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One of these spaces, call it X, even contains a closed copy of N (the discrete space of natural numbers) 
that is C∗-embedded but not C-embedded. It is well known that the diagonal map from X into RC(X)

embeds X as a closed C-embedded subspace. The closed copy of N in X then becomes a closed copy of N
in RC(X) that is C∗-embedded but not C-embedded.

An intermediate realcompact space, Y say, contains a closed copy of N that is not C∗-embedded and, as 
above, this yields a closed copy of N in RC(Y ) that is not C∗-embedded.

For both spaces the cardinality of the set of continuous functions is equal to 𝔠, which yields the interesting 
result that one can find closed copies of N in R𝔠, that are not C∗-embedded, and that are C∗-embedded 
but not C-embedded.

In the first version of [5] we posed two questions suggested by these results. We repeat them here.

Question 1. What is the minimum cardinal κ such that Rκ contains a closed copy of N that is C∗-embedded 
but not C-embedded?

Question 2. What is the minimum cardinal κ such that Rκ contains a closed copy of N that is not C∗
embedded?

Given that Rω0 is metrizable we know that in both cases we have ℵ0 < κ ≤ 𝔠.
After we posted the first version of the present paper on arxiv.org Roman Pol kindly drew our attention 

to three papers, [7], [12], and [10], containing results that address the two questions above.
These are:

(1) The main result, Theorem 10, of [7] implies that there are many closed copies of N in Rω1 that are not 
C∗-embedded.

(2) The paper [12] contains another example, Example 1.1, of a closed copy of N in Rω1 that is not C∗
embedded, and an example of a closed copy of N in R𝔠 that is C∗-embedded but not C-embedded.

(3) In [10] one finds a result, Theorem 3.1, that implies that under the assumption of the inequality 𝔯 > ℵ1
every C∗-embedded subset of Rω1 is C-embedded.
The cardinal 𝔯 is the reaping number : the minimum cardinality of a family of subsets ℛ of N that 
behaves like an ultrafilter but for the finite intersection property: for every subset X of N there is a 
member R of ℛ such that R ⊆∗ X or R ∩X =∗ ∅; see [3].

Thus, Question 2 was answered before we posed it and the answer to Question 1 depends on one’s 
assumptions: the Continuum Hypothesis implies the minimum is ℵ1, and it is also consistent that it is 
larger than ℵ1.

The result from [10] can be viewed as a local version of the main result of [2]: in a model obtained by 
adding supercompact many Random reals to a model of CH every C∗-embedded subspace of every space 
of character less than 𝔠 is C-embedded. Indeed, one can create a model of 𝔯 > ℵ1 by adding ℵ2 or more 
Random reals to a model of CH.

In retrospect our paper [5] should have contained references to [7,10,12] and we regret not finding these 
references ourselves. Nevertheless the methods and results of [5] and the present paper are sufficiently 
different from the earlier ones that we feel they merit publication.

In Sections 2 and 3 we give new examples and obtain topological and combinatorial translations of the 
statement ``Rω1 contains a closed copy of N that is not C∗-embedded'' that suggest further interesting 
questions.

In Section 2 we present three constructions of closed copies of N that are not C∗-embedded in Rω1 : one 
directly from an Aronszajn tree, one directly from an Aronszajn continuum, and one as the path space of 
an Aronszajn tree. We decided to give all three examples because they show how versatile these objects are.
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In Section 3 we give the translations mentioned above and give a fourth example that is of a somewhat 
different nature.

Section 4 deals with a class of topological spaces that feature in the translations, and in Section 5 we 
present models where CH fails but where the answer to Question 1 is still ℵ1.

1. Preliminaries

By now the reader may have guessed that by ``a closed copy of N'' in some space X we mean a closed 
subspace of X that is homeomorphic to the discrete space N, in other words: a countably infinite closed 
and discrete subspace.

In general we say that a subspace Y of a space X is C-embedded if every continuous function f : Y → R

has a continuous extension to all of X. If this holds for all bounded continuous functions then we say that 
Y is C∗-embedded in X.

The way we shall show that a closed copy of N is not C∗-embedded in X is by exhibiting disjoint subsets 
A and B of N that are not completely separated, which means that whenever g : X → R is bounded and 
continuous the closures of g[A] and g[B] intersect. This then implies that the characteristic function of A
has no continuous extension to X.

As mentioned in the introduction we shall use Aronszajn trees and continua in some of our constructions; 
Todorčević’s article [13] contains all the information that we need.

As is common we use starred versions of the inclusion and equality signs to indicate ‘mod finite’. So 
A ⊆∗ B means that A \B is finite, A ⊂∗ B means that A \B is finite but B \A is not, and A =∗ B means 
A ⊆∗ B and B ⊆∗ A.

We use the well-known fact that if ⟨An : n ∈ ω⟩ is a sequence of infinite subsets of N such that An+1 ⊆∗ An

for all n then there is an infinite subset A of N such that A ⊆∗ An for all n.

We also remind the reader of the notation N∗ for βN \N and, generally, A∗ = clA∩N∗ for subsets of N.

Any potentially unfamiliar topological notions will be defined when needed; definitions not given here 
can be found in Engelking’s book [6].

One piece of possibly non-standard notation: if t : α → ω is a sequence of finite ordinals and if n ∈ ω

then t ∗ n denotes the sequence with domain α+ 1 that coincides with t on α and takes on value n at α. In 
one formula: t ∗ n = t ∪

{︁
⟨α, n⟩

}︁
.

We use <ω1ω to denote the tree of all sequences of finite ordinals whose domains are countable ordinals.

2. Closed copies of N that are not 𝑪∗-embedded

This section contains further examples that show that the answer to the Question 2 is ℵ1. We give three 
examples, based on Aronszajn trees and lines, of closed copies of N that are not C∗-embedded in Rω1 . This 
may seem like overdoing things somewhat but we think that this presentation is more informative.

From our first two constructions we extract a few translations of ``Rω1 contains a closed copy of N that is 
not C∗-embedded'' that allow us to construct a relatively simple third example and an even simpler fourth 
one.

2.1. A closed copy of N that is not C∗-embedded, from an Aronszajn tree

The first construction uses an Aronszajn tree to guide an embedding of N into Rω1 .
Using the fact about decreasing sequences of infinite subsets of N mentioned above we define a family 

{At : t ∈ <ω1ω} of infinite subsets of N such that A∅ = N and
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(1) if s ⊂ t then At ⊂∗ As, and
(2) for every t the family {At∗n : n ∈ ω} is a partition of At.

Now take an Aronszajn subtree T of <ω1ω as in [11, Theorem II.5.9]: it consists of finite-to-one members 
of <ω1ω, and is such that {t ∗ n : n ∈ ω} ⊆ T whenever t ∈ T .

For every non-zero α in ω1 we let ⟨t(α, n) : n ∈ ω⟩ enumerate the αth level Tα of T in a one-to-one 
fashion. We abbreviate At(α,n) as A(α, n).

By construction each of the families {A(α, n) : n ∈ ω} is pairwise almost disjoint. We can assume, after 
making finite modifications to the A(α, n), that every family {A(α, n) : n ∈ ω} is in fact a partition of N.

We use the partitions to define a map k ↦→ xk from N to Rω1 .
First we set xk(0) = 2−k for all k. This ensures that X = {xk : k ∈ N} is a relatively discrete subspace 

of Rω1 .
Second, for every non-zero α in ω1 we define

x2k(α) = x2k+1(α) = m iff k ∈ A(α,m).

This will ensure that X is closed in Rω1 and that the sets {x2k : k ∈ N} and {x2k+1 : k ∈ N} are not 
completely separated in Rω1 .

To see that X is closed let x ∈ clX and let u be an ultrafilter such that x = u-lim xk. We claim u is in 
fact a fixed ultrafilter and hence that x ∈ X.

Since u is a filter there is for every β at most one n such that A(β, n) ∈ u. Let B = {⟨β, n⟩ : A(β, n) ∈ u}. 
If u were free then A(β, n) ∩A(γ,m) would be infinite whenever ⟨β, n⟩, ⟨γ,m⟩ ∈ B. By the construction of 
the family {At : t ∈ <ω1ω} this would mean that {t(β, n) : ⟨β, n⟩ ∈ B} is linearly ordered in T , and hence 
countable.

Take α such that Tα ∩ {t(β, n) : ⟨β, n⟩ ∈ B} = ∅, and let m be the smallest natural number larger than 
or equal to x(α). Then U = N \

⋃︁
i≤m A(α, i) belongs to u, and x2k(α) = x2k+1(α) ≥ x(α)+1 for all k ∈ U . 

This shows that x(α) ̸= u-lim xk(α), which contradicts the assumption that x = u-lim xk.

To see that {x2k : k ∈ N} and {x2k+1 : k ∈ N} are not completely separated in Rω1 let g : Rω1 → [0, 1]
be continuous. It is well-known, see [6, Problem 2.7.12], that there are δ < ω1 and a continuous function 
h : Rδ → [0, 1] such that g = h ◦ πδ. Here πδ is the projection from Rω1 onto Rδ.

Consider A(δ, 0). By construction we know that for every non-zero α < δ there is a single nα such 
A(δ, 0) ⊂∗ A(α, nα). Let x ∈ Rδ be given by x(0) = 0 and x(α) = nα, then the subsequences ⟨πδ(x2k) : k ∈
A(δ, 0)⟩ and ⟨πδ(x2k+1) : k ∈ A(δ, 0)⟩ of ⟨xk : k ∈ N⟩ both converge to x and so h(x) is in the closure of 
both {g(x2k) : k ∈ N} and {g(x2k+1) : k ∈ N}.

2.2. Another closed copy of N that is not C∗-embedded, from an Aronszajn line

Let L be an Aronszajn continuum: a first-countable linearly ordered continuum of weight ℵ1 with the 
property that the closure of every countable set is second-countable, see [13, Section 5]. We can also assume, 
without loss of generality, that L has no non-trivial separable intervals.

Let ⟨xα : α ∈ ω1⟩ enumerate a dense subset of L, where we assume that x0 = minL and x1 = maxL. 
Using the first-countability of L we find that L =

⋃︁
α<ω1

cl{xβ : β ≤ α}, that is, L is the union of an 
increasing sequence of second-countable compact subsets. Upon thinning out the sequence we obtain a 
strictly increasing sequence ⟨Kα : α ∈ ω1⟩ of second-countable compact subsets whose union is equal to L. 
The assumption on the intervals of L implies that each Kα is nowhere dense.

We claim that every Kα is a Gδ-set of L. By the first-countability of L this is clear if α is finite, so we 
assume below that α is infinite, and hence that minL and maxL belong to Kα.
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Since Kα is second-countable we can find a countable family ℐ of open intervals in L such that {I ∩Kα :
I ∈ ℐ} is a base for the topology of Kα.

Every convex component C of L \ Kα is of the form (aC , bC), with aC , bC ∈ Kα. If C and D are two 
such components then bC < aD or bD < aC . For each C take IC ∈ ℐ such that bC ∈ IC ∩Kα ⊆ [bC ,maxL]. 
Then aC / ∈ IC and so bD / ∈ IC whenever bD < aC . It follows that IC ̸= ID whenever C ̸= D. This shows 
that there are at most countably many convex components in the complement of Kα.

Enumerate these components as ⟨Cn : n ∈ ω⟩ and choose for every n ∈ ω sequences ⟨a(n, k) : k ∈ ω⟩ and 
⟨b(n, k) : k ∈ ω⟩ in Cn such that a(n, k) ↓ aCn

and b(n, k) ↑ bCn
.

Then Cn =
⋃︁

k∈ω[a(n, k), b(n, k)] for all n. Define Fk =
⋃︁

n≤k[a(n, k), b(n, k)] for all k. Then ⟨Fk : k ∈ ω⟩
is a sequence of closed sets and its union is equal to the complement of Kα.

Since L has weight ℵ1 there is a compactification γN of N such that γN \ N is (homeomorphic to) L, 
see [6, Problem 3.12.18(c)]. Take the quotient of γN × {0, 1} obtained by identifying ⟨x, 0⟩ and ⟨x, 1⟩ for 
all x ∈ L.

The result is a new compactification δN of N with remainder equal to L and in which N is the union of 
two subsets A and B such that L = clA ∩ clB.

We map δN into [0, 1]ω1 in such a way that the image of N will be a closed subset of (0, 1)ω1 that is not 
C∗-embedded.

For every α ≥ 1 we let fα : δN → [0, 1] be continuous such that Kα = f←
α (0) and fα[N] ⊆ (0, 1). We 

let f0 : δN → [0, 1] be the continuous map determined by f0(k) = 1
2 + 2−k−2; it maps L to {1

2} and N
into (1

2 , 1).
The diagonal map F of ⟨fα : α ∈ ω1⟩ maps δN to [0, 1]ω1 and maps N into (0, 1)ω1 .
The first coordinate f0 ensures that F [N] is relatively discrete in (0, 1)ω1 ; it remains to show that it is 

closed and not C∗-embedded.
To see that F [N] is closed in (0, 1)ω1 observe that for every x ∈ L there is an α such that x ∈ Kα; but 

then fβ(x) = 0 for β ≥ α. It follows that F [N] = F [δN] ∩ (0, 1)ω1 .
To see that F [N] is not C∗-embedded in (0, 1)ω1 let g : (0, 1)ω1 → [0, 1] be continuous. We show that the 

closures of g[F [A]] and g[F [B]] intersect.
As above there is an α such that g factors through the first α coordinates, that is, there is a continuous 

map h : (0, 1)α → [0, 1] such that g = h ◦ πα. Take x ∈ L \ Kα. Then x ∈ clA ∩ clB, hence πα(x) ∈
cl(πα[A])∩ cl(πα[B]). But because x / ∈ Kβ for all β ≤ α we find that πα(x) ∈ (0, 1)α and hence we conclude 
that h(πα(x)) ∈ cl(g[F [A]]) ∩ cl(g[F [B]]).

2.3. A characterization

From the foregoing example we extract a characterization of there being a closed copy of N in Rω1 that 
is not C∗-embedded.

Theorem 2.1. The following three statements are equivalent:

(1) There is closed copy of N in Rω1 that is not C∗-embedded.
(2) There is closed copy of N in Rω1 that is not C-embedded.
(3) There is a compact space X with a cover consisting of ℵ1 many zero-sets that has no countable subcover.

Proof. That (1) implies (2) is clear.
To prove (2) implies (3) we take a countable closed and discrete subset N of (0, 1)ω1 that is not C

embedded. Let K = clN \N , where we take the closure in [0, 1]ω1 . For every α ∈ ω1 and i ∈ {0, 1} we let 
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A(α, i) = {x ∈ K : xα = i}. Then {A(α, i) : ⟨α, i⟩ ∈ ω1 × 2} is a cover of K by ℵ1 many Gδ-sets. We show 
that there is no α ∈ ω1 such that {A(β, i) : ⟨β, i⟩ ∈ α× 2} covers K.

Let α ∈ ω1; we can assume that the projection πα : [0, 1]ω1 → [0, 1]α is one-to-one on N . If {A(β, i) :
⟨β, i⟩ ∈ α × 2} covers K then for every x ∈ K there is a β ∈ α such that xβ ∈ {0, 1}, and hence 
πα(x) / ∈ (0, 1)α. We see that πα[K] is disjoint from (0, 1)α and hence that πα[N ] is closed in (0, 1)α and 
hence also C-embedded because (0, 1)α is metrizable. But then N would be C-embedded in (0, 1)ω1 .

To prove that (3) implies (1) we proceed as in Section 2.2. Let X be a space as in (3) and let {Aα : α ∈ ω1}
be the cover by zero-sets without a countable subcover. We may assume that X has weight ℵ1, for example, 
by choosing a sequence ⟨fα : α ∈ ω1⟩ of continuous functions from X to [0, 1] such that Aα = f←

α (0) for 
all α. The image K of X under the diagonal map of the sequence has the same property as X itself, where 
Bα = {x ∈ K : xα = 0} defines the family of zero-sets.

The construction in Section 2.2 now yields a closed copy of N in (0, 1)ω1 that is not C∗-embedded. □
Remark 2.2. Of course 22 = 4 is also an equivalent of statement (1), as both are true, but this theorem 
should be understood as a translation: to construct the desired embedding it is necessary and sufficient to 
construct a particular type of compact topological space.

Remark 2.3. It is interesting to see that the formally weaker statement (2) implies statement (1); what 
is hidden in the proof is that from the copy that is not C-embedded one constructs a copy that is not 
C∗-embedded by taking its closure in [0, 1]ω1 , doubling the resulting compactification, then glueing the 
remainders onto each other and find a suitable embedding of the resulting space.

2.4. Yet another closed copy of N that is not C∗-embedded, from an Aronszajn tree

To see an application of Theorem 2.1 we create yet another closed copy of N in Rω1 that is not C∗
embedded, by exhibiting a space that satisfies the properties in (3) in the theorem.

We let T be an Aronszajn tree and we take its path space σT , where a path is a linearly ordered subset P
that is also an initial segment: if t ∈ P and s ≤ t then s ∈ P . We view σT , via characteristic functions, as 
a subspace of the Cantor cube {0, 1}T . For more on this construction see [14].

If a point x ∈ {0, 1}T is not in σT then there are s and t in T with x(s) = x(t) = 1 that are incomparable, 
or there are s and t with x(s) = 0, x(t) = 1 and s < t. In either case x has a neighborhood that is disjoint 
from σT . We see that σT is closed and hence compact. The weight of σT is at most that of {0, 1}T , that is 
ℵ1.

For α ∈ ω1 we let Kα be the set of paths that are of length at most α. To see that Kα is closed note that 
p ∈ Kα iff p ∩ Tα = ∅. That is Kα = σT \

⋃︁
t∈Tα

Ot, where Ot = {p : t ∈ p}. The sets Ot are clopen, so the 
union 

⋃︁
t∈Tα

Ot is an open Fσ-set.
Because T is uncountable no countable subfamily of {Kα : α ∈ ω1} covers σT .
Note that, as every path is countable, the space σT is actually Corson-compact.

3. The connection with Aronszajn trees and lines

Each of the three constructions in the previous section uses an Aronszajn tree or line as input. The 
following theorem, which adds three more statements to the list in Theorem 2.1, makes precise how these 
structures enter the constructions.

Theorem 3.1. The following statements are equivalent.

(1) There is closed copy of N in Rω1 that is not C∗-embedded.
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(2) There is closed copy of N in Rω1 that is not C-embedded.
(3) There is a compact space X with a cover consisting of ℵ1 many zero-sets that has no countable subcover.
(4) There is a compact space X of weight ℵ1 with a cover consisting of ℵ1 many zero-sets that has no 

countable subcover.
(5) The space N∗ has a cover by ℵ1 many zero-sets that has no countable subcover.
(6) There is an ω1 × ω-matrix ⟨A(α, n) : ⟨α, n⟩ ∈ ω1 × ω⟩ of infinite subsets of N such that

(a) for every countable subset C of ω1 there is a function f : C → ω such that {A(α, f(α)) : α ∈ C}
has the strong finite intersection property, and

(b) there is no function f : ω1 → ω such that {A(α, f(α)) : α ∈ ω1} has the strong finite intersection 
property.

Proof. Theorem 2.1 established the equivalence of (1), (2), and (3). In the proof that (3) implies (1) we 
proved implicitly that (3) implies (4) and (4) implies (1).

Clearly (5) implies (3).
To prove that (4) implies (5) we take a continuous map f from N∗ onto X and take the preimages of the 

members of the given cover. This yields the desired cover of N∗.
It remains to show that (5) and (6) are equivalent. This follows from the strong zero-dimensionality 

of N∗: if Z is a zero-set in N∗ then one can cover N∗ \ Z by a countable pairwise disjoint family of clopen 
sets. This family can be expressed as {A∗

n : n ∈ ω}, where each An is an infinite subset of N.
Conversely if {An : n ∈ ω} is a family of infinite subsets of N then N∗ \

⋃︁
n∈ω A∗

n is a zero-set.
Thus a family {Zα : α ∈ ω1} of zero-sets of N∗ can be represented by a matrix ⟨A(α, n) : ⟨α, n⟩ ∈ ω1×ω⟩

of infinite subsets of N such that Zα = N∗ \
⋃︁

n∈ω A(α, n)∗.
Then condition (a) expresses that no countable subfamily covers N∗, and condition (b) expresses that 

the family does cover N∗. □
The matrix ⟨A(α, n) : ⟨α, n⟩ ∈ ω1 ×ω⟩ of sets from Section 2.1, that resulted from enumerating the levels 

of the Aronszajn tree as ⟨t(α, n) : n ∈ ω⟩, satisfies the conditions in item (6) of Theorem 3.1.
It would seem natural to call such a matrix an Aronszajn matrix and a compact space with a cover of 

cardinality ℵ1 by closed Gδ-sets without a countable subcover an Aronszajn compactum. This usage would 
conflict with that of Hart and Kunen in [8]; and, more importantly, it would not be quite correct, as we 
show next.

3.1. A matrix and space that are not derived from an Aronszajn tree

The three examples constructed in Section 2 all involve compact spaces with an increasing cover of 
length ω1 by closed Gδ-sets. These spaces were constructed explicitly in the second and third example.

In the first example we get a cover of N∗ from the matrix ⟨A(α, n) : ⟨α, n⟩ ∈ ω1 × ω⟩ used in that 
example. The proof of ``(5) implies (6)'' in Theorem 3.1 yields the Gδ-sets Zα = N∗ \

⋃︁
n∈ω A(α, n)∗ in N∗. 

The matrix has the additional property that {A(α, n)∗ : n ∈ ω} refines {A(β, n)∗ : n ∈ ω} whenever β < α, 
so that ⟨Zα : α ∈ ω1⟩ is an increasing sequence. Finally condition (b) of (6) implies that N∗ =

⋃︁
α∈ω1

Zα.

Here we construct a compact space of weight ℵ1 with an ℵ1-sized cover by closed Gδ-sets that has no 
countable subcover, and that is definitely not increasing. The space is a variation of Example 7 in [1].

To begin we take an injective map f : ω1 → R with the property that for every α the image of the interval 
Iα =

[︁
ω ·α, ω · (α+1)

)︁
under f is dense in R. This is easily arranged, for example by taking ℵ1 many cosets 

of the subgroup of rationals and mapping each interval Iα onto one of these cosets.
We let X be the set of all subsets of ω1 on which f is increasing; we identify X, via characteristic 

functions, with a subset of 2ω1 and give it the subspace topology.
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The complement of X is open: if x / ∈ X then there are two ordinals α and β such that xα = xβ = 1, 
α ∈ β, and f(β) < f(α). Then {y : yα = yβ = 1} is an open set disjoint from X. It follows that X is 
compact.

As subsets of R that are well-ordered by the normal order are countable the space X is Corson compact.
It remains to exhibit a cover of X by closed Gδ-sets that has no countable subcover.
To this end we let Gα = {x ∈ X : (∀β ∈ Iα)(xβ = 0)}. This is a closed Gδ-set; it is the intersection of 

countably many basic clopen sets: Gα =
⋂︁

β∈Iα
{x : xβ = 0}.

To see that {Gα : α ∈ ω1} is a cover of X, let x ∈ X. Then, because S = {β : xβ = 1} is countable, there 
is an α such that S ⊂ α; then S ∩ Iα = ∅ and so x ∈ Gα.

To see that no countable subfamily covers X we let δ ∈ ω1. We take a subset A of R that is ordered in 
order-type δ + 2 by the normal order of R and we list A as ⟨aα : α < δ + 2⟩ in increasing order. Next we 
take a sequence ⟨γα : α < δ + 2⟩ of ordinals such that γα ∈ Iα and aα < f(γα) < aα+1 for all α. Then the 
set {γα : α < δ + 2} determines a point in X that is not in 

⋃︁
α∈δ Gα.

The same argument enables one to show that the sets Gα are quite independent: given two disjoint 
countable sets of ordinals A and B one can find points in 

⋂︁
α∈A Gα \

⋃︁
β∈B Gβ .

Via a map from N∗ onto X we can then create a matrix that is quite different from the ones derived 
from Aronszajn trees.

4. Pseudo-Aronszajn compacta

Let us, for the nonce, call a compact space a pseudo-Aronszajn compactum if it has a cover of cardinality ℵ1
by closed Gδ-sets that has no countable subcover. We let 𝒜 denote the class of these compacta.

It is readily seen that 𝒜 is closed under taking (compact) preimages: simply pull back the cover.
We have established that every Aronszajn continuum is in 𝒜, and hence that a Souslin continuum is a 

ccc compactum in 𝒜.
The ordinal space ω1 +1 does not belong to 𝒜 as every Gδ-set that contains the point ω1 is co-countable.
Somewhat surprisingly, uncountable compact metrizable spaces may or may not all be pseudo-Aronszajn 

compacta. They all are under CH and they all are not under MA + ¬CH.

Proposition 4.1 (CH). If X is compact and admits a continuous map f : X → R such that f [X] is uncount
able, then X ∈ 𝒜.

Proof. The image f [X] is in 𝒜, as witnessed by the family of singleton subsets. □
Proposition 4.2 (MA + ¬CH). If X is compact, uncountable and hereditarily Lindelöf, then X ̸∈ 𝒜.

Proof. Let 𝒵 be a witness of the fact that the uncountable compact hereditarily Lindelöf space X is in 𝒜. 
We will derive a contradiction.

Let X0 = X and U0 =
⋃︁

Z∈𝒵 intX0 Z. There is a countable subfamily 𝒵0 of 𝒵 such that U0 =⋃︁
Z∈𝒵0

intX0 Z.
Assume that for some α < ω1, we defined closed sets Xβ, open sets Uβ , and subfamilies 𝒵β of 𝒵, for all 

β < α.
Let V =

⋃︁
β<α Uβ , Xα = (

⋂︁
β<α Xβ) \ V , and 𝒮 =

⋃︁
β<α 𝒵β .

Inside Xα let W =
⋃︁

Z∈𝒵 intXα
(Z ∩ Xα). Then Uα = V ∪ W is open in X, and there is a countable 

subcollection 𝒯 of 𝒵 such that W =
⋃︁

Z∈𝒯 intXα
(Z ∩Xα). We let 𝒵α = 𝒮 ∪ 𝒯 .

There is a first α ∈ ω1 such that Uα = Uα+1. If Y = X \ Uα is countable, then we are clearly done. If Y
is uncountable, then for every Z ∈ 𝒵, the intersection Z ∩ Y is nowhere dense in Y . But this contradicts 
MA + ¬CH, for Y is an uncountable compact ccc space with a cover by fewer than 𝔠 many nowhere dense 
sets. □
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One may wonder whether MA + ¬CH prevents more compact spaces from being pseudo-Aronszajn. We 
have seen that a Souslin line is a pseudo-Aronszajn compactum and we also know that MA + ¬CH implies 
there are no Souslin lines. Thus we may conjecture that it implies that there are no pseudo-Aronszajn 
compacta that are ccc.

However, as there are pseudo-Aronszajn compacta of weight ℵ1 one can construct a compactification γN
of N with a pseudo-Aronszajn remainder. That compactification is itself also pseudo-Aronszajn: simply add 
the isolated points to the cover of the remainder. Thus we see that 𝒜 contains separable spaces.

We can strengthen the ccc assumption by making it hereditary; it is well known that having the hereditary 
ccc is equivalent to every relatively discrete subspace being countable, see [6, Problem 2.7.9(b)] for example. 
Thus, the hereditary ccc is also a weakening of the hereditary Lindelöf property and a positive answer to 
the following question would yield a strengthening of Proposition 4.2.

Question 3. Does MA + ¬CH imply that uncountable compact hereditarily ccc spaces are not pseudo
Aronszajn?

We remark in passing that it is also unknown whether compact hereditarily ccc spaces are continuous 
images of N∗, see [9, Question 44].

5. ¬CH and a closed copy of N that is 𝑪∗-embedded but not 𝑪-embedded

In section 2 we used an Aronszajn tree to guide an embedding of N into Rω1 so as to obtain a closed 
copy of N that is not C∗-embedded. In this section we use an Aronszajn tree again, this time to create 
closed copies of N in Rω1 that are C∗-embedded but not C-embedded, in models where CH fails. Thus we 
see that it is consistent with ¬CH that the answer to Question 1 be ℵ1.

The embedding will be much like the one from an arbitrary Aronszajn tree but with a few changes. We 
shall show that the following assumption suffices to create a closed copy of N in Rω1 that is C∗-embedded 
but not C-embedded.

Assumption. There are an Aronszajn tree S and a family {As : s ∈ S} of infinite subsets of N such that 
A∅ = N and

• if s < t then At ⊂∗ As, and
• if Y ⊆ N then there is an ordinal α in ω1 such that for every s ∈ Sα either As ⊆∗ Y or As ∩ Y =∗ ∅.

Here Sα denotes the αth level of S. We also assume that every level Sα, except S0, is infinite and that every 
node in S has infinitely many direct successors.

In addition we make finite modifications to each As so that {As : s ∈ Sα} is a partition of N.

5.1. The construction

We shall embed N into the following product:

Π = C ×
∏︂

1≤α<ω1

Sα

where C is the subspace {0} ∪ {2−n : n ∈ N} of R and each other factor Sα has the discrete topology. 
This product is homeomorphic to the product C ×Nω1 , which in turn can be embedded as a C-embedded 
subspace into Rω1 .

Now we are ready to define the embedding.
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To begin we set xk(0) = 2−k for all k; this ensures that the image will be relatively discrete.
If α ∈ [1, ω1) then we set xk(α) = s iff k ∈ As (and s ∈ Sα of course).
This defines our copy N = {xk : k ∈ N} of N in Π.

N is closed in Π
Let v ∈ Π. Then ⟨vα : 1 ≤ α < ω1⟩ is a sequence in S with vα ∈ Sα for all α.
As S is an Aronszajn tree there are α and β with α < β and such that vα and vβ are incomparable. Let 

w be the predecessor of vβ in Sα. Then Aw∩Avα = ∅ and so, because Avβ ⊂∗ Aw the intersection Avβ ∩Avα

is finite.
Let U be the basic neighborhood {x ∈ Π : xα = vα and xβ = vβ} of v. Then xk ∈ U iff k ∈ Avβ ∩ Avα , 

hence U ∩N is finite.
We see that N is a locally finite and relatively discrete subset of Π, hence N is closed and discrete.

N is C∗-embedded in Π
Let Y ⊆ N; we show that the sets {xk : k ∈ Y } and {xk : k / ∈ Y } are completely separated in Π.
Let α be such that As ⊆∗ Y or As ⊆∗ N \ Y for all s ∈ Sα and divide Sα into two sets: I = {s ∈ Sα :

As ⊆∗ Y } and J = {s ∈ Sα : As ∩ Y =∗ ∅}.
In this way we create four subsets of N:

(1) Y1 =
⋃︁
{As ∩ Y : s ∈ I},

(2) Y2 =
⋃︁
{As ∩ Y : s ∈ J},

(3) Z1 =
⋃︁
{As \ Y : s ∈ J}, and

(4) Z2 =
⋃︁
{As \ Y : s ∈ I}.

To begin we observe that Y2 ∪Z2 intersects every As in a finite set. Because {As : s ∈ Sα} is a partition 
of N this implies, as in the proof that N is closed, that D = {xk ↾ (α + 1) : k ∈ Y2 ∪ Z2} is a closed 
and discrete subset of the subproduct Πα = C ×

∏︁
1≤β≤α Sβ . This product is separable and metrizable, 

hence D is C-embedded in this subproduct, this implies that in particular, {xk ↾ (α + 1) : k ∈ Y2} and 
{xk ↾ (α + 1) : k ∈ Z2} are completely separated in Πα.

Furthermore, because N is relatively discrete in the subproduct the set D is disjoint from the closure of 
{xk ↾ (α + 1) : k ∈ Y1 ∪ Z1}.

Finally the αth coordinates of the xk ensure that {xk(α) : k ∈ Y1} and {xk(α) : k ∈ Z1} are disjoint. 
And because Sα has the discrete topology this shows that {xk ↾ (α+1) : k ∈ Y1} and {xk ↾ (α+1) : k ∈ Z1}
are completely separated in Πα.

We conclude that {xk ↾ (α + 1) : k ∈ Y } and {xk ↾ (α + 1) : k / ∈ Y } are completely separated in Πα.

N is not C-embedded in Π
We show that the function f : N → R that maps xk to k has no continuous extension to Π.
Assume g : Π → R is continuous and such that g(xk) = k for all k. As before we can factor g through a 

partial product: there are a δ and a continuous function h : C ×
∏︁

1≤α<δ Sα such that g = h ◦ πδ.
Let s ∈ Sδ and let sα denote its predecessor in Sα, for α ∈ [1, δ). Take such an α, then by construction 

As ⊆∗ Asα and so xk(α) = sα for all but finitely many k ∈ As.
Because As is infinite this implies that the point v, with v(0) = 0 and v(α) = sα for α ∈ [1, δ), is an 

accumulation point of {πδ(xk) : k ∈ As} and hence that h(v) > k for all k, a contradiction.

5.2. A model

To finish we show that our assumption is actually consistent with the negation of CH. Chapters VII 
and VIII of [11] provide all the forcing background that we need.



A. Dow et al. / Topology and its Applications 379 (2026) 109514 11

We let S be an Aronszajn tree as constructed in [11, Theorem II.5.9]. This tree is a subtree of the 
subtree T of <ω1ω that consists of all finite-to-one sequences of natural numbers and it has the property 
that for every s ∈ S the set of direct successors is {s ∗ n : n ∈ ω}. This tree has the advantage that if a 
partial order preserves ω1 then it will not add an ω1-branch to it, as such a branch would give a finite-to-one 
map from ω1 to ω.

Next we work Exercise VIII(A10) in [11], that is, we perform an ω1 long finite support iteration of 
σ-centered partial orders to create an ultrafilter on N of character ℵ1.

More explicitly: we form a sequence ⟨Mα : α ≤ ω1⟩ of models, together with sequences ⟨uα : α ∈ ω1⟩ and 
⟨Uα : α ∈ ω1⟩. Together these satisfy

(1) uα is an ultrafilter on N in Mα,
(2) Mα+1 is obtained by forcing over Mα with the partial order E(uα) described below, which produces a 

subset Uα of N such that Uα ⊆∗ X for all X ∈ uα, and
(3) uα+1 extends uα ∪ {Uα}.

For a free ultrafilter u on N we define the partial order

E(u) = {⟨s, U⟩ : s ∈ [N]<ω, U ∈ u}

ordered by ⟨s, U⟩ ≤ ⟨t, V ⟩ iff

• t ⊆ s,
• U ⊆ V , and
• s \ t ⊆ V .

If G is a generic filter on E(u) then E =
⋃︁
{s : (∃U ∈ u)(⟨s, U⟩ ∈ G)} is an infinite subset of ω such that 

E ⊆∗ U for all U ∈ u.

The assumption
The iteration yields a ccc partial order with a dense subset of cardinality 𝔠. Therefore it preserves all 

cardinal arithmetic from the ground model M0. Thus Mω1 can be made to satisfy any consistent cardinal 
arithmetic, in particular 2ℵ0 can be anything it ought to be.

We define a family {As : s ∈ S} of infinite subsets as in our assumption. We start by setting A∅ = N.
For the successor steps we fix a definable bijection f : N2 → N, say f(m,n) = 1

2 (m+ n)(m+ n+ 1) +m

(compare [4, p. 257]).
Going from α to α + 1 we assume that {As : s ∈ Sα} is in Mα and build {At : t ∈ Sα+1} in Mα+1. We 

take for every s ∈ Sα the counting function cs : N → As; these functions belong to Mα. For every s ∈ Sα

and n ∈ N we define As∗n = cs
[︁
f [{n}×Uα]

]︁
. In words: we use cs ◦ f to create a partition of As in Mα and 

then copy Uα to each element of that partition by maps in Mα.
In this way we ensure that each As∗n has the property that Uα has: for every subset Y of N that is 

in Mα we have As∗n ⊆∗ Y or As∗n ∩ Y =∗ ∅. The resulting family {At : t ∈ Sα+1} is defined from Uα and 
members of Mα, hence it is in Mα+1.

In case α ∈ ω1 is a limit the partial family {As : s ∈
⋃︁

β∈α Sβ} belongs to Mα. So in Mα we can find a 
family {At : t ∈ Sα} of infinite subsets of N such that At ⊆∗ As whenever s < t.

To see that the resulting family has the second property in our assumption we let Y , in Mω1 , be a subset 
of N. By well-known properties of finite-support iterations of ccc partial orders there is an α ∈ ω1 such that 
Y ∈ Mα. But then for all s ∈ Sα+1 we have As ⊆ Y or As ∩ Y =∗ ∅.
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