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One of these spaces, call it X, even contains a closed copy of N (the discrete space of natural numbers)
that is C*-embedded but not C-embedded. It is well known that the diagonal map from X into R€(X)
embeds X as a closed C-embedded subspace. The closed copy of N in X then becomes a closed copy of N
in RE() that is C*-embedded but not C-embedded.

An intermediate realcompact space, Y say, contains a closed copy of N that is not C*-embedded and, as
above, this yields a closed copy of N in R€(Y) that is not C*-embedded.

For both spaces the cardinality of the set of continuous functions is equal to ¢, which yields the interesting
result that one can find closed copies of N in R¢, that are not C*-embedded, and that are C*-embedded
but not C-embedded.

In the first version of [5] we posed two questions suggested by these results. We repeat them here.

Question 1. What is the minimum cardinal s such that R contains a closed copy of N that is C*-embedded
but not C-embedded?

Question 2. What is the minimum cardinal & such that R” contains a closed copy of N that is not C*-
embedded?

Given that R“° is metrizable we know that in both cases we have Ry < k < ¢.

After we posted the first version of the present paper on arxiv.org Roman Pol kindly drew our attention
to three papers, [7], [12], and [10], containing results that address the two questions above.

These are:

(1) The main result, Theorem 10, of [7] implies that there are many closed copies of N in R“* that are not
C*-embedded.

(2) The paper [12] contains another example, Example 1.1, of a closed copy of N in R“! that is not C*-
embedded, and an example of a closed copy of N in R¢ that is C*-embedded but not C-embedded.

(3) In [10] one finds a result, Theorem 3.1, that implies that under the assumption of the inequality v > ¥
every C*-embedded subset of R“! is C-embedded.
The cardinal v is the reaping number: the minimum cardinality of a family of subsets R of N that
behaves like an ultrafilter but for the finite intersection property: for every subset X of N there is a
member R of R such that R C* X or RN X =* ; see [3].

Thus, Question 2 was answered before we posed it and the answer to Question 1 depends on one’s
assumptions: the Continuum Hypothesis implies the minimum is N;, and it is also consistent that it is
larger than Ny.

The result from [10] can be viewed as a local version of the main result of [2]: in a model obtained by
adding supercompact many Random reals to a model of CH every C*-embedded subspace of every space
of character less than ¢ is C-embedded. Indeed, one can create a model of v > N; by adding Ny or more
Random reals to a model of CH.

In retrospect our paper [5] should have contained references to [7,10,12] and we regret not finding these
references ourselves. Nevertheless the methods and results of [5] and the present paper are sufficiently
different from the earlier ones that we feel they merit publication.

In Sections 2 and 3 we give new examples and obtain topological and combinatorial translations of the
statement “R“! contains a closed copy of N that is not C*-embedded” that suggest further interesting
questions.

In Section 2 we present three constructions of closed copies of N that are not C*-embedded in R¥*: one
directly from an Aronszajn tree, one directly from an Aronszajn continuum, and one as the path space of
an Aronszajn tree. We decided to give all three examples because they show how versatile these objects are.
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In Section 3 we give the translations mentioned above and give a fourth example that is of a somewhat
different nature.

Section 4 deals with a class of topological spaces that feature in the translations, and in Section 5 we
present models where CH fails but where the answer to Question 1 is still Nj.

1. Preliminaries

By now the reader may have guessed that by “a closed copy of N” in some space X we mean a closed
subspace of X that is homeomorphic to the discrete space N, in other words: a countably infinite closed
and discrete subspace.

In general we say that a subspace Y of a space X is C-embedded if every continuous function f : Y — R
has a continuous extension to all of X. If this holds for all bounded continuous functions then we say that
Y is C*-embedded in X.

The way we shall show that a closed copy of N is not C*-embedded in X is by exhibiting disjoint subsets
A and B of N that are not completely separated, which means that whenever g : X — R is bounded and
continuous the closures of g[A] and g[B] intersect. This then implies that the characteristic function of A
has no continuous extension to X.

As mentioned in the introduction we shall use Aronszajn trees and continua in some of our constructions;
Todorcevi¢’s article [13] contains all the information that we need.

As is common we use starred versions of the inclusion and equality signs to indicate ‘mod finite’. So
A C* B means that A\ B is finite, A C* B means that A\ B is finite but B\ A is not, and A =* B means
AC* Band B C* A.

We use the well-known fact that if (A4, : n € w) is a sequence of infinite subsets of N such that A, 11 C* A,
for all n then there is an infinite subset A of N such that A C* A,, for all n.

We also remind the reader of the notation N* for SN\ N and, generally, A* = ¢l ANN* for subsets of N.

Any potentially unfamiliar topological notions will be defined when needed; definitions not given here
can be found in Engelking’s book [6].

One piece of possibly non-standard notation: if ¢ : @ — w is a sequence of finite ordinals and if n € w
then t * n denotes the sequence with domain « + 1 that coincides with ¢ on « and takes on value n at a. In
one formula: t xn =t U {{a,n)}.

We use <“1w to denote the tree of all sequences of finite ordinals whose domains are countable ordinals.

2. Closed copies of N that are not C*-embedded

This section contains further examples that show that the answer to the Question 2 is ;. We give three
examples, based on Aronszajn trees and lines, of closed copies of N that are not C*-embedded in R“*. This
may seem like overdoing things somewhat but we think that this presentation is more informative.

From our first two constructions we extract a few translations of “R“* contains a closed copy of N that is
not C*-embedded” that allow us to construct a relatively simple third example and an even simpler fourth
one.

2.1. A closed copy of N that is not C*-embedded, from an Aronszajn tree
The first construction uses an Aronszajn tree to guide an embedding of N into R“*.

Using the fact about decreasing sequences of infinite subsets of N mentioned above we define a family
{A; : t € <¥1'w} of infinite subsets of N such that Ay = N and
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(1) if s C t then A; C* A, and
(2) for every ¢ the family {As., : n € w} is a partition of A;.

Now take an Aronszajn subtree T of <“*w as in [11, Theorem IL.5.9]: it consists of finite-to-one members
of <“1w, and is such that {¢t*n:n € w} C T whenever t € T.

For every non-zero « in w; we let (t(a,n) : n € w) enumerate the ath level T, of T in a one-to-one
fashion. We abbreviate A, n) as A(a,n).

By construction each of the families {A(a,n) : n € w} is pairwise almost disjoint. We can assume, after
making finite modifications to the A(«a,n), that every family {A(a,n) : n € w} is in fact a partition of N.

We use the partitions to define a map k — z from N to R“:.
First we set x4(0) = 27F for all k. This ensures that X = {z} : k € N} is a relatively discrete subspace
of R¥t.

Second, for every non-zero « in w; we define
Zop(a) = xopt1(a) = m iff k € A(a, m).

This will ensure that X is closed in R¥* and that the sets {zar : k € N} and {zar41 : £ € N} are not
completely separated in R“1.

To see that X is closed let z € cl X and let u be an ultrafilter such that x = u-lim z;,. We claim w is in
fact a fixed ultrafilter and hence that x € X.

Since u is a filter there is for every § at most one n such that A(3,n) € u. Let B = {(8,n) : A(B,n) € u}.
If u were free then A(8,n) N A(y,m) would be infinite whenever (8, n), (y,m) € B. By the construction of
the family {A; : ¢ € <“*w} this would mean that {¢(8,n) : (8,n) € B} is linearly ordered in T', and hence
countable.

Take « such that T, N {t(5,n) : (8,n) € B} =0, and let m be the smallest natural number larger than
or equal to z(e). Then U = N\ |, ., A(«, 1) belongs to u, and zaop(a) = xopt1(a) > z(a)+1forall k € U.
This shows that z(«) # u-lim x4 (), which contradicts the assumption that z = u-lim z.

i<m

To see that {xay : k € N} and {xor+1 : k € N} are not completely separated in R¥* let g : R¥* — [0, 1]
be continuous. It is well-known, see [6, Problem 2.7.12], that there are ¢ < w; and a continuous function
h:R% — [0,1] such that g = h o 7s. Here 75 is the projection from R“* onto R®.

Consider A(4,0). By construction we know that for every non-zero o < § there is a single n, such
A(5,0) C* A(a,ny). Let € R® be given by 2(0) = 0 and z(a) = n,, then the subsequences (ms(xay) : k €
A(6,0)) and (ms(zak+1) = k € A(5,0)) of (zx : k € N) both converge to  and so h(z) is in the closure of
both {g(zax) : k € N} and {g(zar+1) : k € N}

2.2. Another closed copy of N that is not C*-embedded, from an Aronszajn line

Let L be an Aronszajn continuum: a first-countable linearly ordered continuum of weight N; with the
property that the closure of every countable set is second-countable, see [13, Section 5]. We can also assume,
without loss of generality, that L has no non-trivial separable intervals.

Let (o : @ € wy) enumerate a dense subset of L, where we assume that o = min L and 27 = max L.
Using the first-countability of L we find that L = |J,_, cl{zs : 8 < a}, that is, L is the union of an
increasing sequence of second-countable compact subsets. Upon thinning out the sequence we obtain a
strictly increasing sequence (K, : @ € wy) of second-countable compact subsets whose union is equal to L.
The assumption on the intervals of L implies that each K, is nowhere dense.

We claim that every K, is a Gs-set of L. By the first-countability of L this is clear if « is finite, so we
assume below that « is infinite, and hence that min L and max L belong to K.
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Since K|, is second-countable we can find a countable family Z of open intervals in L such that {IN K, :
I € T} is a base for the topology of K.

Every convex component C' of L\ K, is of the form (ac,bc), with ac,bc € K,. If C and D are two
such components then be < ap or bp < a¢. For each C take I € 7 such that b € Ie N K, C [bo, max L.
Then ac ¢ Ic and so bp ¢ Ic whenever bp < ac. It follows that Ic # Ip whenever C # D. This shows
that there are at most countably many convex components in the complement of K.

Enumerate these components as (C), : n € w) and choose for every n € w sequences (a(n, k) : k € w) and
(b(n, k) : k € w) in Cy, such that a(n, k) | ac, and b(n, k) 1 be,, .

Then C,, = Uy la(n, k), b(n, k)] for all n. Define Fy, = |J,, < [a(n, k),b(n, k)] for all k. Then (Fy : k € w)
is a sequence of closed sets and its union is equal to the compiement of K.

Since L has weight R there is a compactification YN of N such that YN \ N is (homeomorphic to) L,
see [6, Problem 3.12.18(c)]. Take the quotient of YN x {0,1} obtained by identifying (z,0) and (z, 1) for
all z € L.

The result is a new compactification 6N of N with remainder equal to L and in which N is the union of
two subsets A and B such that L =clANclB.

We map 6N into [0,1]“* in such a way that the image of N will be a closed subset of (0,1)“* that is not
C*-embedded.

For every a > 1 we let f, : 0N — [0, 1] be continuous such that K, = f$(0) and f,[N] C (0,1). We
let fo : 0N — [0,1] be the continuous map determined by fo(k) = 3 4+ 27%72; it maps L to {1} and N
into (1,1).

The diagonal map F of (f, : @ € wy) maps IN to [0,1]“* and maps N into (0,1)«*.

The first coordinate fy ensures that F[N] is relatively discrete in (0,1)“!; it remains to show that it is
closed and not C*-embedded.

To see that F[N] is closed in (0,1)“* observe that for every x € L there is an « such that x € K,; but
then fg(z) =0 for 8 > a. It follows that F[N] = F[§N] N (0,1)«:.

To see that F[N] is not C*-embedded in (0,1)¥* let g : (0,1)“* — [0, 1] be continuous. We show that the
closures of g[F[A]] and g[F[B]] intersect.

As above there is an « such that g factors through the first o coordinates, that is, there is a continuous
map h : (0,1)* — [0,1] such that ¢ = hom,. Take x € L\ K,. Then = € clA N clB, hence m,(z) €
cl(ma[A]) Ncl(m [B]). But because z ¢ Kg for all § < a we find that 7, (z) € (0,1)* and hence we conclude
that h(ma(z)) € cl(g[F[A]]) N cl(g[F[B]]).

2.3. A characterization

From the foregoing example we extract a characterization of there being a closed copy of N in R“? that
is not C*-embedded.

Theorem 2.1. The following three statements are equivalent:

(1) There is closed copy of N in R“! that is not C*-embedded.
(2) There is closed copy of N in R“? that is not C-embedded.
(3) There is a compact space X with a cover consisting of N1 many zero-sets that has no countable subcover.

Proof. That (1) implies (2) is clear.
To prove (2) implies (3) we take a countable closed and discrete subset N of (0,1)“* that is not C-
embedded. Let K = cI N \ N, where we take the closure in [0, 1]“*. For every o € w; and ¢ € {0,1} we let
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A(a,i) ={x € K : ¢4 = i}. Then {A(a, i) : {a,i) € wy x 2} is a cover of K by 8y many Gs-sets. We show
that there is no « € wy such that {A(8,4) : {8,4) € a x 2} covers K.

Let @ € wy; we can assume that the projection 7, : [0,1]“* — [0,1]® is one-to-one on N. If {A(S,1) :
(8,i) € a x 2} covers K then for every x € K there is a § € « such that zg € {0,1}, and hence
To(2) ¢ (0,1)*. We see that 7, [K] is disjoint from (0,1)® and hence that 7,[N] is closed in (0,1)* and
hence also C-embedded because (0,1)® is metrizable. But then N would be C-embedded in (0, 1)“.

To prove that (3) implies (1) we proceed as in Section 2.2. Let X be a space as in (3) and let {A, : o € wy}
be the cover by zero-sets without a countable subcover. We may assume that X has weight Ry, for example,
by choosing a sequence (f, : a € wy) of continuous functions from X to [0,1] such that A, = f$(0) for
all a. The image K of X under the diagonal map of the sequence has the same property as X itself, where
B, = {z € K : x, = 0} defines the family of zero-sets.

The construction in Section 2.2 now yields a closed copy of N in (0,1)“* that is not C*-embedded. O

Remark 2.2. Of course 22 = 4 is also an equivalent of statement (1), as both are true, but this theorem
should be understood as a translation: to construct the desired embedding it is necessary and sufficient to
construct a particular type of compact topological space.

Remark 2.3. It is interesting to see that the formally weaker statement (2) implies statement (1); what
is hidden in the proof is that from the copy that is not C-embedded one constructs a copy that is not
C*-embedded by taking its closure in [0,1]*“!, doubling the resulting compactification, then glueing the
remainders onto each other and find a suitable embedding of the resulting space.

2.4. Yet another closed copy of N that is not C*-embedded, from an Aronszajn tree

To see an application of Theorem 2.1 we create yet another closed copy of N in R“* that is not C*-
embedded, by exhibiting a space that satisfies the properties in (3) in the theorem.

We let T be an Aronszajn tree and we take its path space 0T, where a path is a linearly ordered subset P
that is also an initial segment: if t € P and s <t then s € P. We view o7, via characteristic functions, as
a subspace of the Cantor cube {0,1}7. For more on this construction see [14].

If a point « € {0,1}7 is not in 0T then there are s and t in T’ with x(s) = x(t) = 1 that are incomparable,
or there are s and t with z(s) =0, 2(¢f) = 1 and s < ¢. In either case x has a neighborhood that is disjoint
from oT. We see that o7 is closed and hence compact. The weight of ¢T is at most that of {0,1}7, that is
N;.

For a € wy we let K, be the set of paths that are of length at most «. To see that K, is closed note that
p € Ky iff pNTy = 0. That is Ko = 0T \ U,eq, O, where O; = {p : t € p}. The sets O; are clopen, so the
union UtETa O, is an open F,-set.

Because T' is uncountable no countable subfamily of {K,, : & € w1} covers oT.

Note that, as every path is countable, the space oT is actually Corson-compact.

3. The connection with Aronszajn trees and lines
Each of the three constructions in the previous section uses an Aronszajn tree or line as input. The
following theorem, which adds three more statements to the list in Theorem 2.1, makes precise how these

structures enter the constructions.

Theorem 3.1. The following statements are equivalent.

(1) There is closed copy of N in R“' that is not C*-embedded.
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There is closed copy of N in R“* that is not C-embedded.
There is a compact space X with a cover consisting of Ny many zero-sets that has no countable subcover.

—~ o~
=W N
—_— — —

There is a compact space X of weight Xy with a cover consisting of Ny many zero-sets that has no

countable subcover.

(5) The space N* has a cover by Xy many zero-sets that has no countable subcover.

(6) There is an wy X w-matriz (A(a,n) : (@, n) € wy X w) of infinite subsets of N such that

(a) for every countable subset C' of wy there is a function f : C — w such that {A(a, f(a)) : @ € C}
has the strong finite intersection property, and

(b) there is no function f : w; — w such that {A(«, f(@)) : @ € w1} has the strong finite intersection

property.

Proof. Theorem 2.1 established the equivalence of (1), (2), and (3). In the proof that (3) implies (1) we
proved implicitly that (3) implies (4) and (4) implies (1).

Clearly (5) implies (3).

To prove that (4) implies (5) we take a continuous map f from N* onto X and take the preimages of the
members of the given cover. This yields the desired cover of N*.

It remains to show that (5) and (6) are equivalent. This follows from the strong zero-dimensionality
of N*: if Z is a zero-set in N* then one can cover N* \ Z by a countable pairwise disjoint family of clopen
sets. This family can be expressed as {A¥ : n € w}, where each A,, is an infinite subset of N.

Conversely if {A,, : n € w} is a family of infinite subsets of N then N*\ {J, ., A;, is a zero-set.

Thus a family {Z, : « € w1} of zero-sets of N* can be represented by a matrix (A(a, n) : (a,n) € w; X w)
of infinite subsets of N such that Z, = N*\ U, ¢, A(a,n)*.

Then condition (a) expresses that no countable subfamily covers N* and condition (b) expresses that
the family does cover N*. O

The matrix (A(a,n) : (@,n) € wy xw) of sets from Section 2.1, that resulted from enumerating the levels
of the Aronszajn tree as (t(a,n) : n € w), satisfies the conditions in item (6) of Theorem 3.1.

It would seem natural to call such a matrix an Aronszajn matrix and a compact space with a cover of
cardinality 8y by closed Gs-sets without a countable subcover an Aronszajn compactum. This usage would
conflict with that of Hart and Kunen in [8]; and, more importantly, it would not be quite correct, as we

show next.
3.1. A matrix and space that are not derived from an Aronszajn tree

The three examples constructed in Section 2 all involve compact spaces with an increasing cover of
length wy by closed Ggs-sets. These spaces were constructed explicitly in the second and third example.

In the first example we get a cover of N* from the matrix (A(a,n) : (@,n) € w; X w) used in that
example. The proof of “(5) implies (6)” in Theorem 3.1 yields the Gs-sets Z, = N*\ |,,c,, A(a,n)* in N*.
The matrix has the additional property that {A(a,n)* : n € w} refines {A(5,n)* : n € w} whenever 8 < a,
so that (Z, : @ € wy) is an increasing sequence. Finally condition (b) of (6) implies that N* = L.

acwy

Here we construct a compact space of weight N; with an W;-sized cover by closed Gs-sets that has no
countable subcover, and that is definitely not increasing. The space is a variation of Example 7 in [1].

To begin we take an injective map f : w; — R with the property that for every « the image of the interval
I, = [w ca,w- (a+ 1)) under f is dense in R. This is easily arranged, for example by taking N; many cosets
of the subgroup of rationals and mapping each interval I, onto one of these cosets.

We let X be the set of all subsets of w; on which f is increasing; we identify X, via characteristic
functions, with a subset of 2“1 and give it the subspace topology.
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The complement of X is open: if # ¢ X then there are two ordinals a and 8 such that z, = zg = 1,
a € B, and f(8) < f(a). Then {y : yo = yg = 1} is an open set disjoint from X. It follows that X is
compact.

As subsets of R that are well-ordered by the normal order are countable the space X is Corson compact.

It remains to exhibit a cover of X by closed Gs-sets that has no countable subcover.

To this end we let G, = {z € X : (VB € I,)(zg = 0)}. This is a closed Gs-set; it is the intersection of
countably many basic clopen sets: Go = (3¢, {2 : 25 = 0}.

To see that {Gy : o € w1} is a cover of X, let € X. Then, because S = {f : xg = 1} is countable, there
is an « such that S C o; then SN I, =0 and so x € G,.

To see that no countable subfamily covers X we let § € w;. We take a subset A of R that is ordered in
order-type 0 4+ 2 by the normal order of R and we list A as (a, : @ < § + 2) in increasing order. Next we
take a sequence (7, : @ < § + 2) of ordinals such that v, € I, and aq < f(7a) < aq41 for all a. Then the
set {7a : @ < 4 2} determines a point in X that is not in | J, .5 Ga-

The same argument enables one to show that the sets G, are quite independent: given two disjoint
countable sets of ordinals A and B one can find points in (,c 4 Ga \ Ugep Gs-

Via a map from N* onto X we can then create a matrix that is quite different from the ones derived
from Aronszajn trees.

4. Pseudo-Aronszajn compacta

Let us, for the nonce, call a compact space a pseudo-Aronszajn compactum if it has a cover of cardinality Ny
by closed Gs-sets that has no countable subcover. We let A denote the class of these compacta.

It is readily seen that A is closed under taking (compact) preimages: simply pull back the cover.

We have established that every Aronszajn continuum is in 4, and hence that a Souslin continuum is a
ccc compactum in A.

The ordinal space w; + 1 does not belong to A as every Gs-set that contains the point wy is co-countable.

Somewhat surprisingly, uncountable compact metrizable spaces may or may not all be pseudo-Aronszajn
compacta. They all are under CH and they all are not under MA + —CH.

Proposition 4.1 (CH). If X is compact and admits a continuous map f : X — R such that f[X] is uncount-
able, then X € A.

Proof. The image f[X] is in A, as witnessed by the family of singleton subsets. O
Proposition 4.2 (MA + =CH). If X is compact, uncountable and hereditarily Lindeldf, then X € A.

Proof. Let Z be a witness of the fact that the uncountable compact hereditarily Lindelof space X is in A.
We will derive a contradiction.

Let Xo = X and Uy = (J,czintx, Z. There is a countable subfamily Z, of Z such that Uy =
UZGZO iIltXO Z.

Assume that for some o < wy, we defined closed sets Xg, open sets Ug, and subfamilies Zg of Z, for all
B < a.

Let V = U5<a Ug, Xo = (ﬂﬂ<an) \V,and § = U5<a 23.

Inside X, let W = (Jyczintx, (Z N Xy). Then Uy, = VU W is open in X, and there is a countable
subcollection 7 of Z such that W =, intx,(ZNX,). Welet Z, =SUT.

There is a first a € wy such that U, = Uyy1. 'Y = X \ U, is countable, then we are clearly done. If YV’
is uncountable, then for every Z € Z, the intersection Z NY is nowhere dense in Y. But this contradicts
MA + —CH, for Y is an uncountable compact ccc space with a cover by fewer than ¢ many nowhere dense
sets. O
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One may wonder whether MA + —CH prevents more compact spaces from being pseudo-Aronszajn. We
have seen that a Souslin line is a pseudo-Aronszajn compactum and we also know that MA + —CH implies
there are no Souslin lines. Thus we may conjecture that it implies that there are no pseudo-Aronszajn
compacta that are ccc.

However, as there are pseudo-Aronszajn compacta of weight N; one can construct a compactification yN
of N with a pseudo-Aronszajn remainder. That compactification is itself also pseudo-Aronszajn: simply add
the isolated points to the cover of the remainder. Thus we see that A contains separable spaces.

We can strengthen the ccc assumption by making it hereditary; it is well known that having the hereditary
cce is equivalent to every relatively discrete subspace being countable, see [6, Problem 2.7.9(b)] for example.
Thus, the hereditary ccc is also a weakening of the hereditary Lindeldf property and a positive answer to
the following question would yield a strengthening of Proposition 4.2.

Question 3. Does MA + —CH imply that uncountable compact hereditarily ccc spaces are not pseudo-
Aronszajn?

We remark in passing that it is also unknown whether compact hereditarily ccc spaces are continuous
images of N*, see [9, Question 44].

5. =CH and a closed copy of N that is C*-embedded but not C-embedded

In section 2 we used an Aronszajn tree to guide an embedding of N into R“! so as to obtain a closed
copy of N that is not C*-embedded. In this section we use an Aronszajn tree again, this time to create
closed copies of N in R“* that are C*-embedded but not C-embedded, in models where CH fails. Thus we
see that it is consistent with —~CH that the answer to Question 1 be N;.

The embedding will be much like the one from an arbitrary Aronszajn tree but with a few changes. We
shall show that the following assumption suffices to create a closed copy of N in R“! that is C*-embedded
but not C-embedded.

Assumption. There are an Aronszajn tree S and a family {As : s € S} of infinite subsets of N such that
Ap =N and

e if s <t then A; C* A, and
o if Y C N then there is an ordinal « in w; such that for every s € S, either A, C*Y or A,NY =* ().

Here S, denotes the ath level of S. We also assume that every level S, except Sy, is infinite and that every
node in S has infinitely many direct successors.
In addition we make finite modifications to each A so that {As : s € S, } is a partition of N.

5.1. The construction

We shall embed N into the following product:

II=Cx H Sa

1<a<wi

where C is the subspace {0} U {27 : n € N} of R and each other factor S, has the discrete topology.
This product is homeomorphic to the product C' x N“1 which in turn can be embedded as a C-embedded
subspace into R“1.

Now we are ready to define the embedding.
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To begin we set x1(0) = 2% for all k; this ensures that the image will be relatively discrete.
If o € [1,w1) then we set zi(a) = s iff k € As (and s € S, of course).
This defines our copy N = {x : k € N} of N in II.

N s closed in 11
Let v € II. Then (v, : 1 < @ < wj) is a sequence in S with v, € S, for all a.
As S is an Aronszajn tree there are o and § with o < 8 and such that v, and vg are incomparable. Let

w be the predecessor of vg in S,. Then A, NA,, = 0 and so, because Ay, C* A,y the intersection A,, N A,

1)5
is finite.

Let U be the basic neighborhood {z € Il : z, = v, and xg = vg} of v. Then x, € U iff k € A,, N A,
hence U N N is finite.

We see that N is a locally finite and relatively discrete subset of I, hence N is closed and discrete.

N is C*-embedded in 11

Let Y C N; we show that the sets {z : k € Y} and {zy, : k ¢ Y} are completely separated in II.

Let « be such that A; C*Y or A; C* N\ Y for all s € S, and divide S, into two sets: I = {s € S, :
A;C*Y}and J={s€ S, : AsNY =* 0}

In this way we create four subsets of N:

(1) i =U{AsNY : s e I},
(2) Yo=U{4AsNY : s € J},
(3) Z1 =U{As \ Y : s € J}, and
(4) Zo=U{A;\Y :seT}.

To begin we observe that Y32 U Z5 intersects every A in a finite set. Because {A; : s € S, } is a partition
of N this implies, as in the proof that N is closed, that D = {z | (¢ + 1) : k € Yo U Z5} is a closed
and discrete subset of the subproduct II, = C' x [],; <p<a 98- This product is separable and metrizable,
hence D is C-embedded in this subproduct, this implies that in particular, {zj | (e + 1) : k € Y2} and
{z1 | (¢ +1) : k € Z3} are completely separated in I1,.

Furthermore, because N is relatively discrete in the subproduct the set D is disjoint from the closure of
{.Tk [(a+1)k€Y1UZ1}

Finally the ath coordinates of the zj ensure that {zy(«a) : k € Y1} and {zx(a) : k € Z1} are disjoint.
And because S, has the discrete topology this shows that {zx | (a+1) : k€ Y1} and {xf | (a+1): k € Z1}
are completely separated in II,,.

We conclude that {zp [ (o +1):k €Y} and {zy | (a+ 1) : k ¢ Y} are completely separated in I1,.

N is not C-embedded in 11

We show that the function f: N — R that maps xj to k has no continuous extension to II.

Assume g : II — R is continuous and such that g(z) = k for all k. As before we can factor g through a
partial product: there are a § and a continuous function h : C' x [], ., Sa such that g = h o 7s.

Let s € S5 and let s, denote its predecessor in Sy, for a € [1,5)._Take such an «, then by construction
As C* A, and so zx(a) = s, for all but finitely many k € As.

Because A, is infinite this implies that the point v, with v(0) = 0 and v(a) = s, for a € [1,6), is an
accumulation point of {ms(zy) : k € As} and hence that h(v) > k for all k, a contradiction.

5.2. A model

To finish we show that our assumption is actually consistent with the negation of CH. Chapters VII
and VIII of [11] provide all the forcing background that we need.
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We let S be an Aronszajn tree as constructed in [11, Theorem I1.5.9]. This tree is a subtree of the
subtree T' of <“1w that consists of all finite-to-one sequences of natural numbers and it has the property
that for every s € S the set of direct successors is {s*n : n € w}. This tree has the advantage that if a
partial order preserves wy then it will not add an wy-branch to it, as such a branch would give a finite-to-one
map from w; to w.

Next we work Exercise VIII(A10) in [11], that is, we perform an w; long finite support iteration of
o-centered partial orders to create an ultrafilter on N of character N;.

More explicitly: we form a sequence (M, : @ < wq) of models, together with sequences (uq, : a € wy) and
(Uy : @ € wy). Together these satisfy

(1) ug is an ultrafilter on N in M,

(2) M4 is obtained by forcing over M, with the partial order E(u,) described below, which produces a
subset U, of N such that U, C* X for all X € u,, and

(3) uqt1 extends uq U {Uq}.

For a free ultrafilter u on N we define the partial order
E(u) = {(s,U) : s € [N]<¥, U € u}
ordered by (s,U) < (¢, V) iff

A tg57
e UCV, and
e s\tCV.

If G is a generic filter on E(u) then E = (J{s: (3U € u)({(s,U) € G)} is an infinite subset of w such that
E C*U for all U € .

The assumption

The iteration yields a ccc partial order with a dense subset of cardinality ¢. Therefore it preserves all
cardinal arithmetic from the ground model My. Thus M, can be made to satisfy any consistent cardinal
arithmetic, in particular 2% can be anything it ought to be.

We define a family {As : s € S} of infinite subsets as in our assumption. We start by setting Ay = N.

For the successor steps we fix a definable bijection f : N2 — N, say f(m,n) = i(m+n)(m+n+1)+m
(compare [4, p. 257]).

Going from « to a + 1 we assume that {4, : s € S,} is in M, and build {A4; : ¢t € Sp41} in My We
take for every s € S, the counting function c¢; : N — Ag; these functions belong to M,. For every s € S,
and n € N we define Ay, = ¢s[f[{n} x Us]]. In words: we use ¢, o f to create a partition of A, in M, and
then copy U, to each element of that partition by maps in M.

In this way we ensure that each A,,, has the property that U, has: for every subset Y of N that is
in M, we have Agyp, C* Y or Agen NY =* 0. The resulting family {A; : ¢ € S41} is defined from U, and
members of M, hence it is in My41.

In case a € wy is a limit the partial family {4, : s € Uz, S} belongs to M,. So in M, we can find a
family {A; : t € S, } of infinite subsets of N such that A; C* A; whenever s < t.

To see that the resulting family has the second property in our assumption we let Y, in M, , be a subset
of N. By well-known properties of finite-support iterations of ccc partial orders there is an a € wy such that
Y € M. But then for all s € So41 we have A, CY or A,NY =* 0.
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