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Abstract—Visual place recognition (VPR) is a form of visual
localization. Current approaches are designed to handle common
VPR challenges, such as appearance and viewpoint variations.
With the introduction of DINOV2, vision foundation models have
been used as feature extractors to improve performance for
VPR techniques, as they show great generalizing capabilities
for image representations. By fine-tuning these large models
on VPR-specific datasets, performance increases even more.
A problem with these big VPR datasets is the bias towards
urban environments. To solve this problem, we propose to
use a simple pipeline to fine-tune existing techniques on the
reference databases of test datasets. Our experiments show that
performance improves by reference database fine-tuning for
multiple techniques on different datasets. To handle appearance
and viewpoint variations as well, image augmentations can be
used during training. With this complete pipeline, techniques
improve performance. The experiments show improvement even
if a large query-reference domain gap exists for that dataset given
that a part of the test queries are know during fine-tuning.

I. INTRODUCTION

Visual Place Recognition (VPR) is an image retrieval prob-
lem that has been researched both from the robotics and
computer vision fields [1]. VPR is often used to support
different localization techniques, when these are not available
[1]. The goal of VPR is to find the location of an input
image (query) by comparing it to a reference set of images
with known locations [2]. The problem of VPR originates
from the field of Simultaneous Localization And Mapping
(SLAM), where it is used for loop closure [3]. Traditional
VPR techniques rely on small hand-crafted features and are
limited to small environments [2]. Modern techniques consist
of two steps: a deep learning feature extractor, which creates
feature maps, and an aggregator to turn these maps into single
descriptors [2]. Common deep-learning approaches used for
VPR are Convolutional Neural Networks (CNNs) [4]-[9]
and Vision Transformers (ViT) [10]-[16]. These large deep-
learning based techniques are first pre-trained on large task-
agnostic datasets and later fine-tuned on large VPR specific
dataset [1], [17].

The main challenges seen in VPR datasets are due to appear-
ance changes over time [18] (the day-night cycle, weather
changes, or seasonal differences) and due to variation in
viewpoint (looking from the same location to the other side
of the road) [19]-[21]. To counter these challenges multiple
big VPR-specific datasets have been designed to be as diverse
as possible [6], [18], [22]. A trend seen in these large datasets
is that they mostly consist of data taken from cars in urban
environments [11], [18].

To improve the performance of existing techniques on chal-
lenging datasets, we propose to use the data available in the
reference database to fine-tune techniques further. By using
the images from the known test database to create a new
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Fig. 1: The Recall@5 performance of almost all evaluated
techniques improves or stays the same when the techniques
(BoQ [15], SALAD [12], CricaVPR [14]) were fine-tuned
on the reference database images using the proposed fine-
tuning pipeline (see Figure 3). Each plot shows the results
of the original models and the fine-tuned version of three
techniques on one of the four evaluated datasets (Amstertime
[23], Nordland [21], Eynsham [24], SPEDtest [25]).

training dataset, models can fine-tune to the specific domain
of the test dataset, which could results in better retrieval of
the unknown test queries (figure 2).

This paper is structured as follows: chapter II presents the
relevant works within VPR. Chapter III explains the complete
pipeline and used components. The evaluated datasets and
techniques for the experiments are presented and discussed
in chapter IV. Chapter V show the results of the experiment
along side discussion and ablations studies. The conclusion
and further recommendations are presented last (chapter VI).

II. RELATED WORK

The original deep-learning methods used for VPR rely on
CNN-based backbones, which were pre-trained on ImageNet-
1k [26] and used off-the-shelf for VPR [27]. Currently,
CNN-based techniques fine-tune the backbone using VPR-
specific data to improve performance. These CNN backbone
extract features, that are combined using specifically designed
aggregation models [8], [28], [29]. With the introduction of
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Fig. 2: Traditional VPR pipelines use different datasets to train and test on, during testing the database images are assumed

known while the queries

vision foundation models (VEM) such as CLIP [30], DINO
[31] and DINOV2 [32], the performance of VPR techniques
improved substantially [11]-[13].

VFMs are big pre-trained models that can capture information
from visual input to be used on downstream tasks with
minimal or no fine-tuning at all [11], [30], [32]. The authors
of [11] show that using an off-the-shelf DINOv2 backbone
in combination with already existing aggregation techniques
improves performance for challenging datasets. The next step
in the development of VPR techniques is the application of
fine-tuning on VPR-specific datasets for techniques that use
VEM backbones [12], [14]. These large fine-tuned models
can outperform recent CNN-based approaches [6], [7], despite
their training methods not being as advanced [16].

The first fine-tuning methods do not consider specific datasets,
but are designed to improve the performance of pre-trained
CNN methods, which were first pre-trained on the com-
monly known ImageNet-1k dataset (14M images) [1], [26].
To improve performance with fine-tuning, large VPR-specific
datasets were constructed to be used as downstream fine-
tuning [6], [18], [22]. The use of these big datasets, in
combination with new fine-tuning techniques[7], [18], [33],
results in high performance for newer methods in VPR [7],
[15], [16].

Training on large VPR-specific datasets improves perfor-
mance for all test datasets but comes with a problem [11].
These big datasets consist mostly of data from urban locations,
making them less suitable for datasets in other environments
[34]-[36]. To counter this problem the images from the
reference set can be used, as some recent works already have
done [20], [37]-[39]. The authors of [39] and [37] leverage
the information in the reference set to improve performance
by enhancing the features of methods at test time. In [38], a
technique is presented that utilizes the reference set images to
train methods. A direction yet unexplored is to combine the
reference set data with traditional fine-tuning methods.

Methods that use reference set images to train a model apply
image augmentations to improve performance for unseen

queries [20], [38], [40]. These methods all create image
augmentations in different ways. The authors of [40] use im-
age style augmentations to improve performance for different
recording agents. The pipeline presented by [20] consists of
two parts that work together to improve domain adaptation.
First, a generative model is trained to learn the domain using
a few target domain queries in combination with training
data. In the second phase, they create new data using their
generator model to train their domain adaptation model. The
authors of [38] present a self-supervised learning pipeline
to train a model from scratch. To improve performance for
different domains, they include two augmentations; a set of
image augmentations created using the Kornia library [41]
and a 90-degree rotation geometry class. They state that they
do not use random perspective augmentations because of the
limited viewpoint variation in their evaluated datasets. The
augmentations presented by [38] are most promising for our
use case. The experiments done for the style augmentations
were designed for small indoor environments [40], which is
not the case for most VPR test datasets. The pipeline of [20]
is designed to adapt a model to a new domain using a data
generator and a specific model architecture, making it hard to
apply to fine-tune any model on the go.

As stated, quite some research has been done to improve
results for datasets with a large domain gap to the training
data. We build upon the current research and contribute to
the field of VPR in the following ways:

o A pipeline is introduced to fine-tune models based on
the reference database of test datasets, without the need
for additional validation or training data. By using this
simple pipeline R@1 values improved with up to 2
percent for difficult datasets.

o It is observed that even for datasets with large query-
reference domain gaps fine-tuning can improve perfor-
mance, given that the challenges seen are represented by
the used validation set.

o Multiple ablation studies are conducted, offering clearer
insights into how our method works.
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Fig. 3: Overview of our reference database fine-tune pipeline. Before training, triplets are mined once from the non-augmented
reference images, every epoch new random image augmentations are applied to the query based on the probabilities used in

[38].

III. METHODOLOGY
A. Problem definition

The problem of VPR is defined in the following way. Given
an input image (query), the goal is to find its location by
comparing it to a reference database of known location-
image pairs. An image representation is created for the query
(fy) and reference images (f,), by calculating the distance d
between the query descriptor and the reference descriptors
in the feature space the matching scores are created. The
reference with the smallest distance to the query is the best
match. The reference set is known before test time, while the
queries are revealed at test time.

B. Reference database fine-tuning

Traditional VPR training datasets include training query and
reference images [19], [22], [42], [43]. Newer techniques have
presented methods for using datasets that are not structured
this way. Still, they require the dataset to be either dense [6],
or to be structured into multiple non-overlapping locations
[18]. To use existing methods to fine-tune on the reference set
only, pseudo-queries need to be selected from the reference
set. To do this the reference set is copied, as we use reference
images to find triplets to use for training.

L:Zl(qu_fp”_qu_fnj||+m) (1)
J

Where L is the triplet loss, [ is the hinge loss (I(z) =
max(x,0)), m is the soft margin and fy, f;, and f,; represent
the descriptors of the query, positive and negatives respec-
tively.

C. Triplet mining

To mine the triplets, the positives are defined by selecting
reference images within ten meters of the query and using
the positive farthest from the query in the feature space. For
queries which have a soft positive other than the exact match,
the exact is not used as a positive in the triplets. To pick the
hardest negatives, the reference images further than 25 meters
are selected, from which the closest 2 images in the feature
space are used as negatives. The triplets are created before
any augmentations are applied. This method has been used by
multiple works already [8], [9], [13]. The evaluated techniques

(table II) did not train with the pipeline just presented. The
training techniques presented in their works could not be used,
as they rely on a big and neatly ordered dataset [12], [14],
[15], [18],

The triplets are used to calculate the loss during training time
(equation 1) [13].

D. Image augmentations

To improve the robustness of the fine-tuned models, the query
images are augmented during training. The image augmenta-
tions will be created using the Kornia library [41]. To fine-
tune, the same set of augmentations is used as done by [38],
with the addition of the random perspective augmentations.
The method of [38] uses a separate geometry module to
include different perspectives, in our pipeline the random
perspective is used because of the difference in evaluated
datasets. Figure 4 presents some examples of augmented
images.

IV. EXPERIMENTS
A. Datasets

To evaluate the effect of reference set fine-tuning, we use
multiple challenging datasets that show different domains
compared to the training dataset used by the authors of the
evaluated techniques (section IV-B). The training dataset is
also presented below. The datasets are formatted using the
code of [9], which has been used by recent papers [13], [14].
a) Amstertime: The Amstertime dataset was introduced in
2022 and contains 1231 query-reference pairs [23]. The
dataset consists of reference images from the past and
modern-day query images taken in Amsterdam, resulting in a
unique and difficult VPR dataset.

b) SPEDtest: The SPEDtest dataset is a dataset collected
using images from security cameras, the entire dataset consists
of 2.5M images taken at 2543 different cameras. The test
split is a subset of this dataset, it consists of 668 image pairs.
The reference images are from the winter and the queries are
images from the same cameras during summer time[25].

¢) Nordland: The Nordland dataset is a set of recordings
of a train journey through Nordland, the original dataset
contains four sequences of 10 hours [21]. To evaluate, a
scaled-down version is used, which consists of 27k queries
and 27k reference images [44]. The reference images are



Fig. 4: Reference images from the Amstertime [23] dataset (upper row) and the variants with augmentations applied with the

Kornia library [41] (lower row).

TABLE I: Overview of the evaluated test datasets. The main
challenges that are present in each dataset are noted down S:
change of seasons. LT: long-term change. GS: gray-scale, W:
weather

Name Type Ne Ng Challenges
AmsterTime[23] | Long-term 1231 1231 LT&GS
Eynsham[24] Country&Urban 23935 23935 GS
SPEDtest[25] Security cams 668 668 S&W
Nordland[21] Urban 27592 27592 S
GSV-Cities[18] Training 529683 LT&S&W

taken in summer, and the query images are taken in the winter
resulting in a big appearance change due to the large amounts
of snowfall in winter [21]. Two main splits are used for the
Nordland datasets, we use the test split with a threshold of 10
frames around the query. From this dataset, the final 10% of
the queries are used as validation queries, and the rest are used
for testing. By removing part of the dataset from the test we
keep our test and validation sets separate, but this also results
in a difference between our Nordland results and reported
performance by the authors of the evaluated techniques.

d) Eynsham: The Eynsham dataset is a collection of images
taken during a trip through the countryside of Oxford, the
same route was driven twice to get the query and reference
sets [24]. The images in this set are all gray-scale resulting
in a unique challenge.

e) GSV-Cities: Google StreetView Cities (GSV-Cities) is a
large-scale VPR dataset that is designed to fine-tune a pre-
trained model for VPR [18]. It consists of 560k that span 67k
places across the world, this dataset has been used by multiple
works to train models [6], [7], [12], [14], [15], [18], [29].
While the dataset consists of images representing different
challenges, a domain between the training data and the test
datasets still exists (figure 5).

B. Evaluated techniques

The evaluated techniques are described in this section to show
the effect of fine-tuning on different architectures. The main
reason for choosing the techniques presented, is their training
framework, as all methods are single-stage trained meaning
that the fine-tuning is easier to use to fine-tune other VPR
techniques.
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Fig. 5: T-SNE plot of the training dataset and the selected test
datasets. The training data is a very diverse set, but still the
test sets form their own separate cluster with little overlap,
meaning that some but not many images similar to the test
dataset are found.

a) Cross-image correlation-aware visual place recognition
(CricaVPR) [14]: The architecture of CricaVPR is not dif-
ferent from the standard VPR pipeline, as it consists of a
backbone and a simple aggregator. They add special adapter
layers to the backbone to properly fine-tune the DINOv2
backbone for the VPR task. During training only their adapter
layers are trained, instead of the complete DINOvV2 model
[14]. The aggregator of CricaVPR is a combination of
the already existing generalized mean aggregator [28] and
their novel technique, which compares feature map patches
across different query and reference images [14]. By cross-
referencing multiple queries in each batch using a multi-head
attention layer [10], information is shared between images,



resulting in more discriminative image representations [14].
b) Sinkhorn algorithm for locally aggregated descriptors
(SALAD) [12]: The second method tries to leverage the full
potential of the DINOv2 backbone, by combining the clusters
assigned to each local feature and the global feature into a
single descriptor [12]. This method is inspired by NetVLAD,
which assigns local features to clusters by clustering them in
the feature space [8]. To prevent a bias towards the training
data, the architecture of [12] learns how to assign the clusters
from the local features directly with a fully connected layer
and to optimise the assigned clusters using the Sinkhorn
algorithm for optimal assignment [12], [45].

To train the pre-trained backbone, without losing the gener-
alization capabilities [11], [32], the final four blocks of the
model are trained [12].

c) Bag of learnable queries (BoQ) [15]: BoQ is the final
method evaluated, it uses the strong attention mechanisms of
the transformer models. The output of the backbone is first
scaled down using linear projection the scaled-down feature is
then passed through multiple BoQ blocks. Each block consists
of two steps, first the input is passed through an encoder. The
output of the encoder is used as input for the next BoQ blocks
and as input for the attention mechanism. The second step is
an attention mechanism, in which learnable queries are used
to assess the importance of the input features by using a multi-
head attention layer [10], [15]. The outputs of the attention
layers of each BoQ block are concatenated, dimensionally
reduced and normalized to gain the global image descriptor
[15].

TABLE II: Overview of VPR techniques used for fine-tuning.

Backbone Image # #trainable

Name Backbone fi . . Dim.
ne-tuning size params params
CricaVPR[14]  DINOv2[32] _ All blocks* _ 224x224 __ 107M 202M 10752
SALAD[12]  DINOv2[32] Vi?g{o‘lkq 322x322  88.0M 31.3M 8448
BoQ[15] DINOv2(32] Vi?g{ozckg 322x322  952M 22.8M 12288

* the original ViT blocks are frozen, but an additional adaptation
layer is added to each block, which is trained.

C. Implementation details

We implemented the fine-tuning method based on other works.
The commonly used triplet margin loss function with a margin
of 0.1 is used to fine-tune [9], [13]. Before training triplets are
mined once, each triplet consists of a hard positive (< 10m)
and two hard negatives (> 25m). During training, mining
is not performed because the triplets change in appearance
due to the image augmentations applied to the query image
in each triplet. The learning rate is empirically set to le-7
for BoQ and le-6 for CricaVPR and SALAD. The models
train till the Recall@5 on the validation set has not improved
for 15 epochs and 5 epochs for the larger datasets, which
all show a clear decrease in recall on the validation set after
this window. An epoch is the passing of the entire training
dataset. The performance is evaluated every 1008 iterations to
obtain the best model. For smaller datasets, such as SPEDtest
and Amstertime, the performance is evaluated every complete
epoch, as these datasets contain less than 1008 triplets. A
batch size of 16 is applied for both training and evaluation.
The input image size on which the techniques were originally
evaluated is used both during fine-tuning and evaluation (table
1D).

The validation sets are created before evaluating the models.
The reference images are copied and randomly augmented,
these images are later used as queries during the validation
step. Before training 30% of the reference images are selected
to be used as validation queries, for these images the aug-
mented version is loaded during validation. For Nordland, we
split the test queries and use the first 90% of the test queries
as test dataset and the final 10% as validation set (section
V-O).

For evaluation, Recall@N (R@N) is used, which is defined
by the percentage of queries for which at least one positive
match exists in the top N retrieved images [7], [9], [12], [14],
[15]. The positive threshold is defined differently for the used
datasets so we follow the dataset configurations of [9]. For
Amstertime and SPEDtest only the unique pair is positive,
for Nordland all images within 10 frames are positive and for
Eynsham, a positive is any reference image within 25m of
the query image[7], [9], [12], [14], [15].

V. RESULTS AND ANALYSIS
A. Quantitative results

The results of our experiments are shown in table III, we
benchmarked the fine-tuned models against the original mod-
els. For the large datasets (Nordland and Eynsham), the fine-
tuned models perform better than the original ones. On the
smaller datasets, the results vary between the techniques. For
SPEDtest no big improvements are seen. The experiments
on Amstertime show inconsistent results for the different
techniques, which is discussed in section V-C.

B. Qualitative results

In figure 6, the qualitative results are presented. The images
displayed, are from cases when the original models all failed
and all the fine-tuned models predicted correctly. As our
model is not perfect, cases exist for which it is the other way
around, the original models predicted it correctly but forgot
after fine-tuning. In the images from Nordland, some obvious
improvements are visible, in row one the fine-tuned models
are able to recognize the second track while the original
models did not. No images existed for the smaller dataset on
which all methods improved. For Nordland 36 images existed
for which the fine-tuned models perform better, while only one
image exists for which all fine-tuned models perform worse.
In the Eynsham dataset, the fine-tuned model all improved on
four images and perform worse on non.

C. Discussion

The overall results of the experiments are positive, as we
can see improvement across multiple datasets. Some of the
datasets do however show no big change at all (SPEDtest), one
possible reason for this is the size of the reference sets of these
datasets. The smaller datasets contain less than 1000 images
to fine-tune, which results in noisy behaviour during training
time. For the larger datasets, we see a consistent improvement
across the techniques. This noisy behaviour is also the reason
for the larger patience values used on these datasets, this be
described in-depth in the ablation studies.

An important thing that needs to be noted is the use of part
of the queries as a validation set for Nordland. The effect
of the use of test queries will be shown in the ablation
studies. By using additional data during training, we did not



TABLE III: Results of the original models compared to the fine-tuned models. The first four columns show the R@N for the
original models and the last 8 columns show the R@N for the fine-tuned models with the difference between the original
models and the fine-tuned versions. Results in bold note the best performance between the original techniques and their

fine-tuned equivalent.

Model g:::;::‘e/te“ Results original model Results fine-tuned model
R@1 R@5 R@10 R@20 R@1 A R@5 A R@10 A R@20 A

BoQ Amstertime 62.6 81.6 85.5 88.5 64.9 2.3 83.8 22 87.6 2.1 90.9 2.4
SALAD Amstertime 58.2 78.8 83.7 87.8 58.5 0.3 79.3 0.5 84.1 0.4 87.7 -0.1
CricaVPR  Amstertime 64.3 82.4 87.2 91.3 65.1 0.8 83.3 09 872 0.0 91.7 04
Avg Amstertime 61.7 80.9 85.5 89.2 62.9 1.2 82.1 1.2 863 0.8 90.1 0.9
BoQ SPEDtest 92.9 95.7 97.0 98.0 92.8 -0.1 957 0.0 97.0 0.0 98.2 0.2
SALAD SPEDtest 92.3 96.0 96.9 97.4 91.8 -0.5  96.0 0.0 96.7 02 977 0.3
CricaVPR  SPEDtest 91.9 95.4 96.7 97.0 92.3 04 96.4 1.0 972 0.5 97.7 0.7
Avg SPEDtest 92.4 95.7 96.9 97.5 92.3 0.1  96.0 0.3  97.0 0.1 97.9 04
BoQ Nordland 88.7 95.1 96.9 98.2 91.0 2.3 96.0 09 975 0.6 98.4 0.2
SALAD Nordland 83.2 91.8 94.5 96.4 85.8 2.6 93.5 1.7 95.6 1.1 97.3 0.9
CricaVPR  Nordland 88.6 94.9 96.5 97.7 92.3 3.7 96.6 1.7 978 1.3 98.6 0.9
Avg Nordland 86.8 93.9 96.0 97.4 89.7 2.9 95.4 14 97.0 1.0 98.1 0.7
BoQ Eynsham 92.1 95.5 96.4 97.0 92.2 0.1 95.8 0.3 96.6 0.2 97.2 0.2
SALAD Eynsham 91.4 95.0 95.9 96.6 92.1 0.7 95.6 0.6 96.5 0.6 97.1 0.5
CricaVPR  Eynsham 91.6 95.0 95.8 96.4 91.9 0.3 95.5 0.5 96.5 0.7 97.0 0.6
Avg Eynsham 91.7 95.2 96.0 96.7 92.1 0.4 95.6 0.5 96.5 0.5 97.1 0.4

restrict the models to using the references, this approach did
however allow us to show that even for datasets where an
obvious query-reference domain gap exists (winter-summer),
an improvement can be made by fine-tuning on the reference
set. training

D. Ablations

a) Specialization: To evaluate the different fine-tuned
techniques against each other, we evaluate all four fine-tuned
BoQ models on the different datasets (figure 7). In the
figure it can be seen that the fine-tuned model mostly
improved performance for all datasets, except for the model
fine-tuned on the Eynsham dataset. Multiple experiments
were performed to analyze the difference between Eynsham
and the other datasets. The first experiment evaluated the
effect of using gray-scale images. Table IV presents the
results of this experiment, it can be seen that this did not
influence the results as much as fine-tuning on Eynsham.
Another difference between Eynsham and the other datasets
is the availability of multiple viewing directions. To test
the effect of the viewing directions, we fine-tuned on
Eynsham but only selected the closest match as positive.
This experiment resulted in a decrease in performance on
the Eynsham dataset. The main reason that this experiment
probably failed, is because all but the positives were selected
as negatives, meaning that some true positive reference
images could be used as a negative for the triplets, which
would result in the model learning the wrong things.

TABLE IV: Results on the Nordland and Eynsham datasets,
BoQ fine-tuned on Nordland and on the completely gray-scale
version of Nordland. Results in bold note the best results on
the test dataset.

Model  Test set Fine-tune set R@l R@5 R@10 R@20
BoQ Eynsham | Original model | 92.1 95.5 96.4 97.0
BoQ Eynsham | Nordland 92.2 95.6 96.4 97.0
BoQ Eynsham | Nordland gray 92.2 95.6 96.4 97.0
BoQ Nordland | Original model | 90.6 95.9 97.4 98.5
BoQ Nordland | Nordland 92.5 96.9 98.0 98.7
BoQ Nordland | Nordland gray 92.6 96.9 97.9 98.7

b) Learning rate: For each method, the learning rate at which
the model originally was trained was not sufficient for fine-
tuning. To find the right learning rate, the models were fine-
tuned multiple times on the Amstertime dataset [23]. In table
V, the results are presented. As can be seen, the original
learning rates result in a reduction in performance after fine-
tuning. The results are different for each of the models.
For BoQ both le-7 and le-8 show good improvements in
performance, we chose to use a final learning rate of le-7 for
BoQ, as the model required too long to converge when using
le-8. For CricaVPR, the results also show good performance
when the model fine-tune with a learning rate of 1e-8, with the
same problem as for BoQ as the models would not converge
within a normal time limit, the second best learning rate for
CricaVPR was le-6, which is used for the experiments. For
SALAD a learning of le-6 is used, as that showed the best
improvements.

TABLE V: Recalls of the model fine-tuned at different learn-
ing rates, the row with learning rate ”-” shows the results
of the original model. Results in bold note the best results
between the different learning rates for each technique.

Model Dataset LR R@1 R@5 R@10 R@20
BoQ Amstertime | - 62.6 81.6 85.5 88.5
BoQ Amstertime | le-04 | 20.0 35.3 42.4 50.1
BoQ Amstertime | le-05 | 59.6 79.9 85.2 89.2
BoQ Amstertime | le-06 | 64.0 83.2 86.9 90.4
BoQ Amstertime | le-07 | 64.9 83.8 87.6 90.9
BoQ Amstertime | 1e-08 | 64.9 83.9 87.2 90.7
CricaVPR  Amstertime | - 64.3 82.4 87.2 91.3
CricaVPR  Amstertime le-04 | 56.9 75.2 82.3 85.1
CricaVPR  Amstertime | le-05 | 62.1 81.6 86.8 90.0
CricaVPR  Amstertime | 1le-06 | 65.1 83.3 87.2 91.7
CricaVPR  Amstertime le-07 | 64.9 83.2 87.2 91.6
CricaVPR  Amstertime | 1e-08 | 65.1 834 87.2 91.7
SALAD Amstertime | - 58.2 78.8 83.7 87.8
SALAD Amstertime le-04 1.4 4.6 6.5 9.2
SALAD Amstertime | le-05 | 44.1 66.1 72.2 78.9
SALAD Amstertime | le-06 | 58.7 79.3 84.1 87.7
SALAD Amstertime | le-07 | 58.1 78.6 83.8 87.7
SALAD Amstertime | le-08 | 58.3 78.6 83.8 87.6

c) Use of test queries: To show the effect of reference set
fine-tuning on datasets with a large query-reference domain
gap, a part of the test queries of the Nordland dataset is used
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Fig. 6: Qualitative results from fine-tuning model on the reference set of test datasets. The fine-tuned models

to validate the model performance during training, the amount
of queries to use for this is tested with the BoQ model.
The results of our pipeline without any test queries is also
presented for all three techniques.

The performance of fine-tuning with different amounts of test
queries is similar from a certain amount of validation images.
The main reason for smaller/no improvement for the 0.5% of
test queries validation experiment is the size of the validation
set, making it hard to really validate a change. The larger
validation sets all show similar results.

TABLE VI: Results of the BoQ technique fine-tuned on Nord-
land, using different amounts of test queries as a validation
set the percentage states to part of the test queries used for
validation of the total amount of test queries (27k). The first
row shows the performance of the BoQ technique without
fine-tuning. Results in bold note the best results.

Model Dataset Amount of queries | R@1 R@5 R@10 R@20
BoQ Nordland | Original model 90.4 95.9 97.4 98.5
BoQ Nordland | 0.50% 90.6 95.9 97.4 98.5
BoQ Nordland | 1% 92.5 96.9 98.0 98.7
BoQ Nordland | 5% 92.7 96.9 98.0 98.7
BoQ Nordland | 10% 92.5 96.9 98.0 98.7

The models performed differently when using the original
pipeline, for BoQ the results were worse than the models fine-
tuned with a validation set created from the test queries, but
it still improved (table VII). For CricaVPR and SALAD, the

performance decreased drastically when fine-tuning without
the use of test queries, which is why we opted to use test
queries for our main experiments on the Nordland datasets.
The odd result from table VII is the Recall@1 for the
BoQ technique, as this still shows quite some improvement
compared to the original model. The main reason for this was
that the R@1 value for BoQ started suffering after the best
validation R@5 had been reached. The main trend seen in the
test performance curves was the same for all methods.

TABLE VII: Performance of the different techniques fine-
tuned on the complete Nordland dataset with our pipeline,
results in bold note the best results between the original
models and their fine-tuned equivalent.

Model Dataset Method R@1 R@5 R@10 R@20
BoQ Nordland ~ Original model | 90.4 95.9 974 98.5
BoQ Nordland ~ Our pipeline 92.1 95.9 96.9 97.7
CricaVPR  Nordland  Original 91.2 96.2 97.6 98.5
CricaVPR  Nordland  Our pipeline 89.3 93.9 95.4 96.6
SALAD Nordland ~ Original 859 935 95.6 97.2
SALAD Nordland ~ Our pipeline 84.4 92 94.3 96

d) Validation split selection: To create the validation split
30% of the database was randomly selected to not be included
in the triplets, but to be used as validation queries. Normally
VPR pipelines use a distinct validation and training set, to
prevent overfitting on the training data. As the goal for our
fine-tuning pipeline is to learn the domain of the training data
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Fig. 7: The Recall@5 results of the fine-tuned BoQ models
on the different test datasets. Each plot shows the results of
one of the fine-tuned models, each bar shows the results of
the original model and the fine-tuned model on the dataset
beneath the bar.

better both randomly selected and a distinct split (first 70%
training data, last 30% validation queries). This was tried on
both Nordland and Eynsham, as these were the only datasets
that covered a sequence of images, the other two datasets were
a collection of unique image pairs.

In table VIII, the results are presented. For both datasets the
performance improved more with the separation between the
validation and training images within the reference set. The
main reason for this was the similarity between the training
data and the test data. For the Nordland experiments, part of
the test queries were used as to validate and the 30% of the
reference images, which were meant to be used as a validation
set, were discarded. With the denser training data, better
triplets were created, which resulted in better improvement.

TABLE VIII: Results of BoQ fine-tuned with randomly se-
lected and separated validation sets. Results of a reduced
version of Nordland (not the 10% used for validation) and
on Eynsham. Results in bold note the best results for each
dataset.

Model Dataset Validation split R@1 R®@5 R@10 R@20
BoQ Nordland | Original model 88.7 95.1 96.9 98.2
BoQ Nordland | Random 91.0 96.0 97.5 98.4
BoQ Nordland | Seperate 91.8 96.6 97.8 98.7
BoQ Eynsham | Original model 92.1 95.5 96.4 97.0
BoQ Eynsham | Random 922 95.8 96.6 97.2
BoQ Eynsham | Seperate 92.5 95.9 96.7 97.3

e) Training positives threshold: Most of the current VPR
research papers use a positive threshold of 25m for testing
and validation and 10m for training to make the models more
discriminative [8], [9], [13]. As the testing data is used during
fine-tuning, we can maybe leverage this information better if
we use a positive threshold of 25m during training as well
as during validation and testing. As this variable only affect

datasets that are location based, these experiments are only
performed for Eynsham and Nordland.

The results in table IX show an improvement on both Eyn-
sham and Nordland for training positives threshold of 25m.
The difference is bigger for Eynsham than Nordland, this is
because the Nordland train dataset changes less over distance
compared to the Eynsham dataset, which is captured on the
road from a car. The improvement is an interesting result,
as the 10m hard positive limit has been used for normal
training a lot in previous works. This could also mean that
a different training positives threshold could benefit other
training pipelines as well.

TABLE IX: Results of BoQ fine-tuned with a positive thresh-
old of 10m and of 25m. Results of a reduced version of
Nordland (not the 10% used for validation) and on Eynsham.
Results in bold note the best results for each dataset.

Train positive

Model Dataset R@1 R@5 R@10 R@20
threshold(m)
BoQ Nordland | Original model — 88.7 95.1 96.9 98.2
BoQ Nordland | 10 91.0 96.0 97.5 98.4
BoQ Nordland | 25 91.2 96.1 97.5 98.3
BoQ Eynsham | Original model — 92.1 95.5 96.4 97.0
BoQ Eynsham | 10 92.2 95.8 96.6 97.2
BoQ Eynsham | 25 92.9 96.1 96.9 97.4

f) Patience: To stop fine-tuning after the best R@5 has been
reached on the validation set, a patience is defined. To evaluate
the effect of the patience parameter, the results of a run
without early stopping is analyzed. For the bigger datasets
(Nordland and Eynsham) it could be seen that the best results
are already achieved when a patience of 2 is used instead of
the 5 on which the original experiments were performed. For
the smaller experiments (figure 8), a patience of 15 is selected,
while this was not the best/final R@5 on the validation set, it
showed decent results while maintaining normal fine-tuning
times.

g) Amstertime: Another important thing noticed during the
experiments was the inconsistency for the Amstertime dataset.
While looking through this dataset, multiple image pairs
appeared that showed the same query or reference image, but
excluded other pairs with the same image from being marked
as true positive. We tried to clean up the dataset but did not
succeed in doing so.

VI. CONCLUSIONS AND RECOMMENDATIONS

In this paper, a fine-tuning pipeline is presented that uses
images from the reference database of test datasets to fine-tune
techniques. The performed experiments show that the method
works with multiple existing techniques across some of the
evaluated datasets with an average increase of 0.9%point re-
call@5 across the evaluated datasets and techniques. With the
results of the experiments we conclude that useful information
exists in the reference databases of test datasets, our pipeline
is not able to evaluate the effectiveness of training for datasets
with large query-reference domain gaps. The pipeline is able
to do so if part of the test queries are available during fine-
tuning. The ablation studies show that multiple improvements
can be made on our pipeline to improve fine-tuning even more.
Next to the increase in performance, the experiments also
show that performance can even improve for datasets with
large query reference domain gaps as long as test queries can
be used to evaluate the model during fine-tuning.
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In future work, the use of the information can be done even
better. An adaptation of the highly used multi-similarity loss
with online mining could be used to create better triplet and
improve performance even more.

While we performed multiple ablation studies, some blanks
could be filled in, in the experiment an image augmentation set
has been used from previous works. On the augmentations,
no ablations were performed, in future work different aug-
mentations could be used to recreate specific domain changes
between the reference images and the queries (day-night or
summer-winter) by using generative Al models, which have
become popular in recent years. We also show in our ablations
that some of the settings we chose, were suboptimal. By
combining all the shown improved ablation settings, better
results might be possible. For the Amstertime dataset, a
new refined version should be made, as this is currently an
important VPR benchmark dataset, due to the challenge it
poses. By refining the dataset to have a correct ground truth,
a clearer insight would be gained into how difficult this dataset
is. Another direction that could be explored would be to create
an ensemble of different fine-tuned models, as they are each
specialized in certain environmental situations, it could create
a good all-around technique.
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