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ABSTRACT: Crack detection accuracy in computer vision is often constrained by limited annotated datasets. Although
Generative Adversarial Networks (GANs) have been applied for data augmentation, they frequently introduce blurs
and artifacts. To address this challenge, this study leverages Denoising Diffusion Probabilistic Models (DDPMs)
to generate high-quality synthetic crack images, enriching the training set with diverse and structurally consistent
samples that enhance the crack segmentation. The proposed framework involves a two-stage pipeline: first, DDPMs are
used to synthesize high-fidelity crack images that capture fine structural details. Second, these generated samples are
combined with real data to train segmentation networks, thereby improving accuracy and robustness in crack detection.
Compared with GAN-based approaches, DDPM achieved the best fidelity, with the highest Structural Similarity
Index (SSIM) (0.302) and lowest Learned Perceptual Image Patch Similarity (LPIPS) (0.461), producing artifact-free
images that preserve fine crack details. To validate its effectiveness, six segmentation models were tested, among which
LinkNet consistently achieved the best performance, excelling in both region-level accuracy and structural continuity.
Incorporating DDPM-augmented data further enhanced segmentation outcomes, increasing F1 scores by up to 1.1%
and IoU by 1.7%, while also improving boundary alignment and skeleton continuity compared with models trained
on real images alone. Experiments with varying augmentation ratios showed consistent improvements, with F1 rising
from 0.946 (no augmentation) to 0.957 and IoU from 0.897 to 0.913 at the highest ratio. These findings demonstrate the
effectiveness of diffusion-based augmentation for complex crack detection in structural health monitoring.

KEYWORDS: Crack monitoring; complex cracks; denoising diffusion models; generative artificial intelligence;
synthetic data augmentation

1 Introduction
Digital Image Correlation (DIC) is a noncontact optical measurement technique that computes full-

field displacement and strain by comparing greyscale or color feature patterns on a surface before and after
loading [1]. When applied to crack analysis, a random speckle pattern is first sprayed onto the surface
of specimens [2], and a high-speed camera captures a sequence of speckle images at different load levels
during testing [3]. Subset-matching algorithms (e.g., cross-correlation) are then utilized to compare gray-
value patterns between successive frames (or against a reference frame) to produce a displacement vector
at each pixel [4]. Based on that, the displacement field is differentiated by finite difference to obtain the
local strain field [5]. Regions with pronounced strain concentration indicate crack initiation sites, and the
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crack propagation path and opening displacement are accurately recorded as loading continues [6]. The
accuracy of DIC measurements depends on uniformly distributed and high-contrast speckled patterns.
Irregularities, detachment, or blurring during loading degrade matching quality. Besides, DIC also produces
large volumes of high-resolution, high-frame-rate images, which require not only computationally intensive
subset matching but also robust Central Processing Unit/Graphics Processing Unit (CPU/GPU) resources,
substantial memory, and extensive storage. As a result, DIC demands significant resources and time for data
acquisition, transferring, and post-processing.

Deep learning methods make it possible to perform crack segmentation directly from standard camera
images by inputting raw RGB (Red, Green, Blue) frames into a convolutional segmentation network (e.g.,
U-Net, DeepLab, etc.) or a lightweight variant, which produces pixel-precise crack masks in a short time
[7–9]. Instead of relying on speckle-patterned specimens, deep learning models are trained on annotated
images. Data augmentation and specialized loss functions are applied to address class imbalance (e.g., a
combination of cross-entropy and Dice loss) and accommodate varying lighting, textures, and background
colors [10–12]. For example, a Feature Pyramid Network (FPN) was employed to segment cracks in various
concrete structures, enabling precise pixel-level crack identification. It achieved an Intersection over Union
(IoU) score of 85.9% in crack segmentation, with a processing time of less than 0.1 s [13]. Concrete cracks
are also segmented using the SegCrack model, which employs a hierarchically structured transformer
encoder to extract multiscale features. Experimental results showed that SegCrack achieved an IoU score
of 92.63% [14]. In addition, the Semantic Transformer Representation Network (STRN) is an attention-
based encoder–decoder model designed for accurate, real-time pixel-level crack segmentation [15]. These
segmentation models were able to convert RGB images into binary crack maps. Based on binary images,
further research has focused on quantifying crack characteristics (e.g., width) using pixel measurements [16].
After that, zooming effect is applied to translate pixel-based crack maps into actual real-world geometric
dimensions [17]. Compared with DIC methods, deep learning models significantly reduce the need for costly
hardware or surface preparation, and they also improve processing speed. In addition, they provide direct
pixel-level damage mapping rather than indirect strain-based inference, making them more practical and
scalable for real-time crack monitoring in different structural conditions.

A major challenge of deep learning methods is the limited availability of annotated crack images,
especially for complex cracks [18]. The quality and quantity of training samples directly affect segmentation
accuracy [19]. To address this challenge, Generative Adversarial Networks (GAN)-based data augmentation
has been adopted to expand training datasets with complex crack patterns [20]. For example, in reference [21],
GAN was used to expand a pavement defect dataset from 4160 to 9600 images across five categories.
Using the augmented data, the classification accuracy of VGG16 network improved from 88.6% to 91.4%,
highlighting the effectiveness of generated images in boosting model performance. However, the synthetic
images produced by these GAN-based generative models often suffer from visible artifacts, unrealistic
textures, and insufficient diversity, which limit their effectiveness. In some cases, GAN-based methods even
degrade the performance of crack-segmentation networks [22]. In addition, GAN-based generative models
struggle to generate high-resolution images, and the resolution is typically limited to 64 × 64 or 128 × 128
pixels due to architectural constraints [23]. As a result, the augmented dataset may still lack the diversity and
fidelity required to train robust crack-segmentation networks.

To address these challenges, Denoising Diffusion Probabilistic Models (DDPMs) offer a robust alter-
native for data augmentation in crack analysis. Unlike GANs, DDPMs adopt a likelihood-based training
approach that gradually adds and removes Gaussian noise over multiple timesteps, enabling stable learning
of complex data distributions [24]. This denoising process allows DDPMs to generate high-fidelity, artifact-
free images that preserve fine crack details and realistic textures. More importantly, DDPMs can generate
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detailed images that overcome the resolution limitations, which are typically observed in traditional GANs
(e.g., Deep Convolutional Generative Adversarial Network). These advantages make DDPMs particularly
suitable for tasks requiring detailed structural representation, such as automated detection and segmentation
of complex cracking conditions. However, existing literature on generating high quality images for complex
concrete cracks using DDPMs remains limited. Recent studies applied diffusion-based models for crack
segmentation, with diffusion models outperforming conventional deep learning in complex backgrounds
and discontinuous annotations by capturing long-range dependencies and global crack continuity. Diffusion-
based models achieved the best crack segmentation performance, with CrackDiff (84.1%) slightly surpassing
DeepLabV3+ (83.4%) and transformer-based SegFormer (83.3%) [25]. Similarly, RoadPainter (71.8%) out-
performed convolutional neural network (CNN)-based methods such as LinkNet (59.5%) and PSPNet
(55.5%) [26]. However, diffusion-based crack segmentation methods remain supervised approaches that rely
on high-quality datasets with labeled crack images.

This study presents a novel two-stage crack segmentation framework that incorporates DDPM to
generate higher resolution and structurally accurate images of complex concrete cracks, which effectively
overcomes the limitations associated with GAN-based approaches. Specifically, the contributions of this
research are summarized as follows: (1) This research explores the potential of DDPMs as an alternative
to traditional GAN-based approaches. The proposed method focuses on synthesizing realistic and diverse
images of complex cracks through a progressive denoising process, enhancing the quality and variability
of training data. (2) This research also aims to evaluate the impact of DDPM-augmented datasets on the
performance of different semantic segmentation models in achieving accurate pixel-level crack detection.
This work contributes to a scalable and effective augmentation strategy tailored for material characterizations
and structural health monitoring applications.

2 Methods
This study proposes a two-stage crack segmentation framework, which is designed to enhance the

detection of complex cracks in concrete structures by leveraging the generative capabilities of DDPM:

(1) Stage I: A DDPM is trained on a limited set of real crack images and then used to generate a diverse
set of synthetic and high-quality images that preserve fine structural details and realistic textures.
The generated images are combined with the original dataset to synthetically create an enriched
training set, addressing the challenge of insufficient annotated data and improving the performance of
segmentation models.

(2) Stage II: A semantic segmentation model is trained using the augmented dataset to learn pixel-level
crack features. The segmentation network benefits from the increased variability and fidelity of the
training samples, leading to improved performance in identifying cracks with irregular shapes, varying
widths, and diverse surface backgrounds.

The overall framework integrates data generation and segmentation in a cohesive pipeline, with the
goal of improving robustness and accuracy in real-world crack monitoring scenarios. The illustration of
diffusion-augmented image segmentation framework is shown in Fig. 1.
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Figure 1: Illustration of the diffusion-augmented image segmentation framework

2.1 Data Augmentation via Diffusion Models
GANs have been widely adopted as a class of generative models capable of image synthesis [27]. A

standard GAN framework comprises two adversarial networks: a generator that creates data similar to the
real distribution, and a discriminator that distinguishes between real and synthetic samples [28]. Through
the adversarial training process, the generator gradually learns to produce increasingly realistic data. Despite
their impressive performance, GAN-based models suffer from several well-known limitations. GANs often
suffer from training instability, which can lead to non-convergence and visual artifacts [29]. They are also
prone to mode collapse, producing limited output variations regardless of input diversity, thus failing to
capture the full data distribution. GANs are further constrained by limited image resolution in generation. As
resolution increases, training becomes more unstable and resource-intensive, making it less suitable for tasks
requiring fine structural details. Instead, DDPM offers an effective solution for generating higher resolution
images without artifacts, making it well-suited for capturing complex crack patterns in structural testing
scenarios [30]. DDPMs are a class of latent-variable generative models that synthesize data by progressively
denoising samples initialized as pure Gaussian noise. The framework consists of two sequential processes: a
forward diffusion process and a reverse denoising process [26]. The forward process incrementally corrupts
the original data by adding Gaussian noise over a series of timesteps, transforming structured data into
random noise. This process is defined as a fixed Markov chain. In contrast, the reverse process is a learnable
Markov chain where a neural network such as a U-Net predicts the parameters of a Gaussian distribution at
each step to gradually remove noise and reconstruct the data. Training involves minimizing the difference
between the actual noise and the noise predicted by the model at each timestep. After training, the model
generates high-quality data by reversing the noise process, beginning with random Gaussian inputs.

Fig. 2 presents the architecture of the DDPM implemented in this study. The network adopts a U-Net-
like design tailored for diffusion-based image synthesis. A key feature is the inclusion of a time embedding
module, which encodes the current diffusion timestep using sinusoidal positional encoding followed by
fully connected layers. This temporal information is injected into both the down-sampling and up-sampling
blocks, allowing the model to learn how noise evolves over time. The input image is first processed by a 1 ×
1 convolutional layer (Conv2d) to extract low-level features.
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Figure 2: Model architecture of U-Net used in DDPM

The resulting feature map is then passed through six sequential down-sampling blocks. These blocks
progressively reduce spatial resolution while increasing feature depth. A mid-block is placed between the
down-sampling and up-sampling stages to further process the compressed features. The up-sampling path
mirrors the encoder, with transposed convolutions used to gradually restore the original resolution. Each
up-sampling block receives skip connections from its corresponding down-sampling block, which provide
high quality spatial features to improve detail recovery. These skip connections are essential for preserving
edge and texture information, particularly in fine-grained regions such as cracks. Throughout the network,
the model learns to predict the noise component added to the image at each step. This noise prediction is
used during the reverse diffusion process to iteratively denoise the input and generate realistic images.

2.2 Semantic Segmentation Models
Six representative semantic segmentation models are employed to evaluate the impact of the augmented

dataset on crack segmentation performance. These models were carefully selected based on their architec-
tural diversity and varying levels of model complexity, enabling a comprehensive evaluation across different
network designs. The six architectures are:

(1) U-Net: A widely adopted encoder-decoder architecture initially designed for biomedical image seg-
mentation. U-Net has demonstrated robust performance in structural damage detection due to its
symmetric skip connections that help recover spatial resolution lost during down-sampling [31].

(2) LinkNet: This model introduces additive skip connections between the encoder and decoder, which
efficiently preserve spatial information while reducing computational complexity. LinkNet is par-
ticularly suitable for real-time applications such as on-site inspection or drone-based structural
monitoring [32].

(3) FPN: FPN enhances feature learning at multiple scales by constructing a top-down pyramid of features
with lateral connections. This design is especially beneficial for detecting cracks of varying widths and
orientations, making it effective in scenes with both fine and coarse structural details [33].

(4) DeepLabV3+: This model leverages atrous convolutions through the Atrous Spatial Pyramid Pooling
module to capture multi-scale contextual information. The decoder module then refines the segmen-
tation outputs. DeepLabV3+ is known for its high accuracy on complex datasets and performs well in
tasks involving irregular crack patterns [34].

(5) MaNet: An improved version of U-Net, MaNet incorporates multi-scale attention mechanisms and a
position-aware attention module. These features enhance the ability of the model to focus on relevant
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regions while suppressing noise, which is crucial for distinguishing cracks from background textures
or surface noise [35].

(6) SegFormer: A transformer-based segmentation model that combines hierarchical transformer
encoders with lightweight decoders. SegFormer provides state-of-the-art accuracy while maintaining
computational efficiency. It excels in learning global dependencies, which benefits the detection of
long, continuous cracks across large structural areas [36].

To ensure a fair comparison, all models were trained using the same training and validation splits, data
augmentation strategies, hyperparameter settings, image resolution, and batch size. These models represent a
broad spectrum of complexity, ranging from lightweight architectures like U-Net and FPN to more advanced
and resource-intensive models such as MaNet and SegFormer. By evaluating a diverse set of models, the study
aims to demonstrate the performance of the DDPM-augmented dataset across different network families,
from CNN-based encoders to transformer-based backbones.

2.3 Dataset Preparation
Representative images were collected to train the DDPM model, comprising a total of 600 high quality

images. The images were obtained from laboratory-scale concrete bending tests under varying loading
conditions and cropped from 18 full-specimen images (resolution: 4032× 3024 pixels), as illustrated in Fig. 3.
A sliding window approach was applied to crop the high-resolution images into fixed-size sub-regions of
512 × 512 pixels. The dataset exhibits diverse crack patterns, including hairline, branching, and wide-open
fractures, ensuring variability for training. Crack widths range from a few pixels to moderate sizes, with
both short, localized cracks and long continuous ones traversing the surface. Many cracks intersect and
branch, forming complex skeletons. Background textures with pores and surface roughness introduce natural
variation. Some samples contain dense crack networks, while others show only a few. Overall image quality is
sufficient to capture fine cracks, with mostly uniform illumination and adequate contrast, though variations
in sharpness and brightness are present across samples. Subsequently, the trained DDPM model synthesized
an additional 600 high-fidelity images, preserving structural textures and fine crack details. Both the original
and generated images were annotated using the LabelMe toolbox to produce pixel-level segmentation masks
with fine-grained crack labels. This process involved outlining the exact boundaries of visible cracks using
polygonal tools, enabling the creation of fine-grained labels that capture subtle variations in crack width,
orientation, and shape. The corresponding binary masks precisely delineate crack regions, with white pixels
indicating cracks and black pixels representing the background. They preserve the geometry of the original
cracks, ranging from thin hairline lines to wide-open fractures, and capture branching, intersections, and
continuity along the crack skeleton. Some masks contain sparse cracks, while others show dense crack
networks, reflecting the variability of the dataset. By removing background noise such as pores and stains,
the masks provide clean pixel-level annotations that enable reliable supervision for segmentation models.

A total of 600 images were used to train the generative Artificial Intelligence (AI) model. For training
and evaluating the segmentation model, the dataset was randomly split into three subsets: 80% for training to
learn feature representations, 10% for validation to monitor performance and tune hyperparameters, and 10%
for testing to provide an unbiased assessment of model generalization. A fixed random seed was employed
during the dataset division to ensure reproducibility. To assess the impact of data augmentation, two datasets
were prepared and tested: (1) the dataset with 600 real images and (2) a combined dataset of 1200 images,
integrating 600 DDPM-generated synthetic images with 600 real images. To ensure that the testing set was
entirely unseen by the generative model, 10% of the real images were replaced with new samples, which were
designated as the testing set and excluded from the generative AI training process.
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Figure 3: Illustration of data collection method

To enhance the diversity of the training dataset and improve model generalization, data augmentation
based on geometric transformations is applied. These transformations include horizontal and vertical flips
and perspective distortion, which help simulate variations in real-world scenarios. By artificially expanding
the training dataset, the model becomes more robust to different orientations and perspectives of the input
data. However, to ensure an unbiased evaluation of model performance, no data augmentation is applied
to the testing and validation datasets. These datasets remain unaltered to reflect real-world conditions
accurately, allowing for a fair assessment of the model’s generalization capability on unseen data. This
approach ensures that performance metrics, such as accuracy and precision, are measured under realistic
conditions without artificial modifications.

2.4 Implementation Details
The deep learning approaches were implemented using Python 3.11.13, PyTorch 2.7.1, and HuggingFace

diffusers 0.34.0. The models were implemented on an NVIDIA RTX-5090 Mobile GPU (24 GB, laptop
version) with CUDA 12.8. The DDPM employed a U-Net2D backbone consisting of six levels with block
output channels of 128, 128, 256, 256, 512, and 512, with two residual layers per block and attention applied
in the last two down-sampling and up-sampling stages. The diffusion process followed a standard DDPM
scheduler configuration without the use of Exponential Moving Average (EMA). Both the noise schedule
steps, and the inference steps were initially set to 1000. Images were resized to 512 × 512, normalized to (−1,
1), and randomly flipped horizontally for augmentation. The model was trained for 50 epochs with a batch
size of 2, a learning rate of 1 × 10−5, and AdamW optimizer (β1 = 0.9, β2 = 0.999, no weight decay). A cosine
learning rate scheduler without warm-up was applied, and mixed-precision (fp16) training was enabled via
Accelerate. The DDPM was trained using a mean squared error (MSE) loss to predict Gaussian noise at
each timestep, and the final trained model was used in the reverse diffusion process to generate high-fidelity
synthetic crack images. For segmentation, six models were trained for 200 epochs using a batch size of 8, an
image resolution of 512× 512, and a learning rate of 1× 10−3. The Adam optimizer was also used with standard
hyperparameters (β1 = 0.9, β2 = 0.999). Model checkpoints were saved every 10 epochs, and the model with
the best validation IoU was selected for final evaluation. Because the background region of concrete surfaces
occupies a much larger proportion than cracks, resulting in severe class imbalance, all segmentation tasks
were trained with a combined loss function of Binary Cross-Entropy (BCE) and Dice loss, as shown in Eq. (1).
BCE provided stable pixel-level optimization, while Dice loss enhanced sensitivity to small and thin crack
structures.

LBCE = −
1
N

N
∑
i=1
[yi log (pi) + (1 − yi) log (1 − pi)]
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LDice = 1 −
2

N
∑
i=1

pi yi+ ε

N
∑
i=1

pi +
N
∑
i=1

yi+ ε

L = LBCE + LDice (1)

where N is the total number of pixels; yi ∈ {0, 1} denotes the ground-truth label of the i-th pixel; pi ∈ {0, 1} is
the predicted probability of the i-th pixel being a crack, obtained after the sigmoid activation to the network
output; ∈ is a small constant (10−7) introduced for numerical stability to prevent division by zero; LBCE, LDice,
and L correspond to the Binary Cross-Entropy loss, Dice loss, and the combined loss, respectively.

2.5 Performance Metrics
The performance of data generation is evaluated using the Learned Perceptual Image Patch Similarity

(LPIPS) metric, a perceptual measure that quantifies the similarity between synthetic and real images based
on deep feature representations [37]. LPIPS computes the distance between normalized feature activations
extracted from a pretrained network. Lower LPIPS values indicate that the generated images are more
perceptually similar to real ones, capturing human visual judgments more effectively. The definition of LPIPS
is shown in Eq. (2).

LPIPS (x , y) = ∑
l

1
Hl Wl

Hl

∑
h=1

Wl

∑
w=1
∥wl ⊙ (F̂l (x)hw − F̂l (y)hw)∥

2
2 (2)

where x and y are the input and generated images being compared; Fl is the feature map extracted from the
l-th layer of a pretrained deep network, and F̂l denotes its channel-wise normalized version; Hl and Wl are
the height and width of the feature map at layer l, while h and w are the corresponding spatial indices; wl is
the learned channel-wise weights for the l-th layer, and ⊙ refers to the element-wise product.

The Structural Similarity Index (SSIM) between real image x and generated image y is defined as the
product of a luminance term, a contrast term, and a structure term [38]. For SSIM (0–1), higher values
indicate better similarity between the generated and reference images. The SSIM is defined in Eq. (3).

SSIM (x , y) =
(2μx μy + C1) (2σx y + C2)
(μ2

x + μ2
y + C1) (σ 2

x + σ 2
y + C2)

(3)

where x is the matrix data from a window in the target image; y is the matrix data from a window in the
reference image; C1 and C2 are small constants introduced to avoid division by zero, with C1 = 0.0001 and
C2 = 0.0009; μx and μy are the mean values of x and y, respectively; σx and σy are the variances of x and y,
respectively; and σxy is the covariance between x and y.

To assess the accuracy of crack segmentation, two performance metrics were used, which are the IoU
and the dice coefficient (F1), as defined in Eqs. (4) and (5) [39]:

IoU = Predicted ∪Ground truth
Predicted ∩Ground truth

(4)

F1 = 2TP
2TP + FP + FN

(5)
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The Dice coefficient is calculated based on four parameters: true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). TP refers to correctly identified cracks, while TN refers
to correctly identified uncracked regions. FP occurs when uncracked concrete is incorrectly classified as
cracked, and FN occurs when cracks are mistakenly labeled as uncracked. IoU measures the overlap between
the predicted segmentation and the ground truth, defined as the ratio of the area of their intersection to the
area of their union. Both the IoU and F1 range from 0 to 1, with higher values indicating better segmentation
performance [18].

In addition to conventional evaluation metrics, Eqs. (6)–(8) introduce three structure-aware measures:
Boundary-IoU evaluates the alignment between predicted and ground-truth boundaries [40], Skeleton
Continuity assesses the connectivity of the predicted crack skeleton, and Centerline Recall quantifies the
fraction of ground-truth centerlines captured by the prediction. All three metrics, Boundary-IoU, skeleton
continuity, and centerline recall, range from 0 to 1, with higher values indicating better performance.

Boundary-IoU = ∣B (P) ∩ B (G) ∣
∣B (P) ∪ B (G) ∣

(6)

where B(P) denotes the set of boundary pixels in the predicted mask, and B(G) denotes the set of boundary
pixels in the ground-truth mask.

Skeleton Continuity =
Llongest

Ltotal
(7)

where Llongest is the length of the longest connected crack skeleton, and Ltotal is the total length of all predicted
skeleton pixels.

Centerline Recall = ∣C (G) ∩ P∣
∣C (G) ∣

(8)

where C(G) represents the centerline pixels of the ground-truth crack mask obtained by skeletonization, and
P represents the set of pixels predicted as crack. This metric quantifies the fraction of ground-truth crack
centerlines correctly detected by the prediction.

3 Results and Discussions

3.1 Image Generation
Fig. 4a illustrates the pixel intensity distributions for the RGB channels in the original dataset. The

histograms reveal that the red, green, and blue channels follow similar distributions, with most pixel
intensities falling in the mid-to-high range (approximately 100 to 250). This pattern indicates that the
dataset primarily consists of well-exposed images with balanced illumination and sufficient contrast, which
are crucial for effective feature extraction during model training. The smooth curves and overlapping
distributions across the three channels also reflect a consistent color balance, reducing the likelihood of
bias and supporting the generalizability. In contrast, the pixel intensity histogram of the DDPM-generated
images, shown in Fig. 4b, reveals a shift in distribution toward a more concentrated range between 50
and 200. This band suggests that the synthetic images tend to exhibit more uniform lighting conditions,
softer textures, and slightly lower brightness levels. Such characteristics may be attributed to the nature
of the denoising diffusion process, which tends to regularize local variations and suppress high-frequency
noise during image generation. While this may slightly reduce contrast, it helps reduce background noise
and potentially improve model robustness by providing a smoother data distribution. The complementary
nature of these distributions suggests that incorporating DDPM-generated images into the training set can
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increase the diversity of pixel-level features, thereby enriching the learning space of the segmentation models.
Moreover, this variation may help improve the model’s ability to generalize across different lighting and
texture conditions in real applications.

(a) (b)

(c)

(d)

Figure 4: Illustration of: (a) pixel intensity distribution of original images; (b) pixel intensity distribution of augmented
images; (c) representative examples of original images; and (d) representative examples of augmented images
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A qualitative comparison between Fig. 4c and d further confirms the visual similarity between real and
synthetic images. Despite the observed differences in pixel distribution, the generated images replicate key
visual features of the original dataset, including fine crack patterns, edge sharpness, and surface texture. There
is no noticeable degradation in image quality or unnatural artifacts. This resemblance confirms the effective-
ness of DDPM in synthesizing structurally consistent images, which not only enhances training diversity but
also maintains label fidelity. Collectively, these findings highlight the value of DDPM-generated images as a
meaningful complement to real data for semantic segmentation tasks in structural crack detection.

To further assess the fidelity of the generated images, zoomed-in panels were incorporated in the
figures for both the original and the generated images to enable direct comparison. These magnified regions
highlight fine crack details such as width, branching, and edge sharpness, as shown in Fig. A1. In comparison
to the real images, the generated cracks demonstrate a faithful preservation of crack color, edge sharpness,
and width, while also maintaining the overall texture continuity of the surrounding surface (e.g., white dots).
By conducting local-scale comparisons between real and synthetic images, the generative model is shown
to preserve essential crack features, thereby supporting the reliable use of synthetic data in crack-related
computer vision tasks. Moreover, the realism of the generated images was independently verified by a domain
expert in concrete materials.

The ablation study was conducted by varying both the noise steps (100, 200, 500, and 1000 forward
timesteps) and the inference steps (10, 100, 200, 500, and 1000). In diffusion models, noise steps refer to the
number of forward timesteps used during the training. In this process, clean images are gradually corrupted
with noise. A larger number of noise steps (e.g., 1000) provides a smoother noise schedule and typically leads
to more stable training. Inference steps, on the other hand, denote the number of reverse denoising steps
during sampling. As illustrated in Table 1, the effect of step configurations on perceptual quality (SSIM and
LPIPS) was evaluated, considering both noise schedule steps and inference steps. To note, the variation in
noise schedule steps does not influence the training time.

Table 1: Effect of steps on training efficiency and perceptual quality

Noise schedule steps Time (min) SSIM LPIPS
100 – 0.096 0.633
200 – 0.124 0.606
500 – 0.287 0.517
1000 – 0.302 0.461

Inference steps Time (min) SSIM LPIPS

10 10 0.335 0.501
100 115 0.312 0.470
200 225 0.308 0.468
500 550 0.304 0.465
1000 1100 0.302 0.461

The results indicate that increasing the number of noise schedule steps leads to a clear improvement
in image quality. With only 100 steps, the SSIM was 0.096 and the LPIPS reached 0.633, reflecting poor
structural similarity and perceptual quality. When the steps increased to 200, SSIM rose to 0.124 and LPIPS
dropped to 0.606. A more significant enhancement appeared at 500 steps, where SSIM reached 0.287 and
LPIPS dropped to 0.517. The best results were obtained with 1000 steps, yielding the highest SSIM of 0.302
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and the lowest LPIPS of 0.461. This shows that a larger noise schedule provides more stable diffusion and
higher quality generation. This result is further illustrated in Fig. 5a, where 100 and 200 steps fail to reveal
clear crack patterns, whereas 1000 steps produce visibly distinct cracks.

100 200 500 1000

(a)

10 100 200 500 1000

(b)

Figure 5: Examples of generated images with varying: (a) noise schedule steps and (b) inference steps

With the noise steps fixed at 1000, using only 10 inference steps required 10 min for sampling. It produced
the highest SSIM value of 0.335, although the LPIPS value remained relatively high at 0.501. As the number
of inference steps increased, the generation time grew almost linearly, reaching about 1100 min at 1000
steps. During this process, SSIM gradually declined from 0.335 at 10 steps to 0.302 at 1000 steps, while
LPIPS steadily improved from 0.501 to 0.461, reflecting enhanced perceptual similarity at the cost of reduced
structural similarity and substantially longer inference time. Although SSIM decreased, the realism of the
generated images improved, as shown in Fig. 5b. Overall, inference speed remains a major challenge in
applying DDPM to image generation, while using 1000 inference steps also impacts the image generation
speed in real applications.
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3.2 Comparison of GANs with DDPM
The images generated by DCGAN, WGAN-GP, StyleGAN2-ADA, and DDPM are compared in Fig. 6.

The outputs from DCGAN appear blurry and exhibit numerous artificial artifacts, a consequence of unstable
training and limited representational capacity in capturing complex crack patterns. In contrast, WGAN-GP
produces sharper and more realistic images with fewer visual distortions. This improvement is attributed
to the use of a gradient penalty, which stabilizes the training process and mitigates mode collapse, thereby
enabling the generator to produce images with more natural textures and coherent structures. However,
despite these enhancements, WGAN-GP still struggles with synthesizing fine structural details, particularly
in images with dense or irregular crack formations. DDPM, on the other hand, demonstrates a significant
improvement in image generation quality. StyleGAN2-ADA can generate higher resolution images with
sharp crack details, but it has limited capability in reproducing the background surface due to its tendency
to focus on prominent structural patterns rather than subtle texture variations. By employing a likelihood-
based training mechanism and a sequential denoising process, DDPM achieves high-quality image synthesis
with exceptional fidelity. The generated images closely resemble real crack samples, preserving both micro-
level boundaries and overall spatial distribution. This fidelity is critical for crack segmentation, where minor
geometric discrepancies can lead to significant segmentation errors.

Original images DCGAN WGAN-GP StyleGAN2-ADA DDPM

SSIM score 0.213 0.228 0.287 0.302
LPIPS score 0.796 0.581 0.528 0.461

Figure 6: Comparison of images generated by different generative AI models

Quantitatively, the improvement in generative quality is evident in the SSIM and LPIPS scores. The
SSIM scores increased from 0.213 with DCGAN to 0.228 with WGAN-GP, then to 0.287 with StyleGAN2-
ADA, and further increased to 0.302 with DDPM. The LPIPS scores decreased from 0.796 with DCGAN
to 0.581 with WGAN-GP, 0.528 with StyleGAN2-ADA, and further to 0.461 with DDPM. The consistent
improvement in SSIM and reduction in LPIPS indicate that the synthetic images are becoming increasingly
similar to real ones in both structural integrity and perceptual quality. In particular, DDPM achieves higher
SSIM and lower LPIPS compared to GAN-based models, demonstrating superior ability to capture both
global consistency and fine-grained crack characteristics. These improvements yield high-quality synthetic
data that are especially beneficial in data-scarce scenarios, as they enhance the training of downstream crack
detection and segmentation models. By enriching datasets with realistic variations, DDPM-generated images
improve model performance, mitigate overfitting, and increase robustness to unseen defect patterns during
deployment. Based on the comparison results, DDPM was identified as the most suitable model for image
augmentation and was therefore adopted in subsequent experiments.
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The image generation using DCGAN and WGAN-GP was conducted at a lower resolution of 128 ×
128, constrained by the model architecture. StyleGAN2-ADA and DDPM were trained on higher-resolution
images (512 × 512). Table 2 summarizes the comparison of generative models in terms of efficiency and
computational cost. DCGAN at 128 × 128 resolution with a batch size of 8 achieves the fastest inference
speed of 0.64 ms, with a generator size of 3.55 MB and a discriminator size of 2.77 MB, requiring 7.7 GB of
GPU memory out of 24 GB. WGAN-GP at the same resolution and batch size of 8 runs slightly slower at
0.97 ms, with larger model sizes of 12.79 MB for the generator and 11.16 MB for the critic and requires 8.6 GB
of memory. WGAN-GP has larger model sizes than DCGAN because its generator and critic require higher
capacity to support Wasserstein distance estimation and gradient penalty regularization. StyleGAN2-ADA
at 512 × 512 resolution with a batch size of 8 requires 22.1 ms per inference, with a generator size of 109.5 MB
and a discriminator size of 112.4 MB, consuming 17.4 GB of GPU memory. In comparison, DDPM at 512 ×
512 resolution with a batch size of 2 is the slowest, requiring 60,000 ms (1 min) per inference (1000 inference
steps), with a model size of 453.6 MB and a memory usage of 21.2 GB. Overall, DDPM remains much slower
than GANs despite its superior image quality.

Table 2: Comparison of generative models in terms of efficiency and computational cost

Model Resolution Inference speed
per image (ms)

Model size
(MB)

Computational
resources (GB)

DCGAN 128 × 128 0.64 Generator: 3.55 7.7/24Discriminator:
2.77

WGAN-GP 128 × 128 0.97 Generator:
12.79 8.6/24

Critic: 11.16

StyleGAN2-ADA 512 × 512 22.1 Generator:
109.5 17.4/24

Discriminator:
112.4

DDPM 512 × 512 60,000 453.6 21.2/24

3.3 Comparison of Segmentation Models
Fig. 7 shows the changes in training and validation loss, as well as IoU, across different epochs. Over

the course of 200 training epochs, the comparative evaluation of six segmentation models revealed clear
differences in both convergence behavior and final performance. In the loss-based evaluation, DeepLabV3+
consistently achieved the lowest and most stable values, ranging from 0.762 to 0.766, indicating superior
optimization efficiency. SegFormer followed closely, converging to a similar but slightly less optimal range,
while UNet, FPN, and LinkNet demonstrated comparable convergence, stabilizing around 0.74–0.75. MaNet
exhibited relatively weaker performance, with its loss stabilizing at approximately 0.73–0.74, suggesting
that it was less effective in minimizing error compared with the other architectures. In the validation IoU
analysis, all six models demonstrated smooth and stable convergence. LinkNet, UNet, and MaNet achieved
the strongest performance, converging to the highest IoU values in the range of 0.887–0.897. DeepLabV3+
and SegFormer achieved slightly lower but still competitive IoU values, stabilizing between 0.845 and 0.858.
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FPN converged reliably but attained the lowest IoU of 0.846, highlighting its relative limitations compared
with the other architectures.
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Figure 7: Training and validation loss and IoU performance over epochs: (a) training loss; (b) validation loss; (c)
training IoU; and (d) validation IoU

To evaluate the effectiveness of the models, six semantic segmentation architectures were tested: U-Net,
FPN, LinkNet, DeepLabV3+, MaNet, and SegFormer. Their performance on the training, validation, and
testing datasets is summarized in Table 3, using F1 score, IoU, Boundary IoU (BIoU), Skeleton Continuity
(SC), and Centerline Recall (CR). Among these models, LinkNet achieved the highest F1 and IoU scores
across all datasets. On the training set, it reached an F1 of 0.8965 and an IoU of 0.9455. On the validation
set, the values were 0.9455 and 0.8965, respectively. On the testing set, it achieved an F1 of 0.9455 and an IoU
of 0.8966, demonstrating robustness and strong feature extraction ability. In addition, LinkNet obtained the
highest BIoU, suggesting that it captures object boundaries more accurately, while also achieving competitive
SC and CR values. These highlight its ability to preserve structural continuity and align well with the ground-
truth centerlines. Collectively, these results demonstrate that LinkNet not only achieves accurate region-level
segmentation but also maintains fine-grained geometric details that are critical for crack and defect analysis.
U-Net and MaNet followed closely with competitive F1 and IoU values. MaNet stood out by achieving
the highest SC score of 0.6255 on the validation dataset, indicating stronger capability in preserving fine
structural details. In contrast, DeepLabV3+ delivered relatively balanced results, but its BIoU on the training
set was only 0.2368, indicating difficulties in capturing precise boundary alignment. SegFormer showed mid-
range performance across most metrics, reflecting moderate generalization ability. FPN generally lagged
in F1 and IoU despite achieving reasonable BIoU scores. Overall, these results indicate that convolutional
models such as LinkNet and U-Net remain highly competitive, particularly for achieving high segmentation
accuracy, while MaNet provides advantages in preserving continuity of thin structures. Transformer-based
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SegFormer demonstrates stable but less dominant performance, and DeepLabV3+ shows trade-offs between
overall accuracy and boundary precision. The consistency of results across training, validation, and testing
suggests that all models trained stably with moderate overfitting. Representative segmentation results from
various semantic segmentation models are shown in Fig. 8. FPN and DeepLabV3+ exhibited higher error
rates, particularly when processing images with complex crack patterns. These models often struggled to
capture fine structural details, resulting in incomplete or fragmented segmentations.

Table 3: Performance valuation of various segmentation models

Dataset Metrics U-Net FPN LinkNet DeepLabV3+ MaNet SegFormer

Training dataset

F1 0.9400 ±
0.0004

0.9164 ±
0.0018

0.9458 ±
0.0013

0.9155 ±
0.0009

0.9413 ±
0.0004

0.9237 ±
0.0006

IoU 0.8867 ±
0.0006

0.8457 ±
0.0009

0.8965 ±
0.0015

0.8442 ±
0.0010

0.8891 ±
0.0007

0.8581 ±
0.0008

BIoU 0.4496 ±
0.0012

0.5113 ±
0.0068

0.6405 ±
0.0049

0.2368 ±
0.0036

0.4187 ±
0.0023

0.5319 ±
0.0053

SC 0.5621 ±
0.0105

0.5750 ±
0.0068

0.5774 ±
0.0097

0.5769 ±
0.0122

0.5612 ±
0.0037

0.5863 ±
0.0061

CR 0.9927 ±
0.0004

0.9811 ±
0.0016

0.9923 ±
0.0003

0.9800 ±
0.0008

0.9909 ±
0.0015

0.9855 ±
0.0007

Validation dataset

F1 0.9400 ±
0.0009

0.9164 ±
0.0011

0.9456 ±
0.0016

0.9328 ±
0.0008

0.9411 ±
0.0007

0.9236 ±
0.0010

IoU 0.8868 ±
0.0007

0.8458 ±
0.0010

0.8965 ±
0.0015

0.8693 ±
0.0009

0.8890 ±
0.0006

0.8584 ±
0.0011

BIoU 0.4067 ±
0.0034

0.3811 ±
0.0072

0.4856 ±
0.0070

0.4196 ±
0.0053

0.3257 ±
0.0035

0.4369 ±
0.0058

SC 0.5609 ±
0.0096

0.5598 ±
0.0047

0.5295 ±
0.0109

0.4822 ±
0.0085

0.6255 ±
0.0028

0.4506 ±
0.0062

CR 0.9903 ±
0.0005

0.9869 ±
0.0007

0.9774 ±
0.0008

0.9882 ±
0.0006

0.9861 ±
0.0006

0.9891 ±
0.0005

Testing dataset

F1 0.9360 ±
0.0010

0.9165 ±
0.0012

0.9455 ±
0.0013

0.9301 ±
0.0010

0.9413 ±
0.0010

0.9237 ±
0.0015

IoU 0.8798 ±
0.0005

0.8458 ±
0.0008

0.8966 ±
0.0017

0.8693 ±
0.0010

0.8892 ±
0.0004

0.8582 ±
0.0009

BIoU 0.3051 ±
0.0057

0.3707 ±
0.0039

0.4838 ±
0.0050

0.3889 ±
0.0012

0.3040 ±
0.0021

0.3758 ±
0.0004

SC 0.4766 ±
0.0058

0.4588 ±
0.0012

0.4699 ±
0.0079

0.4894 ±
0.0040

0.4737 ±
0.0031

0.4548 ±
0.0038

CR 0.9803 ±
0.0006

0.9678 ±
0.0003

0.9830 ±
0.0003

0.9584 ±
0.0005

0.9824 ±
0.0001

0.9663 ±
0.0007

To provide a holistic comparison across multiple metrics, a radar chart (Fig. 9) was constructed by first
applying min–max normalization to each metric so that their values were scaled to the range of 0 to 1, thereby
eliminating the influence of differing numerical ranges (e.g., BIoU ≈ 0.3–0.5 vs. CR ≈ 0.97–0.98). Each axis
of the radar chart corresponds to one performance metric, and the normalized performance of each model
is plotted and enclosed to form a polygon. A larger enclosed area represents superior overall performance.
From the visualization, LinkNet forms the most extensive polygon across most metrics, confirming it as the
optimal model in terms of both region-level accuracy and structural detail preservation.
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Original FPN U-Net DeepLabV3+ LinkNet MaNet SegFormer Ground truth

Figure 8: Representative examples of predicted results from various segmentation models

Figure 9: Radar chart comparing the performance of six segmentation models across five evaluation metrics

3.4 Effects of Data Augmentation
With LinkNet identified as the optimal model in Section 3.3, further evaluation is conducted to investi-

gate data augmentation strategies. Fig. 10a illustrates the comparison between geometric augmentation and
generated images. The DDPM + LinkNet with geometric augmentation (geom) achieved the highest F1 score
of 0.957 and an IoU of 0.913, confirming its superior region-level segmentation accuracy. It also outperformed
the other configurations in BIoU with 0.503 and SC with 0.488, demonstrating a stronger ability to delineate
boundaries and preserve fine structural continuity. Although its CR score reached 0.979, slightly below the
0.983 obtained by LinkNet with geometric augmentation alone, the model still performed competitively.
The overall improvements across the other metrics indicate that integrating synthetic data with geometric
transformations provides the most effective strategy for enhancing segmentation performance. Fig. 10b
shows that increasing the augmentation ratio from 0 to 100 consistently improves segmentation performance.
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The F1 score rises from 0.946 without augmentation to 0.957 at the highest augmentation ratio, while IoU
improves from 0.897 to 0.913, confirming better overlap between predictions and ground truth. BIoU and
SC also increase, from 0.484 to 0.503 and from 0.470 to 0.488, respectively, indicating enhanced precision in
boundary alignment and improved continuity in structural details. CR remains relatively stable, fluctuating
around 0.980, which suggests that augmentation primarily strengthens region- and boundary-level accuracy
without significantly affecting the coverage of crack centerlines. Collectively, these results highlight that
higher augmentation ratios, particularly when combined with diffusion-generated data, contribute to steady
gains in segmentation accuracy and structural consistency.
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Figure 10: Effects of data augmentation strategies: (a) comparison between geometric augmentation and generated
images and (b) impact of augmentation ratio

3.5 Challenges and Future Studies
Generative models such as GANs and DDPMs can synthesize images but face trade-offs between

controllability and diversity. Achieving fine-grained control over attributes like texture, color, and surface
conditions is especially important in domains such as concrete damage simulation, where visual fidelity
and variation are critical for building robust datasets. Controllable image generation allows users to guide
the output by conditioning on specific features, such as crack patterns, making it ideal for generating
diverse samples of particular damage types. Techniques like style transfer can further enhance this by
applying domain-specific aesthetics to generic structural forms. In this context, conditional GANs represent
an early but effective attempt to incorporate controllability into generative modeling by conditioning the
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generation process on class labels or auxiliary information. Although conditional GANs can guide the
synthesis toward specific crack categories, they still suffer from instability and resolution limitations. By
contrast, modern image generation systems, including conditional diffusion models, Stable Diffusion, and
DALL⋅E, incorporate multi-modal conditioning mechanisms. These models take structured inputs such as
text prompts, segmentation maps, or sketches to steer the generation process toward desired outcomes.

Although the proposed DDPM framework demonstrates strong capability in generating high qual-
ity crack images, the training data used in this study were mostly collected under relatively consistent
lighting conditions. In real-world structural monitoring scenarios, however, illumination may vary signif-
icantly due to natural light, shadows, or artificial sources. Such variation could affect both the fidelity of
DDPM-generated outputs and the robustness of segmentation models trained with augmented datasets.
Future research should therefore examine how lighting variation influences the quality and realism of
DDPM outputs, and whether incorporating illumination-augmented training data (e.g., synthetic lighting
transformations or conditional diffusion models) can improve the generalization of downstream crack
detection tasks.

Another promising direction is the edge deployment of diffusion models. The computational overhead
and inference latency of DDPM remain high, as discussed in Section 3.2. For real-time crack monitoring in
field environments, deploying DDPMs on edge devices such as embedded GPUs or mobile accelerators is
essential. Future research could therefore explore lightweight diffusion variants (e.g., distilled or accelerated
DDPMs) to achieve efficient generation under limited hardware resources. Such developments would enable
on-site crack analysis without reliance on cloud infrastructure, facilitating real-time and scalable structural
health monitoring.

Generative augmentation enhances data diversity by synthesizing realistic samples but still relies on
manual labeling, especially for tasks requiring precise annotations. Since generated images lack ground-
truth labels, manual or semi-automated annotation remains necessary. Current methods may introduce label
noise, limiting their effectiveness. Thus, reducing labeling effort remains an open challenge. Future research
should focus on developing generative models that can produce both realistic images and reliable annota-
tions simultaneously. Promising directions include mask-conditioned generation, label transfer techniques,
weakly supervised learning, and self-supervised methods to reduce manual labeling effort and mitigate
annotation noise.

Future research should aim to develop controllable generative models for crack monitoring tasks using
conditional diffusion models. Additionally, optimizing models for deployment on edge devices or low-power
hardware would allow real-time generation in field conditions. With high-quality segmentation models,
future research can enable real-time crack quantification during bending tests. This advancement would
allow for continuous monitoring of crack initiation and propagation, providing deeper insights into material
behavior under stress. It could also improve the accuracy of failure prediction, support the development of
more robust structural health monitoring systems, and reduce the need for post-test analysis. Beyond crack
analysis, machine learning has also been applied to predict concrete properties from mixture proportions,
with deterministic and robust optimization enhancing reliability under varying conditions [41]. Building
on this, machine learning models can be trained using identified crack widths and crack counts to predict
properties such as tensile strength and tensile strain capacity.

4 Conclusions
This study introduced a diffusion-based framework for generating high quality, artifact-free images of

complex concrete cracks and demonstrated its effectiveness as a data augmentation strategy for improving
crack segmentation performance. Based on the above investigation, the following conclusions can be drawn:



20 Struct Durab Health Monit. 2026;20(1)

(1) Compared with conventional GAN-based methods, DDPM generated visually more realistic and
structurally detailed crack images, achieving the highest SSIM score of 0.302 and the lowest LPIPS
score of 0.461, significantly outperforming DCGAN (SSIM 0.213, LPIPS 0.796), WGAN-GP (0.228,
0.581), and StyleGAN2-ADA (0.287, 0.528).

(2) Ablation on DDPM step configurations showed that increasing the noise schedule steps improved
image quality, with SSIM rising from 0.096 at 100 steps to 0.302 at 1000 steps and LPIPS decreasing
from 0.633 to 0.461. Therefore, small step counts cannot be used for training DDPM effectively. For
inference process, fewer steps such as 10 achieved the highest SSIM of 0.335 but slower reduction in
LPIPS, whereas larger step counts improved perceptual similarity at the cost of longer generation times.

(3) Among the six segmentation models evaluated, LinkNet achieved the best overall performance, with
F1 reaching 0.9455 and IoU 0.8966 on the testing dataset. It also obtained the highest BIoU of
0.4838, competitive SC of 0.4699, and a strong CR of 0.9830, confirming its robustness in capturing
both region-level accuracy and fine structural details. Incorporating DDPM-generated images with
geometric augmentation further improved accuracy, with F1 increasing to 0.957 and IoU to 0.913, along
with enhanced boundary alignment and skeleton continuity.

(4) Despite the advantages of DDPMs, several challenges remain. First, generative models face a trade-
off between controllability and diversity, and future research should explore conditional diffusion
frameworks for fine-grained control over crack attributes. Second, the dataset used in this study was
collected under relatively uniform illumination, whereas real-world monitoring involves varying light-
ing conditions; extending training with illumination-augmented data would improve generalization.
Third, the computational overhead of DDPMs limits real-time deployment, highlighting the need
for lightweight or distilled variants suitable for edge devices. Finally, generative augmentation still
depends on manual labeling, and future work should develop approaches that jointly produce images
and reliable annotations to reduce labeling burden.
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Appendix A

(a) (b)

(c) (d)

Figure A1: Representative examples of real and synthetic crack images: (a) and (c) show real images, while (b) and (d)
present the generated images. Red boxes indicate selected regions of interest, with the corresponding zoom-in panels
displayed on the right
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