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Chapter 1

Introduction

The A-calculus is an abstract tool that is used in an area where mathematics meets computer
science, to study algorithms, programming languages and even category theory. It was con-
ceived by Alonzo Church, primarily as a foundation for mathematics instead of set theory
or type theory [Chu32]. A couple of years later, Church used it to show that the “Entschei-
dungsproblem” was unsolvable: the problem asked for an algorithm that could tell about
any mathematical statement whether it was true or false, and Church showed that such an
algorithm could not exist [Chu36]. A year later, Alan Turing showed, using previous work
of Kleene [KIe3§], that an algorithm is definable using the A-calculus if and only if it is de-
finable using a Turing machine [[[ur37], solidifying the position of both the A-calculus and
Turing machines as ways to talk about algorithms.

Later, all kinds of different flavours and extensions of the A-calculus were put forth,
with colorful names like ‘simply typed A-calculus’, ‘System T’ and ‘PCF’. Even though the
A-calculus was originally a very theoretical tool, it was also the inspiration for functional
programming languages, and traces of it can be seen in imperative programming languages,
where unnamed functions are commonly called ‘lambda expressions’ [Ora22] and are some-
times even written like lambda x y : (x - y) * (x + y) [Pyt24].

Even so, the theoretical study of the A-calculus and its extensions continues to this day.
For example, in 20178, a paper by Martin Hyland was published with the title ‘Classical
lambda calculus in modern dress’ [HyI17]. In this paper, Hyland approaches the A-calculus
from the viewpoint of universal algebra, using algebraic theories, and more generally cate-
gory theory, to study it. This way, he obtains two new proofs for old theorems. The paper
also contains a new theorem that shows that two different ways to study the A-calculus using
universal algebra are equivalent.

Now, in the last century, mathematics has changed a lot. Of course, new theorems have
been proved, new conjectures have been made and entire new areas of mathematics have
come into existence. However, like in many professions, the arrival of the computer has
affected the way that work is done in mathematics. All kinds of tools have been created
that aid mathematicians in their job. Some of these tools help with quick calculations for
formulating or disproving new conjectures. Other tools help in structurally verifying ideas.
There even have been some “proofs by computer’, which consist of a proof on paper that a
theorem can be reduced to a finite, but very large, computation, and a computer program
that then executes this computation. For example, the first proofs of the four color theorem
[[AH76] and the Kepler conjecture [Hal02] were done this way.

However, because the computation part of such a proof involves a lot of code, and com-
puter code tends to contain bugs, accepting a proof by computer involves a certain amount of
trust. Therefore, both of the theorems mentioned have subsequently also been proved using
‘computer proof assistants’ [Gon08; Hal+17]. Such proof assistants, like ‘rocq’, ‘lean” and

Note that the paper has been around since 2012, when it was first published as a preprint on arXiv.
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1. INTRODUCTION

‘Agda’, are computer programs with only a very small “trusted codebase’, that can verify
mathematical reasoning. In this way, if we trust the small core of such a proof assistant, and
the proof assistant says that a proof is correct, then we can trust that indeed, the proof is
correct.

This sounds great in theory, but in practice, the way that these programs reason about
mathematics is very formal and rigid. This means that ‘formalizing’, proving something
using a proof assistant, usually involves a great amount of effort, usually much more than
doing a pen-and-paper proof. However, representing this as a choice between doing pen-and-
paper proofs and working with proof assistants would be too simplistic. Often, doing a pen-
and-paper proof can help one to develop an intuition and get new ideas, whereas formalizing
those ideas can then help to get a better view of the subtleties of a proof and to sharpen the
understanding of why the proof works. Therefore, there is a lot of ongoing research into
tools and best practices to make the process of formalizing as smooth as possible; to make
these programs, which sometimes are experienced as “proof obstructors’, really into ‘proof
assistants’.

Now, much of contemporary mathematics is built on the foundation of set theory with
classical logic, which we will often refer to as classical mathematics. Usually, ‘set theory’ refers
to ZFC: Zermelo Fraenkel set theory with the axiom of choice, developed in the early 1900s
[Zer08]. On the other hand, most of the formalization in proof assistants is built on the foun-
dation of type theory. This is because computers can reason better with types than with
sets, as evidenced by the many typed programming languages that are around nowadays.
However, type theory has been around longer than computers have: it was initially devel-
oped by Bertrand Russell in the early 1900s [Kus03, Appendix B], to create a foundation of
mathematics that avoided Russell’s paradox®.

Nowadays, there are many flavours of type theory around. The proof assistant rocq is
based on the ‘calculus of constructions” whereas the proof assistant Agda works with the
‘unified theory of dependent types’. Every flavour has its advantages and disadvantages,
but in this thesis we will work with “univalent foundations’, set forth by Vladimir Voevodsky
[Voel4]. The advantage of working with univalent foundations is that it makes explicit the
common mathematical principle that ‘things with a similar structurel are the same’, which
allows us to use it when formalizing.

Unfortunately, there is a trade-off here: we do not get ‘similar objects are the same” for
free. This is because two objects can often have a similar structure in more than one way. For
example, the set { T, L} has two bijections to the set {0, 1}. To accomodate for this, in univalent
foundations, two things can sometimes ‘be the same” in more ways than one. For example,
we have two equalities between {T, L} and {0, 1}. This means that the concept of ‘sameness’
becomes more complicated to work with in univalent foundations than it is in set theory. This
is one of the reasons that there are subtleties involved in transferring definitions and proofs
from set theory to univalent foundations. It is therefore still a topic of ongoing research how
well different parts of set-based mathematics can be transferred to univalent foundations and
what subtleties pop up when material from set-based mathematics is transferred to univalent
foundations. For example, often in set-based mathematics, two definitions are equivalent if
we assume the axiom of choice. However, sometimes in univalent foundations, the axiom
of choice is not sufficient to make two such definitions equivalent, and then we have two
different definitions. It is then interesting to explore the behaviour of these two different

*The trusted core is the part of the codebase of which we have to trust that it is correct. Among other things,
it verifies the output of every other part of the codebase, so if the trusted core is correct, the rest is too.

3Russell’s paradox is the question “Consider the set of all sets that do not contain themself. Does this set
contain itself?” Answering this question with either ‘yes” or ‘no’ leads to a contradiction.

*For example, two sets with a bijection between them have a similar structure. Also, two graphs G and H
have a similar structure when there is a bijection f between their sets of vertices, such that for every two vertices
v,w : G, we have a bijection between the set of edges from v to w, and the set of edges from f(v) to f(w).
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definitions in univalent foundations.

In this thesis, we study the paper ‘Classical lambda calculus in modern dress’ through
the lens of univalent foundations, work out the details of the proofs, and formalize part of
the paper and its preliminaries. The major contributions are:

e More detailed versions of Hyland’s definitions and proofs, complemented with some
examples (Chapters fjand ff). Also, the work of Dana Scott and Paul Taylor that Hyland
expands upon (Chapter ff), and most of the category theoretical preliminaries needed
to understand the paper (Chapter []), to make this thesis reasonably self-contained. All
this makes Hyland’s paper more accessible to computer scientists.

e The translation of Hyland’s paper and the work of his predecessors to univalent founda-
tions (Chapter f). This shows that his work can be translated to univalent foundations,
and contributes to the knowledge about translating classical mathematics to univalent
foundations in general.

e A formalization of part of the paper in rocq (Chapter []). Of particular interest here
is a tactic for applying S-reduction and substitution to A-terms (Section [.T0.1)). This
formalization contributes to the knowledge about formalization in general.

e A new proof for the fundamental theorem of the A-calculus (Section p.4)). This version
is easier to read and verify, because it is more elementary and uses less category theory
than Hyland’s proof.

e An analysis of the behaviour of the Karoubi envelope in univalent foundations in gen-
eral (Section £.12), and in the specific case of Paul Taylor’s and Martin Hyland’s work
(Remark p.IT)). It is one of the places where subtleties arise when translating from
classical mathematics to univalent foundations.

Now, most of this thesis works towards Chapter f, about the three main proofs of Hy-
land’s paper. Because this thesis works from a univalent point of view, Chapter B introduces
univalent foundations and builds the preliminary knowledge in that area for the rest of the
paper. As mentioned before, the work of Hyland’s predecessors that is covered in Chapter
B helps to understand his paper. The category theoretical preliminaries for understanding
Hyland’s paper are covered in Chapter P}. It is probably wise to skim this chapter, and pe-
riodically come back to it to better understand the material in the other chapters. Hyland’s
three main theorems deal with a couple of objects that he introduces. These objects, together
with some properties and examples, are introduced in Chapter . Lastly, the formalization
of part of the material covered in this thesis is discussed in Chapter [/.

Throughout this document, links are included to documentation of the corresponding for-
malized material. The documentation refers to the state of the UniMath repositoryatcommit
5eb5c8958c4dddd4219f895bf7bc51547395522d.


https://arnoudvanderleer.github.io/cs-masters-thesis/toc.html
https://github.com/UniMath/UniMath/tree/5eb5c8958c4dddd4219f895bf7bc51547395522d




Chapter 2

Category Theoretic Preliminaries

This chapter will introduce most of the category theory that is needed to understand the
rest of the thesis. The chapter assumes familiarity with the category theoretical concepts
presented in [AW23]. These include categories, functors, isomorphisms, natural transforma-
tions, adjunctions, equivalences and limits.

It is probably wise to skim this chapter upon first reading, and periodically come back to
it to better understand the material in the other chapters.

2.1 Notation

Throughout this thesis, objects of a homotopy set, for example morphisms, will usually be
denoted with lowercase letters like f, g, h and sometimes with Greek letters like €, 7, ¢, 1.
Objects of a homotopy 1-type, like objects in a category, will usually be denoted with capital
letters like X, Y, Z. Lastly, (displayed) (bi)categories themselves will usually be denoted
with boldface capital letters like Set or D.

Throughout this thesis, an object X in a category C will be denoted by X : C. A morphism
f between objects X and Y in a category C will be denoted by f : C(X,Y’) or sometimes
f: X — Y. Composition of morphisms f : C(X,Y) and ¢ : C(Y, Z) will be denoted by f - g.
And composition of functors ' : A — B and G : B — C will be denoted by F' ¢ G.

Throughout this thesis, we will use the notation A =~ B for an isomorphism of objects in
a category, or of categories themselves. We will use the notation A ~ B for an equivalence
of types or of categories. If A and B are sets or univalent categories, A =~ B is equivalent
to A ~ B. We will often, instead of A ~ B or A ~ B just write f : A = B, giving the
isomorphism or equivalence a name.

In this thesis, we will often work with ‘tuples’”: elements of S™ for some set S and some
natural number n. We will denote

(Sz‘)i:(Sl,SQ,...,Sn) and S—I—t:(81,...,Sn,t1,...,tm):Sn+m

fors:S™and t: S™.

2.2 Universal Arrows

One concept in category theory that can be used to describe a lot of limits and adjunctions is
that of a universal arrow (see for example [Mac9§], Part III)

Definition 2.1. A universal arrow from an object X : D to a functor F' : C — D consists of
an object Y : C and a morphism f : D(X, F'(Y)) such that for every similar pair (Y’, f'), f/
factors uniquely as f - F'(g) for some g : C(Y,Y”):

5



2. CATEGORY THEORETIC PRELIMINARIES

Alternatively, we can characterize universal arrows by their action on hom-sets:

Lemma 2.2. Let F' : C — D be a functor and X : D an object. An object Y : C and an arrow
f:D(X, F(Y)) form a universal arrow from X to F'if and only if the function

(9= f-F(g9)): C(Y,z) — D(X, F(x))

is a bijection.
Conwversely, for allY : C and X : D, every bijection

C(Y,Z) =~ D(X,F(2))
that is natural in Z arises in this way from some universal arrow f : D(X, F(Y)).
Proof. See [Mac98, Chapter III.2, Proposition 1]. O

There is also the dual concept: a universal arrow (X, f) from a functor F' to an object
Y : C. Its universal property can be summarized in the following diagram:

2.3 Adjunctions and Equivalences

Recall that an adjunction L — R is a pair of functors

with natural transformations (the unit and co-unit)

n:idc=LeR and e¢:ReL = idp

such that the diagrams
L Lt L R n R
LeRel RelLeR

commute (these are called the triangle identities or zigzag identities). Here the natural trans-
formation e L : L e R e L is the natural transformation n whiskered on the right by L, and
the other whiskered transformations are similar.
An alternative characterization [Mac98, Chapter IV.1, Theorem 2] of an adjunction L 4 R
is as a natural bijection
¢ :D(L(X),Y) = C(X,R(Y)).



2.3. Adjunctions and Equivalences

Naturality means that forall f : C(X', X ), g : D(Y,Y’) and h : D(L(X),Y),

P(L(f)-h-g) = f-o(h) - R(g).
Lastly, one can construct an adjunction using universal arrows. This lends itself particu-

larly well for a formalization, where it is often preferable to have as few ‘demonstranda’ as
possible:

Lemma 2.3. One can construct an adjunction (L, R, n, €) as above from only the functor L : C — D
and, for each X : C, a universal arrow (R(X),ex) from L to X.

Proof. See [Mac98, Chapter IV.1, Theorem 2 (iv) ]. O

2.3.1 Adjoint Equivalences

An (adjoint) equivalence of categories has two equivalent definitions, that only differ in
which notion they take as the base. In this case, we will use the definition that is based
on adjunctions:

Definition 2.4. An adjoint equivalence between categories C and D is a pair of adjoint functors
L — R like above such that the unit  : idc = L e R and co-unite : R e [ = idp are
isomorphisms of functors.

The alternative is to define an adjoint equivalence as an equivalence of categories (a tuple
(L, R, n, €) of two functors and two natural transformations, where 7 and € are isomorphisms
of functors) that additionally satisfies the zigzag identities.

2.3.2 Weak Equivalences

There is also the notion of ‘weak equivalence’. In some cases, this is equivalent to an adjoint
equivalence (for example, when its domain is univalent, see Section B.7).

Definition 2.5. A functor F' : C — D is called a weak equivalence if it is essentially surjective
and fully faithful. We will sometimes denote a weak equivalence with

C——»D

because intuitively it is injective and surjective, up to isomorphism.

2.3.3 Exponential Objects

Note that in the category of sets, for all X,Y : Set, we have a set of functions (X — Y). Also,
for all X,Y, Z, there is a (natural) bijection

(XXY—)Z)E(X—)(Y—)Z))
which we can also write as
Set(X xY,7) = Set(X, (Y — Z2)).

In other words, we have functors X — X x Y and Z — (Y — Z), and these two form an
adjunction. The following generalizes this

Definition 2.6. A category C has exponential objects (or exponentials) if for all X : C, the
functor X’ — X’ x X has a right adjoint, which we denote Y — YX.

Remark 2.7. 1t is actually very well possible that a category does not have all exponentials,
but it has some objects X, Y, YX :Cwitha bijection

C(X'x X,Y) =~ C(X", YY)

that is natural in X’. Then Y is still called an exponential object.



2. CATEGORY THEORETIC PRELIMINARIES

2.3.4 Forgetful Functors and Free Objects

In mathematics, we often deal with objects that are ‘based on” other objects. For example, a
ring is a set with some additional structure. Often, this is a relation between the respective
categories (for example, in the case of a displayed category, see Section [/4), and such a
relation gives rise to a forgetful functor, that ‘forgets” about the additional structure. In the
examples of rings and sets, the forgetful functor sends a ring to its underlying set, and a ring
morphism to the function between the sets. However, note that there is no formal definition
of forgetful functors. The name is more of a way to talk about the perceived relation between
the categories.

Definition 2.8. Given a forgetful functor ' : C — D, we define the free functor associated to
F to be the left adjoint to F, if it exists.

Example 2.9. Consider the forgetful functor from the category of commutative rings to the
category of sets, sending a ring to its underlying set. This has a left adjoint, sending the
set {1,2,...,n} to the polynomial ring Z[ X}, ..., X,,], and more generally, sending S to the
polynomial ring Z[X]s.s. This ring is then called ‘the free commutative ring on S". If S has
n elements, the ring is also called ‘the free commutative ring on n generators’.

The free functor sends a function f : S — T to the ring morphism Z[X;|s.5 — Z[X¢|t.7
that sends X to Xy ().

The natural bijection

Rng(Z[X;)s.s, R) = Set(S, R)

then sends f : Rng(Z[X|s.s, R) to s — f(X;) and g : Set(S, R) to the morphism that sends
X5 to g(s).

However, as with exponential object, sometimes we have a forgetful functor ' : C — D,
but we cannot give a free functor on the entire category D. In such a case, we might still talk
about free ‘objects”:

Definition 2.10. Let F' : C — D be a forgetful functor. Given X : D, the free object on X is a
universal arrow (Y, f) from X to F.

Remark 2.11. By [Mac98], Chapter IV.1, Theorem 2 (ii), if we have a free objectonevery X : D,
we can piece these together to get a free functor associated to F.

24 Yoneda

Let Cbe a category. One of the categories that is often important in the study of C is its presheaf
category PC = [C°P, Set|. Its objects are the functors from C°P to Set and its morphisms are
the natural transformations between the functors.

We can embed C fully faithfully into PC as follows [KSU€, Section 1.4]:

Definition 2.12. The Yoneda embedding & : C — PC is given on objects by & (Y) = C(—,Y):
FY)(X)=CX,Y) and X(Y)(f)(9)=F-g

for X : C, f: C(X,X')and g : C(X',Y). It sends a morphism f : C(Y,Y”) to the natural
transformation & (f): C(—,Y) = C(—,Y”’) given by

FNHX)9) =9g-f
for X : Cand g: C(X,Y).

Now, this embedding has a couple of properties:



2.4. Yoneda

Lemma 2.13. Forany Y : Cand F : PC, we have a bijection PC(X%(Y),F) = F(Y), and this
bijection is natural in Y and F.

Proof. Itsends anatural transformation a : PC( & (Y'), F)) to the element ay (idy ). Conversely,
it sends an element X : P(Y’) to the natural transformation a given by ax (f) = P(f)(X) for
all f: X(Y)(X) = C(X,Y). For more details, see [KSU§, Proposition 1.4.3]. O

Remark 2.14. For any category D, the category [C, D] has (co)limits of some kind (terminal
or initial object, (co)products, (co)equalizers) if and only if D does. These (co)limits are
computed pointwise: for example, for binary products, (F' x G)(X) = F(X) x G(X). In
particular PC has all limits and colimits because Set has all limits and colimits.

Remark 2.15. Also, for any small category C (small means that the collection of objects is a
type in our type universe. For example: for a fixed universe of types, Type or Set are not
small categories, the universe of types is not contained in itself), the presheaf category PC
has exponential objects, given by

(FO)(X) = PC(£(X) x G, F),

the natural transformations from the product functor of the Yoneda embedding of X and G,
to F' [MM9Y4, Section 1.6, Proposition 1].

Definition 2.16. Suppose that we have a functor F' : C — D, and C and D both have binary
products. Then for X, Y : C, we have morphisms 71 : X x Y — X andm: X xY — Y and
applying F' to these yields morphisms from F(X x Y) to F'(X) and F(Y'). We then have a
product morphism

(F(m),F(m)): F(X xY) - F(X) x F(Y).

Now, if this morphism is an isomorphism for all X,Y : C, we say that F' preserves binary
products.

One can imagine that there exists a similar definition of preservation of limits in general,
in which the limit morphism of ‘F" applied to the projections from the limit’ is an isomor-
phism, for any limit in C.

Definition 2.17. Suppose that we have a functor ' : C — D that preserves binary products,
and C and D have exponential objects. Then for X,Y : C, we have natural bijections

0 :C(XVxY,X) S (XY, XY) and ¢ :D(FXY)xF(Y),F(X)) > DFXY), F(X)FY)

This gives a morphism F(¢~!(idyv)) : D(F(XY xY), F(X)). Precomposing with the inverse
of the isomorphism f : F(XY x V) = F(XY) x F(Y) and applying v gives

Y(f N idxy)) : DE(XY), F(X)FM).

We say that F' preserves exponentials if this morphism is an isomorphism for all X,Y : C. A
name for a functor that preserves exponentials is a cartesian functor.

Lemma 2.18. The Yoneda embedding preserves limits.

Proof. See [Bor94, Volume 1, Proposition 2.15.5] for the full proof, but note that for binary
products, we have bijections

XX xY)Z) = X(X)(Z)x X(Y)(Z)

sending f : C(Z,X x Y) to the pair (f - 7, f - m2) and conversely, sending a pair (g1, g2) :
C(Z,X) xC(Z,Y) to the product morphism (g1, g2) : &(Z, X xY). This idea is also the core
of the proof about general limits. O

9
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Lemma 2.19 (yoneda_preserves_exponentials). The Yoneda embedding preserves exponentials.

Proof. First of all, note that for X,Y, Z : C, we have a sequence of isomorphisms [Kam||

£ (XV)(2) = PC(X(2), £ (X7))

~C(Z,XY)

~C(Z x Y, X)

>~ PC(K(ZxY), k(X))

= PC(£(2) x £(Y), £(X))

= PC(%(2), (X)*(Y))

= (£(X)*())(2)
using (once or twice) the Yoneda lemma, fully faithfulness of the Yoneda embedding, the
property of the exponential object, and the fact that the Yoneda embedding preserves binary
products.

Some calculating shows that when applying this isomorphism to some f : X (XY)(2),
we get the natural transformation h : PC(X(Z) x X (Y), &(X)) given by

hz(g1,92) = (g1, 92) - ¢ (f)
forall Z: Cand (g1,92) : £(Z2)(Z) x X(Y)(Z) and with the natural bijection

0:C(ZxY,X) 5 C(Z,XY).

It turns out that when we apply the morphism in Definition P.I7 to f, we get exactly the
same natural transformation. Therefore, the morphism in Definition .17 is the isomorphism
defined here and we conclude that & preserves exponentials. O

For a functor between categories f : C — D, given the Yoneda embeddings & : C — PC
and Xp : D — PD (we will often omit the subscript C and D), we can create a diagram

c—' .,p

[ s

PC +—— PD
P

Note that the arrows in this diagram are functors, so objects in a category, instead of elements
of a set. Therefore, it often does not make a lot of sense to talk about ‘equality” of the func-
tors along the different paths, but we rather talk about isomorphism in the functor category
[C, PC]. If we have such an isomorphism, we say the diagram 2-commutes”:

Lemma 2.20. If f : C — D is a fully faithful functor, the diagram above 2-commutes.

Proof. For Y, X : C, since f is fully faithful, we have isomorphisms of sets, given by

F(Y)(X) = C(X,Y) —— D(f(X), f(Y)) = £ (F(F(Y))(X).

fxy

Also, for g : C(X’, X)), the following diagram commutes

E(V)(X) I fP R (F(r))(X)

g— lfx’,x(g)'—

K(V)(X) 25 fP (X (F(YV)(X)

10
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2.5. Fibrations

so the isomorphism is natural in X and we have X (V) = f,P(&(f(Y))) in PC. Lastly, for
g:C(Y,Y’)and X : C, the following diagram commutes

E(V)(X) I fP (R (F(Y))(X)

l-g l—fy,y/(g)

) (X) D 1Rk (r ) (X)

so the isomorphism is natural in Y and we have & =~ f e X o f.F in [C, PC]. O

2.5 Fibrations

Let P : E — B be a functor. In this case, we will view this as the category E ‘lying over’ the
category B, with for every point X : B, a slice Ex = P~Y(B) lying ‘above” X.

Definition 2.21. A morphism f : E(Y, Z) is called cartesian if for all g : E(X,Z) and h :
B(P(X),P(Y))with h-P(f) = P(g), thereexists h : E(X,Y) suchthat P(h) = hand h-f = g,
like illustrated in the following diagram from [nLaZ4b ]

Vg

Definition 2.22. P is a fibration if for all Y : E and morphisms f : B(X, P(Y")), there exist an
object X : E and a cartesian morphism f : E(X,Y) such that P(X) = X and P(f) = f:

2.6 (Co)slice Categories

Given an object in a category X : C, the morphisms to and from X constitute the slice and
coslice categories

Definition 2.23. The slice category C | X is the category with as objects the morphisms to X:

(ClX)= ) CY,X).
Y:C

The morphisms from (Y7, f1) to (Y2, f2) are the morphisms g : Y1 — Y3 making the following
diagram commute.

Y; 9 Yy

N

X

11
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The coslice category X | C is similar, but with the morphisms from X instead of to X:

(X 1 Q=) CX,Y).
Y:C

Now, if we have an object in a slice category, we can again look at the slice of the slice
category over that object. However, this gives us nothing new:

Lemma 2.24. Let (Y, f) be an object in the slice category (C | X). The slice category ((C | X) |
(Y, f)) is equivalent to (C | Y).

Proof. An objectof ((Z,g),a): ((C| X) | (Y, f))is anobject (Z,g) : (C | X), together with a
morphism a : (C | X)((Z,9), (Y, f)). Thatis, a morphism a : C(Z,Y") such that the obvious
triangle commutes (shown in the diagram below on the far left).

Then a morphism between ((Z1, ¢1), a1) and ((Z2, g2), a2) is amorphism bbetween (Z1, ¢1)
and (Z3, g2) that commutes with a; and as. Note that a morphism between (Z;,¢g;) and
(Z2, g2) is a morphism between Z; and Z, that commutes with ¢g; and gs.

7 b

Z2

N\ 4 ————— 7y
e
g1 }‘/ g2 \ /

f
X

Now, note that g; and g2 are completely determined by g; = a; - f, so we can leave them
out. Also, if b commutes with a; and ag, it automatically also commutes with ¢g; and go.
Therefore, as shown above, we have a correspondence between objects and morphisms

b:((Z1,91),a1) = ((Z2,92),a2) & b: (Z1,a1) — (Z2,a2).

Now, the slice categories inherit some structure from the original category:

Lemma 2.25. For (Y1, f1), (Y2, f2) : (C | X), their product in the slice category is given by their
pullback, or fibered product, Y1 x x Ya, together with the induced morphism g : Y1 xx Y2 --» X.

Proof. Consider the diagram below. The fibered product gives “projections” h; and hy. Also,
if we have some (Z,a) : (C | X), together with morphisms b; : (Z,a) — (Y1, f1) and b :
(Z,a) — (Yo, fa). Then by and by commute with f; and f», so by the universal property of the
fibred product, there exists a unique morphism v : Z — Y7 x x Y5 that makes the triangles
with b1 and h1, and with by and ho commute. Then v commutes with a and g as well, so it
is a morphism in (C | X). This shows that (Y7 x x Y3, ¢g) has the universal property of the
productin (C | X).

12



2.7. Dependent Products and Sums

For a category C with products, Hyland introduces the notation AxY for the element
(X xY,p1) : (C| X), and we will follow his example in this.

In fact, Ax : C — (C | X) is a functor, with Ax(f) =idx x f for f : C(Y,Y”). If C has
a terminal object 7' and we identify C with (C | T'), then Ax is the pullback functor along
(C|l T)— (C| X)along the morphism ! : X — T. This functor preserves the terminal
object, products and pullbacks:

Lemma 2.26. A x preserves all limits.

Proof. Take a diagram ((Y;);, (f;);) in C. Suppose that this has a limit L : C with projections
gi : C(L,Y;). Now, consider an object (Z,q) : (C | X), together with morphisms h; : (C |
X)((Z,q), AxY;), that commute with the Ay f;:

VA

h'n,

him
X x L

A]mj AX%

X X Y, AxT, X x Y,

Then the morphisms in (C | X)((Z,q), AxL), commuting with the Axg; and h; are the
morphisms in C(Z, X x L) =~ C(Z, X) x C(Z, L) that commute with the projections to X and
theidx x g; and h;. Since the morphisms in C(Z, X)) commuting with ¢ and id x are exactly
¢, we can forget about this component, and the morphisms we are looking for correspond to
the morphisms in C(Z, L) that commute with the g; and h; - p;. Since (L, (g;);) is a limit, this
is a unique morphism. O

Lemma 2.27. Ax preserves exponential objects:

Proof. See [Bor94, Volume 3, Lemma 5.8.2]. There, the following isomorphisms are used for
the proof:

(C L X)((W, f),AxY?) = C(W,Y?)

C(W x Z,Y)

C | X)((W x (X x 2),{f,p1)), AxY)
ClX)((W, f) x AxZ,AxY)

lle

> (
> (

2.7 Dependent Products and Sums

The following is based loosely on Section 4.1 of [[[ay86].

Take a category C. To talk about dependent sums . ., Y, and products [ [,.y Y, in C,
we first need some way to construct the family of objects (Y;),. Of course, we can do this
externally using a set X, and picking an object Y, : C for every element = : X. We then have
a category of such families C*, with objects (Y ), and morphisms (f2) : CX((Ya)z, (Z2)z),
with f, : Y, — Z,. We write C¥X because we can view this as just the X -fold power of C. Now,
this assignment of categories X ~— C*X can be turned into a contravariant (pseudo)functor
of 2-categories Set®® — Cat. It sends a morphism f : X; — Xj to the ‘relabeling’ or ‘substi-
tution’ functor C*2 — CX1, (Y,), — (Yi(2))a-

However, there is also an internal representation, as a morphism Y — X. We can turn the
collection of these morphisms over all the X : C simultaneously into a category C? (abusing

13
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notation a bit, writing 2 for the two-point category ¢ — ). Then taking codomains (Y —
X) — X gives a functor C2 — C. The fiber of this functor above X is the slice category
(Cl X).

In Set, the external and internal ways of indexing are actually equivalent, because given
a family (Y,), we can construct a morphism f = 7 : > . Y, — X and conversely, we can
recover the family (Y3, as (f~1(z))..

Also note that for Set, if we consider an indexed family (Z,), as some function Z : ¥ —
Set, then substitution over f : X — Y is just given by postcomposition Z o f : X — Set. It
turns out that in the internal representation this is a pullback

Zm:X Zf(l“) — Zy:Y Zy

lm 4 lm
x — 1 Ly

This can be extended to a pullback or ‘substitution” functor f* : (Set | Y) — (Set | X),
which Taylor calls pf. This turns the functor Set? — Set into a fibration. We can construct
such a functor f* for any category C with pullbacks and any morphism f : C(X,Y’), and this
makes the functor C2 — C into a fibration.

Now, in Set, for a family (Y,),, consider the dependent product [ [,. Y,. Its elements
(yz)« can be identified with morphisms from the terminal set: {x} — [[..y Yz, sending x to
(Y2 )z However, they can also be identified with the morphisms f : X — > Y, that make
the following diagram commute, sending x to y.:

X ! S,
i«& %
X

These are morphisms in (Set | X') from (X,idx) to (3,,.y Y%, m1). Note that for the terminal
morphism f : X — {x}, wehave (X,idy) = f*({*},id{.}). To summarize, we have a bijection

XY'm

(SEt l X) (f*({*}vid{*})7 (Yx)x) = (Setl {*}) < *} 1d{ *}/)» (H Y, ))

for ! the terminal morphism. Now, for an internal indexed family f : ¥ — X and given
a family of families ((Zy),.v, )z:x, we can wonder whether we can construct the family of
dependent products ([ [y, Zy).- In Set, this is definitely possible, and from this, we get a
bijection again

<Seti2Y> *(X,idx), (Zy)ey) = (Set | X) (dex (Hz))

withp : >, v >y, Zy = 2,.x Yo defined as p(z, y, z) = (z,y). These bijections suggest an
adjunction f* 4[] . We can use this to define in general

Definition 2.28. For a category C and a morphism f : Y — X, the dependent product along f
is, if it exists, the right adjoint to the pullback functor:
f*
—
(CLX), L
Iy

(ClY)

14



2.7. Dependent Products and Sums

Remark 2.29. As argued above, we can recover the familiar dependent product [ [,.y Y, of a
family (Y ), as the dependent product [ [ (3, Y, 71) along the terminal morphism f : X' —
I. Here we use the equivalence between (C | I) and C.

Now we turn our attention to dependent sums. In Set, let (Y;), and (Y)), be two families
over X and let ((Z),.v,)z:x be a family of families. Let f : >, Y, — X be the internal
representation of (Y;),. A family of maps g, : (3,.y, Zy)» — Y, consists of maps Z, — Y
for all y : Y7, so these are maps g, : Z, — Yjﬁ(y). This gives a bijection

(Set | X) ((Z Zy> ,(Yé)m) = (Setl (Z Ym)) ((Zy)y: [*((Y})a))-
y: Yy z: X

T

This, again, suggests an adjunction which we will use as a definition.

Definition 2.30. For a category C and a morphism f : Y — X, the dependent sum along f is,
if it exists, the left adjoint to the pullback functor:

25
(ClX)_ L. (ClY)
f*

However, note that the conversion from an external to an internal representation in Set
already contained a dependent sum, which is no coincidence. It turns out that in practice,
we will never have a hard time obtaining dependent sums:

Lemma 2.31. Let f : C(Y, X) be a morphism in a category. If the pullback functor f* : (C | X) —
(C | Y) exists, it has a left adjoint given by postcomposition with f.

Proof. For morphisms g : Z — X, h : W — Y, the universal property of the pullback, with
the following diagram

gives a bijection between morphisms ¢ : W — f*Z that commute with h and f*g, and
morphisms ¢ : W — Z that commute with &, g and f. In other words:

(CLX)(h-f,9) = (CLY)(h, [*(9));
which shows the adjunction. O

Now, let g : Y — X be the internal representation of an indexed family (Y), and let
f: X — I be the terminal projection. Wehave >, .Y, =g - f : Y — I. By the equivalence
between (C | I) and C, we see that the dependent sum of the family (Y;), is exactly Y.
Therefore, our attention is mainly focused on the dependent product.

We will close this section with a name for a category that has all dependent products:

Definition 2.32. A locally cartesian closed category is a category C with pullbacks such that
each pullback functor f* has a right adjoint.

Apart from having dependent sums and products, there also is the following theorem
that shows the significance of locally cartesian closedness:

15
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Lemma 2.33. A category C is locally cartesian closed if and only if (C | X) is cartesian closed for
each X : C.

Proof. See the end of Section 1.3 of [Fre72]. O

Remark 2.34. Note that for X,Y,Z : Cand f : C(Y, X), the following diagram shows that
f*A XZ = AyZ :

Yxz ¥4 v oz P2, 5

| |m i

Y X — 7

Lemma2.35. For Z, XY : Candp; : X xY — X,

HAXXYZ = AXZY

p1

Proof. First of all, note that (C | X xY) = ((C | X) | AxY). Also note that the composite
morphism (X x V) x Z 2% X x Y 25 X is the element Ay (Z x Y) : (C | X).
By Proposition 1.34 in [Fre72], le Axxy Z is given as the following pullback:

le AxyyvZ —— (Axy X Z)AXY

l J(Axm)AXY

X — 5 (AxY)AxY

By Lemma .27, A x preserves exponential objects, so the morphism on the rightis A xp] :
(C | X)(Ax(Y x 2)Y, AxYY). However, we have an isomorphism (Y x Z)¥ =~ YY x Y?,
and then the morphism on the right becomes

Axpr: (Cl X)(Ax(YY xYZ),AxYY)

We also have an isomorphism X =~ Ax /. Then by Lemma 2.2 and Remark .34, the pullback
of this diagram is Ax ZY:

AxZY —— Ax(YY x ZV)

| [sxm

Axf _— AXYY

2.8 (Weakly) Terminal Objects

Definition 2.36. If a category has an object I, such that there is a (not necessarily unique)
morphism to it from every other object in the category, I is said to be a weakly terminal object.

Definition 2.37. Let C be a category with terminal object /. For an object X : C, a global
element of X is a morphism f : C(Z, X).

16



2.9. Kan Extensions

2.9 Kan Extensions

One of the most general and abstract concepts in category theory is the concept of Kan exten-
sions. In [Mac9§], Section X.7, MacLane notes that

“The notion of Kan extensions subsumes all the other fundamental concepts of category
theory.”

In this thesis, we will use left Kan extension a handful of times. It comes in handy when
we want to extend a functor along another functor in the following way:

Let A, B and C be categories and let F' : A — B be a functor.

Definition 2.38. Precomposition gives a functor between functor categories F : [B,C|] —
[A, C]. If F; has a left adjoint, we will call this adjoint functor the left Kan extension along F
and denote it Lany : [A,C] — [B, C].

Analogously, when F, has a right adjoint, one calls this the right Kan extension along F
and denote it Rang : [A,C] — [B, C].

If a category has limits (resp. colimits), we can construct the right (resp. left) Kan ex-
tension in a ‘pointwise” fashion (see Theorem X.3.1 in [Mac98] or Theorem 2.3.3 in [KS06]).
Below, I will outline the parts of the construction that we will need explicitly in this thesis.

Lemma 2.39. If C has colimits, Lanp exists.

Proof. First of all, for objects X : B, we take
(LanpG)(X) := colim ((F 1 X)—>A S C) .

Here, (F' | X) denotes the comma category with as objects the morphisms B(F(Y"), X)
forall Y : A, and as morphisms from f; : B(F(Y7),X) to f2 : B(F(Y2), X) the morphisms
g : A(Y1,Y3) that make the diagram commute:

F
F(V1) Y F(v
X

and (F' | X) — A denotes the projection functor that sends f : B(F(Y),X) to Y.

Now, a morphism h : B(X;, X») gives a morphism of diagrams, sending the G(Y) corre-
sponding to f : B(F'(Y'), X1) to the G(Y') corresponding to f - h : B(F(Y'), X3). From this, we
get a morphism (LanyG)(h) : C((LanpG)(X1), (LanpG)(X2)).

The unit of the adjunction is a natural transformation 7 : ids ¢ = Lanpg e Fi. We will
define this pointwise, for G : [A,C]and Y : A. Our diagram contains the G(Y") corresponding
toidpyy : (F | F(Y)) and the colimit cocone gives a morphism

)

the latter being equal to (Lang e F,)(G)(Y).
The co-unit of the adjunction is a natural transformation ¢ : Fy o Lanp = idg . We
will also define this pointwise, for G : [B,C] and X : B. The diagram for Lany(F.G)(X)

17
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consists of G(F(Y)) for all f : B(F(Y),X). Then, by the universal property of the colimit,
the morphisms G(f) : C(G(F(Y)),G(X)) induce a morphism

ec(X) : C(Lanp(F,G)(X), G(X)).
O

Lemma 2.40 (pre_comp_split_essentially_surjective). If F : A — Bisa fully faithful functor,
and C is a category with colimits, 1) : id[ A = Lanp e Fyisa natural isomorphism.

Proof. To show that 7 is a natural isomorphism, we have to show that n¢(Y) : G(Y) =
LanpG(F(Y)) is an isomorphism for all G : [A,C] and Y : A. Since a left adjoint is unique
up to natural isomorphism [[AW23, Exercise 153 ], we can assume that LanpG(F(Y")) is given
by

colim((F | F(Y)) —» A % Q).

Now, the diagram for this colimit consists of G(X) for each arrow f : B(F#(X), F(Y)). Since
F' is fully faithful, we have f = F(f) for some f : A(X,Y). If we now take the arrows
G(f) : C(G(X),G(Y)), the universal property of the colimit gives an arrow

¢ : C(LanpG(F(Y)),G(Y))

which constitutes an inverse to ng(Y). The proof of this revolves around properties of the
colimit and its (induced) morphisms. O

Remark 2.41. In the same way;, if C has limits, € is a natural isomorphism.

Corollary 2.42. If C has limits or colimits, precomposition of functors [B, C] along a fully faithful
functor is (split) essentially surjective.

Proof. For each G : [A, C] we take LanyG : [B, C], and we have F,(LanpG) = G. O

Corollary 2.43. If C has colimits (resp. limits), left (resp. right) Kan extension of functors [A, C]
along a fully faithful functor is fully faithful.

Proof. Since left Kan extension along F' is the left adjoint to precomposition, we have

[A,C](LanpG,LanrG’) ~ [B, C|(G, Fx(LanpG')) =~ [B,C|(G, G).

210 Coends

This section is based on Section 1.2 of [Riel4].
In this thesis, we will encounter co-ends a couple of times, so we will introduce them
here.

Definition 2.44. Let C, D be categories and F' : C°? x C — D a functor. We define the coend
SX:C F(X, X) to be the colimit

F(fidz) C
[l Fizv)—= [[F(X,X) - >J F
F:C(Y,2) (1de)Xc

Remark 2.45. An alternative way to phrase this, is that SC F : D is an object, equipped with
arrows F'(X, X) — SC F such that for all f : C(Y, Z), the following diagram must commute
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2.11. Monoids as Categories

F(z,v) Y by y)

lF(idZ,f) l

F(2,2) —— (°F

and such that for any other G : D with the same properties, we have a unique morphism
§{c F — G, making the triangles commute

F(X,X) — §.F
\l

Remark 2.46. Of course, a co-end is actually the dual notion of an end, which can be defined
as the equalizer of the diagram above, but with the arrows reversed.

Remark 2.47. Left Kan extension can be expressed as a coend:
X:A
LanyG(Y) = D(Fa,Y) GX

where S - Z for S aset and Z : C denotes the ‘copower’, which intuitively acts as the S-fold

coproduct:
s-z=]]z
5:9

211 Monoids as Categories
Take a monoid M.

Definition 2.48 (monoid_to_category_ob). We can construct a category Cps with Cpro = {*},
Cur(*,*) = M. The identity morphism on « is the identity 1 : M. The composition is given
by multiplication g -c,, f = f M g

Remark 2.49 (monoid_to_categoryl). Actually, we have a functor from the category of monoids
to the category of setcategories (categories whose object type is a set).

A monoid morphism f : M — N is equivalent to a functor Fy : C;; — Cy. Any functor
Fy : Cpr — Cp sends %) to xy and corresponds to the monoid morphism as Fr(m) = f(m)
for m : Cpr(*, %) = M.

Lemma 2.50. An isomorphism of monoids gives an (adjoint) equivalence of categories.

Proof. Given an isomorphism f : M — N, we have functors Fy : Cyy — Cy and Fy-1 :
Cn — Cyy. Take the identity natural transformations 7 : idc,, = FyeFy-1ande: Fp1eF; =
idc, . Of course these are natural isomorphisms. O

Definition 2.51 (monoid_action). A right monoid action of M on a set X is a function X x M —
X suchthatforallz : X, m,n: M,

xl=x and (xm)n = z(m - n).

Definition 2.52 (monoid_action_morphism). A morphism between sets X and Y with a right
M-action is an M-equivariant function f : X — Y: a function such that f(zm) = f(x)m for
allz : X and m : M.
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These, together with the identity and composition from Set, constitute a category RAct,
of right M-actions (monoid_action_cat).

Lemma 2.53 (monoid_presheaf_action_equivalence). Thereis an adjoint equivalence between the
presheaf category PCys and RActy;.

Proof. This correspondence sends a presheaf F' to the set F'(x), and conversely, the set X to
the presheaf F' given by F'(x) := X. The M-action corresponds to the presheaf acting on
morphisms as xm = F(m)(x). A morphism (natural transformation) between presheaves
F = @ corresponds to a function F'(x) — G() that is M-equivariant, which is exactly a
monoid action morphism. O

Remark 2.54. Since RAct) is equivalent to a presheaf category, it has all limits. However, we
can make this concrete. The set of the product [ [, X; is the product of the underlying sets.
The action is given pointwise by (x;);m = (z;m);.

Note that the terminal set with M-action is {*}, with action *m = * (terminal_monoid_

action).

Lemma 2.55 (monoid_action_global_element_fixpoint_isd). The global elementsof X : RActy,
correspond to x : X that are invariant under the M-action.

Proof. A global element of X is a morphism f : {x} — X such that for all m : M, f(x)m =
f(*m) = f(*). Therefore, it is given precisely by the element f(x) : X, which must be
invariant under the M-action. O]

Lemma 2.56 (is_exponentiable_monoid_action). The category RActys has exponentials.

Proof. Given X,Y : RActy,. Consider the set C(M x X,Y) with an M-action given by
(fm')(m,z) = f(m'm,z) for f : C(M x X,Y). This is the exponential object XY, with
the (universal) evaluation morphism X x X¥ — Y given by (z, f) — f(1,z). Explicitly, we
get a natural isomorphism v : RActy/(Z x Y, X) = RActy(Z, XY') given by

O(f)(2)(m,y) = f(zm,y) and ¥ (9)(z,y) = g(2)(1,p).
0

Definition 2.57 (monoid_monoid_action). We can view M as a set Up; with right M-action
mn = m -nform : Uy and n : M. Note that Uy, is the Yoneda embedding of the object
* CM.

2.11.1 Extension and Restriction of Scalars

Let f : M — N be a morphism of monoids.

Remember that RAct), is equivalent to the functor category PCj;. Also, f is equivalent
to a functor Fy : Cpy — Cy. The following is a specific case of the concepts in the section
about Kan extension:

Lemma 2.58 (scalar_restriction_functor]). We get a restriction of scalars functor f* : RActy —
RACtM.

Proof. Given a set X with right N-action, take the set X again, and give it a right M -action,
sending (x, m) to x f(m).

On morphisms, send an N-equivariant morphism f : X — Y to the M-equivariant mor-
phism f: X — Y. O
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2.11. Monoids as Categories

Since Set has colimits, and restriction of scalars corresponds to precomposition of Cy-
presheaves, we can give it a left adjoint. This is the (pointwise) left Kan extension, which
boils down to a very concrete definition, reminiscent of a tensor product:

Lemma 2.59 (scalar_extension_functor]). We get an extension of scalars functor f, : RActy —
RActy.

Proof. Given X : RActy, take Y = X x N/ ~ with the relation (xm,n) ~ (z, f(m) - n) for
m : M. This has a right N-action given by (z,n1)ng = (x, nins).
On morphisms, it sends the m-equivariant f : X — X’ to the morphism (z,n) —

(f (@), n). H

Lemma 2.60 (scalar_extension_preserves_monoid_monoid_action). For Upys the set M with
right M-action, we have f.(Upr) = U.

Proof. The proof relies on the fact that for all m : Up; and n : N, we have

(m,n) ~ (L, f(m)n).

Consider the category D with Dy = /N and
D(ny,n2) ={m: M | f(m)-ny = na}.

Lemma 2.61 (scalar_extension_preserves_terminal). Suppose that D has a weakly terminal
element. Then for I : RActyy the terminal object, we have fi(Ipr) = IN.

Proof. 1If D has a weakly terminal object, there exists ny : N such that for all n : N, there
exists m : M such that f(m) - n = no.

The proof then relies on the fact that every element of f. (/) is given by some (x,n), but
then there exists some m : M such that

(*7”) = (* ’ m?”) ~ (*af(m) ’ ’I’L) = (*7”0)7
so f«(Inr) has exactly 1 element. O

Remark 2.62. For f, to preserve terminal objects, we actually only need D to be connected.
The fact that f.(I5r) is a quotient by a symmetric and transitive relation then allows us to
‘walk’ from any (x,n;) to any other (x, ny) in small steps.

For any nq,ny : N, consider the category D,,, »,, given by
Dyinoo = {(n,m1,mg) : N x M x M | n; = f(m;) - n}

and
Dn17n2((na mlam2)7 (ﬁvmlam2)) = {m M | f(m) no=n,mi =m; m}

Lemma 2.63 (scalar_extension_preserves_binproducts). Suppose that Dy, n, has a weakly ter-
minal object for all ny,ng : N. Then for X, Y : RActys, we have f..(X xY) = fo(X) x f(Y).

Proof. Now, any element in f,(X) x fu(Y) = (X x N/ ~) x (Y x N/ ~) is given by some
(CL, ni, ba 7"L2)-

The fact that D,,, ,,, has a weakly terminal object means that we have some 7 : NV and
m1, me : M with n; = f(m;) - m. Therefore,

(a>n17b> 7’L2) = (aaf(ml) 'ﬁa bvf(m2> . ﬁ) ~ (am17ﬁ7 bm27ﬁ)7
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so this is equivalent to (a7, bm2, ) : f«(X x Y'). Note that this trivially respects the right
N-action.

The fact that (7, ™1, m2) is weakly terminal also means that for all n : N and mq,ma : M
with n; = f(m;) - n, there exists m : M such that f(m) - n = @ and m; = m; - m. This
means that the equivalence that we established is actually well-defined: equivalent elements
in f.(X) x f«(Y) are sent to equivalent elements in f.(X x Y).

Therefore, we have an isomorphism ¢ : f*(X) x f*(Y) = f*(X x Y). Now we only
need to show that the projections are preserved by this isomorphism. To that end, take z =
(a,n1,b,n2) ~ (amy,n, bme,m) : f*(X) x f*(Y). We have

fH(m) (W (@) = (amy,m) = ().

In the same way, f*(m2) o ¢ = 74 and this concludes the proof. ]

2.12 The Karoubi Envelope

Let C be a category and X,Y : C objects. We will denote the type of section-retraction pairs

of Y onto X with
X<Y = Z Z s-r=1idx.
rC(Y,X) s:C(X,Y)

Now, note that for (r, s) : X<V, r-s: C(Y,Y) is anidempotent morphism, since r-s-r-s = r-s.
We can also wonder whether for an idempotent morphism f : C(X, X ), we can find some
Y : Cand some (r,s) : X <Y suchthat f = r-s. If this is the case, we say that the idempotent
f splits. If f does not split, we can wonder whether we can find an embedding (c : C — C

into some category C such that the idempotent tc(f) : C(ic(X),tc(X)) does split. This is
one way to arrive at the Karoubi envelope:

Definition 2.64 (karoubi_envelope). We define the category C. The objects of C are tuples
(X, f)with X : C, f : C(X, X) such that f - f = f. The morphisms between (X1, f;) and
(X2, f2) are morphisms g : C(X1, X») such that f; - g - fo = ¢g. This can be summarized in the
following diagram:

fi C X 1 i> XQ D f2
The identity morphism on (X, f) is given by f and C inherits morphism composition from

C.

This category is called the Karoubi envelope, the idempotent completion, the category of retracts,
or the Cauchy completion of C.

Remark 2.65. Note that for a morphism f : C((X, a), (Y, b)),
a-f=a-a-f-b=a-f-b=f
and in the same way, f - b = f.

Definition 2.66 (karoubi_envelope_inclusion). We have an embedding ic : C — C, sending
X :Cto(X,idy)and f: C(X,Y) to f.

Lemma 2.67 (karoubi_envelope_is_retract). Every object X : C is a retract of 1c(Y') for some
Y:C
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Proof. Note that X = (Y, a) for some Y : C and an idempotenta : Y — Y. We have

(a,) : (V,a) = 2c(Y),
since a - a = a = idx, so X is a retract of vc(Y). O
Lemma 2.68 (karoubi_envelope_idempotent_splits). In C, every idempotent splits.

Proof. Take an idempotent f : C(X, X). Note that X is given by an object Y : C and an
idempotent a : C(Y,Y"). Also, f is given by some idempotent f : C(Y,Y) witha - f-a = f.
Now, we have (Y, f) : C and
(f; 1) : (Y, )= X,

because f - f = f =id(y,p. Also, f = f - f, so f is split. O
Lemma 2.69 (karoubi_envelope_inclusion_fully_faithful). cc is fully faithful.

Proof. This follows immediately from the fact that

C((X,idx), (Y,idy)) = {f : C(X,Y) |idx - f -idy = f} = C(X,Y).
O

Lemma 2.70 (retract_functor_i s_equalizer, retract_functor_i s_coequah’zer). Let D be a
category and suppose that we have two objects X,Y : D and a retraction

(r,s): Y < X.
id x
ThenY is the equalizer of X — 3 X .

TS

Proof. Suppose that we have an object Z : D and a morphism f with (r - s) - f = f. Then f
factorsasr - (s- f). Also, forany g : D(Y, Z) withr - g = f,wehaveg=s-7r-g=5s- f:

X ‘5Yy ‘5 X
|

N T
Z

In a similar way, Y is also the coequalizer of the given diagram.
Now, note that if we have a coequalizer W of idz and a, and an equalizer Y of idx and b
(in particular, if W and Y are retracts), the universal properties of these give a bijection

DW,Y)={f:D(Z,Y) |a-f=ft={f:D(Z,X)[a-f=f=[b}

which exactly describes the morphisms in C.

id
Z:Z§Z*>W

N

b
X — X«+—Y

idx
O

Remark 2.71. In this section, we have shown a couple of properties which classically are used
as a ‘universal property’ to characterize the Karoubi envelope:

e In C, every idempotent splits.
e We have a fully faithful embedding (c : C — C;
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e Every object in C is a retract of an object in C.

Classically, one can show that if two categories D and E satisfy the three properties above,
then we have an adjoint equivalence D — E. This uses the axiom of choice to select, for every
object in D and E, a retraction from an object in C.

There is another construction that yields a category with the properties listed above. An
object in this alternative category is a presheaf F' : PC that is a retract of the Yoneda em-
bedding X (X) of an object X : C. Because it satisfies the universal property, it is classically
equivalent to C.

Remark 2.72. In classical mathematics, the only structure of a category is that of the objects
and morphisms. Therefore, the properties in Remark .77 characterize a classical category
uniquely up to adjoint equivalence. However, in univalent foundations, categories have ad-
ditional structure in the form of the identity types between objects. Therefore, there can be
structurally different categories which satisfy this universal property and we need an ad-
ditional constraint to single out the ‘right” one. In fact, there are two branches of category
theory in univalent foundations, each giving its own constraint.

One branch is the theory of setcategories, where every identity type between two objects
is a mere proposition. For this branch, the universal property of the Karoubi envelope gets
the additional constraint that it must be a setcategory. Then we have exactly the classical
situation: using the axiom of choice, we can show that any two categories satisfying the
universal property are equivalent.

The other branch is the theory of univalent categories, where the identity type between
two objects is equivalent to the isomorphism type between them. In this branch, the Karoubi
envelope must be a univalent category. In this case, we can show that any two categories
satisfying the universal property are equivalent without using the axiom of choice.

There are two different ways to translate the definition at the end of Remark .71 to uni-
valent foundations. We can either interpret the existence of the object X and the retraction
(r,s) : F< X(X) as additional structure on F', or we can treat it as a property and ask for mere
existence (see Definition B.§) of X, r and s. This gives rise to two different categories:

Definition 2.73 (karoubi_envelope'). We define the category C in which every object is a
presheaf F' : PC, together with an object X : C and a retraction-section pair (r, s) : F'<s & (X).
The morphisms from (Fy, X1,71,s1) to (Fy, Xo,72, 52) are just the presheaf morphisms f :
PC(F1, F»). This can be summarized in the following diagram:

T1 S2
/_\ g /_ﬂ
J:(Xl) F1 —_— F2 J:(XQ)
u 7\/
S1 T2

Definition 2.74. We define the category C as the full subcategory of PC consisting of objects
F : PC such that there merely exist an object X : C and a retraction-section pair (r,s) :
F < X(X), summarized in the following diagram:

/—_‘\\J /,——~\)
*(X]) Fl L> F2 . cli(Xz)
feo -~ S -

S1 T2

Because itis a full subcategory of a presheaf category (which is univalent), C is univalent.
Now classically, Cis equivalent to C or C.In general, this does not work for C, but it does
work for C:

~

Lemma 2.75 (karoubi_equivalence). We have an adjoint equivalence C —> C.
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Proof. As shown in Remark £270, an object (X, f) : Cis the equalizer of idx and f. Therefore,
we send it to the equalizer

id
F— X(X) — X(X)
)

Note that for &(f), we have &(f) - &(f) = &(f)-idy x), so the universal property of
the equalizer gives a morphism r : PC(X(X), F) such that r - s = X(f). Using this same
universal property, we can show that s-r = id p. We send a morphism g : C((X1, f1), (X2, f2))
to

s1- K(g) - ro: PC(Fy, Fh).

Note that this is an equivalence on the morphisms: For any morphism g : PC(F}, F3), we
have
r1-Gg-s2: PC(X(X1), &£(X2)).

By the fully faithfulness of the Yoneda lemma, this corresponds to a morphism g : C(X1, X»)
and we can show that these two maps between C((X1, f1), (X2, f2)) and C(Fy, F») are in-
verses of each other.

idy(x
Fl%c):Xl jJ:Xl

E [

s2 1d; X
By 2 £(Xa) ﬁ E(X2)

Now, note that this map is also split essentially surjective. For some (F, X,r,s) : 6, TS
is an idempotent morphism on X (X), and by fully faithfulness of the Yoneda Lemma, it
corresponds to an idempotent morphism f on X. We send (F, X,r,s) to (X, f). Note that
both F’ and the image of (X, f) are equalizers of id y (xy and r - s, so they are isomorphic.

The fact that a fully faithful and split essentially surjective functor is an adjoint equiva-
lence concludes the proof. O

Remark 2.76. Note that since the morphism types of C and C are the same, and since the
objects of C are just truncated versions of the objects in C, we have a fully faithful embedding

C—C,
which just forgets the choices for X, r and s on the objects. Note that this is also essentially
surjective: by definition, for any (F, H) : C, there merely exist X, r and s such that (X, r, s)

truncates to H. Therefore, we have a weak equivalence from CtoC. However, as we will see,
C is usually not univalent, so this does not give an adjoint equivalence of categories.

This all leads up to:

Corollary 2.77. We have three candidates for the category of retracts, which are related to each other
and to C and PC as follows:

~ ~

c-“,C_->.C- C < prC

The fact that C is univalent, and has weak equivalences from C and C exhibits C as the Rezk completion
of Cand C.

Even though univalence and the Rezk completion in general will be covered in Section
B.2, we will study univalence of the Karoubi envelope here:
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Lemma 2.78 (karoubi_univalence). If C is univalent, C is univalent as well.

Proof. The fully faithful embedding cc : C — C induces equivalences (X =~ Y) ~ (1c(X) =
tc(Y)). We also have an equivalence (X =Y) ~ (1c(X) = wc(Y)), because, as it turns out,
any equality between X and Y also preserves the identity of X. Therefore, if C is univalent,
we have a chain of equivalences

(X =Y) > (tc(X) =1c(Y)) = (tc(X) = wc(Y)) = (X 2Y),
which shows that C is univalent as well. O

Remark 2.79. Note that the converse does not necessarily hold. Consider the commutative
monoid consisting of the three matrices

10 10 -1 0
=5 1) =6 0) ™ =(3 o)

under matrix multiplication. As we saw in Section P.T1, we can turn this into a category Cj,
with one object %, and the three morphisms a, b and c. Only a is an isomorphism and since
» = % has exactly one inhabitant, C,, is univalent.

When we construct the Karoubi envelope Cj;, we get a category with objects a and .
Now, note that since M is a set, b = b still has one inhabitant. Of course, b =~ b contains the
identity automorphism. However, since

b-c=c¢ and c-c=0b,

cis also an automorphism of b. Therefore, Cj is not univalent and C is usually more patho-
logical than C itself.

We will also briefly study the identity types of C.
Lemma 2.80. If C is a setcategory, Cisa setcategory as well.

Proof. Take P = (F1,X1,r1,51) and Q = (Fh, Xo, 12, s2) as objects of C. The identity type
P = @ is equivalent to

H H r1 - idtoiso(f) = & (idtoiso(g)) - 2 A s1 - &K (idtoiso(g)) = idtoiso(f) - sa.

fF1=F g:X1=X3

B = X(X0)
1
idtoiso( f )l l X (idtoiso(g))
F2 8:2 J:<X2>
T2
Since PC is univalent,
f = isotoid(idtoiso( f)) = isotoid(s - & (idtoiso(g)) - r2).

Since morphisms in C form a set, the identities on the r; and s; are mere propositions, and the
only ‘structure’ of the identity type is the equality X; = X». Therefore, if C is a setcategory,
C is a setcategory as well. O

Since C has the same isomorphisms as C, Cyy is not univalent for M as in Remark .79,

26


https://arnoudvanderleer.github.io/cs-masters-thesis/UniMath.AlgebraicTheories.FundamentalTheorem.CommonUtilities.KaroubiEnvelope.html#karoubi_univalence

2.12. The Karoubi Envelope

Remark 2.81. As mentioned in Remark £.77], in univalent foundations, there are two different
Karoubi envelopes: one that is a setcategory and one that is univalent. As we have seen
above, if C is a setcategory, both C and Care setcategories, so they are the Karoubi envelopes
in the theory of setcategories. Also, since Cis univalent, it is the Karoubi envelope in the
theory of univalent categories.

As mentioned before, in univalent foundations C is usually not equivalent to C and C
(Corollary P.77), because they are the answer to different questions. In practice, we need to
be careful which definition we choose, because this choice has consequences.

On one hand, C is univalent, but very abstract. In this category, there are classical con-
structions that we cannot do, because for every object, we only have mere existence of an
idempotent morphism, and because the objects of C do not form a set, we cannot use the
axiom of choice to pick an idempotent morphism.

On the other hand, C and C are very elementary and concrete, which sometimes helps
when doing constructions. However, they are not univalent, which makes working with
them complicated in a different way.

The remainder of this section works towards the adjoint equivalence between PC and
PC.

Since a functor preserves retracts, and since every object of C is a retract of an object in C,
we can generalize the construction of the functor that we do in Lemma (.75 for the functor
& : C — PC, to general functors F' : C — D, if D has (co)equalizers.

For convenience, the lemma below works very abstractly with pointwise left Kan exten-
sion using colimits, but one could also prove this using just (co)equalizers (or right Kan
extension using C-small limits).

Lemma 2.82 (ka roubi_pullback_equivalencel. Let D be a category with C-small colimits. We
have an adjoint equivalence between [C, D] and [C, D].

Proof. We already have an adjunction Lan,. — tc«. Also, since ¢c is fully faithful, we know
that 1 is a natural isomorphism. Therefore, we only have to show that € is a natural iso-
morphism. That is, we need to show that e¢(X,a) : D(Lan,.(:c+G)(X,a),G(X,a)) is an
isomorphism for all G : [C,D] and (X, a) : C.

One of the components in the diagram of Lan, . (:c+G)(X, a) is the G(vc(X)) correspond-
ing to a : C(1c(X), (X, a)). This component has a morphism into our colimit

¢ : C(G(re(X)), Lan,. (tc«G) (X, a)).

Note that we can also view a as a morphism a : C((X,a), c(X)). This gives us our inverse
morphism
G(a) - ¢ : C(G(X,a),Lan, (1c:G)(X, a)).

O]

Lemma 2.83 (opp_karoubi). The formation of the opposite category commutes with the formation
of the Karoubi envelope.

Proof. An object in C° is an object X : C°P (which is just an object X : C), together with an
idempotent morphism a : C°P(X, X) = C(X, X). This is the same as an object in C.
A morphism in C°P((X, a), (Y,b)) is a morphism f : C°P(X,Y) = C(Y, X) such that

bcf-ca=a-cor f-crb=f.

A morphism in C¥((X, a),(Y,b)) = C((Y,b), (X,a)) is a morphism f : C(Y,X) such that

Now, in both categories, the identity morphism on (X, a) is given by a.
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2. CATEGORY THEORETIC PRELIMINARIES

Lastly, C% inherits morphism composition from C°, which is the opposite of composi-
tion in C. On the other hand, composition in C'* is the opposite of composition in C, which
inherits composition from C. O
Corollary 2.84. As the category Set is cocomplete, we have an equivalence between the category of
presheaves on C and the category of presheaves on C:

[C Set] ~ [CP, Set] ~ [C”, Set].
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Chapter 3

Univalent Foundations

Since this thesis is, among other things, a case study in translating mathematics from set the-
ory to univalent foundations, this chapter will give an introduction to univalent foundations
and introduce some of the relevant concepts. It will also point out some issues that can arise
in such a translation, like the difference between existence and mere existence (Section B.5).

First, we will introduce dependent type theory (Section B.1)). After this, we will talk
about the univalence principle (Section B.2), and introduce the univalence axiom (Section
B:3). Then we will discuss how propositions and sets show up in univalent foundations
(Section B.4) and introduce the related notions of propositional truncation and ‘mere exis-
tence’ (Section B.5). After this, we will discuss the relation between equality and homotopy,
which is a central idea in homotpy type theory (Section B.€), and lastly, we will talk about
transport over equalities (Section B.7).

3.1 Dependent Type Theory

Univalent foundations takes place in a framework of type theory. In this section, we will
quickly introduce some topics that we will need in subsequent sections.

First of all, type theory is the study of ‘type systems’. A type system is a collection of terms
or elements, each of which has a corresponding type. A type is much like a set in set theory
in that it has elements (for example, true : Bool or 1 : N), but there are important differences.
First of all, in type theory, terms are declared together with their type, so every term has
exactly one type, whereas in set theory, something can be an element of multiple sets, like
5 € Nand 5 € R. Secondly, equality in type theory can work a bit differently than in set-based
mathematics, but I will cover this in the next section.

Of course, in computer science, we are very familiar with type systems. In most pro-
gramming languages, values explicitly (e.g. in Java) or implicitly (e.g. in Python) have a
type associated to them. For example, "Hello, World" is of type string, true and false are of
type boolean, 1 is of type integer and -5. 8 is of type floating point number. And here, already, we
see some subtleties: due to their different internal representations, many programming lan-
guages distinguish between integers and floating point numbers, even though every integer
can be considered to be a floating point number. Usually, programming languages resolve
this by offering methods (sometimes in the form of coercions) to convert between the two
types (discarding what comes after the decimal point when converting a floating point num-
ber to an integer). Another coercion that occurs sometimes is the conversion of a character
like a, 1 or & to an integer and back.

So if we have types and elements, are types also elements of some type? This is a tricky
question, because if we say that there exists a type Type which contains all types (and there-
fore, itself), we introduce inconsistency in our type system [Hur95]. This is just like having
a ‘set of all sets’, which results in problematic questions like “does its subset, containing only
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3. UnivaLeENT FOUNDATIONS

the sets which do not contain itself, contain itself?” This is usually solved by either stat-
ing that types do not themselves have a type, or by assuming the existence of type universes
Ui, Uy, ..., such that every type is an element of some U;. Note that universes are allowed
to be inclusive or not: we may have U,, < U,,+1. In this thesis, we will not explicitly mention
particular universes. We will just write Type to denote some type universe (or its category
of types and functions). This is called typical ambiguity, meaning that every theorem holds
for all (suitable) assignments of universes to these instances of Type.

One notable class of types is given by the function types. For types A and B, our type
system might have the type A — B. An element f of this type can be combined with an
element a of A to give an element f(b) of B. Of course, the elements of this type are thought
of (and usually are) functions from A to B.

Now, a type system may or may not have all kinds of constructs. One of these constructs
is dependent types. A dependent type is a type which depends on values of other types. For
example, array(7,n), the type of arrays of length n, with elements of type 7. The study of
type systems that have such dependent types is called dependent type theory.

Suppose that we have a type A, and a dependent type which we will write B : A — Type.

One of the possible constructs in a type system is a type Y. . , B(a) called the dependent
sum, consisting of all pairs (a,b) with a : A and b : B(a). So every element of > , B(a)
gives an element of one B(a) (for some a : A). Note that for the constant dependent type
B(a) = B, Y,,.4 B is the product type A x B.

Another construct which may exist, is a type [ [,. 4 B(a), consisting of all ‘functions’ f
which map elements a : A to elements f(a) : B(a). Every element of | [,. , B(a) gives there-
fore elements of all the B(a) simultaneously. Note that [ [,. 4 B is the function type A — B.

Lastly, there is a very strong connection between logic and type theory. This is called the
Curry-Howard correspondence or sometimes referred to as products as types. We can view a type
T as the proposition “T" has an element”. An element of 7" is then a “proof” or “witness’ of this
proposition. If the type system is strong enough, it allows us to do mathematics in it, where:

e A function f : A — B that takes an argument of type A and yields a result of type
B corresponds to the proof of B under the hypothesis that A holds: “suppose that
A, then B”. Note that the notation A — B also makes sense if we think of A and B
propositions.

e The empty type 0 corresponds to ‘false’. Note that for all types A, we can construct a

function 0 — A. In other words, we can prove everything from ‘false’.

The unit type 1 corresponds to ‘true’.

The negation of T is the function type 7" — 0.

The conjuction “A and B” is given as the product type A x B.

The disjunction “A or B” is given as the propositional truncation of the coproduct,

union or sum type A u B.

e The statement “For all a : A, B(a) holds”, for some dependent type B (i.e. predicate)
over A, is given as the dependent product [ [,. , B(a).

If we think of types as propositions, the question whether some axiom is assumed or not
becomes the question whether we assume some (family of) type(s) to be inhabited. Note that
most of the axioms that we list here require the notion of mere propositions, propositional
truncation and mere existence, which we will cover from Section .4 onwards.

e If for all mere propositions A, the type |A v (A — 0)| is inhabited, we say that the type
system assumes the axiom of excluded middle: “Either A is true, or A is not true”. This is
axiom allows us to prove A from ‘not not A".
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o If for all (homotopy) sets A, dependent sets B(a) and dependent propositions C(a, b),
the type

<H (b - B),C’(a,b)> —3(f:A— B),| [C(a, f(a))
a:A a:A

is inhabited, we say that the type system assumes the propositional axiom of choice: “The
product of a family of nonempty sets is nonempty”.

e In any type theory which has the required constructs, the following holds: For all de-
pendent types C over A and B, the type

(HZ(J(a,b))H > [1cta fa)

a:Ab:B f:A>Ba:A

is inhabited. This axiom (or actually more of a theorem) is called the type theoretic axiom
of choice.

3.2 The Univalence Principle

“Isomorphic objects are equivalent.”

This principle is visible in most of mathematics: Sets with a bijection have the same num-
ber of elements, isomorphic groups have the same properties, and since the universal prop-
erty of limits makes them “unique up to unique isomorphism”, we can talk about ‘the” limit
of some diagram in a category.

Now, the univalence principle takes this a step further. It states that

“Isomorphic objects are equal.”

Univalent foundations seeks to be a foundation for mathematics that is in line with this
principle. This is often done within the framework of ‘Martin-Lof dependent type theory’, a
type theory developed by Per Martin-Lof [Mar71]. It is a family of dependent type systems
with dependent products, dependent sums, an empty type, a unit type and union types. Itis
a constructive type theory, so it does not automatically assume the axiom of excluded middle
or the propositional axiom of choice. It is however compatible with these axioms, so one can
still assume these alongside its usual axioms.

It is important to note that Martin-Lof type theory has identity types: given a type T' and
elements x,y : T, we have a type Idr(x,y) (note that this is a dependent type), which we
will usually denote with = y. An element p : = y is a proof that z is ‘equal’ to y. This
type comes with an interesting induction principle called path induction: we can show any
statement about paths p : = y for generic x and y, if we can show it about the ‘trivial” path
refl : x = x for generic . Often, a way to think about this, is that if we have a proof of
equality between x and y, we can replace y by z in any statement. For example, symmetry
of the equality boils down to a function ny:T x =y — y = x. We construct this using path
induction with the function that sends refl : x = x to itself. For more information, see [[Uni13,
Section 1.12.1].

In set-theoretic mathematics, there is the concept of a ‘bijection” S =~ T of sets (or an
isomorphism in the category Set), which is often treated as an equivalence. It consists of
functions f : § - T'andg : T — S with f-¢g = idg and g - f = idy. In type theory,
we have a similar concept, which is called ‘equivalence” (of types) S ~ T'. Since bijections
are not well-behaved for types that are not sets (see Section B.4), because in those cases, a
function f : S — T can have multiple distinct inverses. Therefore, we define S ~ T' :=
2. 1.5 isequiv(f), for some predicate isequiv : (S — T') — Type [Unil3, Equation 2.4.10].
However, intuitively we can still think of these as bijections.
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Using the identity type, we can make our statement of the univalence principle more
precise (and a bit stronger). For types, we can construct a function

idtoequiv : H (S=T)—-(S~T).
S, T:Type

We construct this function using path induction with the identity equivalence [ [¢idg : (S ~
S). More generally, for a category C, if we denote the type of isomorphisms between objects
c and d with ¢ ~ d, we can construct a function

idtoiso: [ [ (X =V) — (X =),
X,Y:C

using path induction with the identity isomorphism [ [y.cidx : (X = X). If X and Y are
sets, then idtoequiv and idtoiso coincide. We can then formulate the univalence principle for
categories as

“For all ¢,d : C, idtoiso. 4 : (¢ = d) — (¢ = d) is an equivalence.”

A category that adheres to the univalence principle is called a univalent category.

Note that if B is a univalent category and A is any category, the functor category [A, B] =
BA is univalent as well [[AKS15, Theorem 4.5]. In particular, the presheaf category PA =
[A°P Set] is univalent.

Also, if A is univalent, any full subcategory B < A is also univalent, because isomor-
phisms and equalities of objects in B can be shown to be the ‘the same” as their isomorphisms
and equalities in A.

Lemma 3.1. For every category C, there exists a univalent category D with a weak equivalence
t:C—D.

Proof. One construction takes D to be the full subcategory of the presheaf category PC of
objects that are isomorphic (there merely exists an isomorphism) to the Yoneda embedding
£ (X) of some object X : C [[AKSIH, Theorem 8.5]. O

We call such a univalent category a Rezk completion of C. Actually, we can call it the Rezk
completion:

Lemma 3.2 (rezk_completion_unique). A Rezk completion is unique.

Proof. Precomposition with the weak equivalence ¢ : C — D gives an adjoint equivalence on
the functor categories [D, E] ~ [C, E| for any univalent category E. From this, it follows that
¢ is the “initial functor” from C: any functor from C to a univalent category factors uniquely
through ..

Now, two initial functors ' : C — D and F” : C — D’ factor uniquely through each other:

F'=FeG and F=F e

for two functors G and G’ and since F and F”’ also factor uniquely through themselves, we
have
GOG/ = idD and G/ oG = id[)/.

From this, we can construct an equivalence D ~ D’. Since D and D’ are univalent, this
equivalence gives an equality of categories, and because I’ ¢ G = F’, we have an equality of
pairs

(D, F) = (D', F).
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3.3. The Univalence Axiom

3.3 The Univalence Axiom

Now, even for a basic category, like the category of types, it seems impossible to prove that
the univalence principle holds. However, this is no surprise: It turns out that there is a
model in set theory for Martin-Lof type theory with univalence [KLI8], but also for Martin-
Lof type theory with proof irrelevance [MWO03]. In the latter, the type = y has at most one
element forall z, y : T'and all types T', which contradicts univalence. Therefore, univalence is
independent of the axioms of Martin-Lof type theory: both univalence or its negation cannot
be proved, but either can be assumed as an axiom.

As mentioned before, univalent foundations attempts to develop as much of mathemat-
ics as possible along the univalence principle. Therefore, we assume as our first axiom the
univalence axiom:

Axiom. Forall S,T : Type, the function idtoequivg ;. : (S =T) — (S ~ T') is an equivalence.
In other words:
Axiom. Type is univalent.

Remark 3.3. One consequence of the independence of the univalence axiom is that equivalent
objects are ‘indiscernible’. That is: even if we do not yet assume the univalence axiom, we
cannot formulate a property that is satisfied by some type, but not by another, equivalent
type. This is because such a property would yield a contradiction when we would assume
the univalence axiom.

Now, the question arises: how about the univalence axiom for categories other than Type?
Do we need to keep assuming an additional axiom for every category that we want to be
univalent? It turns out that this is not necessary. In practice, most categories consist of ‘sets
(or types) with additional structure’. For example: topological spaces, groups, A-theories
and algebraic theory algebras. In such categories, we can leverage the univalence of Type
to show that for isomorphic objects, their underlying types are equal. Also morphisms are
usually defined in such a way that they “preserve’ the ‘additional structure’, which is what
we need to show that the category is univalent.

Therefore, the univalence axiom is a very powerful axiom, and we usually do not need
to assume additional axioms to show that more categories satisfy the univalence principle.

The last structure in this section for which we want to consider the univalence princi-
ple, is the 2-category Cat of categories. In general, we cannot show that this satisfies the
univalence principle. However, we will restrict our attention to the sub-2-category of uni-
valent categories, which are the ‘well-behaved’ categories in some sense. Then Theorem 6.8
in [[AKSI5] shows that for univalent categories C and D, there is an equivalence between
C = D and C ~ D, where C ~ D denotes the type of (adjoint) equivalences of categories
(see Definition £.4)).

Lastly, a result about univalent categories that we will use a couple of times in this thesis:

Lemma 3.4. For a functor between univalent categories F' : A — B, the types 'F' is an adjoint
equivalence” and 'F is a weak equivalence’ are equivalent propositions (see Section B.4).

Proof. See [[AKSI5, Lemma 6.8]. O

3.4 Propositions and Sets

If we have a type 1" and objects « and y, we can wonder how many elements x = y has. In set-
based mathematics, this would be a nonsensical question: two elements of a set are either
equal or not equal. Therefore, we can expect the answer to be that + = y has at most one
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element. And indeed, if we do not assume the univalence axiom, we can assume another
axiom, called “uniqueness of identity proofs’, which states that for p,q : * = y, we have a
proof of equality h : p = q.

On the other hand, suppose that we do assume the univalence axiom. Consider the two-
element type T' = {—1, 1}. We can construct two different equivalences idr,o : T' ~ T*:

idp(z) =2 and o(z) = —x.

By the univalence axiom, we must have that the identity type (7" = T') has (at least) two dis-
tinct elements, corresponding to id7 and o. Therefore, the univalence axiom is not compati-
ble with uniqueness of identity proofs, and we see that in a univalent setting, some identity
types have more than one element.

A consequence of this is that types in general have too little structure to serve as a foun-
dation for mathematics that was originally set-based. For example, suppose that we want
to formalize the theory of groups. A group homomorphism f : Grp(H, G) is defined as a
function on the underlying types fi : H — G, together with a proof that it commutes with
the group operations: f2 : [[, . fi(zoy) = fi(z)o fi(y). Now, normally in group theory, to
show that two homomorphisms f, g : Grp(H, G) are equal, we show that [ [.,; fi(z) = g1(z),
the ‘data’ is equal. However, if we are working with types instead of sets, we also need to
show that the proofs of the ‘properties’ are equal: fo = go (note that we actually would need
to transport f> here, for this equality to typecheck). This makes showing equality of mor-
phisms much more complicated for concrete groups, and sometimes outright impossible for
generic groups.

To deal with this, we need the concepts of mere propositions and (homotopy) sets:

Definition 3.5. A mere proposition is a type T such that forall z,y : T, z = y.
Definition 3.6. A homotopy set is a type T such that forall z, y : T', = y is a mere proposition.

Since the identity types for a homotopy set are mere propositions, a homotopy set mimics
a setin set theory, where equality between elements ‘is’ or ‘is not”. If we restrict the underlying
type of a group to be a homotopy set, it can be shown that [ [, , ; fi(z o y) = fi(z) o fi(y)
is a mere proposition, so fo = go trivially. This is often true when translating definitions
from set theory to univalent foundations: if we base our objects on homotopy sets instead
of types, we only have to worry about equality of ‘data’, the equality of ‘properties” follows
automatically.

For similar reasons, we restrict the hom-types C(c, d) of categories to be sets. Note that
Type is not a category under this definition (it is a ‘precategory’, for some definition of pre-
category), because in general, the type of functions between sets S — T is not a set.

3.5 Truncation and (Mere) Existence

As mentioned before, if we want to do mathematics in a dependent type theory, we can
‘encode’ propositions as types. The elements of the type correspond to the proofs that the
proposition is true, see for example the identity types. However, we need to be careful here
about the distinction between types in general and mere propositions:

A proof that a type 7' is nonempty usually consists of giving an element ¢ : 7. If we
encode the statement “7" is nonempty” as T, and if T" is not a mere proposition, then “T" is
nonempty” is not a mere proposition, so it has multiple distinct proofs. In some cases, this
is exactly what we want, because we want to retrieve the chosen element of 7. However, in
some cases, we want the fact that a set is nonempty (or any statement in general) to be a mere
proposition, to avoid having to carry around a specific element and having to prove equality
of two specific elements. For such cases, we have the “propositional truncation’:
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Definition 3.7. For a type T, a type |T'|| exists [Unil3, Section 3.7] with the properties that
forallt : T, we have an element |¢| : |T'| and that | 7| is a mere proposition. It has a recursion
principle stating that for a mere proposition B, a function f : T' — B induces a function
|f| - IT| — B that commutes with | - |. This object is called the propositional truncation.

The propositional truncation forgets the details about a type, and only keeps the informa-
tion about whether it is inhabited or not. The recursion principle means that if we are trying
to prove a mere proposition based on some element |¢| : |||, we can pretend that we do have
a concrete element ¢ : 7.

There also is the concept of higher order truncations. For example, the set truncation | Ao,
which is a homotopy set and has an equivalence (|A|p — B) ~ (A — B) for any set B.
However, these higher truncation types become increasingly harder to construct, and in this
thesis, we will only need to consider the propositional truncation.

Often, when we prove a theorem or lemma that “there exists some x : X such that Y (x)”,
what we actually mean is that we can construct an element  : X and then an elementy : Y (z)
of the dependent type Y over X. This is equivalent to constructing an element of } ., Y ().
However, this is in general not a mere proposition. If we want to express that the set of such
x is nonempty as a mere proposition, we talk about mere existence:

7

Definition 3.8. Given a dependent type Y over X, if we say that there merely exists an element
x : X such that Y (z), we mean that we have an element of the propositional truncation

h:(3z:Y(x)):=

2, Y(@)
z: X

For example, if we have objects in a category c, d : C'and we want to talk about a retraction
f of ¢ onto d, we commonly define this as “a morphism f; : C(c,d), such that there exists
a ‘section”: a morphism f5 : C(d,c) with f> - fi = id;”. Now, we commonly consider f; to
be the ‘data’ of the retraction; we consider retractions f and f’ to be the same retraction if
fi = fi. This means that being a retraction is about the ‘mere existence” of a section. Note,
however, that in this case, we cannot use the section in constructions, except when we are
trying to prove mere propositions.

Note that for the Curry-Howard correspondence, the product or conjunction A A B =
A x B of two mere propositions is again a mere proposition. However, the union A L B is
not necessarily a mere proposition. To make it into a mere proposition, we need to take the
propositional truncation A v B = |A u B|.

3.6 Equality and Homotopy

Univalent Foundations is often mentioned together with Homotopy Type Theory, because
they are related but distinct concepts. Therefore, we will mention it here.

As we saw before, if we do not assume uniqueness of identity proofs, given two elements
x,y : T, we can have multiple distinct proofs that = = y, which is counterintuitive. One way
to think about this, is the perspective of homotopy type theory. In homotopy type theory,
one considers a type T to be a ‘space’, intuitively similar to a topological space, but without
an explicit topology. The elements ¢ : T are then the points of the space. Elements of the
identity type (s = t) are interpreted as ‘paths’ from s to ¢. That is why the induction principle
of (s = t) is called “path induction’. Of course, we can go higher: for p, ¢ : = = y, the elements
(p = q) are ‘paths between paths’, (path) ‘homotopies’, ‘sheets” or ‘1-cells’, for homotopies
h,h' : p = g, the elements of h = h’ are paths between paths between paths, ‘volumes’ or
2-cells’ etc.

If we have a ‘geometric” interpretation of our type theory, we can investigate the ‘shape’
of a (nonempty) type 7', given by the structure of the (higher) identity types.
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(b)

Figure 3.1: Different possible homotopy structures

First of all, if we have z,y : T for which x = y does not have an inhabitant, x and y lie in
different ‘connected components’. Now, we focus on a connected type:

For example, are all elements z, y : T of the type equal to each other, and are all elements
p,q : x = y of all the (higher) identity types also equal in a unique way? Then we have a
contractible type, which intuitively looks somewhat like a plane (Figure B.Td)).

It is also possible that any two elements x, y : T" are equal, but that there are distinct paths
p,q : * = y, with no homotopy between them. Then intuitively 7" looks like a circle or a tube
or a projective space, or something more complicated (Figure B.1H).

Remark 3.9. Note that we can give the type of paths x = x a group structure and z = yis a
‘torsor’ for this group. If z = y has exactly two distinct elements, the group x = = looks like
Z/27, which suggests some projective plane-like structure.

For something to look like a circle or tube, we need this group = x to be isomorphic to
Z. For an example, see [Bez+20].

As a third example, consider a type T" in which any two elements z,y : T" are equal, and
any two paths p, ¢ : * = y have two distinct homotopies h,h' : p = ¢ between them. Then
we can imagine the type to look somewhat like a sphere (Figure B.Id) or something more
complicated.

This is the lens through which homotopy type theory studies types.

3.7 Transport

Suppose that we have a dependent type B : A — UU. Intuitively, B is a collection of spaces,
lying over the points of A (Figure B.Zd). Now, if we have a path p : a = o’ in A, we can use
path induction to get a function transport, : B(a) — B(d') (Figure B2B).

For example, this allows us to transfer an element from array(7,n + n) to array(T,2 - n)
with transport over the path n +n = 2 n. Also, if we assume the univalence axiom, and we
have, for example, an isomorphism of groups f : G =~ G’ and a proof h that G is semisimple,
we can transport h along the equality given by f to a proof that G’ is semisimple.

Example 3.10. In addition, consider the following example. We take A to be a type universe,
and let B : T — array(T,3). Consider the types a = {T, L1} and ' = {0,1}. We have
equivalences p and g between a and a':

(M) =1,p(L)=0 and q(T)=0,g(L)=1.

That means that we have distinct equalities p, ¢ : @ = a’. Now, suppose that we have an array
x = [T,T,1] : B(a). Since a = a/, we would want to treat = as an element of B(a’), but
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(b)

Figure 3.2: A fibration with a path in the base space, giving rise to transport in the fibration

then we need to make a choice whether we treat it as [1,1,0] or [0, 0, 1] (or something else
altogether). This is exactly the question whether we transport along p or ¢, and therefore,
when our base type is not a set, it is important to be aware that we are transporting a property
along an equality, and we need to be careful which equality it is that we transport along.

Another place where transports occur frequently is when proving equality (z,y) = (2/,v')
of elements of a dependent sum }, 4, B(a). We can start componentwise by proving p : z =
', but after this, we cannot directly prove ¢ : y = 3/, because these two live in different types:
B(z) and B(z') respectively. Therefore, we need to transport, and then prove

transport, (y) =y’ : B(2').

3.7.1 Caution: “Transport Hell’

Now, it seems that we can transport all properties and data along equalities. And of course,
that is true, but some caution needs to be taken with this when working with a proof assistant.

For example, consider the situation in Example B.10. As mentioned, we can transport
to get an element y := transport (z), which is an element of B(a’), but now suppose that
we want to compute something using its first coefficient y;. Of course, on paper it quickly
becomes clear that y; = 1, but in practice, it takes quite some work to convince a proof
assistant of that fact. Of course, we could write a lemma which states that for any array =z,
any equivalence p with corresponding equality p, and any index i,

transport, (); = p(z;).

However, at that point, we have more or less constructed our own function between B(a)
and B(d'), which is much easier to work with than transport, .

Experience teaches that in general, it is fine to transport properties b : B(a) of which
we will never need the value, only the fact that it (merely) exists. On the other hand, for
properties and constructions of which we might later want to use the actual value, it is much
better to transfer them ‘by hand’. Often, but not always, this criterion coincides with B(a)
being a mere proposition.

Another case where unwanted transports often occur is when showing the equality of
two complicated elements of a type. For example, ((x1,x2), (z3,24)) = ((2,25), (z5,2))),

both elements of
> D1 D(z1,73,73).
(z1,22):>5,.4 B(a) 3:C(x1)

This example involves proofs:
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3. UnivaLeENT FOUNDATIONS

e p:x; =1

°q: transportp(mg) = b;

e r : transport, (z3) = x4, which can be simplified to transportfp(azg) = x4, since z3
does not depend on

e and finally s : transport , . (24) = 2.

In general, these latter proofs r and s are very challenging and best avoided whenever possi-
ble. The situation in which one has to work with such complicated transports, which make
a proof (seemingly unnecesarily) complicated is called transport hell. Some mathematical
tools have been developed (see for example Section [/.4 about displayed categories) that help
avoid transport hell in some cases. Additionally, the structure or ‘strategy’ of a proof can
sometimes be changed in order to avoid the worst of the transports. However, it is often not
possible to avoid transports altogether, and this is one of the reasons why proving something
in a proof assistant takes a lot more work than proving it on paper.
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Chapter 4

Algebraic Structures

In his paper, Hyland uses concepts from universal algebra to study the A-calculus. This chap-
ter introduces these concepts: it consecutively introduces algebraic theories (Section 1)), al-
gebras (Section f.7), presheaves (Section f.3) and A-theories (Section f.4)). The last part of
this chapter, Section f£.5, is devoted to examples, so it may be useful to skip back and forth a
couple of times to get a better understanding of what the definitions are about.

4.1 Algebraic Theories

Definition 4.1 (algebraic_theory). We define an algebraic theory T to be a sequence of sets
T, indexed over N with for all 1 < ¢ < n elements (”variables” or “projections”) x,,; : Tp,
(we often leave n implicit and write z;), together with a substitution operation

_e T, xT"—>T,

for all m and n, such that

.%'j ® g
fe (xlz)l
(feg)eh

foralll <j<Il,f:T,g:T, and h:T™.

9
f
fo(gioh)

Remark 4.2. For equivalent definitions of different kinds, see Chapter [Al.

Definition 4.3 (algebraic_theory_morphism). A morphism f between algebraic theories 7" and
T’ is a sequence of functions f, : T,, — T}, (we usually leave the n implicit and just write f if
the context is clear) such that

fa(zj) = z;

fn(s o t) = fin(s) ® (fu(t:))i
foralll<j<n,s:Ty,andt: T
Together, these form the category of algebraic theories AlgTh (algebraic_theory_cat).

Lemma 4.4 (limits_algebraic_theory_cat). We can construct binary products of algebraic theo-
ries, with sets (T x T"),, = T, x T}, variables (x;,x}) and substitution

(f,f)e(g,9)=(feg, fed).

In the same way, the category of algebraic theories has all limits.
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4. ALGEBRAIC STRUCTURES

Note that the forgetful functor F : AlgTh — Set" (where Set" is the category of ‘sequences of
sets’ (Ty,)r) creates limits, since any diagram D has a limit and the underlying set of the limit of D is
the limit of the underlying sets of the objects in D.

Lemma 4.5 (is_univalent_algebraic_theory_cat). Since an isomorphism of algebraic theories
S =~ T consists of pointwise bijections f, : S, = T, that respect the variables and substitution, the
category of algebraic theories is univalent.

Later on, we will see an example of a trivial algebraic theory (the terminal theory) 7, in
which every 7,, only contains one element. Now, there are many different nontrivial alge-
braic theories, and it is not easy to find properties that every algebraic theory must satisfy.
However, to explore their general structure a little bit, we can show that their variables are
distinct, and so every 7}, has at least n distinct elements. Therefore, no nontrivial algebraic
theory is ‘almost trivial’, if almost trivial means having some N such that every 7}, has at
most IV elements.

Lemma 4.6. Let T be an algebraic theory, such that T,, has at least two distinct elements for some n.
Then for all 1 < i,j < mwithi = j, we have x; = x;.

Proof. We can also formulate the statement as: If there exist 1 < ¢, j < m with i = j such that
x; = z;, then every T,, contains at most one distinct element.
So, suppose that z; = x; for some i = j. For a,b : T},, we define v : T} as

a k=1
TV b k=i
so in particular, v; = b. Then we have
a=v,=T;00=21T; eV =1v; =D,

so every T}, contains exactly one element, and 7 is trivial. O

Now, there are also a lot of other, equivalent ways to define the objects that we call “alge-
braic theories” here. For a couple of these alternative definitions, see Chapter [Al. In particular,
an algebraic theory is equivalent to a category L with Ly = N where the object n is 17, the
n-fold product of 1.

4.2 Algebras

Definition 4.7 (algebra). Analgebra A for an algebraic theory 7' is a set A, together with an
action
o:T, x A" — A

for all n, such that

forallj, f: T, g: T/ and a : A™.

Definition 4.8 (algebra_morphisn). For an algebraic theory 7', a morphism f between T-algebras
A and A’ is a function f : A — A such that

f(tea)=fe(f(ai))
forallt: T, and a : A™.
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4.2. Algebras

Together, these form the category of T-algebras Alg,. (algebra_cat).

Remark 4.9. The category of algebras has all limits. The set of a limit of algebras is the limit
of the underlying sets, so the forgetful functor to the category of sets creates limits.

Lemma 4.10 (fis_univalent_algebra_cat). Just like with algebraic theories, the category of T-
algebras is univalent because its (iso)morphisms preserve e.

Remark 4.11. The notions of algebraic theories and their algebras stem from the field of uni-
versal algebra. In universal algebra, one studies the ‘collections of algebraic structures’. For ex-
ample, the collection of monoids: a monoid is a set with an associative binary operation and
an identity element. Other examples of collections are those of abelian monoids, (abelian)
groups or (commutative) rings. As we will see in Example f.46, one can construct an alge-
braic theory T such that the category of monoids is equivalent to Alg;,, and we can do very
similar things for the other structures mentioned. Therefore, one could say that universal
algebra studies algebraic theories and their algebras (or ‘models’).

Any category that is equivalent to Alg,. for some algebraic theory T'is called algebraic. For
example, in Remark f.38, we will see that Set is algebraic. By the remark above, an algebraic
category has all limits. It turns out that it also has all colimits (see Lemma p.57 for binary
coproducts, or [[ARVI0], Part 1, Theorem 4.5 for general colimits). Note, however, that the
proof for colimits is a lot more complicated than the proof for limits, just like colimits of
algebraic objects usually are more complicated than limits. For example, consider (binary)
products and coproducts of groups.

Note that this means that any category that does not have all limits or colimits, is not
algebraic. For example, the category of fields (commutative rings that also have a division
operation) is not algebraic: the product Q x IF,, does not exist, because there is no (product)
field that has morphisms to fields of different characteristic.

Definition 4.12 (algebra_pullback). If we have a morphism of algebraic theories f : 7" — T,
we have a pullback functor of algebras f* : Alg, — Alg,. It endows T-algebras with an action
from T" given by gera = f(g)era. Then T-algebra morphisms commute with this 7"-action,
so we indeed have a functor.

Remark 4.13. Note thatby Lemma[A.7, algebras for T" are equivalent to finite-product-preserving
functors from its Lawvere theory to Set. Then f : 7" — T corresponds to a functor on the
Lawvere theories Ly : Lyv — Ly, and f* : Alg,, — Alg;, corresponds to precomposition
with L Iz

Ly
LT’ —_— LT

~
~
~
~
~
~
N

Actually, we can recover some information about the algebraic theory morphism from
this pullback functor. For example,

Lemma 4.14. If f* is an equivalence of categories, f is an isomorphism.

Proof. This proof uses the theory algebra, which will be properly defined in Example f.54.
Note that to show that f is an isomorphism, we only need to show that the f,, are bijec-
tions. From the fact that we have inverse functions g,, : Set(7,7”) for the f,,, and the fact that
f is an algebraic theory morphism, we know that (g,,), is an algebraic theory morphism as
well, and that it is the inverse of f.
First of all, note that for all n : Nand A : Alg,, the following diagram in Set commutes:
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4. ALGEBRAIC STRUCTURES

Alg (T, A) L, Algy, (f*Tn, [*A)

l'\' l?n_

A" ————— Alg,(T;, f*A)
with f,, : T, — f*T,, the T"-algebra morphism with underlying function f,,. Note that f* is
fully faithful, so the function at the top of the diagram is a bijection, and so precomposition

by f,, is a bijection as well. Since f* is essentially surjective, we have forall A : Alg/.,, some B :
Alg,. and an isomorphism h : f*B — A, which gives the following commutative diagram:

Alg,, (f*T,, [*B) %h> Alg,, (f*T,, A)

. b
Algy (T, f*B) ——— Algp(T;, A)

so the arrow on the right is an equivalence as well. Taking A = T}, there exists some g :
Alg, (f*T,,T,) such that f, - g = id7,. Also, note that

so taking A = f*T;,, we see that
g- fn = idf*Tn?
so fn, the underlying function of f,,, is a bijection, with inverse g. O

Remark 4.15. Hyland'’s proof of this fact is almost the same, but in the last part, he uses some
category theory. Instead of explicitly constructing the inverse, he notices that the bijection

n

is in fact the image of f," under the Yoneda embedding of Alg, (or of f,, under the covariant
Yoneda embedding of Alg,,) into the functor category Alg,, — Set:

F(fn): $(FT) = K(T).
Since the Yoneda embedding is fully faithful, this shows that f,, is an isomorphism of 7"-

algebras, so in particular, it is a bijection.

Note that besides the categories Alg,,, we can also consider the category of ‘all” algebraic
theory algebras together (algebra_full_cat). Thatis, the category {, Alg, with ({, Alg,)o =
2.7:AlgTh> Algy and (§7 Alg,)((S, A), (T, B)) consisting of pairs (f, f') : AIgTh(S,T)xSet(A, B)
such that forallt: S, and a : A",

fi(tea) = f(t) e (f(ai))i
We then have a functor P : { Alg, — AlgTh, projecting onto the first coordinate.
Lemma 4.16 (algebra_fibration). P is a fibration.

Proof. Given an algebraic theory morphism f : AIgTh(S,T) and a T-algebra A, Definition
B.17 gives an S-algebra f*A with underlying set A. The cartesian morphism is (f,id4) :
(SAlgT)((Sv f*A)7 (T7 A))

It is cartesian because for (R, B) : {Alg, and (g,¢) : ({Alg,)((R,B),(T,A)) and h :
AlgTh(R, S) with h - f = g, the required morphism over & is given by ¢’ : Set(B, A). O
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4.3. Presheaves

4.3 Presheaves

Definition 4.17 (presheaf). A presheaf P for an algebraic theory T is a sequence of sets P,
indexed over N, together with an action

o: P, xT"— P,
for all m, n, such that
te ()=t
(tefleg=te(fieg)
forallt: P, f:T! and g : T

Definition 4.18 (presheaf_morphism). For an algebraic theory 7', a morphism f between T-
presheaves P and @ is a sequence of functions f,, : P, — @, such that

fa(te f)=fm(t)e f
forallt: Py and f: T)".
Together, these form the category of T-presheaves Pshf; (presheaf_cat).

Lemma 4.19 (Limits_presheaf_cat). The category of presheaves has all limits. The nth set P,, of
a limit P of presheaves P; is the limit of the nth sets P, of the presheaves in the limit diagram. So
just like with algebraic theories and algebras, the forgetful functor from the category of presheaves to
the category of indexed sets creates limits.

Lemma 4.20 (is_univalent_algebra_cat). Note that just like with algebraic theories and algebras,
the category of T-presheaves is univalent because its (iso)morphisms preserve e.

An analogue to Lemma .16 shows that, like with algebras, the total category of presheaves
is fibered over the category of algebraic theories (presheaf_fibration).

The equivalence between algebraic theories and Lawvere theories gives an equivalence
between the presheaf category Pshfr of an algebraic theory, and the presheaf category PLy =
[L7Y, Set] of its associated Lawvere theory (see Lemma [A.8).

4.4 M)-Theories

Now we get to the core definition: A-theories. It is what allows us to use algebraic theories
to reason about the A\-calculus.
Let ¢y ¢ Ty — Tontn be the “inflation” function that sends f to f ® (Ty4n1,- -5 Zmtnm)-
Note that
tmn(f) @ g=fo(gi)icm and imn(feg)=Ffe(tmn(gi))i
Definition 4.21 (lambda_theoryl). A A-theory is an algebraic theory L, together with sequences
of functions A, : L,+1 — L, and p,, : L,, — L1, such that

Am(f) @ b= An(f @ ((tn,1(Ri))i + (2nt1)))
pn(g i h) = pm(g) hd ((Ln,l(hi))i =+ (xn-i-l))

forall f: Lyp+1,9: Liyand h: L.

Definition 4.22 (has_f has_n). We say that a A-theory L satisfies S-equality (or that itis a A-
theory with j3) if p,, o \,, = id,, for all n. We say that is satisfies n-equality if A, o p, = idp,,.,
for all n.
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4. ALGEBRAIC STRUCTURES

Remark 4.23. Hyland claims that ‘a A-theory is an algebraic theory L equipped with semi-
closed structure’. By ‘semi-closed structure’, he probably means the structure of a semi carte-
sian closed category on the Lawvere theory associated to L (Lemma [A.§). Because a Lawvere
theory has finite products, we even would have a weak cartesian closed category. For more
information about weak cartesian closed categories, see Appendix B.

In the appendix, we see that a A-theory structure with $-equality on an algebraic theory L
gives its associated Lawvere theory C' a weak cartesian closed structure with the exponential
object 1! equal to 1. Conversely, we can give L a A-theory structure with S-equality from a
weak cartesian closed structure on C where 1 is a reflexive object. Note that we really need 1
to be a reflexive object to make the construction work.

However, note that a weak cartesian closed structure on C' with 1 a reflexive object con-
tains more information than a A-theory structure with g-equality on L: If we have a A-theory
structure with $-equality on L, then construct from this a weak cartesian closed category
structure with 1! = 1 on C and derive from this again a A-theory structure on L, we get the
same A-theory structure that we started out with. If, on the other hand, we go from a weak
cartesian closed structure where 1 is a reflexive object to a A-theory structure with S-equality
and then to a weak cartesian closed structure again, we might end up with a different struc-
ture than the one that we started out with. This is because a weak cartesian closed structure
is not necessarily unique up to isomorphism. In particular, we construct semi-exponential
objects m"™ which are equal to m for all m,n : C, and derive their data (ev and cur) from just
the data of 1! in the original weak cartesian closed structure. Therefore, there are enough
ways in which the resulting weak cartesian closed structure can differ from the original one.

Note that here, we really need a choice for the exponential objects. It is not enough to just
ask for the mere existence of semi-exponential objects. This is because we need the informa-
tion contained inev : Ly and cur : L,,11 — L, to define A and p.

Lastly, if L has both - and n-equality, the weak cartesian closed structure becomes a
cartesian closed structure, which is unique, so in that case, giving an algebraic theory L a A-
theory structure with - and n-equality is the same as giving its associated Lawvere theory
a cartesian closed category structure.

Definition 4.24 (lambda_theory_morphisn). A morphism f between A-theories L and L' is an
algebraic theory morphism f such that

fn(An(8)) = An(frr1(s))
pr(fn(t)) = Fri1(pn(t))

foralls: L,4yand t: L,.
Together, these form the category of A-theories LamTh (lambda_theory_cat).

Lemma 4.25 ([limits_lambda_theory_cat). The category of lambda theories has all limits, with the
underlying algebraic theory of a limit being the limit of the underlying algebraic theories. Therefore,
the forgetful functor to the category of algebraic theories creates limits.

Lemma 4.26 (fis_univalent_lambda_theory_cat). Note that just like with algebraic theories, the
category of A-theories is univalent because its (iso)morphisms preserve p and .

Definition 4.27. A A-theory algebra or presheaf is an algebra or presheaf for the underlying
algebraic theory.

4.4.1 The M-Calculus Operations

For a A-theory L, we have variables z,, ; : L,, and A-abstraction f — A(f). We will sometimes
denote A\(f) as Azp1, f for f : L, 1. Now, consider the element p(z1,1) : Lo.
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4.5. Examples

Definition 4.28 (app'). Using the substitution, we have binary operations on the L,,, sending
(f,9) : Ly x Ly to p(x1.1) ® (f,g) : L,. We will denote p(z1,1) o (f, g) as fg, and this gives us
our application operation.

This means that we can interpret all three operations (var, app and abs) of the A-calculus
inL.

Remark 4.29 (app). Note that for f,g: L,,
P(f) L4 (xla e 7xn7g) = p(Il) L4 (Ln,l(f)axn—&-l) L d (xlv e ,In,g) = p(xl) L d (Ln,l(f)vg)v

so we could also define the application as fg = p(f) ® (x1,...,%x, g), although that is more
complicated.

Lemma 4.30 (beta_equalityl). The definitions for 3- and n-equality in Definition correspond
to the usual notions.

Proof. 1f L has 3-equality, we have

A(f)g:p()‘(f)) * ($1,-.-,$n,g) =fe (l’l,...,.%n,g),

so we have the usual $-equality. In the same way n-equality of L gives

A1 (f)znir) = Mp(f)) = f.

Remark 4.31 (app_from_app'). Also note that for f : L,

p(f) =p(x1e f) = tn1(f)Tni1.

Therefore, we can also think of the application as being the primary operation, from which
we derive p. In the same way, we have

P (f) = Ln,m(f)irn—i-l <o Tntm-

Remark 4.32. Now, there are two ways to study A-calculus-like structures using the tools given
here. We can study A-theories, which by the reasoning above have a A-calculus structure.
Alternatively, we can try to study the A-calculus-like structures as algebras for some algebraic
theory A. However, it is not clear beforehand that this will succeed, because there is no
reason why the category of A-calculus-like structures should be algebraic. In particular, A-
abstraction causes problems, because it is not an algebraic operation. Of course, we can still
do exactly the same as in Example f.46: We can let A,, be the set of A-terms with constants

Z1,...,Tn, which we can also regard as free variables (see Definition f.47), and study the
category Alg, .

Later on, we will see that these two ways of studying A-calculus-like structures do coin-
cide: we will see that the category LamTh is indeed algebraic, and moreover, that the objects
of Alg, are equivalent to A-theories.

4.5 Examples

There are a lot of different examples of algebraic theories and A-theories and their algebras.
In this section, we will discuss a couple of these examples.
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4. ALGEBRAIC STRUCTURES

4.5.1 The Free Algebraic Theory on a Set

Example 4.33 (free_functor]). Let S be a set. We can construct an algebraic theory F'(S) by
taking F'(S), = S u {1,...,n} with projections z; = ¢ and substitution
ieg=gi seg=s
fori:{1,...,n}and s: S.
If we have a function f : S — S/, we get a morphism F(f) : FI(S) — F(S5’) given by

fori:{1,...,n}and s: S.
Also, F obviously respects the identity and substitution morphisms, so it is a functor.

Note that we have a forgetful functor (-) that sends a morphism of algebraic theories
g : T — T' to the function gg : Ty — Tj).

Lemma 4.34 (free_functor_is_free). Thealgebraic theory F'(.S) defined above, is the free algebraic
theory on the set S.

Proof. Let T be an algebraic theory. We have a bijection
AlgTh(F(S),T) = Set(S,Tp),
sending f : AIgTh(F(S),T) to fo : S = S u g — T (this is trivially natural in S and 7) and
f : Set(S,Tp) to the functions g, : F'(S), — 1), given by
gn(i) = zi gn(s) = f(s) e ().
O

The proofs that F(S) is an algebraic theory and that F'(f) and g are algebraic theory
morphisms are easy exercises in case distinction.

Corollary 4.35 (projections_theory). F((¥) is the initial algebraic theory.
Proof. For S = (7, the bijection of hom-sets becomes
AlgTh(F (%), T) = Set(&, T)
and the latter has exactly one element. O

Lemma 4.36 (algebra_coslice_equivalence). There is an adjoint equivalence between the cate-
gory Alg . o and the coslice category S | Set.

Proof. For the equivalence, we send a F'(S)-algebra A to the set A with morphism s +— s e ().
An algebra morphism f : A — B is sent to the coslice morphism f : (S — A) — (S — B).
This constitutes a functor.

Note that the category of F'(S)-algebras is univalent.

Also, the functor is fully faithful, since one can show that for F'(.5)-algebras, the coslice
morphism ¢ : (f : S — A) — (f' : S — B) also has the structure of an algebra morphism
p:A— B.

Lastly, the functor is essentially surjective, since we can lift an object f : S — X to a
F(S)-algebra X, with action

iex=ux;, and sex = f(s).

Therefore, the functor Alg ) — (S | Set) is an adjoint equivalence.
The proofs of these facts work by simple case distinction, and by using the properties of
the coslice and algebra morphisms. O
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4.5. Examples

Remark 4.37. F () is, in some sense, the smallest nontrivial algebraic theory. Then F'(5) is
the smallest nontrivial algebraic theory that has the elements of S as constants.

Remark 4.38. Note that the category of F'((¥)-algebras is equivalent to the coslice-category
(& | Set), which, since (¥ is the initial set, is just equivalent to Set. Therefore, Set is algebraic.

4.5.2 The Free \-Theory on a Set

In this subsection, we will use the A-calculus operations defined in Subsection §.4.1].
Like with the free algebraic theory, we will construct the free A-theory as the ‘pure’, in-
ductive A-calculus, with some additional constants.
Let S be a set. Consider the sequence of inductive types X, with the following construc-
tors:
var, : {1,...,n} —> Xp;
Appy, : Xy = X — Xip;
Absy ¢ Xpt1 — Xa;
Cony : S — X,

Define a substitution operator o : X,,, x X — X,, by induction on the first argument:

vary(i) e g = gi;
APP,,(a,b) @ g = App,(a e g,be g);
Absy(a) @ g = Absy(a e ((gi ® (Tnt1,5)5)i + (Tn41)));
Conm(s) °g= Conn(s).
And then quotient X by the relation generated by

APP, (Absy (f),9) ~ f o ((Tni)i + (9))

forall f: X471 and ¢ : X,,. This gives a sequence of sets (A(S)y,)n.
Example 4.39. We can give A(S) an algebraic theory structure with variables x,,; = Vary,(i)
and the substitution operator e defined above. We can give A(S) a A-theory structure with
B-equality by taking

A(f) = Absy(f) and  pu(f) = Appns1(f @ (Varn+1(9))i, Varnii(n +1)).

Now, given a function S — S/, we define a morphism LamTh(A(S), A(S’)) by induction,
sending var(i), App(a,b) and Abs(a) in A(S) to their corresponding elements in A(S’) and
sending con(s) to con(f(s)).

Note that, like with the previous example, we have a forgetful functor (50 : LamTh — Set.
Lemma 4.40. A(S) is the free A-theory on S.
Proof. Let L be a A-theory. We have a bijection
LamTh(A(S), L) = Set(S, Ly),
sending f : LamTh(A(S),L) to fo|ls : S — Lo (again, trivially natural in S and L) and
conversely, g : Set(S, Lo) to the inductively defined f : LamTh(A(S), L) given by
fvar(i)) = wi;
f(app(a, b)) = f(a)f(b);
f(Abs(a)) = Azni1, f(a);
f(con(s)) = g(s) » ().
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Remark 4.41. One can also consider this lemma a proof that we can ‘interpret’ the A-calculus
with some constants inside any A-theory L if we give an interpretation of the constants as
terms in L.

The proofs that A(S) is indeed a A-theory and that A(f) and g are A-theory morphisms,
mainly work by definition of e, A and p, by induction on the terms of A(S) and by invoking
the properties of the A-theory L.

Definition 4.42 (lambda_calculus_lambda_theory). We define the ‘pure” A-calculus A to be
A(D).

Corollary 4.43. A is the initial A-theory.

About A-Algebra Morphisms

Lemma 4.44. Let A and B be A-algebras and let f : Set(A, B) be a function that preserves the
application and the A-definable constants:

f((z122) o (a,0)) = (z122) o (f(a), f(b)) and  f(se () =se()
forall a,b: Aand s : Ay. Then f is a A-algebra morphism.

Proof. Note that for s : A, 1 and a : A",
(z122) ® (A(S) ® (@i)i; any1) = s @ a.

By induction, we can express s e a using a combination of (z1z2) e (-,-) and A" (s):

f(sea)=f((z122) o (... ((x122) ¢ (\"(s) ® (), a1),--.),an))
= (z122) o (... ((z122) ® (f(A"(s) @ (), f(a1)),--.), f(an))
= s e (f(a;))s,

so fis a A-algebra morphism. O

4.5.3 The Free Object Algebraic Theory

Example 4.45 (ffree_object_theory, free_object_algebra_functor). Take a category C, with
a forgetful functor G : C — Set and a free functor F' : Set — C. Let n : idget = F o G be
the unit of the adjunction and let ¢ : C(F/(X),Y) = Set(X, G(Y)) be the natural bijection of
homsets.

We define an algebraic theory T'with T}, = G(F({1,...,n})), projections z,, ; = 141, . (7).
For the substitution, note that we can view ¢ : 7" asa functiont : {1,...,m} — G(F({1,...,n})).
We then take

set=G(p™(t)(s).

Now, given an object X : C, we can give G(X) a T-algebra structure, with action

set=Glp ' ())(s).

Also, for a morphism f : C(X,Y’), we get a T-algebra morphism G(f) : G(X) — G(Y).
Therefore, we can view G as a functor G : C — Alg,.

The proofs that T' is an algebraic theory, that G(X) is an algebra and that G(f) is an
algebra morphism mainly rely on the fact that ¢ is natural.

So we have a functor from C to the category of T-algebras. One can wonder whether there
also is a functor the other way, or whether G : C — Alg, is even an equivalence. If the latter
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is true, C is trivially an algebraic category, but the question for which algebraic categories G
is an equivalence is harder to answer.

Of course, for many common categories in algebra, where an object of C is a set with
some operations between its elements, one can carefully choose some elements of Ty, 11, Tb
etc., which act on an algebra like the specified operations, which turns G into an equivalence.

Example 4.46 (monoid_algebra_equivalence). For C the category of monoids, G : C — AlgT
is an adjoint equivalence.

Note that 7T), is the free monoid on n elements. Its elements can be viewed as strings with
the characters z1,...,z, (for example, z1x5x3218 ... 27), with the x; the generators of the
monoid, acting as the projections of the algebraic theory.

Let A be a T-algebra. We can give A a monoid structure by taking, for a,b : A4,

ab = (z1x2) @ (a,b)

and unit element

1= e().
Then the laws like associativity follow from those laws on the monoid and from the fact that
the action on the algebra commutes with the substitution:

a(be) = (x1(xow3)) @ (a,b,¢) = ((x122)x3) @ (a,b,c) = (ab)e.

Note that if we take a monoid, turn it into a T-algebra and then into a monoid again, we still
have the same underlying set, and it turns out that the monoid operation and unit element
are equal to the original monoid operation and unit element. Therefore, G is essentially
surjective. It is also fully faithful, since any 7T-algebra morphism respects the action of 7',
which makes it into a monoid morphism. Therefore, G is an adjoint equivalence.

Remark 4.47. In the same way, one can characterize groups, rings and R-algebras (for R a
ring) as algebras of some algebraic theory. On the other hand, one can not use this method
to describe fields as algebras for some theory 7', because one would need to describe the
inverse z — z 7! operation as t e (z) for some ¢ : 77, with zz~1 = 1, but since the elements of
the algebraic theory act on all (combinations of) elements of the algebra, one would be able
to take the inverse 0~! = ¢ o (0) with 00~! = 1, which would make no sense.

Remark 4.48. Another counterexample is the category Top of topological spaces. We have a
forgetful functor G : Top — Set that just forgets the topology. On the other hand, we have a
free functor F' : Set — Top which endows a set with the discrete topology. The construction
above yields the initial algebraic theory 7,, = {1,...,n}, with an algebra action on every
topological spacei e (ai,...,a,) = a;. Now, note that we can endow the set { T, L} with four
different, nonisomorphic topologies, which all yield the same T™-algebra. In other words: the
T-algebra structure does not preserve the topological information. Therefore, the functor
G : Top — Alg, is not an equivalence.

4.54 The Terminal Theory

Example 4.49 (one_point_theory). We can create the trivial algebraic theory 7" by taking 7;, =
{x}, with projections z; = * and substitution = e x = ». Taking A(x) = » and p(x) = *, we
give it a A-theory structure (with g and n-equality). Checking that this is indeed an algebraic
theory and even a A-theory is trivial.

Now, given any other algebraic theory S, there exists a unique function S,, — T;, for every
n, sending everything to x. These functions actually constitute an algebraic theory morphism
S — T. If S is a A-theory, the algebraic theory morphism is actually a A-theory morphism.
Again, checking this is trivial.

Therefore, T is the terminal algebraic theory and A-theory.
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Lemma 4.50 (one_point_theory_algebra_is_trivial). {x} is the only algebra of the terminal the-
ory.

Proof. Let A be a T-algebra. First of all, we have an element x4 = *7 e (). Secondly, for all
elements a : A, we have

a=2x10(a,*x)=xe(a,x) =mx9e (a,*x) =x*.

Therefore, the set of A is {*}, which can have only one T-action:

4.5.5 The Endomorphism Theory

Definition 4.51 (endomorphism_algebraic_theory). Suppose that we have a category Cand an
object X : C, such that all powers X" of X are also in C. The endomorphism theory E(X) of X is
the algebraic theory given by F(X),, = C(X", X') with projections as variables x,,; : X" — X
and a substitution that sends f : X™ — X and g1,...,9m : X" > X to{gi); - f : X" — X.

Definition 4.52 (endomorphism_lambda_theory). Now, suppose that the exponential object
XX exists, and that we have morphisms back and forth abs : X* — X and app : X — X¥.
Let py be the isomorphism C(X x Y, X) = C(Y, X¥) for Y : C. We can give F(X) a \-theory
structure by setting, for f : E(X),4+1 and g : E(X),,

A(f) = oxn(f)-abs  p(g) = ¢xn(g-app).

Remark 4.53 (endomorphism_theory_has_@ endomorphism_theory_has_eta). From the definition
of A and p, it follows immediately that £(X) has $-equality if abs - app = id xx. In the same
way, if app - abs = idx, then E(X) has n-equality.

The proofs that £/(X) is an algebraic theory and a A-theory, use properties of the product,
and naturality of the isomorphism ¢y

4.5.6 The Theory Algebra

Example 4.54 (theory_algebra). Let 1" be an algebraic theory and n a natural number. We
can endow the T;, with a T-algebra structure, by taking the substitution operator of 1" as the
T-action. Since this commutes with the substitution operator and the projections, 7, is a
T-algebra.

Lemma 4.55 (theory_algebra_free). T), is the free T-algebra on n generators.

Proof. In Lemma [A’7, it is shown that T-algebras are equivalent to finite-product-preserving
Set-valued functors on the Lawvere theory L associated to 7". Now, recall from Definition .12
for any category C, we can embed C°P inside [C, Set|, the category of Set-valued functors on
C'. This embeds n : L as the theory algebra 7},. Then the Yoneda lemma gives a bijection

Alg, (T,, A) = A" = Set({1,...,n}, A)

natural in n and A. Explicitly, it sends f : Alg, (7, A) to (f(x;)); and (a;); : A" to f — fea.
The natural equivalence immediately shows that 7;, is the free T-algebra on n elements. [

Using some additional machinery, we can combine this with the algebra pullback functor
to get another functor:
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Definition 4.56. Take a nonnegative integer n. Take S : AlgTh. For every T : AlgTh,
we can take the T-algebra 7,,. Then every morphism f : AlgTh(S,T') gives an S-algebra
J[*T,. In fact, this is a functor from (S | AlgTh) to Algy: We send a morphism g : (S |
AlgTh)((T, ), (T", [')) to

gn : [ T — (f))* T,

This is an algebra morphism because it commutes with f, f’ and the substitution of 7" and
T": For s : Sy and t: (f*T,)™, we have

(s @ g1, 1) = g (fm(5)) o1 (9n(ti))i = s ®(pryxry (gn(ti))i-

The functor obviously preserves the identity morphisms and composition of morphisms, so
itis indeed a functor.

4.5.7 The Initial Presheaf

Example 4.57. Let T be an algebraic theory. We can construct a T-presheaf P, with P,, = (J.
Then e : P, x T]" — P, is trivial, and the presheaf laws hold trivially.

Lemma 4.58. This is indeed the initial presheaf.

Proof. Let Q be a T-presheaf. For all n, since P, is empty, there is only one possible function
P, — Q. These functions trivially satisfy the presheaf morphism laws, so they constitute
the unique presheaf morphism P — Q. O

4.5.8 The Theory Presheaf

Example 4.59 (theory_presheaf). Let 7" be an algebraic theory. We can endow 7" with a 7*-
presheaf structure, by taking the substitution operator of 7" as the action on 7'. Since this
commutes with the substitution operator and the projections, 7" is a T-presheaf.

Lemma 4.60 (presheaf_to_L)). We have natural bijections

Pshfr(T",Q) = Q,
for @ : Pshfr.

Proof. Lemma [A.8 shows that T-presheaves are equivalent to presheaves on the Lawvere
theory L associated to 7". Now, recall from Definition that we can embed any category
inside its own category of presheaves. This embeds n : L as the power 7" = (17} ),, of the
theory presheaf. Then the Yoneda lemma gives a bijection

Pshfr(T",Q) = Q.

natural in n and Q. Explicitly, it sends f : Pshf; (T, Q) to fu(x1,...,2,) and ¢ : @), to
(ti)i —qe t. O

4.5.9 The ‘n + p’-Presheaf

Example 4.61 (plus_1_presheaf). Given a T-presheaf (), we can construct a presheaf A(Q,p)
with A(Q,p)n = Qn+p and, for ¢ : A(Q,p)m and f : T, action

goa@Qp [ =a°Q ((tnp(fi))i + (Tnti)i).

Lemma 4.62 (ftheory_presheaf_exponentiable). For all p and all T-presheaves (), A(Q,p) is the
exponential object Q"
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Proof. We will show that A(—, p) constitutes a right adjoint to the functor — x 7%7. We will do
this using universal arrows.

For () a T-presheaf, take the arrow ¢ : A(Q,p) xT? — Q givenby p(q,t) = geq ((zn,i)i+1t)
forg: A(Q,p)n = Quipand t : T}.

Now, given a T-presheaf )’ and a morphism ¢ : Q' x TP — Q). Define 1; 1 Q) — A(Q,p)n
by ¥(q) = ¥ (tnp(q), (xg—H)Z) N

Then ¢ factors as (¢ x id7») - . Also, some equational reasoning shows that ¢ is unique,
which proves that ¢ indeed is a universal arrow. O
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Chapter 5

Previous Work in Categorical
Semantics

Hyland, like every scientist, stands on the shoulder of giants. As we saw in the last chapter,
he borrows concepts from universal algebra to study the A-calculus. Furthermore, two main
theorems in his paper have been proven by others before him, although in a different way.
This chapter strives to improve the understanding of Hyland’s work by expositing the work
of those who came before.

To understand what categorical semantics for the untyped A-calculus is about, we first
briefly take a look at categorical semantics for the simply typed A-calculus (Section p.1]). Af-
ter this, we provide Scott’s result about categorical semantics for the untyped A-calculus
(Section p.3), for which we first study the ‘category of retracts’ (Section p.2). We then dis-
cuss Paul Taylor’s result about the structure of this category of retracts (Section p.4), which
says something about its internal logic. Lastly, we briefly discuss a result of Peter Selinger
(Section p.5), which seems to have inspired Hyland’s fundamental theorem of the A-calculus.

5.1 The Correspondence Between Categories and Typed A-calculi

In [SH80], page 413, Scott and Lambek argue that there is a correspondence between sim-
ply typed A-calculi and cartesian closed categories (categories with products and ‘function
objects”).

e Types in the A-calculus correspond to objects in the category.
e Types A — B in the A-calculus correspond to exponential objects B in the category.

e Terms in the A-calculus of type B, with free variables =1 : Ay,...,z, : Ay, correspond
to morphisms Ay x --- x A, — B.

o A free variable z; : A; in a context with free variables =1 : Ay, ..., z, : A, corresponds
to the projection morphism m; : Ay x --- x A, — A;.

e Givenaterms: By — Byandatermt : By, both with free variables x1 : Aq,..., 2, : Ay,

corresponding to morphisms 5 : A; x --- x A, — B2B1 andt: A; x --- x A, — By, the
application st : By corresponds to the composite of the product morphism with the
evaluation morphism A4; x --- x 4, — Bf !'x By — Bs.

A1><'--><An
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e Given a term ¢ : B with free variables x; : Aj,...,x, : A,, the abstraction (Ax,,t) :
A, — B corresponds to using the adjunction corresponding to the exponential object
of A,:

C(A; X -+ x Ap_1 x Ap, B) = C(A; x --- x Ap_1, BA").

5.2 The Category of Retracts

The next sections make extensive use of a category called R, which Hyland calls the ‘category
of retracts’. In this section, we will define the category, and show some properties about it.
Let L be a A-theory. First of all, for ay, as : Ly, we define

ay o ag = \x1,a1(agxy);
(a1, a2) = Az1, z10102;
{ar,az) = A1, (@121, asz1);

Ty = Aw1, T1(AT223, Tit1).

Although, actually, since every one of these starts with a A-abstraction, we need to lift the
constants a; to ¢o.1(a;) : L1 to make the definitions above typecheck.

Note that 7;(a1,a2) = a; and m; o (a1, a2) = Ax1,a;x1, which is exactly what we would
expect of a projection.

Also, note that by replacing the z; by z,,+; and the ¢ 1 (a;) by ¢y,1(a;), we obtain definitions
not only for elements of L, but for all L,,.

Later on, we will need not only pairs and their projects, but also n-tuples with projections.
Therefore, we define

(ai)i = (a1,...,an) = ((... ((c,a1),a2),...),an);
lapy; ={at, ... any = .. Leyar),az), ... ), an);
Mpi=T20T0---0m

—_—
n—i

for some constant ¢, which usually is something like Azy41, Zp41.
Recall from Section P.T1] that we can view any monoid M as a one-object category C)y,
where the morphisms are the elements of M.

Definition 5.1 (R). Note that the set of A-terms without free variables L; has a monoid struc-
ture under the composition defined above. The category R is defined as the Karoubi envelope
C'r, (Definition £-64) of the category Cy,, of this monoid.

We choose to implement the Karoubi envelope using a slightly different (but equivalent)
very syntactical construction using idempotents, because Scott reasons about them in this
way:

Ry={A:Lp|Aoc A=A} and R(A,B)={f:Lo|BofoA=f},

withid4 = A and composition given by o.

Remark 5.2 (R_ob_weq_R'). Hyland instead defines R as the Karoubi envelope Cpr, (again, the
construction using the idempotents) of the monoid (L;, — e (—)) with identity element x; ;:

Ry={A:L1|AeA=A} and R(A,B)={f:Li|BefeA=f}
writing s e t instead of s e (¢) for s, : Li. Note that we have a monoid morphism:
L1 X L1 — L1

(S,t)»—»(()\achs),()\xl,t))l lSl—)(A,Z’l’S)

L()XL()%LO
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and since for A : R, A = A\z1,10,1(A)(0,1(A)x1), we have Az, 91(A)z1 = A. This shows
that s — Az1,sand t — 1o 1(t)z1 (both on objects and morphisms) constitute an equivalence
between Hyland'’s category of retracts and Scott’s category of retracts.

Now, to give a bit more intuition for the objects of R, we can pretend that an object A : R
consists of the set of elements that satisfy Aa = a. Then a morphism f : R(A, B) gives
B(fa) = (Bo f)a = fa. This actually constitutes a functor from R to Pshfy:

Definition 5.3. We define a functor ¢ : R — Pshf;, by taking

(A ={a: Ly |wn(A)a=a} and  @(f)n(a) = on(f)a

for A,B : R, f : R(4, B) and a : A. The presheaf action on ¢(A) is given by the substitution
of L:

(a,f) —~aef
for f: L} and a : L,, such that (o, (A)a = a.

It turns out that this is an embedding;:
Lemma 5.4. This functor  is fully faithful.

Proof. Take A, B : R. We need to show that f — ¢(f) is an equivalence between R(A4, B) and
Pshf;(p(A), o(B)). We have a function

¢ : PshfL(p(A), o(B)) — R(A4,B), g (Az1,91(t1(A)z1))
which gives us the inverse. To see that this even typechecks, note that we have
H(A)z s e(A) and  gi(u(A)a1) (B € Ly,

Using the fact that g is a presheaf morphism, we can show that

Bo(g)oA=1(g),
and that ¢ and 1) are inverses. O

Remark 5.5. Note that for all A : R, we can ‘reduce’ any z : L,, to

ton(A)z : p(A),

and in the same way, for all A, B : R, we can turn any f : Ly into a morphism Bo fo A :
R(A, B). In particular, we have B o A : R(A, B). Of course, all elements of ¢(A),, and all
elements of R(A, B) arise this way.

Remark 5.6. As we saw in Remarks .78 and .79, the Karoubi envelope can only be univalent
if the original category is univalent, and even then it is not always univalent. In the case of R,
if L is a nontrivial A-theory, R is not a univalent category. To see this, note, for example, that
we have an object X := (7, m2) : R (corresponding to the type of ‘pairs’ of A-terms). Since
Ly is a set, X = X is a proposition. However, X has (at least) two automorphisms:

<7T1,7T2> and <7TQ,7T1>.

These are the identity, and the automorphism (of order 2) that swaps the elements of the
pair. To see that these are indeed different morphisms, note that applying them (or their
lifted versions) to (z2 1, z2,2) gives respectively x ; and x3 2, which are distinct elements by
Lemma £.6.
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Remark 5.7. In some cases, we can already conclude that R is not univalent because Ly is
not univalent. For example, if Ly has n-equality, the single object » : L, has a nontrivial
automorphism given by

AT X203, L1232 2,

so Ly is not univalent, so R is not univalent.

On the other hand, if L is the pure A-calculus with $-equality, I believe we can use struc-
tural induction to show that » : Ly has no nontrivial automorphisms, so Ly is univalent.
However, as shown above, R is still not univalent.

In the next chapter, the “universal object’ U : R, given by the identity Az, z; (U), plays a
major role. Note that for all A : R, we have morphisms A : R(U, A) and A : R(A4,U), which
exhibit A as a retract of U (R_retraction_is_retraction). Also note that ¢(U) = L.

Note that R has many (isomorphic, but not equal for nontrivial L) terminal objects, given
by I, := Az1,t0,1(c) : Rforany c : Ly (R_terminal). These are terminal because for f : A — I,
we have f = I. o f = I.. Note that ¢(I.), = {to,n(c)}. We will choose I = Azqz2,22 : Ras
our main example of the terminal object.

We might wonder whether R also has an initial object O. However, for all ¢ : Lj, we
would have a constant morphism to the universal object

Az1,0,1(c) : R(O,U),

so if L is nontrivial, R has no initial object.
R has binary products with projections and product morphisms (R_binproducts))

Ay x Ay ={p1,p2), pi=A;om and {(f,g).

Recall that for any object A, we have A = id 4, which for A; x Ag is (p1, p2) by the universal
property of the product, which explains why the product is of this form.
R also has exponential objects (R_exponentials)

cB = Ar1,Coxi10B
with evaluation morphism epc : CB x B — C given by
epc = Ay, C(ma1(B(mar1))),

which is universal because we can lift a morphism f : R(A x B, (') to a morphism #(f) :
R(A,CB) given by
(f) = Awrma, f (21, 22).

Note that for g : R(A4, CB), the inverse ) ~(g) is given by
€0 <g o7, Bo 7T2> = )\xl,g(wlml)(ﬂgxl) : R(A X B, C)

Also note that
Y(epe) = Mz, CoxzyoB=CP =idgs.

Note that p(CP)y = R(B, C), as we would expect.
Now, we might wonder whether there exists some A : R such that ¢(A)y = &J. However,
for any ¢ : Ly, we have Ac : p(A)o, because

Ac= (Ao A)ec = A(Ac).

Note that we can lift constants from ¢(A) to any ¢(A),, so they are all nonempty.
Combining this with the embedding of R — Pshf;, we would expect R to not have all

pullbacks. This is because in Pshfy, for a cospan B ER A < C with fu(Br) N gn(Cp) = &
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for some n, the pullback @ would have Q,, = &J, which could never happen with an object
coming from R. Note, however, that this can not be made rigorous, because a fully faithful
embedding reflects limits, but does not necessarily preserve them.

However, it is true that R does not have all pullbacks (if L is nontrivial). Consider for
example the following cospan:

JEN
for different f,g : R(I,U). For example, f = (Az1,t0,1(m1)) and g = (Ax1,20,1(7m2)). Now,

take any object @ : R. Note that we have a unique morphism I : R(Q, I). Then we have the
following diagram:

I

£

~—
~
— ~
«

with
fol=f=g=gol,

so the diagram does not commute, and () is not a pullback of this cospan.

Taylor notes [[Tay86, Section 1.5] that the objects in R have very strong properties with
respect to fixpoints. One of the properties also arises via Lawvere’s fixed point theorem
[Caw6Y, page 136]: For all B : R, since BY is a retract of U, every endomorphism f : B — B
has a fixpoint (fixpoint_is_fixpoint). That is, there exists s : I — B such that f o s = s.
Working out the proof even yields an explicit term:

s = M, (Az, f(zz))( Az, f(zx)).

Indeed, s = i, f((A\z, f(xx))(Az, f(zx))) = fos,and Bos = Bofos=s=sol,so0
s:R(I, B).

From this, Taylor deduces [[Tay86, §1.5.12] that R does not have all coproducts if L is
nontrivial, because suppose that R has all coproducts. Then B = I + I is a ‘boolean algebra
object”: We define L, T : I — B to be the injections on the left and right components. Since R
is cartesian closed, binary products distribute over binary coproducts, so we have B x B =
(IxI)+(IxI))+((IxI)+(IxI)),andnotethat x I =~ I. Using the universal property
of the coproduct, we can define — : B — B componentwise as — = [T, L], the coproduct
arrow

I —+ 7 + I+ 7
\ T4 /
I+1
Note that by the definition of =, = o L = T. Similarly, we define A,v : B x B — B as

= [[L,1],[L, T]Jand v = [[L, T],[T, T]]. Using the same universal property, we can also
verify some properties of L, T, A and —, like the fact that the following diagrams commute:

Bﬁﬁ@i BxB B p«p
I— Lt B
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for ! : B — I the terminal projection. We do this by checking, for example, that idg o
T = Ao{dp,idpyo T andidp o L = A o{idp,idp) o L. Now, as mentioned above, every
endomorphism has a fixed point. In particular, we have some x : I — B such that — o x = *.
Now, note that

* = Ao{idp,idpyox =Ao(x,xy=no{(x,m0o*x)y=Ao0{idp,—yox= lolox=1

and then
J_:*:—\O*:—'OJ_:T.

Now, for any object A : R and any two global elements f,g : I — A, we have the following
diagram:

f

T s

I:§I+IA>A
g

and we have
f=1f,gloL=[fg]loT =g

In particular, for any two objects A, A’ : R, since we have A o A’ : R(4’, A), so R(A, A) is
nonempty, we have
R(A,A) = R(I x A", A) =~ R(I, AY) =~ {»},

so Ris the trivial category and L is trivial.

5.3 Scott’s Representation Theorem

The correspondence in Section p.1 between simply-typed A-calculi and cartesian closed cat-
egories raises a question whether such a correspondence also exists for untyped A-calculi.
Definition .57 shows that in fairly general circumstances we can take one object c in a cate-
gory C and consider the morphisms t : C(c", ¢) as terms in an untyped A-calculus. Hyland
calls this the ‘endomorphism theory” of c.

Remark 5.8. To construct a simply typed A-calculus from a category, we just need a cartesian
closed category. In a simply typed A-calculus, there is a lot of restriction on which terms we
can apply to each other. A term of type A — B can only be applied to a term of type A, which
gives a term of type B. In particular, a term can be applied only finitely many times to other
terms, and every time, the result has a different type.

On the other hand, for an untyped \-calculus, we need a cartesian closed category with
a ‘reflexive object’. This is because in the untyped A-calculus, we can apply arbitrary terms
to each other. For example, we can apply the term (Az;, z121) to itself, which would not be
typable in the simply typed A-calculus. Suppose that we have a category C' and an object
U such that the morphisms C(U",U) give the untyped A-terms in n free variables, for all
n. Now, given two terms f,g : C(U",U), for the application fg, we need to consider f as a
morphism in C'(U", UY). We can do this by postcomposing with a morphism ¢ : C(U,UY).
On the other hand, if n > 0, then (Az,,, f) is a morphism in C(U"~!,UY), but it is a term in
n—1 free variables, so it should be in C(U"~1, U). For this, we postcompose with a morphism
Y C(UY,U). Now, for our untyped A-calculus to have S-equality, we need ¢ - ¢ = id;u,
which means that the exponential UV of U is a retract of U. This is exactly what it means
for U to be a reflexive object: an object U in a cartesian closed category, that has a retraction
onto its ‘function space’ UY. Note that if we want our \-theory to also have n-equality, the
retraction must be an isomorphism.
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Note that Set is a cartesian closed category, but that for sets X and Y/, the function space
XY has cardinality | X |I¥1, and therefore UY cannot be a retract of U, unless U = {*}, in which
case we have a very trivial A-calculus: Set(U",U) = {x}.

During the 1960s, computer scientists sought for nontrivial examples of reflexive objects,
there is a quote by Dana Scott that “Lambda-calculus has no mathematical models!” [Scol§].
However, in 1969, the same Dana Scott discovered that the category of (continuous) lattices
with (Scott-)continuous functions between them has a nontrivial reflexive object, with the
retraction onto the function spaces being even an isomorphism. Such a reflexive object D,
is obtained by starting with an arbitrary lattice Dy, iteratively taking D, +1 = D2, with a
retraction (in the ‘wrong’ direction) r : DP» — D, and then passing to the limit Dy, =
lim. D, (for the main result, see Theorem 4.4 in [Sco72], page 127).

Since Lambek showed an equivalence between simply typed A-calculi and cartesian closed
categories, and since we have a construction for an untyped A-calculus from a cartesian closed
category with a reflexive object, we can wonder whether this construction constitutes conti-
tutes an equivalence between untyped A-calculi and some class of categories. This question
finds a partial answer in the following theorem, originally proved in a very syntactical way
by Dana Scott [SHS80, p. 418].

Theorem 5.9 (representation_theorem_isd). We can obtain every untyped A-calculus as the en-
domorphism theory of some object in some category.

Proof. Let L be a A-theory. Scott considers its category of retracts R, with “universal object’
U.

Note that UV is a retract of U, so U is a reflexive object.

Therefore, E(U), the endomorphism theory of U, has a A-theory structure. Note that the
finite powers of U in R are given by Ul=Tand U™ =U" x U.

We have E(U),, = R(U™,U) = {f : Lo | Uo foU"™ = f}. The variables of E(U) are the
projections 7, ; of U". The substitution is given by composition with the product morphism:

feg= fo<<<f7g1>,. : '>79n>‘
We have UV = Af,U o f o U = Az 22, 2120. Using the bijection R(U" x U,U) = R(U", UY)
and the retraction UV : U — UV, the abstraction and application ) and p are given by
A(f) = Axrzg, w02(f) (21, 22),  plg) = Ary, 0,1 (9) (mzr) (mozs).
for f : R(U™!,U) and g : R(U™, V).
Now, we have bijections ¢ : E(U)o — Lo, given by
do(f) = f(Axr,21) and 45" (g) = A1, 0,1(9)-

We can extend this to any n, by reducing any term to a constant by repeatedly using A, then
applying the bijection, and then lifting it again using p. Explicitly, we obtain

Un(f) = won(f)(xi)i, and ¥, (9) = a1, g @ (mniz1)5

It is not hard to verify that this is indeed a bijection, using at one point the fact that f :
R(U™,U) is defined by f o U" = f, for

Un = <7Tn,i>i-
It is also pretty straightforward to check that
P(mn i) = i, (f) e (¥(g:)i = ¥(f *9),
P(A(h) = Ae(h)), Y(p(h")) = p(eb(h))
for f : E(U)m, g : E(U), h: E(U)ps1 and b’ : E(U),,. Therefore, ¢ is an isomorphism of
A-theories. m
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5.4 The Taylor Fibration

In his dissertation, Paul Taylor shows that R is not only cartesian closed, but also relatively
cartesian closed. Recall we have chosen to interpret R as the category C'r,,, constructed using
idempotents, because both Scott’s and Taylor’s proof are very syntactical in nature.

In Section P.7, we studied internal and external representations of families of objects in
a category and how they behaved under substitutions (pullbacks). This was to arrive at a
definition for dependent products and sumes, as the right and left adjoints to the pullback (or
substitution) functor o* : (C' | A) — (C' | B) along some morphism o : C(B, A).

Now, some categories are not locally cartesian closed. That is: not all pullback/substitu-
tion functors a* exist or have a right adjoint. For example, R does not have all pullbacks, so
the substitution functors do not always exist. In such a category C, the functor C? — C'isnot
a fibration. One way to look at this, is that in such a category not every morphism X — A
represents a family of objects. In such a category, we can carefully choose a subset of the
morphisms to represent our indexed families. We will call a morphism that we choose to
represent an indexed family a display map. In most cases, we have quite a bit of choice how
big we want our subtype of display maps to be. However, to make sure that indexed families
are well-behaved, the subtype of display maps needs to have some properties:

1. The pullback of a display map along any morphism exists and is a display map.
2. The composite of two display maps is a display map.
3. C' has a terminal object and any terminal projection is a display map.

Remark 5.10. A ‘maximal” example of a subtype of display maps is, for example, in the cat-
egory Set, where we can take our subtype of display maps to equal the full type of all mor-
phisms of C. This works in any category that has all limits.

Remark 5.11. A ‘minimal” example of a subtype of display maps is the subtype of product
projections in a univalent category with finite products. In this case, all indexed families are
constant, and then dependent sums and products become binary products and exponential
objects.

Now, let C be a category with a subtype of display maps D < C. We will denote the
subtype of display maps from X to A with D(X, A) < C(X,A). For any A : C, we define
the category (C' | p A) as a full subcategory of the slice category (C' | A), with as objects the
display maps f : D(X, A). The morphisms between two objects of (C' | p A) are still all the
morphisms of (C | A) (i.e. the morphisms of C' that commute with the display maps).

Note that for the terminal object I : C, (C' |p I) is still equivalent to C, since every
terminal projection is a display map.

Also note that since the pullback of display maps against any map exist (and are display
maps again), we get a pullback functor o* : (C' |p A) — (C |p B). This is the restriction of
the pullback functor o* : (C' | A) — (C' | B), if it exists.

Note that since composing two display maps gives a display map again, and since the
dependent sum is given by postcomposition, a* has a left adjoint for all display maps o.
That is: the fiber categories (C' | p A) have dependent sums over display maps.

The question whether the fiber categories (C' |p A) also have dependent products over
display maps, brings us to the definition of relative cartesian closedness.

Definition 5.12. A category C'is cartesian closed relative to a class of display maps D, if the
substitution functors o* along display maps have right adjoints.

Now, analogously to Lemma .33, Taylor shows:

Lemma 5.13. If a category C'is cartesian closed relative to a class of display maps D, then the fiber
categories (C' | p A) are cartesian closed and the substitution functors o™ preserve this structure.
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Proof. Taylor proves this in a series of lemmas leading up to §4.3.7 in [[Tay8§]. It is also proved
as Proposition 6 of [HP89]. O

5.4.1 Taylor’s Proof

As Hyland remarks, Taylor shows that R is relatively cartesian closed using a very syntactical
argument, in the spirit of Scott.

He starts out with a kind of ‘external” representation of indexed families (X,), in R. He
denotes these as ‘functions” A — Ry. They are the elements X : Ly with

XoA=X and (\z1,(Xa1)o (X)) =X.

These X form a category R, with the morphisms in R4(X,Y) givenby f : Lo with foA = f
and (Az1, (Y1) o (fz1) o (Xz1)) = f. The identity on X is given by X, and the composition
is given by f - g = Ax1, gz o fxq.

Taylor shows that these categories R# are cartesian closed. He notes that assigning these
categories R” to objects A : R again constitutes a contravariant (pseudo)functor R°P — Cat,
sending morphisms A — B to precomposition functors R — R4.

For A : R, we introduce the combinator

Z = Ax129, (A(T122), 21 (M1 22) (T222)).
A

For A : Set, we have an equivalence between the elements of Set? and the elements of
the fiber (Set | A) of the fibration Set* — Set. Now, for A : R, >, gives a functor from R*
to (R | A). Note that it sends objects X : R* to 3° , X, together with a projection morphism
px = Aomy : ), X — A. Note that with the embedding in Definition p.3 into Pshf;, we can
consider ), , X as consisting of pairs (a,z) with a : A and z : Xa, which is exactly what we
would expect from a dependent sum.

Now, > , is fully faithful: given a morphism g : R (3}, X, >, Y), we take

Y(9) = Az122, T2(9(21, 72)).

For verifying that (g) is indeed a morphism in R*(X,Y), it helps to recall that go >, X =
g=>,4Yogandpy og=py. Since (3, f) = f forall f : RA(X,Y)and 3, ¥(g) = g for
allg : R(24 X, 24 Y), >4 is indeed fully faithful.

On the other hand, } ] , is generally not surjective. However, we can choose our subtype
D of display maps in such a way that the restriction R — (C' |p A) becomes essentially
surjective.

Definition 5.14. For R, we will consider a morphism f : X — A to be a display map if we
have some Y : R* like above, and some isomorphism g : (X, f) = (3., Y,py)in (R | A).

Remark 5.15. Hyland actually gives a different characterization of Taylor’s display maps. He
claims that Taylor takes the display maps X — A to be the retractsin (R | A) ofp; : AxU —
A, the projection onto the first coordinate. The two characterizations are equivalent:

Given Y : R4, intuitively Ya is a retract of U for all a. Concretely, both morphisms
r:AxU —>Y,Yands: >, Y — AxU are given by >, , Y and these commute with
the projection to A. Therefore, if we have an isomorphism g : X = },Y in (R | A), then
YaY-gtandg- ), Y make X into a retract of A x U.

Conversely, given a retraction 7 : A x U — X and sections : X - A x Uin (R | A), we
have

Y = Az1zo, mo(s(r(z1, 29))) : R4

Using the properties of r and s and the definition of ) , Y, one can show that r gives a mor-
phism } , Y — X and s gives a morphism X — > , Y, and thatr o s = idy, , y. Combined
with the fact that s o = id x, this shows that X is isomorphicto ) , Y.
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Remark 5.16. Recall that if L is nontrivial, R is not univalent, and the existence of Y : R4 with
the isomorphism g : X — Y, Y is not a proposition. Take, for example, Y : R given by
(Az1,U xU). Recall that (R | I) is equivalent to R. Under this equivalence ), Y is equivalent
to U x U. As mentioned before, > ;Y has (at least) two distinct isomorphisms to itself: the
identity and the isomorphism that swaps both sides of the product.

In a similar way, being a retract of A x U is not a proposition. Therefore, if we want the
class of display maps to really be a subclass of the class of morphisms, we need the existence
of Y : R and the isomorphism g : X = ", Y, or the existence of the retraction A x U — X,
to mean mere existence in this case. This means that we cannot use these in constructions,
except for mere propositions.

Taylor shows that these display maps indeed satisfy the three properties mentioned above.
However, in univalent foundations, there are some subtleties in the case of pullbacks:

1. Given a display map (X, f) : (R |p A) and a morphism « : R(B, A). Recall that this
means that there merely exists a Y : R* and an isomorphism X = 3, Y in (R | A).
Therefore, we have mere existence of a pullback } ;(Y o «) of >, Y along «a. For all
C : Rwith g8 : R(C,B) and v : R(C, >}, Y) that make the square commute, we have
the morphism A\x1, (Bx1, m2(y21)) : R(C, Y 5(Y o «)).

o

Q

Az1,(Bz1,m2(ye1))

B ZB(Y o a) Az, (a(miz1),Y (e(miz1))(m221))

p o«
(Yoa) Jp}/

B 2 A

<444444

By the isomorphism between X and } ,Y, > 5(Y o «) is also a pullback of X: by
postcomposing with g and its inverse, we see that morphisms from } (Y o A) and C
to X are equivalent to morphisms to >}, Y.

2. Given display maps f : B - Aand g : C — B. We have X : R4 and Y : R® with
isomorphisms s : B — >, X and ¢ : C = > 5 Y. We need to show that fog: C — A
is also a display map.

C—— 2pY —— 2aZ

b A

Intuitively, the isomorphism »,; Y =~ ' , Z represents a bijection

D Yb= ) Y Y(a,w),

b:Y, 4 Xa a:Az:Xa
relating ((a, z),y) to (a, (z,y)). Therefore, consider
7 = \r129, (Xxl(mxg),Y(s_l(ml,mxg))(m:rg)) ‘R4,
we have an isomorphism u : >, Y = 3}, Z given by:

u = Ary, (Aa, (Xax,Yby))
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with
b=mux1; a=m(sh); x=m(sh); y=maxy,
and
u™l = Az, (s71(Aa, Xazx), Yby)
with

a=mz; x=m(mr); bzsil(a,x); y = ma(maxy)

and then u o t is an isomorphism in (R | A) between (C, f o g) and (3}, Z,pz).
3. Let B — I be a terminal projection. Consider Y = (Az1, B) : R. We have

ZY = )\.%'1, (()\1‘2,£B2),B(7T2$1)) = <IO7T1,B O7T2> =1x B,
I

which is isomorphic to B.

Remark 5.17. There is an awful lot of properties to verify here (e.g. that some terms are ele-
ments of some R4, that others are morphisms in some R(3} , X, Y5 Y), that some diagrams
commute), but most of it boils down to writing down the equations that should hold, re-
ducing them via -equality, and then using the facts that objects A : R are idempotent, that
morphisms f : R(A, B) equal B o f o A and that objects X : R4 satisfy X o A = X and
Xa(Xazr) = Xax for all a and . Note that for a morphism f: >, X — B,

f(Axy, 29) = f(21,22) = f(21, XT122),

so f ‘absorbs’ such instances of A and X, so to speak.

Remark 5.18. To talk about ‘relatively cartesian closed’, we need a pullback functor a* : (R | p
A) — (R |p B) for all (display maps) « : B — A. However, as remarked before, since the
definition of display maps involves a propositional truncation, we only have mere existence
of pullbacks, and to pass from the statement “for all f, there exists a pullback o* f” to the
statement “there exists a function that sends every morphism f : (R |p A) to its pullback
a*f: (R |p B)”, we need to assume the axiom of choice.

However, note that we have a weak equivalence between strict categories (categories in
which the type of objects is a homotopy set) >, : R* = (R |p A). If we assume the axiom
of choice, , , becomes an equivalence of categories [[Unil3, Chapter 9, introduction, bullet
(ii) ] and then our pullback functor is given by

2.(a'_).27
A

B

where (a - —) : R* — R® denotes the functor given by precomposition with a.

This brings us to the main theorem of this section [[Tay86, §5.1.8].

Theorem 5.19. If we assume the axiom of choice, R is cartesian closed, relative to the given class of
display maps.

Proof. Let o : B — A be a display map. We have mere existence of some X : R4 and
an isomorphism g : (X,a) — (3, B,px). We need to show that there is a right adjoint
to the pullback functor a*. Since under assumption of the axiom of choice, a* is defined
as a composition of a precomposition functor with two equivalences of categories, this is
equivalent to showing that there is a right adjoint to the precomposition functor (« - —) :
R4 — R (note that o - — sends f to f o ).

Now, intuitively, any Y : R® denotes an indexed family ((Y (a,b))p.xa)a:a. We want the
right adjoint aY" to be the indexed family of dependent products (] [;.5, Y (a,0))a. An ele-
ment f of the dependent product oY a is then a function from Xa, that satisfies fb : Y (a,b)
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forallb : Xa. Therefore, foralla : Aandall f : Ly, wewant (a.Ya)f = ftomean”foXa = f
and, fb:Y(a,b) forall b: Xa”. We encode these two parts as

Ar1,710Xa and )\xlmg,Y(g_l(a,:1:2))(:E1:E2).

It turns out that these are idempotents and they commute, so we can compose them into one
object
aYa = Ax172,Y (g7 (a, 22))(21(Xaxs)) : R

and we define the combinator
g = Az Tox324, 71 (g (2o, 24) ) (23( X T24)).

Now, applying a to both objects and morphisms in R# gives a functor v, : R® — R4,
Note that for all Y : R” and all b, we have a morphism (Az1, 1(m2(gb))) : R(a.Y (ab), Yb).
Making this parametric in b gives us a counit

€y = )\161.%'2, Yiﬁl(xg(WQ(gl‘l))) . RB((Q*Y) o, Y)

To show that (a - —) - a., we need to show that for all Y : R?, (a,Y, ey ) is a universal
arrow from (« - —) to Y. Recall the following diagram:

Now, suppose that we have some 7 : R4 and some f : R%(Z o a,Y). We define

f = Az1zaus, flg7 (@1, 23))(Za122) : RA(Z, 0 Y)

~

and we have ((f) o a) - ey = f. Now, suppose that we have some (other) 7 RA(Z, a,(Y))
such that (f’ o ) - ey = f. Then substituting (f’ o «) - ey for f in f yields

f =2z, (Yx) o (flzr) = f

so fis unique and (.Y, ey) is a universal arrow, which concludes the proof that (- —) — o
and we see that R is cartesian closed relative to the given class of display maps. O

Remark 5.20. Recall that in the definition of «,, we composed commuting idempotents
Arix9,x1(Xaxy) and  Azixe,Y(a,x2)(z172).
In his PhD thesis, Taylor instead composes the idempotents
Ar1, r1(Xazxe) and  Axjxo, Yao(xixs).

Note that in the first term, x5 plays the role of an element of X a, whereas in the second term,
it plays the role of an element of B. Of course, if we worked in Set, we would indeed have
Xa < | |,.4 Xoe = B. However, in R, the ‘terms’ of B = }_ , X look like pairs (a,z) witha : A
and z : Xa, so we cannot consider terms of Xa to be terms of B.

Therefore, the idempotents that he uses do not commute, and the resulting term

Ax129,Y (Bza)(x1(Xazs))

(notice the redundant usage of B) is not idempotent.
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5.5 The \-Calculus is Algebraic

Aswe mentioned in Remark .32, using tools from universal algebra, there are two approaches
to study A-calculus-like structures. One can either study A-theories or algebras for the alge-
braic theory A. We will see that Hyland shows that these are equivalent.

In his proof, he refers to the 2002 paper “The lambda calculus is algebraic’ by Peter Selinger
[Sel02]. We will not study this paper in detail, but it is interesting to have a quick look at it,
because it seems that Hyland took some inspiration from: it.

Selinger studies two kinds of objects which he calls A-algebras and A-theories:

Definition 5.21. A combinatory algebra is a set A, together with a binary (application) opera-
tion (a1, az) — ajaz, and distinguished elements k, s : A such that for all a1, az, a3 : A,

kajaz = a1 and sajasas = ajagz(agas).
A \-algebra is a combinatory algebra which ‘behaves nicely” in some sensell.

For a set C' and a countable set V, we define A¢ to be the inductive type with constructors

Var(:c), App(f7 g)v Abs($> f) and Con(c)
forx:V, f,g: Acand c: C.

Definition 5.22. A A-theory is an equivalence relation ‘=" on A¢ for some C, containing «-
and $-equality and closed under application and abstraction.

Selinger shows in his paper that the categories of A-algebras and A-theories are equivalent.
As we will see in the next chapter, Hyland shows that his own notions of A-algebras and A-
theories are equivalent.

Now, it is not hard to show that Hyland’s and Selinger’s notions of A-theory are equiva-
lent: If we have one of Selinger’s A-theories with a countable set of variables, enumerate the
variables as x1, x2, ... and let L,, be the set of terms with only the free variables 1, ..., .
Then, if we quotient by the equivalence relation, we get one of Hyland’s A-theories. Con-
versely, if we start with one of Hyland’s A-theories L, we can consider L, as a subset of L,
by sending z,; to T,,+1;. If we take the union L = | J,, L,, (officially, this is a directed limit),
we have a function f : Ay — L, because the constants of A7 are exactly the terms of L and be-
cause A-theories in Hyland’s sense support the operations of the A-calculus (see Subsection
B4.7). This gives an equivalence relation on A; by taking a * =" bif f(a) = f(b).

Note, however, that is very hard to show that Hyland’s notion of A-algebra and Selinger’s
notion of \-algebra are equivalent. If we start with a A-algebra A, this is already a combina-
tory algebra, because A contains the S and K combinators and their image are the designated
elements s and k. However, if we start with a A-algebra and want to turn this into a A-algebra,
we need to give a t-action for every ¢ : A, not just for S and K. Therefore, we need to show
that any A-term can be expressed in terms of K, S and application. However, at that point
we are already halfway through a proof that any A-algebra can be given a A-theory structure.

'We can interpret terms of combinatory algebra (abstract terms involving just application, the constants S
and K, constants from A and some variables) as functions on A. We can also interpret them as A-terms with
constants in A, by sending S and K to the S and K combinators. Then ‘behaving nicely’ means that if the A-terms
of two such terms are equal, then their functions on A are equal as well.

65






Chapter 6

Hyland’s Paper

In this chapter, we will cover the main results from Hyland’s paper. We work out the proofs
in more detail, and point out where subtleties arise when translating them from set theory
to univalent foundations.

The chapter starts with a new proof for Scott’s representation theorem (Section p.1]). The
sections after this deal with a lot of different categories and Section p.7 discusses the rela-
tions between these categories. Section p.3 gives Hyland’s proof of the result by Paul Taylor
that was covered in the previous chapter. Here, the bifurcation of the Karoubi envelope in
univalent foundations, as mentioned in Remark .81, means that Hyland’s result is about a
different category than Taylor’s result (Remark p.17)).

In the last part of this chapter, we cover Hyland’s fundamental theorem about the equiv-
alence between A-theories and A-algebras. There are multiple ways to construct a A-theory
from a A-algebra, and these give rise to slightly different proofs. We will consecutively cover a
very elementary version (Section p.4), Hyland'’s first version, which uses the endomorphism
theory (Section p.5), and Hyland’s second version, which uses the theory of extensions (Sec-

tion p.6).

6.1 Scott’s Representation Theorem

Now, Scott’s representation theorem, which asks whether we can represent any A-theory as
the endomorphism theory of some reflexive object in some cartesian closed category, can be
answered using the presheaf category.

Theorem 6.1 (representation_theorem_iso). Any A-theory L is isomorphic to the endomorphism
A-theory Epgng, (L), with L viewed as a presheaf.

Proof. First of all, remember that L is indeed exponentiable and that L” = A(L,1) (Lemma
B.62). Now, since L is a A-theory, we have sequences of functions back and forth A, : A(L,1),, —
L, and p, : L, — A(L,1),. These commute with the L-actions, so they constitute presheaf
morphisms and E(L) is indeed a A-theory.

Remark f.60 gives a sequence of bijections ,, : Pshf; (L", L) =~ L, for all n, sending f :
Pshf; (L™, L)to f(x1,...,xy), and conversely sending s : Ly, to ((t1,...,tn) — se(t1,...,tp)).
It considers A-terms in n variables as n-ary functions on the A-calculus. Therefore, it should
come as no surprise that ¢ preserves the z;, ®, p and A, which makes it into an isomorphism
of A-theories and this concludes the proof. O

So Hyland shows that the representation theorem follows largely from the fact that the
functions from L, to itself can be represented by L, 1, together with the Yoneda lemma for

the Lawvere theory associated to L (Remark f.60).
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This proof is particularly nice, because it does not require 3- or n-equality, but if L has 8- or
n-equality, then we can immediately see (even without the isomorphism from the theorem)
that the endomorphism theory also has this property.

Remark 6.2. Actually, in this thesis we stumbled upon another category with a reflexive object
that exhibits L as its endomorphism theory, provided that L has 8-equality: In Appendix B,
we see that the Lawvere theory L associated to L is a weak cartesian closed category, in which
1! = 1. Itis then easy to see that the endomorphism theory that we obtain from this reflexive
object 1 is exactly equal to L.

Note, however, that this is technically not an answer to Scott’s original question, because
the original formulation asks for a cartesian closed category with a reflexive object, whereas
here we only have a reflexive object in a weak cartesian closed category. Even so, it is an
answer to the core of the question, which is about whether we can represent any A-theory as
the sets of morphisms C(U", U) for some U : C.

6.2 Relations Between the Categories

As mentioned before, we have a fully faithful embedding of R into Pshf;,.

Also, we have a functor from the Lawvere Theory L (see Lemma [A.§) associated to L
into R, sending n : L to U" : R. By Scott’s representation theorem, this functor can map
morphisms as follows:

L(m,n) =L} = R{U™,U)" ~xRU™,U"),
which immediately shows that this functor is a fully faithful embedding.

Note that if we consider L; as a monoid, with operation e and unit 1, and if we consider
this monoid as a category, we can embed this (fully faithfully) into L. This gives the following
sequence of embeddings:

Cy, L - R Pshf;,

Note that the composition of the first two morphisms sends the object of the category Cy,,
to (Az1, 1) : R, which is exactly the usual embedding of C;,, into its Karoubi envelope.

Write ¢ : C(E — L% and j : L°? — R°P for the embeddings on the opposite categories.
By Corollary P47, the first two functors in this sequence essentially yield surjective functors
on the presheaf categories:

1P

Cr, L R
[+ jyo L’t\
PCp, «2*— PL «Z*— PR Pshf;,

The two equivalences in this diagram are due to Lemma [A.§ and Corollary [.84.

Lemma 6.3 (adjoint_equivalence_1_from_comp). The precomposition functors iy and j, are ad-
joint equivalences.

Proof. We will show that j, is an adjoint equivalence. From the ‘two out of three” property,
it follows then that i, is also an adjoint equivalence.

Lemma .40 shows that 7 : idpp = Lan; e j, is a natural isomorphism. To complete the
proof that j, is an adjoint equivalence, we just have to show that € : j, e Lan; = idpp is a
natural isomorphism as well.
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To this end, take F' : PR. By Lemma .40, we have the isomorphism
W * Jx(Lan;(js F)) = jiF.

Since functors preserve isomorphisms, we have i (j. (Lan; (j« F))) = i.(j«F'). However, since
J« ® i is an equivalence and in particular fully faithful, this corresponds to an isomorphism

Lan;(j«F') = F.

Now we only need to prove that its morphism is equal to €. Equivalently, we need to prove
that i, (j«€) is equal to the morphism i*nj;lF, or that j.e equals nj;lF

Take n : L. We need to show thatep(j(n)) = nj_*lF(n) as functions from (Lan;(j.F"))(j(n))
to F'(j(n)). Note that the diagram for (Lan](]*F))( (n)) consists of F'(j(m)) forall f : R(j(m), j(n)).
Now, as it turns out, both er(j(n)) and 7, F( ) are defined as the colimit arrow of F'(f) :
Set(F(j(m)), F(j(n))) forall f : R(j(m), ( )), which concludes the proof. O

Lemma 6.4. The embeddings of R into Pshf;, and PR commute with the equivalence between these
categories.

Proof. Note:
(& 05)(A)(n) = (G o (£(A)(n) = £(A)(j(n)) = R(U", 4)
(vo ~)(A)(n) = {a: Lo | ton(A)a = a}

By Scott’s representation theorem, we have ¢,, : R(U",U) = L,,, given by

on(f) = won(f)(@i)i-
Restricting this isomorphism to the morphisms to A yields
R(U™ A) ~{a: L, | Aa = a}.

Of course, this is natural in A, since for g : R(A4, B), postcomposing elements of R(U", A) by
g is equivalent to applying g to the elements of {a : L,, | Aa = a}.
Lastly, for f : L}, the presheaf actions

(& 05:)(A)(f) : RU", A) = R(U™, A)

and
(Lo ~)(A)(f):{a: Ly | wn(A)a=0a} =>{a: Ly |wn(A)a=a}

are in fact given by the substitution operations e in E(U) and L. Since Scott’s representation
theorem shows that £(U) is isomorphic to L as a A-theory, these substitutions are compatible
with the ¢, which shows naturality in n. O

6.3 Relative Cartesian Closedness of the Category of Retracts

Recall that in the last chapter, we saw that Paul Taylor shows that the category of retracts R,
studied by Scott, is not only cartesian closed, but also ‘relatively cartesian closed’. The proof
uses the axiom of choice, and works for the setcategory version of the Karoubi envelope C,.
Here, Cy,, is the category associated to the monoid (Lo, ©).

Now, recall from Chapter [, that in univalent foundations there are three different defini-
tions that we can take for the Karoubi envelope, denoted ¢ Lo C L, and C Lo- There is three of
them because in classical category theory there are two definitions that are equivalent, and
because for one of the definitions we have to choose whether we interpret the ‘existence’ of a
retraction as additional structure (the retraction is given explicitly) or as a property (where
we demand “mere existence”’). This gives the following diagram (Corollary 2.77):
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CLO < éLO = éLo B éLo < PC

where Cy, and Cy, are equivalent to each other, but usually not to C Lo- We saw that C Lo s
the Rezk completion of C,, and Cr,.

This is a fine example of a situation where notions that are equivalent in classical mathe-
matics actually diverge in univalent foundations. We might say that this is annoying, because
we have to be more careful which definition we pick. On the other hand, this gives ‘more
detail” in some sense: it is interesting to study which proofs work in which context, and this
tells us something about the nature of the proofs.

The proofs of Scott and Taylor are about C,,, because they work explicitly with idempo-
tents. The question whether it is possible to lift the proofs to Cy, or C Lo, is left for future
research. On the other hand, as we will see, Hyland works with presheaves and in this way,
he shows that C L, is relatively cartesian closed.

Recall that in this thesis, we use the notation A x for the functor C — (C | X), sending Y’
top; : X x Y — X. Also, we use the notation X <Y to denote the type of retraction-section
pairs7 : Y — X and s : X — Y. We will sometimes not name (r, s) : X <Y explicitly, but
just mention that we have X <Y, meaning that we have such r and s.

Now, officially, C L, is the full subcategory of PCy,,, consisting of all objects X : PCp,, such
that there merely exists X < X (x). However, recall from the previous section that PCr,, ~
PCp, ~ Pshf;,. Under this equivalence, X (x) is embedded as the theory presheaf L, and we
will work in the full subcategory R < Pshf;, of the objects X : Pshf;, such that there merely
exists X < L. Of course, then R is equivalent to C Lo-

Remark 6.5. There are a couple of tricks that we will use in this section. First of all, note that
retractions can be composed. That is, given (r,s) : X <Y and (1, s’) : Y < Z, we have

(r'rs-s):X<Z

Therefore, if we need to show that X is a retract of Z, and we know that X is a retract of Y,
it remains to show that Y is a retract of Z.

Also, functors preserve retractions, so if we have a functor /' : C — D and we have
(r,s) : X <Y, then we have

(F(r),F(s)): F(X)< F(Y).

Lastly, if we want to show that we can do some construction on some X : ﬁ, we can
often borrow the construction from Pshf;, to get some object Y : Pshf;, and for this part, we
cannot use the (r, s) : X < L. Then, to show that Y is indeed in f{, we must show that there
merely exist (7, s’) : Y < L. By the recursion principle of the propositional truncation, we
can assume that we have a concrete (r,s) : X < L to construct r’ and s'.

Recall that Paul Taylor’s display maps for R can be characterized as the retracts of AxU
in (R | X). This idea also works for R, and Hyland defines D(Y, X) < f{(Y, X) to consist of
the retracts of Ax L in (R | X). Note that, because R is a full subcategory of Pshf;, (R | X)
is equivalent to (Pshfy, | X)) for X : R.

Remark 6.6. Again, being a retract of Ax L is usually not a mere proposition. For example,
consider the ways in which A x L is a retract of itself:

s

X x L X x L

r

PNt
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In this particular case, the fact that » and s are morphisms in the slice category requires that
r-p1 = p1 and s - p1 = p1, but then we can take

r=p1xf and s=p; xg

(or more generally (p1, f) and {(p1,¢’)) for any f and ¢ that satisfy g - f = idz. Two options
are

f =g= idL or fn(t) = t()‘xn-&-hxn-ﬁ-l)) gn(t) = )‘wn-i-h Ln,l(t)y
and these options are distinct if L is nontrivial.

Therefore, if we want D(Y, X) to be a subset of I/i(Y7 X), we need to take the propositional
truncation of the existence of r and s.

Remark 6.7. Recall that for all X : R, we have X < U, where U = Az1, x1, so by the above, for
all Y in the image of the embedding of R into Pshf;, we have Y < L. In particular, Y is in R.
Actually, we already knew this, because this essentially describes the embedding of R into
its Rezk completion R.

An important example is U x U : R, which maps to something isomorphic to L x L (be-
cause the Yoneda embedding and any adjoint equivalence preserves limits). The retraction
(r,s) : L x L< L is given explicitly by the (pairing and splitting) morphisms

Sn(a,b) = Aepy1, Tpp1ab and  rp(a) = (a(ATpp1Zn42, Tni1), A( AT 1042, Tni2))-

Now, for any X,Y : Pshf; and f : Pshf; (Y, X), if we have (Y, f) < Ax L in Pshf;, we have
in particular Y < X x L. If we also have X < L, we also have X x L < L x L because — x L

is a functor. Then we have
Y<XxL<LxL<lL.

In particular, for any X : R, if some (Y, f) : (Pshf;, | X)is aretract of Ax L, we know that Y
isin R.
Now we can show that D is indeed a class of display maps:

1. Take f : D(Y,X) and ¢ : f{(Z ,X). We can borrow the pullback from Pshf;, to get
g*(Y, f) : (Pshf;, | Z). We now must show that there merely exists g*(Y, f)<AzL and
in this part, we can assume that the mere existences of retractions are actually given by
concrete retraction-section pairs.

Now, note that taking pullbacks gives a functor ¢* : (Pshf;, | X) — (Pshf; | Z). Now,
(Y, f) < AxL, gives (g*Y,g* f) < g*(Ax L):

The isomorphism between g* (A x L) and Az L (Remark P.34) shows that we have (¢*Y, ¢* f)<
Ay L. From this, it also follows that ¢*Y is in R.
Now, ¢*Y is the pullback of f and g in Pshf;, and Ris a full subcategory of Pshfr, so
g*Y is also the pullback of f and g in R.
2. Take f: D(Z,Y) and g : D(Y, X ). We have to show that there merely exists (Z, f - g) <
Ax L. Because this is a proposition, we can assume that we have

(Tz,Sz) : (Z, f) < AyL and (Ty,Sy) : (K g) < AxL.

Then the following diagram gives (Z, f - g) < Ax (L x L):
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Sz SyxidL

Z ————— Y xL XxLxL
Tz T‘yXidL
X x L

\/

Now, as we saw earlier, A x is a functor and L x L is a retract of L. Therefore, we have
Ax(Lx L)< AxLand f-gisin D(Z, X).

3. Note that Pshf;, has a terminal presheaf I;,, = {*}. Under the embedding of R into
Pshf;, this is (isomorphic to) the image of Az1z2, 22 : R, and therefore, it is in R. Now,
given Y : R, we need to show that the terminal projection ! is in D(Y, I). Note that
any morphism trivially commutes with the terminal projections. Since Y : R, we have

(r,s) : Y < L,and since L =~ I x L, this means that the terminal projection is indeed in
D(Y,I):

\i?x

Recall that Pshf;, is isomorphic to the presheaf category PL, so it is an elementary topos
and it is locally cartesian closed (Example 5.2.5 and Theorem 5.8.4, [Bor%94], Volume 3).
Therefore, for a morphism f : Pshfy, (Y, X), we have adjunctions

2p=—f
N
(PShfL ! X) — ¥ (PShfL ! Y)

\J—/
Iy

Now, Hyland shows the following;:
Theorem 6.8. For f : D(Y, X)), we can restrict 3, ; and [ |, to functors from (R pY)to(R |p X).

Proof. Given (Z,g) : (Pshf;, | Y'), for | [ we only have to show that if we have (Z, g) < Ay L,

then we have [ [,(Z, g) < Ax L. Note that since X is in R, this also shows that [[;Zisin R.

Because functors preserve retractions, it suffices to show that we have [ | f Ay L < AxL.
Since f : D(Y, X), we have a retraction

Yy 25 XxL 1Y
\lpl/
X

The counits of the adjunctions 7 i~ [ [, and s, I [ [, give maps
[Tave T ave S T s ave
f fr f r s

Their composite is [ | s However, note that - s = idy, so we have an isomorphism of
functors

(s-7)" = idpshs, |y and Héidpshmy

ST
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and transporting 7., along these isomorphisms, we get the identity natural transformation
idpshe; |y = idpshe, 1y

Secondly, note that r - f = p;, sowehave [ [, o] F3= le

Lastly, by Remark .34, r*Ay L =~ Ax L.

Therefore, we have the following diagram, showing that [ | f Ay Lisaretract of Hm AxxrL:

anr Hfl_[ s

Hf Ns-r

idpshe; | x

So it suffices to show that le AxyrLisaretractof Ax L. By Lemma .35, we have le AxypL =

AxL*. By functoriality of Ay, it suffices to show that L” is a retract of L. But we already
saw in Theorem p.1] that L ~ A(L, 1) is a retract of L. This shows that [| s indeed restricts

to a functor from (R |p Y) to (R |p X).
The proof for } | 7 is very similar. >’ f Ay L is a retract of Zpl AxxrL:

2 AxxrL
[
S AVL o 333 s*r*AyL ZfZ Ay L =1 > AyL

Zf €s.r

idpshe; | x

By Lemma .37, the functor ., is given by postcomposition, so >}, AxxrL = Ax(L x L).
As we saw earlier, we have L<1 L x L, which completes the proof that ) ; restricts to a functor

from (R |p Y) to (R |p X). O

Corollary 6.9. Since the (R | p X) are full subcategories of the (Pshfy, | X), so we can restrict the
adjunction f* — [, to an adjunction 7 ﬁf between (R |p X)and (R |p Y'), which shows
that R is cartesian closed relative to the class D of display maps.

Remark 6.10. Itis a nice feature of Hyland’s approach that in univalent foundations, the proofs
that D is a class of display maps and that we can restrict [ | and >}, work without the axiom
of choice.

Remark 6.11. Recall that to make sure that D(Y, X) is a subset of ﬁ(Y, X), we had no choice
but to take the propositional truncation of the (Y, f) < Ax L. Coincidentally, for R we also
took the propositional truncation of the X < L.

In the proofs that D is a class of display maps, and that we can restrict | | ,, this worked
out great. A couple of times, we first did a construction on the presheaves, ignoring the mere
existence of the retractions, and then we showed mere existence of one or two retractions, for
which we were allowed to assume that we actually had concrete retractions from L or Ax L.

Therefore, this only works in R ~C Lo- Suppose that we tried to do this in R=C Lo-
Note that this category is equivalent to the category with as objects X : Pshf;, together with
some (7, s) : X < L. Trying to define the pullback functor would already cause problems. To
define a pullback, we would need to explicitly construct some retraction ¢*Y < L, for which
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we would need a retraction Z < L. However, we have only mere existence of the latter, so
we would only be able to show mere existence of pullbacks, like in Taylor’s proof. For R, we
would be able to use the adjoint equivalence between R and R to apply Hyland’s reasoning
with presheaves to R. Since C,, is a setcategory, R and R are also setcategories (Lemma Z:80),
so we can use the axiom of choice to show the existence of a pullback functor. However, this
approach still gives only mere existence.

6.4 An Elementary Proof of the ‘Fundamental Theorem’

The final theorem that Hyland works towards in his paper constructs an equivalence between
two ways to reason about the A-calculus using these tools from universal algebra: A-theories
and A-algebras. In this section, we will provide an elementary proof of this theorem. Then, in
the next section, we will give Hyland’s original proof, which uses more high-level categorical
reasoning.

We will assume that A (and therefore, any A-theory) satisfies -equality.

In both cases, one part of the equivalence is very easy. Recall that the pure A-calculus,
the A-theory A, is the initial object of LamTh. That means that LamTh is equivalent to (A |
LamTh). Now, using Definition f.56, for any n we get a functor

—n : LamTh — Alg, .

Here we are only interested in the case n = 0.

We will use Lemma B.4, by showing that — is a weak equivalence.

First of all, let A be an algebra for the initial A-theory A.

The A-algebra structure gives the terms of A a lot of interesting behaviour. For example,
we can define ‘function application” and composition as

ab = (z1x2) @ (a,b) and aob= (z10x2)e (a,b),

and the same for the other constructions at the start of Section p.2.

Remark 6.12. Recall that in Example .46, we constructed an algebraic theory 7" encapsulating
the structure of a monoid. This allowed us to define a monoid operation on 7T-algebras as
well. We then were able to transfer associativity of the operation on the 7}, to associativity
of the operation on the algebras. In exactly the same way, the function composition on A is
associative because composition on A,, is associative. Similarly, we can show that 7 (a, b) = a,
that 7 o {a, by = (Axa,x122) ® b etc.

In fact, we can repeat almost the entirety of Section p.2 for A instead of for Lo:
Definition 6.13. We define the ‘category of retracts’ of A as the category R4 given by
Ra)o={X:A]XoX =X} and Ry(X,)Y)={f:A|YofoX=f}
Just like in Section p.2, R4 has “universal object” and terminal object
U= Az1,z1)e() and = (A\z1,c1),

products
A x B:<AO7T1,BO7TQ>

and exponential objects
B* = (Azs, 1 030 23) ¢ (B, A)

with the isomorphism v : R4(C x A, B) = Ra(C, B4) given by
O(f) = (Amaws, w1 (w2, 23)) o f and ¢~ (f) = (Ao, m1(m1a2) (max2)) @ f.
Therefore, we have a A-theory Ex , (U).
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Remark 6.14. Note that if A = L, then the construction of R4 and R coincide, so we have an
almost trivial equivalence R4 ~ R, and an isomorphism Er(U) = Eg, (U).

The following lemma shows that our functor is essentially surjective:
Lemma 6.15. We have a A-algebra isomorphism e : Er (U)o — A.
Proof. Take ¢, = (Axp+1,Tnt1) © Ap. Note that
E(U)o={f:A|(Az2,z102) @ f = [}
Therefore, we have a bijection given by
ela) = (z1c1)ea and € (a) = (A\zo,z1) @ a.

Now, to show that this is an isomorphism of A-algebras, recall thate : R4 (U",U)xR4(I,U)" —
R4 (U) is given by precomposition with the product morphism and that the A-algebra struc-
ture on E(U), is given by the embedding of A into E(U ), givenby f — ta,,(f) e () for some
collection (tp, : Ay, — Ag)pn (from now on, we will drop the n and just write ¢4 ). We have
forall f: Ay, and alla : E(U)g,

((ta(f) 04 () o <aipi)(cn)
(Lo (ea(f))(wicn)i) oaa
(0,0 (ea(f))(i)i) 04 (€(ai))i,

and we want this to equal f e4 (¢(a;));. Leaving out the ¢ 5, all we need to do is show that
forall f : A, we have ¢z (f)(x;); = f. We will do this by structural induction on f:

e(f *E(U) a)

o If f =ux,;, wehave t(f) =7y, and
eA(f)(@)i = Tnyi(@ni)i = Tny-
o If f = Az,11,g forsome g: Ay y1, we have

iA(f) = (Am132,00,2(0a(9)) (21, 22)),

and if the induction hypothesis holds for g, then

A(f) (i) = ATng12nr2, tA(9) (Tna1, Tnt2)) (74);
= )\anrl, LA(Q)((-Ti)ia mn+1)
= )\anrlag'

e Recall that application in a A-theory is given by gi1g2 = p(g1) ® (z1,...,Zn, g2). Now, if
f = g192 for g1, 92 : Apy1, we have

iA(f) = Az, ea(g1)(mize)(mez)) o idyn, a(g2)) = Az, ea(gr)z1(ea(g2)71),
and if the induction hypothesis holds for g; and g, then

A(F)(@i)i = (ATnat, ea(91)Tng1 (ta(92) Tnr1)) (i)
= 1A(91) ()i (ea(g2)(2i):)
= g192-
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Now, take a morphism F' : Alg, (A, B). Recall that o, the categories R4 and Rp, and
their products and exponential objects are given using f e (ag,...,a,) for some f : A, and
ai,...,an : A. Since we have F'(f o (a;);) = f o (F(a;)), F' gives a functor F' : R4 — Rp, such
that

F(I)=1,F(U)=U,F(Ax B)=F(A) x F(B) and F(A?)=F(A)F®),

and the same for the product projections and the the natural isomorphisms R4 (C, B4) =~
RA(C x A, B). In particular, we have for all f : R4(U",U),

E(f): Rp(F(U"), F(U)) = Rp(U",U).

Therefore, F' gives a A-theory morphism between the endomorphism theories of U : R4 and
U : Rp. This allows us to show:

Lemma 6.16. The functor is full.

Proof. Forany A\-theory L, Theorem 5.9 gives an isomorphism of A-theories ;, : L — Eg, (U),
with
neo(f) = Az, LO,l(f) and 77;10(9) = g(Az1,21).

Now, for L, L' : LamTh and F : Alg, (Lo, L;,), we have
np - F-n;t: LamTh(L, L),
and we have for all s : Lg,
(Lo - F -0t ) (s) = (Aw1, 01 (F(s)))(Azy, 21) = F(s),
which shows that the functor is full. O
Now, we only have to show:
Lemma 6.17. The functor is faithful.

Proof. Take morphisms F,G : LamTh(L, L’). Suppose that Fy = Gy. Then, forall s : L,,, we
have

Fy(s) = p"(Fo(A"(5))) = p"(Go(A"(s))) = Gal(s),
so F'=G. O
Summarizing,

Theorem 6.18. The functor that sends L : LamTh to Lo : Alg,, is an adjoint equivalence.

Proof. By Lemma p.1§ and Lemma p.17, the functor is fully faithful. By Lemma p.15, it is
essentially surjective, so it is a weak equivalence. Since LamTh and Alg, are univalent cate-
gories, Lemma .4 shows that F'is an adjoint equivalence. ]

6.5 Hyland’s Proof
Hyland gives a more category theoretical proof. That means that there is more high-level

intuition why things work the way they work, but on the flip side, there is a lot more details
to check.
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6.5.1 Terms of a A-Algebra
Definition 6.19. Take 1, = (Az1...2n,21...2,) o () : A.

Remark 6.20. Note that we have1; = U : R4.

Definition 6.21. In this section, we consider sets of elements of A that behave like functions
in n variables:

A, ={a: A| (\xoxs3...Tpt1, 12223 ... Tpt1) ® @ = a}.
Remark 6.22. Some straightforward rewriting, shows that
A, ={a:A|1,0a=a}.

Remark 6.23. Also note that1,,cao1, =1,0a,s0fora: A4,,acl, = a.

The following shows that ‘functions in n variables” are indeed all in A,,:
Lemma 6.24. Fort: Ay and ay,. .., an @ A, we have (A\"'t) ® (a1,...,an) : A and we have
1,0 (A"t) @ (at,...,am)) = (A"t) e (a1,...,am),
so (A"t) e (a1,...,am) : Ay.
Proof. This follows by straightforward rewriting. O
Corollary 6.25. By the previous remark,
(A"t) e (a1,...,am)) oL, = (A"t) e (ai,...,am).

Corollary 6.26. In particular, 1, © 1y, = Iax(m,n)- From this, it follows that A,, = Ay, for m < n.
It also follows that a — 1,, o a gives a function from A to A,, (and also from A, = Ato A,).

Definition 6.27 (lambda_algebra_monoid). We make Aj, the ‘functional elements’ of A, into
a monoid under composition o with unit 1;. The fact that this is a monoid follows from the
remarks above.

Recall that we have an equivalence [C0Ap1 ,Set] ~ RActy,.

Remark 6.28. Note that, like in the last chapter, R4 pops up as the Karoubi envelope of the
monoid category C4,, and fits into the following diagram:

LCAl
Cqyy, —— Ry

[ s

RActy, < PCy, <= PRy
Explicitly, this gives the embedding R4(11, —) : R4 < RActy4, given by
X—Rs11,X)={z:A| Xox =2z}
Also, note thatif A = L for some A-theory L, then the monoid 4, is equivalent to the monoid
L1, and R, is equivalent to our familiar category of retracts R. Using Lemma p.3, we have

the following 2-commutative diagram:
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Cr, © “Cro, Rz,
(N N
X o & N
Cyr, - L ‘ R
A S
* X X
RACtLO1 — PCLO1 | — PRLO
\~ \~
~N N
PCr, +~— PL ~ PR Pshf;,

6.5.2 Constructing a Theory From an Algebra

Definition 6.29. Composition o gives a right A;-action on the 4,,, so we have A4,, : RActy,.
In particular, A; acts on itself, and we will call this set with right A;-action U4.

Lemma 6.30 (universal_monoid_exponential_iso). Ay is isomorphic to the exponential object
UXA in RActy,.

Proof. Recall that UXA is the set of A;-equivariant morphisms Uy x Uy — Us. We have an
isomorphism ¢ : Ay = UAUA, given by

Y(f) = (b,0) = (\wa, z1(2274)(324)) ® (f,5,0'),

treating f : A2 as a function in two variables, and simultaneously composing it with the
functions b, b’ : A;. It has an inverse

¢ Hg) = (Awaws, w1 (72, 23))  (g(m1,72)).

Note that the first pair (x2, x3) is a \-term, whereas the second pair (71, 72) isa pairin Ug x U 4.
For f : UXA and (aq,az2) : Uy x Uy, we have

P (f) (a1, ag) = f(m1,m) 0 (a1, a2y = f(m1 0 {ay, az),m2 0 {a1,az)) = f(ai,a2).

Here we use the Aj-equivariance of f. In the last step of this proof, we use, among other
things, the fact that the a; : A; and therefore \x1, a;x1 = a;.

Some straightforward rewriting shows that for a : Az, we have 1 1(¢)(a)) = a. In the last
step of this proof, we use the fact that a : Ay and therefore A\z1z2, az122 = a.

Therefore, 1 is a bijection and, as it turns out, an isomorphism. O

Remark 6.31. Recall that the embedding R4 — RActy, is the composition of a Yoneda em-
bedding and two adjoint equivalences. These all preserve exponential objects (see Lemma
Z.19). Now, note that A, is the image of U : Ry, so the exponential Ug“‘ is Ay, the image of
UU = )\.%'1(132,1‘11’2 = 12.

Definition 6.32 (lambda_algebra_theory). Recall that Ay < Uy, and that we have a retraction
ar—l1y0a:Uy — As.
Therefore, U4 is a reflexive object in RAct4,, and we get a A-theory E(Uy,).

Remark 6.33. The cartesian closed embedding of R4 into RAct4, sends U to U4. It sends the
retraction UV : R AU, UU) exactly to the retraction a — 13 o a : RActy, (Uy, Az). Therefore,
we have a A-theory isomorphism ER , (U) = Eract 4 (Ua).
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6.5.3 Constructing a Theory Morphism From an Algebra Morphism

Take a morphism F': Alg, (A, B). Note that F' preserves o and the 1,,. Therefore, it induces
a monoid morphism A; — Bj, which gives a functor C4, — Cp,. Precomposing with this,
we get a functor RActg, — RActy,.
To get a morphism Egract A (Ua) — Eract B, (Up) however, we need a functor RActy, —
RActp,, which we obtain by Left Kan extension: see Lemma .59 (the “tensor product”).
Hyland gives a very high-level argument why F; induces a morphism F' : LamTh(Egract 4 (Ua), ERAct B, (
which we will discuss a bit more here.

Lemma 6.34. The extension of scalars F, sends U4 to U4 and preserves finite products.

Proof. By Lemma .60, we have F,.(Ua) = Ua.

We will show that F; preserves binary products and the terminal object, because from
this it follows that F), preserves all finite products.

We use Lemma [.6]] to show that F preserves the terminal object. We take (very similar
to the terminal object in R):

ag = ()\.%'1332,1‘2) [ () : A1 and bo = ()\.%11‘2,1’2) o () : Bl

and qg is weakly terminal because for all a : By, we have F(ag) o a = by.

We use Lemma P.63 to show that F also preserves the product. Therefore, given a1, as :
B,. Take b = {ay, az), together with the familiar projections 7; : A;. We have a; = F(m;) o a.

Now, for some b’ : By and «, 75 : A such that a; = F(x]) o/, take m = {(n{, 7). Then
miom = m and F(m)od = a, so (a,m,m2) is weakly terminal and F, preserves binary
products.

Since any finite product is (isomorphic to) a construction with a repeated binary product
and the terminal object, the fact that F preserves binary products and the terminal object
shows that F}. preserves all finite products. O

Now, we can start defining our lift of F:
Definition 6.35. We can send an element g : E(Ua), = RActa(U%,Ux) to
Fi(g) : RActa (f(UR), f(Ua)) = RActy (Ua)",Uar) = E(Ua )n
so we have a morphism F : LamTh(E(U,), E(Uy/)).

Remark 6.36. The fact that F preserves the variables and substitution is not very hard to show,
since these are just defined in terms of finite products of U4 and F preserves finite products
and Uy.

However, showing that it is a A-theory morphism is a different matter. Hyland claims

“F preserves 1,, which determines the function space as a retract of the universal. So F'
preserves the retract and the result follows.”

Although this covers the core of the argument, it is very complicated to actually verify
that this works, because we need to pass through a lot of isomorphisms, and check that they
work nicely together:

o RActy, (X xY,Z) 5 RActy, (X, ZY);
B: Fu(Ua) = Uas;
F*(A x B) — F*( ) x Fy(B);
Fo(X™) = Fo(X)™
6,4 : UA = Ag.

Since we already motivated this in a different way, we will leave it as an exercise for the
enthousiastic reader.
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Lemma 6.37. For F = id, we have F = idpy ).

Proof. By the reasoning set forth in Lemma p.17, we only need to check Fy. Given s : RAct 4, (1, Ua),
we have

Fo(s) =~ Fu(s) - B : RActa, (I,Un)

fory: Fy(I) @ Iand 3 : Fx(Ua) = Ua. Then

ida(s)(x) = s(x) o (Az122,22) @ ()) = s(* 0 (Az122,72) ® ())),

soid 4¢(s) = s and we can conclude that id 4 = idgw,)- O
Lemma 6.38. For F : Alg, (A, B) and G : Alg, (B,C), we have F - G = F - G.

Proof. Again, we only have to check at the terms without free variables. Given s : RActga, (I,U4),
we have

(F-G)(s) =1g" - G«(vp' - Fuls) - Br) - B : RActe, (1, Uc)

forv: Fy(I) @ Iand B : F(Ua) = Ua. Then

(F - G)(s)(*) = G(F(s(*)) o (Az122,22) 855 ())) © (Aw122, 22) 8C ())
G(F(S(* o ((Az122,22) 04 () © (Az122,22) 04 ()))))

(F(s(x)))

“Hs(x o (Az1m2,22) 04 ())))

¥

so (F - G)o(s) = (F - G)o(s) and we can conclude that F - G = F - G. O

Definition 6.39. We get a functor from Alg, to LamTh, sending objects A to Eract A (Ua)
and morphisms F : Alg, (A, B) to F : E(Ua) — E(Up).

Remark 6.40. Note that for X : R4, we have a natural isomorphism of sets with a right B-
action

YA{f:B|F(X)of=f} > {f: Al Xof=f}xDi/~
given by
G(f) = (X,f) and ¢7'(f,b) = F(f)ob.

Therefore, the following diagram 2-commutes:

Ri —X  Rp
iRA(ll,f) lRB(ll,f)
RActy, i> RActp,

Since F preserves all the structure of R 4, as do the embeddings of R 4 and Rp into RAct 4, and
RActp,, one would expect F to preserves the structure of the full subcategory R4 of RActy,,
including Uy, its finite products and their exponentials. This is another way to argue that F
is indeed a morphism of A-theories.
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6.5.4 The Unit

Definining the unit of the adjunction boils down to a version of Scott’s representation theo-
rem.

Lemma 6.41. For a A-theory L, we can define a A-theory isomorphism
n.: L = E(Ug,).
Proof. Recall from Remark p.Z§ that we have a chain of equivalences
Pshf;, ~> PL > PCj, = PCp,, > RActy,,.

It sends the presheaf L™ to the set L} with a right action sending s : L} and ¢ : (Lg); to
(si or, p(t)); : LY. We have an isomorphism s — (A(s;)); : (L1)" — Up,, with inverse (p;); :

s (p(si))i-
Then 7y, arises by combining this with the isomorphism from Scott’s representation the-
orem (Theorem p.1))

nr, : L = Epgh, (L) — Eract;,, (UL,)-

It is quite easy to work out that we can make this explicit as (dropping the n and just writing
L)

J>((s:Pshfp ) fo5)m

— n Ao—o(p;)i n
Mt Lin Pshfr(L", L) SiaciN RACt(L0)1 (L1, L), & RACt(L0)1 (UL()? UL,),
50 7a()(5) = A(f ® (p(s0))s) for  : L and s : U} .

Remark 6.42. Note that we can do the same with Scott’s version of his representation theorem,
using the chain of equivalences and an embedding

R = RLO i PRLO = PCL01 - RACtLolu

Here, it is a bit harder to get an explicit formula for 1, because we need to do a bit more
conversion between U’} and the image of U™ after the embedding ¢ : R — RAct.,,. If we
quickly define \-terms

<$z>z = <x1, v ,l’n> = << .. <()\xn+1wn+2, $n+2), $1>, v >, $n>
and corresponding tuples (x;); and projections ;, we have

fX(fe(mize):)

Ly R(U™,U) L70°% RAety,, (9(U™), Ury) S5 RAty,, (UF,, ULy)-

and in the end, we obtain the very same explicit formula
M (f)(8) = won(f)(@i)i o ((sii) = A (p(si))i)-
Lemma 6.43. 1 is natural in L. That is, for all F : LamTh(L, L), the following diagram commutes:

F

L L

[ 12

Iy
Eracty,, (Ury) —— Eraet,, (Ury)
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Proof. We must show o
nL - Fo=F-np.
Note that for all s : Ly,
Foo(ni(s)) = vg « Foulx = (Az1,101(5))) - Br

= x> Fo(Az1,10,1(5)) 0 (Az122, 22) @ ()

= * > (A1, 10,1(Fo(s)))

=1 (Fo(s))
and by Lemma p.16, this concludes the proof. O

6.5.5 The Counit
Definition 6.44. For A : Alg,, we define a bijection €4 : ERract 4 (Ua)o — Aas
ea(s) = x1(Av2,29) @ (s(x)) and e, (a)(*) = (A\x2,71) @ a.
These are inverses because s(*) is A;-equivariant (Lemma Z.55), and then
(Azg, 21 (Az3, 23)) @ 5(x) = s(x) o (Ar172, 72) @ () = 5(%).

We want to show that €4 is an isomorphism of A-algebras. We use Lemma .44 for this,
so we need to show that it preserves the application and the A-definable constants.

Lemma 6.45. We have for all a,b : E(Ua)o,
ea((z122) @ (a,b)) = (z122) @ (€a(a), ea(b)).
Proof. For a,b: E(Ua)o, we have, using at some point the isomorphism § : RAct 4, (UXA, Ag),
ea((z122) o (a,0)) = (z1(Axs, 23)(x2(Ar3, 23))) @ (a (%), b(*))
= (z122) ® (€a(a), €a(b))
and this concludes the proof. O

To show that e preserves the A-definable constants, we first need to show two properties
of e and n:

Lemma 6.46. ¢ is natural in A. That is, for all F' : Alg, (A, B), the following diagram commutes:

E(Ua)o —2 E(Up)o
Jea |5
A—FE B
Proof. The functor F, : RActs, — RActp, sends X : RActy, to X x B;/ ~: RActp,. We have

isomorphisms N ~
B:F(Uys) —>Up and ~v:Fy(I)—1,

with
Bla,b) = F(a)ob and ~ () = (%, Az1x2,22) ().

Then F : RActy, (I,U4) — RActg, (I,Ug) is given by
F(s)(x) =771 (s xidp,) - B = (\z2, 21(Az3,23)) ® F(5(+)),

SO
(F - e)(s) = (x1(Az2, 22))  F(s(x)) = (ea - F)(s),
which concludes the proof. O
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Lemma 6.47. € and 1 satisfy one of the zigzag identities.

Proof. In this case, the zigzag identity on L — Lg boils down to the following diagram com-
muting for all L : LamTh:

idLO

Lo

NLo €Lg

E(Ury)o
Now, note that for all f : Lo,
(MLo - €0o)(f) = (x1(Az2, 22)) @ (A21,00,1(f)) = f,
which shows that the diagram commutes. O
Now, finally, we are ready to show that € is an isomorphism of A-algebras:
Lemma 6.48. We have for all s : Ao,
ealse () =se ().
Proof. Consider the following diagram, with F : Alg, (Ao, A) given by F(s) = s e ():

F
E(Uns)o — E(Ua)o
o uer lsA
Ag — A
By Lemma p.46, the square commutes and by Lemma p.47, we have 7 - €5, = ida,.

Recall that there exists a unique morphism ¢p : LamTh(A, E(U,)), and that for all s : Ao,
by definition s e g(7,), () = ta(s) egw,) () = ta(s). Since we have ) - F : LamTh(A, E(Uy)),
we must have 1y = 7 - F and

ea(s epw,) () = ea(Fo(mo(s)))
= F(eao(m0(s)))
= F(s)
=se4(),

which concludes the proof. O

6.5.6 The Equivalence

By Lemma 3.2 in [nLaZ?4a] and Lemma p.47, n and e satisfy both zigzag identities, and we
can state the fundamental theorem of the A-calculus:

Theorem 6.49. There is an adjoint equivalence LamTh ~ Alg,, sending a A-theory L to the A-
algebra Lo, with an inverse functor that sends a A-algebra A to the theory Eract,, (Ua).

Remark 6.50. Hyland remarks that the isomorphism UXA ~ Ay can be generalized to isomor-
phisms UXA ~ At

RActy, (U}, U) =~ RActy, (I, UL4)
~ RAct, (I, Aps1)

~{f:Ap+1|Va: A, foa=f}
~ A,.
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Explicitly, we get an isomorphism 1 : RActya, (U, Ua) — A, given by

V(f) = (Azo...zps1,21(x2, ..y Tpg1)) o (f(m1, ...y m0))

and
¢_1(g)(a17 ceey an) = ()\mn+23 $1($21‘n+2) cee ($n+1xn+2)) d (97 Aty ..., an)-

Note that to show this, we need to use the A;-equivariance of f at some point:

f(7T2, e ,7Tn+1)(()\xn+1,$n+1),$1, e ,J}n)
= (f(ﬂ—la o 77TTL) © <7T27 <o ,7Tn+1>)(()\$n+2,l'n+2),l‘1, cee 7xn)
= f(m1, s mn) (@1, .o, Tp)-

This gives a A-theory structure on (A4,,),, with

Yn,i = ()\wl . . -wnyxn,i) L ()7

fog=ATmi2 . Trmint1, 21 (T2Tmg2 - - - Trgnt1) - - - (T 1Tma2 - - Tgnt1)) © (Fr 915 9m);
p(f) =1,0 f?
A(h) = f.

for f: Ay, g: Aand bt Apyys.

Then any F : Alg, (A, B) gives functions F' : A, — B,, and these give a A-theory mor-
phism in LamTh((A4,,),, (Bn)n)-

The natural isomorphism €4 : Ayg — A is just id4. Note that, even though 4y = A as
sets, their A-algebra structures are defined differently, so it takes some work to show that €4
is a A-algebra morphism. Also, 11, : L, — (Lo)n is given by A", with p" as its inverse. The
zigzag identities are trivial, so this gives another, very elemental proof of the fundamental
theorem.

6.6 The Theory of Extensions

The fundamental theorem of the A-calculus that Hyland shows is actually not of the form
shown above. To get there, we first need to show that the category of T-algebras for an
algebraic theory 7" has coproducts, and define the ‘theory of extensions’.

Let [n] denote the finite set {1, 2, ..., n}. For T an algebraic theory, let L be its correspond-
ing Lawvere theory (Lemma [AJ6).

Lemma 6.51. Let T be an algebraic theory. The category of T-algebras has coproducts.

Proof. This is shown in [[ARVI(], in the lemmas leading up to Theorem 4.5.
Explicitly, we can express the coproduct of algebras, and especially its set, as the following
coend [HyIT7, Proposition 2.5] (see also Section P.I{ for more on coends)

(m,n):LxL
A—l—B:j Tmurn/XAmXBn,

considering A as a covariant functor on L (see Lemma [A.7) and the theory presheaf 7" as a
presheaf (see Lemma [A.§).

Note that we do not need the exact definition of A+ B for the rest of this section. Nonethe-
less, it is interesting to see how it is defined and why this definition works.

One can think of A + B consisting of elements ¢ e (a +b) for ¢t : T),4p, a : A™ and b : B"
(writing (a +b) for (a1, ..., am,b1,...,by,)), ‘substituting” the a; and b; for the z; and z,4; in
t.
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However, the coend is a quotient of [ [ T}, 4, x A™ x B™ along some relations. These
relations then give ‘associativity” of this substitution ¢ e (a + b). In particular, they assure
that reordering or duplicating z; and their corresponding a; and b; do not yield different
elements. For f : L(m,m’) = T, g : L(n,n’) = T/, associating the images on the left and
right of

Tt X A" x B" i X A™ x B — Ty x A™ x B"

gives
te((fiea)it(gjob);) = (te((fi® @ming)i)i+ (gi ¢ @minme+j)j)i)) o (a+b)

fort: Tyyyn,a:A™and b: B™.

Then itbecomes clear what the action of 7" will be on A+ B, although the precise definition
looks complicated because we have to juggle a bit with the variables in the different 75, .
For s : 1, t; : Tyn,4n,, a;i - A™ and b; : B™, define the disjoint embeddings

di : [m; +n;] = [m;i] w [ni] — NZmJ]‘ L NZRJN ~ ﬁZmJ +an]] ,

which we will use to make sure that the z; in the different ¢; are mapped to distinct variables.
Then we can define

se(tiea;+bi)=(se(lie(xq)j)i)e(ar+br+-+a+b).

More formally (using the coend injections A2x ™k x B2k ™ x 15, mp+y,ne — A+ B), this
gives functions

T, — (A™ x B™ X Ty, — (- = (A™ x B" X Tyyqn, > A+ B)...)),

commuting with the relations between the different (A™ x B" x T}, ., ), which, by repeatedly
using the universal property of the coend, then correspond to functions

T,—->(A+B—>(—>(A+B—>A+B)...)),

or, equivalently, a function
Ty x (A+ B)! - A+ B.

We have left and right injections A — A+ B and B — A + B, given respectively by the
rnapsA1 x BYxTy,g—A+Band A x B! x Ty,1 — A+ B:

ar>r1ea and br>xziebd

and every element A + B arises by the action of ¢ on combinations of these embedded ele-
ments:
te(a+b)=te((z1ea;);+ (z19b;))),

which ultimately can be used to show that A + B indeed has the universal property of the
coproduct. O

Definition 6.52. Let 7" be an algebraic theory and A a T-algebra. We can define an algebraic
theory T'4 called the theory of extensions of A’ with (T'4),, = A+ T,. The right injection of the
variables z; : T, gives the variables.

For h : (A+ T,)™, sending g : T, to g ® h gives a T-algebra morphism 75, — T;, +
A. Together with the right injection morphism of A into 7;, + A, this gives us a T-algebra
morphism from the coproduct: T;,, + A — T,, + A. Doing this for every h : (A + T;,)" gives
us the substitution (7,,, + A) x (T, + A)™ — T, + A.

Showing that this is indeed an algebraic theory involves invoking the universal property
of the coproduct and using properties of T-algebras and T-algebra morphisms.
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Remark 6.53 (extensions_theory). We can turn the map A — T4 into a functor 7_ : Alg, —
AlgTh. For a morphism f : Alg,.(A, B), we get maps

f+idr, : Alg(A+T,,B+1T,).

We can combine these into a morphism 7y = (f + idr, ),, and this makes 7' into a functor
from Alg,. to AlgTh.

To actually show that T is a morphism and that 7" is a functor, we use the properties
of the coproduct a couple of times, as well as the fact that f + idy, : Alg(A+T,, B + T),)
preserves the T-action.

Remark 6.54. Note that for a T-algebra morphism f : A — B, we have morphisms f : A +
T f+idr, BT

Remark 6.55. Note that the right embeddings r,, : T, — A + T,, give an algebraic theory
morphism (ry,), : T'— T4, so we can think of T" as lying inside T4.

The following result explains why we are interested in the theory of extensions:

Lemma 6.56 (algebra_coslice_equivalence). For T an algebraic theory and A a T-algebra, we
have an adjoint equivalence Alg; ~ (A | Algy) between algebras for T's and the coslice category
under A.

Proof. Let B be a T's-algebra. Pullback along the embedding (), : T — T4 gives (ry,)}:(B) :
Alg,.. Also, we have a T-algebra morphism A — B given by the composition

0 fefe() B.

A= (Ta)
Conversely, take f : Alg,.(A, B). For b : B", we have a T-algebra morphism 7,, — B
givenby f — feb. This, together with f, gives a morphism from the coproduct A +7,, — B,
and doing this for every b : B" gives a T4-action on B as functions (A + T;,) x B" — B.
Now, showing that the function A — (T'4)p — B defined above is indeed a T-algebra
morphism and that the other B, together with the given T'y-action is indeed a T'4-algebra, and
furthermore showing that these extend to functors that together form an adjoint equivalence,
involves checking a lot of details. One can indeed check that all of this holds, using the
properties of algebraic theories, algebras, algebra morphisms and coproducts, as well as the
fact that for all b : B", f — f e bis a morphism in Alg.(A + T, (rn);:(B)). However, for the
sake of brevity, we will omit these and point to the formalization for the details. O

Example 6.57. Take T,, = Z[X1, ..., X,], the polynomial ring (the free commutative ring) in
n variables. T-algebras are equivalent to commutative rings, so we can call 7" ‘the theory
of commutative rings’. Now, for a commutative ring R, Alg;, is equivalent to the coslice
category (R | Alg,), which s the category of R-algebras. Therefore, the theory of extensions
Tr can be considered to be the theory of R-algebras.

Lemma 6.58 (factorization). Any algebraic theory morphism f : AlgTh(S,T) factors through
the embedding of S into the theory of extensions of the pullback of the algebra Ty:

S —— Spxqyy —— T

f

Proof. For any n, we have a map of S-algebras [t — t e (), f,] : f*(T0) + S, — f*(T,), given
on f*(Tp) by t — t e () and on S, by f,. By the universal property of the coproduct, the
following diagram commutes for all n:

86


https://arnoudvanderleer.github.io/cs-masters-thesis/UniMath.AlgebraicTheories.Examples.ExtensionsTheory.html#extensions_theory
https://arnoudvanderleer.github.io/cs-masters-thesis/UniMath.AlgebraicTheories.Examples.ExtensionsTheory.html#algebra_coslice_equivalence
https://arnoudvanderleer.github.io/cs-masters-thesis/UniMath.AlgebraicTheories.Examples.ExtensionsTheory.html#factorization

6.6. The Theory of Extensions

Tn

Sn — F(T5) + S 0T

T

In

which shows that (7)), - [f — fe (), fuln = [
Now, to show that [f — f e (), fu] indeed constitutes an algebraic theory morphism is
a bit more work. It involves using the universal property of the coproduct a couple of times,

as well as showing that for all g : 5%, (To)’

s ([t =t e (), fml) or ([t = t e (), fu]gi)i

is a morphism in Alg¢(f*(To) + Trn, f*(T)). For more details, we again point to the formal-
ization. t

Now, given a A-algebra A, applying the above to the initial morphism ¢ : A — Eg, (U),
we get the following diagram:

[t’—’“ERA(U)()vLAn]n
A Ay e 2 ()

J’AEA

Ay
For the final form of the fundamental theorem, we need to show that
Acr-[tmteom @) 0stadn = la— €5 (@) om, @) O tanln
is an isomorphism of algebraic theories. By Lemma p.58, this is equivalent to its pullback
[a = 3t (@) o ) O el : Algp, ) — Algy,
being an equivalence of categories.

Lemma 6.59. The isomorphisms e : Er (U)o — A form a natural transformation. That is, for all
h : Alg, (A, B), the following diagram commutes:

B, (U)o —— Br, (U)o

Jea &

A—" B

Proof. This follows from simple unfolding and using the property of algebra morphisms: For
all f: Ery(U)o={f: Al (z101l)en f= [},

eg(h(f)) = (z1c1) o h(f)
((96101) oa f)

Lemma 6.60. The pullback functor

[a— e;'(a) ® e, (U) () LAl

is essentially surjective.
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Proof. Take B : Alg, . By Lemma p.5¢ we can consider B to be a object in the coslice category
h : Alg,(A,B). As shown in Section b4, h sends elements in R4(U",U) to elements in
Rp(U™,U), so we can regard it as a morphism (h),, : AlgTh(ER,(U), Er,(U)). We then
have a ER , (U)-algebra (h)’(ERr,(U)o). Now we need to prove that we have an isomorphism
of A 4-algebras

(o= ez (@) o (), enn - (B)n)* (Bry (U)o) = B.

Under the equivalence in Lemma p.58, this pullback of Eg , (U ), corresponds to some (B’, 1) :
(A] Alg,). The set of B"is Rg(I,U), its A-action is given by

(f,0) = h(ea, (f)) ®Br,, W) b,

and the morphism /4’ is given by //(a) = h(e;;'(a)). Note that by initiality of A, the following
diagram of algebraic theories commutes

/\

By (U) —— s i, (U)

Therefore, h(ta,(f)) = ta,(f), so the A-action on B’ is exactly the action on ¢} (Er,(U)o),
which means that B = 1} (Er, (U)o). We have the following diagram in Alg, :

a—h( EV \
ERB

By naturality of ¢, this diagram commutes, which shows that ep is an isomorphism in the
coslice category under A. Pulling this isomorphism back along the equivalence from Lemma
b.56 gives an isomorphism of A 4-algebras

(la = e3'(@) ® 0sennln - h)* (Ery (U)o) = B
and this concludes the proof. O

Lemma 6.61. For tp : LamTh(A, Eg ,(U)) and s; : A,,, we have

eA((8i)i) = {wipi o (La(84))i-

Proof. By the recursive nature of the definitions of (s;); and {(x;);, it suffices to show that for
a,b: Ay, ta((a,b)) = (x1,22) 04 (1a(a),ea(b)) and that tp(c,) = I. @4 (). Since ¢y is defined
via structural induction, this is just a matter of straightforward but tedious unfolding and
rewriting, at some point using the fact that (x; o U™) e 4 ta(a) = ta(a):

ia((a,0)) = tA(AZng1, Trg1tnms1(a)innt1 (b))
= (Azow3, z1(22, 3)) @4 LA(Znt1tnn+1(a)innt1(D))
= (Azazs, (Az6, 1176(2226) (¥376) ) (T4, ¥5)) @4 (LA (Tn41), tala o (Tnt1,)i), ta(b oa (Tnt1,0)i)
= (Az324, Tt 1,n41(23, 24) (21 0 (Tnt1,0)i (3, 24) ) (22 © (T1,0))i (23, 24))) @4 (ta(a), ea (b))
= (Az3z4, 24((z1 0 (mp5)i)23) (22 © (i i) w3)) 0.4 (eala), ea(D))
= (A\r3wa, T4(v173)(2223)) 94 (ta(a), tA(D))
=(z )

1,72) 04 (ea(a); ea(b)
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and

ea(en) = tA(AZnt1, Tny1)
= (Azoxs, x1(x2,23)) @4 tA(Tpt1)
= (A122, Tny1,m+1(71,22)) 04 ()
= (Az122,72) 94 ()
=1I.04().

Remark 6.62. Note that for any Eg , (U)-algebra B, we can view the pullback A 4-algebra [a —
e, (a)e Ex , (U) (), ta,,)* B as an object in the coslice category under A, given by

a — egl(a) o5 () : Alg, (A, A B).

Functoriality of the endomorphism theory construction of U : R4 and U : RLX B, gives a
A-theory morphism

a+ ¢, (a) op () : LamTh(ER, (U), ERLiB(U)).

Then, we can pull back the theory algebra along this morphism, to get, again a Eg, (U)-
algebra

(a—ey'(a) op O)*(BR s, (U)o).

Lemma 6.63. For B : Alg Er () We have an isomorphism of Ex , (U )-algebras given by

exp:(areq'(a) op ()" (Ery,(U)o) = B.

A

Proof. Note that the underlying set of (a +— ¢, (a) o5 ())*(Er 5 (U)o) is RLXB(I, U), and that
‘A
€, p is a bijection between this set and B. Now we only need to show that it is a morphism
of Eg, (U)-algebras. Take s : ER,(U), and allb: Eg , (U)g. We have
‘A

cxp(seb) =wn(zic) ep (€4 '(s) o5 () * 5, (U)o b)
= ip(z101) o (ta(z1 0T,y ..., Tnt1)) B (621(3) 5 (),b1,...,bp))
= ia(z1er) o (a1 0 @ip)i) o () (€4 (5),ea(@1), -+, ea(20))) o5 b)
= (ea(z1c1) o () (a1 0 @ig1)i) o ) (€4 (8),ea (1), -+ ea(20)))) o b
= (ea(@1(Tir1cn41)i) o, ) (€27 (8)sea(x1), s ea(@n))) op b
= (ea(@122) o, ) (€4 (5), ea(wicn):))) o5 b
= ((ea(z122) 0 (1) (€47 (5), 04 ((20)))) @, () (icn)i) o b
Also,

sep (ep(bi))i = sep (ta(xic1) o by);
= sep (ta(wicn) oB (b);)i
= (s o, ) (ta(Ticn))i) B b.
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Then the result follows from the fact that

i (@122) o () (€31 (), ea((@0)i) = ea(w122) oy 0y (A2, 1) 0 s, ()i 04 (ea(2))s)
= (Az3, x1237223) 04 ((Ax2, 1) @4 5,{Ti); ®a (Tni®a ())i)
(A3, x12223) 04 (8, {Tni)i®a ()
(rr022) 04 (5,U" 04 ())

Lemma 6.64. [a — €' (a) o (), e, ]% is fully faithful.

Proof. First of all, note that the pullback functor is always faithful, since it preserves all the
‘data’ (i.e. the functions) of the algebra morphisms.
Now, to show that it is full, take B, C : Alg Er (V)" Also, take a morphism

h:Alg, (la—ei'(a) op () ealn B, [a = €5t (a) oc (), ea, 15 0).

By Remark p.62, and by functoriality of the endomorphism theory construction, we get a
commutative diagram

ERr,

()
ar—»eAl(a)oB()/ *Al(a)oc()
h)n
Er,,,(U) - Br .. (0)

LAB

LAC

Now, using Definition f.5¢ for the coslice category (Er,(U) | AlgTh), and using the previ-
ous lemma, we get the following diagram of ERr , (U )-algebras:

This gives us the lift
h= 6;’(1B . (a — e:‘l(a) ° ())*h A (eR AlgERA(U)(B’C)
Now, when we again pull back this map to
[a > et (a) o 0, ea,lnh s Algy (la— €5 (a) o (), ea, 5B, la = €5 (a) o (), 04, ]50).-
Note that by naturality of ¢, we have

7_ _1 . . fr— _1 . . P
h_ELj(B h e =€xp G h=nh

as functions, and therefore [a — €' (a) o (),a, ]k = h, so the pullback is full. O
Lemma 6.65. A 4 is isomorphic to Egr , (U) as an algebraic theory.

Proof. By Lemmas and p.64, the pullback functor [a — €' (a) o (), ¢a, ] is a weak equiv-
alence. Since algebra categories are univalent, this means that the pullback functor is an
equivalence of categories. Then, by Lemma 14, [a — €' (a) o (), ta, |n : AlgTh(A4, Er . (U))
is an isomorphism. O]
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Now, to show that we can replace the functor A — Eg,(U) by A — A 4, we can show that
the functors are isomorphic:

Lemma 6.66. The isomorphisms [a — ¢, (a) ® B, (U) (), tAnln = AlgTh(Ay, Er,(U)) form a
natural isomorphism between the functors

AHERA(U), hr—>(h)n and AHAA, h'—>Ah.

Proof. We must show that for all & : Alg, (A, B) and for all n, the following diagram of A-
algebras commutes:

[are;" (a)o(),enn]

A+ A, A (ER,(U)n)
h—HdAnJ lh
B+ A, LX(ERB<U)H)

[aep" (a)o()en,]

Now, by the universal property of the coproduct A + A,, it suffices to check that for all a : A
andt: A,

(€3 (@) o, @) () = €5 (h(@)) o ) ) and A(ea, (@) = 4, (a).

The former follows from the fact that (h),, : LamTh(ER , (U), Er,(U)) respects the substitu-
tion and from the naturality of ¢ '

h(€x'(a) oy, @) 0) = hlex" (@) o, @) ) = €5 (@) o, @) O,

whereas the latter follows from the initiality of A, and the fact that (h),, : Er,,(U) — ERr,(U)
is a A-theory morphism. O

Remark 6.67. Now, note that for any A-algebra A, A 4 is an algebraic theory. However, for our
equivalence of categories, we need a functor to the category of A-theories. By the natural
isomorphism above (which respects the algebraic theory structures), we see that the objects
and morphisms in the images of Er_(U) and A_ have ‘the same” algebraic theory structures,
and we can transfer the additional A-theory structures from Ex_(U) to A_. With some abuse
of notation, this yields a functor A_ : Alg, — LamTh.

The final form of Hyland’s representation theorem is the following:

Theorem 6.68. The functor that sends a A-theory L to the A-algebra Lo and the functor that sends a
A-algebra A to the theory of extensions A 4 form an adjoint equivalence

LamTh ~ Alg, .
Proof. By p.49, we have an adjoint equivalence given by
L— LO and Aw— ERA(U).

By the previous lemma, the second functor is isomorphic to A_ : Alg, — LamTh. Therefore,
we can replace one by the other.

There are two ways to see this: We may notice that we can transfer the unit, the counit
and the two zigzag identities of the adjunction along the natural isomorphism and show that
this all works together. As an alternative, we can also notice that the category of A-theories is
univalent, so the functor category Alg, — LamTh is univalent and the natural isomorphism
between the functors is an equality, and we can replace one by the other. O
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Chapter 7

The Formalization

In addition to the reading, investigating and writing mathematics that lead up to the previous
chapters, this thesis project also had a formalization component. I carefully worked out parts
of Hyland’s paper in detail using a proof assistant and added the resulting code to a library
of formalized mathematics with the univalent point of view, called UniMath.

This chapter will give an overview of the mathematics that I formalized, as well as point
out and evaluate a couple of design decisions that I made.

7.1 Some Numbers

I wrote the code for this project over the course of about 18 months, spread over 20 pull
requests: 13 with content about Hyland’s paper, adding 23361 and removing 7 620 lines of
code, and 7 with only some missing category theoretical preliminaries, adding 3291 and
removing 816 lines.

7.2 Overview of the Formalized Material

The material that I formalized can be subdivided into material that is introduced or described
in Hyland’s paper, and category theoretical preliminaries that are necessary to make the
proofs in Hyland’s paper work.

The formalized parts of Hyland’s paper are collected in a package in the library called
algebraic theories. This package now consists of over 14 000 lines of code, and contains:

e Definitions for algebraic theories (algebraic_theory), A-theories (lambda_theory), al-
gebras (algebra) and presheaves (presheaf) of algebraic theories, together with their
morphisms and their categories. Proofs that the categories are univalent, that the cat-
egories of algebraic theories, A\-theories and presheaves have limits and that the cate-
gories of algebras and presheaves are fibered over the category of algebraic theories.

e The terminal algebraic theory (one_point_theory)), the free algebraic theory on a set
(free_functor), with as a special case the initial algebraic theory (projections_theory),
the A-theory A (lambda_calculus_lambda_theory), the T-presheaf structure on 7" and
the T-algebra structure on T7;,.

e The ‘free object” algebraic theory 7' (ffree_object_theory) with a functor from C to
Alg,. (free_object_algebra_functor). Also, for the special case where C is the category
of monoids, a proof that this functor C — Alg,. is an equivalence (monoid_algebra_
equi valence).

e The construction of the endomorphism theory E(X) for some object X : Cina category
C with finite products (endomo rphism_lambda_theo ry).

e The original version of Scott’s representation theorem (representation_theorem_iso).

93


https://github.com/UniMath/UniMath/pulls?q=is%3Apr+author%3Aarnoudvanderleer+is%3Aclosed
https://github.com/UniMath/UniMath/pulls?q=is%3Apr+author%3Aarnoudvanderleer+is%3Aclosed
https://arnoudvanderleer.github.io/cs-masters-thesis/UniMath.AlgebraicTheories.AlgebraicTheories.html#algebraic_theory
https://arnoudvanderleer.github.io/cs-masters-thesis/UniMath.AlgebraicTheories.LambdaTheories.html#lambda_theory
https://arnoudvanderleer.github.io/cs-masters-thesis/UniMath.AlgebraicTheories.Algebras.html#algebra
https://arnoudvanderleer.github.io/cs-masters-thesis/UniMath.AlgebraicTheories.Presheaves.html#presheaf
https://arnoudvanderleer.github.io/cs-masters-thesis/UniMath.AlgebraicTheories.Examples.OnePointTheory.html#one_point_theory
https://arnoudvanderleer.github.io/cs-masters-thesis/UniMath.AlgebraicTheories.Examples.FreeTheory.html#free_functor
https://arnoudvanderleer.github.io/cs-masters-thesis/UniMath.AlgebraicTheories.Examples.ProjectionsTheory.html#projections_theory
https://arnoudvanderleer.github.io/cs-masters-thesis/UniMath.AlgebraicTheories.Examples.LambdaCalculus.html#lambda_calculus_lambda_theory
https://arnoudvanderleer.github.io/cs-masters-thesis/UniMath.AlgebraicTheories.Examples.FreeObjectTheory.html#free_object_theory
https://arnoudvanderleer.github.io/cs-masters-thesis/UniMath.AlgebraicTheories.Examples.FreeObjectTheory.html#free_object_algebra_functor
https://arnoudvanderleer.github.io/cs-masters-thesis/UniMath.AlgebraicTheories.Examples.FreeMonoidTheory.html#monoid_algebra_equivalence
https://arnoudvanderleer.github.io/cs-masters-thesis/UniMath.AlgebraicTheories.Examples.FreeMonoidTheory.html#monoid_algebra_equivalence
https://arnoudvanderleer.github.io/cs-masters-thesis/UniMath.AlgebraicTheories.Examples.EndomorphismTheory.html#endomorphism_lambda_theory
https://arnoudvanderleer.github.io/cs-masters-thesis/UniMath.AlgebraicTheories.OriginalRepresentationTheorem.html#representation_theorem_iso

7. THE FORMALIZATION

e Hyland’s version of Scott’s representation theorem (presheaf_lambda_theory_isd), in-
cluding the construction of the presheaf A(P,1) (plus_1_presheaf) and the proof that
it is the exponential Object pT (theory_presheaf_exponent‘iable).

e The construction of a A-theory from a A-algebra A as the endomorphism theory Eract,, (Ua),
as discussed in Definition p.37 (lambda_algebra_theory).

e The construction of a Lawvere theory L from an algebraic theory 7" (algebraic_theory_
to_lawvere), and the equivalence between the presheaf category PL and the presheaf
category Pshf; (algebraic_presheaf_weq_lawere_presheaf).

e The theory of extensions T4 of a T-algebra (extensions_theory), the equivalence be-
tween Alg; and A | Alg; (algebra_coslice_equivalence) and the factorization of
every theory morphism f : S — T' through Sy« 7,y (factorization).

e An axiomatic definition of the pure A-calculus as discussed in Section .10 (lambda_
calculus).

Since Hyland’s paper uses a lot of general category theory, formalizing it entailed adding
the preliminaries that had not yet been formalized to the library. Among these are:

e Univalence of the Sigma displayed category ('i s_un‘ivalent_sigma_d‘isp).

e The Sigma displayed category creates limits (creates_limits_sigma_disp_cat).

e The definitions C (karoubi_envelopéd) and C (karoubi_envelope') for the Karoubi en-
velope, together with some properties and their equivalence (karoubi_equivalence).

e The contents of Section P.TT: The functorial construction of a one-object category from
amonoid (monoid_to_category), the equivalence between it’s presheaves and sets with
a right monoid action (monoid_presheaf_action_equivalence), properties of the cate-
gory of sets with a monoid action and restriction and extension of scalars (scalar_
restriction_functor, scalar_extension_functo r).

e The Yoneda embedding preserves exponential objects (yoneda_preserves_exponentials).

e The uniqueness of the Rezk completion (rezk_complet‘ion_un‘ique).

o If F : C; — Cyis a fully faithful functor, and D is a category with colimits, then
the precomposition functor /' ¢ — : [Cy, D] — [Cy, D] is split essentially surjective
(pre_comp_split_essentially_surjective).

e A proof of a generalized version of Lemma p.3, showing that if F; : C; — Cyisa
functor, if F» : Co — Cg is a fully faithful functor, if D is a category with colimits and
if the precomposition (F; e Fy) e — : [C3, D] — [C;, D] is an adjoint equivalence, then
F e —and F) e — are adjoint equivalences too (adjoint_equivalence_1_from_comp).

e The univalent category Set” of indexed sets (X,), over a type A (findexed_set_cat),
which can be defined formally as

Set)! = (A — Set) and Set?(X,Y)= HXa —Y,

that is univalent (‘i s_univalent_i ndexed_set_cat) and has limits (l‘i mits_indexed_set_
cat).

7.3 Equality, Isomorphisms and Equivalences

One of the lessons that I learned during this project was that for formalizing, it is always
important to choose te right equality for the job. For example, for two categories C and D,
one can aim to prove either that C = D or that we have a functor ' : C — D that has a right
and left inverse, or that we have a functor /' : C — D that is an adjoint equivalence. Even
though for univalent categories, these three notions all coincide, in practice it is really hard
to show equality of categories directly: To show C = D, we would need to show that we have
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an equality H : Cy = Cj, and then that forall ¢, : C
(C(transport (c), transport;(c'))) = D(c, ¢).

It is usually much easier to show that there exists a functor F' with an inverse, because then
we do not have to show these equalities of types, but can suffice with maps between the types
and equalities of the objects and morphisms that are mapped. However, for the morphisms
we still have transports.

The easiest option is usually to show that we have an adjoint equivalence. That way, we
do not have to show equality of objects, but only isomorphism (even though in a univalent
category, that is of course the same). Then we only have to show equality of morphisms, and
this is usually very doable.

An example of this is the proof that for the algebraic 7" where T;, is the free monoid
on {z1,...,x,}, the T-algebras are equivalent to monoids. Initially, this was a proof about
(weak) equivalence (so under univalence, equality) of the object types, but of course, this
says nothing about morphisms, so it is incomplete. However, it was possible to remove parts
of the proof, and use the rest to construct an adjoint equivalence. Since the category in ques-
tion is univalent, this adjoint equivalence gives us an equivalence of the object types for free.

In general, the formalization is the cleanest and the easiest when we use equality for
elements of homotopy sets (morphisms, or terms in an algebraic theory for example), iso-
morphisms for objects in a category and adjoint equivalences for categories themselves.

7.4 Displayed Categories

Displayed categories (introduced in [[ALTY]) are a mathematical idea which provides a great
tool in formalizing categories. One of the motivations behind displayed categories is the fact
that mathematicians often define a category in terms of another: a monoid is a set together
with a binary operation, a group is a monoid in which every element has an inverse, a topo-
logical space is a set together with a chosen collection of subsets.

Traditionally, one would say in such a case that we have a ‘forgetful functor’ F : C' — C.
However, working with displayed categories has some advantages over this older approach,
both conceptually and practically.

A displayed category D over a category C firstly consists of a type D, for every ¢ : C
(corresponding to the type of objects F~(c)) and a type d —¢ d' foralld : D., d’ : D» and
f : Cle,d) (corresponding to C'((c,d), (¢/,d"))). A displayed category also consists of an
identity ‘morphism’ d —q, d for all d : D., and compositions f-g:d —f,d" for f :d —; d’
andg:d —4d".

When we have a displayed category D over C, we can define two categories. First of all,
we can form the total category §, D (which corresponds to the category C’ in the forgetful
functor example), consisting of pairs (¢, d) with d : D.. Then the forgetful functor is given
by m : §o. D — C. Also, for every ¢ : C, we can form the fiber category over ¢, which we
will also denote as Dc. The objects here are the displayed objects over ¢, and the morphisms
are the displayed morphisms over id.. In the forgetful functor example, this is the preimage
category F~!(c). Lastly, note that if we have a displayed category D over C, and a displayed
category E over {, D, then we can form the sigma displayed category ., E over C, where
(X p E)c consists of pairs (d,e) with d : D, and e : E(.q4). Of course, the total categories are
equivalent: SSc p E ~§.(3p E), which boils down to rebracketing ((c, d), €) to (c, (d, e)).

One of the reasons why displayed categories are so useful when formalizing, is the fact
that for every next category, only the ‘new’ parts have to be defined. If we define a category
that consists of ‘functors with some additional data’, we do not again have to show what the
identity and composition functors are, but instead it suffices to construct the additional data
for those functors. Also, displayed categories come in handy because some properties of { D
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that are hard to prove directly, can be derived from properties of C' and the fiber categories
D.. For example, we can show that the category of groups is univalent, by noting that Set is
univalent, and by furthermore showing that the fibers of the displayed category of monoids
over Set and the fibers of the displayed category of groups over the category of monoids, are
univalent.

7.4.1 The Categories in Question

Here is a diagram of the displayed structure of the categories of algebraic theories, A\-theories,
algebraic theory algebras and algebraic theory presheaves, every arrow denotes that a cate-
gory is displayed over the total category of the next one.

algebra_cat lambda_theory_cat presheaf_cat
algebra_data_full_cat lambda_theory_data_cat presheaf_data_cat
algebraic_theory_cat - algebraic_theory_cat
— > algebraic_theory_cat +—— .
X hset_category X findexed_set_cat

algebraic_theory_data_cat

indexed_set_cat

In the end, they all derive from the category of indexed sets over the natural numbers (or
equivalently, the category of sequences of sets).

Note that every category here is constructed in two layers: in the first layer the ‘data
category’, the displayed objects give the structure (the algebraic theory variables and substi-
tution, the algebra action or the presheaf action) of the objects in question, and the displayed
morphisms preserve this structure. In the second step, we take the full subcategory, consist-
ing of the objects that satisfy the right properties. For algebraic theories, these properties are
the axioms about the interaction between the substitution and the variables.

Note that the algebra data and presheaf data categories are displayed over a product
category, which is displayed over the category of algebraic theories (see Subsection [[4.4)).

The reason why we first construct the category of all algebraic theory algebras together,
is because we need we need it to show that that algebras are fibered over algebraic theories
(see Subsection [/.4.3). In fact, we need the category of algebras as a displayed category over
the category of algebraic theories. Since in the construction given above, it is displayed over
the category of algebra data, we use the sigma construction twice, to bundle all the algebra
information in a displayed category of one layer over algebraic theories. Then the category
of T-algebras can be defined as the fiber over 1" of this displayed category. For presheaves, it
is the same story.

Even though the approach of first defining the categories of all algebras or presheaves and
then taking a fiber of this, is necessary to talk about fibrations, there is a drawback to this ap-
proach. Morphisms in any fiber category are the displayed morphisms over idr. Therefore,
naively composing two morphisms in our fiber gives a displayed morphism over id7-idr and
we need to transport over the equality id7 - id7 = idy to get morphisms in our fiber category
again. So even though we can prove that, as expected, (f-g)(a) = g(f(a)) for f : Alg,(A, B),
g : Alg,(B,C) and a : A, this is no longer a definitional equality.
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7.4.2 Univalence

All of the categories in the diagram above are univalent. The proofs of this proceed by re-
ducing to known or easy cases. For example, we know that a full subcategory of a univalent
category is again univalent because it inherits isomorphisms and equalities. Also, we know
that a product of univalent categories is univalent again, since its isomorphisms and equal-
ities are equivalent to pairs of isomorphisms and equalities of its factors. We already knew
that Set is univalent, and in this project, I constructed the category of families of sets, indexed
over a type, and showed this category to be univalent.

The most interesting proofs are for the “...data’ categories. These proofs reduce to univa-
lence of the underlying category (so we prove univalence layer by layer) and univalence of
the fiber categories, so for example the fiber of all algebraic theory data structures on one in-
dexed set (7},),,. Showing that this fiber is univalent, means showing that for any two choices
of substitution functions f,, g, : Ty, x T);* — T, and variables z; y,, y; », : T, there is an equiv-
alence between ‘(f,)n = (gn)n and (2;n)in = (¥in)in” and ‘the identity on 7, commutes
with f,, and g,, and with the z; ,, and y; ,,". Since these are mere propositions and they imply
each other, we indeed have this equivalence.

7.4.3 Fibrations

One of the places where displayed categories are conceptually better to work with than for-
getful functors, is in the case of fibrations. Recall that a functor P : C' — C'is a fibration if
forevery Y : C'and f : C(X, P(Y)), there exists X : C’ with P(X) = X (and a cartesian
morphism f : C'(X,Y) with P(f) = f). The equality P(X) = X is on objects in the category,
and this violates the principle of equivalence: ‘if something is true for A, and A is isomorphic
to B, then it should also hold for B’. Of course, if the category is univalent, isomorphism and
equality are the same, but definitions that use equality on objects still give a bit of conceptual
friction.

However, we can also define this in the language of displayed categories. The definition
becomes

Definition 7.1. A displayed category D over C is a fibration if for every Y : DY and f :
C(X,Y), we have X : DX and a cartesian morphism f: X —; Y.

This avoids using equality on objects, because we can just talk about ‘the objects above X".
Therefore, in UniMath fibrations are defined in this way and the algebraic theories package
uses this definition to show that the displayed categories of algebraic theory algebras and
presheaves, over the category of algebraic theories, are fibrations.

7.4.4 Limits

In this subsection, we will mainly treat binary products, as they are somewhat simpler to
understand than limits in general. However, it is not too hard to generalize the material
presented here to limits in general, and the formalized proofs treat limits in general, instead
of binary products.

Recall from Remark f.4 that algebraic theories have all limits, and that given a diagram,
the underlying set of the limit is the limit of the underlying sets. Compare this to group or
ring theory: for rings R and S, the set R x S can again be given a ring structure, which is the
binary product of R and S in the category of rings.

This is all very reminiscent of the way that displayed categories ‘borrow” information
from their base category. Now if a category C has binary products, we say that a displayed
category D over C creates binary products, if forall X : Dx, Y : Dy, we can ‘lift’ their product.
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That is, if we can find
XxY:Dxyxy, mT:XxY -, X and m: X xY -, Y

and if (X x Y, X x Y) with the projections (m1,77) and (2, 72) is the product of (X, X) and
(Y,Y)in § D. By definition, if D creates binary products, then {, D has binary products.

In itself, this is not a very revolutionary idea. However, when formalizing, this allows
us to work layer by layer, every time adding a little bit of new information, and reusing the
rest from the layer below to show that every category that we construct has binary products.
Also, in the rest of this section we will see that very often, it suffices to formalize a lot less than
the full construction of a binary product, and that when we do constructions on displayed
categories, like the sigma displayed category or taking a fiber category, we often immediately
deduce that the resulting (displayed) category still has (or creates) binary products.

During this project, I added a small lemma to the library, showing that for a full subcate-
gory . D = C, where D, is a mere proposition for all ¢ : C, if for all (X, X), (Y,Y) : { D, we
have Dy .y (the C-product of two objects in S D is again in S D), then D creates binary prod-
ucts. I also added a lemma showing that if a displayed category D over C, and a displayed
category I over D, both create binary products, then op E also creates binary products.

Note that for many categories, the displayed morphisms are mere propositions. In partic-
ular, this holds for the “...data’ categories of this project. For example, an algebra morphism
is a function that ‘respects the operation’, and respecting the operation is a mere proposition.
In these categories, it is not necessary to give a full proof that the object (X x Y, X x Y') and
the morphisms (7;, 7;) form a binary product, because it suffices to show that for all C, C,.f,g
andall f: C —»; Aand g: C —, B, we can lift the product morphism to

<f,g> . 6 _)<f,g> Ax B

For example, if the function f commutes with the algebra actions on C' and 4, and g com-
mutes with the actions on C and B, then we need to show that the product morphism {f, g)
commutes with the actions on C and A x B. I added a lemma showing that it suffices to
construct a lift for the product morphism, and used this lemma to show that the “...data’
displayed categories create binary products.

Now, recall that the categories of T-algebras and T-presheaves are a fiber of a displayed
category. Now, if we want a binary product of X, Y : Alg, and we take the product of (T, X)
and (7,Y) in the category of all algebras, we end up with (T'x T, X xY),or X x Y : Alg,. 1,
even though we would like to have (7, X) for some X : Alg,. It turns out that here we
need the fact that algebras and presheaves are fibered over algebraic theories, and adding
the following lemma to the library gave the final brick for showing show that all categories
discussed here have limits:

Lemma 7.2. For a displayed category D over a category C, suppose that C has binary products,
that D creates binary products, and that D is a fibration. Then the fiber categories Dx have binary
products.

Proof. Take X1, X5 : Dx. We have a product X1 x X2 : Dxxx with projections 7; : X x
X9 —n, X;. For the diagonal morphism on X, the fibration gives an object Y and a a cartesian
lift:
f:Y (idx,idx) X1 x Xo,
so we have projections
=1 Ti:Y =gy Xio

In the diagram below, the first row is the fiber Dx and the second row is the fiber Dx x.
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“<> s

X; +——— — Z
p; 1 h
k \]: Agﬁ
Yl X Yg

Now, given some g, : Z —,, X1 and g, : Z —4, X2, we have
<§17§2> : 7 _)<g1,g2> Y]. X YQ'

Because f is cartesian, we have a unique

h:Z —idy Y,
such that
b f={G1,92)-
Therefore,
hepp=h-f -Ti={G1,92) Ti = G
which shows that Y is the product of X and X3 in Dx. O

7.4.5 Chicken or Egg?

The formalization started with definitions for the objects and morphisms in question: alge-
braic theories and algebras. Using these, I defined the categories directly. However, since
showing univalence is much easier when working with displayed categories, I decoupled the
definitions of the categories from the definitions of the objects and morphisms, and instead
constructed them as displayed categories. This meant that of every definition, a part was du-
plicated: once for the object (and morphism) types, and once for the objects and morphisms
in the displayed categories. This meant that it was in theory possible to get a mismatch be-
tween, for example, the definition of algebraic theories and their category.

Of course, it was possible to get rid of the objects altogether, and just define things in
terms of the objects and the morphisms of the categories. However, in practice this causes
problems because of coercions. For example, if X is an algebraic theory, mathematicians like
to use the name X also to denote the sequence of sets X,,. Under the hood, this uses a co-
ercion, which allows one to use the same symbol to denote both the entire object, or a part
of it, depending on the context. However, when working with displayed categories, the cat-
egory of algebraic theories is displayed over the category of algebraic theory data, which is
displayed over the category of sequences of sets. It turns out that in rocq, coercions on cat-
egories do not compose very well: If X is an algebraic theory, and we have coercions from
algebraic theories to algebraic theory data, and from algebraic theory data to sequences of
sets, we can still only use X to denote the algebraic theory data, and not the sequence of sets.

In the end, the best solution was to first define the category, and then the object and
morphism types as the objects and morphisms of the category. The coercions can then be
defined on the standalone object and morphism types, which works very well.

7.4.6 A Product of Categories

Given two categories C and C’, their product C' x C” can be viewed as a displayed category
over C' (or C"), where the objects over any object are the objects of C’, and the displayed
morphisms g : ¢ —¢ ¢’ are the morphisms g : C’(c, ¢’). There are two ways to formalize this.

The first approach uses reindexing, by taking the unique functor to the unit category F :
C — {x}, and considering C" as a displayed category D over {}. Then we have the reindexed
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(pullback) displayed category F*D, with (F*D). = Dp(), with {(F*D) ~ C x C'. The
advantage of this approach is that it uses fairly simple general machinery. The disadvantage
is that for the general construction of (#*D), we need to transport over the equalities

idp(x) = F(idx) and F(f) F(g) = F(f -g)

in the definitions of, respectively, the displayed identity and composition. In practice, this
adds friction to the formalization.

The second approach is by constructing the displayed category D directly, setting D, =
C"and ¢ —5 ¢ = C'(c, ). This is slightly more work, because we do it in an elementary way
instead of using category theoretical machinery. In return, this approach gives cleaner defini-
tions in practice for the identity and composition morphisms of the total category. Therefore,
halfway during the project, I switched from the first to the second approach.

7.5 Duplication in Definitions

One of the adages in software engineering is ‘DRY’, which stands for “Don’t Repeat Your-
self”: Long expressions and blocks of code that occur multiple times throughout the pro-
gram should usually be abstracted into a separate function. One of the reasons for this is
that it is easier to change code in this function, than to change every instance of the repeated
expression or block of code. When writing mathematics, such functions are usually called
‘lemmas’. However, in this project there was also another example of duplication, which
occurred in statements of definitions and lemmas. For example, in the definition of the dis-
played category of algebraic theories, the displayed object type over a sequence of sets T,
is

IT 11 }Tn X (HmeT,THTn>,

n i:{l,...,n m,n

corresponding to the variables and the substitution. Then, the constructor of an algebraic
theory takes arguments

U:H H T, and S:HmeT;ﬁHTn.

n g:{l,..,n} m,n
Also, given an algebraic theory, we have accessors:

Tn;: T, and e, : (H T x T — Tp)

m,n

Lastly, when we define a new algebraic theory, we need to provide terms of these types again.

Therefore, in this project, I gave the type of every one of these components a name, end-
ing in _ax, for ‘axiom’. For example, there are var_ax and subst_ax for algebraic theories,
mor_var_ax and mor_subst_ax for their morphisms, action_ax for algebras and app_ax and
abs_ax for M\-theories. The definition of the displayed categories, the constructors, the acces-
sors and the definitions of new objects can then refer back to this.

This indeed reduces the amount of duplication in the code, and makes it slightly eas-
ier to write some definitions, because one does not have to remember and type the exact
formulation of every axiom. However, there is no free lunch here: The axioms are not im-
mediately unfolded when they occur. Therefore, if one uses the constructor for an algebraic
theory, the goals become var_ax and subst_ax, and these have to be unfolded to see what they
mean. Also, when rocq is asked to state the property of an algebra morphism, it responds
with mor_action_ax, which is not very informative. This is not a big problem, per se, but it
adds some friction when formalizing. This friction could be reduced a lot if rocq would have
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some sort of macros, which would immediately be unfolded upon use, and would never be
printed.

Another drawback of this approach is that for algebras and presheaves, there are in fact
two different axioms. This is because their categories are displayed over the categories of
algebraic theories, and the category of T-algebras and T-presheaves are fibers of the full dis-
played category. Therefore, the morphisms of T-algebras are given by displayed morphisms
over idr, so the axiom of, for example, an algebra morphism g is

mor_action_ax : H H H g(tea)=idp(t) e (g(a;)),

n t:T, a:A"

and in practice, this makes it harder to work with them. There was an instance where one
conversion from idr(t) to ¢ added multiple seconds to the compilation time. Therefore, for
the algebras and presheaves, some of these axioms have to be stated twice: once to define the
displayed category, and once for most of the other occurrences.

7.6 Tuples

A lot of the mathematics in the paper requires us to work with ‘tuples”: terms that bundle
a certain number of terms of some type. A tuple type already occurs already as 7}} in the
definition of the substitution operation of algebraic theories:

o: T, xT" —T,.

Now, there are two common ways to formalize such tuples, both with their advantages and
disadvantages.
The first option is to say that the type A" just denotes the n-fold cartesian product

Ax (- x(AxA)...).

There are multiple advantages to this approach. First of all, this approach allows us to easily
construct ‘literals’, like (5, —12) : Z2 or (L, T, T) : bool®. It is also very easy to extend an
n-tuple a with another element z, because this just gives the pair (z, a). Because of the clear
relation between the extended tuple and the original one, this approach also allows for a nice
induction principle: a way to prove things about general a : A™ by proving it for () : A and
by showing that if it holds for any a : A™, it also holds for (z,a) : A™! for all z (note that
this is a version of fold for lists).

The other approach is to view A™ as the type of functions from {1,...,n} to A. An advan-
tage of this is that it becomes trivial to extend a function f on A to a function on its tuples,
sending a to f o a (which would be called (f(a;)); in this thesis). Also, this approach makes
it very easy to define n-tuples of arbitrary size. For example, (z;); : T}, (in one of the axioms
of an algebraic theory) is just the function that sends i to the variable x;. These tuples of
arbitrary size have very good computational behaviour, since the value of (z;); at j is, by
definition, x;.

Very early on in the project, I chose to use the second approach. Since many definitions
require extending a mapping to a tuple, and since we do not very often need to extend tuples
or do induction on a tuple, this proved to be the right choice.

The main place where we need to be able to extend tuples, is when working with A-
theories, for example in the axioms about the relation between substitution and A-abstraction
and -application. To accomplish this, we use the equivalence between {1,...,n + 1} and
{1,...,n}u {x}.

Also, when working with a A-algebra A (or an algebra) for the free monoid theory, we
often want to define an operation, for example o, on A by sending a and b to (z1 o z2) e (a,b).
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Since constructing the literal tuple (a,b) directly as a function quickly becomes a mess, we
use the equivalence between A x --- x Aand {1,...,n} — A to define literal tuples via the
cartesian product, and then transform them to functions.

Using some lemmas about the behaviour of extended tuples and literals defined this way,
this slightly mixed approach works fine. However, it would be worth investigating whether
it is possible to have a tuple type in the library with all of the operations of both the function
and the cartesian product approaches, so that it is no longer necessary to choose between
them.

7.7 Products

A very similar problem pops up in the proof of the representation theorem, where the defi-
nition of the endomorphism theory Epgh¢, (L) meets the isomorphism Pshf; (L", L) =~ L,, of
the Yoneda lemma for presheaves. First of all, recall that the function \,, of E(L) is defined
via the following chain of morphisms

Pshf, (L"*', L) = Pshf(L" x L, L) = Pshf(L", L") —5, pghf, (L", L).

To make this easy, we would like to have Lt = [ x L, and this would give a definition
L™= (...(I x L) x...) x L where I is the terminal object.

On the other hand, recall that the inverse morphism of Pshf; (L",L) =~ L, sends s : L,
to the presheaf morphism that sends (¢;); : L)}, to s e ¢ : L,,. Here, we would like the sets of
L™ to match the tuple types in the definition of the substitution e : L,, x L]} — L,,,. However,
these two are incompatible, since elements of the repeated product are nested pairs, whereas
the tuples in L}, are functions from {1,...,n} to L,,.

In this case, I made somewhat of a compromise. I indeed defined the endomorphism the-
ory using a repeated binary product, and the construction of finite powers from the terminal
object and binary productsm. On the other hand, for the Yoneda lemma for L-presheaves, I
indeed use the ‘usual” notion of products L™ where the sets are tuple types. Luckily, the li-
brary contains a proof that products are unique up to isomorphism, so where the definitions
clash, we use the isomorphisms to translate between them. Even though this adds friction,
in the end it is pretty straightforward.

Also, this project added a lemma to the library stating that in any category C, [ [, X;
(for X : @ — T a family of objects) is given by the terminal object. However, the repeated
binary product construction needed [ [;.(;1<;<0; Xi, and ¢ is not definitionally equal to {i |
1 < i < 0}. Initially, I solved this by transporting along the equality ¢ = {i | 1 < i < 0}.
However, much further down the line, some proof involved an element of this product over
{i | 1 <1i < 0}, and because of the transport, rocq was not able to see that this product was
just {x}. Therefore, I changed the statement of the lemma about the empty product to “For
a type I and a family X : I — C, if we have a function f : I — ¢, the terminal object gives
the product | [,.; X;”. Note that having the function f is equivalent to I being equivalent
(and therefore equal) to the empty type. This change in the statement did provide the right
amount of generality to make computation down the line much smoother.

!'Unfortunately, defining the product of a tuple of objects was much harder than defining the finite power of
one object. When generalizing the approach to tuples of objects, some terms suddenly do not have the “correct’
type, which has something to do with some equalities like ((z1,...,2n) + (¥))n+1 = y that do not hold defini-
tionally. Even though this specific problem can be solved using transports, the rest of the proof becomes then
much harder because the transports get in the way
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7.8 The ‘n + p’-Presheaf

Now, the definition of the endomorphism A-theory Epgy¢, (L) requires that the theory presheaf
L is exponentiable. As shown before, P is given by A(P, 1), the ‘plus 1’ presheaf, where the
last variable is ignored in the L-action. In fact, one can show that PL" is given by A(P,n)
and this was indeed the level of generality at which I formalized the statement. To obtain the
action

.. A<P7 p)m X L:ln - A(P,p)n,

I used the bijection
{1,....n+py={1,....n}u{l,....,p}

from the library, which sends the first n elements to the first set, and the last p elements to the
second, so this could indeed be used to construct elements of tuples A"?, separating them
into first a tuple of n and then a tuple of p. After this, it was time to construct the presheaf
morphisms for p and \ between L and A(L, 1), but this turned out to be much harder than
expected, because A(L,1), = L,y1, whereas p and X are functions between L,, and Lg,,
where Sn = 1 + n. Unfortunately, 1 4 n is not definitionally equal to » + 1, and even though
we might transport along a proof h : 1+n = n+1, such a transport will give problems down
the road.

In this case, the cleanest solution was to only do the construction for the special case p = 1
and take A(P, 1),, = Pg,, using the bijection from the library

Smo{l,...,n+ 1} = {1,...,n} u {+},

with
(3 T<<m
Sm(l): * t=m
1—1 1>m

taking m = n in this case.
It is possible that constructing a new bijection

{1,....,p+n}={1,....,n}u{l,...,p},

makes it possible to generalize the result to general p again. However, this equivalence would
be somewhat weird, because the order of n and p are reversed. Also, proving things about
these standard finite sets is quite hard, and outside the scope of this project, so I did not
attempted this in this project, but left it for potential future work.

7.9 Quotients

This project used quotients twice, once explicitly and once implicitly. The first occurrence
of quotients was the construction of the ‘extension of scalars’ functor f, : RActy — RAct),
from Lemma .59. Here, the formalization worked directly with quotients over a relation.
However, the relation given by R : (xn, m) ~ (z, f(n) - m) for all g, is reflexive and transitive,
but not necessarily symmetric. Therefore, we first take the ‘equivalence closure’ R of R: the
smallest transitive and symmetric relation that contains R. This is then used for the quotient.
To construct functions from this, like the right action of the monoid M’, we use the universal
property of the quotient: a function from X x M’ that sends ‘related” elements (x1,m;) and
(w2, m2) to the same element gives a function from the quotient X x M’/ ~. However, the
quotient is taken over R instead of R, so it is no longer possible to assume that x5 = z1n and
my = f(n) - my for some n. In the case of the right M’-action, it sufficed to add the following
lemma to the library
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Lemma 7.3. For a relation S on a set A and a relation T on a set B, if for f : A — B, we have that
S(a1, az) implies T(f(a1), f(a2)) for all ay,as : A, then S(a1, az) implies T(f(a1), f(az)) for all

ai, ag.

However, overall, working with these quotients in an elementary way was quite a hassle.

The second occurrence of quotients was in the proof of Corollary 2.84, or the lemma that
it is based on. Initially, the statement of the lemma was only about Set, stating that .c e — :
[C,Set] — [C,Set] was an adjoint equivalence. The proof used coequalizers of functors,
like in Lemma P.75. Note that coequalizers of set-valued functions are given pointwise by
coequalizers in Set, which are formalized using quotients. Because of this, when simplifying,
rocq usually reduced the goal to elementary statements about quotients, which somewhat
obfuscated the relatively simple nature of the construction. Luckily, the construction could
be made agnostic to the specific implementation of coequalizers, by introducing a variable

H : CoequalizersHSET

and using this instead of our known implementation. Since the proofs did not use any ele-
ments of the sets in question, it was then trivial to generalize to any category with coequal-
izers. It turned out that the construction was a special version of left Kan extension, which
uses general colimits, and using the existing definition of Kan extension, I was able to con-
siderably shorten the proof.

In hindsight, it may have been better to replace the quotient Y := X x M/ ~ by a co-
equalizer

(n,z,m)—(xn,m)

NxXxM_—— 2 XXM - >Y,
(n,@,m)—(z,f(n)m)

which is closer to the way this relation is defined. Under the hood, this still takes a quotient
over the equivalence closure, but now it is less visible. Here, the universal property of the
coequalizer can be used to define functions out of Y, which may be easier to work with than
the universal property of the quotient.

The generalization from Set to an arbitrary category with coequalizers, which we saw in
the case of Karoubi envelopes, can also be done here, but it would take considerably more
effort. The problem is that the definitions of monoids and sets with a monoid action really
do use the elements of their underlying sets. For example, a monoid M has a unit v and
multiplication -, such thatu-m =m =m-uvand m-(n-1) = (m-n)-lforallm,n,l: M. The
generalization for an object M in some category C, turns the unit into a function v : I — M
from the terminal object and the multiplication into a function p : M x M from the binary
product B such that the following diagrams commute:

M x (M x M) = (M x M) x M
idMX“l luxidM I xM M M x M <&&— ldeu x I

VXM Mo |
~— Sk

M

Such a generalization of a monoid to a general category is called an internal monoid. In a sim-
ilar way, sets with a monoid action can be generalized. However, this all would be a lot of

*Note that one does not need the full power of binary products or terminal objects to define internal monoids.
A category with the product-like structure ® and terminal-like object I that one needs to define internal monoids,
is called a monoidal category.
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work, and elementary reasoning about internal monoids of Set is still much more cumber-
some than for the ordinary set-based monoids. Also, for the fundamental theorem we only
need the ordinary set-based monoids. Therefore, I did not pursue this generalization any
further.

7.10 The Formalization of the \-Calculus

One of the important classes of objects in this thesis is the class of A-algebras: algebras for
the initial A-theory A, corresponding to the “pure” A-calculus. Therefore, much of this project
required the pure A-calculus to be formalized. Now, in this thesis, it is defined as a quotient
of an inductive type. However, in the UniMath library, the use of inductive types (other than
a handful of basic ones like empty, bool, nat and coprod) is prohibitedﬁ. Also, as we saw in
section [/.9, working with quotients can be somewhat complicated.

The inductive type approach has a variation, which instead of a quotient uses a higher
inductive type to force the required elements to be equal. Unfortunately, even if the use of
inductive types was allowed, rocq does not support higher inductive types.

Instead, I took a different, more axiomatic approach. An undergraduate class in group
theory often starts with laying out a couple of axioms, like: “We have a set G, with a binary
operation b, a unary operation v and an element e. b is associative, u is a left and right inverse
for b and e is a unit for b.” Afterwards, this structure is usually bundled into the declaration
“Let G be a group.” In the same spirit, every section in the formalization that needs the pure
A-calculus, starts with “Let L be the pure A-calculus with 3-equality.” To this end,  added a
definition lambda_calculus, consisting of:

e A sequence of sets (L )n;
e Variables, app, abs, subst:

varp: Ly, app,:LpxLy — Ly, absy,:Lg, — L, and substy,,:LyxL)' — Ly;
e A couple of identities about the interactions between the constructors. In particular,
B-equality:
subst(var;,t) =1t;, ..., app(abs(s),t) = subst(s, (var;);+ (t));

e The induction principle, which coincides with the induction principle that a higher in-
ductive type would have: Given, forall ¢ : L,, a type A, ;, it is possible to construct, for
every t : L,, an element f(t) : A, by just giving elements and functions, correspond-
ing to the constructors

Joar(nii) + Avarn
fapp(s,t) A x A — A
favs(t) + At = Aups(t)
fsubst(s,t) P A X Ay X X Ay, — Asubst(s,t)

app(S,t)

and by showing that they are compatible with the identities on L. For example, for
B-equality, this is equality between

fapp(fabs(s)7 t) : Aapp(abs(s),t) and fsubst(87 fvar17 L fvarn ) t) : Asubst(s,(vari)i+(t)) .

Note that the left and right hand side live in different types, so the equality can only be
stated using a transport over 3-equality.

3This is because allowing inductive types requires a much larger trusted codebase of the proof assistant, and
because most of mathematics can be formalized with ) -types or using initial algebras of functors, instead of
inductive and record types.
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e A couple of identities about the interaction between induction and the constructors: if
f is defined using the induction principle as above,

flvari) = fuar,
f(@pp(8,1)) = fapp(siy (f(5), F(1))
f(abs(t)) = faps(y(f(1))
f(subst(s,t)) = foupse(s,e) (f(5), (f(t:))i)-

Remark 7.4. Note that the first three bullets just give L a A-theory structure. Only by the
induction principle, it becomes clear that L is the (unique) pure A-calculus.

Remark 7.5. The induction principle has two common uses: A,, ; can be taken to be a constant
type A (or potentially A,,), in which case induction results in functions L,, — A. The A,,;
can also be taken to be mere propositions, in which case induction ‘proves’ something about
allt: L,.

In both cases, the rules about respecting the identities like 3-equality become simpler: in
the first case, the transports disappear, and in the second case, the rules are satisfied auto-
matically.

Remark 7.6. Often, the pure A-calculus is defined using just the constructors var, app and abs.
subst is usually defined using induction, which gives the identities about the interaction be-
tween subst and the others for free. However, since this is a definition of the A-calculus
with B-equality, the induction principle must include a rule about compatibility with the
B-equality. Since the definition of S-equality already uses subst, it is not possible to define
subst using induction. This is why it is added as an additional constructor, along with re-
quirements about its interaction with the other constructors. This approach is called explicit
substitution.

7.10.1 Propagation of Substitution

Once the pure A-calculus is defined, it is not very hard to give it a A\-theory structure, using
the induction principle a couple of times to show that some identities are satisfied.

Now, as mentioned in Subsection £.4.1, any A-theory allows the operations var, app, abs
and subst with the same interaction as for the pure A-calculus. Therefore, given any A-
calculus, it is possible to start defining more complicated structures like the a o b, (a,b) and
A x B from Section p.2, which is indeed done in the original proof of Scott’s representation
theorem. However the equalities about the interaction between subst and the other opera-
tions are not definitional, even for the pure A-calculus. Consider the following term (using
concatenation for application):

A5, x5 (r122(T423)) ® (21,22, 23, 21) © L3.

It is not hard to see that this results in A\z4, z4(z122(2123)). However, it takes a lot of steps
to rewrite this: moving the substitution past the A-abstraction, then into 4 instances of ap-
plication, and lastly using 5 instances of the interaction between variables and substitution,
resulting in a total of 10 rewrites for a seemingly trivial term. It is not unheard of to have
40 of these rewrites consecutively in a proof, and since there is a lot of things to prove, this
quickly becomes tedious.

Therefore, I added a tactic to the project. A first version of this tactic was a variation of

Ltac reduce_lambda := (
rewrite subst_var +

rewrite subst_1l_var +
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rewrite beta_equality

).

attempting to rewrite (once) with at least one, but possible multiple of the equalities. The
statement repeat reduce_lambda sometimes took a couple of seconds, but this saved a lot of
manual work. Still, there was much room for improvement.

Therefore, along with the original proof of Scott’s representation theorem, a new version
of the tactic, called propagate_subst has been added. It recursively traverses the A-term in the
left-hand side of the goal, checking whether the term matches a form that can be rewritten
into something else. It performs the possible rewrites, and also prints these rewrite state-
ments which can replace it. For example, if the goal is

(A'm, (inflate a (inflate b var (stnweq (inr tt))))) e« c =
(A'n, (inflate (a « c) (inflate (b « c) var (stnweq (inr tt)))))

a call to repeat reduce_lambda would take about a second, but a call to propagate_subst ()
runs in about 330 millseconds and prints

refine '(subst_abs _ _ _ @ _).

refine '(_ @ !maponpaths (A x, (abs (app x _))) (inflate_subst _ _ _)).

refine '(_ @ !maponpaths (A x, (abs (app _ (app x _)))) (inflate_subst _ _ _)).
refine '(maponpaths (A x, (abs x)) (subst_app _ _ _ _) @ _).

refine '(maponpaths (A x, (abs (app x _))) (subst_inflate _ _ _) @ _).

refine '(maponpaths (A x, (abs (app _ x))) (subst_app _ _ _ _) @ _).

refine '(maponpaths (A x, (abs (app _ (app x _)))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (A x, (abs (app _ (app _ x)))) (var_subst _ _ _) @ _).

refine '(maponpaths (A x, (abs (app _ (app _ x)))) (extend_tuple_inr _ _ _) @ _).

Replacing the call to propagate_subst by these statements, results in the same rewrites, but
these only take 40 milliseconds.

Now, on top of the speedup, the new tactic is modular and extensible. It is modular, in
the sense that some of its parts are also tactics themselves, and can be used for other tactics
as well. For example, the traverse tactic, which traverses a A-term in the goal and executes
something for every subterm, is also used in a new tactic that is called generate_refine, which
takes a pattern, and for every subterm that matches it, prints a

refine '(maponpaths (A X, ... X ...) _ @ _).

statement, which can be used to quickly generate statements that very precisely rewrite one
subterm. The propagate_subst tactic is also extensible, in the sense that the patterns for both
the subterm traversal and the rewrites are kept in a list, which can be extended when new
combinators are defined. For example, at the point where the tactics are defined, the traversal
only works for the constructors var, app, abs and subst, and the rewrites only work for the
interactions between these operations. Using this, composition a o b is defined, and so a
pattern to branch into a and b is added to the traversals, and a rewrite with

(aob)et=(aet)o(bet)

is added. Progressing through the file, the same is done for combinators like the pair (a,b),
the projection m; (including a rewrite m1{a,b) = a), curry and n_tuple (consisting of nested
pairs).

It would be interesting to see whether parts of these tactics can be generalized. For ex-
ample, whether it is possible to create an extensible tactic which shows that some type is
a homotopy set, or a mere proposition, and prints the rocq statements that can replace the
tactic call. Or whether it would be possible to generalize generate_refine to very quickly
generate very fast and precise rewrite statements for large and complicated goals.
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711 The Learning Curve

Let me conclude this chapter with a more personal note about formalization. In the past
tifteen years,  have worked with a plethora of different programming languages, and I would
like to think that in all this time, I have learned a great deal about programming. When I start
working with a new language, it takes me a couple of minutes to figure things out, and within
an hour, I can probably get a small program up and running, with some help from google.
However, when I started working with rocq and UniMath, I kind of had to start from scratch
again. As it turns out, the naive or direct approach is often not the right one when working
with a proof assistant, and of the code thatI wrote in the first months, almost nothing remains.
Even though every programming language has some sort of learning curve, formalizing in a
proof assistant is especially unforgiving: You often have to change an old definition, or start
over when you are halfway through a proof, because your current approach gets bogged
down further and further with, for example, unintelligible transports. For every line of code
that ends up in a pull request, many lines are written and erased again.

For example, if we want to show that two types X and Y are equivalent, we need to
construct an equivalence, which has the following type:

X>Y:={f: X —>Y|Vy,is_contractible({z | f(x) =y})}.
One can view this as having an ‘isomorphism’

[+ X =Y, g:Y—>X, h(x):9(f(z)) =2 and ha(y): f(9(y)) =y,

but then together with a proof h3, showing that applying f to hi(x) is the same as taking
ha(f(z)). This last part is to ensure that ‘ f is a weak equivalence’ is a mere proposition, even
if X and Y are not sets: if X and Y are not sets, there can be multiple paths h; and hg, so f
can be an isomorphism “in multiple ways’. It can be tempting to just close our eyes and start
constructing this equivalence part by part. When we then get to defining h3, however, it is
easy to get stuck, because reasoning about paths is complicated. Luckily, there is a surjection

isweq_iso : is_iso(f) — isweq(f),

which allows us to construct an isomorphism and then get an equivalence (with h3) for free.

Another example: When we want to define a category, usually we start by defining what
the objects and morphisms in the category look like, and then constructing a category from
that. Since we work in univalent foundations here, we want to show that the category is
univalent, so that idtoiso : (a = b) — (a = b) is an equivalence. However, if we try to show
this directly, the proof quickly accumulates piles of transports, that are very hard to resolve.
Instead, there are two common “indirect” approaches:

e Either we first construct multiple smaller equivalences, ignoring idtoiso for the time
being:

(a = b) ~ {componentwise equalities between a and b}
~ {componentwise isomorphisms between a and b}
~ (a =),

and then use a proof that if we have an equivalence f : X ~ Y, and we have some
g: X — Y with f(z) = g(z) for all z : X, we know that g is an equivalence as well.

e We transform the category into a stack of displayed categories, derive definitions for
our objects from this displayed category, and then do the easy proofs that the fibers of
every layer are univalent.
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Both of these approaches are not what we would think of in the first place, but they are the
approaches that turn out to work very well. In short, there is a very steep learning curve
for working with a proof assistant and it takes a lot of experience to formalize mathematics.
Not only to know what kind of tactics are available, but also to get a feeling for the theorems,
lemmas and constructions that work well for proving or constructing something.

109






Chapter 8

Conclusion

In this thesis, we have seen how Dana Scott showed in an elementary way that any A-theory
arises as the endomorphism theory of a reflexive object in its category of retracts (Theorem
b.9). We saw Martin Hyland’s proof that any A-theory arises as the endomorphism theory in
the presheaf category of its Lawvere theory, using the Yoneda lemma in a very elegant way
(Theorem p.1)).

We also saw how Paul Taylor shows that Scott’s category of retracts is relatively cartesian
closed (Theorem p.19), and that Hyland gives an interesting new proof of this (Corollary p.9),
using the pre-established fact that the presheaf category is locally cartesian closed. Here it
was interesting to note that Taylor’s and Hyland’s proofs are about the same category in clas-
sical mathematics, but that these categories become nonequivalent in univalent foundations
(Remark p.TT)), one being the Rezk completion of the other (Corollary 2.77).

As we saw, there are two ways to study the A-calculus using tools from universal alge-
bra: both via A-theories and A-algebras. We saw that Hyland gives an equivalence between
these two in his Fundamental Theorem of the A-calculus (Theorem .68), where part of his
construction again uses a presheaf category, RActy, (Theorem p.49), parallel to his proof of
Scott’s representation theorem. The equivalence sends a A-theory L to the A-algebra Ly and
sends a A-algebra A to its theory of extensions A 4. We also saw a couple of variations on
the proof of this fundamental theorem (Theorem p.1§ and Remark p.50), exhibiting multiple
equivalent ways to construct a A-theory from a A-algebra.

Lastly, we saw how part of the material in this thesis was formalized, and we evaluated
the choices that were made in the formalization (Chapter []). For some of the very compli-
cated mathematics with a lot of bookkeeping, like the proofs about the Yoneda embedding
or the theory of extensions, this formalization constitutes an additional guarantee that it is
correct. In some other instances, the process of formalizing contributed to the realization
that a lemma should be stated in more generality (see Section [.9). Unfortunately, due to
the very time-consuming nature of formalization, not all of the material in Hyland’s paper
could be formalized. In future work, it would be interesting to see which version of the fun-
damental theorem would lend itself best to formalization. Personally, I would guess it is the
most elementary one, exhibited in Section p.4.

Also, since we saw that in univalent foundations, there are two nonequivalent definitions
Cand C for the category of retracts, it would be interesting to see how well Scott’s and Taylor’s
proofs about C, can be made to work on its Rezk completion C. More generally, note that
the Karoubi envelope is not specific to the material in this thesis. For example, one way to
construct a cartesian closed category is by taking the Karoubi envelope of a ‘semi cartesian
closed category’, and the cartesian closed structure on R in Scott’s representation theorem
can be viewed as a special case of this [[Hay85]. In another direction, the category of smooth
manifolds can be constructed as the Karoubi envelope of the category C of the open subsets
of all Euclidean spaces, with smooth maps between them [Law8Y, p. 267]. For such classical
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results about the Karoubi envelope, it would be interesting to study how they hold up in
univalent foundations for the different choices C and C of ‘the Karoubi envelope’.
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Appendix A

Alternative definitions

In the literature, there are many different but equivalent definitions, carrying many different
names, for the objects that are called “algebraic theories” in Section f.1. To make matters even
more confusing, the same name can refer to different things in different parts of the literature.
This appendix will showcase various definitions and give them a name. Of particular interest
is the Lawvere theory (Section [A.7), which is also used in Hyland’s paper.

In this appendix, we will denote the finite set {1, ..., n} as [n].

A.1 Abstract Clone

Definition A.1. An algebraic theory as presented in Section 7], is usually called an abstract
clone. In this thesis, outside of this specific section, we will call it algebraic theory to be
consistent with the names that Hyland attaches to objects.

Remark A.2. The definition of algebraic theory that Hyland gives is closest to that of an ab-
stract clone. However, instead of a sequence of sets (7},),, he requires a functor 7' : F' — Set
(with F' < FinSET the skeleton category of finite sets Fy = {[0], [1],...}), and he requires
o : T, x T — T, to be dinatural in n and natural in m.

Using naturality, one can show that with such a functor we have z,,; = f(a)(x1,1) for the
function a(1) =i : [n].

Alternatively, using the same naturality, one can show that this functor sends a morphism
a : [m] — [n] to the function T},, — T}, given by

f — f hd (xn,a(i))i-

If we take this to be the definition of our functor on morphisms, the (di)naturality in m and
n can be shown using the associativity and the laws about the interaction between e and the
€Ty

Since any additional properties mean extra complexity when formalizing, and since the
proofs rarely use the functor structure, we decided to reduce the functor 7" : FinSET — Set
to a sequence of sets (T7,),.

A.2 Lawvere Theory

Definition A.3. An algebraic theory as presented in [[ARVI(] is a small category with finite
products.

Definition A.4. An algebra for an algebraic theory 7' is a finite-product-preserving functor
T — Set.
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A. ALTERNATIVE DEFINITIONS

This definition is more general than the definition of algebraic theory in Section .. To
make it equivalent, we have to be more specific about the objects of the category:

Definition A.5. A Lawvere theory, or one-sorted algebraic theory is a category L, with Ly =
{0,1,...}, such that n = 1", the n-fold product.

Lemma A.6 (One direction: algebraic_theory_to_lawvere). There is an equivalence between
abstract clones and Lawuvere theories.

Proof. Let C be an abstract clone. We construct a Lawvere th