Master Graduation Thesis Presentation By Kalliopi Papangelopoulou

Modular series of FRP pedestrian bridges The example of Tanthof Delft

Tutors: Joris Smits (main mentor) [Fred Veer (second mentor)] Rafail Gkaidatzis (consultant)

-6th of July 2017-

Problem statement

Problem stateme

Statement of the

Same:

14 1 and

AND DESCRIPTION OF E.C.

Background

Maintenance of bridges Overijssel

source: Klatter H.E., "Societal aspects of bridge managment and safety in the Netherlands"

PUBLIC FOOTBRIDGE'S REPLACEMENT functional life time aestheticaly up-to-date

TU DELFT | FACULTY OF ARCHITECTURE & BUILT ENVIRONMENT | MSC BUILDING TECHNOLOGY | FINAL PRESENTATION | MODULAR SERIES OF PEDESTRIAN BRIDGES | THE EXAMPLE OF TANTHOF DELFT | PAPANGELOPOULOU KALLIOPI

5

source: Valbona M., "Bridge decks of reinforced polymer (FRP): A sustainable solution"

CONCRETE, STEEL, WOOD

or

FIBER REINFORCED POLYMER

CIS

structural material

Problem statement

St. A.

TU DELFT | FACULTY OF ARCHITECTURE & BUILT ENVIRONMENT | MSC BUILDING TECHNOLOGY | FINAL PRESENTATION | MODULAR SERIES OF PEDESTRIAN BRIDGES | THE EXAMPLE OF TANTHOF DELFT | PAPANGELOPOULOU KALLIOPI

Fiberline Bridge Kolding, Denmark (1997)

Problem statemen

TU DELFT | FACULTY OF ARCHITECTURE & BUILT ENVIRONMENT | MSC BUILDING TECHNOLOGY | FINAL PRESENTATION | MODULAR SERIES OF PEDESTRIAN BRIDGES | THE EXAMPLE OF TANTHOF DELFT | PAPANGELOPOULOU KALLIOPI

Problem statement

TU DELFT | FACULTY OF ARCHITECTURE & BUILT ENVIRONMENT | MSC BUILDING TECHNOLOGY | FINAL PRESENTATION | MODULAR SERIES OF PEDESTRIAN BRIDGES | THE EXAMPLE OF TANTHOF DELFT | PAPANGELOPOULOU KALLIOPI

Research objective

Prove that is possible to design an **all FRP footbridge series** and manufacture them via a **modular moulding manufacturing process**.

Research objective

Research on:

- FRP raw materials
- FRP mould manufacturing techniques
- bridge design principles
- module matrix
- bridge design
- mould design

Presentation structure

Modular design

Bridge series

Modular mould design

Bridge series manufacturing

TU DELFT | FACULTY OF ARCHITECTURE & BUILT ENVIRONMENT | MSC BUILDING TECHNOLOGY | FINAL PRESENTATION | MODULAR SERIES OF PEDESTRIAN BRIDGES | THE EXAMPLE OF TANTHOF DELFT | PAPANGELOPOULOU KALLIOPI

13

Bridge design

Bridge series installation

Tanthof Delft

Bridge population: 64 footbridges

TU DELFT | FACULTY OF ARCHITECTURE & BUILT ENVIRONMENT | MSC BUILDING TECHNOLOGY | FINAL PRESENTATION | MODULAR SERIES OF PEDESTRIAN BRIDGES | THE EXAMPLE OF TANTHOF DELFT | PAPANGELOPOULOU KALLIOPI

Design principles

- organic/double-curved shape
- monocoque structure
- modular mould
- renewable facade
- no extra supports
- integrated functions on cross-section

Design principles

Design limitations:

- use of conventional material
- bridge dimensions suitable for Tanthof
- no height difference
- examined on one load case

Tanthof Delft

Tanthof Delft

Width of Tanthof bridges

TU DELFT | FACULTY OF ARCHITECTURE & BUILT ENVIRONMENT | MSC BUILDING TECHNOLOGY | FINAL PRESENTATION | MODULAR SERIES OF PEDESTRIAN BRIDGES | THE EXAMPLE OF TANTHOF DELFT | PAPANGELOPOULOU KALLIOPI

25

16m length

GEOMETRICAL VARIABLES

TU DELFT | FACULTY OF ARCHITECTURE & BUILT ENVIRONMENT | MSC BUILDING TECHNOLOGY | FINAL PRESENTATION | MODULAR SERIES OF PEDESTRIAN BRIDGES | THE EXAMPLE OF TANTHOF DELFT | PAPANGELOPOULOU KALLIOPI

TU DELFT | FACULTY OF ARCHITECTURE & BUILT ENVIRONMENT | MSC BUILDING TECHNOLOGY | FINAL PRESENTATION | MODULAR SERIES OF PEDESTRIAN BRIDGES | THE EXAMPLE OF TANTHOF DELFT | PAPANGELOPOULOU KALLIOPI

CONCLUSIONS

Important aspects of the shape:

- Curved side shape
- Negative plan curvature
- Existence of flange
- Flange height

CONCLUSIONS

Important aspects of the shape:

- Curved side shape
- Negative plan curvature
- Existence of flange
- Flange height

structural railing

EQUIVALENT STRUCTURAL HEIGHT I= (1/12)*b*h³

TU DELFT | FACULTY OF ARCHITECTURE & BUILT ENVIRONMENT | MSC BUILDING TECHNOLOGY | FINAL PRESENTATION | MODULAR SERIES OF PEDESTRIAN BRIDGES | THE EXAMPLE OF TANTHOF DELFT | PAPANGELOPOULOU KALLIOPI

width 3.5m length 16m width 2m length 16m length 4m length 8m length 12m 0.4 2.3 4.4 5.3

width 5m

TU DELFT | FACULTY OF ARCHITECTURE & BUILT ENVIRONMENT | MSC BUILDING TECHNOLOGY | FINAL PRESENTATION | MODULAR SERIES OF PEDESTRIAN BRIDGES | THE EXAMPLE OF TANTHOF DELFT | PAPANGELOPOULOU KALLIOPI

Bridge design

DEFORMATION(mm)

width 2m

width 5m

width 3.5m

0.6

1

2.2

2.5

4.5

4.6

5.8

6.7

Pedestrian Bridges Tanthof Delft Structural simulation

width 2m

37

width 3.5m width 5m

- modular elements
- easy replacement
- railing height 1.00 m

38

• max. opening 0.5m diameter

Final cross-section with railing

42

-
RP Composite railing g 70x40x30mm
RP Composite railing ment 50x15x30mm
RP Composite railing ment 60x25x30mm
RP Composite railing ing element 60x25x30mm
I
I
I
ail 1 (all dimensions in mm)

Tanthof area- urban context

Voorhof area- Multiplex housing context

How is the bridge series manufactured ?

TU DELFT | FACULTY OF ARCHITECTURE & BUILT ENVIRONMENT | MSC BUILDING TECHNOLOGY | FINAL PRESENTATION | MODULAR SERIES OF PEDESTRIAN BRIDGES | THE EXAMPLE OF TANTHOF DELFT | PAPANGELOPOULOU KALLIOPI

Modular mould design

54

male mould FRP sheet

product FRP sandwich

female mould FRP sandwich

Modular mould design

55

vacuum clamping

Width: 7 modules Length: 7 modules Edge part: 2 modules

Modular mould design

Bridge series manufacturing

59

width 3.5m module

. width 5m module

• edge module

Bridge series manufacturing

Bridge series manufactueing

61

+

Bridge series manufacturing

Bridge series manufactueing

TU DELFT | FACULTY OF ARCHITECTURE & BUILT ENVIRONMENT | MSC BUILDING TECHNOLOGY | FINAL PRESENTATION | MODULAR SERIES OF PEDESTRIAN BRIDGES | THE EXAMPLE OF TANTHOF DELFT | PAPANGELOPOULOU KALLIOPI

Bridge series manufacturing

Bridge series installation

9bridges length 4m length 8m 9 bridges 30 bridges length 12m 15 bridges length 16m 63 bridges

54 bridges / 4

Bridge series installation

Bridge series installation

Conclusions

- combination of multiple research topics
- free-form design appropriate for large structures or individual elements
- Light RTM is not appropriate for bioresins
- modularity in connections for larger structures

