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Abstract

Teams using modern day software engineering practices often incorporate code
reviews as a quality assurance step in their development. These code reviews are
intended to uncover software quality defects before code changes are incorporated
into the project.

Certain classes of these software quality defects can be detected by so-called
static analysis tools. These tools have seen increasing uptake and are found to be
effective at finding relevant quality defects in these classes.

Several tools to integrate the static analysis results into code review have been
created, such as SCRUB and Review Bot. However, these tools were created specif-
ically for internally used platforms and their source is not made available. In this
thesis, we propose and implement a tool called Octopull, which is an open-source
implementation that incorporates static analysis results in the user-interface of the
GitHub platform.

We evaluate the tool by performing a user-study on undergraduate students.
Our study shows no significant effect of using the tool on the effectiveness of their
code review sessions.
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Chapter 1

Introduction

Over the last decades, software has come to play an increasingly large role in our lives.
Many of our daily activities are supported by software systems and a lot of industries
are becoming more dependent on them. As the impact of these software systems grows,
so does the impact of possible defects within them, and with that, the cost.

An important factor in reducing the cost of software defects is to detect them early
and prevent them from being released. Testing has widely been adopted in the industry
for this purpose [19]. Besides the detection of defects, testing can have additional ben-
efits, such as better understanding of the product and demonstrating that the product
meets the users’ expectations [37].

In interviews by Bacchelli and Bird [13], the most stated reason for performing code
reviews is finding defects. However, in their survey of review comments, they found that
comments related to defects are few and often address small or superficial problems.
Instead, the largest group of comments is code improvement, in which issues such as
formatting, naming and small inefficiencies are addressed.

Bacchelli and Bird note that tools already exist to detect many of these issues auto-
matically, so that reviewers can focus on defects that are harder to detect. The purpose
of this thesis is to investigate whether it is in fact useful to further integrate these tools
with code reviews.

In the rest of this chapter we formulate the main question of this thesis and split it
into smaller research questions. Finally, an outline of the following chapters is given.

1.1 Research Questions
We formulate the main question of this thesis as follows:

“Does integrating Static Analysis with Code Review increase the
effectiveness of the Code Review process?”

To answer this broad question objectively, we need to define what we mean by the
effectiveness of the code review process. To define this term, we need to define what
outcome we desire from code reviews.
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1. Introduction

Bacchelli and Bird [13] identified several motivations for developers to perform code
reviews, such as: ‘finding defects’, ‘code improvement’, ‘finding alternative solutions’
and ‘knowledge transfer’. In this thesis report, we limit ourselves to ‘finding defects’
and ‘code improvement’. These were identified as the two most common motivations for
code review and overlap with the functionality that most static analysis tools provide.
For instance, FindBugs and PMD are static analysis tools that detect patterns that are
commonly buggy, and CheckStyle is a static analysis tool that indicates code quality
issues such as method lengths and naming concerns.

Given these desired outcomes, we define the effectiveness of the code review process
as the amount of defects and code improvement opportunities found and addressed in
a code review session, where more addressed findings indicate a higher effectiveness of
the review. We split our main question into smaller research questions to be answered
seperately.

Research Question 1. Are developers willing to use a tool that integrates warnings
into their code reviews? If they do, how do they use and experience the tool?

Research Question 2. What is the effect of displaying warnings on the amount of
resolved warnings during code review?

Research Question 3. What is the effect of displaying warnings on the discussion of
code improvements and other concerns during code review?

Research Question 4. What is the effect of displaying warnings on the developers’
perceived priorities during code review?

1.2 Outline
The rest of this thesis is outlined as follows. Chapter 2 goes deeper into the background
of the problem and summarizes related work. In Chapter 3, the setup of the study and
the experiments is explained. Chapter 4 elaborates on the design and implementation
of a tool, Octopull, that is used for the experiments. Chapter 5 presents and discusses
the results of these experiments. Finally, Chapter 6 summarizes the conclusions to be
drawn from the results, and discusses possibilities for further research.
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Chapter 2

Background and Related Work

In this day and age, software is all around us. Software systems control the appliances
in our homes, the traffic lights, our work computer and machinery. With the growing
impact of software on our lives, the impact of software failures grows as well. Most people
have at some point witnessed software failures. Such failures can cause annoyance, for
example when an application on your smartphone is failing to respond. They can also
cause a major disruption, such as when a software failure causes a power outage. The
consequences of such failures can also be fatal. For example, the Therac-25 machine,
designed for radiation therapy, administered a severe overdose of radiation to six patients
because of a software failure [44].

Clearly, the impact of these software failures differ, yet most (if not all) of them
have some negative and undesirable effect. It makes sense that some investment is made
into preventing them. The first point of preventing software defects, is to prevent the
mistakes from ever being made. By educating developers on good coding practices, and
from experience with previous defects, developers will learn to avoid common mistakes.

Because people are fallible and make mistakes, even when experienced, the practice of
pair programming has been proposed. This practice, where two developers synchronously
collaborate on the same piece of code, has been found to reduce the number of defects
introduced [23]. This can be seen as the second point of prevention, where software
defects are found and removed while the code is being written.

The third point of prevention is when a piece of code has been written. At this point,
the code can be tested for defects. Here, testing is defined very broadly, as a procedure
that verifies that a piece of code meets certain requirements. Note that, even though
testing applies to a piece of code after it has been written, this does not necessarily
imply that the code has to be considered done. For example, the practice of Test-Driven
Development (TDD) [16] suggests that a test should be created first. After creating the
test, code should be written in small steps and repeatedly subjected to the test, until
the test passes.

In this chapter, we further explore the topic of testing. Thereafter, we discuss the
pull-based development model. We discuss the Travis CI service for GitHub and finally,
we consider several integrations between static analysis tools and code review.
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2. Background and Related Work

Dynamic Static

Manual User-based testing Code Inspection
Code Review

Automatic Unit testing
Automated acceptance testing Static analysis tools

Table 2.1: A taxonomy of testing techniques, divided by dynamic vs. static and
manual vs. automatic

The typical types of testing in each quadrant are shown.

2.1 Testing

Testing can be subdivided into static and dynamic testing. Dynamic testing refers to
testing where the code is executed with certain inputs, and the output is verified against
the output that the requirements of the test dictate. Static testing, on the other hand,
refers to verifying requirements by analysing the code itself, without executing it [37].
Testing can also be subdivided into manual and automatic testing. Manual testing refers
to a procedure performed by a person, to assess whether code meets the requirements,
whereas automatic testing refers to a procedure performed by a tool. Combining these
two dimensions yields the taxonomy as seen in Table 2.1. Each type of testing will be
discussed in the following sections.

2.1.1 User-based testing

User-based testing refers to testing with individuals that represent the end-user popu-
lation [58]. It is a form of dynamic testing, as the software is being executed, and it
is a manual process, as the interactions with the software are performed by the users.
User-based testing can be subdivided in exploratory testing, comparison testing and
validation testing [58].

The purpose of exploratory testing is to characterise how users interact with a system
and/or how they would like to [58]. This allows the design of the software to be adjusted
towards the end-users needs.

Comparison testing is similar to exploratory testing, but is used to identify the most
appropriate interaction pattern from a fixed set of alternatives [58].

Validation testing is used to validate the usability of the product and to determine
if the product is fit for its purpose. It is used to identify problems and defects in the
software while in use [58].

User-based testing is primarily aimed at detecting problems and defects with the
usability of the product [58]. While this is useful for detecting conceptual problems and
problems with the user interface, it is less likely to uncover lower level defects in the
code.
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2.1. Testing

2.1.2 Unit and Automated Acceptance testing
Unit testing refers to the automated testing of an individual unit of code [58]. It is
realised by writing an additional piece of code, the unit test, which provides the code
to be tested with input and verifies its output and/or state. Similarly, an automated
acceptance test [58] is an automated version of the acceptance script for a certain feature.
Instead of a single unit, an acceptance test targets all parts of the system that together
provide the specific feature being tested.

Both forms of testing are a type of automatic, dynamic testing, where the test results
can be obtained with little or no human intervention. They are dynamic because they
run (part of) the system under test. These types of tests are very suitable for repetitive
tasks, which humans generally perform slowly and in an error-prone fashion. Because
of the reliable and repeatable nature of this type of testing, it has become particularly
popular [58].

2.1.3 Code Inspection and Code Review
Code Inspection or Code Review are the practices in which humans evaluate the source
code or other artifacts of the software development process [58]. As such, it is a manual
and static testing technique, that relies on human judgement.

In 1976, Michael Fagan published a formalized inspection process for code [31]. Each
phase of the process is thoroughly documented. Arguably the most important phase of
the process is a group meeting, in which generally four people in different roles come
together to discuss and review the code. A decade later, Fagan published the lessons
learned from applying this practice over the years [32]. He argued that, through this
process, between 60 and 90 percent of all defects were found.

Since the introduction of Fagan’s inspection process, many alternatives have been
proposed, such as Two-Person Reviews [20], Verification-Based Inspection [29], Phased
Inspections [43], and N-fold Inspection [47]. What all these approaches have in common,
is the face-to-face review meeting.

In contrast to the other approaches, Parnas and Weiss [51] suggested an approach
called Active Design Review, which does not require meetings. Votta [57] found that
scheduling of the meeting alone cost 20% of the review interval. Prompted by these
findings, Johnson and Tjahjono [40] compared meeting-based reviews to non-meeting-
based reviews. They found meeting-based reviews to be more costly, but not more
effective than reviews without a meeting.

Surveying the current state of the practice in 2013, Bacchelli and Bird used the term
Modern Code Review [13] to refer to the lightweight approach that is currently being
adopted by many organisations and open source software projects. In contrast to Fagan’s
process and its derivatives, it is characterized by an informal and tool-based approach.

Bacchelli and Bird looked at the expectations and outcomes of code review at Mi-
crosoft. There, they use a collaborative code review tool called CodeFlow [13], which
is similar to Google’s Mondrian [42], Facebook’s Phabricator [33] and open-source Ger-
rit [4]. Using these tools, a developer can submit their changes for review. Potential
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2. Background and Related Work

reviewers are notified and can asynchronously inspect the code and comment on it.
Furthermore, in interviews with developers and managers, the motivation for code re-
view was investigated. The most important reason was found to be ‘finding defects’,
with ‘code improvement’ in second place. Changes to the code are considered code im-
provements if they do not involve correctness or defects of the code. Examples include
readability and layout changes, adding comments or removing dead code. A categoriza-
tion of review comments showed, however, that comments regarding code improvements
were most prevalent. Comments about defects were the fourth most common category
out of nine, accounting for only 14% of all comments. Furthermore, review comments
about defects were found to mostly address small or superficial concerns.

Tools exist to detect many of the ‘code improvement’ concerns, as well as many of
the smaller defects uncovered in these reviews. These static analysis tools are discussed
in the next section.

2.1.4 Static Analysis Tools
Static analysis tools have a similar purpose to code review or inspection: to detect
problems and defects in software, without executing it. Given the popularity of dynamic
automated testing, it seems natural to automate this task as well.

While static analysis is not capable of showing that the code is functionally correct, it
can be used to detect common defects, or produce information useful in further manual
code review [58].

There are two main categories of analyses that static analysis tools can perform:
code analysis and program analysis. Code analysis refers to analysis of the code through
parsing and pattern matching, but does not take into account the execution logic of the
program. Because of this, this type of analysis is most suited to detect simple patterns,
enforce a certain code style and address readability issues. Examples include warnings
for lines that are too long or classes that do not have a descriptive comment. Program
analysis refers to the analysis of properties of a program, through the use of methods like
data flow analysis, control flow analysis and symbolic execution. This type of analysis
can be used to detect common causes of defects, such as unitialized variables or race
conditions.

In this thesis report, we will discuss three static analysis tools for Java, namely
CheckStyle [1], PMD [6] and FindBugs [25]. In Table 2.2, a categorisation of these
tools is given: the target column indicates whether the analysis is performed on the
source code, or the compiled byte code, the code analysis and program analysis columns
indicate the type of analysis that this tool provides.

Static analysis tools can aid in the early detection of defects and maintainability
issues [48]. PMD and FindBugs have been shown to provide useful feedback on possible
defects [11, 12], while CheckStyle is more suitable for checking coding conventions [55].

It seems natural to combine static analysis tools with code reviews. As Bacchelli and
Bird noted [13], many code review comments are concerned with code improvement and
small defects, which can be detected by these tools. They suggest that by automating
the detection of these problems, reviewers can focus on more in-depth issues.

6



2.2. Pull-Based Development

Tool Target Code Analysis Program Analysis

CheckStyle Source code yes no

PMD Source code yes yes

FindBugs Byte code yes yes

Table 2.2: A categorisation of the static analysis tools considered in this thesis.

2.2 Pull-Based Development
Since the advent of distributed version control systems (DVCS), such as Git [56], the
pull-based software development model emerged as a paradigm for distributed software
development [36]. The pull-based model is interesting in the context of this work, as it
incorporates code reviews in the development workflow.

Using the Pull-Based development model is a natural fit for open-source projects
[36]. A core team manages a repository of the source code, to which other developers
have read-only access. Developers can create their own copy of the repository, called a
fork, in which they can apply their changes. To contribute the changes to the original
repository, they can issue a Pull Request, so that the core team can make the accept-
or-reject decision.

The pull-based development model, as popularized by services like GitHub and Bit-
Bucket, is based around such Pull Requests (PRs). A developer can issue a Pull Request
against a specific branch in a repository, indicating a set of changes they would like to
see applied there. The changes can then be reviewed, and an accept or reject decision
made. If the decision is made to accept the changes, they are merged into the target
branch.

Pull Requests can also be used between branches of a single repository, in a model
that is known as the Shared Repository [36]. While this is not a technical necessity
(developers have the ability to apply their changes to the target branch directly), it can
be used as a mechanism to review the changes and foster discussion.

Gousios et al. [36] found that the pull-based development model increases the aware-
ness of the developers, allows for more community engagement and makes it possible to
incorporate new contributions faster.

In this work, we will limit our scope to Pull-Based development on GitHub. The
next section describes how GitHub’s user-interface supports this development model.

2.2.1 Pull-Based Development on GitHub
GitHub has strong support for Pull Requests. In fact, GitHub uses them heavily for their
own internal development1. They have built a user interface around Pull Requests to

1https://github.com/blog/1124-how-we-use-pull-requests-to-build-github
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2. Background and Related Work

Figure 2.1: The conversation view of a Pull Request on GitHub.

foster discussion: users can post comments on the ‘main’ discussion of the pull request,
as well as on specific changes in the code. Furthermore, all events that occur on a
Pull Request are shown in a timeline, giving a clear overview of the changes that are
happening, which raises developer awareness [36].

The ‘conversation view’ of an example Pull Request on GitHub is shown in Figure 2.1.
At the top of the page, the Pull Request title, number, base branch and head branch are
shown. The base branch points to the place where the changes will be merged, the head
branch points at the newest version with all changes. The conversation timeline shows
comment messages and other relevant events, such as commits, in chronological order.
At the bottom of the page, the current status of the Pull Request is shown, as reported
by tools external to GitHub.

The ‘files view’ of this same Pull Request is shown in Figure 2.2. In this view, each
changed file is shown in a so-called ‘diff view’. This view is related to the diff utility
[2], and shows the difference between the initial version and current version of the file.

8



2.3. Travis CI for GitHub

Figure 2.2: The files view of a Pull Request on GitHub.

2.3 Travis CI for GitHub

Travis CI is a Continuous Integration [35] service specifically created for GitHub. It
builds every change to the mainline (usually the master branch) and runs the automated
tests, to ensure that new changes integrate with cleanly. Additionally, it builds and tests
the merge commit for every pull request on GitHub, that is, the commit as if the pull
request were accepted. The status of this process can be seen on the website of Travis
CI, but is also reported on GitHub at the bottom of the ‘conversation view’ of a pull
request, as we saw in Figure 2.1. The service is available for free for public repositories
on GitHub.

2.4 Integrating Static Analysis and Code Review

Several studies into the integration of static analysis and code review have been per-
formed. In this section, we summarize their findings.

Source Code Review User Browser (SCRUB) [39] is a proprietary tool developed
at NASA’s Jet Propulsion Laboratory (JPL), that combines code review with static
analysis results to make the code review process more efficient. In the publication, the
author concludes that it is beneficial to have the output from multiple analyses in one
place. From more than two years of usage, he concluded that the availability of static
analysis results contributes significantly to the code review process. However, because
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2. Background and Related Work

the tool is not publicly available and little information is presented about the way the
tool is used, this result is hard to generalize.

During a company-wide event that they called ‘The Google FindBugs Fixit’ [11],
Google engineers took a large set of FindBugs generated warnings and assessed them.
Over 77% of the warnings generated by FindBugs were identified as real defects and were
flagged for fixing. They also observed that, depending on the integration of warnings
into the software development process, the usage of static analysis tools may be limited.
They concluded that the real value of static analysis tools is in finding problems early
and cheaply.

At VMware, Review Bot [14] was created. This tool is a standalone Java application
that uses static analysis tools to generate automatic reviews. The tool is triggered when
it is assigned as a reviewer in Review Board [21]. It then runs static analysis on the
latest dff revision and uploads an automatic review, as if it were a person. The Review
Bot can be assigned to a review at any time, to re-run the static analysis. A study of the
comments generated by Review Bot showed that a large percentage of comments were
accepted as valid.

Panichella et al. [50] investigated how warnings detected by static analysis were
considered, and to what extent they were removed, during code review. To do this, they
mined data from six Java open source projects that use Gerrit [4]. They considered
warnings generated by CheckStyle [1] and PMD [6]. Their results indicated that overall,
between 6% and 22% of the warnings were removed. However, they also noted that this
percentage was significantly higher for certain categories of warnings.

Missing from this related work is the possibility to reproduce the experiment: both
SCRUB and Review Bot are proprietary pieces of software that are not available outside
of their companies. Furthermore, they do not provide GitHub integration opportunities
to their developers. This leaves a large space for an open-source tool which provides a
developer with easy GitHub integration; in this thesis, we close this gap by developing
an easy-to-use Chrome plugin that fulfills this criteria.
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Chapter 3

Approach

The aim of this work is to investigate how static analysis tools can be integrated in code
reviews, and how this affects the reviews and the reviewers. In this section, the approach
used to answer the research questions is explained. First, we design an experiment and
discuss the tested hypotheses and the measured variables. Then, we elaborate on the
methods and tools used to collect the data. Finally, the approach to analyzing this data
is explained.

3.1 Design of the Experiment
We performed an experiment in which developers used a tool that integrates static anal-
ysis results into their code review sessions. The experiment is performed with under-
graduate Computer Science students taking the Software Engineering Methods course.
Ideally, we would randomly assign students to the treatment and control group respec-
tively. This way, we would obtain two groups that are probabilistically similar to one
another before the start of the experiment. However, because the students were graded
on their performance during the course project, we felt it would be unfair to have dif-
ferent requirements for each group. Therefore, the students were allowed to self-select
the treatment, to minimize the impact of the experiment on the students’ performance
on the course and the accompanying project. Because the experiment lacks random
assignment, it is classified as a quasi-experiment [54]. What this means for the validity
of the experiment is explained in more detail in Section 3.1.2.

O1 X O2

O1 O2︸ ︷︷ ︸
O3,4

Figure 3.1: The design of the experiment in the notation of Shadish et al. [54]

The design of the experiment is illustrated in Figure 3.1. Each row represents a group
of students and the dashed line indicates that students are divided into these groups in
a non-random way, in this case through self-selection.
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The horizontal dimension represents temporal order from left to right. Every student
completed the pretest questionnaire, indicated by O1. After the pretest questionnaire,
all students were given the choice to use a tool that provides additional information
during code review. After the treatment period, all students completed the posttest
questionnaire, indicated by O2.

During the treatment period, students were asked to report their attendance to
lectures and their access to course materials, indicated by O3. Finally, comments and
commits made in Pull Request sessions on GitHub were collected during the treatment
period, indicated by O4. Students were required to add tags to their comments and
commits, categorizing the content of their contributions.

The next section discusses in more detail the organisation of the course in which
the experiment is performed. After that, there is a section discussing the validity of
the experiment, presenting a list of threats to be considered. Following this, there are
sections describing each of the pretest, treatment, posttest, attendance tracking and tag
collection (O1, X , O2, O3 and O4 respectively).

3.1.1 Organisation of the Course
To properly understand the setup of the experiment and the factors contributing or
detracting from the validity of its results, it is necessary to understand the context in
which the experiment takes place. This section gives an overview of the organisation of
the course in which the experiment took place.

The experiment was conducted during the Software Engineering methods course at
Delft University of Technology. This course is taught by Dr. Alberto Bacchelli, the
supervisor of this thesis, and is part of the second year of the BSc Computer Science
curriculum. During this course, students are taught about “the most important software
engineering practices needed to build high quality software” [7]. One of these practices
is Code Review.

To really learn these practices and to evaluate whether the students have a firm grasp
on their application, the students are required to participate in a project. During this
project, the students implement a clone of a well-known game in self-selected groups of
4 or 5. Each group can choose to implement one of the following six games.

Space Invaders a 2d arcade game where the player controls a laser cannon and at-
tempts to hold off incoming aliens.

Temple Run a game in which the player controls an explorer who is being chased. The
player must collect items and avoid obstacles by jumping, sliding or changing directions.

Bejeweled a tile-matching game in which the player must swap two gems to form
groups of three or more adjacent gems of the same type. These gems dissappear and
gems fall to take their place. The player can get bonus points by creating bigger groups
of gems or causing cascades.
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Fishy a game in which the player controls a fish, which can grow bigger by eating
smaller fish, but must avoid being eaten by bigger fish.

Bubble Trouble a game in which the player must avoid being hit by bouncing bub-
bles. The player has to shoot arrows in a vertical line to split the bubbles into halves.
Small bubbles dissappear instead of splitting, allowing the player to clear the level.

Bubble Bobble an arcade game in wich the player must shoot bubbles to trap ene-
mies, while jumping along several platforms.

The groups are required to implement their project iteratively. This means that
the groups plan the deliverables for each week, and are required to end each iteration
with a working product. They are also required to reflect on each iteration and use this
reflection as input for their next planning. Following along with the course material
and the lectures, each week has a slightly different focus. Weekly grading ‘rubrics’ are
published in advance, so that the students know what is required of them during the
iteration. These rubrics can be found in Appendix A.

All source code is required to be versioned on GitHub, in public repositories. Further-
more, development must follow the pull-based development model that was described
in Section 2.2. Contributions may only be added to the trunk of the project through
GitHub’s pull request feature and pull requests may only be merged after they have been
reviewed by at least two other team members.

Students are required to develop their games in Java. Every project is required to use
Maven [49] as the build tool and its plugins for CheckStyle [1], FindBugs [25] and PMD
[6] for static analysis. Finally, each project should be set up for continuous integration
using Travis CI.

Besides the project, students are tested on their knowledge of the course material
through both a midterm and a final written exam.

3.1.2 Validity of the Experiment
In presenting the design of the experiment, it is important to consider what factors may
influence the validity of the measured outcome. By being aware of these threats, an
attempt can be made to mitigate or minimize them. More importantly, the threats
present can be taken into account when drawing conclusions from the experiment’s out-
come. Shadish et al. [54] divide the threats to validity into internal and external. The
internal validity determines whether the conclusion can be accurately drawn from the ex-
periment; the external validity determines to what extent the conclusion is generalizable.
They then identify the following 12 threats to validity.

Threats to internal validity

1. History: events other than the treatment occuring between measurements.
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2. Maturation: processes within the subjects that occur over time.

3. Testing: the effect of taking a test on the results of following tests.

4. Instrumentation: the influence of (changes in) the measurement tool or method on
the measurements.

5. Statistical regression: when groups are selected based on extreme pretest scores.

6. Selection bias: when the selection of subjects into groups influences the results.

7. Experimental mortality: when the number of dropouts across groups is different.

8. Selection-history interaction, etc: when the selection into groups creates a differ-
ential in the previous factors.

The effects of history, maturation, testing, instrumentation, regression and selection
can be mitigated by comparing multiple groups that are affected equally by these factors.
Similarly, the threat of mortality is minimized when the probability of dropping out is
equal between all groups.

The threats of selection-history interaction, selection-maturation interaction, selection-
testing interaction, selection-instrumentation interaction, selection-regression interac-
tion and selection-mortality interaction captures the cases where the selection process
causes the other factors to not affect all groups equally. In this case, comparison be-
tween groups does not cancel out the factors and the effects of these factors can become
indistinguishable from the effect of the treatment.

Threats to external validity

9. Reactive or interaction effect of testing: the pretest changes the effect of the treat-
ment on the subjects.

10. Interaction effect of selection bias: selection may cause the treatment group to be
unrepresentative of the general population.

11. Reactive effects of experimental arrangements: being aware that they are partici-
pating in an experiment changes the effect of the treatment on the subjects.

12. Multiple-treatment interference: a subject receiving multiple treatments may not
be representative of someone receiving a single treatment because of carry-over.

The threat of the reactive or interaction effect of testing can not be mitigated com-
pletely. However, we try to minimize this effect by randomizing the order of questions
and answers on each survey, and phrase questions so that they are not suggestive of a
specific answer. We addressed the reactive effects of experimental arrangements by being
careful not to frame the tool as an experiment, but rather as something useful for the
students during the project. However, the association can not be completely avoided.
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The interaction effect of selection bias can not be mitigated in this case, because the
students were allowed to choose whether or not to use the tool. Instead, we will attempt
to measure the differences between the treatment and control group, to get an indication
of the extent of this effect. Finally, the effect of multiple-treatment interference has to
be considered. In the case of this experiment, students only receive a single treatment
in all cases. However, we could consider the course material of this and other courses as
additional treatments that the students receive, while the general developer population
may not have received this or similar treatment. We therefore do not consider general-
izing our findings to the whole developer population, but may consider the population
of developers who have received similar treatments, i.e. developers who are educated on
software engineering principles.

3.1.3 The Pretest (O1)
The pretest is performed in the form of a questionnaire that all students are required
to complete. The pretest is designed for two main reasons: to discover rival hypotheses
and to measure the change in students’ perceptions over the treatment period.

Because the students self-select the treatment, there is an inherent self-selection bias
between the treatment and control group. The pretest contains questions about age,
previous attempts at the course, experience with software engineering in general and
with specific aspects related to the project. The full list of questions can be found in
Appendix B. These factors will help compare the treatment and control group, although
it is likely that other factors are present that influence the self-selection.

3.1.4 The Treatment (X)
After taking the pretest, all students were given a short explanation of Octopull. This
tool, created especially for this experiment, was designed to measure the effect of hav-
ing static analysis results available during code review. A technical discussion of the
implementation of this tool can be found in Chapter 4.

Figure 3.2: An example of the Octopull tool warnings: an orange dot marker indicates
warnings for that line, clicking on it will open a full list.

The main function of Octopull is to display the warnings generated from static anal-
ysis in the diff view within a pull request on GitHub. For each line in the diff view that
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has warnings, an orange dot is placed next to the line number. An example can be seen
in Figure 3.2. Note that the left column indicates the ‘base’ of the diff, while the right
column indicates the ‘head’. Therefore, warnings in the right column are relevant for the
current version of the code, while the left column gives insight in the state before the
pull request.

Clicking on the orange indicator provides the user with a list of warnings for that
line. Additionally, every warning can be used to generate a review comment with a
single click on the button on the right hand side. This generates a review comment on
GitHub, visible also to users without the tool. This comment can then be the basis of
further discussion about the warning.

3.1.5 The Posttest (O2)
The posttest, like the pretest, is a questionnaire that all students are required to com-
plete. The posttest has similar questions to the pretest, to determine how students’
perceptions have changed over the course of the project. Related to Research Ques-
tion 1, there are questions to determine the reason students did or did not select the
treatment for their project. For members of the treatment group, questions about the
user experience and general feedback about the tool are also asked as well. All questions
of the posttest can be found in Appendix C.

3.1.6 Attendance and Course Materials (O3)
Because the selection into groups is not randomized in this experiment, there is a po-
tential threat of selection-history interaction. One source of events that can be expected
to impact the students’ behaviour during code review is the course itself. All students
are taking the same course at the same time, so that the course can be expected to in-
fluence them equally. However, attendance of the lectures is optional, which may cause
individual differences in exposure.

To determine the exposure of the students to the course material, students are asked
weekly to indicate whether they attended each lecture, reviewed a video recording of the
lecture and/or accessed the course materials available online. With this information, it
can be determined whether the treatment and control groups differ significantly in their
exposure to the course material. Collection of this data is done through a weekly survey
on Google Forms and the students are given access to this survey through BlackBoard,
a web application that allows teachers to share course information and announcements
with the students.

3.1.7 Comment and Commit Tags (O4)
To characterize the behaviour of the subjects during code review, all students were
required to categorize their comments and commits. Students were able to choose from
a list of tags to be added to each comment or commit, that best describe the type
of content of that contribution. The list of tags with their description is included in
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tag description
bug the comment or commit is related to a bug or defect
feature the comment or commit is related to a new feature
documentation the comment or commit is related to documentation in the code,

most likely a code comment (such as javadoc)
layout he comment or commit is related to code layout (such as whitespace)
naming the comment or commit is related to naming of classes, variables,

etc.
logic the comment or commit is related to logical conditions in the code
performance the comment or commit is related to performance of the code (such

as execution speed or memory usage)
organisation the comment or commit is related to organisation of the code (such

as package structure and class responsibilities)
interface the comment or commit is related to interfaces between parts of the

code (such as what methods to call)
user-interface in contrast to the previous tag, this comment or commit is related

to an interface presented to a user (such as a GUI or CLI)
configuration the comment or commit is related to the configuration of external

tools
testing the comment or commit is related to testing activities
review this tag only applies to comments and should be used for ‘meta-

comments’ about the review process (please use sparingly)
planning this tag only applies to comments and should be used for comments

related to planning (scheduling, prioritising, etc.)

Table 3.1: The list of tags with their description as provided to the students.

Table 3.1. We created this list based on the categorization of [46], and added some tags
that were requested by students, such as ‘user-interface’ and ‘planning’. We also added
a tag to capture discussion about the review process itself.

Students were required to provide a list of tags at the end of each commit message
or comment, seperated by comma’s or whitespace and starting with the ‘<’ sign on a
seperate line. This way, these tags can easily be extracted from the text.

By looking at the relative frequency of these tags, it can be determined what type
of issues are most commonly addressed during code review. These frequencies can also
be compared between groups, as well as over time.
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3.2 Hypotheses Formulation
In Section 1.1 we identified the following research questions for this thesis.

Research Question 1. Are developers willing to use a tool that integrates warnings
into their code reviews? If they do, how do they use and experience the tool?

Research Question 2. What is the effect of displaying warnings on the amount of
resolved warnings during code review?

Research Question 3. What is the effect of displaying warnings on the discussion of
code improvements and other concerns during code review?

Research Question 4. What is the effect of displaying warnings on the developers’
perceived priorities during code review?

Research Question 1 is an open question for which no a priori hypothesis is for-
mulated. For the other research questions, we formulate the following hypotheses and
determine the corresponding variables to be measured to evaluate them.

Hypothesis 1

• Null hypothesis (H10): There is no significant difference in the amount of re-
solved warnings per pull request between Octopull users and non-Octopull users.

• Alternative hypothesis (H1A): The amount of resolved warnings is significantly
different for Octopull users.

Hypothesis 2

• Null hypothesis (H20): There is no significant difference in the distribution of
tags between Pull Requests using Octopull and Pull Requests not using Octopull.

• Alternative hypothesis (H2A): There is a significant difference in the distri-
bution of tags between Pull Requests using Octopull and Pull Requests not using
Octopull.

Hypothesis 3

• Null hypothesis (H30): There is no significant difference in the change of code
review priorities from pretest to posttest between Octopull users and non-Octopull
users.

• Alternative hypothesis (H3A): There is a significant difference in the change
of code review priorities from pretest to posttest between Octopull users and non-
Octopull users.

Furthermore, to get an indication of the extent of self-selection bias, the following
hypothesis is formulated.
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Hypothesis X

• Null hypothesis (Hx0): There is no significant difference in the indicated expe-
rience on the pretest between Octopull users and non-Octopull users.

• Alternative hypothesis (HxA): There is a significant difference in the indicated
experience between Octopull users and non-Octopull users.

3.3 Measured Variables

Hypothesis Measured variable

H1 Difference of amount of warnings

H2 Fraction of comments per tag

H3 Difference of priorities from pre- to posttest

Hx Reported experience and proficiency

Table 3.2: The corresponding variables for each hypothesis.

Table 3.2 lists the measured variable for each hypothesis. For each of the hypotheses,
we will measure the corresponding variable in the treatment and control group. These
measurements yield two datasets

x1,x2, . . . ,xn and y1,y2, . . . ,ym

for the treatment and control group respectively, which are the realization of independent
random samples

X1,X2, . . . ,Xn and Y1,Y2, . . . ,Ym

from two distributions. Each hypothesis can then be reformulated in terms of these
random distributions. In the following sections, each variable is discussed in turn.

3.3.1 Difference of amount of warnings
The relevant variable for Hypothesis 1 is the difference of warning density per pull request.
This variable is measured for each merged pull request as follows.

Let wc be the number of lines and number of warnings visible in the diff of the
pull request for commit c, where c ∈ {base,head}. Then, the measured variable ∆ =
wbase−whead . Additionally, we consider the fractional difference r = wbase/whead .

If these values of ∆ or r are seperated for projects that have Octopull enabled ver-
sus projects that do not, two datasets are obtained: x1,x2, . . . ,xn and y1,y2, . . . ,ym, for
the control- and treatment group respectively, which are the realization of independent
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random samples from two distributions, with unknown mean and variance. Hypothesis
1 can then be formulated in terms of the means of these distributions.

H10 : µt = µc and H1A : µt ̸= µc

where µt is the mean of the distribution for the treatment group and µc is the mean of
the distribution for the control group.

3.3.2 Fraction of comments per tag
The relevant variable for Hypothesis 2 is the fraction of comments for each tag. The
variable is measured for each tag per pull request as follows.

For each pull request, let N = ∑
l∈T

cl be the total amount of tags, where T is the set

of all allowed tags, and cl is the amount of tags for tag l. Then, the measured variable
is pl =

cl

N
for each l ∈ T .

If these values of pl are seperated for pull requests of the treatment group versus
those of the control group, two datasets are obtained for each tag l: xl,1,xl,2, . . . ,xl,n
and yl,1,yl,2, . . . ,yl,m, for the control- and treatment group respectively, which are the
realization of independent random samples from two distributions, with unknown mean
and variance. Hypothesis 2 can then be formulated in terms of the means of these
distributions.

H20 : µl,t = µl,c and H2A : µl,t ̸= µl,c for l ∈ T

where µl,t is the mean of the distribution for tag l in the treatment group and µl,c is the
mean of the distribution for tag l in the control group, and T is the list of tags.

3.3.3 Difference of code-review priorities
The relevant variable for Hypothesis 3 is the difference of perceived code-review priorities.
That is, the difference between the ranking of priorities in code review from pre- to
posttest.

Let at,1,at,2, . . . ,at,n be vectors of the ranks each option was assigned in the pretest
by the students of the treatment group and let ac,1,ac,2, . . . ,ac,m be the ranks assigned
by the control group. Similarly, let bt,1, . . . ,bt,n and bc,1, . . . ,bc,m be the score of the same
item on the posttest. Then, the measured variables are xi = ρi where ρi is the Spearman
correlation [28] between ai and bi. These values are the realization of independent
random samples from two distributions, with unknown mean and variance. Hypothesis
3 can then be formulated in terms of the means of these distributions.

H30 : µt = µc and H3A : µt ̸= µc

where µt is the mean of the distribution for the treatment group and µc is the mean of
the distribution for the control group.
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3.3.4 Reported experience and proficiency
The relevant variable for Hypothesis X is the reported experience and proficiency of the
students from the pre-test. For each of the subjects, students rated their experience on a
5-point Likert scale [45]. For each question, we count the number of students that chose
each answer. If split by treatment and control group, this yields a contingency table as
seen in Table 3.3. The hypothesis can then be formulated as follows.

Hx0 : ∀r ∈ {1,2,3,4,5} P(rating= r | in treatment group)=P(rating= r | in control group)

HxA : ∃r ∈ {1,2,3,4,5} P(rating= r | in treatment group) ̸=P(rating= r | in control group)

1 2 3 4 5 total

treatment x1 x2 x3 x4 x5 n

control y1 y2 y3 y4 y5 m

total x1+ y1 x2+ y2 x3+ y3 x4+ y4 x5+ y5 n+m

Table 3.3: An abstract contingency table of both groups versus the occurences of each
rating.

3.4 Data Collection
The collected data comes from several sources. In the next subsections we discuss the
multiple surveys, the collection of tagged comments and warnings respectively.

3.4.1 Surveys
The pretest survey was created using SurveyGizmo [8]. This web-application allows
all results to be downloaded in comma seperated values format, which is suitable for
analysis in several tools such as Microsoft Excel and the statistical software R. The
posttest survey was created in Google Forms, which allows downloading all entries in
that format as well. Attendance data was also collected based on a weekly survey. The
students received a link to a Google Forms page each week, where they could indicate
their attendance for that weeks lectures.

3.4.2 Tag Collection
To collect data regarding comment and commit tags, a custom tool was implemented.
The details about the implementation can be found in Chapter 4. A list of the comment
and commit tags was given in Section 3.1.7. Students are required to provide a list of
these tags, preceded by a ‘<’ sign in each of their comments and commits. Because the
tags adhere to a standard format, they can be accurately extracted from comment and
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commit messages. To do so, the tool accesses GitHub to retrieve the comments and
commits for each pull request. The tags are then extracted and stored, grouped by pull
request.

3.4.3 Warning Collection
The warning collection consists of two parts: the Octopull tool that is implemented for
the treatment group, and the warning collector for other projects. The implementation
of each tool is explained in Chapter 4. For projects in the treatment group, warning
collection is quite straight-forward. Because Octopull requires access to a list of warnings
for each relevant commit, these warnings are available directly from the database of
Octopull. For the projects of the control group, the process is slightly more complex.
However, because all projects are required to use Maven, a standard solution is still
possible: a script is created to retrieve the relevant commits from GitHub for both
groups, and execute the Maven plugins for FindBugs, PMD and CheckStyle. Each
plugin outputs its results as an XML file, ready for analysis.

After the data has been collected, each of the hypotheses can be evaluated. The
appropriate statistical methods are applied using the statistical software R [27] as follows.

3.5 Data Analysis
To test if two groups of random samples come from the same distribution, for random
samples that are not randomly distributed, we apply the Mann-Whitney-Wilcoxon test
[38]:

# import the co in package
> l i b r a r y ( co in )
# perform the t e s t
> t e s t = wi l cox_test ( v a r i a b l e ~ group , data=s e t )
> pvalue ( t e s t )

We obtain its Cohen’s r effect size as follows

> r = s t a t i s t i c ( t e s t ) / sq r t ( l ength ( s e t $ v a r i a b l e ) )

When testing multiple hypotheses in order to draw a single conclusion (e.g. when
we reject our null hypothesis when any of the null hypotheses are rejected), we increase
the probability of committing a Type I error. In order to adjust this, we can apply the
Benjamini-Hochberg procedure to the p-values of all tests [18] as follows.

> p . ad jus t ( p_values , ’BH’ )

When testing the correlation between two nominal variables, we can employ the Chi-
square test [28]. We first create a contingency table of two variables, then test them [28]
as follows.
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> t b l = tab l e ( set$var1 , s e t$var2 )
> ch i sq . t e s t ( t b l )
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Chapter 4

Implementation

To perform the experiment from the previous chapter, a tool that integrates static anal-
ysis and code review was needed for the treatment group. Because no such tool cur-
rently exists for GitHub, and no open-source implementation was available that could be
adapted, we implemented this tool ourselves. Our open-source implementation, called
Octopull 1, provides a clear view of static analysis violations directly in GitHub’s pull
requests. The tool integrates seamlessly with the existing user-interface and requires
little configuration to work.

In this chapter, the implementation of this tool is explained. First, the overall ar-
chitecture of the solution is explained. Then, each component is described seperately,
going more into the details of their implementation and/or configuration.

4.1 Architecture
In Figure 4.1, an overview is given of the implemented architecture. This high-level
overview contains the main components and interactions of the solution.

Because the solution is meant to integrate into the code-review process on GitHub,
the interaction between the developers and GitHub was modeled first. Starting at the
bottom left of the diagram, developers frequently push their changes to GitHub ().
Code review is then started by creating a Pull Request (). The developers then interact
with this Pull Request through the GitHub user-interface by viewing the changes, placing
comments and pushing new changes, until the Pull Request is accepted or rejected.

To integrate the Static Analysis results into the code review session, we decided to
display static analysis warnings in the difference view of the Pull Request user-interface
(). Initially, static analysis results were displayed as review comments (), i.e. com-
ments on GitHub related to specific lines of the diff. However, we soon found that
this became cumbersome for larger amount of warnings. Because GitHub provides no
other way to annotate the diff, we implemented a plugin for the Chrome browser ()
to modify GitHub’s user-interface on the client-side ().

1https://github.com/rmhartog/octopull/
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Figure 4.1: A high-level overview of the implemented solution.

To avoid the complexity of creating infrastructure that fetches the changes for each
Pull Request and performs static analysis, we decided to leverage Travis CI, because it
is commonly used with GitHub, straight-forward to configure and free for open-source
projects. When new changes are pushed to the GitHub repository, a notification is sent
to Travis (). Travis then retrieves the changes and performs static analysis, using the
configured tools. It then notifies the Octopull server, which obtains the log output for
each job (), parses the static analysis results and stores this data () in a database
().

Whenever the user browses GitHub, the plugin communicates the current page to
the server (). If the page corresponds to a Pull Request, the server loads a list of
warnings from the database and sends them () to the plugin to be displayed. The
user can then review the annotated diff for warnings (). Finally, if a user wants to
further discuss a warning, he can choose to turn the warning into a review comment.
The plugin then sends a request () to the server, which creates the comment () on
the user’s behalf.

In the next sections, the implementation and/or configuration of each of the compo-
nents is described in more detail.
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4.2 Travis configuration
For the Octopull server to receive the static analysis results correctly, some configuration
of Travis is required. To enable Travis, the owner of the repository has to register with
Travis using his/her GitHub credentials. Then, the Travis website displays a list of the
user’s projects and allows them to be enabled or disabled. An example can be seen in
Figure 4.2. After the project has been enabled, a configuration file called .travis.yml
must be pushed to the repository. This file describes the configuration of the project in
YAML format [17]. An example of this configuration file can be found in Figure 4.3.
The explanation of each of the settings is explained below.

Figure 4.2: Travis CI switches for each of the user’s projects.
Note: this image was edited for space.

1 language: java
2 notifications:
3 webhooks:
4 - http://octopull.rmhartog.me/api/travis/webhook
5 before_install:
6 - '[ "$BUILD_PR_BRANCH" = "true" ] && { [ "$TRAVIS_PULL_REQUEST" != "false" ] || exit 1; } && git checkout HEAD^2←↩

&& echo "OCTOPULL_SHA=$(git rev-parse HEAD)"; true'
7 env:
8 - BUILD_PR_BRANCH=true
9 - BUILD_PR_BRANCH=false

10 matrix:
11 allow_failures:
12 - env: BUILD_PR_BRANCH=true
13 after_script:
14 - echo "== CHECKSTYLE_RESULT =="; cat "target/checkstyle -result.xml"; echo "== END_CHECKSTYLE_RESULT =="
15 - echo "== PMD_RESULT =="; cat "target/pmd.xml"; echo "== END_PMD_RESULT =="
16 - echo "== FINDBUGS_RESULT =="; cat "target/findbugsXml.xml"; echo "== END_FINDBUGS_RESULT =="

Figure 4.3: An example Travis configuration file for a project using Octopull.

Because Octopull currently only supports Java projects using Maven, the language
setting is set to java on line 1. Furthermore, to notify the Octopull server about each
build, the notifications section (line 2-4) contains an entry for a webhook pointed
to a special webhook endpoint of the Octopull server. The after_script entries (line
13-16) copy the contents of the Checkstyle, PMD and FindBugs reports to the log file,
delimited by tokens to facilitate detection of these contents.
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To understand the significance of lines 5-12, some knowledge about the working of
Travis is required. By default, Travis creates builds in two situations: when commits
are pushed to the repository or when a Pull Request is updated. In the case of a push,
Travis builds the commits that were pushed to the repository. In the case of a Pull
Request, Travis builds the merge commit between the Pull Request’s head and its base.

The underlying Git structure of a Pull Request is illustrated in Figure 4.4. The diff
that is displayed in a Pull Request is the difference between the head and the merge-
base (respectively labeled E and A in the figure). Therefore, to annotate this diff, static
analysis results for both of these revisions are needed. In the case of a single repository,
this is not a problem, as these commits are built by Travis when they are pushed to the
repository. However, when the Pull Request is made from a different repository, such
as when working with forks, commits D and E will not be pushed to the repository and
thus not built by Travis.

merge

head

merge-base

base

Figure 4.4: The underlying Git structure of a Pull Request.

To overcome this, we configure Travis to build the head commit in addition to the
merge commit for every Pull Request. This is acheived by leveraging Travis’ build ma-
trix. Every Travis build is made up of one or more jobs. Each of these jobs is run inde-
pendently and together they determine the build result. Line 7-9 of the configuration file
add a dimension to the build matrix: an environment variable named BUILD_PR_BRANCH
with the possible values true and false. This doubles the number of jobs in the matrix.
Line 5-6 then define the before_install step, which is the first step of every job. This
step is a chain of the following commands:
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[ "$BUILD_PR_BRANCH" = "true" ] test if the BUILD_PR_BRANCH variable is set to true.
&& { [ "$TRAVIS_PULL_REQUEST" != "false" ]←↩
|| exit 1; }

If it is, test if we are building a Pull Request and termi-
nate the step with a failure if we’re not.

&& git checkout HEAD^2 If we are, check out the second parent of the current
commit.

&& echo "OCTOPULL_SHA=$(git rev-parse HEAD)" If it is checked out, retrieve the SHA of the current HEAD
and echo it to the log.

; true End the script with a success code (unless exit was
called).

For a Pull Request build, the job continues after the step, but it will work on the head
commit instead of the merge commit if BUILD_PR_BRANCH equals true. Because Travis
is unaware that the job works on a different commit, the SHA is echoed into the log file
for later parsing. For a push build, the job terminates with a failure if BUILD_PR_BRANCH
equals true. Line 10-12 of the configuration indicate that this should be considered an
‘allowed failure’, so that the whole build is not marked as failed.

This configuration ensures the correct commits are built, that static analysis results
are stored in the log file and that the Octopull server is notified. The Octopull server
can then retrieve the log and parse the relevant information from it.

4.3 Octopull Server
The Octopull server was introduced to receive, process and store static analysis results,
and distribute them to clients when required. Additionally, its central role makes it
suitable for gathering usage data. In this section, the implementation of the Octopull
server is explained in more detail.

Octopull server is implemented as a stand-alone Java application. Its architecture is
inspired by the Hexagonal Architecture [22]. At the core of the application is a small
domain model [30] that represents the relevant entities. Operations on the domain model
are exposed as Use Case objects with a single execute method. External services, such as
GitHub and Travis, are represented as interfaces in the domain model, and implemented
in a separate package. Similarly, the underlying storage is represented in the domain
model with interfaces following the Repository pattern [30]. These interfaces are also
implemented in a separate package.

A high-level overview of the architecture is shown in Figure 4.5. The domain model is
central to the application, and has no outgoing dependencies. A small web application
is built on top of the Jersey framework [5] and runs inside an embedded Jetty [34]
webserver. This layer exposes the use cases over the HTTP protocol. A package provides
the ability to retrieve logs from Travis. Similarly a package provides the necessary
services to communicate with GitHub. This package is a wrapper around the egit-
github library [3]. Finally, the repository interfaces are implemented in a package using
the Java Persistence API (JPA) [41]. The Hibernate library [15] is included to provide
JPA functionality.
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Figure 4.5: A high-level overview of the architecture of the server project.

Figure 4.6: An overview of the interactions that occur when a Travis build completes.
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Figure 4.7: An overview of the interactions that occur when an Octopull users browses
GitHub.

In Figure 4.6 the interaction between the different components is shown when a
webhook from Travis is received.

1. A webhook notification from Travis is received.

2. It is routed to the TravisResource, which parses the request and sends it to the
TravisService.

2.1. The TravisService is retrieves the log file from Travis.

2.2. All warnings are parsed from the job log.

2.4. The warnings are added to the WarningRepository.

-. Hibernate adds the warnings to the database.

In Figure 4.7 the interaction between the different components is shown when the
user browses GitHub using the plugin.

1. The user opens a GitHub page.

3. The plugin is loaded.

4. The plugin contacts the Octopull server’s RepoResource to retrieve the relevant
information for the current page.

4.1. The Octopull server retrieves information about the current pull request from the
GitHub API.

4.2. Based on this information, the relevant warnings are retrieved from the WarningRepository.

4.3. The list of warnings is returned to the plugin.

5. The plugin injects additional markup into the page.

6. The user is presented with the warnings.
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Environment variable Description

POSTGRES_URL The url of the postgres database.

GITHUB_TOKEN A GitHub token used to authenticate with the Travis API.

GITHUB_CLIENT_ID The Client ID of the application registered with GitHub.

GITHUB_CLIENT_SECRET The Client secret of the application reigstered with GitHub.

Table 4.1: The environment variables used to configure the Octopull Server.

4.3.1 Configuration and deployment
The Octopull Server requires a postgres database to be deployed. Furthermore, it re-
quires a token for a GitHub user to authenticate with Travis, and the client identifier
and secret for the application registered with GitHub.

The Octopull Server project uses Maven as a build tool, which can be used to cre-
ate a packaged jar-file with dependencies. When this jar-file is run, it will provide the
web-service on port 8080. The configuration is read from the environment variables in
Table 4.1. During the experiment, the Octopull Server was hosted on the DigitalO-
cean cloud platform. An NGINX proxy was used to route all http traffic addressed to
https://octopull.rmhartog.me/api/ to port 8080 internally.

4.4 Octopull Plugin
During the initial development, the Octopull server annotated Pull Requests directly by
placing a review comment for each warning. However, this quickly became cumbersome
when large amounts of warnings were detected. To provide a more user-friendly view of
the warnings, a plugin was developed to extend the GitHub user-interface.

We chose to implement a plugin for Google Chrome, as it has the largest market-
share [9] and a good plugin mechanism. This mechanism allows so-called ‘extensions’
to inject additional markup and scripts into each page for which the URL matches a
certain pattern. The Octopull plugin is written in JavaScript and injected in every page
belonging to the github.com domain.

The plugin is divided into the following components:

• Agent: which encapsulates the requests to the Octopull server.

• Warning-Model: which encapsulates the warnings to be displayed.

• View: which encapsulates multiple visible child-views and listens for page updates.

• Message-View: which displays error messages from the server.

• Diff-View: which injects the warnings into the pull request diff.
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Figure 4.8: The Octopull plugin prompts the user to log in to the server.

• Overview-View: which displays an overview of the warnings and allows them to be
filtered.

Each component is written as a CommonJS module [26], which is a module system
for JavaScript that allows an application to be broken down into modules to improve
the maintainability, by providing encapsulation and separation of concerns. Because
browsers do not yet support loading such modules directly, Browserify [10] is used to
convert these seperate modules into a single script suitable for injection into the browsers’
pages.

Whenever the user opens a new page within the github.com domain, this script is
injected. Execution is then started from scratch. However, a lot of navigation on GitHub
only partially updates the page. To do this, they leverage ajax requests [52] and update
the current url using pushState [52]. In this case, the script is not reinjected, and the
View module must detect that a navigation event happened. To do so, the View module
listens for changes to specific DOM elements, which are used by GitHub to indicate that
the page is partially updating. After the update is complete, the script is reattached to
the updated page.

The script adds three main components to the GitHub user-interface. First of all,
a status indicator and error message window is added on top of the page, so that users
can be notified of events in the plugin. An example of this view is shown in Figure 4.8.
In this example, the user is prompted to confirm their identity with the Octopull Server.

Second, when the user is logged in and the user navigates to the ‘files view’ of a Pull
Request, the Octopull plugin displays a collapsible overview of the warnings for that
Pull Request, in the bottom right corner of the page. An example of this view is shown
in Figure 4.9. In this overview, the user can browse all the warnings and jump to a
particular instance on the page. They can also filter the warnings that are displayed to
narrow down the relevant issues quickly.

Finally, the Octopull plugin displays the warnings in each ‘diff view’ of the Pull
Request, as can be seen in Figure 4.10. The orange dot indicates one or more warnings
on that line. These markers are placed in either the left or right column of line numbers,
indicating that they belong to the base and head version of the code respectively. Clicking
on this marker will display a list of warnings with their description and the tool that
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Figure 4.9: The Octopull plugin provides a filterable overview of the warnings for this
Pull Request.

Figure 4.10: The Octopull plugin displays the warnings in the ‘diff view’.

generated them. If the warning is still present in the latest version of the code (i.e. the
head version), the popup also provides a button that adds an auto-generated comment
on the same line of the diff. Figure 4.11 shows an example of such a comment, which
is visible in both the ‘conversation view’ and the ‘files view’, even for users not using
Octopull.

4.5 Data retrieval
GitHub provides an API, through which data about repositories, pull requests, comments
and commits can be retrieved. Because all the projects are hosted in public repositories,
data about commits, pull requests and comments can be downloaded without additional
requirements. After retrieving a list of all pull requests, we retrieve a list of commits
for each pull request, and recursively retrieve the list of ‘commit statuses’ for each
commit. These commit statuses are then used to determine which commits were built
and validated by Travis CI. Because Octopull users can only see violations on commits
that are built by Travis, we select the first and last built commits for each pull request.
Because not all projects are properly configured for Octopull, we download all these
commits and modify their Travis configuration to output FindBugs, CheckStyle and
PMD violations. We push these commits to seperate branches on a new repository that
is enabled with Travis. This triggers Travis to build all these commits, as if all projects
had Octopull enabled. Finally, we retrieve the log output for each build, as well as the
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Figure 4.11: A comment generated from an Octopull warning in the ‘conversation
view’ (top) and in the ‘files view’ (bottom).

‘diff’ between each of these commits and the pull request base.
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Chapter 5

Results

In this thesis we sought to answer the question whether the integration of Static Anal-
ysis with Code Review increases the effectiveness and/or efficiency of the Code Review
process. In Section 3.1 we have the design of our experiment. In Chapter 4 we have
described the implementation of the Octopull tool used in this experiment. We then
performed the experiment with a group of students and collected a dataset. In this
section we analyze this dataset.

We will give an exploratory overview of the dataset that was collected, before we
evaluate the formulated hypotheses in the context of this dataset.

5.1 Overview of the collected data
We have collected several types of data: (1) students completed the pre- and posttest
questionnaires. (2) We mined all pull requests from the student repositories, and their
corresponding comments and commits, from which we extracted the corresponding tags.
Furthermore, (3) we asked students to record their attendance in online forms. Some
key figures of the dataset are shown in Table 5.1. Because almost no students completed
all the attendance forms, we were not able to use them for our analysis.

Metric Value

Number of students that completed pretest 160

Number of students that completed posttest 68

Number of students that installed Octopull 63

Number of Pull Requests collected 2748

Total number of tags used 14812

Table 5.1: Key size figures about the collected dataset.
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5.2 Developer interest and usage
RQ1: Are developers willing to use a tool that integrates warnings into their code re-
views? If they do, how do they use and experience the tool?

To determine whether developers are interested in using the tool, we look at the per-
centage of students that chose to use the tool. We retrieved the list of all GitHub user-
names that logged into the Octopull server and cross-referenced them with the GitHub
usernames from the pretest. Out of the 160 students that filled out the pretest, 63 (39%)
installed Octopull and logged in at least once.

Out of the 37 students that indicated to have used Octopull on the posttest, 10
indicated they would like to use it again, and 18 indicated they would not. The other
9 students did not answer this question. The students that would use the tool again all
indicated similar reasons, such as “Octopull diplays warnings in the pull request, so we
don’t have to do that ourselves.” and “To see static analysis results in github seemed like
a neat thing to have.”. Other students indicated that they were required to use Octopull,
even though this was not the case. The students that did not use the tool indicated
that they did not know what the tool was for, or that they thought it would be too
much effort to set it up. One student wrote “Actually I haven’t even looked at octopull
because we were swarmed with useless tools like checkstyle, pmd, findbugs which most
of the time only made our code more ugly (especially checkstyle), so I decided to not
waste my time with any more tools provided by the lecturer (except for inCode, I like
that one).”

Besides displaying the violations within the GitHub interface, the Octopull plugin
provides users with the ability to convert any violation that is visible into a review
comment. Users with and without Octopull can then discuss this comment further and
decide on the appropriate course of action. This feature was only used in 3 projects, for
a total of 40 times.

Takeaway It seems from these observations that the students were not very willing to
try a new tool (only 39%). Some students were more positive, however, and saw benefit
in using a tool like Octopull.

5.2.1 The effect on resolved warnings
RQ2: What is the effect of displaying warnings on the amount of resolved warnings
during code review?

To determine if there is a relation between displayed warnings and the resolution
of these warnings, we collected the set of violations from static analysis tools for the
beginning and end of each code review session (i.e. every pull request). These sets are
filtered to only contain the violations that fall within the visible lines on the complete
diff of the pull request. In that way, we obtain the list of violations a user would see if
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they were using Octopull. Subtracting the end number from the start number yields the
absolute difference per pull request.

In Figure 5.1, a boxplot of these values is shown for each of the static analysis tools.
It is clear that there is a difference between Octopull and non-Octopull projects. We see
that there are a lot of cases where the number of violations has actually increased over
the lifetime of the pull request.

For FindBugs, very few violations were detected overall, as can be seen from the
figure. For PMD, we see that pull requests without Octopull have a larger variability
in the number of violations added or removed. Most notably however, we see that
pull requests using Octopull tend to introduce more violations, or remove less. We
would expect that making violations more visible would prompt users to remove more,
and so this last finding seems counter-intuitive. We investigate it further by looking
at the fraction ∆v = vend/vstart of remaining violations instead. In Figure 5.2, we see
what we would expect for PMD and FindBugs: their shape is similar to that of the
absolute difference. For CheckStyle, however, we see an interesting difference: whereas
the absolute difference tends to be larger for pull requests using Octopull, the fractional
difference tends to be smaller. This means the average number of CheckStyle violations
is larger for pull requests using Octopull. Looking at the mean start and end values
shows us that this is indeed the case: the mean start and end value for CheckStyle are
47 and 64 violations respectively for pull requests not using Octopull, and both are 92
violations for pull requests that use Octopull.

Because we can not assume the data to be normally distributed, we apply the Mann-
Whitney-Wilcoxon test [38] to the collected data. We find that the absolute difference
of CheckStyle violations differs significantly between Octopull and non-Octopull pull
requests at a significance level of 5% (p = 0.025). The absolute differences for other tools
are not statistically significant. The fractional difference is not found to be statistically
significant for any of the tools.

This significant difference for the Checkstyle tool leads us to reject hypothesis H10:
There is no significant difference in the amount of resolved warnings per pull request
between Octopull users and non-Octopull users. in favor of the alternative H1A: The
amount of resolved warnings is significantly different for Octopull users.

Takeaway Even though we reject the null hypothesis, we are not convinced of the effect
of Octopull on the amount of resolved warnings. Because the results are only significant
for one tool, and the fractional difference does not show significance, we suspect that
this effect can be attributed to an external factor, such as problems with the CheckStyle
configuration.

5.2.2 The effect on discussion
RQ3: What is the effect of displaying warnings on the discussion of code improvements
and other concerns during code review?
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Figure 5.1: Boxplots of the absolute difference in violations before and after the pull
request.
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Figure 5.2: Boxplots of the fractional difference in violations before and after the pull
request.

To evaluate the relation between the usage of Octopull and the discussion on code
reviews, we required students to categorize their comments and commits based on their
content, as was explained in section 3.1.7. We then analyze the fraction of comments
on each pull request that falls within a certain category to determine if they differ
significantly on pull requests with or without Octopull.

We gathered the number of occurences for each tag per pull request and divided them
by the total number of tags for that pull request to obtain the relative distributions. We
then split these into two groups, for pull requests using Octopull and pull requests
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tag p-value r-value adjusted value
bug 2.522E-02 0.0544 3.210E-02
feature 1.089E-03 0.0794 1.906E-03
documentation 4.176E-09 -0.1428 2.180E-08
layout 2.940E-05 -0.1015 6.859E-05
naming 1.190E-06 -0.1180 4.166E-06
logic 2.294E-04 -0.0895 4.587E-04
performance 2.159E-05 -0.1032 6.044E-05
organisation 4.838E-03 0.0685 7.526E-03
interface 4.670E-09 -0.1423 2.180E-08
user-interface 3.177E-01 -0.0243 3.422E-01
configuration 3.010E-02 -0.0527 3.511E-02
testing 7.815E-03 -0.0646 1.094E-02
review 7.377E-22 -0.2334 1.033E-20
planning 7.448E-01 -0.0079 7.448E-01

Table 5.2: The p-value and r effect size for a Mann-Whitney-Wilcoxon-test between
Octopull and non-Octopull usage numbers for each tag, and the adjusted p-values

using the Benjamini-Hochberg procedure.

not using Octopull. For each tag, we perform a Mann-Whitney-Wilcoxon test [38] on
these two groups to determine whether their distribution differs significantly. We also
determine the effect size using Cohen’s r measure [24], defined as r = z/

√
N where z is the

test statistic from the test and N is the number of observations. Because we are testing
multiple null hypotheses, we adjust the obtained p-values using the Benjamini-Hochberg
[18] procedure to reduce the probability of false rejections. The results can be seen in
Table 5.2.

We see that based on the p-values, there is a significant difference for all tags except
‘user-interface’ and ‘planning’, at a significance level of 5%. Based on this, we would
reject the null hypothesis. Based on the adjusted values with a treshold of q = 0.1,
we arrive at the same conclusion. Finally, we consider the strength of these significant
correlations using the Cohen’s r measure for effect size. We consider a value of r < 0.2
as a neglegible effect, and a value of 0.2< r < 0.5 as a small effect [24]. We see then that
the tag ‘review’ has a significant correlation with the usage of Octopull, with a small
effect size.

This significant difference for the ‘review’ tag leads us to reject hypothesis H20:
There is no significant difference in the distribution of tags between Pull Requests using
Octopull and Pull Requests not using Octopull. in favor of the alternative H2A: There is
a significant difference in the distribution of tags between Pull Requests using Octopull
and Pull Requests not using Octopull..

Takeaway Even though we reject the null hypothesis, we are not convinced of the effect
of Octopull on the content of the discussion. Because the results are only significant for
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Figure 5.3: Code review priorities from pretest to posttest.
Left: Proportions of code review priorities for pre- and posttest, divided by Octopull and

non-Octopull users.
Right: The distribution of spearman correlations between pre- and posttest priorities per user,

divided by Octopull and non-Octopull users.

a single tag, we suspect that an alternative explanation is more likely, for example that
Octopull users were more diligent in their tagging.

5.2.3 The effect on priorities
RQ4: What is the effect of displaying warnings on the developers’ perceived priorities
during code review?

To determine if there is a relation between using Octopull and the perceived priorities
of code review, we asked students to rank the five most common reasons to do code
review. These rankings can be seen in Figure 5.3 on the left. We then determine how
much these priorities have changed between the pre- and posttest by taking the Spearman
[38] correlation between the rankings, which gives us a number between -1 and 1, where
numbers closer to 1 indicate a more similar ranking.

We then compare these correlation coefficients to determine if there is a significant
relation with the choice of Octopull. Figure 5.3 shows these values on the right. Visually,
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we see that the correlation coefficient tends to be lower for Octopull users (mean -0.20)
in comparison to non-Octopull users (mean -0.11). However, a Mann-Whitney-Wilcoxon
test [38] on these two samples yields a p-value of 0.786, so we conclude that this difference
is not significant.

Because the difference in rankings does not show a significant correlation, we can not
reject the null hypothesis H30: There is no significant difference in the change of code
review priorities from pretest to posttest between Octopull users and non-Octopull users.

Takeaway We can not reject the null hypothesis and can thus not conclusively deter-
mine whether a relation between using Octopull and the developers’ perceived priorities
of code review exists.

5.3 Threats to validity
In Section 3.1.2 we discussed the threats to validity of the experiment. In this section,
we investigate the dataset in an attempt to find such threats.

The students were allowed to self-select into treatment and control groups, and be-
cause of this it is possible that a selection bias is present. We investigate several param-
eters in the dataset to get an indication of the extent of this bias.

The null-hypothesis we formulated about the dataset bias is
Hx0: There is no significant difference in the indicated experience on the pretest between
Octopull users and non-Octopull users.

Professional experience No octopull Octopull

Yes 20 17

No 77 46

χ2 = 0.54931, d f = 1, p = 0.4586

Open source contributor No octopull Octopull

Yes 18 7

No 79 56

χ2 = 1.0909, d f = 1, p = 0.2963

Figure 5.4: Contingency tables of Octopull usage versus Professional Software
Engineering experience (left) and Octopull usage versus Open Source Contribution

(right)

Every student who completed the pretest indicated whether or not they had expe-
rience with professional software development, and whether or not they had experience
with contributing to open source projects. Furthermore, we can retrieve a list of GitHub
usernames that have logged into the Octopull server.

We created a contingency table of whether students installed Octopull versus whether
students have done professional software development in the past. Similarly, we cre-
ated a contingency table of whether students installed Octopull versus whether students
have contributed to open source projects before. These contingency tables are found
in Figure 5.4, along with the results of Chi-Square tests on these tables. Based on
these Chi-Square tests, we see no significant reason to reject the null hypotheses that
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the choice for Octopull and experience with professional software development or open
source contributions are independent (p = 0.46 and p = 0.30 respectively).
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Figure 5.5: Bar-graphs showing the percentage of students that indicated a certain
experience level for each tool, split by Octopull and non-Octopull users.

Next, we looked at the reported experience of the students in the pretest. Each
student reported their experience with Java, GitHub, Maven, FindBugs, CheckStyle
and PMD on a Likert scale [45] (‘None’, ‘Beginner’, ‘Knowledgeable’, ‘Advanced’ or
‘Expert’). The responses are displayed as a bar chart in Figure 5.5. From this chart, we
see that those who installed Octopull tend to rate themselves as more experienced with
each of the tools, but rate themselves lower on their knowledge of Java.

To discover if there is indeed a significant relation between installing Octopull and
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Java GitHub Maven FindBugs CheckStyle PMD
p-value 0.818 0.385 0.617 0.021 0.880 0.008

adjusted value 0.880 0.770 0.880 0.063 0.880 0.050

Table 5.3: The p-values and values adjusted by the Benjamini-Hochberg procedure for
Fisher’s exact test of independence of Likert scale ratings versus Octopull usage.

experience with these tools, we transform this data to a contingency table for each tool.
Because the expected values in these tables are low, the Chi-Square test can not be
applied and the Fisher’s exact test is used instead. Because we are testing multiple
hypotheses, we apply the Benjamini-Hochberg procedure [18] to reduce the probability
of false rejections. The p-values and adjusted values can be found in Table 5.3.

Based on the p-values, we would reject the null-hypothesis of independence for Find-
Bugs and PMD (i.e. installing Octopull is unrelated to experience with FindBugs or
PMD) at a significance level of 5%. For the adjusted values, with a treshold of q = 0.1
we reject the hypotheses for FindBugs and PMD as well. Based on this, we conclude
that there is a significant correlation between Octopull installation and experience with
FindBugs and PMD. Thus, we reject Hx0 in favor of the alternative hypothesis HxA:
There is a significant difference in the indicated experience between Octopull users and
non-Octopull users.

Takeaway We see a bias in the dataset, as a significant relation between the students’
choice to install Octopull and their indicated experience with FindBugs and PMD was
established. However, we see no significant reason to assume a relation between the
other factors and Octopull.

5.4 Discussion
Based on the collected data, we’ve sought to answer each of our research questions.
However, based on our collected data, we were not able determine whether the tool had
an effect. Based on the answers of the students to the open questions on the posttest, we
can see that there are some very positive and some very negative reactions to the tool.
It would be very interesting to study what strategies developers employ to comprehend
the code under review, similar to [53], and what tools are a good fit for each strategy.
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Chapter 6

Conclusions and Future Work

6.1 Contributions
The main contribution of this thesis is the Octopull tool. This tool consists of a server
and a client component, that work together to provide a visualization of warnings on
Pull Requests on GitHub. The client component is currently an extension specific to
the Chrome browser. We do not feel this is a major drawback, as the market share of
Chrome is large. Additionally, the client can be ported to different browsers with relative
ease, if they support the injection of custom JavaScript code. While the tool currently
targets Java projects using CheckStyle, FindBugs and PMD as static analysis tools, this
is not a technical restriction and the modular architecture of the server ensures that it
can be easily extended.

The main aim of creating such a tool was to answer the following question:

“Does integrating Static Analysis with Code Review increase the
effectiveness of the Code Review process?”

To answer this question we tested our tool with students of the Software Engineering
Methods course. Because we felt it was not right to force students to use the tool,
the experiment was designed as a quasi-experiment, i.e. students were non-randomly
allocated to the treatment and control group through self-selection.

Under these limitations, we analyzed the results of the experiment in four main areas:
developer interest and usage, the effect of the tool on resolved warnings, the effect of the
tool on discussion and the effect of the tool on code review priorities. We concluded that
a small amount of students were interested in using the tool. Additionally, we concluded
that there was no significant evidence of an effect of the tool on resolved warnings,
discussion or priorities.

Based on our findings in these four areas, we conclude that we can not be sure
whether integrating Static Analysis with Code Review increases the effectiveness of the
Code Review process.
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6.2 Future Research
As the experiment did not yield statistically significant results, we believe a larger study
with more participants will make it possible to determine significant results. Addition-
ally, we believe it would be best to target professional developers and/or open source
developers, instead of students, as undergraduate students are not representative of the
developer popuplation. If possible, applying randomization across treatment and control
group will improve the generalizability of the result.

To increase the target audience, the tool could be made to support different browsers.
Additionally, the server application was designed to be extensible to different contexts:
static analysis tools and build systems can be replaced by different ones with ease, so
that the tool can be studied for almost any GitHub project. This was done to allow the
experiment to be repeatable in different companies and organisations. While our tool
was created specifically for GitHub, the concept of enriching webpages could be applied
to other online code reviewing environments such as Gerrit as well.
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Appendix A

Rubrics
This appendix contains the rubrics used to grade the project work as published on
BlackBoard. There are four rubrics: one for the working version of the product after
each sprint, one for the final version of the product, one for code quality and one for the
management of the sprints. Each is listed below.

A.1 Working Version Rubric

10 9 8 7 6 5 4 3 2 1

Tooling
(i.e.,5GitHubm5Cobertura,5
FindBugs,5PMD,5CheckStyle,5

Octopull)

5%The$required$tools$are$
correcly$setup$and$used.

The$required$tools$are$
correctly$setup$but$not$

correcly$used.

The$required$tools$are$neither$
correctly$setup$nor$correctly$used.

Not$all$new$features,$bug$
fixes,$etc.$are$done$in$a$
separate$branch$and$

integrated$through$pull;
requests.$Pull;requests$are$
superficially$reviewed$and$
the$output$of$tools$used$in$
the$continuous$integration$

partially$considered.

Very$few/no$new$features,$bug$fixes,$
etc.$are$done$in$a$separate$branch$

and$integrated$through$pull;
requests.$Pull;requests$are$rarely$
reviewed$and$the$output$of$tools$
used$in$the$continuous$integration$

almost$not$considered.

The$most$important$failing$
commits$are$fixed$in$not$

too$long$time.
Testing$is$done$correctly$

with$most$builds.

Failing$commits$are$not$fixed$in$
reasonable$time.$Testing$is$poorly$

integrated$with$builds.

The$system$has$a$<20%$of$
meaningful$test$coverage.

The$system$has$a$>45%$of$
meaningful$test$coverage.

Code$is$well$formatted$and$
follows$the$language’s$

conventions.

Appropriate$and$clear$
names$are$used$for$
variables,$methods,$

classes,$etc.

Appropriate$use$is$made$of$
comments$to$document$

the$code$correctly.

Almost$all$failing$commits$
are$quickly$fixed.

Testing$is$done$correctly$
with$every$build.

Little$to$no$comments$of$value;$code$
is$poorly$documented$via$

comments.

Most$comments$are$
appropriately$used$yet$
some$lack$purpose$or$are$

unnecessary.

All$new$features,$bug$fixes,$
etc.$are$done$in$a$separate$
branch$and$integrated$

through$pull;requests.$Pull;
requests$are$thoroughly$
reviewed$also$considering$
the$output$of$tools$used$in$
the$continuous$integration.

Requirements$cover$all$the$
core$concepts$of$the$game$
(both$functional$and$non;
functional).$Requirements$
are$neither$contradictory$

nor$ambiguous.$All$
requirements$are$verifiable$$
and$prioritized.$Language$is$
clear.$The$TA's$feedback$is$

followed.

Nearly$all$requirements$are$
implemented.$The$reason$
for$not$implementing$some$
is$clear$and$motivated.

Exemplary

Requirements

Code5
readability

Continuous5
integration

Building

Testing

Comments

Naming

The$system$has$a$>75%$of$
meaningful$test$coverage$
(maven$cobertura,$line$

coverage).
Testing$reports.

Formatting

Specification

Implementation

PullVbased5development5model

DevelopingCompetent

Code$is$poorly$formatted$and$does$
not$follow$the$language’s$

conventions.

Names$are$vague,$ambiguous,$or$
unrelated$to$their$contexts.

Code$is$well$formatted$yet$
diverges$from$the$

language’s$conventions$
with$little$motivation.

Most$names$are$clear$and$
appropriate;$some$names$
are$ambiguous$or$vague.

Some$core$concepts$of$the$
game$are$not$well$covered.$
Most$requirements$are$
neither$contradictory$nor$

ambiguous.$Most$
requirements$are$verifiable$
and$prioritized.$Language$is$
sometimes$unclear.$The$
TA's$feedback$is$not$
entirely$followed.

Relevant$core$concepts$of$the$game$
are$not$covered.$Some$requirements$
are$contradictory$or$ambiguous,$and$
not$verifiable.$Requirements$are$not$
prioritized.$Language$is$unclear.$The$

TA's$feedback$is$mostly$not$
followed.

Only$the$very$core/basic$
requirements$are$

implemented.$The$reason$
for$not$implementing$some$

is$not$well$motivated.

The$implementation$does$not$cover$
the$core$requirements$of$the$game.$
The$reason$for$not$implementing$
certain$requirements$are$unclear$

and$not$motivated.

15%

5%

Weight

15%

50%

1%

2%

2%

5%
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A. Rubrics

A.2 Final Version Rubric

10 9 8 7 6 5 4 3 2 1
Exemplary Competent Developing

Weight

Completeness 25%All the main requirements are met
and additional optional features are

added
Almost all the main requirements are

met A few of the main requirements are met

Source code quality 35%

Design patterns are well placed and
implemented. Methods are of a
proper size. No design flaws are

present. Other software engineering
principles are also used appropriately

and correctly.

Design patterns are well placed,
though  not implemented

completely. Only few and limited
design flaws are present. Other

software engineering principles are
also used appropriately yet

sometimes incorrectly.

Inappropriate use is made of design patterns or
anti-patterns are used. Design flaws (e.g., God
classes and feature envy methods) are readily
present. Other software engineering principles

are also used inappropriately or not all.

Software architecture 12%The system has a clear over-arching
software architecture.

The system has a vague
over-arching software architecture.

The system has no clear over-arching standard
software architecture.

Testing 20%The system has a >75% of
meaningful test coverage (maven

cobertura, line coverage).
The system has a >45% of
meaningful test coverage.

The system has a <20% of meaningful test
coverage.

Code
readability

Formatting 2%Code is well formatted and follows
the language’s conventions.

Code is well formatted yet diverges
from the language’s conventions

with little motivation.
Code is poorly formatted and does not follow the

language’s conventions.

Naming 3%Appropriate and clear names are
used for variables, methods, classes,

etc.

Most names are clear and
appropriate; some names are

ambiguous or vague.
Names are vague, ambiguous, or unrelated to

their contexts.

Comments 3%Appropriate use is made of
comments to document the code

correctly.

Most comments are appropriately
used yet some lack purpose or are

unnecessary.
Little to no comments of value; code is poorly

documented via comments.

A.3 Quality Rubric

10 9 8 7 6 5 4 3 2 1
Exemplary Competent Developing

Weight

Code quality 20%The code base follows sound design
principles and object-oriented

programming.

The code base generally follows
sound design principles and

object-oriented programming, but
there are lower quality parts.

The code base does not follow sound design
principles and object-oriented programming and

there are glaring mistakes.

Code
readability

Formatting 2%Code is well formatted and follows
the language’s conventions.

Code is well formatted yet diverges
from the language’s conventions with

little motivation.
Code is poorly formatted and does not follow the

language’s conventions.

Naming 5%Appropriate and clear names are
used for variables, methods, classes,

etc.

Most names are clear and
appropriate; some names are

ambiguous or vague.
Names are vague, ambiguous, or unrelated to

their contexts.

Comments 3%Appropriate use is made of
comments to document the code

correctly.

Most comments are appropriately
used yet some lack purpose or are

unnecessary.
Little to no comments of value; code is poorly

documented via comments.

Continuous
integration

Building 5%Almost all failing commits are quickly
fixed.

The most important failing commits
are fixed in not too long time. Failing commits are not fixed in reasonable time.

Testing 30%
The system has a >75% of

meaningful test coverage (maven
cobertura, line coverage).

A testing document is available to
describe special cases.

The system has a >45% of
meaningful test coverage.

The system has a <20% of meaningful test
coverage.

Tagging 5%All new commit messages and
pull-request/review comments are

properly tagged.

Not all new commit messages and
pull-request/review comments are

properly tagged.

Very few/no new commit messages and
pull-request/review comments are properly

tagged.

Tooling
(i.e., GitHubm Cobertura,

FindBugs, PMD, CheckStyle,
Octopull)

5%The required tools are correcly setup
and used.

The required tools are correctly setup
but not correcly used.

The required tools are neither correctly setup nor
correctly used.

Pull-based
development

Branching 10%All new features, bug fixes, etc. are
done in a separate branch and

integrated through pull-requests.

Not all new features, bug fixes, etc.
are done in a separate branch and
integrated through pull-requests.

Very few/no new features, bug fixes, etc. are
done in a separate branch and integrated through

pull-requests.

Code review 15%
Pull-requests are thoroughly

reviewed also considering the output
of tools used in the continuous

integration.Testing reports.

 Pull-requests are not thoroughly
reviewed and the output of tools

used in the continuous integration
partially considered.

Pull-requests are poorly reviewed and the output
of tools used in the continuous integration almost

not considered.

56



A.4. Sprint Management Rubric

A.4 Sprint Management Rubric

10 9 8 7 6 5 4 3 2 1
Exemplary Competent Developing

Weight

Tasks

Definition 20%
Tasks are: clearly defined,

have a reasonable granularity,
and have a clear definition of

done

Not all tasks are: clearly
defined, have a reasonable
granularity, or have a clear

definition of done.

Most tasks are: not clearly defined, do
not have a reasonable granularity, and
do not have a clear definition of done.

Splitting 15%Tasks are evenly split among
group members.

Tasks are not evenly split
among group members.

Tasks are unevenly divided among
group members.

Responsibility 10%A responsible person is clearly
defined for each task.

A responsible for each task is
defined but sometimes

vaguely.
Responsibilities are loosely defined.

Learning
from
History

Estimation 15%Estimation is realistically
based on the experience from

the previous Sprint(s).

Estimation is based on the
previous Sprint(s), yet it is

still unrealistic for some tasks.
Estimation is not based on the previous

Sprint(s) and is mostly unrealistic.

Prioritization 15%
Prioritization of tasks is based
on the experience from the
previous Sprint and is well

motivated.

Prioritization of tasks is mostly
based on the experience of
the previous Sprint yet is

vaguely motivated.

Prioritization of tasks is not based on the
experience from the previous Sprint and

vaguely motivated.

Reflection 25%
Reflection coincides with the
data of the last Sprint(s) and
makes motivated adjustments

for the next Sprint.

Reflection coincides with the
actual data provided, but only

vaguely describes
adjustments needed for the

next Sprint.

Reflection does not coincide with the
actual data provided and makes no

meaningful adjustments to the process.

57





Appendix B

Pretest Questionnaire

The pretest questionnaire was completed by all students participating in the course. The
questionnaire was created using SurveyGizmo [8]. The questions are enumerated below.
For questions with answers that have no specific ordering, the order was randomized.

1. What is your age? __

2. What is your NetID? ______
Note: This is only used for administrative purposes. The answers on this survey
will not impact your grade in any way.

3. What is your username on GitHub? ______

4. Have you taken this course before? Yes/No.

5. If previous answer was yes, In what years did you take the course before?

• 2014-2015
• 2013-2014
• 2012-2013
• 2011-2012
• Other: ______

6. Do you have experience with paid software engineering work?

• Yes, I have worked in software engineering for a year or more.
Please specify how many ______

• Yes, I have worked in software engineering for less than a year.
• No, I have not worked in software engineering.

7. Have you ever contributed to Open Source projects? Yes/No.
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B. Pretest Questionnaire

8. If previous answer was yes, To what Open Source projects have you contributed?
______

9. What is your username, if any, on the following websites:

• BitBucket: ______
• StackOverflow: ______
• GitLab: ______
• SourceForge: ______
• CodePlex: ______

The following question uses this scale to rate your experience:

1 - None (you don’t know this subject);
2 - Beginner (you are familiar with this subject but still have some difficulties to

use it);
3 - Knowledgeable (you are comfortable in this subject and currently use it daily);
4 - Advanced (you currently consider yourself highly proficient in this subject);
5 - Expert (your colleagues look for you when they need help in this subject, and

you feel confident to help them).

10. What is your experience with ______

• Java
• GitHub
• Pull Requests
• Static Analysis Tools
• Maven
• FindBugs
• CheckStyle
• PMD
• Continuous Integration
• Travis CI
• Code Review
• Working in a development team

The following question uses this scale to rate your usage:

a) Not at all
b) Rarely (less than 1 day a week on average)
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c) Sometimes (1 or 2 days a week on average)
d) Often (3 or 4 days a week on average)
e) Always (at least 5 days a week on average)

11. How often have you used ______ in the last 6 months?

• Java
• GitHub
• Pull Requests
• Static Analysis Tools
• Maven
• FindBugs
• CheckStyle
• PMD
• Continuous Integration
• Travis CI
• Code Review
• Working in a development team

12. What is in your opinion the priority of code review to software engineering?

⃝ Not a priority
⃝ Low priority
⃝ Medium priority
⃝ High priority
⃝ Essential

13. Please rank the following from most important to least important reason to do
code review:

• Finding defects or bugs.
• Improving the code style or quality.
• Think of other ways to implement the feature or solve the problem.
• Understand the code of your colleagues.
• Know what your colleagues are working on.

14. According to your experience, rank these outcomes of code review from most to
least common:

• Finding defects or bugs.
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B. Pretest Questionnaire

• Improving the code style or quality.
• Think of other ways to implement the feature or solve the problem.
• Understand the code of your colleagues.
• Know what your colleagues are working on.

15. What is in your opinion the priority of static analysis to the software engineering
process?

⃝ Not a priority
⃝ Low priority
⃝ Medium priority
⃝ High priority
⃝ Essential

16. What are in your opinion the most important reasons to use static analysis tools?
____________________

17. What means of communication have you used when working on a development
team?

2 Face to face communication
2 Video Voice calling
2 Real-time chat (e.g. Skype)
2 Asynchronous means (e.g. email)
2 Asynchronous comments (e.g. leaving a comment on GitHub issues)
2 Documentation
2 Issue tracking system
2 Multi-person chat (e.g. IRC)
2 Other: ______

18. Please rank the following means of communication with a development team from
most to least effective for you:

• Face to face communication
• Video Voice calling
• Real-time chat (e.g. Skype)
• Asynchronous means (e.g. email)
• Asynchronous comments (e.g. leaving a comment on GitHub issues)
• Documentation
• Issue tracking system
• Multi-person chat (e.g. IRC)
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Appendix C

Posttest Questionnaire

All students participating in the course were asked to complete the posttest question-
naire. The questionnaire was created using Google Forms. The questions are enumerated
below. For questions with answers that have no specific ordering, the order was ran-
domized.

1. What is your username on GitHub? ______
The following question uses this scale to rate your experience:

1 - None (you don’t know this subject);
2 - Beginner (you are familiar with this subject but still have some difficulties to

use it);
3 - Knowledgeable (you are comfortable in this subject and currently use it daily);
4 - Advanced (you currently consider yourself highly proficient in this subject);
5 - Expert (your colleagues look for you when they need help in this subject, and

you feel confident to help them).

2. What is your experience with ______

• Java
• GitHub
• Pull Requests
• Static Analysis Tools
• Maven
• FindBugs
• CheckStyle
• PMD
• Continuous Integration
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C. Posttest Questionnaire

• Travis CI
• Code Review
• Working in a development team

3. What is in your opinion the priority of code review to software engineering?

⃝ Not a priority
⃝ Low priority
⃝ Medium priority
⃝ High priority
⃝ Essential

4. Please rank the following from most important to least important reason to do
code review:

• Finding defects or bugs.
• Improving the code style or quality.
• Think of other ways to implement the feature or solve the problem.
• Understand the code of your colleagues.
• Know what your colleagues are working on.

5. What is in your opinion the priority of static analysis to the software engineering
process?

⃝ Not a priority
⃝ Low priority
⃝ Medium priority
⃝ High priority
⃝ Essential

6. Have you used Octopull during the project? Yes/No.

7. If the student did not use Octopull. What were your main reasons to decide against
using Octopull?
____________________

8. If the student used Octopull. What were your main reasons to use Octopull?
____________________

9. If the student used Octopull. Were you satisfied with the Octopull tool?

⃝ Very dissatisfied
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⃝ Dissatisfied
⃝ Unsure
⃝ Satisfied
⃝ Very satisfied

10. If the student used Octopull. What would you like to see improved in Octopull?
____________________

11. If the student used Octopull. Would you want to use Octopull again in a future
project? Yes/No.

12. If the student used Octopull. Do you have any other comments related to Octopull?
____________________
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