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, Fellow, IEEE, and Liang Wang

Abstract—With the massive amount of data generated from mobile devices and the increase of computing power of edge devices, the
paradigm of Federated Learning has attracted great momentum. In federated leamning, distributed and heterogeneous nodes collaborate to
learn model parameters. However, while providing benefits such as privacy by design and reduced latency, the heterogeneous network
present challenges to the synchronisation methods, or barrier control methods, used in training, regarding system progress and model
convergence etc. The design of these barrier mechanisms is critical for the performance and scalability of federated learning systems. We
propose a new barrier control technique called Probabilistic Synchronous Parallel (PSP). In contrast to existing mechanisms, it introduces a
sampling primitive that composes with existing barrier control mechanisms to produce a family of mechanisms with improved convergence
speed and scalability. Our proposal is supported with a convergence analysis of PSP-based SGD algorithm. In practice, we also propose
heuristic techniques that further improve the efficiency of PSP. We evaluate the performance of proposed methods using the federated
learning specific FEMNSIT dataset. The evaluation results show that PSP can effectively achieve good balance between system efficiency

and model accuracy, mitigating the challenge of heterogeneity in federated learning.

Index Terms—Federated learning, edge computing, distributed computing, barrier control

1 INTRODUCTION

s a large amount of data is increasingly generated from
mobile and edge devices (smart home, mobile phone,
wearable devices, etc.), it becomes essential for many applica-
tions to train machine learning distributedly across many
nodes. One of the emerging distributed training paradigms is
the Federated Learning [1], [2]. Federated learning allows
machine learning tasks to take place without requiring data to
be centralised. There are a variety of motivations behind, e.g.,
maintaining privacy by avoiding individuals reveal their per-
sonal data to others, or latency by allowing data processing to
take place closer to where and when the data is generated.
Due to these reasons, it has been gaining increasing popular-
ity in various research and application fields, such as vehicle
network [3], edge cache optimising and computation offload-
ing [4], health care [5], mobile keyboard prediction [6], etc.
One critical component of distributed and federated
machine learning systems is barrier synchronisation: the
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mechanism by which participating nodes coordinate in the
iterative distributed computation. Currently, the barrier
control methods can be generally categorized into three
types. The Bulk Synchronous Parallel (BSP) is the strictest,
which requires all workers to proceed in lock-step moving
to the next iteration only when all the workers are ready.
The Asynchronous Parallel (ASP) [7] is the least strict barrier
control, since it allows each worker to proceed at its own
pace without waiting for the others. The third one is the
Stale Synchronous Parallel (SSP) [8], which relaxes BSP by
allowing workers to proceed to the next iteration once all
workers’ iterations are within a certain limit with each
other. These barrier methods provide different trade-offs
between system performance and model accuracy.

However, Federated Learning brings challenges to the
existing barrier control methods. As deployments move out
from the data centre to the heterogeneous edge network, we
must cope with unreliable networks that have higher
latency, and churn in node availability arising from poten-
tially much larger numbers of participating nodes. ASP can
achieve fast progress, but cannot guarantee convergence of
the model training with such heterogeneous networks. BSP,
on the other hand, provides a tight synchronisation require-
ment for the trained model, but its system progress is prone
to the delay caused by stragglers. The SSP provides a certain
degree of trade-off between these two ends, but this central-
ised control method still falls short of supporting large scale
heterogeneous networks.

Towards this end, we propose the Probabilistic Synchronous
Parallel (PSP). The basic idea is to introduce a sampling primi-
tive in the system, and to use a sampled subset of participat-
ing workers to estimate progress of the entire system. PSP
introduces a second dimension to this trade-off: from how
many nodes must we receive updates before proceeding to

1939-1374 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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the next iteration. By composing our sampling primitive with
traditional barrier controls, we obtain a family of barrier con-
trols better suited for supporting iterative learning in the het-
erogeneous networks.

The contributions of this paper are shown as follows.

e We propose a new barrier control method, PSP, that
utilises sampling methods to address the challenges
caused by heterogeneous networks in Federated
Learning. It also provides a new dimension to the
design of barrier control methods compared to exist-
ing ones.

e We outline a theoretical analysis of these PSP control
methods, providing probabilistic convergence guar-
antees as a function of sample size.

e We implement the PSP synchronisation method in a
Parameter Server framework using PyTorch.

e We conduct extensive evaluation on benchmark and
datasets that are designed specifically for Federated
Learning. Both practical and theoretical results indi-
cate that even a relatively small sample size brings
most of the benefits of PSP, and that they can achieve
better trade-offs than existing barrier methods.

The rest of this paper is organised as follows. We first
review the background works that are related with distrib-
uted learning, barrier control, and federated learning
Section 2. Next we present the design of probabilistic syn-
chronous parallel Section 3 and its implementation Section 4.
This section is followed by a theoretical analysis of the con-
vergence of this method Section 5. Finally, we present the
evaluation results Section 6, followed by discussions and
conclusions.

2 BACKGROUND AND RELATED WORK

2.1 Distributed Learning

In distributed learning, a model is trained via the collabora-
tion of multiple workers. One of the most commonly used
training methods is the Stochastic Gradient Descent (SGD),
which iteratively optimizes the given objective function
until it converges by following the gradient direction of the
objective. In each iteration of SGD, typically a descent gradi-
ent is calculated using a batch of training data, and then the
model parameters are updated by changing along the direc-
tion of the gradient at a certain step. It is widely applied in
fields such as wireless communication systems, and Internet
of Things, etc. [16], [17], [18].

2.2 Barrier Control Methods
As noted above, the statistical and iterative nature of
machine learning means that errors are incrementally
removed from the system. To be perfectly consistent, where
every node proceeds to the next iteration together risks
reducing throughput. Relaxing consistency can improve sys-
tem performance without ultimately sacrificing accuracy.
This trade-off is embodied in the barrier control mechanism.
Current barrier control mechanisms can be divided into
three types, discussed in details below.

Bulk Synchronous Parallel (BSP) is a deterministic scheme
where workers perform a computation phase followed by a
synchronisation/communication phase to exchange updates,

under control of a central server [19]. BSP programs are often
serialisable, i.e., they are equivalent to sequential computa-
tions, if the data and model of a distributed algorithm have
been suitably scheduled, making BSP the strongest barrier
control method [8]. Numerous variations of BSP exist, e.g.,
allowing a worker to execute more than one iteration in a
cycle [20]. Federated Learning also uses BSP for its distrib-
uted computation [2]. Unfortunately, in BSP workers must
wait for others to finish and so stragglers limit performance to
that of the slowest node. Thus, BSP tends to offer consistency
and high accuracy in each update but suffers from poor per-
formance except in highly favourable environments. More-
over, BSP requires centralised coordination.

Asynchronous Parallel (ASP) takes the opposite approach
to BSP, allowing computations to execute as fast as possible
by running all workers completely asynchronously [7]. ASP
can result in fast convergence because it permits the highest
possible rate of iteration [19]. However, the lack of any coor-
dination means that updates are calculated based on old
model state, resulting in reduced accuracy. There are no the-
oretical guarantees as to whether algorithms converge. The
Hogwild scheme proposed in [7] has many limits, e.g., it
requires convex function and sparse update. Many work
have tried to extend these limits in application and theoreti-
cal analysis [21], [22]. These studies often lead to carefully
tuned step size in training. [23] proposes a delay-compen-
sated SGD that mitigates delayed updates in ASP by com-
pensating the gradients received at the parameter server.
[14] introduces another variant of ASP specifically for wide-
area networks: as communication is a dominant factor, it
advocates allowing insignificant updates to be delayed
indefinitely in WAN.

Stale Synchronous Parallel (SSP) is a bounded asynchro-
nous model that balances between BSP and ASP. Rather than
requiring all workers to proceed to the next iteration
together, it requires only that the iteration of any two work-
ers in the system differs by at most s, a pre-defined staleness
bound. The staleness parameter limits error and allows SSP
to provide deterministic convergence guarantees [8], [19],
[24]. Built on SSP, [25] investigates the n-softsync, the syn-
chronisation method that makes the parameter server updat-
ing its weight after collecting certain number of updates
from any workers. [26] proposes to remove a small amount
of “longtail” workers, or add a small amount of backup
nodes to mitigate this effect while avoiding asynchronous
noise. [27] tries to unifed the exisiting synchronisation meth-
ods in a single framework and provide convergence analysis.

Table 1 summarises the synchronisation primitives used
by different machine learning systems. BSP is the most com-
monly used as it is deterministic and has the most straight-
forward implementation. However, it is vulnerable to
network and system dynamics where a node failing or
experiencing connectivity problems can cause the entire
system to slow down or stall. In contrast, ASP is resilient to
such problems as no synchronisation between nodes is
required — but the lack of synchronisation means that model
updates from different nodes may arise from very different
iterations and so result into significant errors.

This trade-off can be demonstrated using a small experi-
ment shown in Fig. 1. Here we use the configuration from
Section 6. The left side shows that, after the same number of
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TABLE 1

Classification of Synchronisation Methods Used by Different Systems
System Synchronisation Constraint Barrier Method
MapReduce [9] Requires map to complete before reducing BSP
Hogwild! [7] ASP but system-level bounds on delays ASP, SSP
Parameter Servers [10] Swappable synchronisation method BSP, ASP, SSP
Hadoop [11], Spark [12] Aggregate updates after task completion BSP
Yahoo! LDA [13] Checkpoints SSP, ASP
SSPTable [8] Updates delayed by up to N — 1 steps SSP
Gaia [14] Accumulate weight locally BSP, SSP
Astraea [15] Combination with Sequential update BSP

updates exchanged between server and clients, the ASP has
much larger jitters than BSP during the process and even
fails to converge, while BSP keeps following a growing
trend. The right side shows that, given the same time, the
number of updates accumulated using the ASP is much
larger than that of BSP, about 5x at 200s in this experiment.

SSP attempts to exploit this trade-off by bounding the
difference in iterations between participating nodes. Fig. 2a
depicts how existing barrier control methods balance con-
sistency against iteration rate to achieve a high rate of con-
vergence. As can be seen, moving from ASP to BSP, these
methods are tuned along a 1-dimensional space. As will be
shown in the next section, a new dimension of trade-off can
be exploited.

2.3 Federated Learning

Nowadays, these existing distributed training methods are
put to use in an emerging field, the Federated Learning (FL).
FL is a machine learning setting where “multiple entities col-
laborate in solving a machine learning problem, under the
coordination of a central server or service provider; each cli-
ent’s raw data is stored locally and not exchanged or trans-
ferred.” [28]. It combines techniques from multiple fields,
including distributed training, machine learning, and pri-
vacy, etc. It has increasingly drawn research interest
recently [1]. One such prominent application field is in edge
computing [29]. For example, [30] implements federated
training algorithms on mobile edge computing frameworks,
where the main challenge is to manage limited resources of
heterogeneous clients.

One major cause of performance degradation in distrib-
uted training is the heterogeneity. It involves many different
aspects: the computation power difference caused by hard-
ware, random faults of worker devices, temporary worker
slowdown or dropout due to resource sharing, network con-
nection issue, single point failure, etc. Heterogeneity means

80
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Fig. 1. The difference of ASP and BSP with regard to model accuracy
and system progress.

the progresses of different devices vary greatly, and aggre-
gating drastically different weights leads to degraded per-
formance. Many studies have been proposed to address
the challenge of heterogeneity in training from multiple
perspectives.

One of the basic algorithms in Federated Learning is the
FedAvg [31]. It works by averaging models across different
workers, shown to be robust against common problems in
FL such as the unbalanced data distribution across devices.
Some work propose new algorithms. [32] introduces the
MOCHA optimization method for the multi-task federated
learning, where each worker trains its own model, so as to
avoid the heterogeneity problem. Another technique fre-
quently used is to manipulate the weight generated by the
local workers. In [33] the authors propose the FedProx algo-
rithm, which adds a regularization step in local training to
limit the local weight’s change. Some work tries to explicitly
remove the stragglers. To improve the performance of the
SSP barrier control method in heterogeneous environments,
the [26] proposes to enhance the SSP by removing stragglers
and add backup workers in case some of them drop out of
the training progress due to heterogeneity. [34] proposes
Overlap SGP, a method that uses a gossip-based algorithm
to mitigate the heterogeneity. Recently, the authors in [15]
propose to mitigate this problem with data augmentation
techniques.

Moreover, in Federated Learning, the training data are
often non-IID [15]. That is, a device’s local data cannot be
regarded as samples drawn from the overall distribution.
The data distribution has an enormous impact on model
training. The authors in [35] provide theoretical analysis
about FedAvg on non-IID data. The work [15] proposes the
Astraea system to address the imbalanced data problem.
Besides data enhancement, its strategies include a combina-
tion of sequential update and BSP in updating, given how
biased the data is.

The impact of data distribution can be demonstrated
clearly using an experiment, shown in Fig. 3. We use BSP in
distributed training for both IID and non-IID scenarios,
whose hyper-parameters such as optimiser type, learning
rate, epoch, batch size, worker number, etc. are the same as
Section 6. As a result, with the IID data, the trained model
accuracy increases steadily, and soon reaches a fairly high
80% accuracy. With the non-IID data, however, the model
accuracy stays around 40% within the same timespan, and
also shows large jitters in training. In the evaluation section
of this work, we use a non-IID dataset to better model the
Federated Learning setting.
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(a) The trade-off exposed by BSP, ASP, SSP.

(b) Probabilistic Synchronise Parallel

(c) The extra dimension exposed by PSP.

Fig. 2. The extra trade-off space enabled by PSP, and an illustration about how PSP works among workers.

3 PROBABILISTIC SYNCHRONOUS PARALLEL

In this section, we introduce the proposed barrier control
method Probabilistic Synchronous Parallel (PSP), including its
core design principles, how it expands the parameter tuning
space in the design of synchronisation methods, and how it
is compatible with existing methods.

Fig. 4 provides an overview of PSP barrier control meth-
ods. The core idea behind PSP is simple yet powerful: we
require that only some proportion, not all, of the working nodes be
synchronised in progress (step 1). By “progress” we mean the
number of updates pushed to the server at the client’s side,
and the total number of updates collected at the server’s
side. In a centralised training framework, the server builds
this subset of the training nodes based on system informa-
tion, such as their current local progress. This subset can be
sampled by various approaches. One common and intuitive
way is to sample randomly among all the workers.

The parameter in PSP, the sampling size, therefore con-
trols how precise this estimation is. Assuming this random sub-
set is not biased with respect to nodes” performance, the server can
use the resulting distribution to derive an estimate of the per-
centage of nodes which have passed a given progress (step
2). This estimation depends on the specific method used
within the subset, as will be discussed in Section 3.2. Accord-
ingly the server can decide whether to allow the trainers to
pass the barrier and advance their local progress (step 3).

As illustrated in Fig. 2b, each node keeps record of its
own progress. It chooses to synchronise with only several
other nodes to decide its own barrier, instead of all other
nodes. To ignore the status of the other workers with impu-
nity, we rely on the fact that, in practice, many iterative
learning algorithms can tolerate a certain degree of error as

80
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Fig. 3. Comparison of distributed training using IID and non-IID data.

they converge to their final answers [36]. By controlling the
sampling method and size, PSP reduces the impact of lag-
ging nodes while also limiting the error introduced by
nodes returning updates based on stale information.

In an unreliable environment, we can minimise the
impact of outliers and stragglers by probabilistically choos-
ing a subset of the total workers as estimation. As shown in
the subsequent section, this method is proved, both in the-
ory and practice, to be robust against the effect of stragglers
and the gradient bias caused by non-IID data, while also
ensuring an acceptable consistency between iterations as
the algorithm progresses.

3.1 Dimension of Barriers Control Methods

The sampling strategy of PSP has a profound implication on
design of barrier control methods. As shown in Fig. 2a, cur-
rent methods tightly coupled model consistency and barrier
control: one server is assigned to update model parameters
and coordinate the progress of all nodes in an iterative
learning algorithm. SSP provides a degree of flexibility in
tuning systems but still requires a global knowledge of the
entire system network.

To address this problem, by introducing a system primi-
tive sampling, PSP decouples the barrier control from the
model consistency. This primitive can be composed with
existing mechanisms, specifically BSP and SSP, to construct
fully distributed barrier control mechanisms that are more
scalable: less communication to avoid throttling the server
as the system grows much bigger.

The decoupling of the degree of synchronisation from
distribution is depicted in Fig. 2c. PSP introduces complete-
ness as a second axis by having each node sampled from the
population. This axis goes from fully complete (all working
nodes are considered in synchronisation) to not complete
(each single node is considered separately). Therefore, a

Step 1. Sampling Step 2. Estimation

Step 3. Barrier

Estimate progress of the
whole population, by
composing with existing
barrier methods

Get a subset of the
workers according to the
FL system information

According to estimation,
decide if the workers
should keep processing

Collect system progress Barrier control
information i

Federated Learning System

Fig. 4. Overview of PSP.
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Fig. 5. Compose PSP with bulk synchronise parallel.

2-dimensional tuning space can be explored in synchronisa-
tion method design: to be robust against the effect of strag-
glers while also ensuring a degree of consistency between
iterations as the algorithm progresses.

3.2 Compatibility

One noteworthy advantage of PSP lies in that it is straightfor-
wardly compatible with existing synchronisation methods. In
classic BSP and SSP, their barrier control mechanisms are
invoked by a central server to test the synchronisation condi-
tion with the given inputs. For BSP and SSP to use the sampling
primitive, they simply need to use the sampled states rather
than the global states when evaluating the barrier control con-
dition. Within each sampled subset, these traditional mecha-
nisms can then be applied. We can thus easily derive
probabilistic versions of BSP and SSP, namely pBSP and pSSP.

Formally, at the barrier control point, a worker samples f
out of P workers without replacement. If one lags more
than s updates behind the current worker then the worker
waits. This process is pBSP (based on BSP) if the staleness
parameter s = 0 and pSSP (based on SSP) if s > 0. If s = o0,
PSP reduces to ASP.

Fig. 5 depicts PSP, showing to compose BSP with PSP, a
subset of the population of nodes is chosen, and then the
BSP is applied within the subset (pBSP). The composition of
PSP and SSP (pSSP) follows the same idea. When compared
with BSP and SSP, we can obtain faster convergence
through faster iterations and with no dependence on a sin-
gle centralised server. When compared with ASP, we can
obtain faster convergence with stronger guarantees by pro-
viding greater consistency between updates. In all cases, the
original synchronisation control requires a centralised node
to hold the global state while the PSP control methods do
not and so can be executed independently on each individ-
ual node, giving a fully distributed solution.

Besides existing barrier control methods, PSP is also com-
patible with both centralised and decentralised training
approaches. In a decentralised setting, based on the infor-
mation it gathers from its neighbouring nodes, a trainer
node may either decide to pass the barrier control by
advancing its local progress, or wait until the threshold is
met, in a similar fashion as we have discussed before. Since
we are mainly discussing the Federated Learning setting in
this paper, we focus on the centralised training approach. In
Federated Learning, nodes may join and leave the training
system randomly, which would cause the other nodes to
wait indefinitely when synchronised barriers such as BSP
and SSP are used. PSP solves this issue with probabilistic

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2022

Client
Info
Store

Fig. 6. Implementation architecture of parameter server in federated
learning.

sampling, so that for each node, its synchronisation group is
assigned dynamically. The system is thus aware of the sta-
tus change of any node with certain probability during a
training round.

3.3 Sampling Strategy

Here we formally introduce the probabilistic sampling strat-
egy. By default, we can simply choose the trainers ran-
domly. Indeed, as we show in the theoretic analysis and
experiments in the sections below, this strategy works suffi-
ciently well.

The choice of samples has a great impact on the perfor-
mance of PSP. As explained in Section 3, the sampling of
PSP provides an estimate of the total distribution of the
progress of all the workers. In a worst case scenario where
the sampled subset happens to be all stragglers, this subset
cannot provide a very efficient estimation of all the workers.

Towards this end, we provide two heuristic sampling
strategies to address this issue. The first is to randomly re-
sample the subset in PSP. The second is to choose the work-
ers according to its previous computation time. Specifically,
at each round, we categorize all the workers into two
groups according to their historical computing time per iter-
ation, one slow and one fast, and then choose equal num-
bers of workers from both groups to form the target subset.
Here we can use clustering algorithms such as K-Means.
For simplicity, in later evaluation, we group the workers
according to a pre-defined threshold.

4 IMPLEMENTATION

Parameter Server is the most widely used training frame-
work used in Federated Learning systems such as in [2].
Therefore we focus on applying barrier control methods to
this framework in this work.

The system architecture is shown in Fig. 6. One main
component of the server is the barrier control mechanism. It
collects gradient updates from part of the participating cli-
ents, and decides if the current collected gradients can be
passed to aggregator or block to wait for further updates to
arrive. The different types of barrier methods are explained
in the previous sections. If the barrier control decides that
the current gradients can be passed, they are aggregated
and used to update the model weights maintained by the
server. During this process, worker information such as iter-
ation progress and timestamps is stored in the server for
applying barrier methods. The logic on the client side is
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simple: accept the weight from the server, compute its own
gradient based on its local data, and push it to the server.
Here the different shape of blocks denotes different types of
data. They are distributed in a non-IID way across clients.
Formally, the progress we have implemented is described
in Algorithm 1.

Algorithm 1. Federated Learning With Barrier
Control.

Server:

initialise progress information P

for each iteration k do
aggregate pushed gradients in set Sj,
if Barrier(P, S;) == True then

aggregate g — >, esi ggk’)
for each client s in S;. do
P,— P, +1
end for
update weight w!
Push w1V to clients
end if
end for
Client:
for each iteration ¢t do
accept weight w(") from the server
load training data x, y;
gradient g) «— L (z, ys, w®)
push gradients g*) to server
end for

) gk g®)

We implemented the training system using the open
source framework PyTorch v1.6. The communication
between the server and clients uses PyTorch’s Distributed
RPC framework. Each client uses the RRef, a mechanism to
handle remote object reference, to access the states of the
server’s RPC instance. We use the Docker containers to
manage the server and workers. Each container can be
assigned a different number of CPUs or memory.

To test the accuracy of the trained model, the validation
is conducted repeatedly after a fixed number of iterations,
using an extra process on the server. For the model used in
the framework, we choose to use a LeNet-like convolutional
neural network as the trained model. It consists of two con-
volution layers that are followed by a ReLu activation layer,
and then two fully connected layers.

To better model the heterogeneous computing power
among participating workers in Federated Learning, we
randomly choose a certain number of workers, and make
them m times slower in computing the back-propagation.

Note that our focus is to evaluate the barrier methods, so
in the implementation we don’t consider techniques such as
optimised SGD, merging multiple updates or compressing
them before sending them to the server, even though these
techniques are proved to be useful in improving training
efficiency.

5 CONVERGENCE ANALYSIS

In this section, we present a theoretical analysis of PSP and
show how it affects the convergence of ML algorithms (SGD
used in the analysis). The analysis mainly shows that: 1)

TABLE 2

Notation Table
Notation Explanation
f(r) Probabilities of a node lagging r steps
F(r) Cumulative distribution function of f(r)
R[X] Difference between optimal and noisy state
a F(r)f, where $is sample size
Vi Sequence inconsistency at length ¢
T Total length of update sequence
L Lipschitz constant
o Initial learning rate, constant
P Total number workers, constant

under PSP, the algorithm only has a small probability not to
converge, and the upper limit of this probability decreases
with the training iterations; 2) instead of choosing large
sampling size, it is proved that a small number is already
sufficient to provide a good performance.

We apply an analysis framework similar to that of [24].
Notations used in our analysis are listed in Table 2. At each
barrier control point, every worker A samples f out of P work-
ers without replacement. If one of these sampled workers lags
more than s steps behind worker A, it waits. The probabilities
of a node lagging r steps are drawn from a distribution with
probability mass function f(r) and cumulative distribution
function (CDF) F'(r). Without loss of generality, we set both
staleness r and sample size 8 parameters to be constants.

In a distributing machine learning process, these P work-
ers keep generating updates, and a shared model is updated
with them continuously. We count these updates by first
looping over all workers at one iteration, and then across all
the iterations. In this process, each one is incrementally
indexed by integer ¢. The total length of this update
sequence is 7. Ideally, in a fully deterministic barrier control
system such as BSP, the ordering of updates in this
sequence should be fixed. We call it a true sequence. How-
ever, in reality, what we get is often a noisy sequence, where
updates are reordered irregularly due to sporadic and ran-
dom network and system delays. These two sequences
share the same length. We define sequence inconsistency as
the number of index difference between these two sequen-
ces, and denote it by y,. It shows how much a series of
updates deviate from an ideal case. If the sequence inconsis-
tency is bounded, it means that what a true sequence
achieves, in time, a noisy sequence can also achieve, regard-
less of the order of updates. This metric is thus a key instru-
ment in theoretically proving the convergence property of
an asynchronous barrier method.

Let R[X] = ZtT fir(xt) — fe(x"). This is the sum of the dif-
ferences between the optimal value of the function and the
current value given a noisy state. To put in plain words, it
shows the difference between “the computation result we
get if all the parameter updates we receives are in perfect
ideal order” and “the computation result we get in real world
when using e.g., PSP barrier”. Now we show a probabilistic
bound on R[X], which shows the noisy system state, X;, con-
verges in expectation towards the optimal, x*, in probability.

Theorem 1 (SGD under PSP, convergence in probabil-
ity). Let f(x) = 3./, fi(x) be a convex function where each
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Fig. 7. (a-b) Bounds on mean and variance of sampling distribution as a function of F(r)ﬁ. The staleness r is set to 4 with 7" equal to 10000.

(c) Sequence inconsistency observed in empirical training.

f: € R is also convex. Let X" € R? be the minimizer of this
function. Assume that f, are L-Lipschitz and that the dis-
tance between two points x and X' is bounded: D(x||x") =
Hx —x||5 < F?, where F is constant. Let an update be
given by w, = —n,V fi(X;) and the learning rate by n, = N
We have bound:

(5o

where 8 is a constant and b < 4PT'Lo. The b term here is the
upper bound on the random variables which are drawn from the
lag distribution f(r). The q and c are two values that are related
to the mean and variance of y,. If we assume that 0 < a < 1,
then it can be proved that both q and c are bounded. Furthermore,
if we assume with probability ® that Vt.APLoy, < O(T), then
b < O(T). That means @ converges to O(T~'/?) in probabil-
ity with an exponential tail bound with probability ®.

2 _T8

To put this theorem to plain words, it claims that, as long
as the difference between the noisy update sequence and
the ideal sequence is bounded, and that the nodes in the sys-
tem do not lag behind too far away, PSP guarantees that
(with probability) the difference between the result we get
and the optimal result diminishes as more updates are gen-
erated by workers. The full proof of Theorem 1 is listed in
the report [37].

5.1 How Effective is Sampling

One key step in proving Theorem 1 is to prove the sequence
inconsistency y, is bounded. We have proved that the mean
and variance of vector y, are both bounded. Specifically, the
average inconsistency (normalised by sequence length 7) is
bounded by:

1 <& r(r+1 a(r+2
Z;E(yt)§5<( 5 )+(1(a)2), (2)

=l

and the variances has a similar bound:

1< r(r4+1)©2r+1)  a(r® 4 4)
( 5 + (1—a)3>’ (3)

where

1—a
5= F(r)1—a)+a—al—r+" @

These bounds can be treated as constants for fixed a, T, r
and B. They provide a means to quantify the impact of the
PSP sampling primitive and provide stronger convergence
guarantees than ASP. They do not depend upon the entire
lag distribution, which ASP does.

The intuition is that, when applying PSP, the update
sequence we get is not too different from the true sequence.
To demonstrate impact of the sampling primitive on bounds
quantitatively, Figs. 7a and 7b show how increasing the
sampling count, 8, (from 1 to 128, marked with different
line colours on the right) yields tighter bounds. Notably, only
a small number of nodes need to be sampled to yield bounds close
to the optimal. This result has an important implication to justify
using sampling primitive in large distributed learning systems
due to its effectiveness. This will be further verified in the eval-
uation section.

The discontinuities at @ = 0 and a = 1 reflect edge cases
of the behaviour of the barrier method control. Specifically,
with a = 0, no probability mass is in the initial  steps so no
progress can be achieved if the system requires 8 > 0 work-
ers to be within r steps of the fastest worker. If « = 1 and
p =0, then the system is operating in ASP mode so the
bounds are expected to be large. However, these are overly
generous. Better bounds are O(T') for the mean and O(7?)
for the variance, which we give in our proof. When a =1
and B # 0, the system should never wait and workers could
slip as far as they like as long as they returned to be within
steps before the next sampling point.

Besides theoretical analysis, an intuitive visualisation of
sequence inconsistency y; is shown in Fig. 7c. We run a dis-
tributed training experiment with various barrier methods
for 100 seconds, and measure the number of difference
between true and noisy sequence at a fixed interval during
the whole process. The result shows that the sequence
inconsistency using ASP keeps growing linearly, while in
SSP it increases and decrease within a certain bound, which
is decided by the staleness parameter. Applying sampling
to SSP relaxes that bound, but unlike ASP, inconsistencies
using pSSP grows sub-linearly with sequence length. BSP is
omitted in the figure, since its true and noisy sequence is

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 10:49:59 UTC from IEEE Xplore. Restrictions apply.



ZHAO ET AL.: FEDERATED LEARNING WITH HETEROGENEITY-AWARE PROBABILISTIC SYNCHRONOUS PARALLEL ON EDGE 621

always the same. pBSP shows a tight bound (about 0.5) even
with only 5% sampling.

6 EVALUATION

In this section, we investigate performance of the proposed
PSP in experiments. We focus on two common metrics in
evaluating barrier strategies: the accuracy Section 6.2 and
system progress Section 6.3. Using these metrics, we explore
the impact of sample settings Section 6.5, and stragglers Sec-
tion 6.4 in the Federated Learning system and the proposed
PSP. Besides, we also propose to use the progress inconsistency
as a metric of training accuracy, but without the impact of
specific application hyper-parameters Section 6.6. We com-
pare PSP with the other barrier methods, including ASP
from [7], BSP used in the paper [15]. and SSP proposed in [8].

6.1 Setup

We perform extensive experiments on real-world dataset
FEMNIST, which is part of LEAF, a modular benchmarking
framework for learning in federated settings and includes a
suite of open-source federated datasets [38]. Similar to
MNIST, the FEMNIST dataset is for image classification tasks.
But it contains 62 different classes (10 digits, 26 lowercases,
and 26 uppercase). Each image is of size 28 by 28 pixels. The
dataset contains 80,5263 samples in total. The number of sam-
ples distributed evenly across different classes.

The CNN model we use has two convolutional layers
and two fully-connected layers. The two convolutional
layers have 32 and 64 output channels respectively. Both
have 3x3 kernel size and stride size of 1. Both layers are
then followed by a Relu layer and a dropout layer. The first
fully-connected layer has 128 units activated by ReLu, and
the second fully-connected layer has output size of 62, fol-
lowed by a softmax output layer. During training, the loss
function is categorical cross-entropy and the measurement
metric of model accuracy is top-1 accuracy.

To better study the performance of the proposed method
with non-IID data distribution in Federated Learning, we fol-
low the data partition setting in [31]. We first sort the data by
class labels, divide them into 2n shards, and assign each of n
workers 2 shards. This pathological non-IID partition makes
the training data on different workers overlap as little as pos-
sible. The validation set is 10% of the total data. Besides, we
pre-process it so that the validation set is roughly balanced
in each class. As for training hyper-parameters, we use a
batch size of 128, and we use the Adam optimiser [39], with
learning rate of 0.001, and coefficient of (0.9, 0.999).

We conduct our experiment on a server that has 56 Intel
(R) Xeon(R) CPU E5-2680 v4, and a memory of 256G. In the
rest of this section, if not otherwise mentioned, we use 16
workers by default. Besides, one extra worker is used for
model validation to compute its accuracy. In the rest of this
section, we aim to show the wide range of tuning space
enabled by the sampling parameter, and how existing bar-
rier methods can be incorporated into PSP.

6.2 Accuracy

First, we demonstrate the performance advantage of PSP
compared to the existing barrier control methods. To do
that, we execute the training process using each method on
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methods.

the non-IID FEMNIST dataset for about 8 epochs. The
results are shown in Fig. 8. The sub-figure uses time as the
x-axis. It shows the change of trained model accuracy in
about 10,000 seconds. It compares the ASP, BSP, and pBSP
(composing PSP with BSP) where the sampling size equals
4. Following the setting of SSP in [8], the staleness parame-
ter of pSSP is also set to 4.

The first thing to note here is, though the performance of
ASP looks optimal at the beginning due to its quick accumula-
tion of updates from different workers, it quickly deteriorates
and fails to converge. Compared to the unstable performance
of ASP, BSP steadily converges. Then the pBSP clearly outper-
forms these two regarding model accuracy, especially in the
later part of training. Due to its probabilistic nature, the pBSP
line shows larger jitters than BSP, but also follows the general
trend of BSP towards convergence steadily.

The strength of PSP lies in that it combines the advan-
tages of existing methods. In the lower sub-figure Fig. 8b,
we use the accumulated total number of updates the Param-
eter Server has received as x-axis to compare the
“efficiency” of the updates in ASP, SSP, and pSSP. The stale-
ness parameter of SSP and pSSP is set to 4 here. We can see
that as updates are accumulating, despite using sampling,
the accuracy increase of pSSP is similar to that of SSP.

Meanwhile, pSSP is much faster than SSP with regard to
the update progress, or the rate at which the updates accu-
mulate at the Parameter Server. Fig. 9 shows the number of
updates at the server with regard to time (here we show
only results from the beginning of evaluations). As can be
seen, at any given time, both pBSP and pSSP progress faster
than BSP and SSP correspondingly. Of course, ASP pro-
gresses the fastest since it does not require any synchronisa-
tion among workers, but its non-converged updates makes
this advantage obsolete.

Note that the difference of number of updates can be
directly interpreted as the communication cost, since each
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Fig. 9. Number of updates accumulated at the parameter server for
different barrier methods.

update means the transmission of weight and gradient
between the server and clients. For example, at about 600s,
the pSSP enables 35% more traffic than SSP; and pBSP even dou-
bles the traffic in BSP. According to our previous evaluation
result, the proposed PSP achieves such reduction without
sacrificing the final model accuracy.

Results. PSP combines the best of two worlds. On one hand, it
has similar update efficiency as SSP and BSP; on the other hand,
it achieves faster update progress that is similar to ASP. As a
result, it outperforms the existing barrier control methods.

6.3 System Progress

In this section, we are going to further investigate iteration
speed PSP achieves. We use 32 workers, and run the evalua-
tion for 400 seconds. Fig. 10a shows the distribution of all
nodes’ progress, i.e., the local iteration number of nodes
after training finishes.

As expected, the most strict BSP leads to a tightly
bounded progress distribution, but at the same time, using
BSP makes all the nodes progress slowly. At the end of the
experiment, all the nodes only proceed to about the 80th
update. As a comparison, using ASP leads to a much faster
progress of around 200 updates. But the cost is a much
loosely spread distribution, which shows no synchronisa-
tion at all among nodes. SSP allows certain staleness (4 in
our experiment) and sits between BSP and ASP.

PSP shows another dimension of performance tuning.
We set sample size  to 4, i.e. a sampling ratio of only 12.5%.
The result shows that pBSP is almost as tightly bound as BSP
and also much faster than BSP itself. The same is also true
when comparing pSSP and SSP. In both cases, PSP improves
the iteration efficiency while limiting dispersion.

To further investigate the impact of sample size, we focus
on BSP, and choose different sample sizes. In Fig. 10b, we
vary the sample size from 0 to 24. As we increase the sample
size, the curves start shifting from right to left with tighter
and tighter spread, indicating less variance in nodes” prog-
ress. With sample size 0, the pBSP exhibits exactly the same
behaviour as that of ASP; with increased sample size, pBSP
starts becoming more similar to SSP and BSP with tighter
requirements on synchronisation.

Another interesting thing we notice in the experiment is
that, with a very small sample size of one or two (i.e., very
small communication cost on each individual node), pBSP
can already effectively synchronise most of the nodes com-
pared to ASP. The tail caused by stragglers can be further
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Fig. 10. (a) System progress distribution; (b) pBSP parameterised by dif-
ferent sample sizes, from 0 to 24. Increasing the sample size make the
curves shift from right to left with decreasing spread, covering the whole
spectrum from the most lenient ASP to the most strict BSP.

trimmed by using larger sample size. This observation con-
firms our theoretical analysis in Section 5, which explicitly
shows that a small sample size can effectively push the
probabilistic convergence guarantee to its optimum even
for a large system size, which further indicates the superior
scalability of the proposed solution.

Results. When composed with BSP, PSP can increase the sys-
tem progress of BSP by about 85%, while retaining the almost the
same tight bound on progress distribution. Besides, by tuning the
sample size, the evaluation result shows that a small size such as 2
or 4 in a system or 32 workers, can effectively provide a tight con-
vergence guarantee.

6.4 Robustness to Straggler

Stragglers are not uncommon to see in traditional distrib-
uted training, and are pervasive in the workers of Federated
Learning. In this section we show the impact of stragglers
on system performance and accuracy of model updates,
and how probabilistic synchronisation control by sampling
primitive can be used to mitigate such impacts.

As has explained before, we model the system stragglers
by increasing the training time of each slow trainer to
n-fold, namely on average they spend n times as much time
as normal nodes to finish one iteration. The parameter n
here is the “slowness” of the system. In the experiment
shown in Fig. 11, we keep the portion of slow nodes fixed,
and increase the slowness from 2 to 8. Then we measure
accuracy of using a certain barrier control method at the
end of training. To be more precise, we choose a period of
results before the ending and use their mean value and stan-
dard for each observation point.

Fig. 11 plots the decreasing model accuracy due to strag-
glers as a function of the straggler slowness. As we can see,
both ASP and BSP are sensitive to stragglers, both dropping
about 20% accuracy by increasing slowness from 2x to 8x,
while that of pBSP only drops by less than 10%. For BSP,
this is mainly because the stragglers severely reduces the
training update progress; for ASP, this can be explained as
the result of its asynchronous nature, where updates from
slow workers are delayed. This problem is exacerbated by
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Fig. 11. Stragglers impact both system performance and accuracy of
model updates. Probabilistic synchronisation control by sampling primi-
tive is able to mitigate such impacts.

the non-1ID data, where the data overlap between different
workers is limited, if not none at all. Once again, PSP takes
the best of both worlds. As we have shown before, its proba-
bilistic sampling mitigates the effect of data distribution, and
also less prone to the progress reduction caused by stragglers.

Results. PSP is less prone to the stragglers in the system.
When the slowness increases from 2x to 8x, both ASP and BSP
are sensitive to stragglers, both dropping about 20% accuracy,
while that of pBSP only decreases by less than 10%.

6.5 Sampling Settings

In section 6.3, we investigate how the choice of sampling size
affects the progress in PSP. One question is then: how to
choose the suitable sample size? As pointed out in section 5,
one important observation that can be derived from our the-
ory proof is that, a small number of sampling can achieve
similar performance as that using large sample numbers.

To demonstrate this point in evaluation, we choose dif-
ferent numbers of sampling size, from 2 to 8, in a 16-worker
training, and compare them to SSP. The training lasts for a
fixed time for all the used methods. In Fig. 12, we can see
that, even though the number of samples changes, the performance
of pSSP is still close to that of SSP. In this scenario, choosing a
smaller number of sampling leads to better performance
than the others, due to its fast progress of updates. How-
ever, it is not a rule of thumb to always use a small sample
size. Choosing suitable parameters in a wide tuning space
enabled by PSP is non-trivial tasks, and we are working to
illustrate this challenging problem in our future work.

Another thing to investigate is the choice of sampling
strategy in PSP. In Section 3, we discuss three different
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sampling strategies. First is the basic strategy that chooses a
certain number of workers as a subset and uses them to esti-
mate training progress of all the workers. The second one,
the dynamic sampling strategy, re-choose this subset dynami-
cally instead of keeping it fixed. The third is a grouping
strategy that pre-cluster workers into two groups according
to their execution speed, and then choosesT samples equally
from both groups.

To compare these strategies, we use 24 workers, and set 6
of them to be stragglers (1x slower in computing back-prop-
agation). We use pBSP, and increase its sampling size from
2 to 8. Both training use the same number or epochs. The
results are shown in Fig. 13. Each box shows the distribution
of model accuracy numbers near the end of each training;
the last 10 results are used in this experiment.

The result shows that, compared to the basic strategy, the
dynamic one can effectively increase the efficiency of PSP.
The increase ranges from about 25% to 2 fold for different
sampling sizes. The low accuracy of the basic strategy
shows that it tends to result in a more asynchronous train-
ing, which is more similar to ASP than BSP. The grouping
strategy achieves similar results as the dynamic one, but
shows smaller deviation of box, which means a smoother
curve in training (result figure omitted due to space limit).
Besides, in dynamic strategy, the sampling size does not vis-
ibly affect the model accuracy, which means that the smaller
sample size can be used to increase system progress without
sacrificing model accuracy. Also note that in both cases,
larger sampling size leads to smaller deviation. This also
agrees with the design and analysis of PSP shown in previ-
ous sections.

Results. First, by varying the setting of sampling of size from 2
to 8 in pSSP by using a worker size of 16, it can be seen that a
small sampling size can still achieve that of a large one, regarding
model accuracy. Second, the proposed dynamic and grouping sam-
pling strategy can both effectively improve the performance. Com-
pared to the basic strategy, both can effectively increase the
efficiency of PSP. The increase ranges from about 25% to 2 fold
for different sampling sizes.

6.6 Progress Inconsistency

In the previous section we have evaluated the impact of bar-
rier control methods on the accuracy of three different mod-
els. However, the training accuracy is affected not only by
the barrier method, which controls training inconsistency,
but also hyper-parameters such as learning rate. The toler-
ance of error in training for different applications also varies
greatly. To better understand the impact of barriers on
model consistency during training without considering the
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PSP with regard to sample size (100 nodes in total).

influence of these factors, we use progress inconsistency as a
metric to compare barriers.

In distributed training, for a worker, between the time it
pulls a model from a server and updates its own local
model, the server likely has already received several
updates from other workers. These updates are the source
of training inconsistency. We define progress inconsistency as
the number of these updates between a worker’s corre-
sponding read and update operations. In this experiment,
we collect the progress inconsistency value of each node at
its every step during training.

We investigate the relationship between the number of
nodes and inconsistency of pBSP. All executions run for 100
seconds, and we increase workers from 50 to 500. We mea-
sure the average and variance of progress inconsistency,
both normalised with number of workers, as shown in
Fig. 14. The average inconsistency of ASP is mostly unaf-
fected by size. With smaller sample size, that of pBSP
becomes close to ASP, but note that only the initial increase
of network size has a considerable impact. With sample size
fixed and network size growing, the average inconsistency
grows sub-linearly, which is an ideal property. As to the
standard deviation values of pBSP, they mostly keep stable
regardless of network size.

Results. According to these observations, we can see that for
PSP, both the average training inconsistency (denoted by mean)
and the noise (denoted by variance) grow sub-linearly towards a
certain limit for different sample size, limited by that of ASP and
BSP/SSP.

7 CONCLUSION

In this paper, we propose a novel barrier control method
called Probabilistic Synchronous Parallel. PSP is suitable for
data analytic applications deployed in large and unreliable
distributed systems such as Federated Learning. The pro-
posed PSP strikes a good trade-off between the efficiency
and accuracy of iterative learning algorithms by probabilis-
tically controlling how data is sampled from distributed
workers. We implement the proposed PSP on the state-of-
the-practice distributed learning systems, with a core sys-
tem primitive of “sampling”. We show that the sampling
primitive can be combined with existing barrier control
methods to derive fully distributed solutions. We evaluate
the solution both analytically and experimentally in a realis-
tic setting and our results show that PSP outperforms exist-
ing barrier control solutions in various settings.
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The effectiveness of PSP in different application scenar-
ios depends on the suitable parameter, i.e., the sample size.
Similar to the performance tuning in numerical computa-
tion, we suggest resorting to prior knowledge and empirical
measurement for its parameter tuning and regard this as
the challenge for the future exploration.
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