we will explain how sorts and con-
structors are used in Statix to define the static semantics of a language.
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3.4. Preparation for Statix

Unlike SDF3 and Stratego, Statix is strongly typed which requires all sorts and construc-
tors to be declared before they can be used in the static semantics of a language. Figure 3.14
shows an example of declaration of the sorts and constructors of a simple expression lan-
guage. These constructors and terms can be used in rules that form the static semantics.

1 signature
2 sorts
3 Application
4 Expr
5
6 constructors
7 Application : Expr -> Application
8 Add : Expr * Expr -> Expr
9 Sub : Expr * Expr -> Expr

10 Mul : Expr * Expr -> Expr
11 Int : string -> Expr

Figure 3.14: An example of an expression language
signature in Statix.

The constructors in Statix do not
support injections or overloaded con-
structors, which leaves some abstract
syntax trees generated by the parser
unable to serve as input for static
analysis.

3.4.2 Statix
Signature Generator
As mentioned and demonstrated in
the previous subsection, Statix re-
quires a definition of the construc-
tors and sorts of the language to be
analyzed. Defining these manually
in Statix would essentially be code
duplication because they are already
defined in SDF3. However, Statix
sorts and constructors do not sup-
port overloading and injections and
is therefore stricter than the SDF3 type system.

To preventmanual redefinition of the sorts in Statix code, the Statix signature generator is
part of Spoofax. This tool takes an SDF3 definition as input, and generates importable Statix
files that contain the sorts and constructors from the syntax definition. For the Statix signa-
ture generator to work properly, additional constraints are imposed on the SDF3 definition.

Explicitly Declare Sorts To define static semantics of all sorts in a language, these must
be explicitly declared in Statix. In SDF3 this is not enforced. To be able to use the Statix
signature generator, we have to explicitly declare all sorts in theWebDSL SDF3. Additionally,
Statix views all lexical sorts as strings, so the SDF3 sorts have to be divided in lexical sorts
and context-free sorts.

Injections With the semantics of sorts and constructors in Statix, it is not possible to model
injections while the WebDSL SDF3 definition contains many injections. The Statix signature
generator still functions with injections present in the SDF3, but it will generate an addi-
tional constructor and explicate the constructors of an abstract syntax tree before it is passed
to Statix. Figure 3.15 shows an example of how injections are handled an explicated by the
Statix signature generator. The abstract syntax tree is explicated after parsing and before
static analysis. When injections are present in the SDF3, the Statix signature generator also
generates Stratego rules that explicate the abstract syntax tree.

Optional Sorts As mentioned in Figure 3.5 as part of Section 3.1.1, SDF3 has built-in sup-
port for optional sorts, resulting in Some(_) and None() terms. These terms cannot be trans-
lated to Statix signatures, since it is not possible to overload the constructor formany sorts. To
work around this limitation, the SDF3 definitionmust be alteredmake the Some and None con-
structors unique per sort. This leads to a much more verbose syntax definition. Figure 3.16
shows how the optional constructs can be altered to be unique per sort.
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1 context-free sorts
2 S A B
3 context-free syntax
4 S.Start = A
5 A = B // injection
6 B.Literal = "b"

(a) SDF3

1signature
2 sorts
3 S A B
4
5 constructors
6 Start : A -> S
7 Literal : B
8 // extra generated constructor
9 B2A : B -> A

(b) Generated Statix signatures

Start(
Literal()

)

(c) Example of an AST

Start(
B2A(
Literal()

)
)

(d) Example of an explicated AST

Figure 3.15: An example of how SDF3 injections are handled by the Statix signature genera-
tor.

1 context-free syntax
2 Definition.Function = <
3 function <ID> () <ReturnSort?> {
4 <Statement*>
5 }
6 >
7
8 ReturnSort.ReturnSort = <: <Sort>>

(a) SDF3 with optionals
1 context-free syntax
2 Definition.Function = <
3 function <ID> () <ReturnSortOpt> {
4 <Statement*>
5 }
6 >
7
8 ReturnSortOpt.ReturnSort = <: <Sort>>
9 ReturnSortOpt.ReturnSortNone = <>

(b) Rewritten to remove optionals

Figure 3.16: An example of how to remove the optional sort to comply with the Statix signa-
ture generator.
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template t() {
// from-clause is optional in this HQL expression
// meaning that "select u.name" is a complete expression
// and "from", "User", "as", and "u" can also be parsed
// as template calls
var names := select u.name from User as u

// parentheses are optional in template calls
callToOtherTemplate

}

Figure 3.17: An example of an ambiguous construct in WebDSL with an HQL query.

Disambiguation SDF3 provides many features to disambiguate a grammar as listed in Sec-
tion 3.1.1. If an ambiguous code fragment is parsed, itwill result in the amb([...]) term in the
AST, which contains a list of the possible interpretations. Similar to the Some(_) and None())
constructors from the optionals as discussed in the previous paragraph, the amb([...]) can
not be expressed in Statix. The result of this is that ambiguous code fragments can not be
used in Statix rules and therefore will never be analyzed, increasing the need for proper
disambiguation even more. In the next section we will discuss the disambiguation of the
WebDSL SDF3 grammar.

3.5 Disambiguation

When a program is ambiguous, it can be interpreted in multiple ways. Generally, ambigu-
ous programs are undesired due to the undefined semantics. To prevent ambiguities in the
syntax of a programming language, the syntax definition can be disambiguated.

SDF3 providesmultiple language features to disambiguate a syntax, such as bracket rules,
reject rules, associativity annotations, priority groups and indexed priorities. A complete list
of ways to disambiguate is explained in Section 3.1.1.

Post-parse filters {prefer} and {avoid} provide a unique way to disambiguate the syntax,
namely it keeps all the possible parse trees inmemory and after thewhole input is parsed, the
parser prunes the resulting parse forest according to the {prefer} and {avoid} annotations.

The {prefer} and {avoid} post-parse filters are deprecated in the current version of SDF3.
In this thesis we attempt to disambiguate the grammar of a WebDSL with the other disam-
biguation functionalities provided by SDF3.

3.5.1 Disambiguating Keywords

WebDSL template calls do not require parentheses or semicolons. This allows for clean code
in templates, but makes the syntax ambiguous in the case of keywords that are able to parse
as a template name.

Figure 3.17 shows an example of a WebDSL program where a template starts with a vari-
able initialization with an HQL query that fetches all names of users from the database. In
HQL, the from-clause is optional, meaning that a statement such as select user.name syn-
tactically correct as an HQL expression. For this reason, the words after the select clause can
also be parsed as template calls.

A simple yet effective solution is to disallow all keywords such as from and as from being
valid template names. SDF3 automatically detects keywords from context-free productions,
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1 lexical syntax
2 ID = [a-zA-Z]*
3
4 context-free syntax
5 Start.Hello = <hello <Name>>
6
7 Name.World = <world>
8 Name.Name = <<ID>>
9

10 template options
11 // "hello" and "world" are now no longer valid IDs
12 ID = keyword {reject}

Figure 3.18: An example of rejecting keywords in template options.

and all keywords can be rejected as identifiers at once using template options2. An example
of how keyword rejection in template options is configured, is shown in Figure 3.18.

Rejecting all keywords in the WebDSL language using the template options of SDF3
would be effective, but too rigorous. For example, the WebDSL grammar contains produc-
tions such as the following. Rejecting all keywords would imply also rejecting Int as identi-
fier, meaning that it is not allowed as type anymore.

Statement.ForCountStmt = <for ( <VarId> : Int from <Exp> to <Exp> ) <Block>>
Another option is to add all the reject rules for keywords individually. This is tedious

work, but allows for better precision. In the new WebDSL SDF3, all keywords are rejected
individually.

3.5.2 Disambiguating Strings
WebDSL strings are defined in SDF2 using kernel syntax. Kernel syntax does not allow im-
plicit layout (whitespace) between the different elements of a production. The SDF2 produc-
tions for a WebDSL string are shown in Figure 3.19. A string can be either a ”simple” string
or a string containing one or more expressions that have to be evaluated. These expressions
must be prefixed by a tilde („) to be parsed as interpolation.

To prevent a simple string from being parsed as a StringInterp with only one part, the
SDF2 definition used a post-parse filter to avoid this construct in case of ambiguities.

Figure 3.20 shows the SDF3 definition of a WebDSL string. The ”simple” string construc-
tor was dropped, to ensure no ambiguity would arise. A simple string is now a string con-
sisting of only one part.

3.5.3 Non-transitive Priority Rules
Another ambiguity in the WebDSL language is the overlap between passing template ele-
ments and the untyped set creation. Figure 3.21 demonstrates the ambiguity. The curly
brackets are used for an untyped set creation, as shorthand for Set<Int>(...). On the other
hand, curly brackets are also used to pass template elements as argument to another tem-
plate.

In SDF3, indexed non-transitive priorities are able to disambiguate this case. An indexed
non-transitive priority rule is of the form SortA.ConsA <n> .> SortB.ConsB. Intuitively, the

2https://www.spoofax.dev/references/syntax/templates/#reject
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3.5. Disambiguation

1 %% Kernel syntax is required here since we do not want LAYOUT to be parsed
2 %% between the first QMLex and StringLex
3 syntax
4 %% string literal as expression
5 <QMLex-LEX> <StringLex-LEX> <QMLex-LEX>
6 -> <String-CF> {ast("String(<2>)")}
7
8 <QMLex-LEX> StringPart* <QMLex-LEX>
9 -> <String-CF> {ast("StringInterp(<2>)"), avoid}

10
11 SimpleStringPart -> StringPart
12 <StringLexInterp-LEX> -> StringPart
13
14 "~" <SimpleExp-CF> -> SimpleStringPart {cons("InterpExp")}
15 "~" "(" <Exp-CF> ")" -> StringPart {cons("InterpExp")}

Figure 3.19: SDF2 definitions of a WebDSL string.

1 // Kernel syntax is required here since we do not want LAYOUT to be parsed
2 // between the first quote and StringLex
3 syntax
4
5 String-CF.String = "\"" StringPart-CF* "\""
6
7 StringPart-CF.StringValue = StringLex-LEX
8 StringPart-CF.InterpValue = "~" StringInterpExp-CF
9 StringPart-CF.InterpExp = "~" "(" Exp-CF ")"

10
11 StringInterpExp-CF.InterpSimpleExp = SimpleExp-CF

Figure 3.20: SDF3 definitions of a WebDSL string.

page p() {
var mySet := { 1, 2, 3 } // untyped set creation

t({ "Hello World" }) // pass template elements as argument
}

template t(elems : TemplateElements) {
elems // this will render the content of elems

}

Figure 3.21: Ambiguous WebDSL code using curly brackets for untyped set creation and
passing template elements as argument.
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1 context-free syntax
2 Exp.UntypedSetCreation = <{ <{Exp ","}+> }>
3
4 TemplateArg.TemplateArgExp = <<Exp>>
5 TemplateArg.TemplateArgElements = <{ <TemplateElements*> }>
6
7 context-free priorities
8 TemplateArg.TemplateArgExp <0> .> Exp.UntypedSetCreation

Figure 3.22: Using non-transitive indexed priorities to disambiguate WebDSL syntax in
SDF3.

template t(e : Entity) {
// example of a cast expression
var x := e as User

// switch-case statement on the type of a variable
typecase(e) {
User { "e is a User" showUser(e as User) }
Student { "e is a Student" showStudent(e as Student)}
default { }

}

// switch-case statement on the type of a variable using an alias
// the alias automatically casts the expression based on the case
typecase(e as t) {
User { "e is a User" showUser(t) } // t := e as User
Student { "e is a Student" showStudent(t)} // t := e as Student
default { }

}
}

Figure 3.23: Ambiguous WebDSL code using an optional typecase alias or a cast expression.

rule indicates that SortB.ConsB may never be the n-th subterm of SortA.ConsA. Figure 3.22
shows how the WebDSL syntax can be disambiguated using these priorities.

Another instance of an ambiguity that is corrected with indexed non-transitive priority
rules is optional type aliases versus a cast expression. WebDSL allows a switch-case state-
ment on the type of an expression. Figure 3.23 shows an example of how it is used inWebDSL
code. The typecase takes an expression as subterm, and an optional type alias. The type alias
automatically is the expression cast to whatever case is relevant. However, the expression
given to the typecase can also be a cast expression, making typecase(e as t) ambiguous.

Figure 3.24 shows how the optional type alias versus a cast expression is disambiguated
in the modernized WebDSL SDF3 definition. The index of the <Exp> subterm is 2 and not 0
because the index counts literals as well, typecase and ( in this case.
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3.5. Disambiguation

1 context-free syntax
2 Exp.Cast = <<Exp> as <Sort>>
3 Statement.TypeCaseStmt = <
4 typecase ( <Exp> <OptTypeAlias> ) {
5 <TypeCaseAlt*>
6 }
7 >
8 OptTypeAlias.TypeAlias = <as <Id>>
9 OptTypeAlias.OptTypeAliasNone = <>

10
11 context-free priorities
12 Statement.TypeCaseStmt <2> .> Exp.Cast

Figure 3.24: Using non-transitive indexed priorities to disambiguate WebDSL casts versus
type aliases.
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Chapter 4

WebDSL in Statix

In this chapter, we elaborate on the implementation of theWebDSL static semantics in Statix,
using the examples from Chapter 2 as a basis. We start this chapter by introducing the meta-
DSL Statix. Once the goal and basics of Statix are stated, we describe the implementation
of the type system that is the core of WebDSL. Next, we address and discuss the challenges
faced while implementing non-trivial WebDSL features in Statix, and lastly we reflect on the
developer experience of using Statix to implement static analyses.

4.1 Introduction to Statix

Statix is a constraint-based declarative language for the specification of type systems, intro-
duced in 2018 (Antwerpen, Bach Poulsen, et al. 2018). Since then, the meta-DSL Statix has
become a part of the Spoofax Language Workbench and allows language developers to im-
plement static analyses to provide language-specific feedback to developers on written code.

A Statix specification consists of rules over terms that define constraints. Additionally,
Statix rules build and query a scope graph (Neron, A. Tolmach, et al. 2015) that provides a
language-agnostic representation of a program. A scope graph consists of nodes and edges
that can be used to for example model the lexical scope of variables.

4.1.1 Language Signature

1 signature
2 sorts
3 Application
4 Exp
5
6 constructors
7 Application : Exp -> Application
8 True : Exp
9 False : Exp

10 Int : string -> Exp
11 Add : Exp * Exp -> Exp

Figure 4.1: Language signature in Statix

Consider a language consisting
of booleans, integers and addition,
for which we want to create a type-
checker with Statix. First, Statix
requires us to declare all types
and sorts that we will be using in
the rules. These Statix constructor
names have to match the construc-
tors of the input term (the AST).
The Statix code that declares the
sorts and constructors of our exam-
ple language is shown in Figure 4.1.
When writing a Statix specification
for a language implemented in the
Spoofax language workbench, it is a
common practice to have the Statix signature generated from your SDF3 specification by the
Statix signature generator (see Section 3.4.2), to prevent code duplication.
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4. WEBDSL IN STATIX

So far, our specification consists of two sorts. The Application sort defines the entry point
of our language, it has one constructor with an identical name. Next, the sort Exp describes
what expressions are allowed. It has four constructors: the Boolean values True and False,
Intwhich requires an integer literal as subterm, and Addwhich takes two nested expressions
as subterms. Examples of valid input according to our defined signature are shown in Fig-
ure 4.2.

Application(True()) // true
Application(Int("42")) // 42
Application(Add(Int("40"), Int("2"))) // 40 + 2
Application(Add(Int("40"), False())) // 40 + false

Figure 4.2: Valid input terms for the described language

4.1.2 Semantic Types

Not all the valid input terms according to our signature are well-typed. For example, the
last term shown in Figure 4.2 features an addition of the integer literal 40 and the Boolean
value False. Using Statix’ constraint solving capabilities, we would like to give feedback to
the programmer that the input is ill-typed.

Given the code in Figure 4.1, our Statix specification does not yet generate any constraints.
Constraints that we would like to generate using Statix rules are firstly that a program must
be well-typed and secondly, in order for an addition expression to be well-typed, its two
subterms must be of integer type.

1 signature
2 sorts
3 TYPE
4
5 constructors
6 BOOL : TYPE
7 INT : TYPE

Figure 4.3: Statix signature for Boolean and in-
teger types

To reason about the types of expressions
and use them in constraints, we must first
define them in our specification, as shown
in Figure 4.3. To distinguish input sorts
and constructors from semantic types that
we will use in our constraints, those sorts
and constructors are defined in upper-case.
With the new TYPE sort that has two construc-
tors: BOOL and INT, we can start generating
constraints on input terms.

4.1.3 Predicates and Rules

Figure 4.4 lists the Statix predicates and rules required to generate the constraints we want
to be satisfied in order for a program to be well-typed.
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1 rules
2
3 applicationOk : Application
4 applicationOk(Application(e)) :- { T }
5 typeOfExp(e) == T.
6
7 typeOfExp : Exp -> TYPE
8 typeOfExp(True()) = BOOL().
9 typeOfExp(False()) = BOOL().

10 typeOfExp(Int(_)) = INT().
11 typeOfExp(Add(e1, e2)) = INT() :-
12 typeOfExp(e1) == INT(),
13 typeOfExp(e2) == INT().

Figure 4.4: Statix predicates and rules for typing booleans, integers and addition

The type of all Statix predicatesmust be explicitly declared, for example the applicationOk
predicate on line 3 specifies that all rules of applicationOk match exactly one constructor
Application. An instantiation of the applicationOk predicate is on line 4. In prose English it
would read “An application is well-typed, given that for some type T, the expression e has
type T”.

The other Statix rule in our small example specification is a functional predicate, meaning
that it returns a value. All but the last rules of the typeOfExp predicate compute a TYPE for a
given expression, without conditions. The last rule of the example does have two conditions,
in prose English it would read “e1 plus e2 is of type INT, given that e1 is of type INT and e2 is
of type INT”.

4.1.4 Building and Querying Scope Graphs
When we expand our small example language with let-bindings and we want to add typing
rules for this new construct, we come across a new feature in Statix. To facilitate typing rules
for name binding, Statix uses scope graphs (Neron, A. Tolmach, et al. 2015). Scope graphs are
built out of three components: scopes, edges and declarations.

s1 x

(a)

s1

s2

x

P

(b)

s1

s2

x

y

z

P

(c)

Figure 4.5: Scope graph examples

Figure 4.5 showcases three examples of scope graphs. Figure 4.5a consists of a single
scope s1 with declaration x that could be a model of a module with a single global variable
x declared inside. The second example, Figure 4.5b, consists of two scopes: a root scope s1
with again a declaration of x, and a scope s2with an outgoing edge to s1 labeled P. The P label
is often used to denote the relation of a lexical parent scope. In this example, s2 could for
example model an empty function declared in module s1. The last example again has two
scopes, with one declaration in s1 and two declarations in s2. This could model the same
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4. WEBDSL IN STATIX

program as described previously, but now with two local variable declarations inside the
function body of s2.

1 signature
2 constructors
3 Let : string * Exp * Exp -> Exp
4 Var : string -> Exp
5
6 name-resolution
7 labels
8 P // to denote parent scope
9

10 relations
11 var : string * TYPE

Figure 4.6: Statix signature for let-bindings

Thefirst step in implementing let-bindings
in Statix is adding the signature. In addition
to the new constructors on line 3 and 4, we
now introduce an edge label P and the rela-
tion var. The edge labels defined in the con-
structor provide the set of allowed labels to
use in rules later on. The relation var on line
11 specifies that any declarationmade under
the var relation in a scope, maps an identi-
fier to its type.

For illustration purposes, when we want
to encode a single scope with two variable
declarations, x of type INT and b of type BOOL,
its scope graph would be as shown in Figure 4.7.

s1
x : INT()

b : BOOL()

var
var

Figure 4.7: A scope graph containing a single scope with two declared variables

In Statix, scopes can be passed around as data. When we are evaluating an expression
in our extended language, we now also want to pass the current scope. If the current input
term that we are generating constraints for is a let-binding, we want to create a new scope,
link it to the previous one, declare the variable in the new scope and evaluate the expression.
To generate constraints for a variable expression, we want to query the scope graph and get
its type. The Statix rules to reflect this are shown in Figure 4.8.

Figure 4.8 showcases various previously unexplained constructs:

• Line 4 creates a new scope s. This scope is the root scope since it is created once at the
start of an application and is not linked to any other scope.

• Line 7 shows the new signature of the typeOfExp functional predicate. Given a scope
and an expression, the rules of typeOfExp will compute the type of the expression.

• Line 9-14 gives the typing rule of a let-binding. Given that the let-binding is of form
let x = e1 in e2, the rule:

– computes the type of e1 on line 10;
– creates a new scope s_let on line 11 for the body of the let to evaluate in;
– declares variable x with associated type T1 in the newly created scope s_let;
– computes the type of e2 and this is the result of the rule.

• Line 16-21 holds the implementation of the variable typing rule. It executes a query
with the following properties:

– It only returns entries in the var relation (line 17)
– It may follow zero or more P edge labels to other scopes (line 17);
– It only returns declarations under the same identifier as x (line 18);
– It prefers local declarations over declarations for which P edges must be followed

(line 19);
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1 rules
2 applicationOk : Application
3 applicationOk(Application(e)) :- { s T }
4 new s,
5 typeOfExp(s, e) == T.
6
7 typeOfExp : scope * Exp -> TYPE
8 // ... previous rules
9 typeOfExp(s, Let(x, e1, e2)) = T2 :- { s_let T1 }

10 typeOfExp(s, e1) == T1,
11 new s_let,
12 s_let -P-> s,
13 !var[x, T1] in s_let,
14 T2 == typeOfExp(s_let, e2).
15
16 typeOfExp(s, Var(x)) = T :-
17 query var filter P*
18 and { x' :- (x', _) == (x, _) }
19 min $ < P
20 and true
21 in s |-> [(_, (_, T))].

Figure 4.8: Statix rules for let-bindings

– Shadowing according to the shadowing rules of line 19 is enabled (line 20);
– The query starts in the passed scope s (line 21);
– The result may only be one declaration (line 21).

Figure 4.9 shows a possible input and the constructed scope graph after the constraints
have been solved.

let x = 1 in
let y = x in
x + y

(a)

Application(
Let(
"x", Int("1"), Let(
"y", Var("x"), Add(
Var("x"),
Var("y")

)
)

)
)

(b)

s1

s2

s3

x

y

P

P

var

var

(c)

Figure 4.9: Constructed scope graph after the example specification solved its constraints
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4.2 Encoding the WebDSL Basics

1 rules
2 projectOk : scope
3 unitOk : scope * Unit
4 sectionOk : scope * Section
5 defOk : scope * Definition
6 typeOfExp : scope * Exp -> TYPE

Figure 4.10: Predicates that form the basis of
the WebDSL Statix specification

The WebDSL language adheres to a
structure similar to many popular program-
ming languages. A WebDSL application
consists of multiple files. At the topmost
level in a file, there is a module or unit dec-
laration. Within a module, multiple sections
of definitions exist, such as pages, templates,
entities and functions. A function consists
of consecutive statements such as variable as-
signment (var n := 2). At the innermost
level, these statements contain expressions
that form the basis the WebDSL type system.

To define well-typedness of the mentioned constructs, the Statix predicates as shown in
Figure 4.10 form the backbone of the WebDSL Statix specification.

4.2.1 Built-in Types and Constant Expressions
Constant expressions such as strings, integers and booleans form the building blocks ofmore
complication constructs. For reasons explained later (see Section 4.6), a built-in type such
as string is not declared as STRING : TYPE but instead as BUILTINTYPE : scope * string ->
TYPE, where the instantiation of the string type is as follows: BUILTINTYPE(s, "String").

These built-in types are declared in a scope that is reachable from almost every location,
the project scope, once per analysis. All WebDSL type declarations are made under the type
relation, which associates the human-readable type name with a TYPE term: type : string
* TYPE. The part of the Statix specification to achieve this, and the resulting scope graph are
shown in Figure 4.11.

1 projectOk(s_project) :-
2 declareTypeBuiltIns(s_project).
3 // ...
4
5 declareTypeBuiltIns : scope
6 declareTypeBuiltIns(s) :-
7 declareType(s, "Int",
8 BUILTINTYPE(new, "Int")).
9 // ...

10
11 declareType : scope * string * TYPE
12 declareType(s, name, t) :-
13 !type[name, t] in s.

(a)

s_project

Int : BUILTINTYPE(s_int, "Int")

type

(b)

Figure 4.11: Declaring built-in types in the project scope

1 typeOfExp(s, Const(Int(_))) = t :-
2 resolveType(s, "Int") == [(_, (_, t))].
3
4 resolveType : scope * string
5 -> list((path * (string * TYPE)))
6 resolveType(s, name) = ts :-
7 query type filter P*
8 and { t' :- t' == (name, _) }
9 in s |-> ts.

Figure 4.12: WebDSL integer constant expression
typing rules

To retrieve a built-in type when
evaluating a constant expression, we
need to query the scope graph and
resolve the type associated with the
string representation. For example,
the typing rules of an integer constant

44



4.2. Encoding the WebDSL Basics

1 typeOfExp(s, Const(StringConst(String(str)))) = t :-
2 resolveType(s, "String") == [(_, (_, t))],
3 stringPartsOk(s, str).
4
5 stringPartsOk maps stringPartOk(*, list(*))
6 stringPartOk : scope * StringPart
7 stringPartOk(s, StringValue(_)).
8 stringPartOk(s, InterpExp(exp)) :- typed(s, exp).
9 stringPartOk(s, InterpValue(InterpSimpleExp(simple_exp))) :- { T }

10 typeOfSimpleExp(s, simple_exp) == T.

Figure 4.14: WebDSL string typing rules

are listed in Figure 4.12. The integer
typing rule introduces a constraint
that the scope graph must contain
a single type declaration associated
with "Int" under the type relation.
The result of the resolveType func-
tional predicate on line 2 should be a
list containing one entry, namely the
pair that we declared in Figure 4.11.
Other WebDSL constant expressions
such as booleans, longs and floats have similar typing rules.

1 "Hello world" // value
2 "Hello ~( 1 + 2 )" // exp
3 "Hello ~x.y" // simple exp

Figure 4.13: WebDSL string interpo-
lation examples

The typing of perhaps the most common constant
expression, a string, has an additional condition to be
well-typed. Because string interpolation is possible,
the constructor of a WebDSL string contains multi-
ple parts that may impose additional constraints. A
demonstration of the different interpolated parts is
shown in Figure 4.13 and the complete typing rules
are shown in Figure 4.14. The parts can be a simple
string value which imposes no additional constraints,
they can be a complete interpolated expressionwhich
requires the expression to be typed, or lastly they can be a “simple” expression which is di-
rectly inlineable.

Now that all the typing rules for constants are implemented, typing rules for unary and bi-
nary operators are a step towardsmore complicated expressions. While it might seem trivial,
we might require additional construct functional predicates for determining type compati-
bility or determining the resulting type of an expression.

4.2.2 Variables

Similar to other imperative languages, WebDSL allows the use of variables to store values.
These variables can be defined on multiple levels, such as in the module, within a function
or at the top of a page/template definition. Additionally, functions may be embedded in
entities, allowing direct access to entity properties as variables without having to prefix it
with the this keyword.

The basic variable declaration and resolving rules are shown in Figure 4.15. Given a scope
s, the declaration rule will make a declaration in s of variable x with associated type t.
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1 declareVar : scope * string * TYPE
2 declareVar(s, x, t) :-
3 !var[x, t] in s,
4 noDuplicateVarDefs(s, x)
5 | error $[A variable named [x] already exists in this scope].
6
7 resolveVar : scope * string -> list((path * (string * TYPE)))
8 resolveVar(s, x) = ps :-
9 query var filter P* /* The filter will be expanded throughout the chapter */

10 and { x' :- x' == (x, _) }
11 min $ < P
12 and true
13 in s |-> ps.

Figure 4.15: WebDSL variable declaration and resolving

Figure 4.16: WebDSL requires declare-before-
use of variables

The implementation of variable typing
is similar to the example of let-bindings
in Section 4.1.4. One difference between
the let-bindings and WebDSL variables is
that the introduction of consecutive state-
ments in WebDSL requires a structure that
defines declare-before-use semantics, to pre-
vent backwards- or self-references such as
shown in Figure 4.16.

Figure 4.17 shows how the scope graph
is constructed when there are consecutive statements. To catch declare-before-use related er-
rors, a new scope is created for each statement (line 6 and 7). When constraints are generated
for a constraint (such as on line 11), it has access to two scopes. Scope s denotes the scope
of the current statement. Any scope graph queries will be executed in this scope. Example:
the type of this statement is queried starting in scope s on line 12). Scope s_decl denotes the
scope of the next statement. Any scope graph declarations will be made this scope. Example:
a variable declaration is being made in scope s_decl on line 14).

Using this tactic, a statement can never access declarations made by itself or by the next
statements, it can only access declarations from previous statements.

An example of how this structure influences the building of scope graphs, a visualization
of a function, accompanied by the scope graph of its body is shown in Figure 4.18.

P*
F*
(

(EXTEND? (INHERIT EXTEND?)*)
| (DEF? (IMPORT | IMPORTLIB)?)

)

Figure 4.19: Well-formedness predicate for
variable paths

Another difference between the let-binding
rules from an earlier example and WebDSL
variables is the complexity of the shadow-
ing rules. The WebDSL variable shadow-
ing rules whichwe reverse-engineered from
the current compiler and static analysis im-
plementation, state that the same variable
identifier may be used multiple times, but
never twice in the “environment”. Such en-
vironments are: module scope, entity prop-
erties, functions, templates, etc. If a variable
reference has multiple declarations in reach,
the closest one according to the shadowing
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1 stmtOk : scope * scope * Statement
2
3 stmtsOk : scope * list(Statement)
4 stmtsOk(_, []).
5 stmtsOk(s, [stmt | tail]) :- {s_decl s_next}
6 new s_decl, s_decl -P-> s,
7 new s_next, s_next -P-> s_decl,
8 stmtOk(s, s_decl, stmt),
9 stmtsOk(s_next, tail).

10
11 stmtOk(s, s_decl, VarDecl(x, sort)) :- { t }
12 t == typeOfSort(s, sort),
13 inequalType(t, UNTYPED()) | error $[Unknown type [sort]] @sort,
14 declareVar(s_decl, x, t),
15 @x.type := t.

Figure 4.17: WebDSL statements use different scopes for querying and declaring data from
the scope graph

function f() : Int {
var x := 1;
var y := 2;
return y;

}

(a)

s1

s2

s2

x : BUILTINTYPE(s_int, "Int")

y : BUILTINTYPE(s_int, "Int")

P

P

var

var

(b)

Figure 4.18: Variable declarations example using a separate declaration scopes

rules will be picked. The regular expression that defines the reachability of variables (left
out in line 9 of Figure 4.15) is shown in Figure 4.19.

The edge label P as introduced in Figure 4.17 is the edge label used for linking consecutive
statements together. The other edge labels such as complicate this regular expression, and
will be explained in more details in later sections when their use is discussed.

Figure 4.19 defines what data is reachable from any point in the scope graph, but we also
want some restrictions of declarations. The same environment such as function body or an
entity definition may never declare the same variable twice. To achieve this, line 4 of Fig-
ure 4.15 uses the helper predicate noDuplicateVarDefs. The implementation of this predicate
is straight-forward and shown in Figure 4.20. The predicate queries the current scope and
checks whether all scopes reachable using only P edge labels, results in a list containing only
one entry.

4.2.3 Type Compatibility
WebDSL has a notion of type compatibility. For example, the WebDSL superclass of all
entities is conveniently called Entity. When assigning a value to a variable that requires
type Entity, passing an instance of a user-defined entity such as Person or Project also suf-
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1 noDuplicateVarDefs : scope * string
2 noDuplicateVarDefs(s, x) :-
3 query var filter P*
4 and { x' :- x' == (x, _) }
5 in s |-> [_].

Figure 4.20: The same variable identifier may only be declared once in an environment

entity Person {}

function f() {
var e : Entity := Person{}; // all user-defined entities are compatible with Entity
var d : Date := now(); // now() produces a value of type DateTime
var p : Person := null; // null is compatible with many types

}

Figure 4.21: Examples of type compatibility in WebDSL

1 typeCompatible : TYPE * TYPE
2 // By default, two types are not compatible
3 typeCompatible(T1, T2).
4 // Same type is always compatible
5 typeCompatible(T, T).

Figure 4.22: WebDSL type compatibility predicate and general rules

fices. In this case, type Person is compatible with type Entity, but not the other way around.
Type compatibility is not limited to entities. For instance, all WebDSL date types (Date, Time,
DateTime) are compatible with each other. As a last example, null is compatible with many
types. The examples given above are shown in Figure 4.21.

To encode the type compatibility as shown in Figure 4.21 in Statix, we need a predicate
that tells us, given two types A and B, if type A is compatible with B. The signature and its
general rules are shown in Figure 4.22.

With only the basic rules from Figure 4.22, we have created the equality (==) from Statix
in predicate form. The advantage of listing it like this, is that we can now add rules to make
it fit the WebDSL type system. To continue the example of null being compatible with every
type, we can add the rules shown in Figure 4.23 to achieve this. An example of how to use
our new typeCompatible predicate is also given on line 8 of Figure 4.23.

Typing of the addition expression

The typing rules for most binary operations such as conjunction is trivial: the resulting value
is of boolean type, with the constraint that both operators must be of boolean type. However,
the range of values in WebDSL is greater than only natural numbers and booleans. WebDSL
supports other numeric types such as Floats and Longs, as well as string types and multiple
subtypes of strings such as Secret, Text and WikiText. The addition operator supports most
of these values, and the typing of this operator is not as trivial as boolean conjunction. For
example: the addition of two strings results in a string, the addition of a string and an integer
results in a string value and the addition of a boolean and a string is not supported.

To calculate the return type of addition, we introduce a functional rule that calculates
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1 typeOfExp(_, Null()) = NULL().
2 typeCompatible(NULL(), _).
3
4 // example of usage:
5 stmtOk(s, VarDeclInit(x, sort, exp), _) :- { sortType expType }
6 sortType == typeOfSort(s, sort),
7 expType == typeOfExp(s, exp),
8 typeCompatible(expType, sortType)
9 | error $[Expression [exp] is not of type [sort], got type [expType]] @exp,

10 declareVar(s, x, sort),
11 @x.type := t.

Figure 4.23: Compatibility of the null expression encoded in Statix

1 lubForAdd : TYPE * TYPE -> TYPE
2 lubForAdd(T1, T2) = lubForAddNumeric(T1, T2).
3 lubForAdd(t@BUILTINTYPE("String", _), _) = t.
4 lubForAdd(_, t@BUILTINTYPE("String", _)) = t.
5
6 lubForAddNumeric : TYPE * TYPE -> TYPE
7 lubForAddNumeric(_, _) = UNTYPED().
8 lubForAddNumeric(t@BUILTINTYPE("Int", _) , t) = t.
9 lubForAddNumeric(t@BUILTINTYPE("Long", _) , t) = t.

10 lubForAddNumeric(t@BUILTINTYPE("Float", _) , t) = t.
11 lubForAddNumeric(t@NATIVECLASS("Double", _) , t) = t.
12
13 // implicit widening from int to long
14 lubForAddNumeric(BUILTINTYPE("Int", _) , t@BUILTINTYPE("Long", _)) = t.
15 lubForAddNumeric(t@BUILTINTYPE("Long", _) , BUILTINTYPE("Int", _)) = t.
16
17 // implicit widening from float to double
18 lubForAddNumeric(t@NATIVECLASS("Double", _) , BUILTINTYPE("Float", _)) = t.
19 lubForAddNumeric(BUILTINTYPE("Float", _) , t@NATIVECLASS("Double", _)) = t.

Figure 4.24: Least-upper-bound rules for addition

the least-upper-bound of two types: lubForAdd : TYPE * TYPE -> TYPE. The implementation
of this rule is given in Figure 4.24. The functional rule lubForAddNumeric is reused in other
contexts, in particular when generating the constraints for comparison with operators such
as greater-than, to check if two types are comparable.

4.2.4 Boolean Logic in Statix
So far, most of the WebDSL’s static semantics are expressible in Statix. However, the ele-
gance of the Statix definition is sometimes lost due to code duplication. For example, logical
negation and disjunction of predicates are not natively expressible in Statix, and require boil-
erplate code to function. To tackle this challenge, we introduced a notion of explicit boolean
results for predicates that are reusable. The implementation in Statix is shown in Figure 4.25.
The figure shows a predicate from before (typeCompatible : TYPE * TYPE) now changed to
return an explicit result: typeCompatibleB : TYPE * TYPE -> BOOL. Additionally, we scope
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1 signature
2 sorts
3 BOOL // used as return values of functional rules
4
5 constructors
6 TRUE : BOOL
7 FALSE : BOOL
8
9 rules

10 // return a TRUE() or FALSE() value instead of failing/passing constraint
11 typeCompatibleB : TYPE * TYPE -> BOOL
12
13 // scope this explicit results in a predicate to avoid having to work
14 // with boolean computation everywhere
15 typeCompatible : TYPE * TYPE
16 typeCompatible(T1, T2) :- typeCompatibleB(T1, T2) == TRUE().

Figure 4.25: Boolean computation results in Statix

this boolean result in a predicate typeCompatible(T1, T2) :- typeCompatibleB(T1, T2) ==
TRUE()., such that existing references can be left unchanged.

As hinted before, the explicit return values of functional rules open up new possibili-
ties for expressing constraints. One instance of where this is necessary, is expressing the
semantics of an equality check in WebDSL. For the expression A == B to type check, the
types have to be compatible. The naive implementation would be to define the constraint
typeCompatible(T_A, T_B). However, type compatibility is not symmetrical while the equal-
ity check should be: A == B ðñ B == A. An example of type compatibility not being sym-
metrical is when dealing with entity inheritance (see Section 4.3.1). To properly define the
static semantics for the equality expression in Statix, we need the newly defined boolean
computation rules. The result is shown in Figure 4.26.

4.2.5 Entities and Properties
Entities form the basis of the type system and data structure in aWebDSL application. Using
Hibernate as an object-relational mapping (ORM) tool, instances of entities can be persisted
without explicit communicationwith a databasemanagement system. Entities typically have
multiple properties which values are persisted, and functions that can be called and will
be executed in the scope of the instantiated entity. Entity properties and entity functions
together form the entity body declarations.

In the WebDSL type system, entities are declared in the scope of the module they are
defined in. An entity is a type in the WebDSL type system, similar to built-in types such as
String and Int. The Statix code to declare entities is shown in Figure 4.27 and an example of
a simple program with entity definition plus its scope graph is shown in Figure 4.28.

The declareType and resolveType rules as introduced in Figure 4.11 need to be updated to
work as intended for resolving and declaring entities. To prevent duplicate entity definitions,
the declareType rule is extendedwith one additional rule as shown in Figure 4.29. Line 4was
added to declareType, tomake surewhen you declare a new type or entity, its name is unique.

In addition to the added constraint to the declareType rule, we added an optional DEF edge
label that may be followed when querying the scope graph for a type (line 9 of Figure 4.29).
The DEF (short for definition) is used to link the scope of top-level elements, such as entities
and functions, to the module scope. This can be seen in line 13 of Figure 4.27.
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1 or : BOOL * BOOL
2 orB : BOOL * BOOL -> BOOL
3
4 or(b1, b2) :- orB(b1, b2) == TRUE().
5
6 orB(_, _) = FALSE().
7 orB(TRUE(), _) = TRUE().
8 orB(FALSE(), TRUE()) = TRUE().
9

10 // (e1 == e2)
11 typeOfExp(s, Eq(e1, e2)) = t :- { T1 T2 }
12 t == bool(s),
13 typeOfExp(s, e1) == T1,
14 typeOfExp(s, e2) == T2,
15 or(
16 typeCompatibleB(T1, T2),
17 typeCompatibleB(T2, T1)
18 ).

Figure 4.26: Using boolean computation results in Statix for the equality expression

1 signature
2 constructors
3 // an entity constructor has two subterms:
4 // - the entity name
5 // - the scope of the entity where all the properties and
6 // functions are declared
7 ENTITY : string * scope -> TYPE
8
9 rules

10 defOk(s_module, EntityNoSuper(entity_name, body)) :- { s_entity }
11 // a new scope for the entity is created and linked to the module scope
12 // using the `DEF' (for definition) edge label
13 new s_entity, s_entity -DEF-> s_module,
14
15 // the new entity is declared as type in the module scope
16 declareType(s_module, entity_name, ENTITY(entity_name, s_entity)),
17
18 // finally a helper rule is called that properly handles
19 // the entity body definitions (properties, functions, etc.)
20 declEntityBody(s_entity, entity_name, body).

Figure 4.27: The Statix rules for declaring entities
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module m
entity Person {
// no properties
// for now...

}

(a)

s_m

s_person

Person : ENTITY("Person", s_person)

DEF

type

(b)

Figure 4.28: An example of entity definition in WebDSL

1 declareType : scope * string * TYPE
2 declareType(s, name, t) :-
3 !type[name, t] in s,
4 resolveType(s, name) == [(_, (_, t))]
5 | error $[Type [name] is defined multiple times] @name.
6
7 resolveType : scope * string -> list((path * (string * TYPE)))
8 resolveType(s, name) = typesOf(ts) :-
9 query type filter P* DEF? // resolving a type may

10 // optionally follow DEF edge label
11 and { t' :- t' == (name, _) }
12 in s |-> ts.

Figure 4.29: declareType now shows an error when two types with the same name are de-
clared and resolveType may optinally follow a DEF edge label

So far, there has been no reason to query for types inside the entity body because we have
always worked with empty entities. In practice, entities are filled with properties and func-
tions. Line 20 of Figure 4.27 calls the declEntityBody predicate, of which the implementation
is shown in Figure 4.30 and an example of an entity definition with two properties is shown
in Figure 4.31.

Entity properties are declared under the variable relation inside the entity scope, such
that functions inside entities can reference their own properties without using the this pre-
fix. The this construct is supported, but not necessary. Declaring properties in this way,
allows us to reuse the already existing rules such as those against duplicate definition, with-
out duplicating the code for another relation.

When instantiating an entity, the properties declared in the entity body may be given a
value in the instantiation expression. To express this in Statix, an entity instantiation first
retrieves the scope of the entity. If the scope cannot be retrieved, it means that the entity
is unknown at the position of the expression, so either the entity was never declared or it
is not imported correctly. Secondly, all instantiated properties must be declared under the
var relation of the entity scope. An example of the declaration and scope graph of an entity
declaration is shown in Figure 4.31. A part of the Statix rules for instantiating entities is
shown in Figure 4.32.

Even though the concepts, rules and approach mentioned in this subsection are present
in the Statix specification of WebDSL, we had to simplify the examples and shown Statix
rules to hide the extra complexity added concepts such as inheritance, property annotations
and type extension. Those concepts will be explained in detail in section Section 4.3 and
Section 4.6.

52



4.2. Encoding the WebDSL Basics

1 declEntityBody maps declEntityBodyDeclaration(*, *, list(*))
2 declEntityBodyDeclaration : scope * string * EntityBodyDeclaration
3
4 // entity property
5 declEntityBodyDeclaration(s, ent,
6 Property(x, propkind, sort, PropAnnos(annos))) :- { sortType }
7
8 // resolve the type of the property
9 sortType == typeOfSort(s, sort),

10
11 // there are some restrictions on property types
12 sortType != UNTYPED()
13 | error $[Cannot resolve type [sort]] @sort,
14 sortType != VOID()
15 | error $[Property type 'Void' not allowed] @sort,
16 sortType != REF(_)
17 | error $[Reference type is not allowed in property] @sort,
18 isValidTypeForPropKind(propkind, sort, sortType),
19
20 // declare the property as variable in the entity scope
21 declareVar(s, x, sortType),
22
23 // use a helper predicate to check for the uniqueness of
24 // the property name
25 resolveLocalProperty(s, x) == [_]
26 | error $[Property [x] of entity [ent] is defined multiple times] @x.

Figure 4.30: Statix rules for declaring the entity body

module m
entity Person {
name : String
dateOfBirth : Date

}

(a)

s_m

s_person

Person : ENTITY("Person", s_person)

name : BUILTINTYPE(s_string, "String")

dateOfBirth : BUILTINTYPE(s_date, "Date")

DEF

type

var
var

(b)

Figure 4.31: An example of an entity definition with multiple properties
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1 typeOfExp(s, ObjectCreation(x, prop_assignments)) = e :-
2 definedType(s, x) == e,
3 e == ENTITY(_, _),
4 propAssignmentsOk(s, e, prop_assignments).
5
6 propAssignmentsOk maps propAssignmentOk(*, *, list(*))
7 propAssignmentOk : scope * TYPE * PropAssignment
8 propAssignmentOk(s, ent@ENTITY(e, s_ent),
9 PropAssignment(x, exp)) :- { propType expType }

10 typeOfProperty(s, ent, x) == propType,
11 typeOfExp(s, exp) == expType,
12 typeCompatible(expType, propType).

Figure 4.32: Statix rules for instantiating an entity

1 signature
2 constructors
3 PAGE : string * list(TYPE) -> TYPE
4 TEMPLATE : string * list(TYPE) -> TYPE
5
6 relations
7 page : string * TYPE
8 template : string * TYPE

Figure 4.33: Statix signature for pages and templates

4.2.6 Pages and Templates
The user-inferface of aWebDSL application is built out of pages and templates. A page defines
a path that can be requested by the browser while a template is a reusable component that
can be part of a page or nested in other templates.

The name of a page must be unique, while a template can be defined multiple times
for different argument types (overloading), but never multiple times for the same argument
types. The Statix rules to implement these checks can be found in Figure 4.34 and an example
of a module with a page and a template definition is shown in Figure 4.35. In the latter
image, the argument type of template t is shortened to String, instead of its full version
BUILTINTYPE(s_string, "String").

Type-checking a page reference is easier than that of a template, since a page definition
cannot be overloaded. In order for a page reference to be well-typed, the page must be de-
fined exactly once, and the types of the passed arguments must be compatible with the pa-
rameter types of the page. The Statix rules that ticks those boxes is shown in Figure 4.36. The
resolving of templates is similar to that of functions and will be explained later in Section 4.4.

The body of templates and pages consist of so-called Template elements. The simplest tem-
plate element is simply a text to be printed on the page. Next to plain text, hyperlinks to
other pages can be created using the navigate element. If we take Figure 4.35 as basis, an ex-
ample of a valid navigate call would be navigate p() { "Go to p" }. To type-check this, the
code from Figure 4.36 can be used. Other examples of template elements are forms, nested
template calls, and at the top of a template, variables can be initialized, followed by a block
of computational statements that get executed when the template is being loaded.

Apart from regular templates, WebDSL also has a notion of Ajax templates. Ajax tem-
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1 declarePage : scope * string * list(TYPE)
2 declarePage(s, p, ts) :-
3 !page[p, PAGE(p, ts)] in s,
4 resolveTemplate(s, p) == []
5 | error $[Multiple page/template definitions with name [p]] @p,
6 resolvePage(s, p) == [_]
7 | error $[Multiple page/template definitions with name [p]] @p.
8
9 declareTemplate : scope * string * list(TYPE)

10 declareTemplate(s, t, ts) :-
11 !template[t, TEMPLATE(t, ts)] in s,
12 resolvePage(s, t) == []
13 | error $[Multiple page/template definitions with name [t]] @t,
14 filterTemplateResultsArgs(resolveTemplate(s, t), ts) == [_]
15 | error $[Multiple page/template definitions with name [t] and argument types [ts]] @t.

Figure 4.34: Statix rules for declaring WebDSL pages and templates

module m
page p {
"Hello "
t("World!")

}

template t(s : String) {
~s

}

(a)

s_m

s_p s_t

p : PAGE("p", [])

t : TEMPLATE("t", [String])

DE
F DEF

page
template

(b)

Figure 4.35: An example of a module with a page p and a template t

1 pageCallOk : scope * string * list(Exp)
2 pageCallOk(s, p, args) :- {argTypes ts}
3 pageType(s, p) == PAGE(_, ts)
4 | error $[There is no page with signature [p]] @p,
5 argTypes == typesOfExps(s, args),
6 typesCompatible(argTypes, ts)
7 | error $[Given argument types not compatible with page definition] @args.
8
9 // root page is always accessible from all locations

10 pageCallOk(_, "root", []).

Figure 4.36: Statix rules for type-checking a page reference
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plates can be used as building blocks of the user interface, just like regular templates. Addi-
tionally, Ajax templates also have a possibility of being replaced on a rendered page without
reloading thewhole page, for example to refresh the results of a poll on a page. This addition
makes Ajax templates useful for more interactive and modern web applications.

Certain action code such as the replace and refresh statements are only supposed towork
onAjax templates, and not on regular templates. To this endwe need to differentiate between
them in the scope graph. We have chosen the most trivial way of implementing this, namely
adding an additional argument in the type constructor of a template: TEMPLATE : string *
list(TYPE) * BOOL -> TYPE. The last boolean argument indicates whether the template is an
Ajax template or not. When resolving templates we can now resolve only Ajax templates by
adding a TRUE() to the filter statement of the query.

4.2.7 Functions

In WebDSL, a function is a sequence of statements that perform some sort of computation
and can return a value. The type of the return valuemust be stated in the function header and
is part of the signature. The implementation of the declaration and resolving of functions is
similar to that of templates, as explained in Section 4.2.6, and therefore will not be repeated
here.

An additional characteristic of functions that is similar to templates, is the use of param-
eters. The parameters with their corresponding types have to be declared statically. The
parameters are readable from the function body, but never writable or overridable by a local
variable. Additionally, the name of parameters may shadow the name of definitions outside
the function such as entity properties or global definitions. To enforce these constraints, we
introduce a new edge label F for embedding the function scope in their surrounding scope,
which is either global or within an entity. Using this new edge label, the shadowing rules
can be adjusted to properly check the listed semantics. The result is shown in Figure 4.37 and
an example of a WebDSL snippet with the resulting scope graph is shown in Figure 4.38. In
the example, parameter x of function f shadows the globally declared x.

Apart from globally declared functions, functions may also be part of an entity. In this
case, functions can be called similar to how entity properties are referenced. Lastly, entity
functions may have the static annotation, which is similar to static class functions in the
Java programming language. Static functions may be called without having an instantiated
entity.

4.2.8 Access Control

When developing any application that will be used in practice, access control is an important
part of the system. It controls which user is allowed to see what data, what actions can
be executed. Generally, this is implemented through a log-in system where different user
accounts are given different rights. In all popular programming languages, developing a
system access control is the responsibility of the developer, either through manual coding
or using frameworks and libraries. In WebDSL however, access control is embedded in the
language and all pages are protected by default.

Concretely, the developer is able to declare what entity represents a user in the system,
and what data the user needs to show to log in. In the rest of the WebDSL code, the globally
available security context is extended with the properties principal which references the
logged-in user, and loggedIn which is true if the user has logged in. If the developer has
not specified what entity represents a user, the security context is available but does not
have these properties. An example of WebDSL code with resulting scope graph is shown in
Figure 4.39 and the Statix rules used to achieve this are shown in Figure 4.40. In the code for
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1 functionOk : scope * Function
2 functionOk(s_outer,
3 Function(name, FormalArgs(args), OptSortSome(returnSort), Block(stmts)))
4 :- { argTypes returnType s_function s_body }
5
6 // embed the function scope with edge label F
7 new s_function, s_function -F-> s_outer,
8
9 // declare parameters in function

10 argTypes == typesOfArgs(s_outer, args),
11 declareParameters(s_function, zipArgTypes(args, argTypes)),
12
13 // create the function body and generate constraints
14 new s_body, s_body -P-> s_function,
15 stmtsOk(s_body, stmts, returnType),
16
17 // declare the function in the outer scope
18 returnType == typeOfSort(s_outer, returnSort),
19 declFunction(s_outer, name, argTypes, returnType).
20
21 // resolve variables via P and F edges
22 resolveVar(s, x) = ps :-
23 query var filter P* F*
24 and { x' :- x' == (x, _) }
25 min $ < P, $ < F,
26 P < F
27 and true
28 in s |-> ps.
29
30 // a definition is only duplicate in a line of P edges
31 noDuplicateVarDefs : scope * string
32 noDuplicateVarDefs(s, x) :-
33 query var filter P*
34 and { x' :- x' == (x, _) }
35 in s |-> [_].

Figure 4.37: Statix rules for function parameters and variable shadowing
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module m
var x : Int := 1

function f(x : Int, y : Int) : Int
{
return x + y;

}

(a)

s_m

s_f

s_f_body

x : Int

f : FUNCTION("f", [Int], Int)

x : Int

y : Int

F

P

var
function

var
var

(b)

Figure 4.38: An example of a function with parameters

module m
entity User {
username : String
password : Secret

}

principal is User
with credentials
username, password

page p {
if (securityContext.loggedIn) {
"Welcome!"

} else {
"Log in first!"

}
}

(a)

s_m

s_u s_p s_sc

p : PAGE("p", [])

securityContext : ENTITY(..., s_sc)

principal : ENTITY("User", s_u) loggedIn : BOOL

DEF

DE
F

page
var

var
var

(b)

Figure 4.39: An example of access control in WebDSL. The entries related to entity User are
omitted for brevity

extending the security context with two additional properties, the same mechanics are used
as for entity and built-in type extension. An explanation can be found later in Section 4.6.

4.3 Advanced Entity Features
In Section 4.2.5, the basic implementation of entities is explained. In this section, we will dis-
cuss the implementation of entity features such as inheritance, overriding functions, property
annotations and the entity hierarchy.

4.3.1 Inheritance
Linking the Scopes

The implementation of inheritance requires the scope of the sub- and super-entity to be con-
nected such that Statix queries can resolve to declarations from the super-entity when neces-
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1 principalDefOk : scope * string * list(string)
2 principalDefOk(s, ent, properties) :-
3 { s_ent entityName credentialTypes t }
4 definedType(s, ent) == t@ENTITY(entityName, s_ent),
5 principalPropertyTypes(s_ent, properties, ent) == credentialTypes,
6 compatibleCredentialTypes(properties, credentialTypes),
7 declSecurityContext(s, t, credentialTypes).
8
9 compatibleCredentialTypes maps compatibleCredentialType(list(*), list(*))

10 compatibleCredentialType : string * TYPE
11 compatibleCredentialType(x, s) :-
12 isStringCompatibleType(s).
13
14 declSecurityContext : scope * TYPE * list(TYPE)
15 declSecurityContext(s, principalType, credentialTypes) :-
16 { s_extend_security_context }
17 new s_extend_security_context,
18 declProperty(s_extend_security_context, "securityContext"
19 , "principal", principalType),
20 declProperty(s_extend_security_context, "securityContext"
21 , "loggedIn", bool(s)),
22 declareExtendScope(s, "securityContext", s_extend_security_context),
23 extendScopes(resolveExtendScope(s, "securityContext")
24 , s_extend_security_context).

Figure 4.40: Statix rules for declaring the access control principal

1 signature
2 name-resolution
3 labels
4 INHERIT // inherit edge label for subclasses
5
6 rules
7 defOk(s_global, Entity(x, super, bodydecs)) :- {s_entity super' s_super}
8 resolveEntity(s_global, super) == [(_, (super', ENTITY(_, s_super)))],
9 new s_entity, s_entity -INHERIT-> s_super,

10 noCircularInheritance(s_entity),
11 declEntity(s_global, s_entity, x, bodydecs),
12 @super.ref := super'.

Figure 4.41: Entity inheritance Statix rules

sary. To achieve this, we introduce an edge label INHERIT as shown in Figure 4.41.
First, the super-entity referred to in the declaration must refer to an existing entity in the

scope graph. Secondly, the new scope belonging to the sub-entity s_entity is linked to the
scope of the super class s_super via an INHERIT edge. Finally, some additional constraints
are generated to make sure no circular inheritance exists and constraints for the entity body
declarations of the sub-entity are generated.

The variable resolving query as listed in Figure 4.43 reflects the addition of the INHERIT
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module m
entity Person {
// no properties

}

entity Student : Person {
// no properties

}

(a)

s_m

s_persons_student

Person : ENTITY("Person", s_person)Person : ENTITY("Student", s_student)

DEFDE
F

INHERIT

typetype

(b)

Figure 4.42: An example of entity definition in WebDSL

Figure 4.43: The query that specifies what variables can be resolved, updated to reflect entity
inheritance

label. The addition of INHERIT* in the query filter makes all variables declared in ancestors
reachable, but the shadowing rule as declared after the min keyword ensures correct shadow-
ing behavior, namely that local variables are preferred over variables defined in ancestors.

Overwriting Functions

Generally, defining two functions with the same name and same argument types is not al-
lowed in WebDSL. Entity functions are an exception to this such that entity function defini-
tions shadow global function definitions. With the introduction of inheritance there comes
another exception, namely that sub-entities are allowed to override function definitions of
their ancestors.

Previously, the resolving of entity functions was done using a query that resolves within
the entity scope only. With the introduction of entity inheritance, the path well-formedness
over edge labels was changed such that functions from ancestors are also in scope. Changing
filter e to filter INHERIT* accomplishes this. Both the previous and resulting queries are
shown in Figure 4.44.

This query definition is adequate when sub-entities do not override functions. When a
sub-entity does define a function that is already defined in one of its ancestors, resolving
the entity function gives two results while the desired outcome is only one result, namely
the overridden function defined in the sub-entity. To tackle this challenge, we defined a
Statix anonymous shadowing rule combined with a label order. This ensures that when two
functions with the same name and argument types exist, only the most specific (i.e. the least
inheritance edges) is returned. This is implemented as shown in Figure 4.45.

Entity Type Compatibility

A perk of having the notion of inheritance in the WebDSL language, is that it allows for
better abstraction and less code duplication. An example of this is a function definition,
where the argument type is an entity. This function can be called with an argument of the
entity type, or one of its sub-entities. To know if the given type is compatible with the re-
quired type, we require a predicate that defines this compatibility. We have created such
a predicate while implementing general type compatibility in Section 4.2.3, in the form of
typeCompatibleB : TYPE * TYPE -> BOOL.
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1 // previously (local entity scope only)
2 resolveEntityFunction(s, x) = ps :-
3 query function filter e
4 and { x' :- x' == (x, _) }
5 min
6 in s |-> ps.
7
8 // new (allow resolving to ancestors)
9 resolveEntityFunction(s, x) = ps :-

10 query function filter INHERIT*
11 and { x' :- x' == (x, _) }
12 min /* */
13 in s |-> ps.

Figure 4.44: Statix rules for allowing entity function calls to resolve to definitions in their
ancestors

1 resolveEntityFunction(s, x) = ps :-
2 query function filter INHERIT*
3 and { x' :- x' == (x, _) }
4 /* prioritize local scope over inheritance */
5 min $ < INHERIT
6 /* shadow when function name and argument types match */
7 and {
8 (f, FUNCTION(args, _, _)),
9 (f, FUNCTION(args, _, _))

10 }
11 in s |-> ps.

Figure 4.45: Statix rules for resolving entity functions that allow overriding

With the addition of entity inheritance, we need to expand this definition. To this end, we
added the rules as shown in listing Figure 4.46. Given two entity scopes, the inherits(s_sub,
s_super)predicate returns truewhen the query has one result. The query in the inherits rule
requests all paths from scope s_sub to scope s_super consisting of only INHERIT edges. Such
a path exists if and only if the entity belonging to scope s_sub inherits the entity belonging
to s_super. An example of a scope graph with entity inheritance is shown in Figure 4.42.

4.3.2 Property Annotations

So far, the Statix specification can validate entities, their properties and their functions. Since
the goal is to nevermanually touch the database specification, wewould like entity properties
to be more expressive by for example specifying default values, or put a constraint on the
possible values of a property. WebDSL uses property annotations for this. Figure 4.47 shows
an WebDSL code of an entity with properties that have annotations.

Many property annotations do not influence the scope graph. An example of this is the
default = <exp> annotation, where Statix only needs to check whether the given expression
is compatible with the property type. For the length = <exp> annotation, the same holds,
except that the expression must now have type Int.
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1 typeCompatibleB(ENTITY(s_sub), ENTITY(s_super)) = inherits(s_sub, s_super).
2
3 inherits : scope * scope -> BOOL
4 inherits(s_sub, s_super) = nonEmptyPathScopeList(ps) :-
5 query () filter INHERIT*
6 and { s :- s == s_super }
7 min $ < INHERIT
8 in s_sub |-> ps.
9

10 nonEmptyPathScopeList : list((path * scope)) -> BOOL
11 nonEmptyPathScopeList(_) = FALSE().
12 nonEmptyPathScopeList([(_,_)]) = TRUE().

Figure 4.46: Statix rules for entity type compatibility that support inheritance

module m
entity Course {
key : String (default="change-me")
ects : Float (validate(ects >= 0, "ECTS may not be lower than 0"))
teacher : Teacher (not null)

}

entity Teacher {
firstname : String
lastname : String (length = 255)
courses : [Course] (inverse=teacher)

temporaryNumber : Int (transient)
fullname : String := getFullName()

function getFullName() : String {
return "~firstname + ~lastname";

}
}

Figure 4.47: Examples of entity property annotations
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module m
entity Person {
firstname : String
lastname : String
fullname : String :=
"~firstname + ~lastname"

}

(a)

s_m

s_person

Person : ENTITY("Person", s_person)

firstname : String

lastname : String

fullname : String

fullname : DERIVED()

DE
F

type

var

var
varannotation

(b)

Figure 4.48: An example of a derived property in an entity

An interesting property to point out is the derived property, as shown in for property
fullname of the Teacher entity in Figure 4.47. While this is not strictly an annotation, it does
change something in the scope graph. A derived value can be calculated from other proper-
ties of the entity and does not have to be stored. Its value can also not be changed directly.
The latter property is something we need to store in the scope graph, such that we can give
an error when developers attempt to assign a value directly to a derived property. For this, a
new relation is introduced in Statix, which allows us to declare annotations on properties in
the scope of an entity. An example of this is shown in Figure 4.48. When assigning a variable,
the left-hand side of the assignment can now be checked for mutability. The implementation
of these checks whether the entity property that is referenced on the left-hand side has the
DERIVED() annotation. To prevent code duplication, we chose to re-use the DERIVED() prop-
erty for function parameters, which can only be referenced but never changed in the function
body.

Another interesting annotation to mention, is the inverse = <var> annotation as shown
for the courses property of the Teacher entity in Figure 4.47. The inverse annotation is intro-
duced to prevent data duplication in the database. To continue with the example of Teacher
and Course of Figure 4.47, the Course table saves the corresponding teacher, and when a
teacher is fetched from the database, the courses property is instantiated according to the
data in the Course table. When specifying inverse=teacher, the Statix specification has to
validate that the entity mentioned in the property type (Course in this case) has the teacher
property, and that the type of that teacher property is equal to the type of the entity that the
inverse annotation was declared in (Teacher in this example). To prevent a situation where
none of the two entities is responsible for saving the data, a double inverse annotation is not
allowed. To enforce this, another constraint has to be added, namely that the teacher prop-
erty of Course does not have an inverse annotation. The only way to reliably check this is to
save the annotation INVERSE() in the scope graph.

4.3.3 Entity Hierarchy and the Name Property
Similar to Object in the Java programming language, WebDSL also has a root of the entity
hierarchy, namely Entity. If a defined entity does not explicitly inherit from another entity,
it will automatically inherit from Entity. This built-in superclass is convenient to store prop-
erties that all entities will have out of the box, such as the property id of type UUID and the
property created of type DateTime. User-defined entities are not allowed redefine such prop-
erties, but they may to edit the values. An exception to this rule is the property name of type
String that all entities have by default, but may be overridden once by sub-entities.

To achieve the overridability, we can re-use the property annotations in the scope graph as
explained in previous section. The nameproperty of the built-in entity Entitygets a OVERRIDABLE()
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module m
entity Person {
name : String

}

(a)

s_m

s_entitys_person

Entity : ENTITY("Entity", s_e)

Person : ENTITY("Person", s_person)

...

name : String

name : OVERRIDABLE()

name : String

DE
F

type
type

var
varannotationvar

(b)

Figure 4.49: An example of overriding the name property

1 declProperties maps declProperty(*, *, list(*), list(*))
2 declProperty : scope * string * string * TYPE
3 declProperty(s, ent, x, sortType) :-
4 validPropertyName(x),
5 declareVar(s, x, sortType),
6 resolveLocalProperty(s, x) == [_]
7 | error $[Property [x] of entity [ent] is defined multiple times] @x,
8 noDuplicateVarDefsInSuper(s, x)
9 | error $[Cannot override existing entity property [x]] @x.

10
11 noDuplicateVarDefsInSuper : scope * string
12 noDuplicateVarDefsInSuper(s_sub, x) :- { xs nonOverridable }
13 resolveProperty(s_sub, x) == xs,
14 withoutAnnotation(xs, OVERRIDABLE()) == nonOverridable,
15 amountNonOverridableOk(nonOverridable).
16
17 amountNonOverridableOk : list((path * (string * TYPE)))
18 amountNonOverridableOk(_) :- false.
19 amountNonOverridableOk([]).
20 amountNonOverridableOk([_]).

Figure 4.50: Statix rules for overridable entity properties

annotation declared in the scope of Entity, and when attempting to catch duplicate property
definitions, we must discard properties from parents that have the OVERRIDABLE() property.
An example of the overriding is shown in Figure 4.49 and the Statix code to discard over-
ridable properties is shown in Figure 4.50. In the Statix rules, there are now two predicates
to prevent duplicates: one for within the entity, and another one to check inherited proper-
ties. The difference is rules allows for better error messages, but most importantly allows
us to only discard properties with the OVERRIDABLE() annotation from inherited properties.
At the point of writing this thesis, the built-in name property is the only use case for the
OVERRIDABLE() annotation and it is not possible to mark a property as overridable by code.
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module m

entity Animal {
name : String

}
entity Cat : Animal {
breed : String

}

template description(a : Animal) {
"~a.name"

}
template description(c : Cat) {
"~c.name (Breed: ~c.breed)"

}

Figure 4.51: An example of defining overloaded templates in WebDSL

4.4 Function and Template Overloading
Function overloading is the practice of defining multiple functions with the same name, that
differ in argument types or in the amount of arguments. Before running the WebDSL pro-
gram, the compiler determines what instance of the function will be run, based on the types
of the function call arguments. WebDSL supports overloading for both functions and tem-
plates, and their implementation in the static analysis is the same. The concepts and solutions
explained in this section are therefore applicable for both. An example of template overload-
ing is shown in Figure 4.51. In the rest of this section we will talk about functions, but the
concept is exactly the same for templates.

Overloading complicates the static analysis in two ways. The first and easiest to imple-
ment is that functions may now be defined multiple times with the same name, as long as
the amount of arguments and argument types do not exactly match. The Statix rules that
achieve this are shown in Figure 4.52. The essence of the rules is that all functions with
the relevant name are retrieved, and the declarations with argument types exactly matching
with the relevant types are counted. The resulting number should be 1, namely the newly
declared function.

Now that the static analysis allows for overloaded functions and templates to be defined,
the code that type checks function calls and template calls should be updated to reflect the
new changes. The semantics of resolving the correct overloaded function or template are
listed below. A practical example of how these rules work is shown in Figure 4.53.

1. Retrieve all function signatures with the matching name from the scope graph

2. Filter the result to end up with function signatures with matching arity (amount of
arguments) and compatible argument types.

3. If the filtered result is exactly one signature: this is the function that will be called

4. If the filtered result is more than one signature: choose the signature with the ”most
specific” argument types:

• If there are exactly matching types, always choose this one.
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1 // predicate that defines when there are overlapping function signatures
2 noDuplicateFunDefs : scope * string * list(TYPE)
3 noDuplicateFunDefs(s, f, ts) :- { ps }
4 resolveFunction(s, f) == ps,
5 amountOfFunDeclsWithArgs(ps, ts, 0) == 1.
6
7 // helper function for noDuplicateFunDefs that counts the amount
8 // of functions with a given name and argument types
9 amountOfFunDeclsWithArgs : list((path * (string * TYPE)))

10 * list(TYPE) * int -> int
11 amountOfFunDeclsWithArgs([], _, n) = n.
12 amountOfFunDeclsWithArgs([(_, (_, FUNCTION(_, types, _, _))) | tail], types, n)
13 = amountOfFunDeclsWithArgs(tail, types, i) :- i #= n + 1.
14 amountOfFunDeclsWithArgs([_ | tail], types, n)
15 = amountOfFunDeclsWithArgs(tail, types, n).

Figure 4.52: Statix rules for allowing overloaded function definitions

• Otherwise; count the amount of INHERIT edges that have to be taken from the given
expression types to the function argument types, and choose the signature with
the least total edges taken.

The implementation of resolving the correctly overloaded function according to the listed
semantics is shown in Figure 4.54. The essence of the semantics is encoded in the Statix rules,

module m

entity Animal {
name : String

}
entity Cat : Animal {
breed : String

}

template description(a : Animal) {
"~a.name"

}
template description(c : Cat) {
"~c.name (Breed: ~c.breed)"

}

page p {
var a := Animal{ name := "Alice" }
var c := Cat{ name := "Charlie", breed := "Sphynx" }

description(a) // will output "Alice"
description(c) // wil output "Charlie (Breed: Sphynx)"

}

Figure 4.53: An example of referencing overloaded templates in WebDSL
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1 typeOfFunctionCall : scope * string * list(Exp)
2 * list((path * (string * TYPE))) -> TYPE
3 typeOfFunctionCall(s, f, args, funSigs) = t :- { argTypes f' result }
4 argTypes == typesOfExps(s, args),
5 result == mostSpecificSigs(
6 argTypes
7 , typeCompatibleSigs(funSigs, argTypes
8 )),
9 [(f', FUNCTION(_, _, t, _))] == result

10 | error $[Cannot resolve function [f] with compatible argument types] @f.
11
12 // function that gets all functions/templates with matching name
13 // and compatible argument types
14 typeCompatibleSigs : list((path * (string * TYPE))) * list(TYPE)
15 -> list((string * TYPE))
16 /* implementation not shown for brevity */
17
18 // function that prunes the list of compatible signatures
19 // to a list of most specific signatures
20 mostSpecificSigs : list(TYPE) * list((string * TYPE)) -> list((string * TYPE))
21 // In case no functions are compatible, return empty list
22 mostSpecificSigs(args, []) = [].
23 // In case of only one compatible signature, return tha
24 mostSpecificSigs(args, fs@[_]) = fs.
25 mostSpecificSigs(args, sigs) = mostSpecificSigs_helper(args, sigs,
26 matchingSigs(stripRefTypes(args), sigs)).
27
28 // helper function for mostSpecificFunSigs that returns
29 // the exactly matching signatures if they exists,
30 // else return the most specific (least inheritance) signatures
31 mostSpecificSigs_helper : list(TYPE) * list((string * TYPE))
32 * list((string * TYPE)) -> list((string * TYPE))
33 mostSpecificSigs_helper(args, sigs, matching) = matching.
34 mostSpecificSigs_helper(args, sigs, []) =
35 filterLeastInheritanceAmount(
36 minOfList(inheritanceAmounts)
37 , zipInheritanceAmountWithSig(inheritanceAmounts, sigs)) :-
38 inheritanceAmounts == inheritanceAmounts(args, sigs).
39
40 // at least ten more helper predicates are not shown that calculate
41 // the amount of inheritance edges and perform the filtering

Figure 4.54: Statix rules for resolving overloaded function calls

but the brevity and elegance is lost due tomanyhelper predicates being required to transform
the data into the correct forms to perform the queries that calculate the inheritance edges, and
filter the function signatures accordingly. Note that the typeOfFunctionCall predicate is not
specific to functions, because the signature requires a string and a list of expressions, which
causes the predicate to be re-usable for resolving template calls.
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module m

entity Person {
firstname : String

}

template t {
var person := Person{}

form {
input(person.firstname)
submit a() { "Save" }

}

action a() {
person.save();
return p();

}
}

(a)

s_m
Person : ENTITY("Person", s_person)

t : Template("t", []])

s_person

firstname : String

s_t

s_t_body

s_t_body2person : Person

s_a

s_t_pha

a : ACTION("a", [])

type
template

DE
F

var

DEF

P

P

var

P

P
function

(b)

Figure 4.55: An example of defining and referencing actions

4.5 Placeholders, Actions and Submitting Forms
Forms are the basis of most information systems on the web. WebDSL has linguistically inte-
grated forms through inputs and actions. The static analysis of referencing actions and place-
holders is unlike variable referencing, due to their scoping semantics. Actions and placehold-
ers are defined in pages or templates andmay be referred to in the rest of the page or function
body. Unlike variables, actions and placeholders do not follow the declare-before-use prin-
ciple (explained in Section 4.2.2). Actions and placeholders may be defined anywhere in the
body, and referenced from anywhere in the body, but there is a twist. Inside the action body,
the statements and expressionsmay reference variables defined in the template or page body,
and thus the scope of the action must be linked to the scope of the template of page in some
way.

Summarized, actions and placeholders cannot be declared in the scope they are defined
in, because that scope follows a declare-before-use regime, but the body of an action must
have access to the scope it was declared in. As a solution to this challenge, the Statix rules for
declaring a page or template were altered to not only create a scope for its body, but create
an additional scope where placeholders and actions will be declared. This scope is passed
along such that variables are queryable using the regular function body scope, and querying
placeholders and actions is available using the additional scope. An example of an action
and its representation in the scope graph is shown in Figure 4.55.

The updated Statix rules for type checking a page or template definition, and defining ac-
tions in shown in Figure 4.56. The Statix rules contain a separate predicate templateActionOk
where the last boolean parameter indicates whether the action should be declared or not,
and this is passed to optionallyDeclareTemplate. The declaration is optional because it is
possible to create a form with a submit button that defines an action inline; an anonymous
action in some sense. The anonymous inline action definition can now be type-checked by
re-using the templateActionOk predicate.
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1 defineTemplateOk(s, DefineTemplate(mods, t
2 , FormalArgs(args), _, elements))
3 :- {fargTypes s_template s_pha s_body}
4 new s_template, s_template -DEF-> s,
5 argTypes == typesOfArgs(s, args),
6 declareParameters(s_template, zipArgTypes(fargs, argTypes)),
7 new s_pha, s_pha -P-> s_template, // scope for placeholders and actions
8 new s_body, s_body -P-> s_pha, // scope for template body
9 declareTemplate(s, t, argTypes, isAjaxTemplate(mods)),

10 overriddenElementExists(s, Template(), t, isAjaxTemplate(mods)),
11 templateElementsOk(s_body, s_pha, elements).
12
13 templateElementOk(s, _, s_pha
14 , Action2TemplateElement(Action(_, a, FormalArgs(args), Block(stmts))))
15 :- templateActionOk(s, s_pha, a, args, stmts, TRUE()).
16
17 templateActionOk : scope * scope * string
18 * list(FormalArg) * list(Statement) * BOOL
19 templateActionOk(s, s_pha, a, args, stmts, declare)
20 :- {s_fun s_fun_body argTypes}
21 new s_fun, s_fun -P-> s,
22 argTypes == typesOfArgs(s, args),
23 declareParameters(s_fun, zipArgTypes(args, argTypes)),
24 new s_fun_body, s_fun_body -P-> s_fun,
25 optionallyDeclareAction(s_pha, a, args, argTypes, declare),
26 stmtsOk(s_fun_body, stmts, PAGE(_, _)).
27
28 optionallyDeclareAction : scope * string * list(FormalArg) * list(TYPE) * BOOL
29 optionallyDeclareAction(_, _, _, _, FALSE()).
30 optionallyDeclareAction(s, a, args, ts, TRUE())
31 :- declareAction(s, a, args, ts).

Figure 4.56: Statix rules for declaring actions

The Statix rules which implement the placeholders and actions code behave correctly be-
cause of Statix’ constraint scheduling algorithm as first described by in the original Statix
paper (Antwerpen, Bach Poulsen, et al. 2018) and further improved by Rouvoet et al. (Rou-
voet et al. 2020).

4.6 Type Extension
WebDSL allows the developer to define types such as entities or use existing built-in types
such as strings and dates. Often times, when working on a new functionality for existing
applications, developers want to extend existing entities with new properties or functions.
To this end, WebDSL allows for entity extension across modules. In addition to entities,
WebDSL also allows extension of built-in types. The built-in types can not be extended with
arbitrary properties or functions. Since the WebDSL built-in types are based on Java types,
developers can expose properties of those Java types for use inWebDSL code. In this section
we discuss how we implemented these semantics in Statix.

Figure 4.57a shows a WebDSL program containing the entity Person with one property
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module m

entity Person {
firstname : Strin

}

extend entity Person {
lastname : String

function logname() {
log("~firstname + ~lastname");

}
}

(a)

s_m

Person : s_person

Person : s_person_2

Person : ENTITY("Person", s_person)

s_person s_person_2

firstname : String lastname : String

logname : FUNCTION("logname", [], Void)

ext
end
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type
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EXTEND

var var
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(b)

Figure 4.57: An example of extending entity scopes

and an extension of that entity with another property and a function. In Figure 4.57b, we
show how we represent the program in a scope graph. When a (partial) entity is defined,
a declaration is made in the scope graph under the extendscope relation that declares the
scope linked to the name of the entity. When declaring the type in the module (such as
Entity("person", s_person)), all scopes linked to the entity are retrieved from the scope
graph and linked together using EXTEND edges.

The Statix rules that transform a WebDSL program with extended entities into the scope
graph as shown in Figure 4.57 are listed in Figure 4.58. Note that the original entity does
not need to import all modules in which it is extended. Line 9 of Figure 4.58 shows the
regular expression forwell-formedness of the path to resolve declarations in the extendscopes
relation. It includes the optional GLOBAL edge, which is the edge from the global scope to every
module, meaning that entity extensions in all modules, regardless of imports, are the result
of the query. Line 30 enforces that an extend entity declaration does always import themain
entity declarations. The main entity declaration is what separates WebDSL entities from C#
partial classes from WebDSL extend entities: WebDSL entities main entity definition and
explicit extensions, as opposed to C# partial classes that do not have a main definition.

4.7 Module system
The paper that introduced WebDSL (Visser 2007) contains the following description of its
module system: “a very simple module system has been chosen that supports distributing
functionality over files, without separate compilation”. We describe the current WebDSL
module system as having transitive and symmetric imports. The implementation of themod-
ule system in the current compiler maintains a list of modules of which an application con-
sists. When a module is imported by the main application file or transitively imported, the
module is added to the list and its definitions are visible to all other modules in the list. An
example application with these semantics and its scope graph is visualized in Figure 4.59.
The implementation of these semantics are listed in Figure 4.60.

The modelling of this system requires that multiple IMPORT edges may be followed to find
a definition. The result of allowingmultiple IMPORT edges is that there are paths routes to the
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1 declareExtendScope : scope * string * scope
2 declareExtendScope(s, e, s_extend) :-
3 !extendscope[e, s_extend] in s.
4
5 resolveExtendScope : scope * string -> list((path * (string * scope)))
6 resolveExtendScope(s, x) = ps :-
7 // extended entities do not have to be imported and
8 // can be resolved via the global scope edge:
9 query extendscope filter P* F* DEF? (IMPORT | IMPORTLIB)? GLOBAL?

10 and { e' :- e' == (x, _) }
11 min $ < P, $ < F, $ < DEF, $ < IMPORT, $ < IMPORTLIB, $ < GLOBAL,
12 P < F, P < DEF, P < IMPORT, P < IMPORTLIB, P < GLOBAL,
13 F < DEF, F < IMPORT, F < IMPORTLIB, F < GLOBAL,
14 DEF < IMPORT, DEF < IMPORTLIB, DEF < GLOBAL,
15 IMPORT < GLOBAL, IMPORTLIB < GLOBAL
16 and { (entity, entity_scope), (entity, entity_scope) }
17 in s |-> ps.
18
19 declEntity : scope * scope * string * list(EntityBodyDeclaration)
20 declEntity(s, s_entity, entity_name, bodydecs) :- { entityType }
21 // declare entity_scope to be linked to entity_name
22 declareExtendScope(s, entity_name, s_entity),
23 // link scopes using EXTEND edges
24 extendScopes(resolveExtendScope(s, entity_name), s_entity),
25 entityType == ENTITY(entity_name, s_entity),
26 declareType(s, entity_name, entityType).
27
28 declExtendEntity : scope * string * list(EntityBodyDeclaration)
29 declExtendEntity(s, entity_name, bodydecs) :- {s_extend_entity entity_scopes}
30 resolveType(s, entity_name) == [(_, (_, ENTITY(_, _)))]
31 | error $[Entity [entity_name] is not defined],
32 new s_extend_entity, s_extend_entity -DEF-> s,
33 declareExtendScope(s, entity_name, s_extend_entity),
34 extendScopes(resolveExtendScope(s, entity_name), s_extend_entity),
35 declEntityBody(s_extend_entity, entity_name, bodydecs).
36
37 extendScopes maps extendScope(list(*), *)
38 extendScope : (path * (string * scope)) * scope
39 extendScope((_, (_, s)), s). // Do not inherit own scope
40 extendScope((_, (_, s')), s) :-
41 s -EXTEND-> s'.

Figure 4.58: Statix rules for extending entities
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application a
imports m1

(a)
module m1
imports m2

(b)
module m2

(c)
module m3
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Figure 4.59: An example of the current WebDSL module system

same definition. For example, resolving a definition within a module can be done using zero
import edges, or by taking one import edge to another module and one back. In order to
make sure every definition is only returned once by Statix queries, there must be shadowing
rules in the queries that prune the results.

This representation of the WebDSL module system in scope graphs is functional, how-
ever, we found this to be extremely taxing on the run time performance of an analysis. To
gather information about the performance of the current module system semantics in the
WebDSL Statix specification, we conducted an experiment where the same program was an-
alyzed multiple times, but with the addition of extra empty modules. The result as shown
in Figure 4.61 confirms our suspicion.

To run the experiment, we used a 2019 MacBook Pro running macOS Montery 12.2. The
machine has a 2,3 GHz 8-core Intel Core i9 with 64 GB RAM available, of which 8 GB was
dedicated to the evaluation scripts. The evaluation scripts1 were configured to analyze the
same applicationwith different amounts of emptymodules. Using the JavaMicrobenchmark
Harness2, we timed the run time of the Statix specification using 5 warm-up iterations and
20 regular iterations.

From the results shown in Figure 4.61, we argue that the implementation of the current
WebDSL module system in Statix, approach does not scale to real world applications. We
attempted to run the Statix specification on two open-source WebDSL applications.

• Reposearch3: A source code search engine that helps to find implementation details
and example usages. Reposearch consists of 16main files, 19 library files and 1 standard
library file, totaling at 8,722 lines of code spread over 36 files.

1https://github.com/metaborg/statix-benchmark/
2https://github.com/openjdk/jmh
3https://codefinder.org/, Source code: https://github.com/webdsl/reposearch/
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1 unitOk(s_global, Application(app, sections)) :- {s_app}
2 new s_app, s_app -IMPORT-> s_global,
3 declareMod(s_global, app, s_app),
4 declareMod(s_global, "_APPLICATION_SCOPE", s_app),
5 importModules(s_global, s_app, app, sections),
6 rootPageDefined(s_app, app).
7
8 unitOk(s_global, Module(m, sections)) :- {s_mod}
9 new s_mod, s_mod -IMPORT-> s_global,

10 declareMod(s_global, m, s_mod),
11 importModules(s_global, s_mod, m, sections),
12 importedByApplicationRoot(s_global, s_mod, m).
13
14 importModules : scope * scope * string * list(Section)
15 importModules(s_global, s, m, sections) :-
16 declareImports(s_global, m, sections),
17 extendModuleScope(s_global, m, s).
18
19 extendModuleScope : scope * string * scope
20 extendModuleScope(s_global, m, s) :- {modules}
21 resolveImport(s_global, m) == modules,
22 importModulesInScope(s_global, s, modules).
23
24 importedByApplicationRoot : scope * scope * string
25 importedByApplicationRoot(s_global, s_mod, mod) :- {s_app}
26 resolveMod(s_global, "_APPLICATION_SCOPE") == [(_, (_, s_app))],
27 try { query () filter IMPORT*
28 and { s_app' :- s_app' == s_app }
29 in s_mod |-> [_|_]
30 } | warning $[Module is not imported by the application root] @mod.

Figure 4.60: Statix rules for modelling the current module system

• YellowGrass4: A tag based issue tracker similar toGitHub Issues, completewith access
control and used daily by WebDSL developers. YellowGrass consists of 54 WebDSL
files plus 20WebDSL library files and 1 standard library file, coming to a total of 12,898
lines of code spread over 75 files.

Running the static analysis on Reposearch took roughly 25 minutes, and on YellowGrass
it took more than 8 hours.

4.7.1 Revised WebDSL Module System

We designed a revised module system for WebDSL, in an attempt to improve the static anal-
ysis run time. In addition, the revised module system is designed to largely keep existing
WebDSL applications as they are, such that no substantial effort is required to adhere to the
revised module system. We considered three options for the revised module system.

4https://yellowgrass.org/, Source code: https://github.com/webdsl/yellowgrass/
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Figure 4.61: Run time of WebDSL Statix definition with the current module system.

Everything is Global The first option boils down to getting rid of imports altogether and
using one global scope. The upside of this approach is that existingWebDSL applications do
not have to be changed at all, since the import statement will be deprecated and it does not
change the behavior of programs. The downside is that, since all declarations and resolving
takes place in the global scope, it could negate the possible performance boosts provided by
the concurrent (Antwerpen andVisser 2021) or incremental (Zwaan, Antwerpen, andVisser
2022) Statix solver.

StrictModules The second option is to get rid of transitive and symmetric imports, making
the WebDSL module system similar to that of simple toy languages such as LMR: Language
with Modules and Records (Neron, A. Tolmach, et al. 2015). Existing WebDSL applications
have to be extended with more import statements to correctly resolve all the references that
are now transitively or symmetrically imported. This module system allows for more trans-
parent behavior; a reference to a definition from another module requires the importing of
that module.

Strict Modules With Wildcard Imports The third and last option we consider is similar to
the strict module system from previous paragraph, but allowing wildcard imports for the
convenience of the developer. Assuming that existing WebDSL applications are structured
correctly in terms of nesting of modules, using concepts defined in other modules can be
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Figure 4.62: Run time of WebDSL Statix definition with revised module systems.

imported in one statement. The downside of using wildcard imports is a potential increase
in import edges of which some are unused.

We implemented the changes required in Reposearch and YellowGrass to apply the latter
two module systems. Reposearch required 92 extra import statements, spread over 16 files5
and YellowGrass required 328 extra imports spread over 54 files6. In both systems, the strict
import semantics required about 6 new imports per file. Using the wildcard import system,
thiswas reduced to about 4 per file, requiring 75 instead of 92 for Reposearch7 and 193 instead
of 328 for YellowGrass8

Figure 4.62 shows the run time of the WebDSL Statix analysis with the different module
systems described at the start of this subsection. The figure shows that all the revisedmodule
systems greatly speed up the analysis time. The run time of the strict and wildcard system
are similar, while the systemwhere everything is part of the global scope takes slightly longer.
We suspect that this is due to negated effects of the concurrent Statix solver that we used for
the analysis.

Table 4.63 lists the run time of the different module systems on Reposearch and Yellow-
Grass. Similar to the test with the empty modules, there is a great performance boost from

5https://github.com/webdsl/reposearch/tree/experiment/strict-imports
6https://github.com/webdsl/yellowgrass/tree/experiment/strict-imports
7https://github.com/webdsl/reposearch/tree/experiment/wildcard-imports
8https://github.com/webdsl/yellowgrass/tree/experiment/wildcard-imports
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Module System Reposearch YellowGrass
Current 1667s >8 hours
Global 39s 40s
Strict 51s 53s

Wildcard 51s 51s

Table 4.63: Run time of WebDSL Statix definition with revised module systems on Re-
posearch and YellowGrass.

using any of the revised module systems. Surprisingly, the strict and wildcard module sys-
tem take more time than global module system for YellowGrass. This is in contrast with
Figure 4.62, so we suspect that having populated modules instead of empty modules im-
pacts the performance of the strict- and wildcard imports by having longer (and therefore
more costly) query paths and shadowing rules in a module system with imports.

Although all revised module systems would massively boost the performance of the
WebDSL Statix specification, the run time of analyzing a real world application is still un-
fit for use in practice. To this end, we need to speed up the analysis time even more. For
other performance boosts, as we explain in the next section, a scope graph representation
with split modules was required. Since the wildcard import system is more convenient for
WebDSL developers, the WebDSL Statix specification is developed with the revised module
system that uses wildcard imports.

4.8 Pre-analyzed built-in library
WebDSL applications heavily rely on the standard library named built-in.app. It contains
all necessary type, page, template and function definitions and even the WebDSL compiler
itself depends on this file being present. The built-in.app consists of 3,397 lines of WebDSL
code and is by far the largest file in all WebDSL applications.

The concurrent Statix solver provides speed-ups by distributing the compilation units
over the available processor cores on the development machine. However, the granularity
of compilation units in the concurrent Statix solver is file-level granularity which results in
the run time scaling with the largest file in the project (Antwerpen and Visser 2021). Van
Antwerpen andVisser evaluated their concurrent Statix solver onmultiple Java projectswith-
out dependencies besides the Java standard library (JRE). They indicate that the JRE dom-
inated the run time of the concurrent Statix solver and decided to pre-compute the scope
graph for the JRE and statically load it at the start of type-checking.

We investigated the approach of pre-computing the WebDSL built-in.app scope graph
and statically loading it at the start of type checking. However, this requires the modules in
WebDSL to be clearly separated and this impacted our choice for a revised module system
as explained in the previous section (Section 4.7.1).

Figure 4.64 shows a major improvement in run time of the WebDSL Statix specification
when the analysis result of the standard library (built-in.app) is pre-computed, and the
resulting scope graph is statically loaded at the start of type-checking other projects.

4.8.1 Built-in Type Extension
In theWebDSL Statix specification, built-in types are declared when processing theWebDSL
standard library built-in.app. However, this clashes with our definition of extending types
as explained in Section 4.6. The scopes of extended types are combined once, after which the
type is declared. In Statix, existing scopes resolved via queries cannot be extended in order
to keep the constraint scheduling sound. This does not impact types which are not declared

76



4.9. String Manipulation in Statix

Reposearch YellowGrass
0

5

10

15

20

25

30

35

40

45

50

55

51.23 51.46

4.04 4.61

Ru
n
tim

e
(m

s)
Effect of Pre-Analyzing on Run Time

Default Pre-analyzed Standard Library

Figure 4.64: Run time of WebDSL Statix definition with and without pre-analyzed standard
library built-in.app.

in the standard library (such as all entities), but at first glance, this would nullify our attempt
at implementing built-in type extension.

To combat this challenge, we changed the implementation of the query that resolves types
in the WebDSL Statix specification, to the rules listed in Figure 4.65. Lines 6, 7 and 8 show
that the query for resolving now has a shadowing rule that allows shadowing types that are
defined in an imported Statix library.

4.9 String Manipulation in Statix
Stringmanipulation functions are the possibilities that a programming language provides to
allow the developer to change or create new strings based on other data. In this section, we
discuss the impact of the lack of string manipulation features in Statix.

Statix provides built-in functionalities for integer arithmetic9. This feature is useful to, for
example, choose themost specific function call to resolve in function or template overloading
(Section 4.4). Most other arithmetic such as boolean arithmetic can be encoded by the Statix
developer, as we showed in Section 4.2.4.

9https://www.spoofax.dev/references/statix/basic-constraints/#arithmetic-constraints
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1 resolveType : scope * string -> list((path * (string * TYPE)))
2 resolveType(s, name) = typesOf(ts) :-
3 query type filter P* F* ((EXTEND? INHERIT*) | (DEF? (IMPORT | IMPORTLIB)?))
4 and { e' :- e' == (name, _) }
5 // allow shadowing of types defined in an imported statix library
6 min $ < IMPORTLIB, P < IMPORTLIB, F < IMPORTLIB,
7 EXTEND < IMPORTLIB, INHERIT < IMPORTLIB,
8 DEF < IMPORTLIB, IMPORT < IMPORTLIB
9 and true

10 in s |-> ts.

Figure 4.65: Statix rules for built-in type extension in Statix

The lack of the string manipulation features in Statix disallows certain WebDSL features,
such as generated definitions or static code template expansion, to be encoded in Statix. An
example of generated definitions and static code template expansion is shown in Figure 4.66.
Generated definitions such as the find<Entity>By<Property> require the Statix specification
to build a declaration in the scope graph with a name that is not present in the AST. Because
it is impossible to concatenate two strings together, or to capitalize strings, this cannot be
encoded in Statix.

Even though it is not possible to encode this in pure Statix, there is a workaround for the
generated definitions. Because all information is present in the abstract syntax tree, the gener-
ation of the definitions can be seen as a desugaring of the syntax. Following this workaround,
we extended the desugaring step of the WebDSL syntax with rules that generate the defini-
tions. The result of the desugaring step is that the names of the generated functions are
present in the analysis, and Statix is able to declare the functions.

The static code template expansion however, does not have such a workaround, because
name-binding rules are required. Figure 4.66 shows the expandtemplate ... to alert defi-
nition to be declared in one definition, and then alert being referenced in the next definition.
This name-binding logic can be encoded in Stratego, but it defeats the purpose of using the
Statix definition as static analysis.

In addition to allowing new language concepts to be implemented, supporting stringma-
nipulation would also allow better error messages in Statix specifications. For example, the
Statix specification could then pretty-print types, function signatures and template signa-
tures to point developers to the error in their code with more accuracy.

In conclusion, the lack of string manipulation is preventing certain WebDSL language
concepts from being encoded in Statix. Additionally, the introduction of stringmanipulation
could increase the user-friendliness of error messages generated by Statix.
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application a

// generated definitions:
entity Person {
address : String

}

function f() {
// this function is generated by WebDSL:
var p : Person := findPersonByAddress("");

}

// template expansion:
expand

Success
Info
Warning
Error

to alert

expandtemplate alert to Type{
template alertType() {
alert[class="alert-type", all attributes]{
elements

}
}

}

template t {
// templates are defined through the expansion above
alertSuccess{}
alertWarning{}

}

Figure 4.66: An example of generated definitions and static code template expansion in
WebDSL
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Chapter 5

Evaluation

In this chapter we evaluate the newly introduced SDF3 and Statix specifications for WebDSL.
The new specifications have two concrete use-cases, namely serving as a case study for SDF3
and Statix, and being used on a daily basis by WebDSL developers. For both purposes it is
useful to gather information about how the specifications behave in various situations. As
a result of the case study, we want to show strengths and weaknesses of SDF3 and Statix
based on information from the specifications, and for theWebDSL developers we would like
to decide whether the new specifications are ready to be used in practice.

For both specifications, we will evaluate their correctness and performance on existing
test suites, as well as WebDSL code that is used in practice. Then, we conclude this chapter
by discussing the usability of the modernized implementation in practice.

5.1 Evaluating the WebDSL SDF3 Specification

Evaluating the SDF3 specification of the WebDSL grammar is done in two parts: its correct-
ness and its performance in terms of generated parse tables and their run time. In this section
we will use the current implementation of the WebDSL grammar in SDF2 as the reference
grammar for correctness and performance.

5.1.1 Correctness

In this thesis we do not formally prove the correctness of the new grammar. Instead, we
parse test suites that are intended for the current SDF2 specification and observe whether
the files are parsed correctly and construct an AST without ambiguities. Additionally, we
parse open sourceWebDSL applications that are used in practice and again observe whether
the files parse correctly.

The test suite consists of 231 WebDSL snippets, ranging from single expressions to com-
plete functioning applications. To re-use this test suite for the SDF3 specification, we con-
verted the snippets into SPT tests. The existing syntax test suite is not a complete test suite
of all syntax constructs but mostly contain syntax fragments which were problematic in the
past to serve as a regression test suite. For the sake of completeness, we extended the SPT test
suite, leading to a new total of 1118 SPT tests, where the newly added tests have an expected
AST result, instead of only expecting the snippets to parse correctly. The result of running
the WebDSL SDF3 specification on the syntax test suite is shown in Table 5.1.

In addition to the test suite, we used two open-source WebDSL applications for verify-
ing that the new parser generated from the SDF3 specification does not suddenly fail or see
ambiguities in existing applications:
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5. EVALUATION

Parsed succesfully Parsed with ambiguities Failed to parse
Original test suite 231 0 0

Extension 887 0 0
Total 1118 0 0

Table 5.1: Results of parsing the syntax test suite with the WebDSL SDF3 specification.

• Reposearch1: A source code search engine that helps to find implementation details
and example usages. Reposearch consists of 16main files, 19 library files and 1 standard
library file, totalling at 8,722 lines of code spread over 36 files.

• YellowGrass2: A tag based issue tracker similar toGitHub Issues, completewith access
control and used daily by WebDSL developers. YellowGrass consists of 54 WebDSL
files plus 20WebDSL library files and 1 standard library file, coming to a total of 12,898
lines of code spread over 75 files.

Using the parser generated from theWebDSL SDF3 specification, all files of both projects
parsed successfully without ambiguities.

One thing to note in discussing correctness of the WebDSL SDF3 completeness is that,
while the results are promising, the SDF3 specification has introduced many new sorts and
constructors for disambiguation purposes, and to comply with the Statix signature genera-
tor expectations. The effect of this change is that we cannot automatically guarantee correct-
ness of the disambiguation, because the resulting AST from the SDF3 definition is different
compared to the SDF2 definition. Instead, we manually inspected the ASTs of handpicked
snippets and no incorrect results were found.

5.1.2 WebDSL Parser Performance
The performance of a parser of a programming language is essential due to the rest of the
compilation chain depending on its output. A requirement to use the parser generated by
the new SDF3 specification in practice, is that its run time should not increase substantially.

Grammar specifications in SDF2 and SDF3 are not interpreted directly. Both formalisms
generate a parse table, which is interpreted by the parser implementation JSGLR3. JSGLR is
an implementation of SGLR parsing in Java, used within the Spoofax Language Workbench.
Because of this architecture, it is insightful to inspect the generated parse tables and highlight
the differences, as well as comparing the run times of both parsers on the test suite and
existing applications.

Parse table from States Gotos Max gotos
per state

Actions Max actions
per state

SDF2 10,449 179,454 510 62,127 107
SDF3 12,866 244,688 821 525,728 2,491

Table 5.2: Data about the size of the parse tables generated from theWebDSL SDF2 and SDF3
grammar specifications.

The parse table generated from the SDF3 specification has more states, gotos and actions
than the parse table from the SDF2 specification. Even though the described grammar did
not change, it is implemented differently, leading to the increase in parse table size. Given

1https://codefinder.org/, Source code: https://github.com/webdsl/reposearch/
2https://yellowgrass.org/, Source code: https://github.com/webdsl/yellowgrass/
3https://github.com/metaborg/jsglr
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Figure 5.3: Run time of WebDSL SDF2 definition vs. SDF3 definition

that the parse table of the SDF3 specification is larger, we expect that this has a negative
effect on the run time. To see the impact of the larger parse table on the run time of the
parser, we executed the evaluation on Reposearch, YellowGrass and all files in the analysis
test suite, which contains complete WebDSL programs as opposed to the syntax test suite.
The analysis test suite consists of 521 small files, with a total of 19.644 lines of code.

To execute the evaluation, we used a 2019 MacBook Pro running macOS Montery 12.2.
The machine has a 2,3 GHz 8-core Intel Core i9 with 64 GB RAM available, of which 8 GB
was dedicated to the evaluation scripts. The evaluation scripts4 were configured to parse the
described files with the SDF2 parse table, as well as the SDF3 parse table using the JSGLR1
parser implementation. Using the Java Microbenchmark Harness5, we timed the run time of
the parsers using 5 warm-up iterations and 10 regular iterations.

The result of benchmarking the run time of the syntax definitions is shown in Figure 5.3.
Similar to the growth of the parse table generated from the SDF3 definition, the run time has
also increased.

4https://github.com/metaborg/jsglr2evaluation
5https://github.com/openjdk/jmh
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1 context-free syntax
2
3 "for" "(" Id ":" Sort "in" Exp OptFilter ")"
4 "{" TemplateElement* "}" ForSeparator -> TemplateElement {cons("For")}
5
6 "separated-by" "{" TemplateElement* "}" -> ForSeparator{cons("ForSeparator")}
7 -> ForSeparator{cons("None")}

(a)
1 context-free sorts
2
3 TemplateElement ForSeparator
4
5 context-free syntax
6
7 TemplateElement.For = <
8 for ( <VarId> : <Sort> in <Exp> <OptFilter> ) {
9 <TemplateElement*>

10 } <ForSeparator>
11 >
12
13 ForSeparator.ForSeparator = <separated-by { <TemplateElement*> }>
14 ForSeparator.ForSeparatorNone = <>

(b)

Figure 5.4: Defining a WebDSL for-loop in SDF2 and SDF3

5.1.3 Maintainability
Two of the goals of introducing SDF3 as successor of SDF2 in the syntax formalism family,
were to support more declarative syntax definition and to make the syntax definitions more
readable and understandable (SouzaAmorim andVisser 2020). Figure 5.4 shows snippets of
the SDF2 and SDF3 specifications that define a WebDSL for-loop. Souza Amorim and Visser
argue that SDF3 syntax is more similar to other grammar formalisms such as EBNF (Backus
et al. 1963) and for this reason we argue that the WebDSL syntax definition in SDF3 is easier
to read and understand than its predecessor in SDF2.

However, being easier to read and understand does not automatically make the new syn-
tax definition easier to maintain. The compliance with Statix and its Signature Generator6
imposes constraints on the grammar, such as disallowing optional sorts, which in the worst
case causes the amount of sorts in the grammar to double as described in Section 3.4.2. Addi-
tionally, disambiguation without the prefer and avoid keywords, as described in Section 3.5,
removes the post-parse filters but does create the need for more sorts which artificially com-
plicate the grammar definition.

5.2 Statix
Static consistency checking through static analysis is one of the core aspects of WebDSL
(Hemel, Groenewegen, et al. 2011). However, since no formal semantics of WebDSL are

6https://www.spoofax.dev/howtos/statix/signature-generator/
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described, we rely on the current implementation of the static analysis in Stratego as the
ground truth.

The evaluation of the Statix specification of WebDSL consists of three parts. First, we list
results on the correctness; whether the static analysis allows well-formed programs to pass
and whether it gives the correct feedback for erroneous programs. Next, we evaluate the
performance in terms of run time on the applications Reposearch and YellowGrass. Lastly,
we make qualitative observations on the maintainability of the new Statix specifications.

5.2.1 Correctness
One of the goals of analyzing source code before compiling and running it, is to provide
early feedback to the developer regarding possible errors. The range of errors that can be
caught early is extensive in WebDSL compared to other programming languages, because
of the linguistic integration of user interfaces, request handling, access control and the data
model.

For evaluating the correctness of the Statix specification, we first run the static analysis on
Reposearch and YellowGrass. Both applications are well-formed programs without errors,
therefore the desired result of the static analysis is to report no errors. The result of analyzing
the programs with the Statix specifications is shown in Table 5.5. The Statix specification
found a handful of errors that are caused by an unimplemented WebDSL feature in Statix,
namely static code template expansion. This feature cannot be implemented in Statix due to
the absence of String manipulation features, as we discussed in Section 4.9. Apart from this
feature, the WebDSL Statix specification considers the applications to be well-typed which
is the desired result.

Project Files Lines of code Errors
Reposearch 36 8.722 4
Yellowgrass 75 12.898 6

Table 5.5: Results of running the static analysis on Reposearch and Yellowgrass.

It is trivial to write a program that does not analyze anything and therefore never give
an error, and it would technically suit our goal of analysing Reposearch and YellowGrass
without errors. To make sure the Statix specification gives feedback when it encounters an
incorrect program, we run the Statix static analysis on the analysis test suite of the current
implementation in Stratego. In total, the test suite consists of 521 small programs, testing
different aspects of the WebDSL language. 273 files contain a correct program and expect
the analysis to give no errors, while 248 programs contain in incorrect program where the
static analysis must give specific feedback. The expectation as in those 248 files are listed as
first lines in the file as comments, and can be one or more of the following.

• Should give an error containing the message s, denoted by //s.

• Should give an error containing the message s exactly x times, denoted by //#x s.

• Should not show an error with message s, denoted by //^s.

The results of running the Statix specification on the analysis test suite is shown in Ta-
ble 5.6 below.

The result of the analysis test suite shows that the Statix specification of WebDSL is not
yet on the level of the current static analysis in terms of correctness. While there are more
passing tests than failing tests, there is room for improvement in both categories of the test
suite, but particularly in the incorrect programs. The result of the analysis test suite scales
with the engineering effort put in, and cannot be solely explained by Statix’ shortcomings
which we will highlight in the next subsection.
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Test succeeded Test failed
Correct programs 231 42
Incorrect programs 71 177

Total 302 219

Table 5.6: Results of the analysis test suite.

Discussion of Failed Tests

Failing tests can be divided in categories. While some categories of failing tests can be solved
bymore engineering effort, others are inherent to using Statix as a language for implementing
a static analysis.

Error messages that are not specific enough This is not something fundamentally wrong
in the Statix language, as it can be improved by more development effort on the Statix speci-
fication, but at the cost of the brevity of the specification.

Error messages that Statix can not generate Some tests require an error along the lines of A
function with Signature f(string, int) does not exist. Statix is unable to format strings
to produce such an error. Statix is able to use string concatenation in error messages, but
the given expression will always be surrounded by quotes. Apart from the quotes, a lack of
string manipulation functions in Statix prevents users from properly formatting AST terms
back to human-readable signatures.

Cascading errors This is mostly targeted by the test expectation where a certain error s
should not be present (//^s). Statix as a language is not ideal for these test expectations,
as errors are designed to show when the corresponding constraint fails. All generated con-
straints must either fail or succeed and there is no way to stop execution after a failed con-
straint, having the result of showing multiple errors. Consider the following expression:

var i : Int := nonexistingvariable + 2;

The error in this code snippet is that a non-existing variable is being referenced, but the
expression cannot be typed properly, resulting in another error on the statement as a whole
that says that the expression must be of boolean type.

When running the analysis test suite again, without taking the exact error message ex-
pectation into account, the outcome is as listed in Table 5.7. This simpler test suite expects
a correct program to pass, and expects an incorrect program to show at least one error. The
result is that more than a hundred tests now succeed, compared to the strict test suite from
Table 5.6. Discarding the exact error message expectation lowers the accuracy of what is be-
ing tested, but it shows that the WebDSL Statix specification does throw errors for incorrect
programs, but not always the correct amount or the expected message.

Test succeeded Test failed
Correct programs 231 42
Incorrect programs 185 63

Total 416 105

Table 5.7: Results of the analysis test suite without taking exact error message expectation
into account.
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Unimplemented features WebDSL has an extensive history andmany featureswere added
and deprecated over time. However, the deprecated features are still present in the analysis
test suite, leading to failing tests. More development effort could make the tests pass.

5.2.2 Performance
Providing early feedback on written code to developers is an essential part of increasing
productivity (Becker et al. 2019). For this reason, we want the static analysis to give quick
and accurate results. Tomake claims about the run time of theWebDSL specification in Statix,
we run the specification on two open-source applications: Reposearch and YellowGrass, and
compare it to the run time of the current static analysis in Stratego.

To execute the evaluation, we used a 2019 MacBook Pro running macOS Montery 12.2.
The machine has a 2,3 GHz 8-core Intel Core i9 with 64 GB RAM available, of which 8 GB
was dedicated to the evaluation scripts. The evaluation scripts7 were configured to analyze
the two applications. Using the Java Microbenchmark Harness8, we timed the run time of
the Statix specification using 5 warm-up iterations and 20 regular iterations. The run time
of the current static analysis in Stratego was measured using a shell-script that executed the
command-line tool shipped with the WebDSL compiler9.

Figure 5.8 shows the result of evaluating the WebDSL static analysis in terms of run time.
As opposed to the Stratego implementation which always runs on a single core, the Statix
specification utilizes all available cores on a machine. Regardless of the amount of cores,
the Statix run time scales with the largest file in the project. Due to performance increases
such refactoring the WebDSL module system (Section 4.7) and pre-analyzing the WebDSL
standard library (Section 4.8), the run time of the StatixWebDSL analysis is in the same order
of magnitude as the Stratego WebDSL analysis from four cores onwards.

5.2.3 Maintainability
The current WebDSL compiler uses Stratego to implement the static analysis. As stated in
the introduction of this thesis, we argue that the implementation of many compiler steps
(e.g. desugaring, type checking, optimization and code generation) in the same Stratego
project without clear intermediate representations poses a threat to the maintainability of
WebDSL. While the results of the correctness- and performance evaluation look promising,
we argue that there is still room for improvement in terms of the maintainability of the Statix
specification.

Where Stratego is amore general term transformation language, Statix is developed specif-
ically for implementing static analysis using scope graphs. This smaller domain allows the
language engineer to express certain concepts with ease. Examples include declaration, re-
solving, shadowing and overriding. Additionally, the declarative nature of Statix increases
focus on the what, instead of the how. Its syntax reads closer to inference rules, with a pred-
icate being the conclusion, and the constraints being the premises.

A positive aspect of defining the static analysis in Statix is that, as opposed to the more
imperative and handcrafted implementation in Stratego, we are able to profit from all new
features introduced in Statix such as concurrency (Antwerpen and Visser 2021), incremen-
tality (Zwaan, Antwerpen, and Visser 2022) or better editor services based on the Statix spec-
ification (Pelsmaeker, Antwerpen, and Visser 2019).

Unfortunately, the elegance and brevity of the WebDSL Statix specification is lost due to
the amount of boilerplate code, helper functions and code duplication for specific error mes-

7https://github.com/metaborg/statix-benchmark/
8https://github.com/openjdk/jmh
9https://github.com/webdsl/webdsl
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Figure 5.8: Run time of the WebDSL static analysis in Stratego vs. Statix

sages. A lack of provided list functions such as a zip, map or filter function requires multiple
definitions of these, essentially duplicates but for different types.

Next, we argue that support for string manipulation would increase the quality of error
messages, and reduce code duplication by being able to pass strings to other rules and adjust-
ing them for a specific error message. Next to better error messages, this would also increase
the range of language features Statix can support, as discussed in Section 4.9.

Lastly, the extensive amount of time required to analyze the Statix specification itself is a
thorn in the side from a language engineer perspective, as it requires more than a minute to
run the analysis on the WebDSL Statix specification.
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Chapter 6

Related work

In this chapter we discuss work related to compiler front-ends of domain-specific languages.
First, we examine published research related toWebDSL that address its grammar and static
analysis. Second, we examinework concerning SDF3 and Statix and recent case studies using
these meta languages. To conclude, we discuss related work on alternative approaches for
implementing the front-end of domain-specific languages.

6.1 WebDSL
The paper of Visser (2007) introduced WebDSL as a case study of Stratego. The work lists
most language constructs of the first WebDSL version, combined with SDF2 snippets of their
syntax and Stratego code that demonstrates how code is generated for theWebDSL construct.
Despite type checking not beingmentioned for all language constructs, an extensive example
plus implementation in Stratego is given for type checking a for-loop and the declaration and
resolving of a variable is WebDSL. Other work by Groenewegen and Visser present linguis-
tically integrated extensions of WebDSL regarding access control (2008) and data validation
(2013).

The work of Hemel et al. (2011) identifies static consistency checking as lacking for web
frameworks that were modern at the time, and they provide an analysis of how the web
frameworks deal with certain consistency checks. Hemel et al. argue that domain-specific
languages should be designed for consistency checking, providing a deep-dive on WebDSL
as example. Additionally, they present how to perform such consistency checks with Strat-
ego, essentially explaining an early version of the current WebDSL static analysis in Stratego.

The latest publication on WebDSL by Groenewegen et al. (2020) reflects on the WebDSL
language as a whole, and provides an experience report of using WebDSL for over 10 years
for increasingly ambitious applications.

6.2 Statix
Scope graphs were introduced by Neron et al. (2015) as a language-independent framework
for describing name binding in programming languages. Van Antwerpen et al. (2016) build
upon this work and extend the scope graph framework with generalized edge labels and in-
troduce a constraint language with a solver that is able to express name binding and typing
constraints. In a subsequent publication, Van Antwerpen et al. (2018) further extend the
scope graph framework to increase the range of language constructs that can be modelled,
such as parameterized types. Additionally, this work introduces Statix as a declarative lan-
guage to specify type systems. In later work, the performance of Statix was boosted by Van
Antwerpen and Visser (2021) through the introduction of the concurrent Statix solver, and
by Zwaan et al. (2022) who introduced an incremental Statix solver.
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6.2.1 Case Studies using Statix
The paper that introduced scope graphs by Neron et al. (2015) contains several illustrations
on how scope graphs can model the name binding structure of programs. In the paper, the
authors illustrate how tomodel various concepts of the LanguagewithModules and Records
(LMR) such as let-bindings and, unsurprisingly, modules and records. The extended version
(2015) contains examples on definition-before-use, Java packages and imports and C# partial
classes. Van Antwerpen et al. (2016) use the LMR example again, but in addition to showing
the scope graph, they list the typing constraints for certain snippets, and show an algorithm
with rules that dictate how to traverse any LMR program and generate constraints.

The work that introduced Statix (Antwerpen, Bach Poulsen, et al. 2018) contained case
studies on simply-typed lambda calculus that shows records and structural subtyping, Feath-
erweight Java that presents classes and nominal subtyping. Lastly, the paper contains a case
study on System F that illustrates Statix’ ability to deal with parametric polymorphism.

The research of Rouvoet et al. (2020) on sound scheduling of name resolution queries also
contains various case studies of languages used in practice, modelled in MiniStatix: the core
constraint language of Statix, with some extras implemented in Haskell. The case studies are
on a subset of name resolution for Java and Scala, and the whole of LMR. In their evaluation
they used a combination of valid and invalid programs, similar to this thesis. In contrast to
this thesis, Rouvoet et al. do not use error message expectations, simply a fail or succeed
expectation but the aim of their evaluation was different from ours.

Van Antwerpen et al. (2021) implement a subset of Java in Statix to evaluate their work
on real-world codebases, similar to what we show in this thesis. However, their work is not
evaluated on erroneous programs, as their goal is to benchmark the parallel Statix solver in
terms of run time.

In addition to published research, there are multiple Master’s theses that contain Statix
case studies:

Aerts (2019) In his Master’s thesis, Aerts described, implemented and evaluated an ap-
proach for incrementalizing Statix based on separate compilation and dynamic dependency
detection. In the evaluation, Aerts implemented a simplified version of Java in Statix that
focuses on type-dependent name resolution.

Zwaan (2021) Zwaan provided a runtime that is able to handle composed Statix specifi-
cations. He validated his work by integrating Statix specifications of a small subset of SDF3
(Mini-SDF) and Stratego (Mini-STR). Additionally, his Master’s thesis contains another case
study where the specifications of a small toy-language with expressions, record types, func-
tions and modules (Mod) and a subset of SQL (Mini-SQL).

Wilms (2022) In Wilms’ Master’s thesis, he introduced PIE DSL 2, a successor of domain
specific language accompanying incremental build system PIE (Konat et al. 2019). As part
of the PIE DSL 2 implementation, Wilms implemented the static semantics in Statix which
modelledmany interesting features such as amodule system similar to Java, class inheritance
and parameterized types.

6.3 Alternative Approaches
The Spoofax language workbench provides meta-DSLs such as SDF3, Statix and Stratego
for implementing all aspects of a domain-specific language. However, many alternative ap-
proaches exist.
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6.3. Alternative Approaches

One such approach to defining a static analysis is by using Datalog. Datalog is a sub-
set of Prolog and similar to Statix, it is a declarative logic programming language. Where
Statix builds and queries a scope graph, Datalog builds and queries a deductive database.
Recent work by Pacak et al. (2020) utlize the performance of Datalog’s incremental solvers
by expressing algorithmic typing rules in Datalog.

Xtext (Efftinge and Völter 2006) is a language workbench that generates with a heavy
focus on generated tooling, such as a compiler infrastructure and IDE support, based on the
Xtext grammar language. Xtext utilizes the Eclipse Modeling Framework (Steinberg et al.
2009) and provides an API to customize behavior of the generated tooling using dependency
injection (Eysholdt and Behrens 2010). For example, this customization allows for changing
the scoping and name binding rules, or adjusting the code generator.

Rascal is a metaprogramming language, developed by the CWI SWAT group (2009). A
commonality of Spoofax and Rascal is that both are in a sense based on the ASF+SDF for-
malism (Klint 1993). A complete language implementation can be defined using Rascal,
including a generated parser, static analysis and code generation. Rascal supports the gener-
ation of constraints for program analysis, but does not provide a built-in constraint solver, as
they believe hand-crafted specializations are important for making program analysis scale.
In the paper titled Rascal, 10 years later (2019), Klint et al. mentions constraint-based type
checking as an ongoing project.

The MPS platform by JetBrains (Dmitriev 2004) is a commercial language workbench
with a focus on projectional editing, using representations such as tables and graphs. The
first language developed in JetBrains MPS was BaseLanguage, a dialect of Java. The other
language definition DSLs of MPS build on BaseLanguage (Pech, Shatalin, and Völter 2013).
Similar to Xtext, MPS provides many IDE functionalities such as type checking and even
code completion out-of-the-box. A recent experimental feature of JetBrains MPS named
CodeRules1 allows for type inference and type checking using logical programming with
constraints, similar to Statix.

1https://jetbrains.github.io/mps-coderules/about

91

https://jetbrains.github.io/mps-coderules/about




Chapter 7

Conclusion

In this thesis, we have presented a new front-end for WebDSL. WebDSL is a domain-specific
language for web programming, inspired by multiple programming language paradigms.
WebDSL is used to create applications such as WebLab and conf.researchr.org, which have
thousands of daily users.

We have shown the conversion of theWebDSL grammar from an SDF2 specification to an
SDF3 that is disambiguated without post-parse filters, and where the definition of sorts and
constructors can be reused for Statix. The grammar formalism SDF3 generates a parse table
which can be executed to efficiently transform textual programs into abstract syntax trees
that are used in subsequent components of the compilation chain, such as static analysis.

Next, we presented the static semantics of WebDSL modelled in Statix. Statix is a declar-
ative constraint-based programming language using the concept of scope graphs to model
program structures and types. Statix comes with a built-in constraint solver that schedules
the constraints in a sounds way, builds and queries the scope graph and is able to show error
messages for failing constraints.

The challenges of implementing a modernized WebDSL front-end are documented in
this thesis, and we provided qualitative feedback on how to further improve the meta-DSLs
SDF3 and Statix. The most notable challenges include but are not limited to:

• Disambiguating the WebDSL grammar without the use of post-parse filters {prefer}
and {avoid};

• Modifying the grammar such that it adheres to the requirements of the Statix signature
generator;

• Expressing language constructs such as type extension, overloading, generated defini-
tions and static code template expansion in Statix;

• Expressing the WebDSL module system in Statix and defining a revised module sys-
tem;

• Reducing the run time of the WebDSL static analysis in Statix from over 8 hours to 4
seconds on real world applications.

Lastly, the resulting modernized front-end of WebDSL was evaluated in terms of correct-
ness and run time performance using large test suites andWebDSL applications that are used
in practice.

7.1 Research Questions
The aim of this thesis was to answer the following research questions.
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7. CONCLUSION

• RQ1 Is it possible to define the WebDSL syntax in SDF3, without the use of post-parse
filters?

• RQ2 How does the run time efficiency of the parser generated from WebDSL in SDF3
compare to the current WebDSL parser generated from SDF2?

• RQ3Howdoes themaintainability ofWebDSL in SDF3 compare to theWebDSL syntax
definition in SDF2?

• RQ4 Is a Statix implementation of the WebDSL static semantics able to catch the same
errors and warnings as the current implementation in Stratego?

• RQ5Howdoes the run time efficiency of theWebDSL static semantics in Statix compare
to the current WebDSL implementation?

• RQ6 How does the maintainability of the WebDSL static semantics in Statix compare
to the current implementation?

RQ1 In Chapter 3 we showed that it is possible to define the WebDSL syntax in SDF3 with-
out the {prefer} and {avoid} annotations. Doing so required the addition of sorts for dis-
ambiguation purposes, which is not idiomatic. Additionally, indexed non-transitive priority
rules were necessary to get rid of all observed ambiguities. In Section 5.1.1 we showed that
the WebDSL syntax test suite, which contains regression tests from production bugs can be
parsed by the parser generated from the WebDSL SDF3 definition.

RQ2 In Section 5.1.2 we showed that the parse table generated from the WebDSL SDF3
definition is larger than the parse table generated from the currentWebDSL syntax definition
in SDF2. Even though the described grammar did not change, it is implemented differently
using more sorts and constructors, leading to an increase in parse table size which resulted
in a slightly slower parser.

RQ3 While the maintainability of the WebDSL SDF3 definition is subjective, we argue that
it is more readable due to the increased similarity to other grammar formalisms in SDF3,
such as EBNF. Additionally, the implementation without post-parse filters does increase the
directness of finding an ambiguity in theWebDSL SDF3 definition. However, the compliance
with Statix Signature Generator and the disambiguation without post-parse filters introduce
additional sorts which unnecessarily complicate the grammar. For an objective answer to
this question, user studies are required.

RQ4 The Statix definition theWebDSL static semantics is not able to report the same errors
andwarnings as the current implementation in Stratego. For example, Statix ismissing String
manipulation which is necessary to encode certain WebDSL features such as static code tem-
plate expansion. In Section 5.2.1 we use the analysis test suite of the current implementation,
which contains concrete test expectations, namely if an error should be shown, what the error
should be and how many errors should be shown. From this test suite, 302 out of 512 tests
succeed and a discussion of the failed tests can be found in Section 5.2.1. When the test suite
is simplified to test whether correct programs pass and incorrect programs show an error,
416 out of the 512 tests succeed.

RQ5 Section 5.2.2 that the static analysis generated from the WebDSL Statix specification
is slightly slower than the current implementation in Stratego. While earlier iterations took
over 8 hours to complete, Section 4.7.1 shows howwe reduced its run time to several seconds.

94



7.2. Future work

RQ6 Themeta-language Statix is developed specifically for implementing the static seman-
tics of programming languages, in contrast to Strategowhich is broadly applicable. The Statix
syntax resembles that of formal inference rules and makes the individual rules more read-
able than their Stratego implementation. However, encoding theWebDSL static semantics in
Statix requiresmany boilerplate rules and code duplication due to a lack of a standard library
or string manipulation. For an objective answer to this question, user studies are required.

7.2 Future work
While themodernizedWebDSL front-endusing SDF3 and Statix is promising, there aremany
possibilities for improving and extending the work shown in this thesis.

Increased Engineering Effort We argue that the correctness of the modernized WebDSL
static analysis scales with the engineering effort put in to the Statix specification (see Sec-
tion 5.2.1). For the development of web applicationswithWebDSL, catchingmore erroneous
programs before compilation and reporting telling error messages is essential, especially
since the current implementation in Stratego is capable of doing so.

Implement Revised Module System in Compiler Back-End In this thesis we described
and implemented a revised module system for WebDSL in Statix (see Section 4.7) that can
be described as a traditional module system where (with some exceptions) referencing a
declaration made in another module requires importing that module. Additionally, it sup-
ports wildcard imports for pragmatic purposes during WebDSL development. Currently,
the WebDSL compiler adheres to the module system as listed in the original WebDSL paper
(Visser 2007), where it is described as follows: “a very simple module system has been chosen
that supports distributing functionality over files, without separate compilation”.

Connect Modernized Front-End to Existing Compiler Back-End The WebDSL static anal-
ysis implemented in Stratego is not solely used for error reporting in the IDE. It generates
signatures for definitions as discussed in Section 4.9 for which code should be generated, and
it creates dynamic ruleswith name binding and type checking information onwhich the code
generator depends. Re-implementing the current WebDSL back-end to use the Statix anal-
ysis results from the Statix Stratego API1 is a possibility, but this may require a significant
amount of time. An alternative is to write a connecting piece of software in Stratego that
takes the Statix analysis result as input and generates the correct dynamic rules and AST
terms such that the current WebDSL back-end can largely be used as is.

In the current Stratego implementation, the code generation phase and type-checking
phase are intertwined; additional WebDSL snippets are generated based on typing informa-
tion, which could have non-local consequences and requires a type check of the program
again (Hemel, Kats, et al. 2010). This process is currently not implemented in the modern-
ized static analysis, since it is not necessary for presenting the developer with early feed-
back. When the front-end is being connected to the back-end, analyzing the program multi-
ple times with added generated code would be necessary. We suspect this would increase
the run time of the whole compilation chain if the incremental Statix solver by Zwaan et al.
(2022) is utilized.

Evaluate the Incremental Statix Solver The recently published incremental Statix solver
by Zwaan et al. (2022) is promising in terms of speeding up the run time of executing Statix
specifications. Their work already uses the WebDSL specification that we presented in this

1https://www.spoofax.dev/references/statix/stratego-api/
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7. CONCLUSION

thesis, but it would be interesting to further evaluate the run time on other (closed-source)
applications such as WebLab and conf.researchr.org, and the impact of specific WebDSL lan-
guage constructs on the incrementality.

Evaluate the Impact of Post-Parse Filters {prefer} and {avoid} on Parsing Run Time In
this thesiswe have shownhowwedisambiguated theWebDSL grammar in SDF3without the
use of post-parse filters (see Section 3.5). However, we do not provide insight into the impact
of {prefer} and {avoid} on the run time of the generated parser, because we developed the
SDF3 grammar from the start with the intention of leaving out the post-parse filters.
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Acronyms

AJAX Asynchronous JavaScript and XML

AST Abstract Syntax Tree

DSL Domain-specific Language

HTML HyperText Markup Language

IDE Integrated Development Environment

SQL Structured Query Language

URL Uniform Resource Locator
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