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Summary

Equity and Foreign Exchange Hybrid Models for Pricing
Long-Maturity Financial Derivatives

Lech A. Grzelak

When the financial sector is in crisis, stocks go down and investors escape from
the market to reduce their losses. Central banks then decrease interest rates in
order to increase cash flow: this may lead to an increase in stock values, since
it becomes less attractive for investors to keep their money in bank accounts. It
is clear, therefore, that movements in the interest rate market can influence the
behavior of stock prices. This is taken into account in the so-called hybrid models
currently being developed.

Modelling derivative products in Finance usually starts with the specification
of a system of Stochastic Differential Equations (SDEs), that corresponds to state
variables like stock, interest rate, Foreign Exchange (FX) rate and volatility.
By correlating the SDEs for the different asset classes one can define the
hybrid models, and use them for pricing multi-asset derivatives. Even if each
of the individual SDEs yields a closed-form solution, a non-zero correlation
structure between the processes may cause difficulties for efficient product pricing.
Typically, a closed-form solution of hybrid models is not known, and numerical
approximation by means of Monte Carlo (MC) simulation or discretization of
the corresponding Partial Differential Equations (PDEs) has to be employed for
pricing. The speed of pricing European derivative products is crucial, especially
for the calibration of the SDEs. Several theoretically attractive SDE models, that
cannot fulfil the speed requirements, are not used in practice.

Over the past decade the Heston equity model with deterministic interest
rates has established itself as one of the benchmark models for pricing equity
derivatives. The assumption of deterministic interest rates in the plain Heston
model is harmless when equity products with a short time to maturity need to
be priced. For long-term equity, foreign exchange, or equity-interest rate hybrid
products, however, a deterministic interest rate may be inaccurate.
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iv Summary

In this thesis we present an approach for modelling these derivatives based
on the extension of the Heston model with stochastic interest rates. The models
developed allow for highly efficient pricing of simple, plain vanilla, derivative
products.

Approximations of the full-scale Heston hybrid models, developed in this
thesis, fit in the class of affine diffusion processes for which the characteristic
function (ChF) exists. Availability of the ChF gives rise to efficient model
calibration to liquid European derivative contracts.

It is challenging to define a realistic model, which generates implied volatility
skews and smiles observable in the financial equity, FX and interest rate markets
and links, by correlation, different asset classes, for which a ChF can be
determined.

The point of departure in this thesis is the extended stochastic volatility model
of Schöbel-Zhu with Gaussian interest rates which is presented in Chapter 1. The
model enables us to perform, with a full matrix of correlations, efficient pricing of
equity-interest rate hybrid products. Although, the hybrid model is analytically
tractable and a semi-closed form ChF is available, the basic dynamics of the
volatility process requires improvements.

In the remaining chapters of the thesis generalized hybrid models are
considered. The stochastic volatility model of Schöbel-Zhu is replaced by the
model of Heston, which provides a richer volatility structure as presented in
Chapter 2. In this model the variance process may follow a fat-tailed non-central
chi-square distribution.

The main issue when defining hybrid models that belong to the class of affine
diffusion processes is the non-affine covariance structure. This, as presented
in Chapter 2, can be resolved by linearizations. Two methods for obtaining
approximations are proposed. Both approaches provide high accuracy and
efficient model calibration.

It is then shown in Chapter 3 that under the linearized covariance structure
it is possible to define a Heston hybrid model with a multi-factor Gaussian short-
rate for which approximations are not required. As such, this hybrid model,
by definition, is affine. For hybrids, with Gaussian short-rate processes for the
interest rates, it is shown that the forward measure is favorable for determining
the ChF and model simulation.

In order to handle hybrid payoffs sensitive to so-called leverage effects present
in equity and interest rate markets we propose, in Chapter 4, a novel hybrid
model in which the interest rates model is improved, and driven by the displaced-
diffusion stochastic volatility Libor Market Model. We show that although the
model has an involved structure it is still possible to derive the ChF, by a number
of linearizations and measure changes.

Finally, in Chapter 5, models for multiple interest rate markets are considered.
Due to the existence of long-dated foreign exchange-exotic products, like the so-
called Power-Reverse Dual-Currency, we develop improved stochastic volatility
foreign exchange models in which correlated stochastic interest rates are con-
sidered. We put particular emphasis on model calibration of FX options across
different maturities and strikes.



Summary v

Pricing modern contracts involving multiple asset classes requires well-
developed pricing models by quantitative analysts. In this thesis we propose a
number of hybrid models which can be used for pricing the corresponding hybrid
derivatives. For the models developed we describe efficient model calibration and
discuss efficient simulation with Monte Carlo techniques. We have also tested the
models by pricing a number of hybrid products under extreme parameter settings.
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Samenvatting (Dutch Summary)

Waarderen van langlopende financiële derivaten met hybride
modellen voor aandelen- en valutakoersen.

Lech A. Grzelak

Als de financiële wereld zich in een crisis bevindt, dalen aandeelprijzen en keren
investeerders zich van de markt af om hun verliezen te beperken. Centrale banken
verlagen dan hun rente om de economie te stimuleren. Dit kan ertoe leiden dat
aandeelprijzen stijgen, omdat het voor investeerders minder aantrekkelijk wordt
om geld op de bank te houden. Uit dit voorbeeld blijkt dat fluctuaties in de
rente effect kunnen hebben op het gedrag van aandelenmarkten. Dit effect wordt
meegenomen in de hybride modellen die momenteel ontwikkeld worden.

Het modelleren van financiële derivaten begint meestal met het specificeren van
een systeem van stochastische differentiaalvergelijkingen (SDVs), die correspon-
deren met toestandsvariabelen als aandeelprijs, rente, valutakoers en volatiliteit.
Door correlaties te specificeren tussen de verschillende SDVs kan een hybride
model gecreëerd worden, dat dan gebruikt kan worden om financiële derivaten
op portefeuilles met meerdere productklassen te waarderen. Zelfs als voor ieder
van de SDVs een gesloten formule kan worden afgeleid is het nog lastig om de
producten efficiënt te waarderen als de correlaties ongelijk zijn aan nul.

Voor een hybride model is een analytische formule meestal niet beschikbaar
en daarom worden numerieke methoden, zoals Monte Carlo simulatie (MC) of
het discretiseren van de bijbehorende partiële differentiaalvergelijking (PDV),
gebruikt voor waarderingen. Snelheid van berekening is een cruciaal punt
voor het waarderen van Europese derivaten, vooral voor de calibratie van de
onderliggende SDVs. Sommige theoretisch veelbelovende SDV-modellen worden
in de praktijk niet gebruikt vanwege het gebrek aan rekensnelheid. De afgelopen
10 jaar is het Heston model met determinische rente uitgegroeid tot één van de
referentiemodellen voor het waarderen van aandeelderivaten. De aanname in het
Heston model dat de rente deterministisch is, heeft geen invloed op de prijs van
aandeelproducten met een korte looptijd. Echter, voor wisselkoersen of aandeel-
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viii Samenvatting

rente hybride producten met een lange looptijd, kan deze aanname onnauwkeurig
zijn.

In dit proefschrift presenteren we een methode om deze producten te
modelleren, gebaseerd op het Heston model dat wordt uitgebreid met een
stochastisch rentemodel. Met de ontwikkelde modellen kunnen op een zeer
efficiënte wijze eenvoudige derivaten worden gewaardeerd. Benaderingen van dit
uitgebreide Heston hybride model, zodat de benaderende modellen in de klasse van
affiene diffusieprocessen vallen, worden in dit proefschrift uitvoerig beschreven.
Voor deze affiene processen is de karakteristieke functie (KF) beschikbaar. Het
bestaan van een dergelijke functie zorgt ervoor dat het model op een efficiënte
wijze naar liquide Europese derivaten gecalibreerd kan worden.

Het is een uitdaging om een realistisch model te definiëren waarvoor de KF
bepaald kan worden, en dat een implied volatility skew en smile, geobserveerd
in aandelen-, valutakoersen en rentemarkten, produceert en tevens de link legt,
door middel van correlatie, tussen de verschillende productklassen. Het startpunt
van dit proefschrift is het stochastische volatiliteitsmodel van Schöbel-Zhu, dat
uitgebreid is met een Gaussisch model voor de rente. Dit wordt besproken in
Hoofdstuk 1. Met dit model kunnen we, met een volledige correlatie matrix, op
een efficiënte manier aandeel-rente hybride producten waarderen.

Hoewel dit model analytisch traceerbaar is, en er een semi-analytische formule
voor de KF afgeleid kan worden, moeten de modelconcepten verder verbeterd
worden. In de overige hoofdstukken van dit proefschrift worden gegeneral-
iseerde hybride modellen beschouwd. Het stochastische volatiliteitsmodel van
Schöbel-Zhu wordt vervangen door het Heston model, dat een gevarieërdere
volatiliteitsstructuur bevat. Dit wordt beschreven in Hoofdstuk 2. In dit
model volgt het variantieproces een niet-centrale chi-kwadraat verdeling. Het
belangrijkste probleem dat opgelost dient te worden, is dat van een niet-
affiene covariantiestructuur. Dit kan, zoals wordt besproken in Hoofdstuk
2, worden opgelost door middel van linearisatie. Twee benaderingsmethoden
worden voorgesteld. Beide resulteren in een zeer nauwkeurige en efficiënte
modelcalibratie.

In Hoofdstuk 3 wordt aangetoond dat het mogelijk is om met een ge-
lineariseerde covariantiestructuur een Heston hybride model met een multi-
factor Gaussische korte-termijn-rente te definiëren, waarvoor geen additionele
benaderingen vereist zijn. Daarom is dit hybride model per definitie een affien
proces. Voor hybride modellen met een Gaussische korte-termijn-rentestructuur
wordt aangetoond dat de forward measure (de voorwaartse maat) de voorkeur
geniet voor het bepalen van de KF en de modelsimulatie.

Om hybride producten, die gevoelig zijn voor het zogenoemde hefboomeffect
dat geobserveerd wordt in de aandelen- en rentemarkt, te kunnen waarderen,
wordt in Hoofdstuk 4 een nieuw hybride model gëıntroduceerd, waarin de
stochastische rente verbeterd is en aangedreven wordt door het verplaatste diffusie
stochastische volatiliteit Libor Markt Model. We tonen aan dat, hoewel het model
een complexe structuur heeft, het toch mogelijk is om de KF af te leiden door
middel van een aantal linearisaties en veranderingen van de maat.



Samenvatting ix

Tot slot worden in Hoofdstuk 5 wisselkoersmodellen met meerdere valutako-
ersen behandeld. Vanwege het bestaan van lange-termijn exotische valutapro-
ducten, zoals de Power-Reverse Dual-Currency, ontwikkelen we verbeterde
valutakoersmodellen, waarin gecorreleerde rentes toegestaan zijn. We leggen
extra nadruk op de modelcalibratie van opties op wisselkoersen voor verschillende
uitoefenprijzen en looptijden.

Voor het waarderen van moderne financiële contracten, waarin meerdere pro-
ductklassen aanwezig zijn, bij financiële instellingen zijn geavanceerde modellen
nodig. In dit proefschrift stellen we een aantal hybride modellen voor, die gebruikt
kunnen worden om deze contracten te waarderen. Voor de ontwikkelde modellen
beschrijven we de efficiënte modelcalibratie en bespreken we simulatie met Monte
Carlo technieken. De hybride modellen zijn ook getest door een aantal producten
onder extreme parameterkeuzes te waarderen.
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CHAPTER 1

Introduction

The most valuable commodity I know of is
information.

Gordon Gekko (“Wall Street”)

1.1 Motivation and thesis organization

When the financial sector is in crisis, stocks go down and investors escape from
the market to reduce their losses. Central banks then decrease interest rates in
order to increase cash flow: this may lead to an increase in stock values, since
it becomes less attractive for investors to keep their money in bank accounts. It
is clear, therefore, that movements in the interest rate market can influence the
behavior of stock prices. This is taken into account in the so-called hybrid models
currently being developed.

The hybrid contracts from the financial industry are based on products
from different asset classes, like stock, interest rate and commodities. Since
these products have different expected returns and risk levels they can be often
designed to provide capital or income protection, diversification for portfolios and
customized solutions for both institutional and retail markets.

Proper construction of a new hybrid product may give reduced risk and an
expected return greater than that of the least risky asset. A simple example is a
portfolio containing a stock with a high risk and return and a bond with a low risk
and return. If one introduces an equity component into a pure bond portfolio the
expected return will increase. If the percentage of the equity in the portfolio is
increased, it eventually starts to dominate the structure and the risk may increase
with a higher impact for a low or negative correlation.

Advanced hybrid models can be expressed by a system of stochastic differential
equations (SDEs), for example for stock, volatility and interest rate, with a full

1
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correlation matrix. Such an SDE system typically contains many parameters
that should be determined by calibration with financial market data. This task is
challenging: European options need to be priced repeatedly within a calibration
procedure, which should therefore be done extremely fast and efficiently.

At a major financial institution like a bank, one can distinguish a number of
tasks that must be performed in order to price a new financial derivative product.
First, the new product is defined, as the market asks for it. If this is a derivative
product, then there are underlyings, modelled by stochastic differential equations
(SDEs). Each asset class has different characteristics, leading to different types
of SDEs. To achieve a reasonable model that is related to the present market,
one calibrates the SDEs by means of European options. These products also form
the basis for the hedge strategies used by the banks to reduce the risk associated
with selling the new product. Once the asset price model is determined, the new
derivative product is modelled accordingly. The product of interest is then priced
by means of a Monte Carlo simulation for the integral formulation of the problem,
or by numerical approximation of a partial differential equation.

The choice of numerical pricing method is thus based on whether one is aiming
for the model calibration, in which speed of a pricing method is essential, or for
the pricing of the new contract, for which robustness of the numerical method is
of highest importance. Fourier-based option pricing methods are computationally
fast but it is a challenge to employ them for the hybrid models mentioned above.
They work whenever the characteristic function of the asset price process, i.e.,
the Fourier transform of the probability density function, is available.

Although hybrid models can relatively easily be defined, real use of these
models is only guaranteed when they provide a satisfactory fit to market implied
volatility structures and when it is possible to set a non-zero correlation structure
among the processes from the different asset classes. Furthermore, highly efficient
pricing of fundamental contracts needs to be available for model calibration. In
this dissertation we propose models which satisfy these requirements.

This dissertation is organized as follows.
In Chapter 1 we introduce the affine diffusion framework which constitutes the

fundament for the models developed. We then present the extended stochastic
volatility equity model of Schöbel-Zhu [100] with stochastic interest rates of Hull-
White [56]. The model is used for pricing a number of typical equity-interest rates
products which are sensitive to the correlations between underlying asset classes.
This chapter contains essentially the contents of the article [50].

In Chapter 2 two approximations for the non-affine Heston-Hull-White and
Heston-Cox-Ross-Ingersoll hybrid models are proposed. We find that, in order to
obtain an affine approximation of the Heston hybrids, it is sufficient to linearize
the non-affine terms in the covariance matrix. The approximations give rise to
efficient determination of the corresponding characteristic functions. Chapter 2
contains essentially the contents of the article [48].

In Chapter 3 an affine variant of the Heston-multi-factor Gaussian interest
rate model is defined. For the model, denoted by AH-Gn++, we also discuss an
efficient Monte Carlo simulation scheme and an effective way for calculating the
Greeks of plain vanilla options. By measure change the equity forward prices are
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determined and the model dimensionality can be reduced. This chapter contains
essentially the contents of the article [49].

In Chapter 4 the Heston hybrid model with the interest rate driven by the
displaced-diffusion stochastic volatility Libor Market Model is derived. This new
model enables pricing hybrid products that are also sensitive to interest rate
smile/skew effects. By a number of linearizations the model can be used for
pricing the equity plain vanilla options. This chapter contains essentially the
contents of the article [46].

In Chapter 5 hybrid models developed in the context of Foreign Exchange are
discussed. The models under consideration incorporate correlated interest rate
processes driven either by short-rate models or by Market Models. The resulting
pricing formulas form the basis for calibration strategies. This chapter contains
essentially the contents of the article [47].

In Chapter 6 conclusions are presented, as well as an outlook for future
research.

1.2 Affine Diffusion processes

The affine diffusion (AD) class refers to a fixed probability space (Ω,F ,Q) and
a Markovian n-dimensional affine process X(t) in some space D ⊂ Rn. The
stochastic model of interest, without jumps, can be expressed by the following
stochastic differential form:

dX(t) = µ(X(t))dt + σ(X(t))dW̃(t),

where W̃(t) is a F(t)-standard column vector of independent Brownian motion in
Rn, µ(X(t)) : D → Rn, σ (X(t)) : D → Rn×n. Moreover, for processes in the AD
class it is assumed that drift µ(X(t)), covariance σ(X(t))σ(X(t))T and interest
rate component r(X(t)) are of the affine form, i.e.

µ(X(t)) = a0 + a1X(t), for any (a0, a1) ∈ Rn × Rn×n, (1.1)

(σ(X(t))σ(X(t))T)i,j = (c0)ij + (c1)TijX(t), with (c0, c1) ∈ Rn×n × Rn×n×n, (1.2)

r(X(t)) = r0 + rT1 X(t), for (r0, r1) ∈ R× Rn. (1.3)

Then, it can be shown that for a state vector, X(t), the discounted characteristic
function (ChF) is of the following form:

φ(u,X(t), t, T ) = EQ
(

e−
∫

T

t
r(s)ds+iuTX(T )

∣∣F(t)
)

= eA(u,τ)+BT(u,τ)X(t),

where the expectation is taken under the risk-neutral measure, Q, and T indicates
maturity time. For a time lag, τ := T − t, the coefficients A(u, τ) and BT(u, τ)
have to satisfy certain complex-valued ordinary differential equations (ODEs) (see
work of Duffie-Pan-Singleton [28] for details):





d

dτ
A(u, τ) = −r0 + BT(u, τ)a0+

1

2
BT(u, τ)c0B(u, τ),

d

dτ
B(u, τ) = −r1 + aT1 B(u, τ)+

1

2
BT(u, τ)c1B(u, τ).

(1.4)
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The dimension of the (complex valued) ODEs for B(u, τ) corresponds to the
dimension of the state vector, X(t). Typically, multi-factor models provide a
better fit to the observed market data than one-factor models. However, as the
dimension of SDE system increases, the ODEs to be solved to get the ChF become
increasingly complicated. If an analytic solution to the ODEs cannot be obtained,
one can apply well-known numerical ODE techniques instead. This may require
computational effort, which essentially makes the model problematic for practical
calibration. Therefore, an objective is also to define hybrid SDE models for which
an analytic solution to most of the ODEs appearing can be obtained.

1.2.1 Affine Diffusion equity models

Based on a geometric Brownian motion model for asset prices and under general
equilibrium assumptions, Black and Scholes [16] derived their famous partial
differential equation for option prices in 1973. Empirical studies of financial time
series have, however, revealed that the normality assumption for asset prices in
the Black-Scholes theory cannot capture heavy tails and asymmetries present in
log-returns in practice [97]. The empirical densities are usually highly peaked
compared to the normal density. Therefore, a number of alternative asset models
have appeared.

A major step, away from the assumption of constant volatility in asset pricing,
was made by Hull and White [55], Stein and Stein [104], Heston [54], Schöbel and
Zhu [100], who defined the volatility as a diffusion process. In general, under
risk-free measure Q, a model with diffusive volatility structure can be presented
as: {

dS(t)/S(t) = rdt+ a(t, v(t))dWx(t),

dv(t) = b(t, v(t))dt + c(t, v(t))dWv(t),
(1.5)

with constant interest rate r, correlation dWx(t)dWv(t) = ρx,vdt and |ρx,v| <
1. Depending on the functions a(t, v(t)), b(t, v(t)) and c(t, v(t)) a number of
stochastic volatility models has been defined.

By using a Black-Scholes replication argument for determining the option
prices, V (t, S(t), v(t)), we are able to determine the following partial differential
equation based on (1.5) (see Gatheral [40] for details):

rV =
∂V

∂t
+ rS

∂V

∂S
+ b(t, v)

∂V

∂v
+

1

2
c2(t, v)

∂2V

∂v2
+

1

2
a2(t, v)S2 ∂

2V

∂S2

+ρx,va(t, v)c(t, v)S
∂2V

∂S∂v
. (1.6)

The prices of financial derivatives can be determined by solving PDE (1.6) with
respect to a final condition that defines the payoff of the instrument at time T .

In the literature a number of methods for solving the PDE are available but
we are particulary interested in the Feynman-Kac formula given in the theorem
below.
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Theorem 1.2.1 (Feynman-Kac theorem). The partial differential equation

0 =
∂V

∂t
+ µ(t, x)

∂V

∂x
+

1

2
σ2(t, x)

∂2V

∂x2
− r(t, x)V,

with terminal condition H(T, x) has as its solution:

V (t, x) = E
(

e−
∫

T

t
r(s,X(s))dsH(T,X(T ))

∣∣F(t)
)
,

where the expectation is taken with respect to the process X, defined by:

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t),

Proof. The proof can be found in [85]. �

As we see, by the Feynman-Kac theorem we can move from the problem of
solving a PDE to evaluating an expectation of a discounted payoff. In the book
by Pelsser [90] a comprehensive discussion is provided.

Two of the most popular models in (1.5), (1.6) are the stochastic volatility
model of Heston [54] with a(t, v(t)) =

√
v(t), b(t, v(t)) = κ(v̄ − v(t)) and

c(t, v(t)) = γ
√
v(t) and the one by Schöbel-Zhu [100] with a(t, v(t)) = v(t),

b(t, v(t)) = κ(v̄ − v(t)) and c(t, v(t)) = γ, with constant parameters κ,γ and v̄.
Under the log-transformation i.e.: x(t) = logS(t), both models belong to the class
of affine diffusion models, so that pricing of simple financial products can be done
very efficiently.

Stochastic volatility has improved the accuracy of pricing derivatives under
heavy-tailed return distributions significantly. Although these stochastic volatility
models have become popular for derivative pricing and hedging, see, for ex-
ample, [37], financial engineers have also developed other complex exotic products,
that require additionally the modelling of a stochastic interest rate component. A
derivative pricing tool in which all these features are explicitly included may have
the potential of generating even more accurate option prices for hybrid products.

In the next subsection we discuss the short-rate models that will be used as
an extension of a stochastic volatility equity framework.

1.2.2 Affine interest rate models

A first attempt to relax the assumption of deterministic interest rates is to model
the rates by a stochastic instantaneous spot-rate process r(t). An instantaneous
short-rate is defined as the interest rate one earns on a riskless investment over an
infinitesimal period of time (typically denoted by dt) [90]. Among many, the most
successful short-rate models (due to their simple, affine structure) are the models
developed by Vašiček [108], Cox-Ingersoll-Ross [25] and Hull and White [56], the
latter two are extensions of the Vašiček model.

We will describe the main properties of the Hull-White model in more detail.
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The Hull-White model

We consider the Hull-White [56], single-factor, no-arbitrage yield curve model in
which the short-term interest rate is driven by an extended Ornstein-Uhlenbeck
(OU) mean reverting process,

dr(t) = λ (θ(t) − r(t)) dt+ ηdWr(t), r(0) = r0 > 0, (1.7)

where θ(t) > 0, t ∈ R+ is a time-dependent drift term, used to fit theoretical bond
prices to the yield curve observed in the market and Wr(t) is a Brownian motion
under risk-free measure Q. Parameter η determines the overall level of volatility
and the reversion rate parameter λ defines the relative volatilities. A high value
of λ causes short-term rate movements to damp out quickly, so that the long-term
volatility is reduced.

We present the derivation for the discounted characteristic function (ChF) of
the interest rate process. Integrating Equation (1.7), gives, for t ≥ 0,

r(t) = r0e−λt + λ

∫ t

0

θ(s)e−λ(t−s)ds+ η

∫ t

0

e−λ(t−s)dWr(s).

It is easy to show that r(t) is normally distributed with

EQ (r(t)|F(0)) = r0e−λt + λ

∫ t

0

θ(s)e−λ(t−s)ds,

and

VarQ (r(t)|F(0)) =
η2

2λ

(
1 − e−2λt

)
.

Moreover, it is known that for θ(t) constant, i.e., θ(t) ≡ θ,

lim
t→∞

EQ (r(t)|F(0)) = θ.

This means that for large t the first moment of the process converges to the mean
reverting level θ.

In order to simplify the derivations to follow we use the following proposition
(see Arnold [10], Oksendal [85], Pelsser [90]).

Proposition 1.2.2 (Hull-White decomposition). The Hull-White stochastic
interest rate process (1.7) can be decomposed into r(t) = r̃(t) + ψ(t), where

ψ(t) = r0e−λt + λ

∫ t

0

θ(s)e−λ(t−s)ds,

and
dr̃(t) = −λr̃(t)dt+ ηdWr(t),with r̃0 = 0.

Proof. The proof is straightforward by Itô’s lemma. �
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An advantage of this transformation is that the stochastic process r̃(t) is now
a basic OU mean reverting process, determined only by λ and η, independent of
function ψ(t). It is easier to analyze this model than the original Hull and White
model [56].

We investigate the discounted conditional characteristic function (ChF) of spot
interest rate r(t),

φHW(u, r(t), t, T ) = EQ
(

e−
∫

T

t
r(s)ds+iur(T )|F(t)

)

= EQ
(

e−
∫

T

t
ψ(s)ds+iuψ(T ) · e−

∫
T

t
r̃(s)ds+iur̃(T )|F(t)

)

= e−
∫

T

t
ψ(s)ds+iuψ(T ) · φHW(u, r̃(t), t, T ),

and see that process r̃(t) is affine. Hence according to [28] the discounted ChF,
φHW(u, r̃(t), τ) := φHW(u, r̃(t), t, T ), for the affine interest rate model for u ∈ C
is of the following form:

φHW(u, r̃(t), τ) = EQ
(

e−
∫

T

t
r̃(s)ds+iur̃(T )|F(t)

)
= eA(u,τ)+B(u,τ)r̃(t), (1.8)

with τ = T − t. The necessary “initial” condition accompanying (1.8) is
φHW(u, r̃(T ), 0) = eiur̃(T ), so that A(u, 0) = 0 and B(u, 0) = iu. The solutions
for A(u, τ) and B(u, τ) are provided by the following lemma:

Lemma 1.2.3 (Coefficients for discounted ChF for the Hull-White model). The
functions A(u, τ) and B(u, τ) in (1.8) are given by:

A(u, τ) =
η2

2λ3

(
λτ − 2

(
1 − e−λτ

)
+

1

2

(
1 − e−2λτ

))
− iu

η2

2λ2
(
1 − e−λτ

)2

−1

2
u2
η2

2λ

(
1 − e−2λτ

)
,

B(u, τ) = iue−λτ − 1

λ

(
1 − e−λτ

)
.

Proof. The proof can be found in [19] pp. 75. �

By simply taking u = 0, we obtain the risk-free pricing formula for a zero
coupon bond P (t, T ):

φHW(0, r(t), τ) = EQ
(

e−
∫

T

t
r(s)ds · 1|F(t)

)

= exp

(
−
∫ T

t

ψ(s)ds+A(0, τ) +B(0, τ)r̃(t)

)
.

Moreover, a zero-coupon bond can be written as the product of a deterministic
factor and the bond price in an ordinary Vašiček model with zero mean, under
the risk-neutral measure Q. Recall that process r̃(t) at time t = 0 is equal to 0,
so

P (0, T ) = exp

(
−
∫ T

0

ψ(s)ds+A(0, T )

)
,



8 Chapter 1

which gives

ψ(T ) = − ∂

∂T
logP (0, T ) +

∂

∂T
A(0, T ) = f(0, T ) +

η2

2λ2
(
1 − e−λT

)2
, (1.9)

where f(t, T ) is an instantaneous forward rate.
This result shows that ψ(t) can be obtained from the initial forward curve,

f(0, T ). The other time-invariant parameters, λ and η, have to be estimated
using market prices of, in particular, interest rate caps and swaptions. Now from
Proposition 1.2.2 we have θ(t) = 1

λ
∂
∂tψ(t) + ψ(t) which reads,

θ(t) = f(0, t) +
1

λ

∂

∂t
f(0, t) +

η2

2λ2
(
1 − e−2λt

)
. (1.10)

Moreover, the ChF, φHW(u, r(t), τ), for the Hull-White model can be simply
obtained by integration of ψ(s) over the interval [t, T ].

Advanced interest rate models

The arbitrage-free short-rate models are standard in pricing and hedging interest
rate (IR) products. When dealing with not too complicated products they perform
very well, especially in modelling at-the-money options. Despite their simple
structure, it is still a challenge to link these models with other asset classes to
construct the desired hybrid models. In the first three chapters of this thesis we
consider hybrids in which those short-rate models are used.

Although well-accepted by practitioners in modelling IR payoffs the assump-
tion that instantaneous rates exist is debatable [82]. Moreover, exotic, typically
callable 1, interest rate products are rather difficult to be priced accurately,
especially when pricing products which are sensitive to implied volatility smiles or
skews as commonly observed in the interest rate market. A more general class of
models which, instead of modelling the short-rate, describes the dynamics of the
forward dynamics are available. These are called the Market Models. The hybrid
models based on this, advanced, structure will be discussed in Chapters 4 and 5.

1.3 Extended Affine Diffusion models

Since the assumptions in the standard Black-Scholes [16] model on constant
volatility and constant interest rates do not find justification in reality we consider
models with a more realistic setup. It was found by Bakshi in [12] that by
assuming the volatility and the interest rates to be stochastic one can increase
the hedging performance, especially for long-term contracts. Particular example
of a structure for which the correlation between the equity and interest rates has
an effect on the price is the autocallable hybrid derivative. As the investor is, for
example, paying the LIBOR rate in exchange for his equity exposure, the duration
of the swap is equity-dependent. This structured product is sensitive to the

1meaning that the product comes with early-exercise features
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correlation between the interest rates and underlying equity (see, for example [86],
for details).

Before we consider the improved hybrid models we derive the basic framework
in which the Black-Scholes equity model is extended by an arbitrage-free Hull-
White IR process.

1.3.1 Black-Scholes-Hull-White hybrid model

As a starting point we extend the standard Black-Scholes model [16] by the
model of Hull-White. We call this model the Black-Scholes-Hull-White hybrid
(BSHW) model. The model is often treated as a benchmark for modelling Foreign
Exchange (FX) [42], inflation-indexed derivatives (Consumer-Price-Index) [64] or
long-maturity options [19].

Under the risk-adjusted measure, Q, the dynamics of the model X(t) =
[S(t), r(t)]T are given by the following system of SDEs:

{
dS(t)/S(t) = r(t)dt + σdWx(t), S(0) = S0 > 0,

dr(t) = λ(θ(t) − r(t))dt + ηdWr(t), r(0) = r0 > 0,

where Wx(t) and Wr(t) are two correlated Brownian motions with
dWx(t)dWr(t) = ρx,rdt, and |ρx,r| < 1, is the instantaneous-correlation
parameter between the asset price and the short-rate process. Parameters σ
and η determine the volatility of equity and interest rate, respectively; θ(t) is
a deterministic function (as defined in Equation (1.10)) and λ determines the
speed of mean reversion.

After transforming the stock to log-coordinates, x(t) = logS(t), the model
reads:

{
dx(t) = (r(t) − 1/2σ2)dt+ σdWx(t),

dr(t) = λ (θ(t) − r(t)) dt+ ηdWr(t).

It is easy to see that the model satisfies the affinity conditions in (1.1),(1.2)
and (1.3), so that the corresponding characteristic function φBSHW(u, x(t), t, T )
can easily be derived. For the state vector X(t) = [x(t), r(t)]T the discounted
characteristic function is given by,

φBSHW(u,X(t), t, T ) = EQ
(

e−
∫

T

t
r(s)ds+iuTX(T )|F(t)

)

= eA(u,τ)+BT(u,τ)X(t).

With u = [u, 0]T and τ := T − t it reads:

φBSHW(u, x(t), t, T ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)r(t)) ,
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with the final condition φBSHW(u, x(T ), T, T ) = eiux(T ), and the complex-valued
functions A(u, τ), B(u, τ) and C(u, τ) satisfy the following system of ODEs:

B′(u, τ) = 0,

C′(u, τ) = −1 +B(u, τ) − λC(u, τ),

A′(u, τ) =
1

2
σ2B(u, τ)(B(u, τ) − 1) + λθ(T − τ)C(u, τ)

+
1

2
η2C2(u, τ) + ρx,rσηB(u, τ)C(u, τ),

with the conditions: B(u, 0) = iu, C(u, 0) = 0, A(u, 0) = 0. It is easy to find the
solution of the ODEs given above:

B(u, τ) = iu,

C(u, τ) =
1

λ
(iu− 1)(1 − e−λτ ),

A(u, τ) =
1

2
σ2iu(iu− 1)τ +

ρx,rση

λ
(iu− 1)

(
τ +

1

λ

(
e−λτ − 1

))

+
η2

4λ3
(i+ u)2

(
3 + e−2λτ − 4e−λτ − 2λτ

)
+ λ

∫ τ

0

θ(T − s)C(u, s)ds.

The expression for A(u, τ) contains an integral over deterministic function,
θ(t), which is calibrated to the current yield. This integral can be determined
analytically, which will be presented in the follow-up section.

The ChF for the BSHW model can easily be determined and Fourier inversion
techniques can efficiently be used for a number of payoffs. Moreover, pricing of
plain vanilla equity options can be performed analytically under the T -forward
measure [19, 87], as in the standard Black-Scholes model. The concept of measure
change will be discussed later in this thesis (Chapter 3) when we deal with
dimension reduction for multi-factor interest rate models.

1.3.2 Extended stochastic volatility model of Schöbel-Zhu

An attempt to model the random behavior of the volatility and interest rates was
presented in [11, 83] where the Heston stochastic volatility model was combined
with an independent interest rate process.

In this section we present a stochastic volatility (SV) equity hybrid model
which contains a stochastic interest rate process and a full matrix of correlations
between the underlying Brownian motions. In particular, we add to the SV model
the well-known Hull-White stochastic interest rate process [56], mentioned before.

For state vector X(t) = [S(t), r(t), σ(t)]
T

let us fix a probability space
(Ω,F ,Q) and a filtration F = {F(t) : t ≥ 0}, which satisfies the usual conditions.
Furthermore, X(t) is assumed to be Markovian relative to F(t).
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So, under the risk-neutral measure, Q, we consider a three-dimensional system
of stochastic differential equations, of the following form:





dS(t)/S(t) = r(t)dt+ σp(t)dWx(t),

dr(t) = λ(θ(t) − r(t))dt+ ηdWr(t),

dσ(t) = κ (σ̄ − σ(t)) dt+ γσ1−p(t)dWσ(t),

(1.11)

where p is an exponent, κ and λ control the speed of mean reversion, η represents
the interest rate volatility, and γσ1−p(t) determines the volatility of the σ(t)
process. Parameters σ̄ and θ(t) are the long-run mean of the volatility 2 and
the interest rate processes, respectively. Wk(t) with k = {x, r, σ} are correlated
Wiener processes, also governed by an instantaneous correlation matrix:

C :=




1 ρx,σ ρx,r
ρσ,x 1 ρσ,r
ρr,x ρr,σ 1


 dt. (1.12)

The system in (1.11) for p = 1
2 is the Heston-Hull-White hybrid model and,

under the assumptions of non-zero correlations, will be discussed in more detail
in Chapter 2. If we keep, however, p = 1

2 and r(t) constant, we obtain the Heston
model [54],

{
dS(t)/S(t) = rdt+

√
σ(t)dWx(t),

dσ(t) = κH
(
σ̄H − σ(t)

)
dt+ γH

√
σ(t)dWσ(t),

where the variance process is of CIR-type [25].
For p = 1 our model is, in fact, the generalized Stein-Stein [104] model, which

is also called the Schöbel-Zhu [100] model:





dS(t)/S(t) = rdt+
√
v(t)dWx(t),

dv(t) = 2κ

(
σ̄σ(t) +

γ2

2κ
− v(t)

)
dt+ 2γ

√
v(t)dWσ(t),

in which the squared volatility, v(t) = σ2(t), represents the variance of the
instantaneous stock return.

It was already indicated in [54] and [100] that the plain Schöbel-Zhu model is
a particular case of the original Heston model. For σ̄ = 0, the Schöbel-Zhu model
equals the Heston model in which κH = 2κ, σ̄H = γ2/2κ, and γH = 2γ. This
relation gives a direct connection between their discounted characteristic functions
(see [74]). Finally, if we set r(t) constant, p = 0 in system of Equations (1.11), and
zero correlations, the model collapses to the standard Black-Scholes model [16].

We will choose the parameters in the equations (1.11), such that we deal with
the Schöbel-Zhu-Hull-White 3 (SZHW). In [39] and [24] it is was shown that the

2depending on parameter p, σ(t) denotes either volatility or variance
3The work on the SZHW hybrid model was initiated by Pelsser [73] and resulted in a

paper [106].
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so-called linear-quadratic diffusion (LQD) models are equivalent to the AD models
with an augmented state vector.

Now, we derive an analytic pricing formula in (semi-)closed-form for European
call options under the SZHW asset pricing model with a full matrix of correlations,
defined by (1.12).

The Schöbel-Zhu-Hull-White hybrid model can be expressed by the following
3D system of SDEs





dS(t)/S(t) = r(t)dt+ σ(t)dWx(t),

dr(t) = λ (θ(t) − r(t)) dt+ ηdWr(t),

dσ(t) = κ(σ̄ − σ(t))dt+ γdWσ(t),

(1.13)

with the parameters as in Equations (1.11), for p = 1, and the correlations:




dWx(t)dWσ(t) = ρx,σdt,
dWx(t)dWr(t) = ρx,rdt,
dWr(t)dWσ(t) = ρr,σdt.

By extending the space vector (as in [24] or [89]) with another, latent, stochastic
variable, defined by

v(t) := σ2(t),

and choosing x(t) = logS(t), we obtain the following 4D system of SDEs,




dx(t) = (r̃(t) + ψ(t) − 1/2v(t))dt+
√
v(t)dWx(t),

dr̃(t) = −λr̃(t)dt+ ηdWr(t),

dv(t) =
(
−2v(t)κ+ 2κσ̄σ(t) + γ2

)
dt+ 2γ

√
v(t)dWσ(t),

dσ(t) = κ(σ̄ − σ(t))dt+ γdWσ(t),

(1.14)

where we also used r(t) = r̃(t) + ψ(t), as in Subsection 1.2.2. Note that θ(t) is
now included in ψ(t). We see that model (1.14) is indeed affine in state vector

X(t) = [x(t), r̃(t), v(t), σ(t)]
T

. By the extension of the vector space we have
obtained an affine model which enables us to apply the results from [28]. In order
to simplify the calculations, we introduce a variable

x(t) := x̃(t) + Ψ(t), where Ψ(t) =

∫ t

0

ψ(s)ds,

and

dx̃(t) =

(
r̃(t) − 1

2
v(t)

)
dt+

√
v(t)dWx(t).

According to [28] the discounted ChF for u ∈ C4 is of the following form,

φSZHW(u,X(t), t, T ) = EQ
(

e−
∫

T

t
r(s)dseiu

TX(T )|F(t)
)

= e−
∫

T

t
ψ(s)ds+iuT[Ψ(T ),ψ(T ),0,0]TEQ

(
e−

∫
T

t
r̃(s)ds+iuTX∗(T )|F(t)

)

= e−
∫

T

t
ψ(s)ds+iuT[Ψ(T ),ψ(T ),0,0]TeA(u,τ)+BT(u,τ)X∗(t),

(1.15)
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where X∗(t) = [x̃(t), r̃(t), v(t), σ(t)]T and B(u, τ) = [B(u, τ), C(u, τ), D(u, τ), E(u, τ)]
T

.
Now, we set u = [u, 0, 0, 0]T, so that at time T we obtain the obvious final
condition:

φSZHW(u,X∗(T ), T, T ) = EQ
(

eiu
TX∗(T )|F(T )

)
= eiu

TX∗(T ) = eiux̃(T ),

(as the price at time T is known). This condition for τ = 0 gives B(u, 0) =
iu, A(u, 0) = 0, C(u, 0) = 0, D(u, 0) = 0, E(u, 0) = 0. The following lemmas
define the ODEs, from (1.4), and detail their solution.

Lemma 1.3.1 (Schöbel-Zhu-Hull-White ODEs). The functions A(u, τ), B(u, τ),
C(u, τ), D(u, τ), E(u, τ), u ∈ R, in (1.15) satisfy the following system of ODEs:

B′(u, τ) = 0,

C′(u, τ) = −1 +B(u, τ) − λC(u, τ),

D′(u, τ) = 1/2B(u, τ)(B(u, τ) − 1) + 2 (ρx,σγB(u, τ) − κ)D(u, τ) + 2γ2D2(u, τ),

E′(u, τ) = (2κσ̄D(u, τ) + ρx,rηB(u, τ)C(u, τ) + 2ρr,σγηC(u, τ)D(u, τ))

+
(
2γ2D(u, τ) − κ+ ρx,σγB(u, τ)

)
E(u, τ),

A′(u, τ) = γ2D(u, τ) + 1/2η2C2(u, τ) +
[
κσ̄ + 1/2γ2E(u, τ)

+ ρr,σγηC(u, τ)
]
E(u, τ),

with the conditions: B(u, 0) = iu, C(u, 0) = 0, D(u, 0) = 0, E(u, 0) = 0, and
A(u, 0) = 0.

Proof. For a given state vector X∗(t) = [x̃(t), r̃(t), v(t), σ(t)]T, and φ :=
φSZHW(u, x̃(t), t, T ) we find the system of the ODEs satisfying the following
Kolmogorov backward equation:

0 =
∂φ

∂t
+

(
r̃ − 1

2
v

)
∂φ

∂x̃
− λr̃

∂φ

∂r̃
+
(
γ2 − 2κv + 2σ̄κσ

) ∂φ
∂v

+ κ (σ̄ − σ)
∂φ

∂σ

+
1

2
v
∂2φ

∂x̃2
+

1

2
η2
∂2φ

∂r̃2
+ 2vγ2

∂2φ

∂v2
+

1

2
γ2
∂2φ

∂σ2
+ ρx,rησ

∂2φ

∂x̃∂r̃
+ 2ρx,σγv

∂2φ

∂x̃∂v

+ρx,σγσ
∂2φ

∂x̃∂σ
+ 2ρr,σηγσ

∂2φ

∂r∂v
+ ρr,σηγ

∂2φ

∂r∂σ
+ 2γ2σ

∂2φ

∂v∂σ
− r̃φ, (1.16)

subject to terminal condition φ(u, x̃(T ), T, T ) = exp(iux̃(T )). Since the PDE
in (1.16) is affine, its solution is of the following form:

φ := φSZHW(u, x̃(t), t, T ) = exp
(
A(u, t, T ) +B(u, t, T )x̃(t) + C(u, t, T )r̃(t)

+D(u, t, T )v(t) + E(u, t, T )σ(t)
)
.
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By setting A := A(u, t, T ), B := B(u, t, T ), C := C(u, t, T ), D := D(u, t, T ) and
E := E(u, t, T ) we find the following partial derivatives:

∂φ

∂t
= φ

(
∂A

∂t
+ x̃

∂B

∂t
+ r̃

∂C

∂t
+ v

∂D

∂t
+ σ

∂E

∂t

)
,

∂φ

∂x̃
= Bφ,

∂2φ

∂x̃2
= B2φ,

∂2φ

∂x̃∂r
= BCφ,

∂2φ

∂x̃∂v
= BDφ,

∂2φ

∂x̃∂σ
= BEφ,

∂φ

∂r̃
= Cφ,

∂2φ

∂r̃2
= C2φ,

∂2φ

∂r̃∂v
= CDφ,

∂2φ

∂r̃∂σ
= CEφ,

∂φ

∂v
= Dφ,

∂2φ

∂v2
= D2φ,

∂2φ

∂v∂σ
= DEφ,

∂φ

∂σ
= Eφ,

∂2φ

∂σ2
= E2φ.

By substitution, PDE (1.16) becomes:

0 =
∂A

∂t
+ x̃

∂B

∂t
+ r̃

∂C

∂t
+ v

∂D

∂t
+ σ

∂E

∂t
+
(
r̃ − 1

2
v
)
B − λr̃C +

(
γ2 − 2κv + 2σ̄κσ

)
D

+κ (σ̄ − σ)E +
1

2
vB2 +

1

2
η2C2 + 2vγ2D2 +

1

2
γ2E2 + ρx,rησBC + 2ρx,σγvBD

+ρx,σγσBE + 2ρr,σηγσCD + ρr,σηγCE + 2γ2σDE − r̃.

Now, for τ = T − t, by collecting the terms for x̃, r̃, v, σ we find the set of ODEs
which concludes the proof. �

Lemma 1.3.2. The solution to the system of ODEs, specified in Lemma 1.3.1 is
given by:

B(u, τ) = iu,

C(u, τ) =
1

λ
(iu− 1)(1 − e−λτ ),

D(u, τ) =
−a1 − d

2a2(1 − ge−dτ)

(
1 − e−dτ

)
,

E(u, τ) = ec1τ
1

1 − ge−dτ

(
κσ̄

a2
(−a1 − d)f1(τ) +

ρx,rη

λ
iu(iu− 1) (f2(τ) + gf3(τ))

)

−ec1τ
ρr,σηγ

(1 − ge−dτ )λa2
(a1 + d)(iu − 1) (f4(τ) + f5(τ)) ,

A(u, τ) =
1

4

(
(−a1 − d)τ − 2 log

(
1 − ge−dτ

1 − g

))
+ f6(τ) + µ̃(u, τ),

with

µ̃(u, τ) =

∫ τ

0

(
κσ̄ +

1

2
γ2E(u, s) + ρr,σγηC(u, s)

)
E(u, s)ds, (1.17)
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where

f1(τ) =
1

c1
(1 − e−c1τ ) +

1

c1 + d

(
e−(c1+d)τ − 1

)
,

f2(τ) =
1

c1
(1 − e−c1τ ) +

1

c1 + λ

(
e−(c1+λ)τ − 1

)
,

f3(τ) =
e−(c1+d)τ − 1

c1 + d
+

1 − e−(c1+d+λ)τ

c1 + d+ λ
,

f4(τ) =
1

c1
− 1

c1 + d
− 1

c1 + λ
+

1

c1 + d+ λ
,

f5(τ) = e−(c1+d+λ)τ

(
eλτ
(

1

c1 + d
− edτ

c1

)
+

edτ

c1 + λ
− 1

c1 + d+ λ

)
,

f6(τ) =
η2

4λ3
(i+ u)2

(
3 + e−2λτ − 4e−λτ − 2λτ

)
,

and a0 = − 1
2u(i + u), a1 = 2(ρx,σγiu − κ), a2 = 2γ2, d =

√
a21 − 4a0a2, g =

−a1 − d

−a1 + d
and c1 = ρx,σγiu− κ− 1

2 (a1 + d).

Proof. In the 1D case, i.e., u = [u, 0, 0, 0]T we start by solving the ODE for C(u, τ)
(using B(u, τ) = iu):

C′(u, τ) + λC(u, τ) = iu− 1.

Standard calculations give

∫ τ

0

d
(
eλsC(u, s)

)
= (iu− 1)

∫ τ

0

eλsds, i.e.,

eλτC(u, τ) − e0C(u, 0) = (iu− 1)

(
1

λ
eλτ − 1

λ

)
.

Using the condition, C(u, 0) = 0, gives, C(u, τ) = 1
λ (iu− 1)

(
1 − e−λτ

)
.

The ODE for D(u, τ) now reads:

D′(u, τ) = −1

2
u(i+ u) + 2(ρx,σγiu− κ)D(u, τ) + 2γ2D2(u, τ).

In order to simplify this equation we introduce the variables a0 = − 1
2u(i + u),

a1 = 2(ρx,σγiu − κ) and a2 = 2γ2. The ODE can then be presented in the
following form:

D′(u, τ) = a0 + a1D(u, τ) + a2D
2(u, τ). (1.18)

Following the calculations for the Heston model in [54] the solution of (1.18) reads:

D(u, τ) =
−a1 − d

2a2(1 − ge−dτ )

(
1 − e−dτ

)
,

with d =
√
a21 − 4a0a2, g =

−a1 − d

−a1 + d
.
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Next, we solve the ODE for E(u, τ):

E′(u, τ) = (2κσ̄D(u, τ) + ρx,rηiuC(u, τ) + 2ρr,σηγC(u, τ)D(u, τ))

+
(
2γ2D(u, τ) − κ+ ρx,σγiu

)
E(u, τ).

We introduce the following functions,

ζ1(τ) = 2κσ̄D(u, τ) + ρx,rηiuC(u, τ) + 2ρr,σηγC(u, τ)D(u, τ),

ξ1(τ) = 2γ2D(u, τ) − κ+ ρx,σγiu.

This leads to the following ODE:

E′(u, τ) − ξ1(τ)E(u, τ) = ζ1(τ),

whose solution follows from,

d

dτ

(
exp

(
−
∫ τ

0

ξ1(s)ds

)
E(u, τ)

)
= ζ1(τ) exp

(
−
∫ τ

0

ξ1(s)ds

)
,

or

exp

(
−
∫ τ

0

ξ1(s)ds

)
E(u, τ) =

∫ τ

0

ζ1(s) exp

(
−
∫ s

0

ξ1(k)dk

)
ds.

So, finally, we need to calculate

E(u, τ) = exp

(∫ τ

0

ξ1(s)ds

)∫ τ

0

ζ1(s) exp

(
−
∫ s

0

ξ1(k)dk

)
ds,

with E(u, 0) = 0.
For this, we start with the integral for ξ1(k):

∫ s

0

ξ1(k)dk = (ρx,σγiu− κ) s+ 2γ2
∫ s

0

D(u, k)dk

= c1s− log

(
1 − ge−ds

1 − g

)
,

with c1 =
(
ρx,σγiu− κ− 1

2 (a1 + d)
)
. Next, we need to calculate the exponent of

the integral of ξ1(k):

exp

(
−
∫ s

0

ξ1(k)dk

)
= exp

(
−c1s+ log

(
1 − ge−ds

1 − g

))

=
1 − ge−ds

1 − g
e−c1s,

and we can include ζ1(t) in the integral:

∫ τ

0

ζ1(s)e−
∫

s

0
ξ1(k)dkds = 2κσ̄

∫ τ

0

D
1 − ge−ds

(1 − g)ec1s
ds+ ρx,rηiu

∫ τ

0

C
1 − ge−ds

(1 − g)ec1s
ds

+2ρr,σηγ

∫ τ

0

CD
1 − ge−ds

(1 − g)ec1s
ds,
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where we used the notation D := D(u, s) and C := C(u, s). This integral is split
into three parts. The first part can be solved analytically:

2κσ̄

∫ τ

0

D(u, s)
1 − ge−ds

1 − g
e−c1sds = 2κσ̄

∫ τ

0

(−a1 − d)

2a2

(
1 − e−ds

)

1 − g
e−c1sds

= κσ̄
(−a1 − d)

a2(1 − g)
f1(τ),

where

f1(τ) =
1

c1
(1 − e−c1τ ) +

1

c1 + d

(
e−(c1+d)τ − 1

)
. (1.19)

The second integral can be solved analytically as well:

ρx,rηiu

∫ τ

0

C
1 − ge−ds

(1 − g)ec1s
ds =

ρx,rηiu(iu− 1)

λ(1 − g)

∫ τ

0

(
1 − e−λs

) (
1 − ge−ds

)
e−c1sds

=
ρx,rηiu(iu− 1)

λ(1 − g)
(f2(τ) + gf3(τ)) ,

with C := C(u, s) and

f2(τ) =
1

c1
(1 − e−c1τ ) +

1

c1 + λ

(
e−(c1+λ)τ − 1

)
, (1.20)

f3(τ) =
e−(c1+d)τ − 1

c1 + d
+

1 − e−(c1+d+λ)τ

c1 + d+ λ
, (1.21)

and the third part reads:

2ρr,σηγ

∫ τ

0

CD
1 − ge−ds

(1 − g)ec1s
ds = −ρr,σηγ(a1 + d)(iu− 1)

λa2(1 − g)
(f4(τ) + f5(τ)) ,

with C := C(u, s), D := D(u, s) and

f4(τ) =
1

c1
− 1

c1 + d
− 1

c1 + λ
+

1

c1 + d+ λ
, (1.22)

f5(τ) = e−(c1+d+λ)τ

(
eλτ

(
1

c1 + d
− edτ

c1

)
+

edτ

c1 + λ
− 1

c1 + d+ λ

)
. (1.23)

So finally we have:

E(u, τ) = ec1τ
1

1 − ge−dτ

(
κσ̄

a2
(−a1 − d)f1(τ) +

ρx,rη

λ
iu(iu− 1) (f2(τ) + gf3(τ))

)

−ec1τ
ρr,σηγ

(1 − ge−dτ)λa2
(a1 + d)(iu − 1) (f4(τ) + f5(τ)) ,

with functions f1(τ) in (1.19), f2(τ) in (1.20), f3(τ) in (1.21), f4(τ) in (1.22) and
f5(τ) in (1.23). Now, we solve the ODE for A(u, τ) :

A′(u, τ) = γ2D(u, τ) +
1

2
η2C2(u, τ)

︸ ︷︷ ︸
A1(u,τ)

+

(
κσ̄ +

1

2
γ2E(u, τ) + ρr,σγηC(u, τ)

)
E(u, τ)

︸ ︷︷ ︸
A2(u,τ)

,
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with solution:

A(u, τ) = A(u, 0) +

∫ τ

0

A1(u, s)ds+

∫ τ

0

A2(u, s)ds,

with A(u, 0) = 0. In order to find A(u, τ) we have to evaluate the integrals
of A1(u, τ) and A2(u, t). Integral A2(u, τ) involves a hyper-geometric function
(called the 2F1 function or simply Gaussian function), which is computed
numerically here. For integral A1(u, τ) we have the following solution:

∫ τ

0

A1(u, s)ds =
1

4

(
(−a1 − d)τ − 2 log

(
1 − ge−dτ

1 − g

))
+ f6(τ),

with

f6(τ) =
η2

4λ3
(i + u)2

(
3 + e−2λτ − 4e−λτ − 2λτ

)
. (1.24)

Since in the integral of A1(u, τ) a complex-valued logarithm appears, it should be
treated with some care. According to [74], an easy way to avoid any errors due to
complex-valued discontinuities is to apply numerical integration. It turns out that
the other formulations give rise to discontinuities which may cause inaccuracies.

�

Now, since we have found expressions for the coefficients A(u, τ) and BT(u, τ)
we return to Equation (1.15) and derive a representation in which the term
structure is included. It is known that the price of a zero-coupon bond can
be obtained from the characteristic function by taking t = 0 and u = [0, 0, 0, 0]

T
.

So,

φSZHW(0, x(t), τ) = exp

(
−
∫ T

0

ψ(s)ds

)
· φSZHW(0, x̃(t), τ).

Since r̃(0) = 0 and v(0) = σ2(0) we find,

P (0, T ) = exp
(
A(0, τ) +B(0, τ)x(0) +D(0, τ)σ2(0) + E(0, τ)σ(0) −

∫ T

0

ψ(s)ds
)
,

with the final conditions at u = 0: B(0, T ) = 0, D(0, T ) = 0, E(0, T ) = 0 and

A(0, T ) =
1

2
η2
∫ T

0

C2(0, s)ds =
η2

4λ3

(
1 + 2λT −

(
e−λT − 2

)2)
.

We thus find,

P (0, T ) = exp

(
−
∫ T

0

ψ(s)ds+A(0, T )

)
.

By combining the results from the previous lemmas, we can prove the following
lemma.
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Lemma 1.3.3. For t = 0, in the Schöbel-Zhu-Hull-White model, the discounted
characteristic function, φSZHW(u, x(0), 0, T ) for log S(t), is given by

φSZHW(u, x(0), 0, T ) = exp(Ã(u, τ) +B(u, τ)x(0) +D(u, τ)σ2(0) + E(u, τ)σ(0)),

where B(u, τ), C(u, τ), D(u, τ), E(u, τ) and A(u, τ) are given in Lemma 1.3.2,
and

Ã(u, τ) = A(u, τ) + (iu− 1)

∫ T

0

ψ(s)ds = A(u, τ) + (iu− 1)Υ(u, 0, T ), (1.25)

with

Υ(u, 0, T ) =

{
log

(
1

P (0, T )

)
+

η2

2λ2

(
τ +

2

λ

(
e−λT − 1

)
− 1

2λ

(
e−2λT − 1

))}
.

(1.26)

Proof. For u = [u, 0, 0, 0]T Equation (1.15) reads:

φSZHW(u, x(0), 0, T ) = exp

(
−
∫ T

0

ψ(s)ds+ iu

∫ T

0

ψ(s)ds

)
φSZHW(u, x̃(0), 0, T )

= exp

(
(iu− 1)

∫ T

0

ψ(s)ds

)
exp

(
A(u, τ) + BT(u, τ)X∗(0)

)
,

with B(u, τ) = [B(u, τ), C(u, τ), D(u, τ), E(u, τ)]T and X∗(0) =
[x̃(0), r̃(0), σ2(0), σ(0)]T.

We set

Ã(u, τ) = (iu− 1)

∫ T

0

ψ(s)ds+A(u, τ), (1.27)

with function ψ(t) for the Hull-White model determined in (1.9): ψ(t) = f(0, t)+
η2

2λ2
(
1 − e−λt

)2
. Since f(0, T ) = − ∂

∂T
logP (0, T ) the integral in (1.27) reads

∫ T

0

ψ(s)ds = −
∫ T

0

d logP (0, s) +
η2

2λ2

∫ T

0

(
1 − e−λs

)2
ds.

After simplifications the proof is finished. �

Numerical integration for the SZHW hybrid model

Lemma 1.3.2 indicates that many terms in the ChF for the SZHW hybrid model
can be obtained analytically, except the µ̃(u, τ)-term (1.17), which requires
numerical integration of the hyper-geometric function 2F1 [76]. For a given
partitioning

0 = s1 ≤ s2 ≤ . . . sN ′−1 ≤ sN ′ = τ,
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we calculate the integral approximation of (1.17):

µ̃(u, τ) ≈
N ′−1∑

i=0

(
κσ̄ +

1

2
γ2E(u, si) + ρr,σηγC(u, si)

)
E(u, si)δsi , (1.28)

with δsi = si+1−si and the functions C(u, si) and E(u, si) as in Lemma 1.3.2. In
Table 1.1 we present the numerical convergence results for two basic quadrature
rules for one particular (representative) example of (1.28). It shows that both
integration routines – the composite Trapezoidal and the composite Simpson
rule – converge very satisfactory with only a small number of grid points, N ′.
Convergence with the Trapezoidal rule is of second-order, and with Simpson’s
rule of fourth-order, as expected. Simpson’s rule is superior in terms of the ratio
between time and absolute error. We therefore continue, in sections to follow,
with the Simpson rule, setting N ′ = 26.

Table 1.1: CPU time, absolute error, and the convergence rate for different numbers
of integration points N ′ for evaluating function µ̃(u, τ ). The time to maturity is set to
τ = 1 and u = 5 and the remaining parameters for the model are λ = 0.5, κ = 1, η = 0.1,
σ̄ = 0.3, γ = 0.5, ρx,σ = −50%, ρx,r = 30%, ρr,σ = −90%, r0 = 0.05 and σ0 = 0.256.

(N ′ = 2n
′

) Trapezoidal rule Simpson’s rule
n′ time (sec) |error| time (sec) |error|
2 1.5e-4 1.5e-4 1.5e-4 7.3e-6
4 2.6e-4 6.0e-6 2.7e-4 2.3e-8
6 3.4e-4 3.4e-7 3.5e-4 1.3e-10
8 6.6e-4 2.1e-8 6.7e-4 6.0e-13

1.4 Pricing, hedging and calibration

1.4.1 European options

The pricing of plain vanilla European options is commonly done in the Fourier
domain when the ChF of the logarithm of the stock price is available.

In [32] a highly efficient pricing method was developed based on the Fourier-
cosine expansion of the density function, and called COS method. The COS
algorithm relies heavily on the availability of the characteristic function of the
price process, which is guaranteed if we stay within the AD class, see Duffie-Pan-
Singleton [28], Lee [70] and Lewis [71]. This method can, like the Carr-Madan
method [23], compute the option prices for a whole strip of strike prices Ki,
i = 1, . . . , Nk in one computation. The COS method can achieve an exponential
convergence rate for European, Bermudan and barrier options for Lévy models
whose probability density function is in C∞[b1, b2], with non-zero derivatives [32].

Here, we extend the COS method and include a stochastic interest rate process.
We start the description of the COS pricing method with the general risk-neutral



Introduction 21

pricing formula:

V (t, S(t)) = EQ
(

e−
∫

T

t
r(s)dsV (T, S(T ))|F(t)

)

= EQ
(

eZ(T )V (T, ex(T ))|F(t)
)
, (1.29)

where Z(T ) = −
∫ T
t
r(s)ds. The price of the claim V (t, S(t)) can be therefore

expressed as:

V (t, S(t)) =

∫

R

V (T, ex)

(∫

R

ezfZ,X(z, x)dz

)
dx =

∫

R

V (T, ex)f̂(x)dx,

with f̂(x) =
∫
R

ezfZ,X(z, x)dz
As we assume a fast decay of the density function, the following approximation

can be made,

V (t, S(t)) ≈
∫

D̃

V (T, ex)f̂(x)dx, (1.30)

where: D̃ = [b1, b2], and |D̃| = b2 − b1, b2 > b1. The discounted ChF is now given
by:

φ(u,X(t), t, T ) = EQ
(

e−
∫

T

t
r(s)ds+iuTX(T )|F(t)

)
,

which, for τ = T − t, u = [u, 0, . . . , 0]T and X(t) = [S(t), r(t), . . . ]T, reads

φ(u, x(t), t, T ) =

∫∫

R

ez+iuxfZ,X(z, x)dzdx =

∫

R

eiuxf̂(x)dx. (1.31)

Note that the integration in (1.31) represents simply the Fourier transform of

f̂(x), which can be approximated on a bounded domain D̃,

φ(u, x(t), t, T ) := φ(u, x(t), τ) ≈
∫

D̃

eiuxf̂(x)dx =: φ̃(u, x(t), τ). (1.32)

Since we are interested in the pricing of claims of the form (1.30), we link f̂(x) to
its ChF, via the following result:

Result 1.4.1. For a given bounded domain D̃ = [b1, b2], and Nc the number of

terms in the expansion, the probability density function f̂(x) given by (1.30) can
be approximated by,

f̂(x) ≈
Nc∑

n=0

2ωn
b2 − b1

Re
{
φ̃ (kn, x(t), τ) e−iknb1

}
cos(kn(y − b1)),

with Re denoting taking the real part of the argument in brackets; φ̃(u, x(t), τ) is
the corresponding ChF, ω0 = 1/2, ωn = 1, n ∈ N+ and k = π/(b2 − b1).
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For a proof and for error analysis regarding the different approximations we
refer to the original paper on the COS method [32].

Using the result above, we replace the probability density function f̂(x) in
(1.30), as follows

V (t, S(t)) ≈
∫

D̃

V (T, y)

Nc∑

n=0

θn cos

(
nπ

(y − b1)

b2 − b1

)
dy

=

Nc∑

n=0

ωnℜ
(
φ̃ (kn, x(t), τ) e−iknb1

)
Γb1,b2n , (1.33)

where θn = 2ωn

b2−b1
Re
{
φ̃ (kn, x(t), τ) e−iknb1

}
and the coefficients Γb1,b2n are known

analytically for European options, see [32] for details.
We note that, depending on the payoff, the Γb1,b2n in (1.33) change, but a closed-

form expression is available for the most common payoffs. As the hybrid products
will be calibrated to plain vanilla options, we provide the gamma coefficients for
the European call options:

Result 1.4.2. The Γb1,b2n in (1.33) for pricing a call option defined by:

V (T, y) = max (K(ey − 1), 0) ,

with y = log
(
S
K

)
for a given strike K, are given by

Γb1,b2n =
2K

b2 − b1
(ψn − χn) , (1.34)

where

χn =
1

1 + (kn)2
(
cos(nπ)eb2 − cos(−b1kn) + kn sin(nπ)eb2 − kn sin(−b1kn)

)
,

and

ψn =

{
b2 − b1
nπ

(sin(nπ) − sin (−b1kn)) for n 6= 0,

b2 for n = 0.

Proof. The proof is straightforward by calculating the integral in (1.33) with the
transformed payoff function V (T, y). �

Since the coefficients Γb1,b2n are available in closed-form, the expression in (1.33)
can easily be computed. The availability of such a pricing formula is particularly
useful in a calibration procedure, in which the parameters of the stochastic
processes need to be approximated. In practice, option pricing models are
calibrated to a number of call option prices observed in the market. It is therefore
necessary for such a procedure to be highly efficient and a (semi-)closed-form for
an option pricing formula is desirable. The COS method’s accuracy is related
to the size of the integration domain, D̃. If the domain is chosen too small, we
expect a significant loss of accuracy. On the other hand if the domain is too
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wide, a large number of terms in the Fourier expansion, Nc, has to be used for
satisfactory accuracy. In [32] the truncation range was defined in terms of the

moments of log
(
S(t)
K

)
of the form:

b1,2 = µ1 ± 
√
µ2 +

√
µ4, (1.35)

with the minus sign for b1; and the plus sign for b2, the µi are the corresponding
i-th moments, and  is an appropriate constant. In our work, with the moments
not directly available, we apply a simplified approximation for the integration
range, and use:

b1,2 = 0 ± 
√
τ , (1.36)

with τ , the time to maturity. As in [32], we fix  = 8 in (1.36).

The Greeks

When using the SZHW hybrid model the impact of the correlation effect between
different asset classes on the hedging costs is particularly interesting. Since the
SZHW ChF is available we can determine the Greeks. Their expression is also
related to the ChF.

In the previous section we have found that the ChF for the SZHW hybrid
model, for t = 0, can be expressed as:

φSZHW(u, x(0), 0, T ) = exp(Ã(u, τ) + iux(0) +D(u, τ)σ2(0) + E(u, τ)σ(0)).

The payoff sensitivity to a particular parameter, Θ, can be expressed as:

∂

∂Θ
V (t, S(t)) =

Nc∑

n=0

ωnΓb1,b2n ℜ
(

e−iknb1
∂

∂Θ
φSZHW (kn, x(0), 0, T )

)
,

where k, Γb1,b2n are ωn is defined as in (1.33) and (1.34).
As we see, the calculation of the Greeks, when the ChF is available, is

straightforward and only requires the differentiation of the ChF.
In the next subsection we use the SZHW model in calibration and pricing of

exotics.

1.4.2 Calibration of the SZHW hybrid model

In this section we examine the Schöbel-Zhu-Hull-White hybrid model and compare
its performance to the plain Heston model (without stochastic interest rates).
We use financial market data to estimate the model parameters and discuss the
effect of the correlation between the equity and interest rate on the estimated
parameters. For this purpose we have chosen the CAC40 call option implied
volatilities of 17.10.2007. We perform the calibration of the models in two
stages. Firstly of all, we calibrate the parameters for the interest rate process
by using caplets and swaptions. Secondly, the remaining parameters, for the
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underlying asset, the volatility and the correlations, are calibrated to plain vanilla
option market prices. Standard procedures for the Hull-White calibration are
employed [19]. Tables 1.2 and 1.3 present the estimated parameters and the
associated squared sum errors (SSE) defined as,

SSE =
n∑

i=1

m∑

j=1

(
Vcall (Ti,Kj) − V̂call (Ti,Kj)

)2
,

where V̂call(Ti,Kj) and Vcall (Ti,Kj) are the market and the model prices,
respectively, Ti is the ith maturity time and Kj is the jth strike. We have 32
strikes, (m = 32), and 20 time points (n = 20).

Table 1.3 shows the calibration results for the Heston and the Schöbel-
Zhu-Hull-White models. Both models are reasonably well calibrated with
approximately the same error. We have used a two-level calibration routine:
a global search algorithm (simulated annealing) combined with a local search
(Nelder-Mead) algorithm. In order to reduce parameter risk we prescribe the
speed of mean reversion of the volatility process, κ = 0.5, and we have performed
the calculation for a number of correlations, ρx,r. For the hybrid model considered
some patterns in the calibrated parameters can be observed (see Table 1.3). For
the SZHW model two parameters, σ̄ and σ0, are not affected by changing the
correlation ρx,r. For the SZHW model we find σ̄ ≈ 0.2, σ0 ≈ 0.1. Another
pattern we observe is that parameter γ decreases from 0.08 to 0.02. The reverse
effect is observed for positive correlation ρx,r. The correlation ρx,σ between stock
S(t) and the volatility σ(t) decreases from −31% to −99% for ρx,r varying from
−70% to −10% and increases from −72% to −38% for ρx,r from 10% to 70%.
Correlation ρr,σ does not show any regularity.

In the next section we use the calibration results and check the impact of the
correlation between the equity and interest rate on the prices of exotic derivative
products.

For the pricing of exotic derivatives, Monte Carlo methods are commonly used,
especially for products for which a closed-form pricing formula is not available.

In the Heston-type models discretization techniques like the Euler-Maruyama
or Milstein schemes (see, for example, [101]) in a Monte Carlo technique may
sometimes give a negative or imaginary variance. This is not acceptable. In the
literature, improved techniques to perform a simulation of the AD processes have
been developed, see [3, 20]. An analysis of the possible ways to overcome the
negative variance problem can be found in [75].

Those schemes however are not applicable for the SZHW model. In the case
of the SZHW hybrid model the volatility, by the model construction, can become
negative. It is easy to see that the volatility, σ(t), in the SZHW model is normally
distributed, i.e.:

σ(t) ∼ N
(
σ0e−κt + σ̄(1 − e−κt),

γ2

2κ

(
1 − e−2κt

) )
. (1.37)

From (1.37) the probability of the volatility to become negative increases if vol-vol
parameter, γ, is significantly larger than the mean reversion parameter κ. This
effect is more pronounced when σ0 → σ̄ and σ̄ → 0.
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Table 1.2: Parameters estimated from the market data (Hull-White model), r0
according to Proposition 1.2.2 and (1.9) is assumed to be the earliest forward rate,
i.e.: r0 ≈ f(0, ǫ) for ǫ → 0. The interest rate term structure θ(t) was found via
Equation (1.10).

model r0 λ η SSE
Hull-White 0.01733 1.12 0.001 1e-3

Table 1.3: Calibration results for the Schöbel-Zhu-Hull-White and the Heston models
defined in (1.13). The experiment was done with a priori defined speed of reversion for
the volatility κ = 0.5, and correlation ρx,r for the SZHW model. In the simulation for
the Heston model a constant interest rate of r = 0.0327 was chosen.

model ρx,r σ̄ γ ρx,σ ρr,σ σ0 SSE
−70% 0.1929 0.0787 -31.16% 40.00% 0.1000 9.5e-3
−50% 0.2000 0.0539 -39.67% 11.90% 0.0990 9.1e-3
−30% 0.2030 0.0400 -56.99% 32.38% 0.1000 9.0e-3

SZHW −10% 0.2049 0.0189 -98.88% 31.73% 0.1002 9.2e-3
10% 0.2039 0.0315 -71.67% 6.34% 0.0998 9.2e-3
30% 0.2029 0.0376 -60.39% 24.07% 0.1001 9.0e-3
50% 0.2018 0.0429 -53.35% 25.05% 0.0980 9.0e-3
70% 0.1981 0.0576 -38.22% -7.76% 0.0990 9.2e-3

Heston − 0.0770 0.3500 -66.22% − 0.0107 7.8e-3

1.5 Pricing exotics

Here we describe some typical hybrid derivative products.
Hybrid products are financial contracts that combine different market sectors,

assets and instruments. A financial innovation is regarded as useful, if it creates
benefits to one of the parties involved in the contract. These benefits can be lower
costs of capital for the issuer or higher returns and lower risk for the investor.
New financial products are introduced in response to some market imperfection
with respect to financing, investing, positioning or hedging. Hybrid products
arise from the need of an investor to benefit from profits in different market
sectors. Contracts can be based on the best performing sector, for example, with
a guarantee that an investment cannot decrease significantly in value.

We evaluate the price differences between classical models and the hybrid
model. For this purpose we consider several hybrid products, treated in
subsequent subsections. The pricing is done using a Monte Carlo method.

1.5.1 A diversification product (performance basket)

Hybrid products that an investor may use in strategic trading are so-called
diversification products. These products, also known as performance baskets,
are based on sets of assets with different expected returns and risk levels. Proper
construction of such products may give reduced risk compared to any single asset,
and an expected return that is greater than that of the least risky asset [59].
A simple example is a portfolio with two assets: a stock with a high risk and
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high return and a bond with a low risk and low return. If one introduces an
equity component in a pure bond portfolio the expected return will increase.
However, because of a non-perfect correlation between these two assets also a risk
reduction is expected. If the percentage of the equity in the portfolio is increased,
it eventually starts to dominate the structure and the risk may increase with a
higher impact for a low or negative correlation [59]. An example is a financial
product, defined in the following way:

Π(t = 0, T ) = EQ

{
1

B(T )
max

(
0, ω · S(T )

S0
+ (1 − ω) · P (T, T1)

P (0, T1)

)∣∣F(0)

}
,(1.38)

where S(t) is the underlying asset at time T , P (t, T ) is the zero-coupon bond, ω
represents a percentage ratio and B(T ) stands for the money-savings account with
dB(t) = r(t)B(t)dt. Figure 1.1 shows the pricing results for the model discussed.

The product pricing for different correlations ρx,r is performed with the Monte
Carlo method and the remaining parameters calibrated from the market data. For
ω ∈ [0%, 100%] the max disappears from the payoff and only a sum of discounted
expectations remains. The figure shows that the positive correlation between the
products in the basket significantly increases the contract value, while negative
correlation has a reversed effect. The absolute difference between the models
increases with percentage ω.
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Figure 1.1: LEFT: Pricing of a diversification hybrid product under different
correlations ρx,r. The simulations performed with T = 9 and T1 = 10. The remaining
parameters are as in Table 1.3. RIGHT: Diversification product price differences with
respect to the model with ρx,r = 0% expressed in Basis Points (BPs) for different
correlations ρx,r.

1.5.2 Strategic investment hybrid (best-of-strategy)

Suppose that an investor believes that if the price of a certain commodity, S1(t),
goes up, then the equity markets under-perform relative to the interest rate yields,
whereas, if S1(t) drops down, the equity markets over-perform relative to the
interest rate [59]. If price of S1(t) is high, the market may expect an increase
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of the inflation and hence of the interest rates and low S1(t) price could have
the opposite effect. In order to include such a feature in a hybrid product we
define a contract in which an investor is allowed to buy a weighted performance
coupon depending on the performance of another underlying. Such a product can
be defined as follows,

Π(t = 0, T ) = EQ
(

e−
∫

T

0
r(s)ds · Π(T, T )|F(0)

)
, with (1.39)

Π(T, T ) = max

(
0, ω · L0

L(T )
+ (1 − ω)

S(T )

S(0)

)
1S1(T )>S1(0)

+ max

(
0, (1 − ω)

L0

L(T )
+ ω · S(T )

S(0)

)
1S1(T )<S1(0), (1.40)

where ω ≥ 0% is a weighting factor related to a percentage, L(T ) =
∑M

i=1 P (T, ti)
with t1 = T is the T -value of projected liabilities for certain time tM .

Figure 1.2 shows the prices obtained from Monte Carlo simulation of the
contract at time t0 = 0 for maturity T = t1 = 3 and time horizon tM = 12 with
one year spacing. Since we did not model the second underlying process, S1(t);
we assume that S1(T ) > S1(0). We see that for ω ∈ [0%, 100%] the max over the
sum of performances disappears and the hybrid can be relatively easily priced,
i.e., separately for both underlyings (L0/L(t) and S(t)/S(0)). The difference
between the model prices for different correlations ρx,r becomes more pronounced
for higher ω. The simulations performed for ρx,r = −70% and ρx,r = 70% show
that for different correlations the differences in prices are significant. The figure
shows that for ω < 150% the prices, for different correlations, of the SZHW model
are relatively close. The value for ω = 0% corresponds to the case that only the
stock is traded, so correlation effects are not present.

1.5.3 Cliquet options

Cliquet options are very popular in the world of equity derivatives [109]. The
contracts are constructed to give a protection against downside risk combined
with a significant upside potential. A cliquet option can be interpreted as a series
of forward-starting European options, for which the total premium is determined
in advance. The payout of each option can either be paid at the final maturity
date, or at the end of a reset period. One of the cliquet-type structures is a
Globally Floored Cliquet with the following payoff:

Π(t0 = 0, T ) = EQ

{
1

B(T )
max

(
M∑

i=1

min (Ati ,LocalCap) ,MinCoupon

) ∣∣∣F(0)

}
.

(1.41)
Where B(T ) is as in (1.38) and

Ati = max

(
LocalFloor,

S(ti)

S(ti−1)
− 1

)
, where ti = i

T

M
,
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Figure 1.2: LEFT: Discounted payoff of the strategic investment hybrid priced with
the SZHW hybrid model in dependence of ω. The payoff value is calculated for different
correlation ρx,r. Monte Carlo simulation was performed with 100.000 paths and 100T
time-steps. RIGHT: Strategic investment product price differences with respect to the
model with ρx,r = 0% expressed in Basis Points (BPs) for different correlations ρx,r.

with maturity T . M indicates the number of reset periods. The term Ati can be
recognized as an ATM forward-starting option, which is driven by a forward skew.
It has been shown in [40] that the cliquet structures are significantly underpriced
under a local volatility model for which the forward skews are basically too flat.

Since the forward prices are not known a-priori, we derive the values from the
so-called forward characteristic function. If we define X(t) as the state vector at
time t then the forward characteristic function, φF, with t < t∗ < T can be found
as

φF(u,X(t), t∗, T ) =EQ
(

e−
∫

T

t
r(s)dseiu

T(X(T )−X(t∗))|F(t)
)

=EQ
(

e−
∫

t∗

t
r(s)ds−iuTX(t∗)φ (u,X(t∗), t∗, T ) |F(t)

)

=eA(u,t∗,T )EQ
(

e−
∫

t∗

t
r(s)ds−iuTX(t∗)+BT(u,t∗,T )X(t∗)|F(t)

)
.

(1.42)
Figure 1.3 shows the performance of the model applied to the pricing of the cliquet
option defined in (1.41). We choose here T = 3, LocalCap = 0.01, LocalFloor =
−0.01 and M = 36 (the contract measures the monthly performance). For
large values of the MinCoupon the values of the hybrid under consideration are
identical, which is expected since a large MinCoupon dominates the max operator
in (1.41) and the expectation becomes simply the price of a zero-coupon bond at
time t = 0 multiplied by the deterministic MinCoupon. Figure 1.3 shows the
pricing results for five correlations ρx,r = {−70%,−30%, 0%, 30%, 70%}. We find
a significant effect of the correlations between stock and the interest rate on cliquet
prices.
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Figure 1.3: LEFT: Pricing a cliquet product under the SZHW hybrid model. Figure
presents the price of a globally floored cliquet as a function of MinCoupon given by (1.41)
for T = 3 years and M = 36. The remaining parameters are as in Table 1.3. RIGHT:
Cliquet price differences with respect to the model with ρx,r = 0% expressed in Basis
Points (BPs) for different correlations ρx,r.

1.6 Conclusion

In this, introductory, chapter we have presented an extension of the Schöbel-Zhu
stochastic volatility model by the Hull-White interest rate process and priced a
number of structured hybrid derivative products.

The aim is to define hybrid stochastic processes which belong to the class of
affine diffusion models, as this may give efficient calibration of the model. We
have shown that the Schöbel-Zhu-Hull-White model belongs to the category of
affine diffusion processes. Restrictions regarding the choice of correlation structure
between the different Wiener processes appearing need not be made.

Due to the resulting semi-closed form of the Schöbel-Zhu-Hull-White char-
acteristic function we were able to calibrate in an efficient way by means of the
Fourier cosine expansion pricing technique, adapted to the stochastic interest rate
case.

It has been shown, by numerical experiments for different hybrid products,
that the correlations between different asset classes have an impact on the
derivative price.

Although the SZHW hybrid model due to a semi-closed-form characteristic
function is attractive it also has its limits. The main limitation is its volatility
structure i.e.: the model assumes the volatility to be normally distributed.
Therefore it can not model a reflecting barrier at 0, nor deal with the absolute
volatility |σ(t)| (see [110] for discussion).

In order to determine the ChF for the extended version of the Schöbel-Zhu
hybrid model the following integral needs to be determined numerically:

µ̃(u, τ) =

∫ τ

0

(
κσ̄ +

1

2
γ2E(u, s) + ρr,σγηC(u, s)

)
E(u, s)ds.
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This integration, although simple, needs to be done for each Fourier argument
“u”. Depending on the pricing algorithm, the number of Fourier arguments can
vary from 200, in the case of the exponentially converging COS method, to more
than 4096 in FFT-based pricing algorithms. We conclude that the efficiency of
pricing with the ChF for the SZHW is heavily dependent on the pricing algorithm.

Another restriction of the model is its interest rate structure which is assumed
to be driven by a single factor short-rate model. Although such models are
well-accepted by practitioners for pricing basic interest rate derivatives, it is a
significant restriction when pricing structured hybrid products that are sensitive
to the skew or smile in the interest rate market.



CHAPTER 2

On the Heston Model with Short-Rate

Interest Rates

A businessman is a hybrid of a dancer and a
calculator.

Paul Valery

2.1 Introduction

In this chapter we focus our attention on a hybrid extension of the stochastic
volatility model of Heston [54]. This hybrid model combines two correlated asset
classes: equity and interest rate. We consider an approximation of the full-scale
model so that the model fits in the class of affine diffusion processes (AD), as
in Duffie, Pan and Singleton [28]. For processes within this class a closed-form
solution of the characteristic function exists.

Zhu in [112] has presented a hybrid model which could model the skew pattern
for equity and included a stochastic (but uncorrelated) interest rate process.
Generalizations were then presented by Giese [43] and Andreasen [6], where the
Heston [54] stochastic volatility model was used, combined with an indirectly
correlated interest rate process. Correlation was modeled by including additional
terms in the SDEs (this approach is discussed in some detail in Section 2.3.1).

In Chapter 1, we have discussed the stochastic volatility model of Schöbel-
Zhu [100] and its extension by a stochastic interest rate [50, 106]. A full matrix of
correlations was directly imposed on the driving Brownian motions. The model
was in the class of AD processes, but since the SZHW model is based on a Vašiček-
type process [108] for the stochastic volatility, the volatilities can become negative.

A different approach to modelling equity-interest rate hybrids was presented
by Benhamou et al. [13], extending the local volatility framework of Dupire [31]

31
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and Derman, Kani [27] and incorporating stochastic interest rates. Those models,
although attractive from the calibration point of view, suffer from flattening
volatilities in the case of forward-starting options. Local volatility models are
not covered in this thesis.

In this chapter we investigate the Heston-Hull-White, and the Heston-Cox-
Ingersoll-Ross hybrid models and propose approximations so that we can obtain
their characteristic functions. The framework presented is relatively easy to
understand and implement. It is inspired by the techniques of Giese and
Andreasen in [43, 6]. Our approximations do not require any preliminary
calculations of expectations like the Markovian projection methods [7, 8]. The
option pricing method benefits greatly from the speed of characteristic function
evaluations resulting from the model approximations.

The interest rate models studied here cannot generate interest rate implied
volatility rate smiles or skews. They can therefore mainly be used for long-
term equity options, and for “not too complicated” equity-interest rates hybrid
products.

This chapter is organized as follows. In Section 2.2 we discuss the full-
scale Heston hybrid models with stochastic interest rate processes. Section 2.3
presents a deterministic approximation of the Heston-Hull-White hybrid model,
together with the corresponding characteristic function, and Section 2.4 gives
the characteristic function based on another approximation of that hybrid model.
Section 2.5 is dedicated to a numerical experiment where we discuss the differences
between the hybrid models of Heston and the Schöbel-Zhu, and in Section 2.6 we
compare the performance of our approximations with the Markovian projection
method studied by Antonov et al. in [7, 8]. In Section 2.7 the calibration based on
the approximations of the full-scale hybrid models is performed. In Appendix 2.A
the Heston-Cox-Ingersoll-Ross model is discussed.

2.2 Heston hybrid models with stochastic interest rate

With state vector X(t) = [S(t), v(t)]T, under the risk-neutral pricing measure,
the Heston stochastic volatility model [54], which is our point-of-departure here,
is specified by the following system of SDEs:

{
dS(t)/S(t) = rdt+

√
v(t)dWx(t), S(0) > 0,

dv(t) = κ(v̄ − v(t))dt+ γ
√
v(t)dWv(t), v(0) > 0,

(2.1)

with r > 0 a constant interest rate, correlation dWx(t)dWv(t) = ρx,vdt, and
|ρx,v| < 1. The variance process, v(t), of the stock, S(t), is a mean reverting
square-root process, in which κ > 0 determines the speed of adjustment of the
volatility towards its theoretical mean v̄ > 0, and γ > 0 is the second-order
volatility, i.e., the volatility of the variance.

As already indicated in [54], the model given in (2.1) is not in the class of
affine processes, whereas under the log-transform for the stock, x(t) = logS(t), it
is. Then, the discounted ChF is given by:

φH(u, x(t), τ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)v(t)) , (2.2)
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where the functions A(u, τ), B(u, τ) and C(u, τ) are known in closed-form
(see [54]).

The ChF is explicit, but its inverse also has to be found for pricing purposes.
Because of the form of the ChF, we cannot get its inverse analytically and a
numerical method for integration has to be used, see, for example, [23, 32, 70, 72]
for Fourier methods.

2.2.1 Full-scale hybrid models

A constant interest rate, r, may be insufficient for pricing interest rate sensitive
products. Therefore, we extend our state vector with an additional stochastic
quantity, i.e.: X(t) = [S(t), v(t), r(t)]T. This model corresponds to a stochastic
volatility equity hybrid model with a stochastic interest rate process, r(t). In
particular, we add to the Heston model the Hull-White (HW) interest rate [56],
or the square-root Cox-Ingersoll-Ross [25] (CIR) process. The extended model
can be presented in the following way:





dS(t)/S(t) = r(t)dt+
√
v(t)dWx(t), S(0) > 0,

dv(t) = κ(v̄ − v(t))dt+ γ
√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t) − r(t))dt+ ηrp(t)dWr(t), r(0) > 0,

(2.3)

where exponent p = 0 in (2.3) represents the Heston-Hull-White (HHW) model
and for p = 1

2 it becomes the Heston-Cox-Ingersoll-Ross (HCIR) model. For both
models the correlations are given by dWx(t)dWv(t) = ρx,vdt, dWx(t)dWr(t) =
ρx,rdt, dWv(t)dWr(t) = ρv,rdt, and κ, γ and v̄ are as in (2.1), λ > 0 determines
the speed of mean reversion for the interest rate process; θ(t), as described in
Chapter 1, is the interest rate term-structure and η controls the volatility of the
interest rate. We note that the interest rate process in (2.3) for p = 1

2 is of the
same form as the variance process v(t).

System (2.3) is not in the affine form, not even with x(t) = logS(t). In
particular, the symmetric instantaneous covariance matrix is given by:

σ(X(t))σ(X(t))T =



v(t) ρx,vγv(t) ρx,rηr

p(t)
√
v(t)

∗ γ2v(t) ρr,vγηr
p(t)

√
v(t)

∗ ∗ η2r2p(t)



(3×3)

. (2.4)

Setting the correlation ρr,v to zero would still not make the system
affine. Matrix (2.4) is of the linear form with respect to state vector
[x(t) = logS(t), v(t), r(t)]T, if two correlations, ρr,v and ρx,r, are set to
zero 1. Models with two correlations equal to zero are covered in [83].

Since for pricing equity-interest rate products a non-zero correlation between
stock and interest rate is crucial (see, for example, [59]), alternative approxima-
tions to the Heston hybrid models need to be formulated, so that correlations can
be imposed. Variants are discussed in the sections to follow. These approximate

1where we assume positive parameters
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models are evaluated with the help of the Cholesky decomposition of a correlation
matrix.

We can decompose a given symmetric correlation matrix, C, denoted by

C =




1 ρ1 ρ2
∗ 1 ρ3
∗ ∗ 1


 , (2.5)

as C = LLT, where L is a lower triangular matrix with:

L =




1 0 0

ρ1
√

1 − ρ21 0

ρ2
ρ3−ρ2ρ1√

1−ρ2
1

√
1 − ρ22 −

(
ρ3−ρ2ρ1√

1−ρ2
1

)2


 . (2.6)

We then rewrite the system of SDEs in terms of the independent Brownian

motions, dW̃(t) = [dW̃r(t), dW̃v(t), dW̃x(t)]T, with the help of the lower
triangular matrix L.

Since our main objective is to derive a closed-form ChF with a non-zero
correlation between the equity process, S(t), and the interest rate, r(t), we first
assume that the Brownian motions for the interest rate r(t) and the variance
v(t) are not correlated (the case of a full correlation structure is discussed in
Section 2.3.3).

By exchanging the order of the state variables X(t) = [S(t), v(t), r(t)]T to
X∗(t) = [r(t), v(t), S(t)]T, the HHW and HCIR models in (2.3) have ρ1 ≡ ρr,v = 0,
ρ2 ≡ ρx,r 6= 0 and ρ3 ≡ ρx,v 6= 0 in (2.5) and read:




dr(t)

dv(t)

dS(t)

S(t)


 =



λ(θ(t) − r(t))
κ(v̄ − v(t))

r(t)


 dt+ σ(X∗(t))




dW̃r(t)

dW̃v(t)

dW̃x(t)


 , (2.7)

with

σ(X∗(t)) =




ηrp(t) 0 0

0 γ
√
v(t) 0

ρx,r
√
v(t) ρx,v

√
v(t)

√
1 − ρ2x,v − ρ2x,r

√
v(t)


 .

2.2.2 Reformulated Heston hybrid models

In the previous section we have seen that for the HHW and HCIR models with a
full matrix of correlations given in (2.3), the affinity relations (see Chapter 1) are
not satisfied, so that the ChF cannot be obtained by standard techniques.

In order to obtain a well-defined Heston hybrid model with an indirectly
imposed correlation, ρx,r, we propose the following system of SDEs:

dS(t)/S(t) = r(t)dt +
√
v(t)dWx(t) + Ω(t)rp(t)dWr(t) + ∆

√
v(t)dWv(t),

(2.8)
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with
dv(t) = κ(v̄ − v(t))dt+ γ

√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t) − r(t))dt+ ηrp(t)dWr(t), r(0) > 0,
(2.9)

where

dWx(t)dWv(t) = ρ̂x,vdt, dWx(t)dWr(t) = 0, dWv(t)dWr(t) = 0. (2.10)

Here p = 0 for HHW and p = 1
2 for HCIR. We have included a function 2, Ω(t),

and a constant parameter, ∆. Note that we assume independence between the
instantaneous short-rate, r(t), and the variance process v(t), i.e., ρ̂r,v = 0.

By exchanging the order of the state variables, to X∗(t) = [r(t), v(t), S(t)]T,
system (2.8) is given, in terms of the independent Brownian motions, by:




dr(t)

dv(t)

dS(t)

S(t)


 =



λ(θ(t) − r(t))
κ(v̄ − v(t))

r(t)


dt+ σ̂(X∗(t))




dW̃r(t)

dW̃v(t)

dW̃x(t)


 , (2.11)

with

σ̂(X∗(t)) =




ηrp(t) 0 0

0 γ
√
v(t) 0

Ω(t)rp(t)
√
v(t) (ρ̂x,v + ∆)

√
v(t)

√
1 − ρ̂2x,v


 .

In the following lemma we show that the model (2.8) is equivalent to the
full-scale HHW model in (2.3), with a non-zero correlation ρx,r.

Lemma 2.2.1. Model (2.8) satisfies the system in (2.3) with non-zero correlation,
ρx,r, for:

Ω(t) = ρx,r

√
v(t)

rp(t)
, ρ̂2x,v = ρ2x,v + ρ2x,r, ∆ = ρx,v − ρ̂x,v, (2.12)

where correlation ρ̂x,v is as in model (2.8) and ρx,v as in model (2.3).

Proof. We presented the two models (2.3) and (2.8) in terms of the independent
Brownian motions, (2.7) and (2.11), respectively. By matching the appropriate
coefficients in (2.7) and (2.11), we find that the following relations should hold:





Ω(t)rp(t)S(t) = ρx,r
√
v(t)S(t),

√
1 − ρ̂2x,v

√
v(t)S(t) =

√
1 − ρ2x,v − ρ2x,r

√
v(t)S(t),

(ρ̂x,v + ∆)
√
v(t)S(t) = ρx,v

√
v(t)S(t).

(2.13)

By simplifying (2.13) the proof is finished. �

If results (2.12) were directly included in the main system (2.8) the affinity
property of the system would be lost. So, in order to satisfy the affinity
constraints, approximations need to be introduced.

2this under certain conditions can also be stochastic
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2.2.3 Log-transform

Before going into the details of the approximations of the HHW and HCIR models
let us first find the dynamics for the log-transform of the reformulated Heston
hybrid models. By applying Itô’s lemma, model (2.8) in log-equity space, x(t) =
logS(t), with a constant parameter, ∆, and a function Ω(t), is given by:

dx(t) =

[
r(t) − 1

2

(
Ω2(t)r2p(t) + v(t)

(
1 + ∆2 + 2ρ̂x,v∆

))]
dt+

√
v(t)dWx(t)

+Ω(t)rp(t)dWr(t) + ∆
√
v(t)dWv(t).

Because of (2.12) the dynamics read:

dx(t) =

(
r(t) − 1

2
v(t)

)
dt+

√
v(t)dWx(t) + Ω(t)rp(t)dWr(t) + ∆

√
v(t)dWv(t).

For a given state vector X∗(t) = [r(t), v(t), x(t)]T, the symmetric instantan-
eous covariance matrix is given by:

Σ :=



η2r2p(t) 0 ηΩ(t)r2p(t)

∗ γ2v(t) γv(t) (ρ̂x,v + ∆)
∗ ∗ Ω2(t)r2p(t) + v(t)

(
1 + ∆2 + 2ρ̂x,v∆

)


 . (2.14)

As we consider two cases for parameter p = {0, 1/2}, the affinity issue appears in
only one term of matrix (2.14), namely, in element (1, 3) :

Σ(1,3) = ηΩ(t)r2p(t) = ηρx,r
√
v(t)rp(t) =

{
ηρx,r

√
v(t), for HHW,

ηρx,r
√
v(t)

√
r(t), for HCIR.

(2.15)
Although term Σ(3,3) does not appear to be of the affine form, by (2.12), it equals
Σ(3,3) = v(t), and therefore it is linear in the state variables.

Remark. We see that, in order to make either the HHW or the HCIR model
affine, one does not necessarily need to approximate function Ω(t), but only the
non-affine terms in the corresponding instantaneous covariance matrix 3. By
approximation of the non-affine covariance term, Σ(1,3), the corresponding pricing
PDE also changes. The Kolmogorov backward equation for the log-stock price
(see, for example, [85]) is now given by:

0 =
∂φ

∂t
+

(
r − 1

2
v

)
∂φ

∂x
+ κ(v̄ − v)

∂φ

∂v
+ λ(θ(t) − r)

∂φ

∂r
+

1

2
v
∂2φ

∂x2

+
1

2
γ2v

∂2φ

∂v2
+

1

2
η2r2p

∂2φ

∂r2
+ ρx,vγv

∂2φ

∂x∂v
+ Σ(1,3)

∂2φ

∂x∂r
− rφ, (2.16)

subject to terminal condition φ(u, x(T ), T, T ) = exp (iux(T )).
The derivations in Section 2.2.3 show that system (2.8) is nothing but a

reformulation of the original HHW system under the conditions in (2.12). It
is therefore sufficient to linearize the non-affine terms in the covariance matrix
to determine an affine approximation of the full-scale model. In the sections to
follow we discuss two possible approximations for Σ(1,3).

3The drifts and the interest rate are already in the affine form.
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2.3 Deterministic approximation for hybrid models

In order to linearize the Heston hybrid model we provide in Subsection 2.3.1 a first
approximation for the expressions in (2.15). The corresponding ChF is derived in
Subsection 2.3.2.

2.3.1 Deterministic approach, the H1-HW model

The first approach to finding an approximation for the term Σ(1,3) =

ηρx,r
√
v(t)rp(t) in matrix (2.14) is to replace it by its expectation, i.e.:

Σ(1,3) ≈ ηρx,rE
(
rp(t)

√
v(t)

)
⊥⊥
= ηρx,rE(rp(t))E(

√
v(t)), (2.17)

assuming independence between r(t) and v(t).
The approximation for Σ(1,3) in (2.17) consists of two expectations: one with

respect to
√
v(t) and another with respect to rp(t). E(rp(t)) = 1 for p = 0, and

it is E(
√
r(t)) for p = 1/2. Since the processes for v(t) and r(t) are then of the

same type, the approximations are analogous. By taking the expectations of the
stochastic variables, the model becomes of the affine form, so that we can obtain
the corresponding ChF.

In Lemma 2.3.1 the closed-form expressions for the expectation and the
variance of

√
v(t) (a CIR-type process) are presented.

Lemma 2.3.1 (Expectation and variance for CIR-type process). For a given
time t > 0 the expectation and variance of

√
v(t), where v(t) is a CIR-type

process (2.1), are given by:

E(
√
v(t)) =

√
2c(t)e−λ(t)/2

∞∑

k=0

1

k!
(λ(t)/2)k

Γ
(
1+d
2 + k

)

Γ(d2 + k)
, (2.18)

and

Var
(√

v(t)
)

= c(t)(d + λ(t)) − 2c(t)e−λ(t)

(
∞∑

k=0

1

k!
(λ(t)/2)

k Γ
(
1+d
2 + k

)

Γ
(
d
2 + k

)
)2

,

(2.19)
where

c(t) =
1

4κ
γ2(1 − e−κt), d =

4κv̄

γ2
, λ(t) =

4κv(0)e−κt

γ2(1 − e−κt)
, (2.20)

with Γ(k) being the gamma function defined by:

Γ(k) =

∫ ∞

0

tk−1e−tdt.

Proof. It is shown in [25, 20], that, for a given time t > 0, v(t) is distributed
as c(t) times a non-central chi-square random variable, χ2(d, λ(t)), with d the
“degrees of freedom” parameter and non-centrality parameter λ(t), i.e.:

v(t) ∼ c(t)χ2 (d, λ(t)) , t > 0, (2.21)
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with

c(t) =
1

4κ
γ2(1 − e−κt), d =

4κv̄

γ2
, λ(t) =

4κv(0)e−κt

γ2(1 − e−κt)
. (2.22)

So, the corresponding cumulative distribution function (CDF) can be expressed
as:

Fv(t)(x) = P(v(t) ≤ x) = P
(
χ2 (d, λ(t)) ≤ x/c(t)

)
= Fχ2(d,λ(t)) (x/c(t)) , (2.23)

where:

Fχ2(d,λ(t))(y) =

∞∑

k=0

exp

(
−λ(t)

2

) (λ(t)
2

)k

k!

Γ
(
k + d

2 ,
y
2

)

Γ
(
k + d

2

) , (2.24)

with

Γ(a, z) =

∫ z

0

ta−1e−tdt, Γ(z) =

∫ ∞

0

tz−1e−tdt.

Further, the corresponding density function (see for example [81]) reads:

fχ2(d,λ(t))(y) =
1

2
e−

1

2
(y+λ(t))

(
y

λ(t)

) 1

2 ( d
2
−1)

B d
2
−1(
√
λ(t)y),

with

Ba(z) =
(z

2

)a ∞∑

k=0

(
1
4z

2
)k

k!Γ(a+ k + 1)
,

which is a modified Bessel function of the first kind (see for example [1, 45]).
The density for v(t) can now be expressed as:

fv(t)(x)
def
=

d

dx
Fv(t)(x) =

d

dx
Fχ2(d,λ(t))(x/c(t)) =

1

c(t)
fχ2(d,λ(t)) (x/c(t)) .

First of all, by [30] we have that:

E(
√
v(t)|v(0)) :=

∫ ∞

0

√
x

c(t)
fχ2(d,λ(t))

(
x

c(t)

)
dx

=
√

2c(t)
Γ
(
1+d
2

)

Γ
(
d
2

) 1F1

(
−1

2
,
d

2
,−λ(t)

2

)
, (2.25)

where 1F1(a; b; z) is a confluent hyper-geometric function, which is also known as
Kummer’s function [69] of the first kind, given by:

1F1(a; b; z) =

∞∑

k=0

(a)k
(b)k

zk

k!
, (2.26)

with (a)k and (b)k being Pochhammer symbols of the form:

(a)k =
Γ(a+ k)

Γ(a)
= a(a+ 1) · · · · · (a+ k − 1). (2.27)
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Now, using the principle of Kummer (see [68] pp.42) we find:

1F1

(
−1

2
,
d

2
,−λ(t)

2

)
= e−λ(t)/21F1

(
1 + d

2
,
d

2
,
λ(t)

2

)
(2.28)

Therefore, by (2.26) and (2.28), Equation (2.25) reads:

E(
√
v(t)|v(0)) =

√
2c(t)e−λ(t)/2

Γ
(
1+d
2

)

Γ
(
d
2

) 1F1

(
1 + d

2
,
d

2
,
λ(t)

2

)

=
√

2c(t)e−λ(t)/2
∞∑

k=0

1

k!
(λ(t)/2)

k Γ
(
1+d
2 + k

)

Γ
(
d
2 + k

) ,

which concludes the proof for the expectation.
By using the properties of the non-central chi-square distribution the mean

and variance of process v(t) are known explicitly:

E(v(t)|v(0)) = c(t)(d + λ(t)),

Var(v(t)|v(0)) = c2(t)(2d+ 4λ(t)).
(2.29)

This combined with results for E(
√
v(t)) completes the proof. �

The analytic expression for the expectation, either of
√
v(t) or

√
r(t) in (2.17),

is involved and requires rather expensive numerical operations.
In the next subsection we provide details of its approximation.

The approximations for the expectation E(
√
v(t))

In order to find a first-order approximation we can apply the so-called delta
method (see, for example [2, 84]), which states that a function ϕ(X) can be
approximated by a first-order Taylor expansion at E(X), for a given random
variable, X , with expectation, E(X), and variance, Var(X), assuming that for
ϕ(X) its first derivative with respect to X exists and is sufficiently smooth.

Result 2.3.2. The expectation, E(
√
v(t)), with stochastic process v(t) given by

Equation (2.3), can be approximated by:

E(
√
v(t)) ≈

√
c(t)(λ(t) − 1) + c(t)d+

c(t)d

2(d+ λ(t))
=: Λ(t), (2.30)

with c(t), d and λ(t) given in Lemma 2.3.1, and κ, v̄, γ and v(0) are the parameters
given in Equation (2.3) 4

In order to find the approximation in Result 2.3.2 we can use the delta method
as follows. Assuming function ϕ to be sufficiently smooth and the first two
moments of X to exist, we obtain by first-order Taylor expansion:

ϕ(X) ≈ ϕ(EX) + (X − EX)
∂ϕ

∂X
(EX). (2.31)

4In the next subsection we will discuss under which conditions the expression under the
square-root in (2.30) is non-negative.



40 Chapter 2

Since the variance of ϕ(X) can be then approximated by the variance of the
right-hand side of (2.31) we have:

Var(ϕ(X)) ≈ Var

(
ϕ(EX) + (X − EX)

∂ϕ

∂X
(EX)

)

=

(
∂ϕ

∂X
(EX)

)2

VarX. (2.32)

By using this result for function ϕ(v(t)) =
√
v(t), we find

Var(
√
v(t)) ≈

(
1

2

1√
E(v(t))

)2

Var(v(t)) =
1

4

Var(v(t))

E(v(t))
. (2.33)

However, from the definition of the variance we also have:

Var(
√
v(t)) = E(v(t)) −

(
E(
√
v(t))

)2
. (2.34)

and by combining Equations (2.33) and (2.34) we obtain the following approxim-
ation:

E(
√
v(t)) ≈

√
E(v(t)) − 1

4

Var(v(t))

E(v(t))
. (2.35)

Since v(t) is a square-root process, as in (2.8), we have

v(t) = v(0)e−κt + v̄(1 − e−κt) + γ

∫ t

0

eκ(s−t)
√
v(s)dWv(s). (2.36)

The expectation reads E(v(t)) = c(t)(d + λ(t)), and for the variance we get,
Var(v(t)) = c2(t)(2d+ 4λ(t)), with c(t), d and λ(t) given in (2.20).

Now, by substituting these expressions in (2.35), the result is confirmed.
Since Result 2.3.2 provides an explicit approximation for Σ(1,3) in (2.17) in

terms of a deterministic function for E(
√
v(t)), we are, in principle, able to derive

the corresponding ChF.

Limits of the approximation for E(
√
v(t))

We show here for which parameters the expression under the square root in
approximation (2.30), i.e.,

Λ(t) =

√
c(t)(λ(t) − 1) + c(t)d+

c(t)d

2(d+ λ(t))
, (2.37)

is non-negative.
Consider the following inequality:

c(t)(λ(t) − 1) + c(t)d+
c(t)d

2(d+ λ(t))
≥ 0. (2.38)
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Division by c(t) > 0 gives:

2 (λ(t) + d) (d+ λ(t)) + d

2(d+ λ(t))
≥ 1. (2.39)

So,

2 (λ(t) + d)
2 − 2(λ(t) + d) + d ≥ 0. (2.40)

By setting y = λ(t)+d we find 2y2−2y+d ≥ 0. The parabola is non-negative for
the discriminant 4−4 ·2 ·d ≤ 0, so that the expression in (2.37) is non-negative for
d ≥ 1

2 (i.e., 2d ≥ 1). With d = 4κv̄/γ2 we can compare the inequality obtained
to the Feller condition. If the Feller condition is satisfied, the expression under
the square-root is certainly well-defined. If 8κv̄/γ2 ≥ 1 but the Feller condition is
not satisfied, the approximation is also valid. If the expression under the square-
root in (2.37) becomes negative, we suggest using the closed-form formula in
Lemma 2.3.1 instead.

Remark. We assume that the first-order linear terms in (2.31) in the Taylor
expansion give an accurate representation. However, this may not work
satisfactory for “flat” density functions, like those from a uniform distribution.
In order to increase the accuracy, higher-order terms can be included in the
expansion [2]. More discussion on the conditions for the delta method to perform
well can be found in [84].

The approximation for E(
√
v(t)) in (2.30) is still non-trivial, and may cause

difficulties when deriving the corresponding characteristic functions. In order to
find the coefficients of the ChF, a routine for numerically solving the corresponding
ODEs has to be incorporated. Numerical integration, however, slows down the
option pricing engine, and would make the SDE model less attractive. As we
aim to find a closed-form expression for the ChF, we simplify Λ(t) in (2.30).
Expectation E(

√
v(t)) can be further approximated by a function of the following

form:

E(
√
v(t)) ≈ a+ be−ct =: Λ̃(t), (2.41)

with a, b and c constants. Appropriate values for a, b and c in (2.41) can be

obtained via an optimization problem of the form, mina,b,c
∫ T
0

(
Λ(t) − Λ̃(t)

)
dt.

We propose here, instead of a numerical approximation for these coefficients,
a simple analytic expression in Result 2.3.3:

Result 2.3.3. By matching the functions Λ(t) and Λ̃(t) for t → +∞, t → 0 and
t = 1, we find:

lim
t→+∞

Λ(t) =

√
v̄ − γ2

8κ
= a = lim

t→+∞
Λ̃(t),

lim
t→0

Λ(t) =
√
v(0) = a+ b = lim

t→0
Λ̃(t),

lim
t→1

Λ(t) = Λ(1) = a+ be−c = lim
t→1

Λ̃(t).

(2.42)
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The values a, b and c can now be estimated by:

a =

√
v̄ − γ2

8κ
, b =

√
v(0) − a, c = − log

(
b−1(Λ(1) − a)

)
, (2.43)

where Λ(t) is given by (2.30).

The approximation given in Result 2.3.3 may give difficulties for v̄ < γ2/8κ
in Equation (2.43) (the expression under the square root then becomes negative).
We recognize that this expression is well-defined as the expression under the
square-root in the function Λ(t) in Result 2.3.2 is positive.

In order to measure the quality of approximation (2.43) to E(
√
v(t)) in (2.18),

we perform a numerical experiment (see the results in Figure 2.1). For randomly
chosen sets of parameters the approximation (2.43) resembles E(

√
v(t)) in (2.18)

very well.
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proxy: κ =1.2,γ =0.1,v̄ =0.03,v(0) =0.04
exact

proxy: κ =1.2,γ =0.1,v̄ =0.02,v(0) =0.035
exact

proxy: κ =1.2,γ =0.1,v̄ =0.04,v(0) =0.01
exact

proxy: κ =0.8,γ =0.1,v̄ =0.04,v(0) =0.015
exact

proxy: κ =1,γ =0.2,v̄ =0.04,v(0) =0.02
exact

Figure 2.1: The quality of the approximation E(
√

v(t)) ≈ a + be−ct (continuous line)
versus the exact solution given in Equation (2.18) (squares) for 5 random κ, γ, v̄ and
v(0).

We call the resulting model the H1-HW model (Heston-Hull-White model-1).

The case ∆ = 0 and Ω(t) ≡ const.

With ∆ = 0 in the systems (2.8) and (2.11), the model resembles the one in [43, 6].
There, a constant parameter Ω̄ = Ω(t) was prescribed, and an instantaneous
correlation was indirectly imposed.

The following lemma, however, shows that this model with ∆ = 0 resembles
the full-scale HHW and HCIR models only for correlation ρx,r = 0.

Lemma 2.3.4. The hybrid models (2.8) with ∆ = 0 are full-scale HHW and
HCIR models, in the sense of system (2.3), only if the instantaneous correlation
between the stock and the interest rate processes in system (2.3) equals zero, i.e.,
ρx,r = 0.
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Proof. The proof is analogous to the proof of Lemma 2.2.1. We see from the
equalities in (2.12) that system (2.7) resembles system (2.11) with ∆ = 0, only if:

Ω̄ = ρx,r

√
v(t)

rp(t)
, ρ̂x,v = ρx,v, ρ̂2x,v = ρ2x,v + ρ2x,r. (2.44)

The equations (2.44) hold only for ρx,r = 0. So, the models with ∆ = 0 are not
full-scale HHW and HCIR models with a non-zero correlation ρx,r. �

Although the model with ∆ = 0 is not a properly defined Heston hybrid model,
one can still proceed with the analysis. Parameter Ω̄ was derived based on the
following equality, see [43], using the definition of the instantaneous correlation,

ρ̂x,r =
E (dS(t)dr(t)) − E(dS(t))E(dr(t))√

v(t)S2(t) dt+ Ω̄2r2p(t)S2(t) dt
√
η2r2p(t) dt

=
Ω̄rp(t)√

v(t) + Ω̄2r2p(t)
.

(2.45)
To deal with the affinity issue a constant approximation for Ω̄ was proposed, given
by:

Ω̄ ≈ ρ̂x,r√
1 − ρ̂2x,r

E

(
1

T

∫ T

0

v(t)dt

) 1

2 /
E

(
1

T

∫ T

0

r(t)dt

)p
. (2.46)

By choosing Ω̄ = 0 the model collapses to the well-known Heston-Hull-White
model (p = 0) or Heston-CIR model (p = 1

2 ) with zero correlation ρx,r.
The assumptions of constant Ω̄ and ∆ = 0 also have an impact on the

corresponding pricing PDE. With the Feynman-Kac theorem the corresponding
PDE is given by:

0 =
∂φ

∂t
+

[
r − 1

2

(
v + r2pΩ̄2

)] ∂φ
∂x

+ κ(v̄ − v)
∂φ

∂v
+ λ(θ(t) − r)

∂φ

∂r
+

1

2
γ2v

∂2φ

∂v2

+
1

2

(
v + r2pΩ̄2

) ∂2φ
∂x2

+
1

2
η2r2p

∂2φ

∂r2
+ ρ̂x,vγv

∂2φ

∂x∂v
+ ηΩ̄r2p

∂2φ

∂x∂r
− rφ, (2.47)

with the same terminal condition as for (2.16). The assumption of constant Ω̄
and ∆ = 0 gives rise to additional terms in the convection and diffusion parts of
PDE (2.47).

By means of a numerical experiment, we check the accuracy of the model with
∆ = 0 and determine whether the model approximates the full-scale HHW hybrid
model sufficiently well.
We consider here the following set of parameters: S(0) = 1, κ = 2, v(0) = v̄ =
0.05, γ = 0.1, λ = 1.2, r(0) = θ = 0.05, η = 0.01 and correlation ρx,v = −40%. In
the simulation we choose two different values for correlation ρx,r = {30%, 50%}.

We compare the following three models: The full-scale HHW model (with
Monte Carlo simulation), the model with ∆ = 0 and our approximation for Σ(1,3)

in (2.16) with the projection according to Equation (2.17).
In Figure 2.2 the implied volatilities obtained are compared. The model

with ∆ = 0 in (2.47) does not provide a satisfactory fit to the full-scale HHW
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Figure 2.2: The implied Black-Scholes volatilities for the full-scale Heston model and
two approximations: the deterministic approach (model (2.16) with (2.17)), and the
model with ∆ = 0 (model (2.47)).

model, whereas the implied volatilities obtained with the deterministic hybrid
approximation compare very well (they essentially overlap) with the full-scale
reference results, see Figure 2.2. The volatility compensator ∆, as defined in
Lemma 2.2.1, cannot be neglected when approximating the full-scale HHW model,
as was stated in Lemma 2.3.4.

2.3.2 Characteristic function for the H1-HW model

We derive the ChF for the approximation H1-HW to the Heston-Hull-White
hybrid model, given in (2.16). For p = 0, the non-affine term, Σ(1,3), in

matrix (2.16) equals Σ(1,3) = ηρx,r
√
v(t) and will be approximated by Σ(1,3) ≈

ηρx,rE(
√
v(t)).

We assume here that the term-structure for the interest rate θ(t) is constant,
θ(t) = θ. A generalization for this has already been discussed in Chapter 1.

According to [28], the discounted ChF for the H1-HW model is of the following
form:

φH1-HW(u, x(t), τ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)r(t) +D(u, τ)v(t)) ,
(2.48)

with final conditions A(u, 0) = 0, B(u, 0) = iu, C(u, 0) = 0, and D(u, 0) = 0, and
τ := T − t.

The ChF for the H1-HW model can be derived in closed-form, with the help
of the following lemmas:

Lemma 2.3.5 (The ODEs related to the H1-HW model). The functions
B(u, τ) =: B(τ), C(u, τ) =: C(τ), D(u, τ) =: D(τ) and A(u, τ) =: A(τ) for
u ∈ C and τ ≥ 0 in (2.48) for the H1-HW model satisfy the following system of
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ODEs:

B′(τ) = 0, B(u, 0) = iu,

C′(τ) = −1 − λC(τ) +B(τ), C(u, 0) = 0,

D′(τ) = B(τ)(B(τ) − 1)/2 + (γρx,vB(τ) − κ)D(τ) + γ2D2(τ)/2, D(u, 0) = 0,

A′(τ) = λθC(τ) + κv̄D(τ) + η2C2(τ)/2 + ηρx,rE(
√
v(t))B(τ)C(τ), A(u, 0) = 0,

with τ = T−t, and where κ, λ, θ and η, ρx,r and ρx,v correspond to the parameters
in the HHW model (2.3).

Proof. For a given state vector X(t) = [x(t), r(t), v(t)]T , and φ := φ(u,X(t), t, T )
we find the system of the ODEs satisfying the following pricing PDE:

0 =
∂φ

∂t
+

(
r − 1

2
v

)
∂φ

∂x
+ κ(v̄ − v)

∂φ

∂v
+ λ(θ(t) − r)

∂φ

∂r
+

1

2
v
∂2φ

∂x2

+
1

2
γ2v

∂2φ

∂v2
+

1

2
η2
∂2φ

∂r2
+ ρx,vγv

∂2φ

∂x∂v
+ ηρx,rE(

√
v(t))

∂2φ

∂x∂r
− rφ, (2.49)

subject to terminal condition φ(u, x(T ), T, T ) = exp (iux(T )).
Since the PDE in (2.49) is affine, its solution is of the following form:

φ(u, x(t), t, T ) = exp
(
A(u, t, T ) +B(u, t, T )x(t) +C(u, t, T )r(t) +D(u, t, T )v(t)

)
.

By setting A := A(u, t, T ), B := B(u, t, T ), C := C(u, t, T ) and D := D(u, t, T )
we find the following partial derivatives:

∂φ

∂t
= φ

(
∂A

∂t
+ x(t)

∂B

∂t
+ r(t)

∂C

∂t
+ v(t)

∂D

∂t

)
, (2.50)

∂φ

∂x
= Bφ,

∂2φ

∂x2
= B2φ,

∂2φ

∂x∂v
= BDφ,

∂2φ

∂x∂r
= BCφ, (2.51)

∂φ

∂r
= Cφ,

∂2φ

∂r2
= C2φ, (2.52)

∂φ

∂v
= Dφ,

∂2φ

∂v2
= D2φ. (2.53)

By substitution, PDE (2.49) reads:

0 =
∂A

∂t
+ x

∂B

∂t
+ r

∂C

∂t
+ v

∂D

∂t
+

(
r − 1

2
v

)
B + κ(v̄ − v)D + λ(θ(t) − r)C

+
1

2
vB2 +

1

2
γ2vD2 +

1

2
η2C2 + ρx,vγvBD + ηρx,rE(

√
v(t))BC − r. (2.54)
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Now, by collecting the terms for x(t), r(t) and v(t) we find the following set of
ODEs:

∂B

∂t
= 0,

∂C

∂t
= −B + λC + 1,

∂D

∂t
=

1

2
B + κD − 1

2
γ2D2 − ρx,vγBD − 1

2
B2,

∂A

∂t
= −κv̄D − λθC − 1

2
η2C2 − ρx,rηE(

√
v(t))BC.

By setting τ = T − t the proof is finished. �

The following lemma gives the closed-form solution for the functions B(u, τ),
C(u, τ), D(u, τ) and A(u, τ) in (2.48).

Lemma 2.3.6 (Characteristic function for the H1-HW model). The solution of
the ODE system in Lemma 2.3.5 is given by:

B(u, τ) = iu, (2.55)

C(u, τ) = (iu− 1)λ−1(1 − e−λτ ), (2.56)

D(u, τ) =
1 − e−D1τ

γ2 (1 − ge−D1τ )
(κ− γρx,viu−D1) , (2.57)

A(u, τ) = λθI1(τ) + κv̄I2(τ) +
1

2
η2I3(τ) + ηρx,rI4(τ), (2.58)

with D1 =
√

(γρx,viu− κ)2 − γ2iu(iu− 1), and where g =
κ− γρx,viu−D1

κ− γρx,viu+D1
, κ,

θ, λ, and γ are as in (2.9).
The integrals I1(τ), I2(τ), and I3(τ) admit an analytic solution, and I4(τ) a

semi-analytic solution:

I1(τ) =
1

λ
(iu− 1)

(
τ +

1

λ
(e−λτ − 1)

)
,

I2(τ) =
τ

γ2
(κ− γρx,viu−D1) − 2

γ2
log

(
1 − ge−D1τ

1 − g

)
,

I3(τ) =
1

2λ3
(i+ u)2

(
3 + e−2λτ − 4e−λτ − 2λτ

)
,

I4(τ) = iu

∫ τ

0

E(
√
v(T − s))C(u, s)ds

= − 1

λ
(iu+ u2)

∫ τ

0

E(
√
v(T − s))

(
1 − e−λs

)
ds.

Proof. Obviously, due to the final condition, B(u, 0) = iu, we have B(u, τ) = iu.
For the second ODE, multiplying both sides by eλτ , we get:

d

dτ

(
eλτC(u, τ)

)
= (iu− 1)eλτ , (2.59)
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by integrating both sides and using the condition, C(u, 0) = 0, we find

C(u, τ) = (iu− 1)λ−1
(
1 − e−λτ

)
.

By setting a = − 1
2 (u2 + iu), b = γρx,viu− κ, and c = 1

2γ
2, the ODEs for D(u, τ)

and I2(τ) are given by the following Riccati equation:

d

dτ
D(u, τ) = a+ bD(u, τ) + cD2(u, τ), D(u, 0) = 0, (2.60)

I2(τ) = κv̄

∫ τ

0

D(u, s)ds. (2.61)

Equations (2.60) and (2.61) are of the same form as those in [54]. Their solutions
are given by:

D(u, τ) =
−b−D1

2c(1 −Ge−D1τ )
(1 − e−D1τ ), (2.62)

I2(τ) =
1

2c

(
(−b−D1)τ − 2 log

(
1 −Ge−D1τ

1 −G

))
, (2.63)

with D1 =
√
b2 − 4ac, G =

−b−D1

−b+D1
.

The evaluation of the integrals I1(τ), I3(τ) and I4(τ) is straightforward. The
proof is finished by the corresponding substitutions. �

Note that by taking E(
√
v(T − s)) ≈ a+ be−c(T−s), with a, b and c as given

in (2.41) we obtain a closed-form expression:

I4(τ) = − 1

λ
(iu+ u2)

[
b

c

(
e−ct − e−cT

)
+ aτ +

a

λ

(
e−λτ − 1

)

+
b

c− λ
e−cT

(
1 − e−τ(λ−c)

)]
. (2.64)

In the next section we present the generalization of the H1-HW model to a
full matrix of non-zero correlations between the processes.

2.3.3 Hybrid model with full matrix of correlations

Similar to the approximation of the non-affine terms in the instantaneous
covariance matrix of the Heston hybrid model presented in Section 2.3.1, we
discuss here the inclusion of the additional correlation, ρr,v, between the interest
rate, r(t), and the stochastic variance, v(t). For the state vector X(t) =
[x(t), v(t), r(t)]T the model has the following symmetric instantaneous covariance
matrix:

Σ := σ(X(t))σ(X(t))T =



v(t) ρx,vγv(t) ρx,rη

√
v(t)

∗ γ2v(t) ρr,vγη
√
v(t)

∗ ∗ η2



(3×3)

. (2.65)
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The affinity issue arises in two terms of matrix (2.65), namely, in elements (1, 3)
and (2, 3):

Σ(1,3) = ρx,rη
√
v(t), Σ(2,3) = ρr,vγη

√
v(t).

For completeness, we also present the associated Kolmogorov backward equation,
which is now given by:

0 =
∂φ

∂t
+

(
r − 1

2
v

)
∂φ

∂x
+ κ(v̄ − v)

∂φ

∂v
+ λ(θ(t) − r)

∂φ

∂r
+

1

2
v
∂2φ

∂x2
+

1

2
γ2v

∂2φ

∂v2

+
1

2
η2
∂2φ

∂r2
+ ρx,vγv

∂2φ

∂x∂v
+ Σ(1,3)

∂2φ

∂x∂r
+ Σ(2,3)

∂2φ

∂r∂v
− rφ, (2.66)

with terminal condition equal to:

φ(u, x(T ), T, T ) = exp(iux(T )).

With ρr,v = 0 the approximating Heston-Hull-White model with a full matrix
of correlations collapses to the setup in Section 2.3.1.

As before, we can use the deterministic approximations Σ(1,3) ≈
ρx,rηE(

√
v(t)) and Σ(2,3) ≈ ρr,vγηE(

√
v(t)) for which Result 2.3.3 can be

used.
The representations of the Heston-Hull-White model in (2.8) and the model

in (2.3) with ρr,v 6= 0 for p = 0 are closely related. The lemma below specifies the
relation in terms of the coefficients of the corresponding ChF.

Lemma 2.3.7 (The ChF for the approximating Heston-Hull-White model with a
full matrix of correlations). The discounted ChF for the model is of the following
form:

φ(u, x(t), τ) = exp
(
Â(u, τ) + B̂(u, τ)x(t) + Ĉ(u, τ)r(t) + D̂(u, τ)v(t)

)
,

with the functions Â(u, τ), B̂(u, τ), Ĉ(u, τ) and D̂(u, τ) given by:

B̂(u, τ) = B(u, τ), Ĉ(u, τ) = C(u, τ), D̂(u, τ) = D(u, τ), (2.67)

with B(u, τ) in (2.55), C(u, τ) in (2.56) and D(u, τ) given in (2.57). For Â(u, τ)
we have:

Â(u, τ) = A(u, τ) + ρr,vγη

∫ τ

0

E(
√
v(T − s))Ĉ(u, s)D̂(u, s)ds, (2.68)

where A(u, τ) is given in (2.58).

Proof. The proof is very similar to the proof of Lemma 2.3.6. �

The accuracy of the HHW approximations with a full matrix of correlations
will be discussed in Section 2.6.



On the Heston Model with Short-Rate Interest Rates 49

2.4 Stochastic approximation for hybrid models

In Section 2.3 a first approach to approximate the non-affine elements in the
instantaneous covariance matrix was presented. Here, we model those elements by
stochastic processes, and call the resulting approximate model H2-HW (Heston-
Hull-White model-2).

2.4.1 Stochastic approach, the H2-HW model

In the result below an approximation for finite time t and a non-zero centrality
parameter is presented.

Result 2.4.1 (Normal approximation for
√
v(t), for 0 < t < ∞). For any time,

t <∞, the square root of v(t) in (2.8) can be approximated by

√
v(t) ≈ N

(√
c(t)(λ(t) − 1) + c(t)d+

c(t)d

2(d+ λ(t))
, c(t) − c(t)d

2(d+ λ(t))

)
, (2.69)

with c(t), d and λ(t) from (2.20). Moreover, for a fixed value of x in the cumulative
distribution function F√

v(t)
(x), and a fixed value for parameter d, the error is of

order O(λ2(t)) for λ(t) → 0 and O(λ(t)−
1

2 ) for λ(t) → ∞.

To show the validity of the approximations presented above, we follow Patnaik
in [88] who found that an accurate approximation for the non-central chi-square
distribution, χ2

d(λ(t)), can be obtained by an approximation with a centralized
chi-square distribution, i.e.:

χ2(d, λ(t)) ≈ a(t)χ2(f(t)), (2.70)

with a(t) and f(t) in (2.70) chosen so that the first two moments match, i.e.:

a(t) =
d+ 2λ(t)

d+ λ(t)
, f(t) = d+

λ2(t)

d+ 2λ(t)
. (2.71)

It was shown in [25, 21] that, for a given time t > 0, v(t) is distributed as c(t) times
a non-central chi-square random variable, χ2(d, λ(t)), with degrees of freedom
parameter d and non-centrality parameter λ(t), i.e.: v(t) = c(t)χ2 (d, λ(t)) , t > 0.
By combining this with (2.70) we have:

√
v(t) ≈

√
c(t)
√
a(t)χ2(f(t)). (2.72)

Now, we use a result by Fisher [35] that for a given central chi-square random
variable, χ2(d), the expression

√
2χ2(d) is approximately normally distributed

with mean
√

2d− 1 and unit variance, i.e.:

Fχ2(d)(x) ≈ Φ
(√

2x−
√

2d− 1
)
, (2.73)

which implies:

√
v(t) ≈ N

(√(
f(t) − 1

2

)
c(t)a(t),

1

2
c(t)a(t)

)
. (2.74)
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The order of this approximation can be found in [65].

Remark. Also in [88] it was indicated that the normal approximation resembles
the non-central chi-square distribution very well for either a large number of
degrees of freedom, d, or a large non-centrality λ(t). For t → 0, the non-
centrality parameter, λ(t), tends to infinity. Therefore, accurate approximations
are expected.

In the case of long maturities, the non-centrality parameter converges to 0,
which may give an inaccurate approximation. In this case, satisfactory results
depend on the size of the degrees of freedom parameter d. It is clear that d
in (2.20) is directly related to the Feller condition. In practical applications,
however, 2κv̄ is often smaller than γ2. In the numerical experiments to follow we
will study the impact of violating the Feller condition.

In Result 2.4.1 we have shown that
√
v(t) can be approximated well by

a normally distributed random variable. As the application of Itô’s lemma
to find the dynamics for

√
v(t) is not allowed (the square-root process is not

twice differentiable at the origin [60]), we construct a stochastic process, ξ(t), so

that equality in distribution holds, i.e.: ξ(t)
d≈
√
v(t). Since a normal random

variable is completely described by its first two moments, we need to ensure that
E(ξ(t)) = E(

√
v(t)) and Var(ξ(t)) = Var(

√
v(t)). For this purpose we propose

the following dynamics:

dξ(t) = µξ(t)dt+ ψξ(t)dWv(t), ξ(0) =
√
v(0), (2.75)

with some deterministic, time-dependent functions µξ(t), and ψξ(t), determined
so that the first two moments match. By moment-matching the unknown
functions µξ(t) and ψξ(t) in (2.75) read:

µξ(t) =
d

dt
E(
√
v(t)), ψξ(t) =

√
d

dt
Var(

√
v(t)). (2.76)

Using the results from Lemma 2.3.1, the expectation, E(
√
v(t)), and the variance,

Var(
√
v(t)), can be derived:

µξ(t) =
1

2
√

2

Γ
(
1+d
2

)
√
c(t)

(
1F̃1

(
−1

2
,
d

2
,−λ(t)

2

)
1

2
γ2e−κt

+ 1F̃1

(
1

2
,

2 + d

2
,−λ(t)

2

)
v(0)κ

1 − eκt

)
,

ψξ(t) =
(
κ(v̄ − v(0))e−κt − 2E(

√
v(t)) µξ(t)

) 1

2

. (2.77)

Here, E(
√
v(t)) and d, c(t) and λ(t) are as in (2.18) and the regularized hyper-

geometric function 1F̃1(a; b; z) =: 1F1(a; b; z)/Γ(b).
The expressions for µξ(t) and ψξ(t) in (2.77) are exact. However, since those

expressions are not cheap to compute one can find suitable approximations based
on the results in Result 2.3.2, which are however not guaranteed to be well-defined
for all sets of parameters.
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Since the approximate hybrid models are to be used for the calibration to
European-style options (with one terminal payment) we do not need path-wise
equality between processes ξ(t) and

√
v(t), only equality in terminal distribution

is needed.

Remark. In Section 2.4.1 we projected
√
v(t) onto a normal process, ξ(t). As

it is common with approximations by normal processes (a non-negative random
variable is projected onto another variable ∈ R), this approximation comes with
an error (as we indicated in Result 2.4.1). During stress-testing, examples of
which are presented in Section 2.4.3 and in Section 2.6, we did not encounter
any problems with this approximation. Typically, the stochastic approximation
is somewhat more accurate than the deterministic approach (which is not based
on a normal approximation) 5.

2.4.2 Characteristic function for the H2-HW model

We now use the (stochastic) approximation for the term Σ(1,3), with the process

dξ(t) given by (2.75), and the time-dependent functions µξ(t) and ψξ(t) as
in (2.77).

This approximation gives rise to an extension of the 3D space variable X(t) =

[S(t), v(t), r(t)]T to a 4D space X̃(t) = [S(t), v(t), r(t), ξ(t)]T , with the following
system of SDEs:





dS(t)/S(t) = r(t)dt +
√
v(t)dWx(t), S(0) > 0,

dv(t) = κ(v̄ − v(t))dt + γ
√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t) − r(t))dt + ηdWr(t), r(0) > 0,

dξ(t) = µξ(t)dt + ψξ(t)dWv(t), ξ(0) =
√
v(0),

(2.78)

where 



dWx(t)dWv(t) = ρx,vdt,
dWx(t)dWr(t) = ρx,rdt,
dWv(t)dWr(t) = 0,

(2.79)

with
√
v(t) ≈ ξ(t) and µξ(t), ψξ(t) as defined in (2.77).

By taking the log-transform, x(t) = logS(t), in the model above all the drift
terms are linear, and the symmetric instantaneous covariance matrix, with ξ(t) ≈√
v(t), is given by:

Σ̃ =




v(t) γρx,vv(t) ρx,rηξ(t) ρx,vψ
ξ(t)ξ(t)

∗ γ2v(t) 0 γψξ(t)ξ(t)
∗ ∗ η2 0

∗ ∗ ∗
(
ψξ(t)

)2


 , (2.80)

which, since ψξ(t) is a deterministic time-dependent function, is now affine.

5The method by Antonov from [7, 8] is also not based on normal approximations.
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Since the system of SDEs (2.78) is affine, we derive the corresponding ChF:

φH2-HW(u, x(t), τ) = exp
(
A(u, τ) +B(u, τ)x(t) + C(u, τ)r(t).

+D(u, τ)v(t) + E(u, τ)ξ(t)
)
, (2.81)

with terminal conditions φH2-HW(u, x(T ), 0) = exp(iux(T )) and ξ(t) ≈
√
v(t).

The functions A(u, τ), B(u, τ), C(u, τ), D(u, τ) and E(u, τ) satisfy the
complex-valued ODEs given by the following lemma.

Lemma 2.4.2 (The ODEs related to the H2-HW model). The functions
B(u, τ) =: B(τ), C(u, τ) := C(τ), D(u, τ) =: D(τ), E(u, τ) =: E(τ) and
A(u, τ) =: A(τ) for u ∈ C and τ = T − t > 0 in (2.81), satisfy:

B′(τ) = 0,

C′(τ) = −1 +B(τ) − λC(τ),

D′(τ) = (B(τ) − 1)B(τ)/2 + (γρx,vB(τ) − κ)D(τ) + γ2D2(τ)/2,

E′(τ) = ρx,rηB(τ)C(τ) + ψξ(t)ρx,vB(τ)E(τ) + γψξ(t)D(τ)E(τ),

A′(τ) = κv̄D(τ) + λθC(τ) + µξ(t)E(τ) + η2C2(τ)/2 +
(
ψξ(t)

)2
E2(τ)/2,

with final conditions: B(u, 0) = iu, C(u, 0) = 0, D(u, 0) = 0, E(u, 0) = 0,
A(u, 0) = 0, and functions µξ(t), ψξ(t) as given in (2.77).

Proof. The proof is very similar to the proof of Lemma 2.3.5. �

Solutions to the ODEs for B(u, τ), C(u, τ) and D(u, τ) can be found in
Lemma 2.3.6 where the deterministic linearization was applied.

Note that the remaining two functions, E(u, τ) and A(u, τ), contain the rather
complicated functions µξ(t) and ψξ(t). We leave these equations to be solved
numerically by a basic ODE routine.

2.4.3 Numerical experiment

Here we check the performance of the deterministic (Section 2.3.2) and the
stochastic (Section 2.4.2) approximations to the full-scale HHW model, in terms
of differences in implied volatilities. The HHW benchmark prices were obtained
by Monte Carlo simulation, performed as in [3].

In Table 2.1 we present the errors for the Black-Scholes implied volatilities,
ǫ(ρx,r), for different correlations between the stock, S(t), and the short-rate, r(t),
and different strikes. We show results for a maturity of ten years, τ = 10, and for
parameters that do not satisfy the Feller condition 6.

Both approximations give very similar, highly accurate, results for low values
of the correlation, ρx,r. This is different for high values of ρx,r. The deterministic

6For short maturities, τ < 10, and for model parameters for which the Feller condition is
satisfied, we did not find any significant differences between the two approximations and the
full-scale model.
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approach generates somewhat more bias for high strikes, whereas the stochastic
approach is essentially bias-free. The errors presented in Table 2.1 depend on
the size of the volatility parameter of the interest rate process, η. For very low
volatility, the two approximations provide a similar level of accuracy. As the
volatility of the short-rate process increases, a higher accuracy is expected for the
stochastic approximation.

The performance of the methods developed is also presented in Section 2.6,
where our schemes are compared to the Markovian projection method [8].
Calibration results will be presented in Section 2.7.

Table 2.1: The implied volatilities and errors for the deterministic approximation
(Approx 1) from (2.16) with approximation (2.18) and the stochastic approximation
(Approx 2) from Section 2.4.1 of the HHW model compared to the Monte Carlo
simulation performed with 20T steps and 100.000 paths. The error is defined as the
difference between reference implied volatilities and the approximations. The parameters
were chosen as T = 10, κ = 0.3, γ = 0.6, v(0) = v̄ = 0.05, λ = 0.01, r(0) = θ = 0.02,
η = 0.01, S(0) = 100 and the correlations ρx,v = −30% and ρx,r ∈ {20%, 60%}.
Numbers in brackets indicate standard deviations.

ρx,r Strike Monte Carlo imp.vol. [%] Approx 1 Approx 2 err.1 err.2

40 % 26.26 (0.22) 25.87 25.99 0.39 % 0.27 %
80 % 20.07 (0.22) 20.03 20.02 0.04 % 0.05 %

20% 100 % 18.43 (0.24) 18.55 18.36 -0.12 % 0.07 %
120 % 17.51 (0.20) 17.74 17.42 -0.23 % 0.09 %
180 % 17.40 (0.22) 17.55 17.36 -0.15 % 0.04 %
40 % 26.27 (0.14) 26.21 26.61 0.06 % -0.34 %
80 % 20.59 (0.11) 21.00 20.91 -0.41 % -0.32 %

60% 100 % 19.11 (0.10) 19.84 19.22 -0.72 % -0.10 %
120 % 18.31 (0.10) 19.21 18.18 -0.90 % 0.13 %
180 % 18.25 (0.11) 18.92 18.34 -0.67 % -0.09 %

2.5 Comparison with Schöbel-Zhu model

Here, we look closer at the H1-HW model and compare it to the Schöbel-Zhu
model with Gaussian interest rates (presented in Chapter 1). For both models the
interest rate process r(t) is identical, driven by a correlated, normally distributed,
short-rate model, so that we only need to focus on the differences between the
volatility processes.

The volatility in the Schöbel-Zhu model is driven by a normally distributed
Ornstein-Uhlenbeck-type process σ(t), whereas in the Heston model the volatility
is driven by

√
v(t) with v(t) distributed as c(t) times a non-central chi-square

random variable, χ2(d, λ(t)), as discussed in Subsection 2.4.1.
We determine under which conditions the two volatility processes, for the

Schöbel-Zhu, σ(t), and for the Heston model,
√
v(t), coincide. In other words: we

determine under which conditions
√
v(t) is approximately a normal distribution

(as σ(t) in the Schöbel-Zhu model is normally distributed).
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In Result 2.4.1 we have found that for any time, t <∞ the square root of the
variance process v(t) in (2.8) can be approximated by:

√
v(t) ≈ N

(
Λ(t), c(t) − c(t)d

2(d+ λ(t))

)
, (2.82)

with c(t), d and λ(t) from (2.20) and Λ(t) from (2.30).
As already indicated in the remark in Section 2.4.1 the normal approxima-

tion (2.82) is a satisfactory approximation for either a large number of degrees of
freedom, d, or a large non-centrality parameter λ(t). A large number of degrees
of freedom, d ≫ 0, implies that 4κv̄ ≫ γ2, which is closely related to the Feller
condition, 2κv̄ > γ2. The Heston model thus has a similar volatility structure as
the Schöbel-Zhu model when the Feller condition is satisfied.
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Figure 2.3: Histogram for
√

v(t) (the Heston model) and density for σ(t) (the Schöbel-
Zhu model); Maturity T = 2. LEFT: Feller condition satisfied κ = 1.2, v(0) =
v̄ = 0.0625, γ = 0.1; RIGHT: The Feller condition violated κ = 0.25, v(0) = v̄ =
0.0625, γ = 0.625 as in [7].

Figure 2.3 confirms this observation. The volatilities for the Heston and
Schöbel-Zhu models differ significantly when the Feller condition does not hold
as the volatility in the Heston model gives rise to much heavier tails than those
in the Schöbel-Zhu model. This may have an effect when calibrating the models
to the market data with significant implied volatility smile or skew.

Here we examine both models and check their performance when calibration to
real market data. The Schöbel-Zhu-Hull-White and the H1-HW models (i.e. affine
Heston with Hull-White short-rate process) are calibrated to implied volatilities
from the S&P500 (27/09/2010) with spot price at 1145.88. For both models the
correlation between the stock and interest rates, ρx,r, is set to +30%.

The calibration results, presented in Table 2.2, confirm that the H1-HW
model is more flexible than the Schöbel-Zhu-Hull-White model. The difference
is pronounced for large strikes at which the error for the affine Heston hybrid
model is up to 20 times lower than for the Schöbel-Zhu-Hull-White hybrid model.

When comparing the new, H1-HW hybrid model, to the extended Schöbel-
Zhu model, we find that both models require an additional integration in the
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Table 2.2: Calibration results for the Schöbel-Zhu hybrid model (SZHW) and the H1-
HW hybrid.

T Strike Market SZHW H1-HW err.(SZHW) err.(H1-HW)
40% 57.61 54.02 57.05 3.59 % -0.56 %
80% 31.38 34.33 33.22 -2.95 % 1.84 %

T=6m 100% 22.95 25.21 21.57 -2.26 % -1.38 %
120% 15.9 18.80 16.38 -2.90 % 0.48 %
180% 24.54 22.60 24.40 1.94 % -0.14 %
40% 48.53 47.01 48.21 1.52 % 0.32 %
80% 30.37 31.69 31.07 -1.32 % -0.70 %

T=1y 100% 24.49 24.97 24.28 -0.48 % 0.21 %
120% 19.23 19.09 19.14 0.14 % 0.09 %
180% 18.42 18.28 18.40 0.14 % 0.02 %
40% 41.30 40.00 41.20 1.30 % 0.10 %
80% 31.12 31.88 31.38 -0.76 % -0.26 %

T=5y 100% 27.83 28.75 27.86 -0.92 % -0.03 %
120% 25.13 25.93 24.91 -0.80 % 0.22 %
180% 19.28 18.57 19.32 0.71 % -0.04 %
40% 36.76 36.15 36.75 0.61 % 0.01 %
80% 31.04 31.25 31.08 -0.21 % -0.04 %

T=10y 100% 29.18 29.47 29.18 -0.29 % 0.00 %
120% 27.66 27.93 27.62 -0.27 % 0.04 %
180% 24.34 24.15 24.35 0.19 % -0.01 %

ChF calculation. The integration in the H1-HW model is independent of the
complex plane arguments, which means that this additional integration, in the
case of the H1-HW model, needs to be performed only once, while in the case of
the SZHW model the number of additional integrals depends on the number of
Fourier space arguments.

2.6 Comparison to Markov Projection method

In this section we compare our results to the Markovian projection (MP)
method [8]. We check the results of three different approximation schemes:
The MP method, Approx 1, i.e. the approximation with

√
v(t) ≈ E(

√
v(t))

(Section 2.3.1), and Approx 2, i.e. the method with
√
v(t) ≈ N (·) (Section 2.4.1).

In the experiment, taken directly from [7], we price an equity option with
continuous dividend. The model parameters for the HHW model are given by
κ = 0.25, v̄ = v(0) = 0.0625, γ = 0.625, λ = 0.05, η = 0.01, a zero-coupon bond
is given by P (0, T ) = e−0.05T , and a continuous dividend of 2%. The full matrix
of correlations, as in [7], is given by:

C =




1 ρx,v ρx,r
ρx,v 1 ρv,r
ρx,r ρv,r 1


 =




100% −40% 30%
−40% 100% 15%
30% 15% 100%


 . (2.83)

The Monte Carlo reference for the implied volatilities, the corresponding standard
deviations, and the results for the MP method are all taken from [7].
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In order to incorporate a continuous dividend in the equity model one can
model foreign exchange (FX), in which the volatility of the foreign interest rates
is set to zero. In such a setup, the forward, F (t), is defined as:

F (t) = S(t)
Pf (t, T )

Pd(t, T )
, and F (0) = S(0)

e−0.02T

e−0.05T
,

where Pf (t, T ) and Pd(t, T ) are the foreign and domestic zero-coupon bonds,
respectively, paying e1 at the maturity T . By switching from the spot risk-neutral
measure, Q, to the T−forward measure, QT , discounting will be decoupled from
taking the expectation, i.e.:

EQ

(
1

B(T )
max(S(T ) −K, 0)|F(0)

)
= Pd(0, T )ET (max(F (T ) −K, 0)|F(0)) .

Moreover, the forward, F (t), is a martingale with dynamics given by:

dF (t)/F (t) =
√
v(t)dWT

x (t) − ηBr(t, T )dWT
r (t),

dv(t) =
(
κ(v̄ − v(t)) + γρv,rηBr(t, T )

√
v(t)

)
dt+ γ

√
v(t)dWT

v (t),

(2.84)
where Br(t, T ) = 1

λ

(
e−λ(T−t) − 1

)
, and the full correlation structure given

in (2.83).
Under the log-transform, x(t) = logF (t), the Kolmogorov backward partial

differential equation reads:

− ∂φ

∂t
= κ(v̄ − v)

∂φ

∂v
+

(
1

2
v − ρx,rηBr(t, T )

√
v − 1

2
η2B2

r (t, T )

)(
∂2φ

∂x2
− ∂φ

∂x

)

+
(
ρx,vγv − ρv,rγη

√
vBr(t, T )

) ∂2φ

∂x∂v
+

1

2
γ2v

∂2φ

∂v2
+ ρv,rγη

√
v
∂φ

∂v
, (2.85)

with the final condition φ(u, x(T ), T, T ) = eiux(T ).
We linearize PDE (2.85) in two ways: By the deterministic approach

described in Section 2.3.1 and Section 2.3.3, and by the stochastic approach
as in Section 2.4.1. Both approximations result in affine approximations of
PDE (2.85) 7.

The results of the experiments performed, presented in Table 2.3, show a highly
satisfactory accuracy of the HHW approximations introduced in this chapter.
When comparing to the MP method, we see that the MP method is more accurate
for low strike values, whereas our proxies perform favorably for larger strike values,
especially when large maturities are considered.

In Figure 2.4 the error results for T = 10 are presented. In this experiment,
the stochastic approximation, Approx 2, performed somewhat better than the
deterministic approach, Approx 1.

In the case of the deterministic approach, pricing of European options is done
in a split-second (the corresponding ChF is analytic when the Feller condition is

7Since the moments of the square-root process under the T−forward measure are difficult to
find, we first project

√

v(t) on a normal process, under measure Q, and then change measures.
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Table 2.3: The error for the deterministic (Approx 1) and stochastic approximation
(Approx 2) of the HHW model compared to the MP method. The Markovian projection
and Monte Carlo results with the corresponding standard deviations were taken from [3].
The error is defined as the difference between the reference implied volatilities and the
approximation.

T Strike imp.vol. MP Approx 1 Approx 2 err.MP err.1 err.2

86.07 24.45 24.49 24.48 24.48 -0.04 % -0.03 % -0.03 %
92.77 22.25 22.27 22.27 22.25 -0.02 % -0.02 % 0.00 %

1y 100.00 20.36 20.32 20.35 20.30 0.04 % 0.01 % 0.06 %
107.79 19.42 19.34 19.38 19.34 0.08 % 0.04 % 0.08 %
116.18 19.67 19.64 19.62 19.64 0.03 % 0.05 % 0.03 %
77.12 22.61 22.65 22.61 22.63 -0.04 % 0.00 % -0.02 %
87.82 20.05 20.05 20.09 20.06 0.00 % -0.04 % -0.01 %

3y 100.00 17.95 17.91 18.09 17.90 0.04 % -0.14 % 0.05 %
113.87 17.23 17.14 17.32 17.15 0.09 % -0.09 % 0.08 %
129.67 18.02 17.92 17.93 18.00 0.10 % 0.09 % 0.02 %
71.50 21.89 21.94 21.90 21.95 -0.05 % -0.01 % -0.06 %
84.56 19.43 19.45 19.52 19.48 -0.02 % -0.09 % -0.05 %

5y 100.00 17.49 17.44 17.71 17.45 0.05 % -0.22 % 0.04 %
118.26 16.83 16.72 17.01 16.76 0.11 % -0.18 % 0.07 %
139.85 17.55 17.42 17.49 17.57 0.13 % 0.06 % -0.02 %
62.23 21.55 21.61 21.57 21.68 -0.06 % -0.02 % -0.13 %
78.89 19.52 19.51 19.67 19.61 0.01 % -0.15 % -0.09 %

10y 100.00 18.01 17.91 18.31 17.97 0.10 % -0.30 % -0.04 %
126.77 17.41 17.22 17.67 17.30 0.19 % -0.26 % 0.11 %
160.70 17.75 17.51 17.79 17.78 0.24 % -0.04 % -0.03 %
51.13 22.28 22.32 22.37 22.47 -0.04 % -0.09 % -0.19 %
71.50 20.91 20.86 21.14 21.03 0.05 % -0.23 % -0.12 %

20y 100.00 19.94 19.77 20.27 19.91 0.17 % -0.33 % 0.03 %
139.85 19.44 19.16 19.77 19.32 0.28 % -0.33 % 0.12 %
195.58 19.40 19.05 19.63 19.39 0.35 % -0.23 % 0.01 %

satisfied; one integration step is required otherwise). In the case of the stochastic
approach a numerical routine for solving the ODEs is employed. This however
can also be done highly efficiently, as it is presented in Appendix in Table 2.7.

2.7 Calibration of the Heston hybrid models

Here, we evaluate the performance of the approximations H1-HW and H2-HW
for the HHW hybrid model in a calibration setting.

Reference call option prices, based on synthetic data representative for the
skew and smile patterns observed in real-life applications are used. For all models
the simulation was performed with an a-priori defined speed of mean reversion for
the variance process, κ = 0.3 (which is set small on purpose). The calibration is
here performed with constant correlation, ρx,r = 20%. In practice, this correlation
can be obtained from historical data, as the correlations between different asset
classes cannot be easily implied from the market [17].

The calibration procedure is performed in two stages. First, the parameters
for the short-rate process are determined (independent of the equity part). In
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Figure 2.4: LEFT: Implied volatilities for a maturity of 10 years. RIGHT: The error
for the different approximations. (MP stands for Markovian Projection, Approx 1 is the
deterministic approach, and Approx 2 corresponds to the approximation with

√
v(t) ≈

N (·).)

the second stage, the calibrated r(t) is included in the Heston model, and the
remaining parameters are determined. The parameters for the interest rate part
are found to be λHW = 0.501, ηHW = 0.005 and r(0) = 0.04.

We also perform, as a benchmark, the calibration of the pure Heston model
with constant interest rate, see Table 2.4. SSE stands for the “sum-squared error”.
We calibrate the models for different maturities, τ .

Table 2.4: Calibration results for the Heston stochastic volatility model with
deterministic interest rate. The mean reversion parameter is κ = 0.3.

model γ v̄ ρx,v v(0) r SSE

Heston (τ = 0.5) 0.5992 0.0823 -58.32% 0.0407 0.04 4.9063E-4
Heston (τ = 10) 0.6019 0.0828 -48.49% 0.0411 0.04 1.2182E-4

In Table 2.5 the calibration results for the HHW approximations, H1-HW and
H2-HW, are presented. For both models a highly satisfactory fit is obtained,
with a slightly better performance of the stochastic approximation H2-HW. For
ρx,r = 20% the calibration procedure gives roughly the same sets of parameters
for both models. When comparing the calibration results for HHW with those for
the pure Heston model, we see that the inclusion of stochastic interest rates in the
model results in a lower vol-vol parameter, γ, and a more negative correlation,
ρx,v. The lower value of parameter γ can be explained by the additional volatility
which comes from the interest rate process.

In Figure 2.5 the corresponding implied volatilities, for the full-scale model,
for a short and long maturity time (τ = 0.5y and τ = 10y) are presented. The
left-hand sides of the figure present the implied volatilities and their errors for H1-
HW and H2-HW. The related implied volatilities of the full-scale HHW model,
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Table 2.5: Calibration results for the H1-HW model from Section 2.3.2, and the H2-HW
model from Section 2.4.2, with κ = 0.3, and correlation ρx,r = 20%.

model τ γ v̄ ρx,v v(0) SSE

H1-HW τ = 0.5 0.5840 0.0822 -60.06% 0.0407 4.4581E-4
τ = 10 0.4921 0.0826 -61.50% 0.0418 3.2912E-4

H2-HW τ = 0.5 0.5879 0.0930 -60.10% 0.0398 4.9677E-4
τ = 10 0.4884 0.0820 -60.72% 0.0421 8.5934E-5

with the parameters from H1-HW and H2-HW, are shown in the right-hand side
of the figure.

Both hybrid models perform very well. For long maturities a higher accuracy
for the hybrid models compared to the plain Heston model can be observed.

Figure 2.5: For τ = 0.5 and τ = 10, ρx,r = 20%, the implied Black-Scholes volatilities
for Heston hybrid models are compared to the pure Heston model and a reference implied
volatility curve. The left-hand graphs present the implied volatilities and errors for
H1-HW and H2-HW. The implied volatilities for the full-scale HHW model, with the
parameters from H1-HW and H2-HW are in the right-hand figures.
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2.8 Conclusion

The main goal of this chapter was to present approximations of the extended
Heston stochastic volatility equity model with stochastic interest rates. We have
focused our attention on the Heston-Hull-White model.

By approximations of the non-affine terms in the corresponding instantaneous
covariance matrix, we placed the approximate hybrid model in the framework of
affine diffusion processes. The approximations in the models have been validated
by comparing the implied volatilities to the full-scale hybrid models.

The deterministic and the stochastic approaches for approximating the
instantaneous covariance matrix of the hybrid model provide satisfactory approx-
imations for prices for European options.

2.A Appendix: Heston-Cox-Ingersoll-Ross hybrid model

We also present the ChF for a Heston-Cox-Ingersoll-Ross hybrid model, p = 1/2
in (2.3), which is more involved than the Hull-White based hybrid models. In
the Heston-CIR model the non-affine term is given in (2.15). Again we use
two approximations to obtain the ChF. In the first model, H1-CIR, we use
the deterministic setup and for the second model, H2-CIR, we determine the
stochastic approximation.

Characteristic function for the H1-CIR model

The dynamics for the stock, S(t), in the Heston-CIR model read:





dS(t)/S(t) = r(t)dt+
√
v(t)dWx(t), S(0) > 0

dv(t) = κ(v̄ − v(t))dt+ γ
√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t) − r(t))dt+ η
√
r(t)dWr(t), r(0) > 0,

(A-1)

with dWx(t)dWv(t) = ρx,vdt, dWx(t)dWr(t) = ρx,rdt and dWv(t)dWr(t) = 0.
Here, we assume that the non-affine term in the pricing PDE (2.16), Σ(1,3),

in (2.15) can be approximated, as:

Σ(1,3) ≈ ηρx,rE
(√

r(t)
√
v(t)

)
⊥⊥
= ηρx,rE(

√
r(t))E(

√
v(t)). (A-2)

Since the processes involved are of the same type, the expectations in (A-2) can
be determined as presented in Section 2.3.1. For the log-stock, x(t) = logS(t),
the ChF and the corresponding Riccati ODEs are defined as below:

φH1-CIR(u, x(t), τ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)r(t) +D(u, τ)v(t)) ,
(A-3)

Lemma 2.A.1 (The ODEs related to the H1-CIR model). The functions
B(u, τ) =: B(τ), C(u, τ) =: C(τ), D(u, τ) =: D(τ) and A(u, τ) =: A(τ) for
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u ∈ C and τ > 0 in (A-3) satisfy:

B′(τ) = 0, B(u, 0) = iu,

C′(τ) = −1 +B(τ) − λC(τ) + η2C2(τ)/2, C(u, 0) = 0,

D′(τ) = (B(τ) − 1)B(τ)/2 + (γρx,vB(τ) − κ)D(τ) + γ2D2(τ)/2, D(u, 0) = 0,

A′(τ) = κv̄D(τ) + λθC(τ) + ηρx,rE(
√
v(t))E(

√
r(t))B(τ)C(τ), A(u, 0) = 0.

with τ = T − t, E(
√
v(t)) and E(

√
r(t)) from Lemma 2.3.1.

Proof. The proof is very similar to the proof in Lemma 2.3.5. �

Lemma 2.A.2 (Solutions for the ChF coefficients of the H1-CIR model). The
solutions for the ODEs for B(u, τ), C(u, τ), D(u, τ) and A(u, τ), defined in
Lemma 2.A.1, are given by:

B(u, τ) = iu, (A-4)

C(u, τ) =
1 − e−D1τ

η2 (1 −G1e−D1τ )
(λ−D1) , (A-5)

D(u, τ) =
1 − e−D2τ

γ2 (1 −G2e−D2τ )
(κ− γρx,viu−D2) , (A-6)

and

A(u, τ) =

∫ τ

0

(
κv̄D(u, s) + λθC(u, s)

+ρx,rηiuE(
√
v(T − s))E(

√
r(T − s))C(u, s)

)
ds, (A-7)

with D1 =
√
λ2 + 2η2(1 − iu), D2 =

√
(γρx,viu− κ)

2 − (iu− 1)iuγ2,

G1 =
λ−D1

λ+D1
and G2 =

κ− γρx,viu−D2

κ− γρx,viu+D2
.

Proof. The proof is very similar to the proof in Lemma 2.3.6. �

The integral for A(u, τ) in Lemma 2.A.2 can be determined analytically only
for constant approximations of the two expectations involved.

Characteristic function for the H2-CIR model

As before, we aim to find an approximation of the instantaneous covariance matrix
for which the affinity of the approximation model is obtained, but now with the
stochastic approximation.

Σ(1,3) now consists of two stochastic components,
√
v(t) and

√
r(t). We

approximate both and obtain:

Σ(1,3) ≈ Σ̃(1,3) = ρx,rηξ(t)R(t), R(t) ≈
√
r(t), ξ(t) ≈

√
v(t). (A-8)
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This form, based on the product of two random variables, is not affine. To
linearize (A-8) we need to specify the joint dynamics, d(

√
v(t)

√
r(t)). If we

assume that the dynamics for d(
√
v(t)) and d(

√
r(t)) can be approximated by

normally distributed processes, we find, by Itô’s lemma, that the dynamics of
z(t) = ξ(t)R(t) are given by:

dz(t) =
(
µR(t)ξ(t) + µξ(t)R(t)

)
dt+ψξ(t)R(t)dWv(t) +ψR(t)ξ(t)dWr(t). (A-9)

With three additional variables, ξ(t), R(t) and z(t), the state
vector X(t), with log-stock process x(t) = logS(t) is expanded to
X(t) = [x(t), v(t), r(t), ξ(t), R(t), z(t)]T , with the following corresponding
system of SDEs:





dx(t) = (r(t) − 1/2v(t)) dt+
√
v(t)dWx(t), x(0) = log(S(0)),

dv(t) = κ(v̄ − v(t))dt+ γ
√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t) − r(t))dt+ η
√
r(t)dWr(t), r(0) > 0,

(A-10)

with the linearizing variables ξ(t), R(t) and z(t) given by:

dξ(t) = µξ(t)dt+ ψξ(t)dWv(t), ξ(0) =
√
v(0),

dR(t) = µR(t)dt+ ψR(t)dWr(t), R(0) =
√
r(0),

(A-11)

and

dz(t) =
(
µR(t)ξ(t) + µξ(t)R(t)

)
dt+ ψξ(t)

√
r(t)dWv(t) + ψR(t)

√
v(t)dWr(t),

(A-12)
with z(0) =

√
r(0)

√
v(0), ξ(t) ≈

√
v(t), R(t) ≈

√
r(t), z(t) ≈

√
v(t)

√
r(t) and

the other parameters as in (2.3). Since ψξ(t) and ψR(t) are deterministic time-
dependent functions, the approximate H2-CIR model is now affine and we can
derive the corresponding ChF:

φH2-CIR(u, x(t), τ) = exp
(
A(u, τ) +B(u, τ)x(t) + C(u, τ)r(t) +D(u, τ)v(t)

+E(u, τ)ξ(t) + F (u, τ)R(t) +G(u, τ)z(t)
)
,

(A-13)
with ξ(t) =

√
v(t), R(t) =

√
r(t), z(t) =

√
v(t)

√
r(t), and where the functions

A(u, τ), B(u, τ), C(u, τ), D(u, τ), E(u, τ), F (u, τ) and G(u, τ) satisfy the ODEs
given by the following lemma.

Lemma 2.A.3 (The ODEs related to the H2-CIR model). The functions
B(u, τ) =: B(τ), C(u, τ) =: C(τ), D(u, τ) =: D(τ), E(u, τ) =: E(τ), F (u, τ) =:
F (τ), G(u, τ) =: G(τ) and A(u, τ) =: A(τ) for u ∈ C and τ > 0 in (A-13),
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satisfy:

B′(τ) = 0,

C′(τ) = −1 +B(τ) − λC(τ) + η2C2(τ)/2 + (ψξ(t))2G2(τ)/2,

F ′(τ) = µξ(t)G(τ) + ψR(t)ηC(τ)G(τ) + (ψξ(t))2E(τ)G(τ),

G′(τ) = ηρx,rB(τ)C(τ) + ρx,vψ
ξ(t)B(τ)G(τ) + γψξ(t)D(τ)G(τ)

+ηψR(t)C(τ)G(τ),

A′(τ) = κv̄D(τ) + λθC(τ) + µξ(t)E(τ) + µR(t)F (τ) + (ψξ(t))2E2(τ)/2

+(ψR(τ))2F 2(τ)/2,

and

D′(τ) = B(τ) (B(τ) − 1) /2 − κD(τ) + γρx,vB(τ)D(τ) + γ2D2(τ)/2

+ρx,rψ
R(t)B(τ)G(τ) + (ψR(t))2G2(t)/2,

E′(τ) = µR(t)G(τ) + ψξ(t)ρx,vB(τ)E(τ) + γψξ(t)D(τ)E(τ)

+ρx,rψ
R(t)B(τ)F (τ) + (ψR(t))2F (τ)G(τ),

with the final conditions: B(u, 0) = iu, C(u, 0) = 0, D(u, 0) = 0, E(u, 0) = 0,
F (u, 0) = 0, G(u, 0) = 0 and A(u, 0) = 0. Parameters µξ(t), µR(t), ψξ(t), ψR(t)
are specified in (2.77), and the remaining parameters are in (A-10).

It is difficult to solve the system of the ODEs given in Lemma 2.A.3
analytically. To find the solution we have used an explicit Runge-Kutta
method [36, 66], ode45 from the MATLAB package. Numerical results are
presented in the next subsection.

The extension of the H2-CIR model to the case of a full matrix of correlations
is a trivial exercise.

Numerical experiment

We compare the performance of the approximations H1-CIR and H2-CIR with
the full-scale HCIR model. As in the case of the HHW models, we have set
here T = 10, and the model parameters are chosen so that the Feller condition
does not hold. The results, presented in Table 2.6, are very satisfactory. Both
approximation models, H1-CIR and H2-CIR, provide an error, ǫ(ρx,r), for a call
option within the confidence bounds. For higher correlation ρx,r the error grows,
but it is still small.

We also present the time needed for obtaining the vanilla option prices, with
the characteristic functions H2-HW (Section 2.4.2) and H2-CIR (Section 2.A)
based on the numerical solution of the system of Riccati ODEs. Table 2.7 shows
that, although the ODEs in Lemma 2.A.3 need to be solved numerically, the
time for obtaining European option prices by the COS pricing method [32] is
often less than 0.1 seconds. The pricing of the options by means of the COS
method, a method based on Fourier cosine series expansions, was performed with
a fixed number of 250 terms, which guaranteed highly accurate option prices (up
to machine precision).
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Table 2.6: The implied volatilities and errors for the deterministic approx-
imation (Approx 1) from (2.16) with approximation (2.18) and the stochastic
approximation (Approx 2) from Section 2.4.1 of the HCIR model compared to the Monte
Carlo simulation performed with 20T steps and 100.000 paths. The error is defined
as the difference between the reference implied volatilities and the approximation. The
parameters were chosen as follows: κ = 0.3, γ = 0.6, v(0) = v̄ = 0.05, λ = 0.01,
r(0) = θ = 0.02, η = 0.01, S(0) = 100 and the correlations ρx,v = −30% and
ρx,r ∈ {20%, 60%}. Numbers in brackets indicate standard deviations.

ρx,r Strike Monte Carlo imp.vol. [%] Approx 1 Approx 2 err.1 err.2

40 % 25.66 (0.17) 25.68 25.74 -0.02 % -0.08 %
80 % 19.17 (0.15) 19.21 19.25 -0.04 % -0.08 %

20% 100 % 17.10 (0.18) 17.19 17.09 -0.09 % -0.01 %
120 % 15.77 (0.17) 15.90 15.85 -0.14 % -0.08 %
180 % 15.84 (0.18) 15.90 15.86 -0.06 % -0.02 %
40 % 24.95 (0.14) 25.72 25.79 -0.77 % -0.84 %
80 % 18.93 (0.12) 19.32 19.32 -0.39 % -0.39 %

60% 100 % 16.92 (0.13) 17.37 17.08 -0.44 % -0.15 %
120 % 15.60 (0.13) 16.17 15.93 -0.57 % -0.32 %
180 % 15.57 (0.14) 16.10 15.98 -0.53 % -0.41 %

The tolerance for the ODE solves, by ode45 from MATLAB, is varied in the
experiments shown in the table.

Table 2.7: Time in seconds for pricing a call option based on an explicit Runge-Kutta
method combined with the COS method.

Model Accuracy Maturity
τ = 0.5 τ = 1 τ = 2 τ = 5 τ = 10

H2-HW 10−2 4.37e-2 4.80e-2 6.41e-2 7.49e-2 8.10e-2
10−5 5.32e-2 5.82e-2 8.05e-2 9.74e-2 1.21e-1

H2-CIR 10−2 7.78e-2 7.80e-2 8.38e-2 8.48e-2 8.90e-2
10−5 8.33e-2 8.97e-2 1.05e-1 1.34e-1 1.62e-1

2.B Appendix: The error analysis in the context of the SZHW

hybrid model

When linearizing the full-scale Heston-Hull-White model, as it was presented in
Section 2.3, some error is generated. As an exact solution for the HHW model is
not available it is difficult to assess this error analytically.

In this section we therefore analyze the projections employed in the Heston
hybrid model in the context of the SZHW model which, as shown in Section 2.5,
under certain conditions is closely related 8 to the Heston hybrid model. Moreover,
error analysis under the SZHW model is easier since, for the full-scale model, the
ChF is available.

8in terms of generated implied volatilities
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The pricing PDE for the SZHW hybrid model is given (see Lemma 1.3.1) by:

0 =
∂φ

∂t
+

(
r̃ − 1

2
v

)
∂φ

∂x̃
− λr̃

∂φ

∂r̃
+
(
γ2 − 2κv + 2σ̄κσ

) ∂φ
∂v

+ κ (σ̄ − σ)
∂φ

∂σ

+
1

2
v
∂2φ

∂x̃2
+

1

2
η2
∂2φ

∂r̃2
+ 2vγ2

∂2φ

∂v2
+

1

2
γ2
∂2φ

∂σ2
+ ρx,rησ

∂2φ

∂x̃∂r̃
+ 2ρx,σγv

∂2φ

∂x̃∂v

+ρx,σγσ
∂2φ

∂x̃∂σ
+ 2ρr,σηγσ

∂2φ

∂r∂v
+ ρr,σηγ

∂2φ

∂r∂σ
+ 2γ2σ

∂2φ

∂v∂σ
− r̃φ, (A-14)

with terminal conditions given in Equation (1.16).
As presented in Chapter 1, PDE (A-14) is affine, i.e. linear in its state

variables, so the ChF is known in closed form.
However, we can apply the linearizing procedure also here, as in the case of

the H1-HW model, and project the terms in front of the cross derivative between
the log-stock, x(t), and the interest rate, r(t) 9, i.e.:

ρx,rησ(t)
∂2φ

∂x̃∂r̃
≈ ρx,rηE(σ(t))

∂2φ

∂x̃∂r̃
. (A-15)

We call the approximation with modified covariance structure, as in (A-15), the
SZHW-1 model. Both models, the SZHW in (A-14) and the SZHW-1 with (A-15),
belong to the class of affine diffusions.

The expectation E(σ(t)) in (A-15), with σ(t) as in (1.14), is known analytically
(see Chapter 1) and it is given by:

E(σ(t)|F(0)) = σ0e−κt + σ̄
(
1 − e−κt

)
. (A-16)

As the ChF for the SZHW model is of the following form:

φ(u, x̃(t), τ) = exp
(
A(u, τ) +B(u, τ)x̃(t) + C(u, τ)r̃(t)

+D(u, τ)v(t) + E(u, τ)σ(t)
)
, (A-17)

with the functions A(u, τ), B(u, τ), C(u, τ), D(u, τ) and E(u, τ) given in
Lemma 1.3.2 the projection in (A-15) in the SZHW-1 model will result in a similar
ChF, as presented in the following lemma.

Lemma 2.B.1 (Characteristic function for the SZHW-1 model). The ChF for
the SZHW-1 model is given by:

φ1(u, x̃(t), τ) = exp
(
A1(u, τ) +B(u, τ)x̃(t) + C(u, τ)r̃(t)

+D(u, τ)v(t) + E1(u, τ)σ(t)
)
, (A-18)

with the functions B(u, τ), C(u, τ) and D(u, τ) as for the SZHW model in
Lemma 1.3.2 and the functions A1(u, τ) and E1(u, τ) given by:

E1(u, τ) = E(u, τ) + ρx,rηε1(u, τ), (A-19)

9indicated by the color in Equation (A-14)
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where

ε1(u, τ) =
ec1τ

λ(1 − ge−dτ)
(i + u)u

(
f2(τ) + gf3(τ)

)
, (A-20)

and E(u, τ), c1, d, g, f2(τ) and f3(τ) from Lemma 1.3.2. Function A1(u, τ) is
given by:

A1(u, τ) = A(u, τ) + ρx,rηiu

∫ τ

0

C(u, τ)E(σ(τ − s))ds

= A(u, τ) + ρx,rηε2(u, τ), (A-21)

with

ε2(u, τ) =
(i+ u)ue−κτ

κλ2(λ− κ)

[
λ2(σ0 − σ̄) + κe(κ−λ)τ (σ̄κ− λσ0)

+eκτ (κ− λ)(λσ0 − σ̄(κ+ λ) + σ̄κλτ)
]
, (A-22)

and A(u, τ) for the SZHW model given in Lemma 1.3.2.

Proof. The only difference between the SZHW and the SZHW-1 pricing PDEs is
in the cross term in (A-15). Similarly to the SZHW model it can be easily shown
that the model corresponding ODEs are of the following form:

B′(u, τ) = 0,

C′(u, τ) = −1 +B(u, τ) − λC(u, τ),

D′(u, τ) = 1/2B(u, τ)(B(u, τ) − 1) + 2 (ρx,σγB(u, τ) − κ)D(u, τ) + 2γ2D2(u, τ),

E′
1(u, τ) = 2 (κσ̄ + ρr,σγηC(u, τ))D(u, τ) +

(
2γ2D(u, τ) − κ+ ρx,σγB(u, τ)

)
E1(u, τ),

A′
1(u, τ) = 1/2η2C2(u, τ) +

[
κσ̄ + 1/2γ2E1(u, τ) + ρr,σγηC(u, τ)

]
E1(u, τ)

+ γ2D(u, τ) + ρx,rηB(u, τ)C(u, τ)E(σ(t)),

with the conditions: B(u, 0) = iu, C(u, 0) = 0, D(u, 0) = 0, E1(u, 0) = 0,
and A1(u, 0) = 0. We notice that the ODEs for B(u, τ), C(u, τ) and D(u, τ)
are of the same form as in the case of the SZHW model. The remaining
two ODEs, for E1(u, τ) and for A1(u, τ), differ only in one term, i.e.: in the
SZHW model in the ODE for E(u, τ) the term ρx,rηB(u, τ)C(u, τ) is replaced by
ρx,rηB(u, τ)C(u, τ)E(σ(t)) in the ODE for A1(u, τ).

By integrating the ODEs, in a similar manner as in the SZHW model in
Lemma 1.3.2, the proof is finished. �

Now, we investigate the error when pricing the European options. We asses
the error defined as the absolute difference between the European option prices.
For determined ChF, the European-style option prices are available by using the
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COS method. In this case the absolute error reads:

error =
∣∣∣
Nc∑

n=0

ωnℜ
(

e−iknb1
(
φ̃ (kn, x̃(t), τ) − φ̃1 (kn, x̃(t), τ)

))
Γb1,b2n

∣∣∣

≤
Nc∑

n=0

ωn

∣∣∣Γb1,b2n

∣∣∣ ·
∣∣∣ℜ
(

e−iknb1
(
φ̃ (kn, x̃(t), τ) − φ̃1 (kn, x̃(t), τ)

)) ∣∣∣,

with ωn and Γb1,b2n , b1 and Nc given in Chapter 1 and φ̃·(kn, x̃(t), τ) as in (1.32).
Now, we use the fact that for a complex number z = a + ib it follows that:

|ℜ(z)| ≤ ℜ|z| = |z|, so that the error can be bounded from above by:

error ≤
Nc∑

n=0

ωn

∣∣∣Γb1,b2n

∣∣∣ ·
∣∣∣e−iknb1

(
φ̃ (kn, x̃(t), τ) − φ̃1 (kn, x̃(t), τ)

) ∣∣∣

=

Nc∑

n=0

ωn

∣∣∣Γb1,b2n

∣∣∣ ·
∣∣∣e−iknb1

∣∣∣ ·
∣∣∣φ̃ (kn, x̃(t), τ) − φ̃1 (kn, x̃(t), τ)

∣∣∣.

As indicated in Lemma 2.B.1 the characteristic functions are related by:

φ̃1 (kn, x̃(t), τ) = φ̃ (kn, x̃(t), τ) eρx,rηε1(kn,τ)σ0+ρx,rηε2(kn,τ), (A-23)

so that the upper bound reads:

error ≤
Nc∑

n=0

ωn

∣∣∣Γb1,b2n

∣∣∣ ·
∣∣∣e−iknb1

∣∣∣ ·
∣∣∣φ̃ (kn, x̃(t), τ)

(
1 − eρx,rηε1(kn,τ)σ0+ρx,rηε2(kn,τ)

) ∣∣∣,

which can be expressed as:

error ≤
Nc∑

n=0

ωn

∣∣∣Γb1,b2n

∣∣∣ ·
∣∣∣e−iknb1

∣∣∣ ·
∣∣∣φ̃ (kn, x̃(t), τ)

∣∣∣ ·
∣∣∣1 − eρx,rη(ε1(kn,τ)σ0+ε2(kn,τ))

∣∣∣

=

Nc∑

n=0

ωn

∣∣∣Γb1,b2n

∣∣∣ ·
∣∣∣φ̃ (kn, x̃(t), τ)

∣∣∣ ·
∣∣∣1 − eρx,rη(ε1(kn,τ)σ0−ε2(kn,τ))

∣∣∣

≤
Nc∑

n=0

ωn

∣∣∣Γb1,b2n

∣∣∣ ·
∣∣∣1 − eρx,rη(ε1(kn,τ)σ0−ε2(kn,τ))

∣∣∣.

By a first-order Taylor expansion we find:

∣∣∣1 − eε1(kn,τ)σ0−ε2(kn,τ)
∣∣∣ ≈

∣∣∣ρx,rη (ε1(kn, τ)σ0 − ε2(kn, τ))
∣∣∣

= η
∣∣∣ρx,r

∣∣∣ ·
∣∣∣ε1(kn, τ)σ0 − ε2(kn, τ)

∣∣∣ =: ǫ̂,(A-24)

as η > 0 and ρx,r ∈ [−1, 1].
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Since the expressions for ε1(kn, τ) and ε2(kn, τ) are of rather complicated form
we consider the case λ→ 0 and κ→ 0 which implies:

lim
λ,κ→0

ε1(kn, τ) =
1

γ2

[
τ
√
kn(i+ kn)γ2 tanh

(
τ
√
kn(i+ kn)γ2

)

+ −1 + sech
(
τ
√
kn(kn+ i)γ2

)]
=: ε̂1, (A-25)

lim
λ,κ→0

ε2(kn, τ) = −1

2
kn(kn+ i)σ0τ

2. (A-26)

In the limit for κ, λ→ 0 function ε1(kn, τ) does not depend on σ0, so that we can
express ǫ̂ from (A-24), for σ0 > 0, as:

lim
λ,κ→0

ǫ̂ = η
∣∣∣ρx,r

∣∣∣ · lim
λ,κ→0

∣∣∣ε1(kn, τ)σ0 − ε2(kn, τ)
∣∣∣

= ησ0

∣∣∣ρx,r
∣∣∣ ·
∣∣∣ε̂1 +

1

2
kn(kn+ i)τ2

∣∣∣. (A-27)

We see that for a given volatility parameter, γ, and maturity, τ , the limit in
the first-order approximation for the upper bound of the error increases with the
magnitude of interest rate volatility parameter, η, the volatility level, σ0, and the
correlation between equity and interest rate, ρx,r. The absolute error also is time
dependent.

As we have seen earlier, when comparing the H1-HW model with the full-scale
HHW model in Table 2.3, the experiments showed that the approximating H1-
HW model generated a somewhat smaller bias for very low and very large strikes.
We check here whether the same phenomena is present when dealing with the
SZHW model and its approximating variant. In Figure 2.6 the numerical results,
for long-maturity time, show a similar error pattern as in the case of the Heston-
hybrid model presented in Table 2.3.

Figure 2.6: Implied volatilities for the SZHW and the SZHW-1 models with P (0, t) =
e−0.06t, κ = 0.1, σ̄ = 0.2, γ = 0.06, λ = 0.01, η = 0.01, ρx,σ = −40%, ρx,r = 30%,
ρr,σ = 10% and σ0 = σ̄. LEFT: The results for τ = 10y. RIGHT: The results for
τ = 15y.

In Figure 2.7 the densities for both models under the same sets of parameters
are presented. The figures show that the agreement between the models in the
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tails of the distribution is very good. However, some discrepancies are present
around the mean.
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Figure 2.7: LEFT: densities for the SZHW and the SZHW-1 model. RIGHT: log-
transformed densities for both models. For both experiments the parameters are as chosen
in Figure 2.6.
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CHAPTER 3

The Affine Heston Model with Correlated

Multi-Factor Interest Rates

But it ain’t about how hard you hit; it’s about
how hard you can get hit, and keep moving
forward... It’s how much you can take, and keep
moving forward. That’s how winning is done.

Rocky Balboa (“Rocky V”)

3.1 Introduction

In this chapter we present a hybrid model in which the equity part is again
driven by the Heston model [54], but for the short-rate process a Gaussian multi-
factor model [57] is taken with a non-zero correlation between the different asset
classes. The model introduced here is defined in such a way that it belongs to the
affine diffusion framework for which the corresponding characteristic function can
be determined. This facilitates the use of Fourier-based algorithms [23, 32], for
efficient pricing of plain vanilla contracts. Additionally, Monte Carlo simulation
can be performed by a straightforward generalization of the scheme developed
by Andersen in [3]. By defining the affine hybrid Heston model under the
forward measure, we can price several financial derivative products (like American
options [33]) in a similar way as under the plain Heston model.

The interest rates are driven by multi-factor Gaussian rates [57]. This model
provides a rich pattern for the term structure movements and recovers a humped
volatility structure observed in the market. The hybrid model under consideration
can be used for hybrid payoffs which have a limited sensitivity to the interest rate
smile.

71
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For the model proposed also the Greeks for plain vanilla options can be
efficiently determined and used for hedging. When hedging hybrid products,
exposed to different sources of risks coming from equity or interest rate, it is crucial
to choose an appropriate set of hedging instruments. Particularly, correlation risk
needs to be taken into account here. As it is difficult to find a pure correlation
product in the market which can be used for hedging, one may consider, similarly
as for hedging of jump processes (as presented in [52]), a mean-variance hedging
strategy based on a portfolio of stocks, options and interest rate instruments, like
caplets and swaptions.

In Section 3.2 we define the Heston-Gaussian two-factor hybrid model and
discuss the affinity issue. In the follow-up section, which is the core of this chapter,
we propose an affine version of this hybrid model. We derive the model under
the T -forward measure and provide the corresponding characteristic function. In
the same section we describe the derivation of the Greeks as well as Monte Carlo
simulation; we also discuss properties like a positive-definite covariance matrix.
Section 3.4 is dedicated to numerical experiments where we check the hybrid
model performance for pricing a hybrid product.

3.2 Hybrid with multi-factor short-rate process

3.2.1 Model under the spot measure

Suppose we have given two asset classes defined by the vectors Xn̄×1(t), n̄ ∈
N+ for the equity and for the interest rates Rm̄×1(t), m̄ ∈ N+. One can take
high-dimensional processes involving stochastic volatility, and define the following
system of governing stochastic differential equations (SDEs):





dR(t) = a(R(t))dt+ b(R(t))dWR(t),

dX(t) = c(X(t),R(t))dt+ d(X(t))dWX(t),

Z(t)ZT(t) = CHdt,

(3.1)

where H(t) = [R(t),X(t)]T, Z(t) = [dWR(t), dWX(t)]T, CH is a (n̄+m̄)×(n̄+m̄)
matrix which represents the instantaneous correlation between the Brownian
motions. The noises dW·(t) are assumed to be multi-dimensional, and correlation
within the asset classes is allowed, i.e., CR = (dWR(t))(dWR(t))T, CX =
(dWX(t))(dWX(t))T, as well as correlations between these classes.

Since the Heston model in [54] is sufficient for explaining the smile-shaped
implied volatilities in equity, we take this model as the benchmark for the equity
part. In particular, the model for the state vector X(t) = [x(t) = logS(t), v(t)]T

is described by the following system of SDEs:

{
dx(t) = (r(t) − 1/2v(t)) dt+

√
v(t)dWx(t), S(0) > 0,

dv(t) = κ (v̄ − v(t)) dt+ γ
√
v(t)dWv(t), v(0) > 0,

(3.2)

with dWx(t)dWv(t) = ρx,vdt, the speed of mean reversion κ > 0; v̄ > 0 is the
long-term mean of the stochastic variance process v(t), and γ > 0 specifies the
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volatility of the variance process. Note that the term 1/2v(t) in the x(t)-process
results from Itô’s lemma when deriving the dynamics for logS(t).

For the interest rate process we consider here the Gaussian multi-factor short-
rate model (Gn++) [19], also known as a multi-factor Hull-White model [57]. The
model, for a given state vector R(t) = [r(t), ζ1(t), . . . , ζn−1(t)]T, is defined by the
following system of SDEs:





dr(t) = (θ(t) +
n−1∑

k=1

ζk(t) − βr(t))dt+ ηdWr(t), r(0) > 0,

dζk(t) = −λkζk(t)dt+ ςkdWζk(t), ζk(0) = 0,

(3.3)

where

dWr(t)dWζk (t) = ρr,ζkdt, k = 1, . . . , n− 1, dWζi(t)dWζj (t) = ρζi,ζjdt, i 6= j,

with β > 0, λk > 0 the mean reversion parameters; η > 0 and parameters ςk
determine the volatility magnitude of the interest rate. In the system above,
coefficient θ(t) > 0, t ∈ R+, stands again for the long-term interest rate (which is
usually calibrated to the current yield curve).

The Gn++ model provides a satisfactory fit to at-the-money humped struc-
tures of the volatility of the instantaneous forward rates. Moreover, the easy
construction of the model (based on a multivariate normal distribution) provides
closed-form solutions for caps and swaptions, enabling fast calibration. On the
other hand, since the model is assumed to be normal, the interest rates can become
negative. This however is known and is taken care of in practical applications (see
for example [96]).

By taking the equity model X(t) as introduced in (3.2) and the
interest rate part R(t) from (3.3), a hybrid model H(t) = [R(t),X(t)]T =
[r(t), ζ1(t), . . . , ζn−1(t), v(t), x(t)]T can be defined with the following
instantaneous correlation structure:

CH :=




1 ρr,ζ1 . . . ρr,ζn−1
0 ρx,r

ρr,ζ1 1 . . . ρζ1,ζn−1
0 ρx,ζ1

...
...

. . .
...

...
...

ρr,ζn−1
ρζn−1,ζ1 . . . 1 0 ρx,ζn−1

0 0 . . . 0 1 ρx,v
ρx,r ρx,ζ1 . . . ρx,ζn−1

ρx,v 1




. (3.4)

Model H(t) is the Heston-Gaussian n-factor hybrid model (H-Gn++). Note that
the equity and the interest rate asset classes are linked by correlations in the
right-upper and left-lower diagonal blocks of matrix CH. Our main objective is
the preservation of the correlation, ρx,r, between the log-equity and the interest
rate.

As it is nontrivial to hedge equity-interest rate hybrids by liquidly traded
standard instruments (see [17] for details), and as the correlations between
different asset classes cannot be easily implied from the market, historical
estimates are often used. However, as soon as hybrid product prices become
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available, one can use the additional correlations (degrees of freedom) to enhance
the hybrid model performance.

Assuming V := V (t,H(t)) to represent the value of a European claim, we can
derive the corresponding pricing partial differential equation (PDE) [40] with the
help of the arbitrage-free pricing theorem and the use of Itô’s formula:

0 = (r − 1/2v)
∂V

∂x
+ κ (v̄ − v)

∂V

∂v
+
(
θ(t) +

n−1∑

k=1

ζk − βr
)∂V
∂r

−
n−1∑

k=1

λkζk
∂V

∂ζk
− rV

+
1

2
v
∂2V

∂x2
+

1

2
γ2v

∂2V

∂v2
+

1

2
η2
∂2V

∂r2
+

1

2

n−1∑

k=1

ς2k
∂2V

∂ζk
+ ρx,vγv

∂2V

∂x∂v
+ ρx,rη

√
v
∂2V

∂x∂r

+
√
v

n−1∑

k=1

ρx,ζkςk
∂2V

∂x∂ζk
+

n−1∑

k−1

ρr,ζk ςkη
∂2V

∂r∂ζk
+
∂V

∂t
+

n−2∑

k=1

n−1∑

j=k+1

ρζk,ζj ςkςj
∂2V

∂ζk∂ζj
,(3.5)

with specific boundary and final conditions (for details on boundary conditions
for similar problems, see, for example, [29] pp.241).

Covariance structure

The solution of the (n+2)D convection-diffusion-reaction PDE in (3.5) can be
approximated by means of standard numerical techniques, like finite differences
(see for example [80]). This may however cost substantial CPU time for the model
evaluation. An alternative is to use the Feynman-Kac theorem (see Chapter 1)
and reformulate the problem as an integral equation related to the discounted
expected payoff.

Let us take the following state vector H = [r(t), ζ1(t), . . . , ζn−1(t), v(t), x(t)]T,
and determine the associated (symmetric) instantaneous covariance matrix ΣH

of hybrid model (3.1) with (3.2) and (3.3):

ΣH :=




η2 . . . ρr,ζn−1
ηςn−1 0 ρx,rη

√
v

...
. . .

...
...

...
ρr,ζn−1

ηςn−1 . . . ς2n−1 0 ρx,ζn−1
ςn−1

√
v

0 . . . 0 γ2v ρx,vγv

ρx,rη
√
v . . . ρx,ζn−1

ςn−1

√
v ρx,vγv v



. (3.6)

For the H-Gn++ hybrid model the instantaneous covariance matrix in (3.6) is not
affine in all terms of the right-upper block. In order to stay in the affine class with
non-zero correlations between the assets, approximations should be introduced.

In order to define an alternative model which is affine, it appears ne-
cessary to relate the instantaneous covariance matrix in (3.6) to the cor-
responding stochastic differential equations. This can be done by express-

ing the model in terms of the independent Brownian motions, dW̃(t) =

[dW̃r(t), dW̃ζ1 (t), . . . , dW̃ζn−1
(t), dW̃v(t), dW̃x(t)]T. For a state vector H(t) =

[r(t), ζ1(t), . . . , ζn−1(t), v(t), x(t)]T, the model can be rewritten, in terms of
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independent Brownian motions as:

dH(t) = µ(H(t))dt+ A(t)UdW̃(t), (3.7)

where µ(H(t)) represents the drift for system dH(t) and U is the Cholesky lower
triangular matrix so that CH = UUT for matrix CH in (3.4) and matrix A(t) is
given by:

A(t) =




η 0 . . . 0 0 0
0 ς1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . ςn−1 0 0

0 0 . . . 0 γ
√

v(t) 0

0 0 . . . 0 0
√

v(t)



. (3.8)

Equivalently, model (3.7) can be expressed as:

dH(t) = µ(H(t))dt+ L(t)dW̃(t), (3.9)

with

L(t)L(t)T = ΣH, (3.10)

and ΣH the instantaneous covariance matrix in (3.6).
The model representation of (3.9) is favorable compared to (3.7) since we have

a direct relation between the covariance matrix (3.6) and the SDEs.

3.2.2 Zero-coupon bonds under multi-factor Gaussian model

In the sections to follow we reduce the dimension of the pricing problem by
an appropriate measure change, and define an affine version of the multi-factor
hybrid model.

In order to derive the multi-factor hybrid model under the forward measure
the corresponding zero-coupon bond needs to be determined first.

Under the risk-neutral measure, Q, we consider the n-factor interest rate model
in (3.3), with a full correlation matrix with ρr,ζi 6= 0, and ρζi,ζj 6= 0 for i, j =
{1, . . . , n− 1}, i 6= j.

This model is affine in all state variables, so we can derive the corresponding
characteristic function (see [28]) for r(T ):

φGn++(u, r(t), τ) = EQ
(

e−
∫

T

t
r(s)dseiur(T )

∣∣F(t)
)

= exp
(
A(u, τ) +B(u, τ)r(t) +

n−1∑

k=1

Ck(u, τ)ζk(t)
)
,(3.11)

with final condition φGn++(u, r(T ), 0) = eiur(T ), where conventionally τ = T − t.
The functions A(u, τ), B(u, τ) and Ck(u, τ) are known explicitly and are given by
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the set of Riccati-type ODEs:

B′(u, τ) = −1 − βB(u, τ),

C′
k(u, τ) = B(u, τ) − λkCk(u, τ), (3.12)

A′(u, τ) = θ(t)B(u, τ) +
1

2
η2B2(u, τ) + η

n−1∑

k=1

ρr,ζkςkB(u, τ)C(u, τ)

+
1

2

n−1∑

i=1

n−1∑

j=1

ρζi,ζj ςiςjCi(u, τ)Cj(u, τ),

with terminal conditions B(u, 0) = iu, Ck(u, 0) = 0 and A(u, 0) = 0. These ODEs
can be solved analytically. By setting u = 0 in (3.11) the zero-coupon bond price
is obtained, i.e.:

P (t, T )
def
= EQ

(
e−

∫
T

t
r(s)ds

∣∣F(t)
)

= exp

(
A(t, T ) +B(t, T )r(t) +

n−1∑

k=1

Ck(t, T )ζk(t)

)
,

(3.13)
where

A(t, T ) := A(0, τ), B(t, T ) := B(0, τ), Ck(t, T ) := Ck(0, τ). (3.14)

By applying Itô’s lemma to Equation (3.13), the zero-coupon bond dynamics
under the Q measure read:

dP (t, T )

P (t, T )
= r(t)dt + ηB(t, T )dWr(t) +

n−1∑

k=1

ςkCk(t, T )dWζk(t), (3.15)

where the functions B(t, T ) and Ck(t, T ) satisfy the ODEs (3.12) via (3.14). Their
solution reads:

B(t, T ) =
1

β

(
e−β(T−t) − 1

)
, (3.16)

Ck(t, T ) =
1

β(λk − β)
e−β(T−t) − 1

λk(λk − β)
e−λk(T−t) − 1

λkβ
, (3.17)

with

Ck(t, T ) =
1

β2

(
e−β(T−t)(1 + β(T − t)) − 1

)
, for λk → β,

and k = {1, . . . , n− 1}.
The dynamics for the zero-coupon bond are important when switching

measures in the hybrid model.

3.3 The Affine Heston-Gn++ model (AH-Gn++)

In this section, which is the main part of this chapter, we define the affine hybrid
Heston-Gn++ model. Since the model proposed is, by its structure, similar to
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the Heston-multi-factor-Gaussian model (denoted by H-Gn++) we abbreviated
the model by “AH-Gn++” here, which stands for “affine version of the H-Gn++
model”. Note that we define the AH-Gn++ model as a new model here, not as
an approximation only for calibration.

For convenience, we start with n = 2. The AH-G2++ model with the state
vector H(t) = [r(t), ζ(t), v(t), S(t)]T under the risk-neutral measure Q, is given
by the following system of SDEs:




dr(t)
dζ(t)
dv(t)

dS(t)/S(t)


 =




θ(t) + ζ(t) − βr(t),
−λζ(t)

κ(v̄ − v(t))
r(t)


dt+ L(t)




dW̃r(t)

dW̃ζ(t)

dW̃v(t)

dW̃x(t)


 , (3.18)

where

L(t)L(t)T =




η2 ρr,ζης 0 ρx,rηα(t)
ρr,ζςη ς2 0 ρx,ζςα(t)

0 0 γ2v ρx,vγv
ρx,rηα(t) ρx,ζςα(t) ρx,vγv v


 =: ΣH. (3.19)

Here, the function α(t) in (3.19) is a deterministic function depending on time t
(whereas in the case of the full-scale H-G2++ model α(t) =

√
v(t)). With a

deterministic function α(t), matrix ΣH in (3.19) does not contain any non-affine
elements, so that the AH-G2++ model belongs to the class of affine processes
and we have the characteristic function.

Application of the Cholesky decomposition to matrix ΣH in (3.19) gives for
matrix L(t):

L(t) =




η 0 0 0
ςU2,1 ςU2,2 0 0

0 0 γ
√

v(t) 0

α(t)U4,1 α(t)U4,2 U4,3

√

v(t)

√

v(t)(1 −U2

4,3)− α2(t)
(

U2

4,1 +U2

4,2

)


 ,

(3.20)
where U is the lower triangular Cholesky matrix obtained from the correlation
matrix, with values for Ui,j given by:





U2,1 = ρr,ζ , U4,1 = ρx,r, U4,3 = ρx,v,

U2,2 =
√

1 − ρ2r,ζ, U4,2 = (ρx,ζ − ρx,rρr,ζ)
/√

1 − ρ2r,ζ .
(3.21)

The correlation structure between equity and interest rate in the AH-G2++
model in (3.18) with (3.19) is dependent on the function α(t). If we set, for
example, α(t) ≡ 0, independence between the asset classes is imposed. Our main
objective is to choose a function α(t) such that the AH-G2++ model stays affine
and that it resembles the full-scale H-G2++ model.

3.3.1 The function α(t)

In this section we determine function α(t) in (3.19) for the AH-Gn++ model. In
the H-Gn++ model each of the non-affine terms contains the term

√
v(t), where
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v(t) is the square-root process defined in (3.18) with dynamics:

dv(t) = κ(v̄ − v(t))dt + γ
√
v(t)dW̃v(t),

(with all the parameters specified in (3.2)). Since function α(t) is related to the√
v(t)-term in the H-Gn++ model, a natural definition for α(t) in the AH-Gn++

model appears to be:
α(t) := E(

√
v(t)),

where variance process v(t) is of square-Bessel CIR-type [25].
The process is guaranteed to be positive if the Feller condition [34] for v(t),

i.e., 2κv̄ ≥ γ2, is satisfied.
Since function α(t) is defined as an approximation of

√
v(t) it is given by:

α(t) := E(
√
v(t)) =

√
2c(t)e−λ(t)/2

∞∑

k=0

1

k!
(λ(t)/2)k

Γ
(
1+d
2 + k

)

Γ(d2 + k)
, (3.22)

where c(t), d and λ(t) are defined in (2.22). Detailed derivations of this
expectation can be found in Chapter 2.

3.3.2 The affine hybrid model under measure change

Here we move the model from the spot measure, generated by the money-savings
account, M(t), to the forward measure where the numéraire is the zero-coupon
bond, P (t, T ). As indicated in [82], the forward is defined as,

F (t) =
S(t)

P (t, T )
=

ex(t)

P (t, T )
, (3.23)

where F (t) represents the forward, S(t) stands for stock, x(t) is log-stock defined
in (3.2) and P (t, T ) as defined in (3.15) represents the value of the zero-coupon
bond paying e1 at maturity T .

Under the AH-G2++ hybrid model the stock dynamics dS(t), in terms of the
independent Brownian motions, are given by:

dS(t)

S(t)
= r(t)dt + ψ1(t)dW̃r(t) + ψ2(t)dW̃ζ(t) + ψ3(t)

√
v(t)dW̃v(t)

+
√
v(t)ψ4(t) + ψ5(t)dW̃x(t), (3.24)

with ψ1(t) = U4,1α(t), ψ2(t) = U4,2α(t), ψ3(t) = U4,3, ψ4(t) = 1 − U2
4,3

and ψ5(t) = −α2(t)
(
U2

4,1 + U2
4,2

)
where Ui,j is defined by (3.21) and α(t) :=

E(
√
v(t)).

The zero-coupon bond, P (t, T ) in (3.15), in terms of independent Brownian
motions, is defined as:

dP (t, T )

P (t, T )
= r(t)dt + (ηB(t, T ) + ρr,ζςC(t, T )) dW̃r(t)

+ςC(t, T )
√

1 − ρ2r,ζdW̃ζ(t),
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with B(t, T ) in (3.16) and C(t, T ) in (3.17). By switching from the risk-neutral
measure, Q, to the T -forward measure, QT , the discounting will be decoupled from
taking the expectation, i.e.:

V (t, F (t)) = P (t, T )ET (max (F (T ) −K, 0) |F(t)) .

In order to determine the dynamics for F (t) in (3.23), we apply Itô’s formula:

dF (t)

F (t)
=
(
ς2C2 +Bη(Bη − ψ1(t)) + ςC

(
2ρr,ζηB − ρr,ζψ1(t) −

√
1 − ρ2r,ζψ2(t)

))
dt

+ψ̂1(t)dW̃r(t) + ψ̂2(t)dW̃ζ(t) + ψ3(t)
√
v(t)dW̃v(t) +

√
v(t)ψ4(t) + ψ5(t)dW̃x(t),

with ψ̂1(t) := ψ1(t) − (ρr,ζςC + ηB), ψ̂2(t) := ψ2(t) − ςC
√

1 − ρ2r,ζ and, for the

sake of notation, we have set B := B(t, T ) and C := C(t, T ).
Forward F (t) is a martingale under the T -forward measure, i.e.,

ET (F (T )|F(t)) = F (t),

and the corresponding Brownian motions under the T -forward measure, dW̃T
x (t),

dW̃T
v (t), dW̃T

r (t) and dW̃T
ζ (t), need to be determined.

A change of measure from the spot to the T -forward measure requires a change
of numéraire from the money-savings account, M(t), to the zero-coupon bond,
P (t, T ). In the model we assumed non-zero correlations between interest rates
and equity, and all the processes within each asset class, which implies that
all processes, except the variance, will change their dynamics by changing the
measure.

Before we determine the dynamics under the changed numéraire let us recall
two important theorems:

Theorem 3.3.1 (Radon-Nikodym derivative). Let QN be the equivalent martin-
gale measure with respect to numéraire N(t). Let QM be the equivalent martingale
measure with respect to numéraire M(t). The Radon-Nikodym derivative that
allows us to change equivalent martingale measure QM into QN is given by:

ΛNM (t) :=
dQN

dQM

∣∣∣
F(t)

=
N(t)

N(0)

M(0)

M(t)
.

Proof. The proof can be found in [41]. �

Theorem 3.3.2 (Girsanov theorem). For any stochastic process y(t) for which

∫ t

0

y2(s)ds <∞,

with probability one, we define the Radon-Nikodym derivative

Λ∗
Q(t) =

dQ∗

dQ

∣∣∣
F(t)

,
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given by:

Λ∗
Q(t) = exp

(∫ t

0

y(s)dWQ(s) − 1

2

∫ t

0

y2(s)ds

)
,

where WQ(t) is a Brownian motion under the measure Q. Under the measure Q∗

the process
dW ∗(t) = dWQ(t) − y(t)dt,

is also a Brownian motion.

The lemma below provides us with the model dynamics under the T -forward
measure, QT .

Lemma 3.3.3 (The AH-G2++ model dynamics under the QT -measure). Under
the T -forward measure, the AH-G2++ model is described by the following
dynamics:

dF (t)

F (t)
= ψ̂1(t)dW̃T

r (t) + ψ̂2(t)dW̃T
ζ (t) + ψ3(t)

√
v(t)dW̃T

v (t) (3.25)

+
√
v(t)ψ4(t) + ψ5(t)dW̃T

x (t), (3.26)

dv(t) = κ(v̄ − v(t))dt + γ
√
v(t)dW̃T

v (t),

where ψ̂1(t) = ψ1(t)−(ρr,ζςC(t, T )+ηB(t, T )), ψ̂2(t) = ψ2(t)−ςC(t, T )
√

1 − ρ2r,ζ
and ψi(t), i = {1, . . . , 5} as in (3.24) with

dr(t) =
(
θ̂(t) + ζ(t) − βr(t)

)
dt+ ηdW̃T

r (t),

dζ(t) =
(
−λζ(t) + ςηρr,ζB(t, T ) + ς2C(t, T )

)
dt+ ςρr,ζdW̃

T
r (t)

+ς
√

1 − ρ2r,ζdW̃
T
ζ (t),

with θ̂(t) = θ(t) + η2B(t, T ) + ρr,ζηςC(t, T ), with a correlation matrix given
in (3.4), and with B(t, T ), C(t, T ) in (3.16) and (3.17).

Since the interest rates are Gaussian, and in the corresponding SDEs the
diffusion parts are independent of the state variables, the dimension of the
underlying pricing problem is reduced under the T -forward measure (as the
forward, F (t), and the variance process, v(t), do not contain r(t) or ζ(t)).

Proof. For a given state vector, dH(t) = [dr(t), dζ(t), dv(t), dF (t)/F (t)]T , we
express the model in terms of the independent Brownian motions as:

dH(t) = µ(H(t))dt+ L(t)dW̃(t), (3.27)

where µ(H(t)) represents the drift for system dH(t) and L(t) is defined in (3.20).
Now, we determine the Radon-Nikodym derivative [41], ΛTQ(t),:

ΛTQ(t) =
dQT

dQ

∣∣∣
F(t)

=
P (t, T )M(0)

P (0, T )M(t)
, (3.28)
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where P (t, T ) is a zero-coupon bond as defined in (3.15) and M(t) is the money-
savings account. By calculating the Itô derivative of Equation (3.28) we get:

dΛTQ(t)

ΛTQ(t)
= ηB(t, T )dWr(t) + ςC(t, T )dWζ(t),

which, in terms of the independent Brownian motions, is given by:

dΛTQ(t)

ΛTQ(t)
= ηB(t, T )dW̃r(t) + ςC(t, T )

(
ρr,ζdW̃r(t) +

√
1 − ρ2r,ζdW̃ζ(t)

)

=
(
ηB(t, T ) + ρr,ζςC(t, T )

)
dW̃r(t) + ςC(t, T )

√
1 − ρ2r,ζdW̃ζ(t).

The representation above shows the Girsanov kernel which describes the transition
from Q to QT , i.e.,

dW̃T (t) = Ξ(t)dt+ dW̃(t).

So,

dW̃(t) :=




dW̃r(t)

dW̃ζ(t)

dW̃v(t)

dW̃x(t)


 =




dW̃T
r (t)

dW̃T
ζ (t)

dW̃T
v (t)

dW̃T
x (t)


+




ηB(t, T ) + ρr,ζςC(t, T )

ςC(t, T )
√

1 − ρ2r,ζ
0
0


dt. (3.29)

Now, by substitution of dW̃(t) from (3.29) in (3.27) and appropriate substitutions
the proof of Lemma 3.3.3 is finalized. �

3.3.3 The log-transform and the characteristic function

Under the log-transform, xT (t) := logF (t), we obtain the following model
dynamics:

dxT (t) = −1

2

(
ψ̂2
1(t) + ψ̂2

2(t) + ψ5(t) + v(t)
(
ψ2
3(t) + ψ4(t)

))
dt+ ψ̂1(t)dW̃T

r (t)

+ψ̂2(t)dW̃T
ζ (t) + ψ3(t)

√
v(t)dW̃T

v (t) +
√
v(t)ψ4(t) + ψ5(t)dW̃T

x (t), (3.30)

dv(t) = κ(v̄ − v(t))dt + γ
√
v(t)dW̃T

v (t), (3.31)

with independent Brownian motions, dW̃T
r (t), dW̃T

ζ (t), dW̃T
v (t) and dW̃T

x (t).
The remaining parameters are as in (3.18). With the closed-form expressions for

ψ̂1(t), ψ̂2(t), ψ3(t), ψ4(t) and ψ5(t):

ψ̂1(t) = U4,1E(
√
v(t)) − (ρr,ζςC(t, T ) + ηB(t, T )),

ψ̂2(t) = U4,2E(
√
v(t)) − ςC(t, T )

√
1 − ρ2r,ζ ,

ψ3(t) = U4,3,

ψ4(t) = 1 −U2
4,3,

ψ5(t) = −E2(
√
v(t))

(
U2

4,1 + U2
4,2

)
,
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and U the Cholesky matrix in (3.21), the dynamics in (3.30) can be simplified:

dxT (t) =
1

2
(χ(t, T ) − v(t)) dt+ ψ̂1(t)dW̃T

r (t) + ψ̂2(t)dW̃T
ζ (t) + ψ3(t)

√
v(t)dW̃T

v (t)

+
√
v(t)ψ4(t) + ψ5(t)dW̃T

x (t),

with:

χ(t, T ) = −ς2C2(t, T ) − η2B2(t, T ) − 2ρr,ζςηB(t, T )C(t, T )

+2E(
√
v(t))

(
ρx,rηB(t, T ) + ρx,ζςC(t, T )

)
. (3.32)

For the log-forward, xT (t), the Fokker-Planck equation for V := V (t,H(t)) with
H(t) = [xT (t), v(t)]T is given by:

− ∂V

∂t
= κ(v̄ − v)

∂V

∂v
+

1

2
(v − χ(t, T ))

(
∂2V

∂x2
− ∂V

∂x

)

+
1

2
γ2v

∂2V

∂v2
+ ρx,vγv

∂2V

∂x∂v
, (3.33)

with the deterministic, time-dependent function χ(t, T ) in (3.32).
For the affine model, with τ = T − t, the forward characteristic function is of

the following form:

φT (u, xT (t), τ) = ET
(

eiux
T (T )|F(t)

)
= eÂ(u,τ)+B̂(u,τ)xT (t)+Ĉ(u,τ)v(t), (3.34)

with terminal condition φT (u, xT (T ), 0) = eiux
T (T ). Functions Â(u, τ), B̂(u, τ)

and Ĉ(u, τ) satisfy, using B̂(u, τ) = [B̂(u, τ), Ĉ(u, τ)]T, the following Riccati
ordinary differential equations:

B̂′(τ) = 0,

Ĉ′(τ) = 1/2(B̂2(τ) − B̂(τ)) + (ρx,vγB̂(τ) − κ)Ĉ(τ) + 1/2γ2Ĉ2(τ),

Â′(τ) = κv̄Ĉ(τ) − 1/2χ(t, T )(B̂2(τ) − B̂(τ)),

with χ(t, T ) in (3.32), B̂(0) = iu, Ĉ(0) = 0 and Â(0) = 0. The ODEs are of
Heston-type, so that the solution is given in closed-form as B̂(u, τ) = iu,

Ĉ(u, τ) =
1 − e−d1τ

γ2 (1 − ge−d1τ )
(κ− ρx,vγiu− d1) , (3.35)

and for Â(u, τ) we find:

Â(u, τ) =
κv̄

γ2

[
(κ− ρx,vγiu− d1) τ − 2 log

(
1 − ge−d1τ

1 − g

)]

+
1

2
(u2 + iu)

∫ τ

0

χ(T − s, T )ds, (3.36)



The Affine Heston Model with Correlated Multi-Factor Interest Rates 83

with d1 =
√

(ρx,vγiu− κ)
2

+ γ2 (u2 + iu), and g =
−ρx,vγiu+ κ− d1
−ρx,vγiu+ κ+ d1

, and

χ(t, T ) defined in (3.32).
The integral in (3.36) of the deterministic function χ(t, T ) can be calculated

explicitly. This integral does not contain the Fourier argument “u” which implies
that for pricing a whole strip of strikes, one computation suffices. This is an
advantage compared to other hybrid models, like the Schöbel-Zhu-Hull-White
model, where each argument, u, requires the calculation of an integral.

Remark (Extension to an n-factor affine model). In Section 3.3.2 we have shown
that switching between the measures, from the spot to the forward, reduces the
complexity of the corresponding PDE for the forward price, F (t), considerably.
By taking Gaussian interest rates the forward dynamics dF (t) do not depend
on interest rate variables, as only volatility coefficients from the interest rate
processes are present. The generalization from a two-factor interest rate model to
an n-factor model does therefore not complicate the pricing problem- it is merely
a change of coefficients.

It is easy to deduce that under the AH-Gn++ model the Fokker-Planck
equation for V (t) := V (t,H(t)) with H(t) = [xT (t), v(t)]T is given by:

− ∂V

∂t
= κ(v̄ − v)

∂V

∂v
+

1

2
(v − χ̂(t, T ))

(
∂2V

∂x2
− ∂V

∂x

)

+
1

2
γ2v

∂2V

∂v2
+ ρx,vγv

∂2V

∂x∂v
, (3.37)

with function χ̂(t, T ) given by:

χ̂(t, T ) = −
n−1∑

i=1

n−1∑

j=1

ρζi,ζj ςiςjCi(t, T )Cj(t, T ) − 2ηB(t, T )
n−1∑

k=1

ρr,ζkςkCk(t, T )

−η2B2(t, T ) + 2E(
√
v(t))

(
ρx,rηB(t, T ) +

n−1∑

k=1

ρx,ζkςkCk(t, T )
)
, (3.38)

with B(t, T ) and Ck(t, T ) defined in (3.16) and (3.17), expectation E(
√
v(t)) from

Equation (3.22) and all the parameters as defined in (3.2) and (3.3).
Since the PDE structure in (3.37) of the AH-Gn++ model is the same as for

the AH-G2++ model in (3.5), the results from Section 3.3.3 can directly be used
(only the function χ(t, T ) in (3.36) needs to be replaced by χ̂(t, T ) from (3.38)).

Positive definiteness of the covariance matrix ΣH

When performing a simulation of a model, either by a Monte Carlo method or
by finite-differences for the associated PDE, the corresponding covariance matrix
needs to be defined properly.

Since L(t) in the AH-G2++ model is obtained from the Cholesky decomposi-
tion of the covariance matrix, L(t)L(t)T = ΣH, we need to determine under which
conditions matrix ΣH is positive-definite.
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Positive definiteness of the covariance matrix is necessary for performing a
Monte Carlo simulation.

Since we deal with a 2 × 2 covariance matrix (by the change of measure the
number of state variables was reduced from four to two), we use Sylvester’s
criterion to determine whether the covariance matrix is positive-definite. For
2×2-matrix the criterion states that a Hermitian matrix is positive-definite if the
upper left element of matrix ΣH and matrix ΣH itself have positive determinants.

The covariance matrix ΣH is given by:

ΣH =
1

2

[
(v(t) − χ(t, T )) ρx,vγv(t)

ρx,vγv(t) γ2v(t)

]
,

with χ(t, T ) in (3.32).
We check when v(t) > χ(t, T ). Since we deal with a non-negative square-root

process for v(t), the expression on the left-hand side is always non-negative, i.e.,
v(t) ≥ 0. By (3.32) we can rewrite χ(t, T ) as:

χ(t, T ) = − (ςC(t, T ) + ρr,ζηB(t, T ))2 − η2B2(t, T )
(
1 − ρ2r,ζ

)

+2E(
√
v(t))

(
ρx,rηB(t, T ) + ρx,ζςC(t, T )

)
.

Since B(t, T ) ≤ 0 and C(t, T ) ≤ 0 for any t ≤ T and λ > 0, β > 0, by setting
ρx,r > 0 and ρx,ζ > 0 the expression for χ(t, T ) is negative guaranteeing that the
condition for positive-definiteness is satisfied. In the case ρx,r < 0 or ρx,ζ < 0, the
inequality v(t) > χ(t, T ) needs to be satisfied, which is typically not a problem,
especially for large values of v(t).

For the determinant of matrix ΣH we find:

detΣH = γ2v(t) (v(t) − χ(t, T )) − ρ2x,vγ
2v2(t) > 0,

which can be expressed as:

v(t)(1 − ρ2x,v) > χ(t, T ). (3.39)

As before the left-hand side of Inequality (3.39) is positive for |ρx,v| < 1 and
v(t) > 0 whereas χ(t, T ) is negative for the conditions described before.

3.3.4 European option pricing and hedging

European option prices can be obtained highly efficiently by use of the COS pricing
method from Chapter 1, which is based on the availability of the characteristic
function.

From the general risk-neutral pricing formula the price of any European claim,
V (T, F (T )), defined in terms of the underlying stock process, F (T ), can be written
as:

V (t, F (t)) ≈ P (t, T )

Nc∑

n=0

ωnℜ
(
φT
(
kn, xT (t), τ

)
e−iknb1

)
Γb1,b2n , (3.40)
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where the coefficients Γb1,b2n are known analytically for European options, see
Chapter 1 for details.

An important asset of the AH-G2++ model is the availability of the
corresponding characteristic function so that we can calibrate the model fast and
efficiently to plain vanilla contracts. We can also price certain exotic contracts,
whose pricing can be related to the characteristic function. Moreover, Greeks can
be derived easily for European contracts.

The Greeks determine the price sensitivities to changes in the underlying
model parameters. We provide formulas for Delta, ∆G, Gamma, ΓG, and the
sensitivities to the correlations, ρx,r, ρx,ζ and ρr,ζ .

From the definition of a delta hedge we have:

∆G :=
∂V (t, xT (t))

∂S(t)
=
∂V (t, xT (t))

∂F (t)

∂F (t)

∂S(t)
=

1

P (t, T )

∂V (t, xT (t))

∂F (t)
.

With u = kn, the characteristic function of the AH-G2++ model reads:

φT (kn, xT (t), τ) = exp
(
ikn log(F (t)) + Ĉ(kn, τ)v(t) + Â(kn, τ)

)
, (3.41)

with Ĉ(kn, τ) and Â(kn, τ) from (3.35), (3.36) and Equation (3.40), so that we
have:

∆G ≈ 1

F (t)

Nc∑

n=0

ωnℜ
{
φT
(
kn, xT (t), τ

)
e−iknb1 ikn

}
Γb1,b2n ,

with k = π/(b2 − b1).

For Gamma, ΓG =
∂∆G

∂S(t)
we find:

ΓG ≈ 1

P (t, T )

1

F 2(t)

Nc∑

n=0

ωnℜ
{
φT
(
kn, xT (t), τ

)
e−ib1kn

(
(ikn)2 − ikn

)}
Γb1,b2n .

For the derivatives with respect to correlation, which we call 1 Rho(ρ), for ρ =
{ρx,r, ρx,ζ , ρr,ζ}, we find:

Rho(ρ) :=
∂

∂ρ
V (t, x) ≈ P (t, T )

Nc∑

n=0

ωnℜ
{
φT
(
kn, xT (t), τ

)
e−ib1kn

∂

∂ρ
Â(kn, τ)

}
Γb1,b2n ,

with Â(kn, τ) as in (3.41).
Depending on different correlations, ρ = {ρx,r, ρx,ζ , ρr,ζ}, we determine three

partial derivatives ∂
∂ρA(kn, τ):

∂

∂ρx,r
Â(kn, τ) = η((kn)2 + ikn)

∫ τ

0

E(
√
v(T − s))B(T − s, T )ds,

∂

∂ρx,ζ
Â(kn, τ) = ς((kn)2 + ikn)

∫ τ

0

E(
√
v(T − s))C(T − s, T )ds,

∂

∂ρr,ζ
Â(kn, τ) = −ςη((kn)2 + ikn)

∫ τ

0

B(T − s, T )C(T − s, T )ds,

1not to be confused with the derivative with respect to interest rate in a standard Black-
Scholes model which is also called “rho”
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with B(t, T ) defined in (3.16) and C(t, T ) in (3.17).
Here, we check the effect of correlations on the Greeks for a basic call option

under the AH-G2++ model. We perform two experiments. First of all, in
Figure 3.1(a), we show ∆G, ΓG, Rho(ρx,r), Rho(ρx,ζ) and Rho(ρr,ζ). Secondly,
in Figure 3.1(b) we vary the correlation between stock and the interest rate, ρx,r,
and present the effect on ∆G. In the experiments we consider a maturity of 15
years, T = 15, and a discount factor P (0, T ) = exp(−0.06T ) with the following
set of parameters, S(0) = 1, κ = 0.3, v̄ = 0.02, γ = 0.251, β = 0.03, η = 0.02,
λ = 1.1 and ς = 0.02. The correlation structure is set as follows:




1 ρx,v ρx,r ρx,ζ
∗ 1 0 0
∗ ∗ 1 ρr,ζ
∗ ∗ ∗ 1


 =




1 −30% 20% 10%
∗ 1 0 0
∗ ∗ 1 −90%
∗ ∗ ∗ 1


 .

The experiments indicate that when hedging these long-maturity European
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Figure 3.1: (a) Several Greek values for a call option. (b) Effect on delta of correlation,
ρx,r, for a call option. For T = 15 the forward price F (0) ≈ 2.46.

options, the correlation between stock and interest rates, ρx,r, has a significant
effect on a hedge. Figure 3.1(b) also shows that if one assumes ρx,r = 0 and
performs delta hedging, the portfolio will be under/over hedged if the correlation
is non-zero in reality.

In order to explain the increase of ∆G as ρx,r increases, we need to look
at the underlying forward price, F (t). The forward dynamics, dF (t)/F (t), in
Lemma 3.3.3 can be expressed as:

dF (t)

F (t)
=

√
Ω1(t) − 2ρx,rηE(

√
v(t))B(t, T )dWT

F (t), (3.42)

with

Ω1(t) = v(t) + ς2C2(t, T ) + η2B2(t, T ) + 2ρr,ζςηB(t, T )C(t, T )

−2ρx,ζςE(
√
v(t))C(t, T ),
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and another Brownian motion dWT
F (t).

Assuming that all the parameters are constants, we analyze how the volatility
term in front of dWF (t) in (3.42) behaves for different correlations ρx,r. We find

that for any set of parameters E(
√
v(t)) > 0 and B(t, T ) ≤ 0. Therefore an

increase of the correlation ρx,r is directly related to an increase of the volatility of
the forward. This explains the additional hedging costs presented in Figure 3.1(b)
in the presence of positive correlation between stock and the interest rate. The
same pattern may be observed regarding ρx,ζ and ρr,ζ .

3.3.5 Efficient Monte Carlo simulation

Here, we briefly discuss an efficient Monte Carlo simulation scheme for the AH-
G2++ model. We will adopt the algorithm by Andersen (see [3]), originally
developed for the pure Heston stochastic volatility model.

As presented in Lemma 3.3.3 the AH-G2++ (as well as the H-G2++) model
can formulated as:

dF (t)

F (t)
= ψ̂1(t)dW̃T

r (t) + ψ̂2(t)dW̃T
ζ (t) + ρx,v

√
v(t)dW̃T

v (t)

+
√
v(t)

(
1 − ρ2x,v

)
+ ψ5(t)dW̃T

x (t),

dv(t) = κ(v̄ − v(t))dt + γ
√
v(t)dW̃T

v (t),

with

ψ̂1(t) = U4,1α(t) − (ρr,ζςC(t, T ) + ηB(t, T )),

ψ̂2(t) = U4,2α(t) − ςC(t, T )
√

1 − ρ2r,ζ ,

ψ5(t) = −α2(t)
(
U2

4,1 + U2
4,2

)
,

and U4,1, U4,2 are defined in (3.21). We have α(t) = E(
√
v(t)) for the AH-G2++

model (and α(t) =
√
v(t) for the H-G2++ model). Since the difference between

the AH-G2++ and the H-G2++ model appears only in function α(t) the Monte
Carlo schemes are very similar.

In both models the dynamics for the forward, F (t), do not depend on the
interest rate processes, r(t) or ζ(t). This implies that for Monte Carlo paths for
F (t) only the 2D stochastic differential equations for the forward, F (t), and its
variance process, v(t), need to be discretized.

Since the Brownian motions in the models are independent, we can perform a
simplifying factorization,

dF (t)

F (t)
=

√
ψ̂2
1(t) + ψ̂2

2(t) + v(t)
(
1 − ρ2x,v

)
+ ψ5(t)dW̃T

F (t) + ρx,v
√
v(t)dW̃T

v (t),

dv(t) = κ(v̄ − v(t))dt+ γ
√
v(t)dW̃T

v (t),

with dW̃T
F (t) independent of dW̃T

v (t).



88 Chapter 3

In log-transformed coordinates, xT (t) = logF (t), we find with Itô’s lemma:

dxT (t) =
1

2
(χ(t, T ) − v(t)) dt+

√
ξ1(t, v(t))dW̃T

F (t) + ρx,v
√
v(t)dW̃T

v (t), (3.43)

with ξ1(t, v(t)) = −χ(t, T ) + v(t) − ρ2x,vv(t), where

χ(t, T ) := −ς2C2(t, T ) − η2B2(t, T ) − 2ρr,ζςηB(t, T )C(t, T )

+2α(t)
(
ρx,rηB(t, T ) + ρx,ζςC(t, T )

)
,

and α(t) =
√
v(t) for the H-G2++ model or α(t) = E(

√
v(t)) for the AH-G2++

model.
The variance process, v(t), is independent of the interest rates processes, r(t)

and ζ(t). For t > 0, v(t) is from a non-central chi-square distribution [25].
The direct sampling of v(t) can be very efficiently performed with the Quadratic
Exponential (QE) scheme proposed in [3].

In order to obtain a bias-free scheme (see [20]) for sampling the forward price
process, it is convenient to first integrate the SDE for v(t), i.e:

v(t+ δ) = v(t) +

∫ t+δ

t

κ(v̄ − v(s))ds + γ

∫ t+δ

t

√
v(s)dW̃T

v (s). (3.44)

Process xT (t) from (3.43) can be expressed in integral form as:

xT (t+ δ) = xT (t) +
1

2

∫ t+δ

t

(χ(s, T ) − v(s)) ds+

∫ t+δ

t

√
ξ1(s, v(s))dW̃T

F (s)

+ρx,v

∫ t+δ

t

√
v(s)dW̃T

v (s). (3.45)

The last integral in (3.45) can easily be determined by Equation (3.44). In the
discretization (3.45) we distinguish between time and stochastic-type integrals.
These integrals can be handled as indicated in [3]: For a state-dependent function
f(t, v(t)) the time integrals can be approximated by

∫ t+δ

t

f(t, v(s))ds ≈ δ
(
w1f(t, v(t)) + w2f(t+ δ, v(t+ δ))

)
,

with certain weights w1 and w2. For the stochastic integrals we have, with help
of Itô’s isometry,

∫ t+δ

t

√
ξ1(s, v(s))dW̃T

F (s) ∼ N
(

0,

∫ t+δ

t

ξ1(s, v(s))ds
)
,

with N (a, b) indicating a normal distribution with mean a and variance b.
We note that an extension from a 2-factor interest rate process to n factors is

trivial, since only the functions χ(s, T ) and ξ1(s, v(s)) then consist of more terms.
The scheme developed will be used in a number of experiments in the sections

to follow.
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3.4 Numerical experiments

In this section we focus on pricing of European options, and check the performance
of the hybrid models when pricing an exotic hybrid derivative.

3.4.1 The AH-G2++ and the H-G2++ models for pricing long-term maturity
options

In this experiment we check the performance of the H-G2++ model against its
affine sister, the AH-G2++ model, for pricing plain vanilla options.

First of all, we generate European call prices with the H-G2++ hybrid model
by a Monte Carlo simulation (from Section 3.3.5). Secondly, we compare, in terms
of implied volatilities, with results from the AH-G2++ hybrid model obtained by
the COS method. We consider two cases, one in which the model parameters
satisfy the Feller condition for the stock and another experiment in which they
do not satisfy this condition.

Experiment 3.4.1 (Feller’s condition satisfied, 2κv̄ > γ2). We compare the
results of the H-G2++ and AH-G2++ models. The parameters are chosen as:

κ = 0.8 v̄ = 0.2, γ = 0.2, β = 1.1, η = 0.01, λ = 0.8, ς = 0.015,

and the correlation is given by:



1 ρx,v ρx,r ρx,ζ
∗ 1 ρv,r ρv,ζ
∗ ∗ 1 ρr,ζ
∗ ∗ ∗ 1


 =




1 −30% 35% 8%
∗ 1 0% 0%
∗ ∗ 1 −40%
∗ ∗ ∗ 1


 .

The initial conditions are S(0) = 1 and v(0) = v̄ with the initial yield given by
P (0, T ) = exp(−0.03T ). With these parameters the Feller condition for the stock
is satisfied. We choose four maturities τ = 1, τ = 5, τ = 10 and τ = 20. Table 3.1
shows an almost perfect correspondence between the volatilities from the Monte
Carlo method (for the H-G2++ hybrid model) and the COS method (for the
AH-G2++ model).

Experiment 3.4.2 (Feller’s condition violated, 2κv̄ ≤ γ2). In practice there are
many cases in which the Feller condition is not satisfied. Therefore we check the
performance of the affine hybrid model in such a setup. In this experiment we
choose κ = 0.4, v̄ = 0.2 and γ = 0.6 and the remaining parameters are as in
Experiment 3.4.1. The Feller condition does not hold in this case, as 0.16 � 0.36.
Therefore, the probability of hitting zero is positive. Table 3.2 shows that our
tractable hybrid model, the AH-G2++, provides values close to the H-G2++
model.

These experiments, with standard parameters, show that the results of the
AH-G2++ model resemble the results of the H-G2++ very well.

Remark. The AH-Gn++ and the H-Gn++ models differ only in the definition
of function α(t) in the associated covariance matrix. This α(t) is multiplied either
by ρx,rη or by ρx,ζς . It is therefore evident that both models produce very similar
results when either the correlations or the volatilities for the interest rates, ς ,
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Table 3.1: Difference in implied volatilities between the H-G2++ (simulated with Monte
Carlo) and the AH-G2++ (simulated with Fourier inversion). Numbers in brackets
indicate standard deviations. The simulation was performed with Feller’s condition
satisfied.

Implied Volatility [%]
T Strike H-G2++ (MC) AH-G2++ (Fourier) difference

0.8869 44.81 (0.19) 44.79 -0.02 %
0.9324 44.67 (0.23) 44.65 -0.02 %

1y 1.0305 44.40 (0.30) 44.38 -0.02 %
1.1388 44.16 (0.38) 44.13 -0.03 %
1.1972 44.04 (0.42) 44.01 -0.03 %
0.8308 44.59 (0.11) 44.60 0.01 %
0.9290 45.07 (0.12) 45.07 0.01 %

5y 1.1618 37.89 (0.15) 37.89 0.00 %
1.4530 30.86 (0.23) 30.85 -0.01 %
1.6248 27.52 (0.25) 27.50 -0.02 %
0.8400 44.57 (0.09) 44.54 -0.02 %
0.9839 44.44 (0.13) 44.42 -0.02 %

10y 1.3499 44.22 (0.25) 44.20 -0.02 %
1.8519 44.00 (0.40) 43.99 0.02 %
2.1692 43.90 (0.48) 43.88 0.01 %
0.9316 44.55 (0.18) 44.49 -0.05 %
1.1651 44.46 (0.22) 44.40 -0.06 %

20y 1.8221 44.31 (0.38) 44.24 -0.07 %
2.8497 44.16 (0.45) 44.07 -0.08 %
3.5638 44.08 (0.52) 44.00 -0.08 %

η, are small. Obviously the correlations are, by definition, bounded by 1. The
volatilities for the short-rate models are on the other hand typically also of small
size (values < 0.1 are often reported in the literature [19]). In the experiments
to follow we check the model performance for unrealistically high volatilities to
stress the proposed AH-G2++ model.

3.4.2 Pricing of a hybrid product

In this test we consider an equity-interest rate diversification hybrid product. This
product is based on sets of assets with different expected returns and risk levels.
The example is defined as:

Π(T1, T ) = max (ŵ1S(T1) + ŵ2P (T1, T ), 0) , (3.46)

where for T1 < T , S(T1) is the underlying asset at time T1, P (T1, T ) is a zero-
coupon bond which pays e1 at time T and ŵ1 and ŵ2 are weighting factors, which
can be either positive (in a long position) or negative (in a short position).

The value of the contract in (3.46), at time t, under the risk-neutral measure
Q, can be expressed by:

Π(t, T ) = M(t)EQ

(
1

M(T1)
max (ŵ1S(T1) + ŵ2P (T1, T ), 0)

∣∣∣F(t)

)
. (3.47)
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Table 3.2: Difference in implied volatilities between the H-G2++ (simulated with Monte
Carlo) and the AH-G2++ (simulated with Fourier inversion). Numbers in brackets
indicate standard deviations. The simulation was performed with Feller’s condition
violated.

Implied Volatility [%]
T Strike H-G2++ (MC) AH-G2++ (Fourier) difference

0.8869 43.12 (0.15) 43.17 0.05 %
0.9324 42.53 (0.16) 42.58 0.05 %

1y 1.0305 41.48 (0.16) 41.54 0.06 %
1.1388 40.71 (0.20) 40.76 0.04 %
1.1972 40.44 (0.26) 40.48 0.04 %
0.8308 40.29 (0.08) 40.26 -0.03 %
0.9290 39.59 (0.09) 39.54 -0.05 %

5y 1.1618 38.40 (0.13) 38.33 -0.08 %
1.4530 37.59 (0.17) 37.48 -0.11 %
1.6248 37.33 (0.17) 37.22 -0.11 %
0.8400 39.82 (0.14) 39.71 -0.11 %
0.9839 39.22 (0.17) 39.11 -0.11 %

10y 1.3499 38.17 (0.23) 38.06 -0.11 %
1.8519 37.37 (0.35) 37.28 -0.10 %
2.1692 37.09 (0.40) 37.01 -0.08 %
0.9316 39.71 (0.06) 39.60 -0.11 %
1.1651 39.24 (0.06) 39.13 -0.11 %

20y 1.8221 38.40 (0.15) 38.29 -0.11 %
2.8497 37.73 (0.30) 37.62 -0.11 %
3.5638 37.48 (0.41) 37.36 -0.12 %

Since the expectation in (3.47) contains a correlated stock, a zero-coupon
bond, and the money-savings account this expectation is difficult to determine
analytically.

However, by a change of numéraire, from the money-savings account to a
zero-bond maturing at time T the expectation in (3.47) simplifies significantly.

The Radon-Nikodym derivative is known as:

ΛTQ(T1) =
dQT

dQ

∣∣∣
F(T1)

=
P (T1, T )

P (t, T )

M(t)

M(T1)
.

So, the price in (3.47) under the T−forward measure, QT , reads:

Π(t, T ) = P (t, T )ET
(

1

P (T1, T )
max (ŵ1S(T1) + ŵ2P (T1, T ), 0)

∣∣∣F(t)

)
.

Since the forward F (t) is defined as F (t) = S(t)/P (t, T ) the expectation above
reduces to:

Π(t, T ) = P (t, T )ET
(

max (ŵ1F (T1) + ŵ2, 0)
∣∣∣F(t)

)
. (3.48)

We recognize that the expectation (3.48) is a call option on the forward with
strike K = −ŵ2 and a constant multiplier, ŵ1

2.

2The expectation (3.48) can also be written as: ŵ1E
T
(

max
(

F (T1) +
ŵ2

ŵ1
, 0

) ∣

∣

∣F(t)
)

where

the ratio ŵ2/ŵ1 can be seen as a gearing factor.
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Since we consider the affine Heston hybrid model, AH-G2++ here, we can
simply determine the price of (3.48) by the COS method described in Chapter 1.
The evaluation of such a payoff can be evaluated in a split-second.

We now perform the experiment in which we compare the performance of the
H-G2++ and the AH-G2++ models for this hybrid product. For T1 = 5 and
T = 8 we choose the following set of parameters 3: κ = 0.25, v̄ = v(0) = 0.0625,
γ = 0.625, β = 0.05, η = 0.03, λ = 0.4, ς = 0.05, ρx,v = −30% and ρr,ζ = −20%.
The zero-coupon bond P (0, T ) = exp(−0.03T ) and ρx,r = ρx,ζ. The prices for the
hybrid product Π(t, T ) in (3.48) are calculated for different correlations between
stock and the interest rate, ρx,r. For the payoff we take ŵ1 = 1 and ŵ2 =
{−4, . . . , 0} and evaluate Monte Carlo prices with 100.000 paths and 10T1 time-
steps for the H-G2++ model and by the Fourier expansion for the AH-G2++
model. The output is presented in Figure 3.2(a).

In Figure 3.2(b) the results for an extreme parameter setting are presented.
In this experiment we have taken a high volatility for the interest rates η = 0.25
(whereas typically η, ς < 0.25 as presented in [19]). We report that for such an
extreme parameter set the AH-G2++ model provides results which agree rather
well with those obtained by the H-G2++ model. This is another indication of the
highly satisfactory performance of AH-G2++.
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Figure 3.2: Prices generated by the H-G2++ and the AH-G2++ models. LEFT: results
for η = 0.03, RIGHT: results for η = 0.25.

3.5 Conclusion

In this chapter we have constructed an equity-interest rate hybrid model with
non-zero correlation between the asset classes. The model is defined in the class
of affine diffusion processes so that we can determine a closed-form characteristic
function. By defining the affine hybrid Heston model under the forward measure,
we can price several financial derivative products as easily as under the plain
Heston model.

3The stochastic volatility parameters are chosen as in [7].
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For the affine Heston-Gaussian multi-factor model, AH-Gn++, we have
discussed an efficient Monte Carlo simulation scheme and a way for calculating
the Greeks of plain vanilla options. We have also shown that the AH-Gn++
model provides prices similar to the (non-affine) Heston-Gaussian multi-factor
(H-Gn++) model and superior (as shown in Chapter 2) to Schöbel-Zhu variants
if the Feller condition is violated.
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CHAPTER 4

An Equity-Interest Rate Hybrid Model with

Stochastic Volatility and Interest Rate Smile

When you smile, I don’t know what to do
Cause I could lose everything in a minute or two
And it seems like the end of the world...
When you smile

Dream Syndicate (“When you smile”)

4.1 Introduction

In Chapters 2 and 3 the extension of the Heston model with stochastic interest
rates was established by using short-rate processes, like Hull-White or multi-factor
models. These interest rate models cannot generate implied volatility smiles or
skews as commonly observed in the interest rate market. For hybrid products
that are exposed to the interest rate smile, more involved models are required. In
the present chapter we develop such a hybrid model.

For several years the log-normal Libor Market Model (LMM) [18, 63, 79] has
established itself as a benchmark for interest-rate derivatives. Without enhance-
ments this model is also not able to incorporate strike-dependent volatilities of
fixed income derivatives, such as caps and swaptions. An important step forward
in the modelling were the local volatility-type [4], and the stochastic volatility
extensions [4, 5, 94], with which a model can be fitted reasonably well to market
data, while the model’s stability can still be guaranteed.

In the literature a number of stochastic volatility extensions of LMM have
been presented, see e.g., Brigo and Mercurio [19]. The model on which our work
is based is the displaced-diffusion stochastic volatility (DD-SV) model developed

95
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by Andersen and Andreasen [5]. It was Piterbarg’s paper [92] which connected
the time-dependent model volatilities and skews for Libor and swap rates to the
market implied quantities. The concept in [92] of effective skew and effective
volatility enables the calibration of the volatility smiles for a grid of swaptions.

In this chapter we develop an equity-interest rate hybrid model with equity
modeled by the Heston model and the interest rate driven by the Libor Market
Model, namely, by the displaced-diffusion-stochastic-volatility model (DD-SV) [5].
In practice, the equity calibration is performed with an a-priori calibrated interest
rate model. Therefore a very efficient and fast model evaluation is mandatory.

By changing the measure from the risk-neutral to the forward measure,
associated with the zero-coupon bond as the numéraire, the dimension of the
approximating characteristic function can be significantly reduced (as it was
shown in Chapter 3). This, combined with freezing the Libor rates and
appropriate linearizations of the non-affine terms arising in the corresponding
instantaneous covariance matrix are the key issues to efficient model evaluation.
For a whole strip of strikes the approximate hybrid model developed can be
evaluated for equity plain vanilla European options in just milliseconds.

We focus on the fast evaluation for the vanilla equity option prices under this
hybrid process, and assume that the parameters for the interest rate model have
been determined a-priori.

The chapter is set up as follows. First of all, in Section 4.2, we discuss the
generalization of the Heston model and provide details about the DD-SV interest
rate model. In Section 4.3 the dynamics for the equity forward model are derived
and an approximation for the corresponding characteristic function is developed in
Section 4.4. Numerical experiments, in which the accuracy of the approximations
is checked, are presented in Section 4.5.

4.2 The equity and interest rate models

4.2.1 The Heston model and extensions

With state vector X(t) = [S(t), v(t)]T, under the risk-neutral pricing measure, the
Heston stochastic volatility model [54], is specified by two stochastic differential
equations: the variance process, v(t), and the the stock, S(t) (see Chapter 2 for
details).

The model, under the log-transform for the stock, x(t) = logS(t), belongs to
the class of affine processes [28]. For τ = T − t, the characteristic function (ChF)
is therefore given by:

φH(u, x(t), τ) = exp (A(u, τ) +Bx(u, τ)x(t) +Bv(u, τ)v(t)) , (4.1)

where the complex-valued functions A(u, τ), Bx(u, τ) and Bv(u, τ) are known in
closed-form (see for example [54]).

The ChF is explicit, but its inverse also has to be found for pricing purposes.
Since a deterministic interest rate is not sufficient for our pricing purposes

here, we relax this assumption and assume the rates to be stochastic. A first
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extension of the framework has been done by defining the correlated short-rate
process, r(t), of the following form:

dr(t) = µr(t, r(t))dt + σr(t, r(t))dWr(t), r(0) > 0.

Depending on the functions µr(t, r(t)), and σr(t, r(t)) many different interest
rate models are available. Popular single factor versions include the Hull-
White [56], Cox-Ingersoll-Ross [25] (both discussed in Chapters 1 and 2) or Black-
Karasinski [15] models. Multi-factor models arise by extending the single-factor
processes with additional sources of randomness (see Chapter 3).

In Chapter 2, in order to determine a ChF, we have proposed linear
approximations for the non-affine terms in the instantaneous covariance matrix
related to a short-rate based hybrid model. With such a short-rate model,
however, the interest rate can only be calibrated well to at-the-money products
like caps and swaptions. Those models can therefore only be used for relatively
basic hybrid products, which are insensitive to the interest rate smile and skew.

When developing a more advanced hybrid model, moving away from the short-
rate processes to the market models, the main difficulty is to link the discrete tenor
Libor rates, L(t, Ti, Tj), for Ti < Tj to the continuous equity process, S(t). This
issue is addressed here.

In the section to follow we present the main concepts of the market models.

4.2.2 The Market model with stochastic volatility

Here, we build the basis for the LMM interest rate process in the Heston hybrid
model.

For a given set of maturities T = {T0, T1, T2, . . . , TN} with a tenor structure
τk = Tk−Tk−1 for k = 1, . . . , N we define P (t, Ti) to be the price of a zero-coupon
treasury bond maturing at time Ti(≥ t), with face-value e1 and the forward Libor
rate Lk(t) := L(t, Tk−1, Tk):

L(t, Tk−1, Tk) ≡ 1

τk

(
P (t, Tk−1)

P (t, Tk)
− 1

)
, for t < Tk−1. (4.2)

For modelling the Libor Market Model, we take the displaced-diffusion-stochastic
volatility model (DD-SV) by [5]. The Libor rate Lk(t) is defined under its natural
measure by the following system of stochastic differential equations (SDEs):

{
dLk(t) = σk(t) (βk(t)Lk(t) + (1 − βk(t))Lk(0))

√
V (t)dW k

k (t), Lk(0) > 0,

dV (t) = λ(V (0) − V (t))dt+ η
√
V (t)dW k

V (t), V (0) > 0,
(4.3)

with {
dW k

i (t)dW k
j (t) = ρi,jdt, for i 6= j,

dW k
V (t)dW k

i (t) = 0,

where σk(t) determines the level of the volatility smile. Parameter βk(t) controls
the slope of the volatility smile, and λ determines the speed of mean reversion
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for the variance and influences the speed at which the volatility smile flattens as
the swaption expiry increases [92]. Parameter η determines the curvature of the
smile. Subscript i and superscript j in dW j

i (t) indicate the associated process
and the corresponding measure, respectively. Throughout this chapter we assume
that the DD-SV model in (4.3) is already in the effective parameter framework
developed in [92]. This means that approximate time-homogeneous parameters
are used instead of time-dependent parameters. For this reason we set βk(t) ≡ βk
and σk(t) ≡ σk.

An important feature, which will be shown in next section, is that in our
framework it is convenient to work under the TN -terminal measure associated
with the last zero-coupon bond, P (t, TN).

By taking
φk(t) = βkLk(t) + (1 − βk)Lk(0), (4.4)

under the TN -terminal measure and for k < N , the Libor dynamics are given by:




dLk(t) = −φk(t)σkV (t)

N∑

j=k+1

τjφj(t)σj
1 + τjLj(t)

ρk,jdt+ σkφk(t)
√
V (t)dWN

k (t),

dV (t) = λ(V (0) − V (t))dt + η
√
V (t)dWN

V (t),
(4.5)

with {
dWN

i (t)dWN
j (t) = ρi,jdt, for i 6= j,

dWN
k (t)dWN

V (t) = 0.

In the DD-SV model in (4.3) the change of measure does not affect the drift
in the process for the stochastic variance, V (t). This is due to the assumption
of independence between infinitesimal increments between the variance process,
V (t), and the Libors, Lk(t). Although a generalization to a non-zero correlation
is possible (see [111]), it is not strictly necessary. The model, by the displacement
construction and the stochastic variance, already provides a satisfactory fit to
market data.

Note that for k = N the dynamics for L(t, Tk−1, Tk) do not contain a drift
term (Libor L(t, TN−1, TN) is a martingale under the TN measure).

When changing the measure for the stock process from the risk-neutral to
the TN -forward measure, one needs to find the form for the zero-coupon bond,
P (t, TN). By the recursive Equation (4.2) it is easy to find the following expression
for the last bond (needed in Equation (4.10) to follow):

P (t, TN ) = P (t, Tm(t))
( N∏

j=m(t)+1

(1 + τjL(t, Tj−1, Tj))
)−1

, (4.6)

with m(t) = min(k : t ≤ Tk) (empty products in (4.6) are defined to be equal to
1). The bond P (t, TN ) in (4.6) is fully determined by the Libor rates Lk(t), k =
1, . . . , N and the bond P (t, Tm(t)). Although the Libors Lk(t) are defined in
system (4.5) the bond P (t, Tm(t)) is not yet well-defined in the current framework.

In the following subsection we discuss possible interpolation methods for the
short-dated bond P (t, Tm(t)).
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4.2.3 Interpolations of short-dated bonds

Let us consider the discrete tenor structure T and the Libor rates Lk(t) as defined
in (4.2). As already indicated in [18, 82], the main problem with market models
is that they do not provide continuous time dynamics for any bond in the tenor
structure. Therefore, it is rather difficult, without additional assumptions, to
define a short-rate process, r(t), which can be used in combination with the
Heston model for equity.

In this section we discuss how to extend the market model, so that the no-
arbitrage conditions are met and the bonds P (t, Ti) for t /∈ T are well-defined.

We start with the interpolation technique introduced in [98]. In this approach
a linear interpolation which produces a piecewise deterministic short-rate for t ∈
(Tm(t)−1, Tm(t)] is used. The method is equivalent with assuming a zero volatility
for all zero-coupon bonds, P (t, Ti), maturing at a next (future) date in the tenor
structure T , i.e.: t ≤ Tm(t), the zero-coupon bond P (t, Tm(t)) is well-defined and
arbitrage-free (see [98, 14]), if,

P (t, Tm(t)) ≈
(
1 + (Tm(t) − t)L(Tm(t)−1, Tm(t))

)−1
, for Tm(t)−1 < t < Tm(t).

(4.7)
Representation (4.7) satisfies the main features of the zero-coupon bond, i.e.,
for t → Tm(t) the bond P (t, Tm(t)) → 1. Since Eq. (4.7) implies a zero
volatility interpolation for the intermediate intervals, a deterministic interest rate
is assumed for intermediate time points, Tm(t)−1 < t < Tm(t).

The assumption of a locally deterministic interest rate in short-dated bonds
may however be unsatisfactory, for example, for pricing path-sensitive products
in which the payment does not occur at the pre-specified dates, Ti ∈ T . In such
a case, one can use an interpolation which incorporates some internal volatility.
An alternative, arbitrage-free interpolation for zero-coupon bonds is, for example,
given by:

P (t, Tm(t)) ≈
(
1 + (Tm(t) − t)ψ1(t)

)−1
, for t ≤ Tm(t),

with ψ1(t) = ϑ(t)Lm(t)(Tm(t)−1) + (1 − ϑ(t))Lm(t)+1(t), and ϑ(t) is a (chosen)
deterministic function which controls the level of the volatility in the short-dated
bonds.

More details on interpolation approaches can be found in [98, 91, 26, 14].

Remark. When calibrating the equity-interest rate hybrid model, the interest
rate part is usually calibrated to the market data, independent of the equity
part. Afterwards, the calibrated interest rate model is combined with the equity
component. With suitable correlations imposed, the remaining parameters are
then determined. Obviously, in the last step the hybrid parameters are determined
by calibration to equity option values. By assuming that the equity maturities,
Ti, are defined to be the same dates as the zero-coupon bonds in the LMM,
there is no need for advanced zero-coupon bond interpolations. The interpolation
routines are, however, often required when pricing the hybrids themselves. The
hybrid product pricing is typically performed with a short-step Monte Carlo
simulation, for which the assumption of a constant short-term interest rate may
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not be satisfactory. Especially if the hybrid payments occur at dates that are not
specified in the tenor structure T .

4.3 The Hybrid Heston-LMM

In this section we construct the hybrid model.
As indicated in for example [77], when pricing interest rate derivatives the

usual reference measure is the spot measure Q, associated with a directly re-
balanced bank account numéraire B(t). When dealing with an equity-interest
rate hybrid model however, after calibrating the interest rate part, one needs
to price the European equity options in order to determine the unknown equity
parameters. The price of a European call option is given by:

Π(t, TN ) = B(t)EQ

(
(S(TN ) −K)+

B(TN )

∣∣F(t)

)
, with t < TN , (4.8)

with K the strike, S(TN ) the stock price at time TN , filtration F(t) and a
numéraire B(TN ). Since the money-savings account, B(TN ), is a stochastic
quantity, the joint distribution of 1/B(TN) and S(TN ) is required to determine
the value in (4.8). This however may be a difficult task. Obviously this issue
is avoided when switching between the appropriate measures: From the risk-free
measure Q to the forward measure associated with the zero-coupon bond maturing
at the payment day, TN , P (t, TN ) (see [62]). With the Radon-Nikodym derivative
we obtain:

Π(t, TN ) = P (t, TN)ETN

(
(S(TN ) −K)

+

P (TN , TN)

∣∣F(t)

)

= P (t, TN)ETN

((
FTN (TN) −K

)+ ∣∣F(t)
)
,with t < TN , (4.9)

with FTN (t) the forward of the stock S(t), defined as:

FTN (t) =
S(t)

P (t, TN )
. (4.10)

4.3.1 Derivation of the hybrid model

Under the TN -forward measure we assume that the equity process is driven by
the Heston stochastic volatility model, given by the following dynamics:





dS(t)

S(t)
= (. . . )dt+

√
v(t)dWN

x (t), S(0) > 0,

dv(t) = κ(v̄ − v(t))dt+ γ
√
v(t)dWN

v (t), v(0) > 0.

(4.11)

Note that the drift in (4.11) is not yet specified.
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For the interest rate model we choose the DD-SV Libor Market Model under
the TN -measure generated by the numéraire P (t, TN ), given by:




dLk(t) = −φk(t)σkV (t)

N∑

j=k+1

τjφj(t)σj
1 + τjLj(t)

ρk,jdt+ σkφk(t)
√
V (t)dWN

k (t),

dV (t) = λ(V (0) − V (t))dt+ η
√
V (t)dWN

V (t),
(4.12)

with a non-zero correlation between the stock process, S(t), and its variance
process, v(t), between the Libors, Li(t) and Lj(t), for i, j = 1 . . .N , i 6= j, and
between the stock S(t) and Libor rates, i.e.:





dWN
x (t)dWN

v (t) = ρx,vdt,

dWN
x (t)dWN

j (t) = ρx,jdt,

dWN
i (t)dWN

j (t) = ρi,jdt.

(4.13)

We assume a zero correlation between the Libors Li(t) and their variance process
V (t), between the Libors and the variance process for equity, v(t), between the
variance processes, v(t) and V (t), and between the stock S(t) and the variance of
the Libors, V (t).

For the calculation of the value of the European option given in (4.9), we first
need to determine the dynamics for the forward, FTN (t). From Itô’s lemma we
get:

dFTN (t) =
1

P (t, TN)
dS(t) − S(t)

P 2(t, TN )
dP (t, TN ) +

S(t)

P 3(t, TN)
(dP (t, TN))

2

− 1

P 2(t, TN )
(dS(t))(dP (t, TN )).

Since the forward is a martingale under the TN -measure generated by the zero-
coupon bond, P (t, TN), the forward dynamics do not contain a drift term. This
implies that we do not encounter any “dt”-terms in the dynamics of dFTN (t), i.e.:

dFTN (t) =
1

P (t, TN )
dS(t) − S(t)

P 2(t, TN)
dP (t, TN). (4.14)

Equation (4.14) shows that in order to find the dynamics for process dFTN (t)
the dynamics for P (t, TN ) also need to be determined. With the approximation
introduced in Section 4.2.3, the bond P (t, TN) is given by

P (t, TN) =
( (

1 + (Tm(t) − t)Lm(t)(Tm(t)−1)
) N∏

j=m(t)+1

(1 + τjL(t, Tj−1, Tj))
)−1

.

Before we derive the Itô dynamics for the zero-coupon bond, P (t, TN ), we define,
for ease of notation, the following “support variables”:

f(t) = 1 + (Tm(t) − t)L(Tm(t)−1, Tm(t)−1, Tm(t)),

gj(t, Lj(t)) = 1 + τjL(t, Tj−1, Tj).
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By taking the log-transform of the bond, logP (t, TN), we find:

logP (t, TN) = − log(f(t)) −
N∑

j=m(t)+1

log gj(t, Lj(t)),

so that the dynamics for the log-bond read:

d logP (t, TN) = −d log(f(t)) −
N∑

j=m(t)+1

d log gj(t, Lj(t)). (4.15)

On the other hand, by applying Itô’s lemma to logP (t, TN ) we get:

d logP (t, TN ) =
1

P (t, TN)
dP (t, TN ) − 1

2

(
1

P (t, TN )

)2

(dP (t, TN ))
2
. (4.16)

By neglecting the dt-terms (as we do not encounter any “dt”-terms in the
dynamics of dFTN (t)) and by matching Equations (4.15) and (4.16), we obtain:

dP (t, TN)

P (t, TN)
= −

N∑

j=m(t)+1

d log gj(t, Lj(t)), (4.17)

with the dynamics for d log gj(t, Lj(t)):

d log gj(t, Lj(t)) =
τj

1 + τjLj(t)
dLj(t). (4.18)

After substitution of (4.17), (4.18) and (4.12) and neglecting the dt-terms the
dynamics for the bond P (t, TN) are given by:

dP (t, TN )

P (t, TN )
= −

N∑

j=m(t)+1

τjσjφj(t)
√
V (t)

1 + τjLj(t)
dWN

j (t). (4.19)

Now, we return to the derivations for the forward, FTN (t), in Equation (4.14).
By Equation (4.11) these can be expressed as:

dFTN (t)

FTN (t)
=
√
v(t)dWN

x (t) − 1

P (t, TN )
dP (t, TN). (4.20)

Finally, by combining Equations (4.20) and (4.19) the dynamics for the forward
FTN (t) are determined:

dFTN (t)

FTN (t)
=

√
v(t)dWN

x (t) +

N∑

j=m(t)+1

τjσjφj(t)
√
V (t)

1 + τjLj(t)
dWN

j (t). (4.21)

Since the forward, FTN (t), is a martingale under the TN -measure (i.e., fully
determined in terms of the volatility structure), the interpolation, with zero
volatility, does not affect the dynamics for the forward FTN (t). As indicated
in [95], under the forward measure the forward price (4.21) includes components
arising from the volatilities of the zero-coupon bonds that connect the spot and
the forward prices.
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4.4 Approximation for the hybrid model

With the stock process, S(t), under the TN -terminal measure driven by the
Heston model with a stochastic, correlated variance process, v(t), we obtained the
dynamics in (4.21) for the forward prices, FTN (t), with dWN

x (t)dWN
v (t) = ρx,vdt,

and the parameters as defined in (4.11). The Libor rates Li(t) are defined
in (4.12).

We call this model the Heston-Libor Market Model, abbreviated by H-LMM,
here. This is the full-scale model, which requires approximations for efficient
pricing of European equity options.

The model in (4.21) is not of the affine form, as it contains terms like
φj(t)/(1 + τiLi(t)). Therefore we cannot use the standard techniques from [28]
to determine the ChF. The availability of a ChF is especially important for the
model calibration, where fast pricing for equity plain vanilla products is essential.
For this reason we freeze the Libor rates [44, 58, 61], i.e.:

Lj(t) ≈ Lj(0). (4.22)

As a consequence φj(t) ≈ Lj(0) (with φj(t) in (4.4)) and the dynamics for the
forward FTN (t) read:

dFTN (t)

FTN (t)
≈
√
v(t)dWN

x (t) +

N∑

j=m(t)+1

τjσjLj(0)
√
V (t)

1 + τjLj(0)
dWN

j (t),

with the correlations and the remaining processes given in (4.13). Now, we
determine the log-transform of the forward xTN (t) := logFTN (t). With A =
{m(t) + 1, . . . , N} and application of Itô’s lemma, the dynamics for xTN (t) are
given by:

dxTN (t) ≈ −1

2

(∑

j∈A

ψj
√
V (t)dWN

j (t) +
√
v(t)dWN

x (t)
)2

+
√
v(t)dWN

x (t) +
∑

j∈A

ψj
√
V (t)dWN

j (t),

with

ψj =
τjσjLj(0)

1 + τjLj(0)
.

The square of the sum in the drift can be reformulated, by

( N∑

j=1

xj

)2
=

N∑

j=1

x2j +
∑

i,j=1,...,N
i6=j

xixj , for N > 0.
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By taking xj = ψj
√
V (t)dWN

j the dynamics can now be expressed as:

dxTN (t) ≈ −1

2

(
v(t) + V (t)

(∑

j∈A

ψ2
j +

∑

i,j∈A
i6=j

ψiψjρi,j

)
+ 2
√
V (t)

√
v(t)

∑

j∈A

ψjρx,j

)
dt

+
√
v(t)dWN

x (t) +
√
V (t)

∑

j∈A

ψjdW
N
j (t).

By setting,

A1(t) :=
∑

j∈A

ψ2
j +

∑

i,j∈A
i6=j

ψiψjρi,j , and A2(t) :=
∑

j∈A

ψjρx,j,
(4.23)

we obtain

dxTN (t) ≈ −1

2

(
v(t) + V (t)A1(t) + 2

√
V (t)

√
v(t)A2(t)

)
dt

+
√
v(t)dWN

x (t) +
√
V (t)

∑

j∈A

ψjdW
N
j (t). (4.24)

On the other hand the frozen Libor dynamics are given by:

dLk(t) ≈ −σkLk(0)V (t)
N∑

j=k+1

ψjρk,jdt+ σkLk(0)
√
V (t)dWN

k (t),

which, by taking

B1(k) =

N∑

j=k+1

ψjρk,j ,

equal to

dLk(t) ≈ −σkLk(0)V (t)B1(k)dt+ σkLk(0)
√
V (t)dWN

k (t), (4.25)

with the variance process V (t) given in (4.12).
Here, we derive the instantaneous covariance for the stochastic model given

by (4.24) and (4.25) with the variance processes in (4.11) and (4.12). Since the
dynamics for the forward FTN (t) contain the Libor rates, the dimension of the
covariance matrix will be dependent on time t. For a given state vector X(t) =
[xTN (t), v(t), LN1 (t), LN2 (t), . . . , LNN (t), V (t)]T, the covariance matrix will be of the
following form:

Σ =




Σx,x Σx,v Σx,L1
Σx,L2

. . . Σx,LN
0

Σv,x Σv,v 0 0 . . . 0 0
ΣL1,x 0 ΣL1,L1

ΣL1,L2
. . . ΣL1,LN

0
ΣL2,x 0 ΣL2,L1

ΣL2,L2
. . . ΣL2,LN

0
...

...
...

...
. . .

...
...

ΣLN ,x 0 ΣLN ,L1
ΣLN ,L2

. . . ΣLN ,LN
0

0 0 0 0 . . . 0 ΣV,V




dt, (4.26)
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with

Σx,x = v(t) + V (t)A1(t) + 2
√
V (t)

√
v(t)A2(t),

ΣLi,Lj
= ρi,jσiσjLi(0)Lj(0)V (t),

Σx,Li
= ρx,iσiLi(0)

√
v(t)

√
V (t) + σiLi(0)V (t)

∑

j∈A

ψjρi,j ,

and

Σv,v = γ2v(t), ΣLi,Li
= σ2

i L
2
i (0)V (t), ΣV,V = η2V (t), Σx,v = ρx,vγv(t).

Zeros are present in the covariance matrix due to the assumption of zero
correlation for ρx,V , ρv,Li

, ρLi,V and ρv,V . The covariance matrix as well as the

drift in Equation (4.24) include the non-affine terms
√
v(t)

√
V (t). Therefore the

resulting model is not affine and we cannot easily derive the corresponding ChF.
Appropriate approximations will be introduced in the next subsection.

4.4.1 The hybrid model linearization

In order to bring the system in an affine form, approximations for the non-affine
terms in the instantaneous covariance matrix (4.26) are necessary (as done in
Chapter 2 for a hybrid with stochastic volatility for equity and a short-rate model
for the interest rate). In the present work, we linearize these terms by projection
on the first moments, as follows:

√
v(t)

√
V (t) ≈ E

(√
v(t)

√
V (t)

)

⊥⊥
= E

(√
v(t)

)
E
(√

V (t)
)

=: α̂(t), (4.27)

with ⊥⊥ indicating independence between the processes v(t) and V (t). By [30]
and simplifications as in [69] the closed-form expression for the expectation of the
square-root of square-root process, E(

√
v(t)), can be found 1 in Chapter 2.

4.4.2 The forward characteristic function

With the approximations introduced, the non-affine terms in the drift and in the
instantaneous covariance matrix have been linearized. Therefore this approximate
model is in the class of affine processes. With the approximations, under the log-
transform, the forward, xTN (t), is governed by the following SDE:

dxTN (t) = −1

2
(v(t) + V (t)A1(t) + 2α̂(t)A2(t)) dt

+
√
v(t)dWN

x (t) +
√
V (t)

∑

j∈A

ψjdW
N
j (t),

1The expectation for E(
√

V (t)) is found analogously.
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(with A1(t) and A2(t) as in (4.23) and α̂(t) from (4.27)) which is of the affine
form. We call this approximation to the full-scale hybrid model, the approximate
Heston-Libor Market Model, denoted by H1-LMM.

Now, we derive the corresponding forward characteristic function of the model.
Since the dimension of the hybrid changes over time, the number of coefficients
in the corresponding characteristic function will also change. For a given time to
expiry, τ = TN − t, and B = {m(TN − τ) + 1, . . . , TN} the forward characteristic
function for the approximate hybrid model is of the following form:

φTN (u, xTN (t), τ) = exp(A(u, τ) +Bx(u, τ)xTN (t) +Bv(u, τ)v(t) (4.28)

+
∑

j∈B

Bj(u, τ)Lj(t) +BV (u, τ)V (t)),

subject to the terminal condition φTN (u,X(TN), 0) = exp(iuxTN (TN )), which,
according to Equation (4.10), equals φTN (u,X(TN ), 0) = exp(iu logS(TN)). The
coefficients A(u, τ), Bx(u, τ), Bv(u, τ), Bj(u, τ) and BV (u, τ) satisfy the system
of ODEs in the lemma below:

Lemma 4.4.1. The functions Bx(u, τ) =: Bx, Bv(u, τ) =: Bv, Bj(u, τ) =: Bj,
BV (u, τ) =: BV and A(u, τ) =: A for the forward characteristic function given
in (4.28) satisfy the following ODEs:

B′
x(u, τ) = 0, B′

j(u, τ) = 0, for j ∈ A,

and

B′
v(u, τ) =

1

2
Bx(Bx − 1) + (ρx,vγBx − κ)Bv +

1

2
γ2B2

v ,

B′
V (u, τ) =

1

2
A1(t)Bx(Bx − 1) −

∑

j∈A

σjLj(0)BxBj
∑

k∈A

ψkρk,j − λBV

+
1

2

∑

j∈A

σ2
jL

2
j(0)B2

j +
∑

i,j∈A
i6=j

ρi,jσiσjLi(0)Lj(0)BiBj +
1

2
η2B2

V ,

A′(u, τ) = α̂(t)A2(t)Bx(Bx − 1) + κv̄Bv + λV (0)BV

+
∑

j∈A

ρx,jσjLj(0)α̂(t)BxBj ,

where A = {m(t) + 1, . . . , N}, t = TN − τ with final conditions Bx(u, 0) = iu,
Bj(u, 0) = 0, Bv(u, 0) = 0, BV (u, 0) = 0 and A(u, 0) = 0.

Proof. For affine processes, X(t), the forward ChF, φTN (u,X(t), τ), is given
by [28]:

φTN (u,X(t), τ) = ETN

(
eiu

TX(T )
∣∣F(t)

)
= eA(u,τ)+BT(u,τ)X(t), (4.29)

with time lag, τ = TN − t. Here, the expectation is taken under the TN -forward
measure, QTN . The complex-valued functions A(u, τ) and BT(u, τ) have to satisfy
a system of complex-valued ODEs (see Chapter 1 for details).
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Under the log-transform we find that the state vector X(t) has N+3 elements
(n = N + 3):

X(t) = [xTN (t), v(t), L1(t), . . . , LN (t), V (t)]T.

With the Heston equity model (4.24) and the stochastic volatility Libor Market
Model in (4.25) we set vector u = [u, 0, . . . , 0]T. In order to find the functions
A(u, τ) and BT(u, τ) in (4.29) we need to determine the matrices aT1 , c0, c1 and
the vector a0 as given in Chapter 1 (Equations (1.1), (1.2) and (1.3)). By the
approximations in (4.22) and (4.27), the drifts in the Libors, Li(t), and in the
forward dynamics do not contain any non-affine terms. For A = {m(t)+1, . . . , N},
t = TN − τ , the non-zero elements in matrix aT1 are given by:

aT1 (2, 1) = −0.5, aT1 (2, 2) = −κ,
aT1 (N + 3, 1) = −0.5A1(t), aT1 (N + 3, N + 3) = −λ,

with
aT1 (N + 3, j + 2) = −σjLj(0)B1(j), for j ∈ A.

To determine the matrices c1 and c0 we use the instantaneous covariance matrix
from (4.26). For matrix c1 the non-zero elements are given by:

c1(1, 1, 2) = 1, c1(1, 1, N + 3) = A1(t),

c1(2, 1, 2) = ρx,vγ, c1(1, 2, 2) = ρx,vγ,

c1(2, 2, 2) = γ2, c1(N + 3, N + 3, N + 3) = η2,

and

c1(j + 2, j + 2, N + 3) = σ2
jL

2
j(0), for j ∈ A,

c1(i+ 2, j + 2, N + 3) = ρi,jσiσjLi(0)Lj(0), for i, j ∈ A, i 6= j,

c1(1, j + 2, N + 3) = σjLj(0)
∑

k∈A

ψkρj,k,

c1(j + 2, 1, N + 3) = c1(1, j + 2, N + 3).

In essence, the first and the second index of c1 indicate which covariance term
we deal with, whereas the third term indicates which variable is defined. The
unspecified matrix values are equal to zero.

For matrix c0 and vector a0 we get:

c0(1, 1) = 2α̂(t)A2(t), c0(1, j + 2) = c0(j + 2, 1) = ρx,jσj α̂(t)Lj(0), for j ∈ A.

and
a0(1) = −α̂(t)A2(t), a0(2) = κv̄, a0(N + 3) = λV (0).

By substitutions and appropriate matrix multiplications in the general solution for
A(u, τ) and B(u, τ) like in Chapter 1 (see Equation 1.4) the proof is finished. �

Corollary 4.4.2. Under the TN -forward measure the characteristic function for
xTN (t) in (4.28) does not contain the terms Bj(u, τ) for j = 1, . . . , N and Lj(t).
This implies a dimension reduction for the corresponding pricing PDE.
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Lemma 4.4.1 indicates that Bx(u, τ) = iu and Bj(u, τ) = 0, giving rise to a
simplification of the forward ChF:

φTN (u, xTN (t), τ) = exp(A(u, τ) + iuxTN (t) +Bv(u, τ)v(t) +BV (u, τ)V (t)),(4.30)

with Bv(u, τ), BV (u, τ) and A(u, τ) given by:





B′
v(u, τ) = −1

2
(u2 + iu) + (ρx,vγiu− κ)Bv +

1

2
γ2B2

v ,

B′
V (u, τ) = −1

2
A1(t)(u2 + iu) − λBV +

1

2
η2B2

V ,

A′(u, τ) = −α̂(t)A2(t)(u2 + iu) + κv̄Bv + λV (0)BV ,

(4.31)

subject to the final conditions:

Bv(u, 0) = 0, BV (u, 0) = 0, A(u, 0) = 0.

With the help of the Feynman-Kac theorem, one can show that the forward
characteristic function, φTN := φTN (u, xTN (t), τ), given in (4.30) with functions
Bv(u, τ), BV (u, τ) and A(u, τ) in (4.31) satisfies the following Kolmogorov
backward equation:

0 =
∂φTN

∂t
+

1

2
(v +A1(t)V + 2A2(t)α̂(t))

(
∂2φTN

∂x2
− ∂φTN

∂x

)
+ κ(v̄ − v)

∂φTN

∂v

+ λ(V (0) − V )
∂φTN

∂V
+

1

2
η2V

∂2φTN

∂V 2
+

1

2
γ2v

∂2φTN

∂v2
+ ρx,vγv

∂2φTN

∂x∂v
, (4.32)

subject to φ(u, xTN (TN ), 0) = exp
(
iuxTN (TN )

)
, with α̂(t) in (4.27), and A1(t),

A2(t) in (4.23).
Since α̂(t) is a deterministic function of time, the PDE coefficients in (4.32)

are all affine.
The complex-valued functions Bv(u, τ), BV (u, τ) and A(u, τ) in Lemma 4.4.1

are of the Heston-type. For constant parameters an analytic closed-form solution
is available, however, since the functions A1(t) and A2(t) are not constant but
piecewise constant an alternative approach needs to be used. As indicated in [4] an
analytic, but recursive, solution is also available for piecewise constant parameters.
We provide the solutions in Proposition 4.4.3.

Proposition 4.4.3 (Piece-wise complex-valued functions A(u, τ), Bv(u, τ) and
BV (u, τ)). For a given grid, 0 = τ0 < τ1 < · · · < τN = τ, and time interval,
sj = τj − τj−1, j = 1, . . . , N, the piece-wise constant complex-valued coefficients,
Bv(u, τ) and BV (u, τ), are given by the following recursive expressions:

Bv(u, τj) = Bv(u, τj−1) +

(
κ− ρx,vγiu− d1j − γ2Bv(u, τj−1)

) (
1 − e−d

1

jsj
)

γ2(1 − g1j e−d
1

j
sj )

,

BV (u, τj) = BV (u, τj−1) +

(
λ− d2j − η2BV (u, τj−1)

) (
1 − e−d

2

jsj
)

η2(1 − g2j e−d
2

j
sj )

,



An Equity-IR Hybrid Model with Stochastic Volatility and IR Smile 109

and,

A(u, τj) = A(u, τj−1) +
κv̄

γ2

(
(κ− ρx,vγiu− d1j)sj − 2 log

(
1 − g1j e−d

1

jsj

1 − g1j

))

+
λV (0)

η2

(
(λ− d2j )sj − 2 log

(
1 − g2j e−d

2

jsj

1 − g2j

))

−A2(t)(u2 + iu)

∫ τj

τj−1

α̂(t)dt,

with:

d1j =
√

(ρx,vγiu− κ)2 + γ2(iu+ u2), d2j =
√
λ2 + η2A1(t)(u2 + iu),

g1j =
(κ− ρx,vγiu) − d1j − γ2Bv(u, τj−1)

(κ− ρx,vγiu) + d1j − γ2Bv(u, τj−1)
, g2j =

λ− d2j − η2BV (u, τj−1)

λ+ d2j − η2BV (u, τj−1)
,

and the final conditions Bv(u, τ0) = 0, BV (u, τ0) = 0 and A(u, τ0) = 0. Moreover,
for t = TN − τj , the functions A1(t) and A2(t) are defined in (4.23) and α̂(t)
in (4.27) with the parameters κ, γ, λ, η and ρx,v given in (4.11), (4.12) and
(4.13).

Proof. We notice that the functions A1(t) and A2(t) are constant between the
times τi. For simplicity, we set τ0 = 0, and τ = T − t. Since Bj(u, τ) = 0, the
equations which need to be solved are given by:

B′
v(u, τ) = b1,0 + b1,1Bv + b1,2B

2
v ,

B′
V (u, τ) = b2,0 + b2,1BV + b2,2B

2
V ,

A′(u, τ) = a0Bv + a1BV + f(t),

with certain initial conditions for Bv(u, τ0), BV (u, τ0) and A(u, τ0) and coeffi-
cients:

b1,0 = −1

2
(u2 + iu), b1,1 = ρx,vγiu− κ, b1,2 =

1

2
γ2,

b2,0 = −1

2
A1(t)(u2 + iu), b2,1 = −λ, b2,2 =

1

2
η2,

and the coefficients for A(u, τ):

a0 = κv̄, a1 = λV (0), f(t) = −α̂(t)A2(t)(u2 + iu).

Since Bv(u, τ) and BV (u, τ) are not depending on A(u, τ) a closed-form solution
is available (see, for example, [54, 111]). For τ > 0 we find:

Bv(u, τ) = Bv(u, τ0) +
(−b1,1 − d1 − 2b1,2Bv(u, τ0))

2b1,2(1 − g1e−d1(τ−τ0))
(1 − e−d1(τ−τ0)),

BV (u, τ) = BV (u, τ0) +
(−b2,1 − d2 − 2b2,2BV (u, τ0))

2b2,2(1 − g2e−d2(τ−τ0))
(1 − e−d2(τ−τ0)),
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with:

d1 =
√
b21,1 − 4b1,0b1,2, d2 =

√
b22,1 − 4b2,0b2,2,

g1 =
−b1,1 − d1 − 2Bv(u, τ0)b1,2
−b1,1 + d1 − 2Bv(u, τ0)b1,2

, g2 =
−b2,1 − d2 − 2BV (u, τ0)b2,2
−b2,1 + d2 − 2Bv(u, τ0)b2,2

,

For A(u, τ) we have:

A(u, τ) = A(u, τ0) + a0

∫ τ

0

Bv(u, s)ds+ a1

∫ τ

0

BV (u, s)ds+

∫ τ

0

f(τ − s)ds.

The first two integrals can be solved analytically:

∫ τ

0

Bv(u, s)ds =
1

2b1,2

(
(−b1,1 + d1)(τ − τ0) − 2 log

(
1 − g1e−d1(τ−τ0)

1 − g1

))
,

∫ τ

0

BV (u, s)ds =
1

2b2,2

(
(−b2,1 + d2)(τ − τ0) − 2 log

(
1 − g2e−d2(τ−τ0)

1 − g2

))
.

For the last integral we have:

∫ τ

0

f(τ − s)ds = −(u2 + iu)

∫ τ

0

α̂(τ − s)A2(τ − s)ds.

Since A2(τ − s) is constant between 0 and τ , function A2(τ − s) can be taken
outside the integral. The proof is finished by the appropriate substitutions. �

With a characteristic function available for the log-transformed forward,
xTN (t), we can compute European option prices for equity maturing at the
terminal time, TN . In the case of an option maturing at a time different from
the terminal time TN (say at Ti with i < N), one needs to price the equity
forward FTi(t), and therefore an appropriate change of measure for the H-LMM
model (4.21) should be applied. Since the forward FTi(t) is a martingale under
the Ti-forward measure, it does not contain a drift term. On the other hand, the
variance process, v(t), for the Heston model is neither correlated with the Libors
nor with the Libor’s variance process, V (t). The change of measure therefore does
not affect variance process v(t). Now we present a proof for this statement.

Proposition 4.4.4. The dynamics of the variance process, v(t), given in (4.11)
are not affected by changing the forward measure generated by numéraire P (t, Ti),
for i = 1, . . . , N .

Proof. Under the TN -forward measure the model with the forward stock, FTN (t)
in (4.21), with the variance process, v(t) in (4.11), and the Libor rates as given
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in (4.12), can, in terms of the independent Brownian motions, be expressed as:




dL1(t)
dL2(t)
. . .

dLN(t)
dV (t)

dFN (t)
dv(t)




=




µ1(t)
µ2(t)
. . .

µN (t)
λ(V (0) − V (t))
µN (t) = 0
κ(v̄ − v(t))




dt+ AL




dW̃N
1 (t)

dW̃N
2 (t)
. . .

dW̃N
N (t)

dW̃N
V (t)

dW̃N
x (t)

dW̃N
v (t)




,

with

A =




σ1φ1(t)
√
V (t) . . . 0 0 0 0

...
. . .

...
...

...
...

0 . . . σNφN (t)
√
V (t) 0 0 0

0 . . . 0 η
√
V (t) 0 0

Υ1(t)
√
V (t) . . . ΥN (t)

√
V (t) 0

√
v(t) 0

0 . . . 0 0 0 γ
√
v(t)




,

where Υj(t) =
τjσjφj(t)

√
V (t)

1+τjLj(t)
and L is the Cholesky lower triangular of the

correlation matrix, C, which is given by:

C =




1 ρ1,2 . . . ρ1,N 0 ρx,1 0
ρ2,1 1 . . . ρ2,N 0 ρx,2 0

...
...

. . .
...

...
...

...
ρN,1 ρN,2 . . . 1 0 ρx,N 0

0 0 . . . 0 0 0 0
ρx,1 ρx,2 . . . ρx,N 0 1 ρx,v

0 0 . . . 0 0 ρx,v 1




.

With ζk(t) the k-th row vector from matrix M = AL, the Radon-Nikodym
derivative, ΛN−1

N (t), is given by:

ΛN−1
N (t) =

dQN−1

dQN

∣∣∣
F(t)

=
P (0, TN)

P (0, TN−1)
(1 + τNLN (t)).

From the representation above, the dynamics for the Libor LN (t) can be expressed
as:

dLN(t) = ζN (t)dW̃N (t).

Therefore, the dynamics for ΛNN−1(t) read:

dΛN−1
N (t) = ΛN−1

N (t)
τNζN (t)

1 + τNLN(t)
dW̃N (t).

By the Girsanov theorem this implies that the change of measure is given by:

dW̃N (t) =
τNζN (t)T

1 + τNLN(t)
dt+ dW̃N−1(t). (4.33)



112 Chapter 4

We wish to find the dynamics for process v(t) under the measure QN−1. In
terms of the independent Brownian motions the variance process v(t) is given by:

dv(t) = κ(v̄ − v(t))dt+ ζN+3(t)dW̃N (t),

with

ζN+3(t) =


0, 0, 0, . . . , 0︸ ︷︷ ︸

N+1

, γ
√
v(t)ρx,v, γ

√
v(t)

√
1 − ρ2x,v


 .

By Equation (4.33) the dynamics for v(t) under QN−1 are given by:

dv(t) = κ(v̄ − v(t))dt + ζN+3(t)

(
τNζN (t)T

1 + τNLN (t)
dt+ dW̃N−1(t)

)
.

Since

ζN (t) =


. . . , , . . . , , . . .︸ ︷︷ ︸

N+1

, 0, 0


 ,

so the scalar product ζN+3(t)ζN (t)T = 0. This results in the following dynamics
for the process v(t) under the QN−1 measure:

dv(t) = κ(v̄ − v(t))dt + ζN+3(t)dW̃N−1(t).

Since for all j = 1, . . . , N the scalar product ζN+3(t)ζj(t)
T = 0, changing the

corresponding forward measures does not affect the drift of the variance process
v(t). This observation concludes the proof. �

4.5 Numerical results

In this section several numerical experiments are presented. First of all, the
accuracy of the approximate model, H1-LMM, is compared with the full-scale H-
LMM model for European call option prices. Furthermore, the sensitivity to the
interest rate skew for both models is checked. Finally, we use a typical equity-
interest rate hybrid payoff function and compare the performance of the new
H-LMM model with the Heston-Hull-White hybrid model.

4.5.1 Accuracy of the H1-LMM model

We check here the accuracy of the developed approximation H1-LMM. We
compare Monte Carlo European call prices from the full-scale H-LMM model
with corresponding prices obtained by the Fourier inverse algorithm [32] for the
H1-LMM model. In the Monte Carlo simulation we work under one measure, the
TN -terminal measure. So, the prices for different option maturities are calculated
by the following expression:

ΠMC(t, TN ) = P (t, TN )ETN

(
(STi

−K)+

P (Ti, TN )

∣∣F(t)

)
, for i ≤ N,
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which by Equation (4.10) equals:

ΠMC(t, Ti) = P (t, TN)ETN

((
FTN (Ti) −

K

P (Ti, TN )

)+ ∣∣F(t)

)
,

with K the strike price, and the bond P (Ti, TN ) is given by (4.6).
The prices calculated by the Fourier inverse algorithm are obtained by the

following expression:

ΠF(t, Ti) = P (t, Ti)E
Ti

((
FTi(Ti) −K

)+ ∣∣F(t)
)
,

with the ChF from Proposition 4.4.3. As mentioned, the change of measure does
not affect the volatility of the Heston process. Pricing under different measures
is therefore consistent.

When calibrating the plain Heston model in practice, the parameters obtained
rarely satisfy the Feller condition 2, γ2 < 2κv̄. In order to mimic a realistic setting,
we also choose parameters that do not satisfy this inequality, i.e.:

κ = 1.2, v̄ = 0.1, γ = 0.5, S(0) = 1, v(0) = 0.1.

For the interest rate model we take:

βk = 0.5, σk = 0.25, λ = 1, V (0) = 1, η = 0.1.

In the correlation matrix a number of elements need to be specified. For the
correlations between the Libor rates, we set large positive values, as frequently
observed in the fixed income markets (see for example [19]), ρi,j = 98%, for i, j =
1, . . . , N, i 6= j. For the correlation between S(t) and v(t) we set a negative
correlation, ρx,v = −30%, which corresponds to the skew in the implied volatility
for equity. And, finally, the correlation between the stock and the Libors,
ρx,i = 50% for i = 1, . . . , N . In practice this correlation would be estimated
from historical data [17]. The following correlation matrix results:



1 ρx,v ρx,1 . . . ρx,N ρx,V
ρv,x 1 ρv,1 . . . ρv,N ρv,V
ρ1,x ρ1,v 1 . . . ρ1,N ρ1,V
..
.

..

.
..
.

. . .
..
.

..

.
ρN,x ρN,v ρN,1 . . . 1 ρN,V

ρV,x ρV,v ρV,1 . . . ρV,N 1




=




1 −30% 50% . . . 50% 0
−30% 1 0 . . . 0 0
50% 0 1 . . . 98% 0
..
.

..

.
..
.

. . .
..
.

..

.
50% 0 98% . . . 1 0
0 0 0 . . . 0 1



.

The accuracy and the associated standard deviations, in terms of prices of the
European call option prices for equity (with the Monte Carlo simulation versus
the Fourier inversion of the ChF), are presented in Table 4.1. In Figure 4.1
the corresponding implied volatility plots are presented. The accuracy of the
approximations introduced (H1-LMM) is highly satisfactory for this experiment.

2If the Feller condition is satisfied this ensures that the variance process is positive.
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Table 4.1: The European equity call option prices of H1-LMM compared to H-
LMM. The H-LMM Monte Carlo experiment was performed with 20.000 paths and 20
intermediate points between dates Ti−1 and Ti, for i = 1, . . . , N . The tenor structure
was chosen to be T = {T1, . . . , T10} with the terminal measure TN = T10. Numbers in
parentheses are sample standard deviations. The simulation was repeated 10 times.

European Equity Call Option Price

Strike K T2 T5 T10

ChF MC ChF MC ChF MC

K = 40% 0.6418 0.6424 0.7017 0.7014 0.7821 0.7818
(0.0035) (0.0034) (0.0081)

K = 80% 0.3299 0.3316 0.4638 0.4648 0.6203 0.6210
(0.0030) (0.0034) (0.0082)

K = 100% 0.2149 0.2167 0.3730 0.3742 0.5562 0.5572
(0.0027) (0.0034) (0.0083)

K = 120% 0.1332 0.1345 0.2993 0.3004 0.5008 0.5020
(0.0024) (0.0034) (0.0083)

K = 160% 0.0483 0.0486 0.1933 0.1941 0.4109 0.4126
(0.0016) (0.0034) (0.0082)

K = 200% 0.0184 0.0184 0.1268 0.1273 0.3419 0.3438
(0.0010) (0.0031) (0.0080)

K = 240% 0.0078 0.0076 0.0850 0.0852 0.2878 0.2901
(0.0006) (0.0026) (0.0079)

4.5.2 Interest rate skew

Approximation H1-LMM was based on freezing the appropriate Libor rates and
on linearizations in the instantaneous covariance matrix. By freezing the Libors,
i.e.: Lk(t) ≡ Lk(0) we have that φk(t) = βkLk(t) + (1 − βk)Lk(0) = Lk(0).

In the DD-SV model, parameter βk controls the slope of the interest rate
volatility smile, so by freezing the Libors to Lk(0) the information about the
interest rate skew is not included in the approximation H1-LMM 3.

We perform here an experiment with the full-scale model (H-LMM). By a
Monte Carlo simulation, we check the influence of parameter βk on the equity
implied volatilities [16]. In Table 4.2 the equity implied volatilities for the
European call option for H-LMM are presented. The experiment displays a
small impact of the different βk’s on the equity implied volatilities, which implies
that our approximation, H1-LMM, makes sense for various parameters βk in the
interest rate modelling in the present setting.

To explain the small effect of variation in βk on the equity implied volatility
we need to return to the equity forward equation in (4.21), i.e.:

dFTN (t)

FTN (t)
=
√
v(t)dWN

x (t) +

N∑

j=m(t)+1

τjσjφj(t)
√
V (t)

1 + τjLj(t)
dWN

j (t).

The equity forward is based on two types of correlated volatilities: The equity
with dWN

x (t) and the interest rate with dWN
j (t) for j = 1, . . . , N . Since in

3the model remains sensitive to interest rate volatility
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Figure 4.1: Comparison of implied Black-Scholes volatilities for the European equity
option, obtained by Fourier inversion of H1-LMM and by Monte Carlo simulation of
H-LMM.

the experiment we have chosen a realistic set of parameters (as in Section 4.5.1)
with a rather large parameter γ = 0.5, the first term in the forward SDE above,√
v(t)dWN

x (t), is dominating. The other volatilities contribute in particular when
large maturities are considered. The theoretical proof for this statement is rather
involved, but we can simply illustrate it by setting t = 0. For the equity part we

then have:
√
v(0) ≈ 0.3162, and for the interest rate

√
V (0)

∑N
j=1

τjσjLj(0)
1+τjLj(0)

≈
0.0122N , where N corresponds to the number of Libors considered.

4.5.3 Pricing a hybrid product

Although the interest rate skew parameter, βk, does not strongly influence the
equity prices, it may still have an impact on the hybrid contract price. In this
subsection we use H-LMM and price a typical exotic payoff.

As indicated in [59], an investor interested in structured products may look
for higher expected return (higher coupons) than available from basic market
instruments. By trading hybrid products she/he can also trade the correlation,
for example, by including multiple assets in a structured derivatives product,
and therefore the basket volatility can be reduced. This typically makes the
corresponding option cheaper.

The main advantage of H-LMM lies in its capability to price hybrid products
that are sensitive to an equity smile, an interest rate smile and the correlation
between the assets. A hybrid payoff which contains the equity and interest rate
assets is the so-called minimum of several assets payoff, see [59]. The contract is
made for an investor willing to take some risk in one asset class in order to obtain
a participation in a different asset class. If the investor wants to be involved in
an n-years Constant Maturity Swap (CMS), by taking some risk in equity, this
can be expressed by the following payoff:

Payoff = max

(
0,min

(
Cn(T ), k% × S(T )

S(t)

))
,
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Table 4.2: The effect of the interest rate skew, controlled by βk, on the equity implied
volatilities. The Monte Carlo simulation was performed with the setup from Table 4.1.
The maturity is TN = 10. Values in brackets indicate implied volatility standard
deviations (the experiment was repeated 10 times).

Equity Implied Volatilities

Strike K βk = 0 βk = 0.5 βk = 1

K = 40% 35.71 % 35.50% 34.60 %
(0.0290) (0.0221) (0.0460)

K = 80% 34.63 % 34.49 % 34.26 %
(0.0109) (0.0086) (0.0175)

K = 100% 34.23 % 34.15 % 33.99 %
(0.0087) (0.0066) (0.0139)

K = 120% 33.90 % 33.89 % 33.78 %
(0.0073) (0.0055) (0.0119)

K = 160% 33.40 % 33.53 % 33.47 %
(0.0058) (0.0045) (0.0097)

K = 200% 33.05 % 33.28 % 33.26 %
(0.0052) (0.0041) (0.0088)

K = 240% 32.81 % 33.09 % 33.12 %
(0.0048) (0.0039) (0.0085)

with S(t) being the stock price at time t and Cn(t) is an n-years CMS. By setting
the tenor structure T = {1, . . . , 10}, with payment date TN = 5 and maturity
TM = 10, we obtain the following pricing equation:

ΠH(t, T5) = P (t, T5)ET5

(
max

(
0,min

(
1 − P (T5, T10)∑10
k=6 P (T5, Tk)

, k% × S(T5)

S(t)

))
∣∣F(t)

)
.

(4.34)
In our simulation, the bonds P (Ti, Tj) are obtained from the SV-DD Libor Market
Model and determined by (4.6) for t = Ti and TN = Tj . As a first test we check the
sensitivity to the interest rate skew (by changing β and keeping the correlation
ρx,i = 0%, for all i) and to the correlation between the stock, S(t), and the
Libor rates, Li(t), by varying the correlation, ρx,i = {0%,−70%, 70%}, for all
i. Figure 4.2 shows the corresponding results. We see a significant impact on
the hybrid prices, which suggests that plain equity models, or equity short-rate
hybrid models, may lead to different prices for such hybrid products.

Insight in the added value of H-LMM can be gained by comparing the H-LMM
results with, for example, the Heston-Hull-White (HHW) hybrid model. In the
HHW model the equity part is driven by the Heston process, as in Equation (4.11),
but the interest rate is driven by a Hull-White short-rate process given by the
following SDE:

dr(t) = λ(θ(t) − r(t))dt + ηdWr(t), with r(0) > 0,

with term structure θ(t), positive parameters λ, η and dWx(t)dWr(t) = ρx,rdt.
Before performing the pricing of the hybrid product the model parameters

need to be determined. The models were calibrated to data sets provided in
Tables 4.3 and 4.4.
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Figure 4.2: The value for a minimum of several assets hybrid product. The prices
are obtained by Monte Carlo simulation with 20.000 paths and 20 intermediate points.
LEFT: Influence of β; RIGHT: Influence of ρx,L.

Table 4.3: The standardized European equity call option values for different maturities
(T [y]) and strikes (K[%]).

European Equity Call Option Price
Strike K T = 0.5 T = 1 T = 2 T = 3 T = 4 T = 5 T = 10

40% 0.610 0.620 0.642 0.663 0.683 0.702 0.779
80% 0.235 0.271 0.329 0.378 0.421 0.461 0.612
100% 0.098 0.143 0.212 0.271 0.322 0.368 0.546
120% 0.030 0.067 0.131 0.190 0.244 0.293 0.489
160% 0.003 0.015 0.051 0.095 0.141 0.188 0.397
200% 0.000 0.004 0.023 0.051 0.086 0.125 0.328
240% 0.000 0.001 0.012 0.030 0.055 0.086 0.275
260% 0.000 0.001 0.009 0.024 0.045 0.073 0.253
300% 0.000 0.000 0.005 0.016 0.031 0.053 0.216

For H-LMM, the parameters from Section 4.5.1 were found. In the calibration
of the HHW model, we first calibrated the Hull-White process, for which we
obtained:

λ = 0.0614, η = 0.0133, r0 = 0.05.

Then, with an imposed correlation between the stock and the short-rate, ρx,r =
50%, the remaining parameters were found to be:

κ = 0.650, γ = 0.469, v̄ = 0.090, ρx,v = −22.2%, v(0) = 0.114.

In Figure 4.3(left) the pricing results with the two hybrid models are presented.
For k > 5% (with k in Equation (4.34)) a significant difference between the

Table 4.4: The zero-coupon bonds for different maturities T .

The zero-coupon bonds P (0, T )
Strike T = 0.5 T = 1 T = 2 T = 3 T = 4 T = 5 T = 10

P (0, T ) 0.9756 0.9512 0.9048 0.8607 0.8187 0.7788 0.6065
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obtained prices is observed, although the two models were calibrated to the same
data set.

Payoff equation (4.34) shows that, as the percentage k increases, the
dominating part of the product will be the CMS rate. We conclude that the
Hull-White underlying model for the short-rate indeed does not take into account
the interest rate smile/skew and therefore gives different prices for a smile/skew
sensitive product.

In Figure 4.3(right) the histograms of the CMS rate for both models are
presented. The histograms show a significantly fatter tail in the case of the DD-SV
model than one for the Hull-White short-rate model.
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Figure 4.3: LEFT: Hybrid prices obtained by two different hybrid models, H-LMM
and HHW. The models were calibrated to the same data set; RIGHT: CMS rate for the
H-LMM and the HHW models.

4.6 Conclusion

The financial industry does not only require models that are well-defined and
capture the important features in the market, but also efficient calibration of a
model to market data should be feasible.

We have proposed an equity-interest rate hybrid model with stochastic
volatility for stock and for the interest rates. To bring the model within the class of
affine processes, we projected the non-affine terms on time-dependent functions.
This approximation to the full-scale model is affine, and we have determined
a closed-form forward characteristic function. By this the approximate hybrid
model, H1-LMM, can be used for calibration purposes.

The main advantage of the model developed lies in its ability to price hybrid
produces exposed to the interest rate smile accurately and efficiently.



CHAPTER 5

On Cross-Currency Models with Stochastic

Volatility and Correlated Interest Rates

A fair exchange is no robbery.

- English 16th Century Proverbs

5.1 Introduction

Due to the existence of complex FX products, like the Power-Reverse Dual-
Currency [103], the Equity-CMS Chameleon or the Equity-Linked Range Accrual
TRAN swaps [22], that all have a long lifetime and are sensitive to smiles or
skews in the market, improved models with stochastic interest rates need to be
developed.

The literature on modelling foreign exchange (FX) rates is rich and many
stochastic models are available. An industrial standard is a model from [38, 103],
where log-normally distributed FX dynamics are assumed and Gaussian, one-
factor, interest rates are used. This model gives analytic expressions for the
prices of basic products for at-the-money options. Extensions on the interest rate
side were presented by Schlögl in [99] or Mikkelsen in [78], where the short-rate
model was replaced by a Libor Market Model framework.

A Gaussian interest rate model was also used in [93], in which a local volatility
model was applied for generating the skews present in the FX market. In another
paper, [67], a displaced-diffusion model for FX was combined with the interest
rate Libor Market Model.

Stochastic volatility FX models have also been investigated. For example,
in [107] the Schöbel-Zhu model was applied for pricing FX in combination with
short-rate processes. This model leads to a semi-closed-form for the characteristic

119
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function. However, for a normally distributed volatility process it is difficult to
outperform the Heston model with independent stochastic interest rates [107].

Research on the Heston dynamics in combination with correlated interest
rates has led to some interesting models. In [6] and [43] an indirectly imposed
correlation structure between Gaussian short-rates and FX was presented.
The model is intuitively appealing, but it may give rise to very large model
parameters [8]. An alternative model was presented in [8, 9], in which calibration
formulas were developed by means of Markov projection techniques.

In this chapter we present an FX Heston-type model in which the interest rates
are stochastic processes, correlated with the governing FX processes. We first
discuss the Heston FX model with Gaussian interest rate (Hull-White model [56])
short-rate processes. In this model a full matrix of correlations is used.

This model, denoted by FX-HHW here, is a generalization of our work
in Chapters 2 and 3, where we dealt with the problem of finding an affine
representation of the Heston equity model with a correlated stochastic interest
rate. In this chapter, we apply this technique in the world of foreign exchange.

Secondly, we extend the framework by modelling the interest rates by a market
model, i.e., by the stochastic volatility displaced-diffusion Libor Market Model [5,
92]. In this hybrid model, called FX-HLMM here, we incorporate a non-zero
correlation between the FX and the interest rates and between the rates from
different currencies. Because it is not possible to obtain closed-form formulas for
the associated characteristic function, we use a linearization approximation, as
developed earlier, in Chapter 4.

For both models we provide details on how to include a foreign stock in the
multi-currency pricing framework.

Fast model evaluation is highly desirable for FX options in practice, especially
during the calibration of the hybrid model. This is the main motivation for the
generalization of the linearization techniques presented earlier in this thesis to the
world of foreign exchange. We will see that the resulting approximations can be
used very well in the FX context.

The present chapter is organized as follows. In Section 5.2 we discuss the
dynamics of FX rate under the extended Heston model by stochastic interest rates,
described by short-rate processes. We provide details about some approximations
in the model, and then derive the related forward characteristic function. We also
discuss the model’s accuracy and calibration results. Section 5.3 gives the details
for the cross-currency model with interest rates driven by the market model and
Section 5.4 concludes.

5.2 Multi-Currency model with short-rate interest rates

Here, we derive the model for the spot FX, y(t), expressed in units of domestic
currency, per unit of a foreign currency.

We start the analysis with the specification of the underlying interest rate
processes, rd(t) and rf (t). At this stage we assume that the interest rate
dynamics are defined via short-rate processes, which under their spot measures,
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i.e., Q−domestic and Z−foreign, are driven by the Hull-White [56] one-factor
model:

drd(t) = λd(θd(t) − rd(t))dt + ηddW
Q
d (t), (5.1)

drf (t) = λf (θf (t) − rf (t))dt + ηfdW Z
f (t), (5.2)

where WQ
d (t) and W Z

f (t) are Brownian motions under Q and Z, respectively.
Parameters λd, λf determine the speed of mean reversion to the time-dependent
term structure functions θd(t), θf (t), and parameters ηd, ηf are the volatility
coefficients.

These processes, under the appropriate measures, are linear in their state
variables, so that for a given maturity T (0 < t < T ) the zero-coupon bonds
(ZCB) are known to be of the following form:

Pd(t, T ) = exp (Ad(t, T ) +Bd(t, T )rd(t)) ,

Pf (t, T ) = exp (Af (t, T ) +Bf (t, T )rf (t)) ,
(5.3)

with Ad(t, T ), Af (t, T ) and Bd(t, T ), Bf (t, T ) analytically known quantities (see
for example Chapter 1). In the model the money market accounts are given by:

dMd(t) = rd(t)Md(t)dt, and dMf(t) = rf (t)Mf (t)dt. (5.4)

By using the Heath-Jarrow-Morton arbitrage-free argument, [53], the dynam-
ics for the ZCBs, under their own measures generated by the money-savings
accounts, are known and given by the following result:

Result 5.2.1 (ZCB dynamics under the risk-free measure). The risk-free
dynamics of the zero-coupon bonds, Pd(t, T ) and Pf (t, T ), with maturity T are
given by:

dPd(t, T )

Pd(t, T )
= rd(t)dt−

(∫ T

t

σd(t, s)ds

)
dWQ

d (t),

dPf (t, T )

Pf (t, T )
= rf (t)dt−

(∫ T

t

σf (t, s)ds

)
dW Z

f (t),

where σd(t, T ), σf (t, T ) are the volatility functions of the instantaneous forward
rates fd(t, T ), ff (t, T ), respectively, that are given by:

dfd(t, T ) = σd(t, T )

∫ T

t

σd(t, s)ds+ σd(t, T )dWQ
d (t),

dff (t, T ) = σf (t, T )

∫ T

t

σf (t, s)ds+ σf (t, T )dW Z
f (t).

Proof. For the proof see [82]. �

The spot-rates at time t are defined by rd(t) ≡ fd(t, t), rf (t) ≡ ff (t, t).
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By means of the volatility structures, σd(t, T ), σf (t, T ), one can define a
number of short-rate processes. In our framework the volatility functions are
chosen to be σd(t, T ) = ηd exp (−λd(T − t)) and σf (t, T ) = ηf exp (−λf (T − t)).
The Hull-White short-rate processes, rd(t) and rf (t) as in (5.1), (5.2), are then
obtained and the term structures, θd(t), θf (t), expressed in terms of instantaneous
forward rates, are also known. The choice of specific volatility determines the
dynamics of the ZCBs:

dPd(t, T )

Pd(t, T )
= rd(t)dt+ ηdBd(t, T )dWQ

d (t),

dPf (t, T )

Pf (t, T )
= rf (t)dt+ ηfBf (t, T )dW Z

f (t), (5.5)

with Bd(t, T ) and Bf (t, T ) as in (5.3), given by:

Bd(t, T ) =
1

λd

(
e−λd(T−t) − 1

)
, Bf (t, T ) =

1

λf

(
e−λf (T−t) − 1

)
. (5.6)

For a detailed discussion on short-rate processes, we refer to the analysis of Musiela
and Rutkowski in [82].

In the next subsection we define the FX hybrid model.

5.2.1 The model with correlated, Gaussian interest rates

The FX-HHW model, with all processes defined under the domestic risk-neutral
measure, Q, is of the following form:

dy(t)/y(t) = (rd(t) − rf (t)) dt+
√
v(t)dWQ

y (t),

dv(t) = κ(v̄ − v(t))dt+ γ
√
v(t)dWQ

v (t),

drd(t) = λd(θd(t) − rd(t))dt+ ηddW
Q
d (t),

drf (t) =
(
λf (θf (t) − rf (t)) − ηfρy,f

√
v(t)

)
dt+ ηfdWQ

f (t),

(5.7)

with y(0) > 0, v(0) > 0, rd(0) > 0 and rf (0). Here, the parameters κ, λd, and λf
determine the speed of mean reversion of the latter three processes, their long-
term mean is given by v̄, θd(t), θf (t), respectively. The volatility coefficients for
the processes rd(t) and rf (t) are given by ηd and ηf and the volatility-of-variance
parameter for process v(t) is γ.

In the model we consider a full matrix of correlations between the Brownian
motions W(t) =

[
WQ
y (t),WQ

v (t),WQ
d (t),WQ

f (t)
]T

:

dW(t)(dW(t))T =




1 ρy,v ρy,d ρy,f
ρy,v 1 ρv,d ρv,f
ρy,d ρv,d 1 ρd,f
ρy,f ρv,f ρd,f 1


dt. (5.8)

Under the domestic-spot measure the drift in the short-rate process, rf (t), gives

rise to an additional term, −ηfρy,f
√
v(t). This term ensures the existence of



On FX Models with Stochastic Volatility and Correlated Interest Rates 123

martingales, under the domestic spot measure, for the following prices (for more
discussion, see [102]):

χ1(t) := y(t)
Mf(t)

Md(t)
and χ2(t) := y(t)

Pf (t, T )

Md(t)
,

where Pf (t, T ) is the price foreign zero-coupon bond (5.5) and the money-savings
accounts Md(t) and Mf (t) are from (5.4).

To see that the processes χ1(t) and χ2(t) are martingales, one can apply the
Itô product rule, which gives:

dχ1(t)/χ1(t) =
√
v(t)dWQ

y (t),

dχ2(t)χ2(t) =
√
v(t)dWQ

y (t) + ηfBf (t, T )dWQ
f (t).

The change of dynamics of the underlying processes, from the foreign-spot
to the domestic-spot measure, also influences the dynamics for the associated
bonds, which, under the domestic risk-neutral measure, Q, with the money-
savings account considered as a numéraire, have the following representations

dPd(t, T )

Pd(t, T )
= rd(t)dt+ ηdBd(t, T )dWQ

d (t), (5.9)

dPf (t, T )

Pf (t, T )
=
(
rf (t) − ρy,fηfBf (t, T )

√
v(t)

)
dt+ ηfBf (t, T )dWQ

f (t), (5.10)

with Bd(t, T ) and Bf (t, T ) as in (5.6).

5.2.2 Pricing of FX options

In order to perform efficient calibration of the model we need to be able to
price basic options on the FX rate, V (t,X(t)), for a given state vector, X(t) =
[y(t), v(t), rd(t), rf (t)]T:

V (t,X(t)) = EQ

(
Md(t)

Md(T )
max(y(T ) −K, 0)

∣∣∣F(t)

)
,

with

Md(t) = exp

(∫ t

0

rd(s)ds

)
.

Now, we consider a forward price, Π̂(t), such that:

EQ

(
max(y(T ) −K, 0)

Md(T )

∣∣∣F(t)

)
=
V (t,X(t))

Md(t)
=: Π̂(t).

By Itô’s lemma we have:

dΠ̂(t) =
1

Md(t)
dV (t) − rd(t)

V (t)

Md(t)
dt, (5.11)
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with V (t) := V (t,X(t)). We know that Π̂(t) must be a martingale, i.e.:
E(dΠ̂(t)) = 0. Including this in (5.11) gives the following Fokker-Planck forward
equation for V :

rdV =
1

2
η2f
∂2V

∂r2f
+ ρd,fηdηf

∂2V

∂rd∂rf
+

1

2
η2d
∂2V

∂r2d
+ ρv,fγηf

√
v
∂2V

∂v∂rf

+ρv,dγηd
√
v
∂2V

∂v∂rd
+

1

2
γ2v

∂2V

∂v2
+ ρy,fηfy

√
v
∂2V

∂y∂rf
+ ρy,dηdy

√
v
∂2V

∂y∂rd

+ρy,vγyv
∂2V

∂y∂v
+

1

2
y2v

∂2V

∂y2
+
(
λf (θf (t) − rf ) − ρy,fηf

√
v
) ∂V
∂rf

+λd(θd(t) − rd)
∂V

∂rd
+ κ(v̄ − v)

∂V

∂v
+ (rd − rf )y

∂V

∂y
+
∂V

∂t
.

This 4D PDE contains non-affine terms, like square-roots and products. It is
therefore difficult to solve it analytically. Finding a numerical solution for this
PDE is therefore rather expensive and not easily applicable for model calibration.
In the next subsection we propose an approximation of the model, which is useful
for calibration.

The FX model under the forward domestic measure

To reduce the complexity of the pricing problem, we move from the domestic
spot measure, generated by the money-savings account in the domestic market,
Md(t), to the domestic forward FX measure where the numéraire is the domestic
zero-coupon bond, Pd(t, T ). As indicated in [82, 93], the forward is given by:

FXT (t) = y(t)
Pf (t, T )

Pd(t, T )
, (5.12)

where FXT (t) represents the forward exchange rate under the T -forward measure,
and y(t) stands for foreign exchange rate under the domestic spot measure. The
superscript should not be confused with the transpose notation used at other
places in the text.

By switching from the domestic risk-neutral measure, Q, to the domestic
T -forward measure, QT , the discounting will be decoupled from taking the
expectation, i.e.:

Π(t, T ) = Pd(t, T )ET
(
max

(
FXT (T ) −K, 0

)
|F(t)

)
.

In order to determine the dynamics for FXT (t) in (5.12), we apply Itô’s formula:

dFXT (t) =
Pf (t, T )

Pd(t, T )
dy(t) +

y(t)

Pd(t, T )
dPf (t, T ) − y(t)

Pf (t, T )

P 2
d (t, T )

dPd(t, T )

+y(t)
Pf (t, T )

P 3
d (t, T )

(dPd(t, T ))2 +
1

Pd(t, T )
(dy(t)dPf (t, T ))

−Pf(t, T )

P 2
f (t, T )

(dPd(t, T )dy(t)) − y(t)

P 2
d (t, T )

dPd(t, T )dPf (t, T ). (5.13)
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After substitution of SDEs (5.7), (5.9) and (5.10) into (5.13), we arrive at the
following FX forward dynamics:

dFXT (t)

FXT (t)
= ηdBd(t, T )

(
ηdBd(t, T ) − ρy,d

√
v(t) − ρd,fηfBf (t, T )

)
dt

+
√
v(t)dWQ

y (t) − ηdBd(t, T )dWQ
d (t) + ηfBf (t, T )dWQ

f (t).

Since FXT (t) is a martingale under the T -forward domestic measure, i.e.,

Pd(t, T )ET (FXT (T )|F(t)) = Pd(t, T )FXT (t) =: Pf (t, T )y(t),

the appropriate Brownian motions under the T−forward domestic measure,
dWT

y (t), dWT
v (t), dWT

d (t) and dWT
f (t), need to be determined.

A change of measure from domestic-spot to domestic T -forward measure
requires a change of numéraire from money-savings account, Md(t), to zero-
coupon bond, Pd(t, T ). In the model we incorporate a full matrix of correlations,
which implies that all processes will change their dynamics by changing the
measure from spot to forward. Lemma 5.2.2 provides the model dynamics under
the domestic T -forward measure, QT .

Lemma 5.2.2 (The FX-HHW model dynamics under the QT measure). Under
the T -forward domestic measure, the model in (5.7) is governed by the following
dynamics:

dFXT (t)

FXT (t)
=
√
v(t)dWT

y (t) − ηdBd(t, T )dWT
d (t) + ηfBf (t, T )dWT

f (t), (5.14)

where

dv(t) =
(
κ(v̄ − v(t)) + γρv,dηdBd(t, T )

√
v(t)

)
dt+ γ

√
v(t)dWT

v (t), (5.15)

drd(t) =
(
λd(θd(t) − rd(t)) + η2dBd(t, T )

)
dt+ ηddW

T
d (t), (5.16)

drf (t) =
(
λf (θf (t) − rf (t)) − ηfρy,f

√
v(t) + ηdηfρd,fBd(t, T )

)
dt+ ηfdWT

f (t),

(5.17)

with a full matrix of correlations given in (5.8), and with Bd(t, T ), Bf (t, T ) given
by (5.6).

Proof. Since the domestic short-rate process, rd(t), is driven by
one source of uncertainty (only one Brownian motion dWQ

d (t)),
it is convenient to change the order of the state variables, from
dX(t) = [dFXT (t)/FXT (t), dv(t), drd(t), drf (t)]T to dX∗(t) =

[drd(t), drf (t), dv(t), dFXT (t)/FXT (t)]T and express the model in terms of the

independent Brownian motions dW̃Q(t) = [dW̃d(t), dW̃f (t), dW̃v(t), dW̃y(t)]T,
i.e.: 



drd
drf
dv

dFXT

FXT




= µ(X∗)dt+




ηd 0 0 0
0 ηf 0 0
0 0 γ

√
v 0

−ηdBd ηfBf 0
√
v


L




dW̃Q
d

dW̃Q
f

dW̃Q
v

dW̃Q
y


 ,
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which, equivalently, can be written as:

dX∗(t) = µ(X∗)dt+ ALdW̃Q(t), (5.18)

where µ(X∗) represents the drift for system dX∗(t) and L is the Cholesky lower-
triangular matrix of the following form:

L =









1 0 0 0
L2,1 L2,2 0 0
L3,1 L3,2 L3,3 0
L4,1 L4,2 L4,3 L4,4









def
=









1 0 0 0
ρf,d L2,2 0 0
ρv,d L3,2 L3,3 0
ρy,d L4,2 L4,3 L4,4









. (5.19)

The representation presented above seems to be favorable, since the short-rate
process, rd(t), can be considered independently of the other processes.

The matrix model representation in terms of orthogonal Brownian motions
results in the following dynamics for the domestic short-rate, rd(t), under measure
Q:

drd(t) = λd(θd(t) − rd(t))dt+ ζ1(t)dW̃Q(t),

and for the domestic ZCB:

dPd(t, T )

Pd(t, T )
= rd(t)dt+Bd(t, T )ζ1(t)dW̃Q(t),

with ζk(t) being the k’th row vector resulting from multiplying the matrices A
and L. Note, that for the 1D Hull-White short-rate processes ζ1(t) =

[
ηd, 0, 0, 0

]
.

Now, we derive the Radon-Nikodym derivative [41], ΛTQ(t),:

ΛTQ(t) =
dQT

dQ

∣∣∣
F(t)

=
Pd(t, T )Md(0)

Pd(0, T )Md(t)
. (5.20)

By calculating the Itô derivative of Equation (5.20) we get:

dΛTQ(t)

ΛTQ(t)
= Bd(t, T )ζ1(t)dW̃Q(t),

which implies that the Girsanov kernel for the transition from Q to QT is given
by Bd(t, T )ζ1(t) which is the T -bond volatility given by ηdBd(t, T ), i.e.:

ΛTQ(t) = exp

(
−1

2

∫ t

0

B2
d(s, T )ζ21 (s)ds+

∫ t

0

Bd(s, T )ζ1(s)dW̃Q(s)

)
.

So,

dW̃T (t) = −Bd(t, T )ζT1 (t)dt+ dW̃Q(t).

Since the vector ζT1 (t) is of scalar form, the Brownian motion under the T -forward
measure is given by:

dW̃Q(t) =
[
dW̃T

d (t) + ηdBd(t, T )dt, dW̃T
f (t), dW̃T

v (t), dW̃T
y (t)

]T
.
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Now, from the vector representation (5.18) we get that:

LdW̃Q =




ηdBddt+ dW̃T
d

ρd,fηdBddt+ ρd,fdW̃T
d + L2,2dW̃T

f

ρv,dηdBddt+ ρv,ddW̃
T
d + L3,2dW̃T

f + L3,3dW̃T
y

ρy,dηdBddt+ ρy,ddW̃
T
d + L4,2dW̃T

f + L4,3dW̃T
y + L4,4dW̃T

v



.

Returning to the dependent Brownian motions under the T -forward measure, gives
us:

dFXT (t)

FXT (t)
=

√
v(t)dWT

y (t) − ηdBd(t, T )dWT
d (t) + ηfBf (t, T )dWT

f (t),

dv(t) =
(
κ(v̄ − v(t)) + γρv,dηdBd(t, T )

√
v(t)

)
dt+ γ

√
v(t)dWT

v (t),

drd(t) =
(
λd(θd(t) − rd(t)) + η2dBd(t, T )

)
dt+ ηddW

T
d (t),

drf (t) =
(
λf (θf (t) − rf (t)) − ηfρy,f

√
v(t) + ηdηfρd,fBd(t, T )

)
dt+ ηfdWT

f (t),

with the full matrix of correlations given in (5.8). �

From the system in Lemma 5.2.2 we see that after moving from the domestic-
spot Q-measure to the domestic T -forward QT measure, the forward exchange
rate FXT (t) does not depend explicitly on the short-rate processes rd(t) or rf (t).
It does not contain a drift term and only depends on dWT

d (t), dWT
f (t), see (5.14).

Remark. Since the sum of three correlated, normally distributed random
variables, Q = X + Y + Z, remains normal with the mean equal to the sum
of the individual means and the variance equal to

v2Q = v2X + v2Y + v2Z + 2ρX,Y vXvY + 2ρX,ZvXvZ + 2ρY,ZvY vZ ,

we can represent the forward (5.14) as:

dFXT /FXT =
(
v + η2dB

2
d + η2fB

2
f − 2ρy,dηdBd

√
v

+2ρy,fηfBf
√
v − 2ρd,fηdηfBdBf

) 1

2 dWT
F . (5.21)

Although the representation in (5.21) reduces the number of Brownian motions in
the dynamics for the FX, one still needs to find the appropriate cross-terms, like
dWT

F (t)dWT
v (t), in order to obtain the covariance terms. For clarity we therefore

prefer to stay with the standard notation.

Remark. The dynamics of the forwards, FXT (t) in (5.14) or in (5.21), do not
depend explicitly on the interest rate processes, rd(t) and rf (t), and are completely
described by the appropriate diffusion coefficients. This suggests that the short-
rate variables will not enter the pricing PDE. Note that this is only the case for
models in which the diffusion coefficient for the interest rate does not depend on
the level of the interest rate.

In the next section we derive the corresponding pricing PDE and provide the
necessary model approximations.
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5.2.3 Approximations and the forward characteristic function

As the dynamics of the forward foreign exchange, FXT (t), under the domestic
forward measure involve only the interest rate diffusions dWT

d (t) and dWT
f (t), a

significant reduction of the pricing problem is achieved.
In order to find the forward ChF we take, as usual, the log-transform of the

forward rate FXT (t), i.e.: xT (t) := log FXT (t), for which we obtain the following
dynamics:

dxT (t) =
(
ζ(t,

√
v(t))− 1

2
v(t)

)
dt+

√
v(t)dWT

y (t)−ηdBddWT
d (t)+ηfBfdWT

f (t),

(5.22)
with the variance process, v(t), given by:

dv(t) =
(
κ(v̄ − v(t)) + γρv,dηdBd

√
v(t)

)
dt+ γ

√
v(t)dWT

v (t),

where we used the notation Bd := Bd(t, T ) and Bf := Bf (t, T ), and

ζ(t,
√
v(t)) = (ρy,dηdBd − ρy,fηfBf )

√
v(t) + ρd,fηdηfBdBf −

1

2

(
η2dB

2
d + η2fB

2
f

)
.

By applying the Feynman-Kac theorem we find the following pricing PDE:

−∂φ
T

∂t
=
(
κ(v̄ − v) + ρv,dγηd

√
vBd

) ∂φT
∂v

+

(
1

2
v − ζ(t,

√
v)

)(
∂2φT

∂(xT )2
− ∂φT

∂xT

)

+
(
ρy,vγv − ρv,dγηd

√
vBd + ρv,fγηf

√
vBf

) ∂2φT

∂xT ∂v
+

1

2
γ2v

∂2φT

∂v2
,

with Bf := Bf (t, T ) and Bd := Bd(t, T ). This PDE contains non-affine
√
v-

terms so that it is nontrivial to find its solution. In Chapter 2 two methods for
linearization of these non-affine square roots of the square-root process [25] were
proposed. The first method is to project the non-affine square-root terms on their
first moments. This is also the approach followed here 1.

The approximation of the non-affine terms in the corresponding PDE is then
done as follows. We assume:

√
v(t) ≈ E(

√
v(t)) =: α(t), (5.23)

with the expectation of the square root of v(t) determined.
Projection of the non-affine terms on their first moments allows us to derive the

corresponding forward characteristic function, φT , which is then of the following
form:

φT (u, xT (t), t, T ) = exp(A(u, τ) +B(u, τ)xT (t) + C(u, τ)v(t)),

1Since the moments of the square-root process under the T -forward measure are difficult to
determine for

√

v(t) we have set ρv,d = 0 or, in other words, the expectation is calculated under
measure Q.
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where τ = T − t, and the functions A(τ) := A(u, τ), B(τ) := B(u, τ) and C(τ) :=
C(u, τ) are given by:

B′(τ) = 0,

C′(τ) = −κC(τ) + (B2(τ) −B(τ))/2 + ρy,vγB(τ)C(τ) + γ2C2(τ)/2,

A′(τ) = κv̄C(τ) + ρv,dγηdα(τ)Bd(τ)C(τ) − ζ(τ, α(τ))
(
B2(τ) −B(τ)

)

+ (−ρv,dηdγα(τ)Bd(τ) + ρv,fγηfα(τ)Bf (τ))B(τ)C(τ),

with α(t) = E(
√
v(t)), and Bi(τ) = λ−1

i

(
e−λiτ − 1

)
for i = {d, f}. The initial

conditions are: B(0) = iu, C(0) = 0 and A(0) = 0.
With B(τ) = iu, the complex-valued function C(τ) is of the Heston-type, [54],

and its solution reads:

C(τ) =
1 − e−dτ

γ2(1 − ge−dτ )
(κ− ρy,vγiu− d) , (5.24)

with d =
√

(ρy,vγiu− κ)2 − γ2iu(iu− 1), g =
κ− γρy,viu− d
κ− γρy,viu+ d

.

The parameters κ, γ, ρy,v are given in (5.7).
Function A(τ) is given by:

A(τ) =

∫ τ

0

(
κv̄ + ρv,dγηdα(s)Bd(s) − ρv,dηdγα(s)Bd(s)iu

+ρv,fγηfα(s)Bf (s)iu
)
C(s)ds+ (u2 + iu)

∫ τ

0

ζ(s, α(s))ds,

with C(s) in (5.24). It is most convenient to solve A(τ) numerically with, for
example, Simpson’s quadrature rule. With correlations ρv,d, ρv,f equal to zero, a
closed-form expression for A(τ) would be available (see Chapter 2 for details).

We denote the approximation, by means of linearization, of the full-scale FX-
HHW model by FX-HHW1. It is clear that efficient pricing with Fourier-based
methods can be done with FX-HHW1, and not with FX-HHW.

By the projection of
√
v(t) on its first moment in (5.23) the corresponding

PDE is affine in its coefficients, and reads:

− ∂φT

∂t
= (κ(v̄ − v) + Ψ1)

∂φT

∂v
+

(
1

2
v − ζ(t, α(t))

)(
∂2φT

∂(xT )2
− ∂φT

∂xT

)

+ (ρy,vγv − Ψ2)
∂2φT

∂xT ∂v
+

1

2
γ2v

∂2φT

∂v2
, (5.25)

with: φT (u, xT (T ), T, T ) = ET
(

eiux
T (T )

∣∣F(T )
)

= eiux
T (T ), and

ζ(t, α(t)) = Ψ3 + ρd,fηdηfBd(t, T )Bf(t, T ) − 1

2

(
η2dB

2
d(t, T ) + η2fB

2
f (t, T )

)
.

The three terms, Ψ1, Ψ2, and Ψ3, in PDE (5.25) contain the function α(t):

Ψ1 := ρv,dγηdBd(t, T )α(t),

Ψ2 := (ρv,dγηdBd(t, T ) − ρv,fγηfBf (t, T ))α(t),

Ψ3 := (ρy,dηdBd(t, T ) − ρy,fηfBf (t, T ))α(t).
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When solving the pricing PDE for t → T , the terms Bd(t, T ) and Bf (t, T ) tend
to zero, and all terms that contain the approximation vanish. The case t → 0 is

furthermore trivial, since
√
v(t)

t→0−→ E(
√
v(0)).

Under the T -forward domestic FX measure, the projection of the non-affine
terms on their first moments is expected to provide high accuracy. In Section 5.2.5
we perform a numerical experiment to validate this.

5.2.4 Pricing a foreign stock in the FX-HHW model

Here, we focus our attention on pricing a foreign stock, Sf (t), in a domestic
market. With this extension we can, in principle, price equity-FX-interest rate
hybrid products.

With an equity smile/skew present in the market, we assume that Sf (t) is
given by the Heston stochastic volatility model:

dSf (t)/Sf (t) = rf (t)dt+
√
ω(t)dW Z

Sf
(t),

dω(t) = κf (ω̄ − ω(t))dt+ γf
√
ω(t)dW Z

ω (t),

drf (t) = λf (θf (t) − rf (t)))dt+ ηfdW Z
f (t),

(5.26)

where Z indicates the foreign-spot measure and the model parameters, κf , γf ,
λf , θf (t) and ηf , are as before.

Before deriving the stock dynamics in domestic currency, the model has to be
calibrated in the foreign market to plain vanilla options. This can be efficiently
done with the help of a fast pricing formula (as introduced in Chapter 2).

With the foreign short-rate process, rf (t), established in (5.7) we need to
determine the drifts for Sf (t) and its variance process, ω(t), under the domestic
spot measure. The foreign stock, Sf (t), can be expressed in domestic currency
by multiplication with the FX, y(t), and by discounting with the domestic
money-savings account, Md(t). Such a stock is a tradable asset, so the price
y(t)Sf (t)/Md(t) (with y(t) in (5.7), Sf (t) from (5.26) and the domestic money-
saving account Md(t) in (5.4)) needs to be a martingale.

By applying Itô’s lemma to y(t)Sf (t)/Md(t), we find

d
(
y(t)

Sf (t)
Md(t)

)

y(t)
Sf (t)
Md(t)

= ρy,Sf

√
v(t)

√
ω(t)dt+

√
v(t)dWQ

y (t) +
√
ω(t)dW Z

Sf
,

where Q and Z indicate the domestic-spot and foreign-spot measures, respectively.
To make the process y(t)Sf (t)/Md(t) a martingale we set:

dW Z
Sf

(t) = dWQ
Sf

− ρy,Sf

√
v(t)dt,

where v(t) is the variance process of FX defined in (5.7).
Under the change of measure, from foreign-spot to domestic-spot, Sf (t) has

the following dynamics:

dSf (t)/Sf (t) = rf (t)dt +
√
ω(t)dW Z

Sf
(t)

=
(
rf (t) − ρy,Sf

√
v(t)

√
ω(t)

)
dt+

√
ω(t)dWQ

Sf
(t). (5.27)



On FX Models with Stochastic Volatility and Correlated Interest Rates 131

The variance process is correlated with the stock and by the Cholesky decompos-
ition we find:

dω(t) = κf(ω̄ − ω(t))dt+ γf
√
ω(t)

(
ρSf ,ωdW̃ Z

Sf
(t) +

√
1 − ρ2Sf ,ω

dW̃ Z
ω (t)

)

=
(
κf (ω̄ − ω(t)) − ρSf ,ωρSf ,yγf

√
ω(t)

√
v(t)

)
dt+ γf

√
ω(t)dWQ

ω (t).(5.28)

Sf (t) in (5.27) and ω(t) in (5.28) are governed by several non-affine terms.
Assuming that the foreign stock, Sf(t), is already calibrated to market data, we
only need to simulate the foreign stock dynamics in the domestic market. Monte
Carlo simulation of the foreign stock under domestic measure can be done as, for
example, presented in [3]. The outstanding property of Andersen’s QE Monte
Carlo scheme is that the Heston model can be accurately simulated when the
Feller condition is satisfied as well as when this condition is violated.

5.2.5 Numerical experiment for the FX-HHW model

In this section we check the errors resulting from the various approximations
in the FX-HHW1 model. We use the set-up from [93], which means that the
interest rate curves are modeled by ZCBs defined by Pd(0, T ) = exp(−0.02T ) and
Pf (0, T ) = exp(−0.05T ). Furthermore,

ηd = 0.7%, ηf = 1.2%, λd = 1%, λf = 5%.

We choose 2:

κ = 0.5, γ = 0.3, v̄ = 0.1, v(0) = 0.1.

The correlation structure, defined in (5.8), is given by:








1 ρy,v ρy,d ρy,f
ρy,v 1 ρv,d ρv,f
ρy,d ρv,d 1 ρd,f
ρy,f ρv,f ρd,f 1









=









100% −40% −15% −15%
−40% 100% 30% 30%
−15% 30% 100% 25%
−15% 30% 25% 100%









. (5.29)

The initial spot FX rate (Dollar, $, per Euro, e) is set to 1.35. For the FX-HHW
model we compute a number of FX option prices with many expiries and strikes,
using two different pricing methods.

The first method is the plain Monte Carlo method, with 50.000 paths and
20Ti steps, for the full-scale FX-HHW model, without any approximations.

For the second pricing method, we have used the ChF, based on the
approximations in the FX-HHW1 model in Section 5.2.3. Efficient pricing of
plain vanilla products is then done by means of the COS method [32], based
on a Fourier cosine series expansion of the probability density function, which is
recovered by the ChF with 500 Fourier cosine terms.

We also define the experiments as in [93], with expiries given by T1, . . . , T10,
and the strikes are computed by the formula:

Kn(Ti) = FXTi(0) exp
(

0.1cn
√
Ti

)
, with (5.30)

cn = {−1.5, −1.0, −0.5, 0, 0.5, 1.0, 1.5},
2The model parameters do not satisfy the Feller condition, γ2 > 2κv̄.
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and FXTi(0) as in (5.12) with y(0) = 1.35. This formula for the strikes is
convenient, since for n = 4, strikes K4(Ti) with i = 1, . . . , 10 are equal to the
forward FX rates for time Ti. The strikes and maturities are presented in Table 5.4
in Appendix 5.A.

The option prices resulting from both models are expressed in terms of the
implied Black volatilities. The differences between the volatilities are tabulated
in Table 5.1. The approximation FX-HHW1 appears to be highly accurate for
the parameters considered. We report a maximum error of about 0.1% volatility
for at-the-money options with a maturity of 30 years and less than 0.07% for the
other options.

Table 5.1: Differences, in implied volatilities, between the FX-HHW and FX-HHW1
models. The corresponding FX option prices and the standard deviations are tabulated
in Table 5.7. Strike K4(Ti) is the at-the-money strike.

Ti K1(Ti) K2(Ti) K3(Ti) K4(Ti) K5(Ti) K6(Ti) K7(Ti)

6m -0.03 % -0.02 % 0.00 % 0.02 % 0.03 % 0.04 % 0.05 %
1y -0.01 % -0.01 % -0.01 % -0.01 % -0.01 % -0.01 % -0.01 %
3y 0.05 % 0.04 % 0.02 % -0.01 % -0.03 % -0.06 % -0.09 %
5y 0.06 % 0.04 % 0.02 % 0.00 % -0.03 % -0.07 % -0.10 %
7y 0.08 % 0.06 % 0.04 % 0.03 % 0.01 % -0.01 % -0.03 %
10y -0.02 % -0.03 % -0.03 % -0.05 % -0.07 % -0.09 % -0.12 %
15y -0.12 % -0.10 % -0.09 % -0.09 % -0.09 % -0.09 % -0.10 %
20y 0.09 % 0.09 % 0.09 % 0.08 % 0.08 % 0.07 % 0.06 %
25y -0.15 % -0.11 % -0.08 % -0.06 % -0.05 % -0.04 % -0.04 %
30y 0.10 % 0.11 % 0.12 % 0.12 % 0.12 % 0.12 % 0.12 %

In the next subsection calibration results to FX market data are presented.

Calibration to market data

We discuss the calibration of the FX-HHW model to FX market data. In the
simulation the reference market implied volatilities are taken from [93] and are
presented in Table 5.5 in Appendix 5.A. In the calibration routine the approximate
model FX-HHW1 was employed. The correlation structure is as in (5.29). In
Figure 5.1 some of the calibration results are presented.

Our experiments show that the model can be well calibrated to the market
data. For long maturities and for deep-in-the money options some discrepancy is
present. This is however typical when dealing with the Heston model (not related
to our approximation), since the skew/smile pattern in FX does not flatten for
long maturities. This was sometimes improved by adding jumps to the model
(Bates’ model). In Appendix 5.A in Table 5.6 the detailed calibration results are
tabulated.

Short-rate interest rate models can typically provide a satisfactory fit to at-the-
money interest rate products. In the next section an extension of the framework,
so that interest rate smiles and skews can be modeled as well, is presented.
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Figure 5.1: Comparison of implied volatilities from the market and the FX-HHW1
model for FX European call options for maturities of 1, 10 and 20 years. The strikes
are provided in Table 5.4 in Appendix 5.A. y(0) = 1.35.

5.3 Multi-Currency model with interest rate smile

In this section we discuss a second extension of the multi-currency model, in
which an interest rate smile is incorporated. This hybrid model models two types
of smiles, the smile for the FX rate and the smiles in the domestic and foreign
fixed income markets. We abbreviate the model by FX-HLMM. It is especially
interesting for FX products that are exposed to interest rate smiles. A description
of such FX hybrid products can be found in the handbook by Hunter [59].

A first attempt to model the FX by stochastic volatility and interest rates
driven by a market model was proposed in [105], assuming independence between
log-normal-Libor rates and FX. In our approach we define a model with non-zero
correlation between FX and interest rate processes.

As in the previous sections, the stochastic volatility FX is of the Heston-type,
which under domestic risk-neutral measure, Q, follows the following dynamics:

dy(t)/y(t) = (. . . )dt+
√
v(t)dWQ

y (t), y(0) > 0,

dv(t) = κ(v̄ − v(t))dt+ γ
√
v(t)dWQ

v (t), v(0) > 0,
(5.31)

with the parameters as in (5.7). Since we consider the model under the forward
measure the drift in the first SDE does not need to be specified (the dynamics of
domestic-forward FX y(t)Pf (t, T )/Pd(t, T ) do not contain a drift term).

In the model we assume that the domestic and foreign currencies are
independently calibrated to interest rate products available in their own markets.
For simplicity, we also assume that the tenor structure for both currencies is the
same, i.e., Td ≡ Tf = {T0, T1, . . . , TN ≡ T } and τk = Tk − Tk−1 for k = 1 . . .N.
For t < Tk−1 we define the forward Libor rates Ld,k(t) := Ld(t, Tk−1, Tk) and
Lf,k(t) := Lf (t, Tk−1, Tk) as

Ld,k(t) :=
1

τk

(
Pd(t, Tk−1)

Pd(t, Tk)
− 1

)
, Lf,k(t) :=

1

τk

(
Pf (t, Tk−1)

Pf (t, Tk)
− 1

)
. (5.32)
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For each currency we choose the DD-SV Libor Market Model from [5] for the
interest rates, under the T -forward measure generated by the numéraires Pd(t, T )
and Pf (t, T ), given by:

dLd,k(t) = vd,kφd,k(t)
√
vd(t)

(
µd(t)

√
vd(t)dt+ dW d,T

k (t)
)
,

dvd(t) = λd(vd(0) − vd(t))dt+ ηd
√
vd(t)dW

d,T
v (t),

(5.33)

and

dLf,k(t) = vf,kφf,k(t)
√
vf (t)

(
µf (t)

√
vf (t)dt+ dŴ f,T

k (t)

)
,

dvf (t) = λf (vf (0) − vf (t))dt + ηf

√
vf (t)dŴ f,T

v (t),

(5.34)

with

µd(t) = −
N∑

j=k+1

τjφd,j(t)vd,j
1 + τjLd,j(t)

ρdk,j , µf (t) = −
N∑

j=k+1

τjφf,j(t)vf,j
1 + τjLf,j(t)

ρfk,j ,

where

φd,k = βd,kLd,k(t) + (1 − βd,k)Ld,k(0),

φf,k = βf,kLf,k(t) + (1 − βf,k)Lf,k(0).

The Brownian motion, dW d,T
k (t), corresponds to the k-th domestic Libor

rate, Ld,k(t), under the T -forward domestic measure, and the Brownian motion,

dŴ f,T
k (t), relates to the k-th foreign market Libor rate, Lf,k(t), under the terminal

foreign measure T .
In the model vd,k(t) and vf,k(t) determine the level of the interest rate volatility

smile, the parameters βd,k(t) and βf,k(t) control the slope of the volatility smile,
and λd, λf determine the speed of mean reversion for the variance and influence
the speed at which the interest rate volatility smile flattens as the swaption expiry
increases [92]. Parameters ηd, ηf determine the curvature of the interest rate
smile.

The following correlation structure 3 is imposed, between

FX and its variance process, v(t): dWT
y (t)dWT

v (t) = ρy,vdt,

FX and domestic Libors, Ld,j(t): dWT
y (t)dW d,T

j (t) = ρdy,jdt,

FX and foreign Libors, Lf,j(t): dWT
y (t)dŴ f,T

j (t) = ρfy,jdt,

Libors in domestic market: dW d,T
k (t)dW d,T

j (t) = ρdk,jdt,

Libors in foreign market: dŴ f,T
k (t)dŴ f,T

j (t) = ρfk,jdt,

Libors in domestic and foreign markets: dW d,T
k (t)dŴ f,T

j (t) = ρd,fk,jdt.

(5.35)
We prescribe a zero correlation between the remaining processes, i.e., between

3As it is insightful to relate the covariance matrix with the necessary model approximations,
the correlation structure is introduced here by means of instantaneous correlation of the scalar
diffusions.
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Libors and their variance process,

dW d,T
k (t)dW d,T

v (t) = 0, dŴ f,T
k (t)dŴ f,T

v (t) = 0,

Libors and the FX variance process,

dW d,T
k (t)dWT

v (t) = 0, dŴ f,T
k (t)dWT

v (t) = 0,

all variance processes,

dWT
v (t)dW d,T

v (t) = 0, dWT
v (t)dŴ f,T

v (t) = 0, dW d,T
v (t)dŴ f,T

v (t) = 0,

FX and the Libor variance processes,

dWT
y (t)dW d,T

v (t) = 0, dWT
y (t)dŴ f,T

v (t) = 0.

The correlation structure is graphically displayed in Figure 5.2.

Figure 5.2: The correlation structure for the FX-HLMM model. Arrows indicate non-
zero correlations. SV is Stochastic Volatility.

Throughout this chapter we assume that the DD-SV model in (5.33) and (5.34)
is already in the effective parameter framework as developed in [92]. This means
that approximate time-homogeneous parameters are used instead of the time-
dependent parameters, i.e., βk(t) ≡ βk and vk(t) ≡ vk.

With this correlation structure, we derive the dynamics for the forward FX,
given by:

FXT (t) = y(t)
Pf (t, T )

Pd(t, T )
, (5.36)

(see also (5.12)) with y(t) the spot exchange rate and Pd(t, T ) and Pf (t, T ) zero-
coupon bonds. Note that the bonds are not yet specified.
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When deriving the dynamics for (5.36), we need expressions for the zero-
coupon bonds, Pd(t, T ) and Pf (t, T ). With Equation (5.32) the following
expression for the final bond can be obtained:

1

Pi(t, T )
=

1

Pi(t, Tm(t))

N∏

j=m(t)+1

(1 + τjLi,j(t)) , for i = {d, f}, (5.37)

with T = TN and m(t) = min(k : t ≤ Tk) (empty products in (5.37) are defined to
be equal to 1). The bond Pi(t, TN ) in (5.37) is fully determined by the Libor rates
Li,k(t), k = 1, . . . , N and the bond Pi(t, Tm(t)). Whereas the Libors Li,k(t) are
defined by system (5.33) and (5.34), the bond Pi(t, Tm(t)) is not yet well-defined
in the current framework.

To define continuous time dynamics for a zero-coupon bond. We consider here
the linear interpolation scheme, proposed in [98], which reads:

1

Pi(t, Tm(t))
= 1 + (Tm(t) − t)Li,m(t)(Tm(t)−1), for Tm(t)−1 < t < Tm(t). (5.38)

As it was shown in Chapter 4 (in the case of the equity hybrid model), this
basic interpolation technique was very satisfactory within the calibration. By
combining (5.38) with (5.37), we find for the domestic and foreign bonds:

1

Pd(t, T )
=

(
1 + (Tm(t) − t)Ld,m(t)(Tm(t)−1)

) N∏

j=m(t)+1

(1 + τjLd(t, Tj−1, Tj)) ,

1

Pf (t, T )
=

(
1 + (Tm(t) − t)Lf,m(t)(Tm(t)−1)

) N∏

j=m(t)+1

(1 + τjLf (t, Tj−1, Tj)) .

When deriving the dynamics for FXT (t) in (5.36) we will not encounter any dt -
terms (as FXT (t) has to be a martingale under the numéraire Pd(t, T )).

For each zero-coupon bond, Pd(t, T ) or Pf (t, T ), the dynamics are determined
under the appropriate T -forward measures (for Pd(t, T ) the domestic T -forward
measure, and for Pf (t, T ) the foreign T -forward measure). The dynamics for the
zero-coupon bonds, driven by the Libor dynamics in (5.33) and (5.34), are given
by:

dPd(t, T )

Pd(t, T )
= (. . . )dt−

√
vd(t)

N∑

j=m(t)+1

τjvd,jφd,j(t)

1 + τjLd,j(t)
dW d,T

j (t),

dPf (t, T )

Pf (t, T )
= (. . . )dt−

√
vf (t)

N∑

j=m(t)+1

τjvf,jφf,j(t)

1 + τjLf,j(t)
dŴ f,T

j (t),

and the coefficients were defined in (5.33) and (5.34).
By changing the numéraire from Pf (t, T ) to Pd(t, T ) for the foreign bond,

only the drift terms will change. Since FXT (t) in (5.36) is a martingale under the
Pd(t, T ) measure, it is not necessary to determine the appropriate drift correction.
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By taking Equation (5.13) for the general dynamics of (5.36) and neglecting
all the dt-terms we get

dFXT (t)

FXT (t)
=

√
v(t)dWT

y (t) +
√
vd(t)

N∑

j=m(t)+1

τjvd,jφd,j(t)

1 + τjLd,j(t)
dW d,T

j (t)

−
√
vf (t)

N∑

j=m(t)+1

τjvf,jφf,j(t)

1 + τjLf,j(t)
dW f,T

j (t). (5.39)

Note that the hat in Ŵ , disappeared from the Brownian motion dW f,T
j (t) in (5.39)

which is an indication for the change of measure from the foreign to the domestic
measure for the foreign Libors.

Since the stochastic volatility process, v(t), for FX is independent of the
domestic and foreign Libors, Ld,k(t) and Lf,k(t), the dynamics under the Pd(t, T )-
measure do not change 4 and are given by:

dv(t) = κ(v̄ − v(t))dt + γ
√
v(t)dWT

v (t). (5.40)

The model given in (5.39), with the stochastic variance in (5.40) and the
correlations between the main underlying processes, is not affine. In the next
section we discuss the linearization.

5.3.1 Linearization and forward characteristic function

The model in (5.39) is not of the affine form, as it contains terms like φi,j(t)/(1 +
τi,jLi,j(t)) with φi,j = βi,jLi,j(t) + (1 − βi,j)Li,j(0) for i = {d, f}. In order
to derive a characteristic function, we freeze the Libor rates, which is standard
practice (see for example [44, 58, 61]), i.e.:

Ld,j(t) ≈ Ld,j(0) ⇒ φd,j ≡ Ld,j(0),

Lf,j(t) ≈ Lf,j(0) ⇒ φf,j ≡ Lf,j(0). (5.41)

This approximation gives the following FXT (t)-dynamics:

dFXT (t)

FXT (t)
≈
√
v(t)dWT

y (t) +
√
vd(t)

∑

j∈A

ψd,jdW
d,T
j (t) −

√
vf (t)

∑

j∈A

ψf,jdW
f,T
j (t),

dv(t) = κ(v̄ − v(t))dt + γ
√
v(t)dWT

v (t),

dvi(t) = λi(vi(0) − vi(t))dt + ηi
√
vi(t)dW

i,T
v (t),

with i = {d, f}, A = {m(t) + 1, . . .N}, the correlations are given in (5.35) and

ψd,j :=
τjvd,jLd,j(0)

1 + τjLd,j(0)
, ψf,j :=

τjvf,jLf,j(0)

1 + τjLf,j(0)
. (5.42)

4In Chapter 4 the proof for this statement was given when a single yield curve is considered.
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We derive the dynamics for the logarithmic transformation of FXT (t), xT (t) =
log FXT (t), for which we need to calculate the square of the diffusion coefficients 5.

With the notation,

a :=
√
v(t)dWT

y (t), b :=
√
vd(t)

∑

j∈A

ψd,jdW
d,T
j (t), c :=

√
vf (t)

∑

j∈A

ψf,jdW
f,T
j (t),

(5.43)
we find, for the square diffusion coefficient (a+b−c)2 = a2+b2+c2+2ab−2ac−2bc.
So, the dynamics for the log-forward, xT (t) = log FXT (t), can be expressed as:

dxT (t) ≈ −1

2
(a+ b − c)2 +

√
v(t)dWT

y (t) +
√
vd(t)

∑

A

ψd,jdW
d,T
j (t)

−
√
vf (t)

∑

A

ψf,jdW
f,T
j (t), (5.44)

with the coefficients a, b and c given in (5.43). Since

( N∑

j=1

xj
)2

=

N∑

j=1

x2j +
∑

i,j=1,...,N
i6=j

xixj , for N > 0,

we find:

a2 = v(t)dt,

b2 = vd(t)

(∑

j∈A

ψ2
d,j +

∑

i,j∈A
i6=j

ψd,iψd,jρ
d
i,j

)
dt =: vd(t)Ad(t)dt, (5.45)

c2 = vf (t)

(∑

j∈A

ψ2
f,j +

∑

i,j∈A
i6=j

ψf,iψf,jρ
f
i,j

)
dt, =: vf (t)Af (t)dt, (5.46)

ab =
√
v(t)

√
vd(t)

∑

j∈A

ψd,jρ
d
j,xdt,

ac =
√
v(t)

√
vf (t)

∑

j∈A

ψf,jρ
f
j,xdt,

bc =
√
vd(t)

√
vf (t)

∑

j∈A

ψd,j
∑

k∈A

ψf,kρ
d,f
j,k dt,

with ρdj,x, ρfj,x the correlation between the FX and j-th domestic and foreign
Libor, respectively. The correlation between the k-th domestic and j-th foreign
Libor is ρd,fk,j .

5As in the standard Black-Scholes analysis for dS(t) = σ1S(t)dW (t), the log-transform gives
d logS(t) = − 1

2
σ2

1
dt+ σ1dW (t).
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By setting f
(
t,
√
v(t),

√
vd(t),

√
vf (t)

)
:= (2ab−2ac−2bc)/dt, we can express

the dynamics for dxT (t) in (5.44) by:

dxT (t) ≈ −1

2

(
v(t) +Ad(t)vd(t) +Af (t)vf (t) + f

(
t,
√
v(t),

√
vd(t),

√
vf (t)

))
dt

+
√
v(t)dWT

y (t) +
√
vd(t)

∑
A ψd,jdW

d,T
j (t) −

√
vf (t)

∑
A ψf,jdW

f,T
j (t).

The coefficients ψd,j, ψf,j , Ad andAf in (5.42), (5.45), and (5.46) are deterministic
and piecewise constant.

In order to make the model affine, we linearize the non-affine terms in the
drift in f(t,

√
v(t),

√
vd(t),

√
vf (t)) by a projection on the first moments, i.e.,

f
(
t,
√
v(t),

√
vd(t),

√
vf (t)

)
≈ f

(
t,E(

√
v(t)),E(

√
vd(t)),E(

√
vf (t))

)
=: f(t).

(5.47)
The variance processes v(t), vd(t) and vf (t) are independent CIR-type pro-
cesses [25], so the expectation of their products equals the product of the
expectations. Function f(t) can be determined with the help of the formula
in Lemma 2.3.1 in Chapter 2.

The approximation in (5.47) linearizes all non-affine terms in the corresponding
PDE. As before, the forward characteristic function, φT := φT (u, xT (t), t, T ), is
defined as the solution of the following backward PDE:

0 =
∂φT

∂t
+

1

2
(v +Ad(t)vd +Af (t)vf + f(t))

(
∂2φT

∂x2
− ∂φT

∂x

)

+λd(vd(0) − vd)
∂φT

∂vd
+ λf (vf (0) − vf )

∂φT

∂vf
+ κ(v̄ − v)

∂φT

∂v

+
1

2
η2dvd

∂2φT

∂v2d
+

1

2
η2fvf

∂2φT

∂v2f
+

1

2
γ2v

∂2φT

∂v2
+ ρy,vγv

∂2φT

∂x∂v
, (5.48)

with the final condition φT (u, xT (T ), T, T ) = eiux
T (T ). Since all coefficients in this

PDE are linear, the solution is of the following form:

φT (u, xT (t), t, T ) = exp
(
A(u, τ) +B(u, τ)xT (t) + C(u, τ)v(t)

+Dd(u, τ)vd(t) +Df(u, τ)vf (t)
)
, (5.49)

with τ := T − t. Substitution of (5.49) in (5.48) gives us the following system
of ODEs for the functions A(τ) := A(u, τ), B(τ) := B(u, τ), C(τ) := C(u, τ),
Dd(τ) := Dd(u, τ) and Df(τ) := Df (u, τ):

A′(τ) = f(t)(B2(τ) −B(τ))/2 + λdvd(0)D1(τ) + λfvf (0)D2(τ) + κv̄C(τ),

B′(τ) = 0,

C′(τ) = (B2(τ) −B(τ))/2 + (ρy,vγB(τ) − κ)C(τ) + γ2C2(τ)/2,

D′
d(τ) = Ad(t)(B

2(τ) −B(τ))/2 − λdDd(τ) + η2dD
2
d(τ)/2,

D′
f(τ) = Af (t)(B2(τ) −B(τ))/2 − λfDf (τ) + η2fD

2
f (τ)/2,
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with initial conditions A(0) = 0, B(0) = iu, C(0) = 0, Dd(0) = 0, Df(0) = 0 with
Ad(t) and Af (t) from (5.45), (5.46), respectively, and f(t) as in (5.47).

With B(τ) = iu, the solution for C(τ) is analogous to the solution of the ODE
for the FX-HHW1 model in Equation (5.24). As the remaining ODEs contain
the piecewise constant functions Ad(t), Af (t) the solution must be determined
iteratively, like for the pure Heston model with piecewise constant parameters
in [4]. For a given grid 0 = τ0 < τ1 < · · · < τN = τ , the functions Dd(u, τ),
Df(u, τ) and A(u, τ) can be expressed as:

Dd(u, τj) = Dd(u, τj−1) + χd(u, τj),

Df (u, τj) = Df (u, τj−1) + χf (u, τj),

for j = 1, . . . , N , and

A(u, τj) = A(u, τj−1) + χA(u, τj) − 1

2
(u2 + u)

∫ τj

τj−1

f(s)ds,

with f(s) in (5.47) and analytically known functions χk(u, τj), for k = {d, f} and
χA(u, τj):

χk(u, τj) :=
(
λk − δk,j − η2kDk(u, τj−1)

)
(1 − e−δk,jsj )

/
(η2k(1 − ℓk,je

−δk,jsj )),

and

χA(u, τj) =
κv̄

γ2
(
(κ− ρy,vγiu− dj)sj − 2 log

(
(1 − gje

−djsj )
/

(1 − gj)
))

+vd(0)
λd
η2d

(
(λd − δd,j)sj − 2 log

(
(1 − ℓd,je

−δd,jsj )
/

(1 − ℓd,j)
))

+vf (0)
λf
η2f

(
(λf − δf,j)sj − 2 log

(
(1 − ℓf,je

−δf,jsj )
/

(1 − ℓf,j)
))
,

where

dj =
√

(ρy,vγiu− κ)2 + γ2(iu+ u2), gj =
(κ− ρy,vγiu) − dj − γ2C(u, τj−1)

(κ− ρy,vγiu) + dj − γ2C(u, τj−1)
,

δk,j =
√
λ2k + η2kAk(t)(u2 + iu), ℓk,j =

λk − δk,j − η2kDk(u, τj−1)

λk + δk,j − η2kDk(u, τj−1)
,

with sj = τj − τj−1, j = 1, . . . , N , Ad(t) and Af (t) are from (5.45) and (5.46).
The resulting approximation of the full-scale FX-HLMM model is called FX-

LMM1 here.

5.3.2 Foreign stock in the FX-HLMM framework

We also consider a foreign stock, Sf (t), driven by the Heston stochastic volatility
model, with the interest rates driven by the market model. The stochastic
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processes of the stock model are assumed to be of the same form as the FX
(with one, foreign, interest rate curve) with the dynamics, under the forward
foreign measure, given by:

dSTf (t)

STf (t)
=

√
ω(t)dW f,T

Sf
(t) +

√
vf (t)

N∑

j=m(t)+1

τjvf,jφf,j(t)

1 + τjLf,j(t)
dW f,T

j (t),

dω(t) = κf (ω̄ − ω(t))dt+ γf
√
ω(t)dW f,T

ω (t). (5.50)

Variance process, ω(t), is correlated with forward stock STf (t).

We move to the domestic-forward measure. The forward stock, STf (t), and

forward foreign exchange rate, FXT (t), are defined by

STf (t) =
Sf (t)

Pf (t, T )
, FXT (t) = y(t)

Pf (t, T )

Pd(t, T )
.

The quantity

STf (t)FXT (t) =
Sf (t)

Pf (t, T )
y(t)

Pf (t, T )

Pd(t, T )
=

Sf (t)

Pd(t, T )
y(t), (5.51)

is therefore a tradable asset. So, foreign stock exchanged by a foreign exchange
rate and denominated in the domestic zero-coupon bond is a tradable quantity,
which implies that STf (t)FXT (t) is a martingale. By Itô’s lemma, one finds:

d
(
STf (t)FXT (t)

)

STf (t)FXT (t)
=

dFXT (t)

FXT (t)
+

dSTf (t)

STf (t)
+

(
dFXT (t)

FXT (t)

)(
dSTf (t)

STf (t)

)
. (5.52)

The two first terms at the RHS of (5.52) do not contribute to the drift. The last
term contains all dt-terms, that, by a change of measure, will enter the drift of
the variance process dω(t) in (5.50).

5.3.3 Numerical experiments with the FX-HLMM model

We here focus on the FX-HLMM model covered in Section 5.3 and consider the
errors generated by the various approximations that led to the model FX-HLMM1
by some numerical experiments.

We have performed basically two linearization steps to define FX-HLMM1:
We have frozen the Libors at their initial values and projected the non-affine
covariance terms on a deterministic function. We check, by a numerical
experiment, the size of the errors of these approximations.

We have chosen the following interest rate curves Pd(0, T ) =
exp(−0.02T ), Pf (0, T ) = exp(−0.05T ), and, as before, for the FX stochastic
volatility model we set:

κ = 0.5, γ = 0.3, v̄ = 0.1, v(0) = 0.1.
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In the simulation we have chosen the following parameters for the domestic and
foreign markets:

βd,k = 95%, vd,k = 15%, λd = 100%, ηd = 10%,

βf,k = 50%, vf,k = 25%, λf = 70%, ηf = 20%.

In the correlation matrix a number of correlations need to be specified. For the
correlations between the Libor rates in each market, we prescribe large positive
values, as frequently observed in fixed income markets (see for example [19]),

ρdi,j = 90%, ρfi,j = 70%, for i, j = 1, . . . , N (i 6= j). In order to generate skew

for FX, we prescribe a negative correlation between FXT (t) and its stochastic
volatility process, v(t), i.e., ρy,v = −40%. The correlation between the FX and
the domestic Libors is set as ρdy,k = −15%, for k = 1, . . . , N , and the correlation

between FX and the foreign Libors is ρfy,k = −15%. The correlation between

the domestic and foreign Libors is ρd,fi,j = 25% for i, j = 1, . . . , N (i 6= j). The
following block correlation matrix results:

C =




Cd Cd,f Cy,d

CT
d,f Cf Cy,f

CT
y,d CT

y,f 1


 ,

with the domestic Libor correlations given by

Cd =




1 ρd
1,2 . . . ρd

1,N

ρd
1,2 1 . . . ρd

2,N

..

.
..
.

. . .
..
.

ρd
1,N

ρd
2,N

. . . 1


 =




1 90% . . . 90%
90% 1 . . . 90%
.
..

.

..
. . .

.

..
90% 90% . . . 1




N×N

,

the foreign Libors correlations given by:

Cf =




1 ρf
1,2 . . . ρf

1,N

ρf
1,2 1 . . . ρf

2,N

...
...

. . .
...

ρf
1,N

ρf
2,N

. . . 1


 =




1 70% . . . 70%
70% 1 . . . 70%
...

...
. . .

...
70% 70% . . . 1




N×N

,

the correlation between Libors from the domestic and foreign markets given by:

Cdf =




1 ρd,f
1,2 . . . ρd,f

1,N

ρd,f
1,2 1 . . . ρd,f

2,N

.

..
.
..

. . .
.
..

ρd,f
1,N

ρd,f
2,N

. . . 1


 =




1 25% . . . 25%
25% 1 . . . 25%
...

...
. . .

...
25% 25% . . . 1




N×N

,

and the vectors Cy,d and Cy,f , as used in [93], are given by:

Cy,d =




ρdy,1
ρdy,2
...

ρd
y,N


 =




−15%
−15%

..

.
−15%




N×1

,Cy,f =




ρfy,1
ρfy,2
...

ρf
y,N


 =




−15%
−15%

..

.
−15%




N×1

.
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Since in both markets the Libor rates are assumed to be independent of their
variance processes, we can neglect these correlations here.

Now we find the prices of plain vanilla options on FX in (5.36). The simulation
is performed in the same spirit as in Section 5.2.5 where the FX-HHW model
was considered. In Table 5.2 we present the differences, in terms of the implied
volatilities between the models FX-HLMM and FX-HLMM1. While the prices for
the FX-HLMM were obtained by Monte Carlo simulation (20.000 paths and 20
intermediate points between the dates Ti−1 and Ti for i = 1, . . . , N), the prices
for FX-HLMM1 were obtained by the Fourier-based COS method [32] with 500
cosine series terms.

Table 5.2: Differences, in implied Black volatilities, between the FX-HLMM and FX-
LMM1 models. The corresponding strikes K1(Ti), . . . ,K7(Ti) are tabulated in Table 5.4.
The prices and associated standard deviations are presented in Table 5.8.

Ti K1(Ti) K2(Ti) K3(Ti) K4(Ti) K5(Ti) K6(Ti) K7(Ti)

2y 0.19 % 0.14 % 0.09 % 0.05 % 0.00 % -0.05 % -0.10 %
3y 0.29 % 0.25 % 0.21 % 0.16 % 0.11 % 0.06 % 0.02 %
5y 0.32 % 0.28 % 0.23 % 0.17 % 0.10 % 0.05 % 0.00 %
7y 0.30 % 0.28 % 0.25 % 0.21 % 0.18 % 0.14 % 0.10 %
10y 0.39 % 0.32 % 0.25 % 0.18 % 0.12 % 0.05 % -0.03 %
15y 0.38 % 0.29 % 0.21 % 0.13 % 0.05 % -0.04 % -0.14 %
20y 0.02 % -0.09 % -0.18 % -0.27 % -0.34 % -0.40 % -0.44 %
25y 0.08 % 0.04 % -0.14 % -0.25 % -0.34 % -0.40 % -0.46 %
30y 0.11 % 0.07 % 0.00 % -0.09 % -0.18 % -0.21 % -0.24 %

The FX-HLMM1 model performs very well, as the maximum difference in
terms of implied volatilities is between 0.2% − 0.5%.

Sensitivity to the interest rate skew

Approximation FX-HLMM1 was based on freezing the Libor rates. By freezing
the Libors, i.e.: Ld,k(t) ≡ Ld,k(0) and Lf,k(t) ≡ Lf,k(0) we have

φd,k(t) = βd,kLd,k(t) + (1 − βd,k)Ld,k(0) = Ld,k(0), (5.53)

φf,k(t) = βf,kLf,k(t) + (1 − βf,k)Lf,k(0) = Lf,k(0). (5.54)

In the DD-SV models for the Libor rates Ld,k(t) and Lf,k(t) for any k,
the parameters βd,k, βf,k control the slope of the interest rate volatility smiles.
Freezing the Libors to Ld,k(0) and Lf,k(0) is equivalent to setting βd,k = 0 and
βf,k = 0 in (5.53) and (5.54) in the approximation FX-HLMM1.

By a Monte Carlo simulation, we obtain the FX implied volatilities from the
full-scale FX-HLMM model for different values of β and by comparing them to
those from FX-HLMM1 with β = 0 we check the influence of the parameters βd,k
and βf,k on the FX. In Table 5.3 the implied volatilities for the FX European
call options for FX-HLMM and FX-HLMM1 are presented. The experiments are
performed for different combinations of the interest rate skew parameters, βd and
βf .
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Table 5.3: Implied volatilities of the FX options from the FX-HLMM and FX-HLMM1
models, T = 10 and parameters were as in Section 5.3.3. The numbers in parentheses
correspond to the standard deviations (the experiment was performed 20 times with 20T
time steps).

FX-HLMM (Monte Carlo simulation) FX-HLMM1 (Fourier)
strike βf = 0.5 βd = 0.5 βd = 0
(5.30) βd = 0 βd = 0.5 βd = 1 βf = 0 βf = 1 βf = 0

0.6224 31.98 % 31.91 % 31.98 % 31.99 % 31.96 % 31.56 %
(0.20) (0.17) (0.17) (0.15) (0.18)

0.7290 31.49 % 31.43 % 31.48 % 31.51 % 31.46 % 31.12 %
(0.21) (0.16) (0.19) (0.15) (0.18)

0.8538 31.02 % 30.96 % 31.01 % 31.04 % 30.97 % 30.69 %
(0.21) (0.17) (0.20) (0.15) (0.18)

1.0001 30.58 % 30.53 % 30.56 % 30.61 % 30.52 % 30.30 %
(0.21) (0.17) (0.22) (0.15) (0.17)

1.1714 30.16 % 30.11 % 30.15 % 30.20 % 30.08 % 29.93 %
(0.20) (0.17) (0.24) (0.15) (0.16)

1.3721 29.77 % 29.73 % 29.77 % 29.82 % 29.68 % 29.60 %
(0.22) (0.16) (0.26) (0.16) (0.17)

1.6071 29.41 % 29.38 % 29.43 % 29.48 % 29.31 % 29.30 %
(0.24) (0.17) (0.28) (0.17) (0.18)

The experiment indicates that there is only a small impact of the different
βd,k− and βf,k−values on the FX implied volatilities, implying that the approx-
imate model, FX-HLMM1 with βd,k = βf,k = 0, is useful for the interest rate
modelling, for the parameters studied. With βd,k 6= 0 and βf,k 6= 0 the implied
volatilities obtained by the FX-HLMM model appear to be somewhat higher than
those obtained by FX-HLMM1, a difference of approximately 0.1%−0.15%, which
is considered highly satisfactory.

5.4 Conclusion

In this chapter we have presented two FX models with stochastic volatility and
correlated stochastic interest rates. Both FX models were based on the Heston
FX model and differ with respect to the interest rate processes.

In the first model we considered a model in which the domestic and foreign
interest rates were driven by single factor Hull-White short-rate processes. This
model enables pricing of FX-interest rate hybrid products that are not exposed
to the smile in the fixed income markets.

For hybrid products sensitive to the interest rate skew a second model was
presented in which the interest rates were driven by the stochastic volatility Libor
Market Model.

For both hybrid models we have developed approximate models for the pricing
of European options on the FX. These pricing formulas form the basis for model
calibration strategies.

The approximate models are based on the linearization of the non-affine terms
in the corresponding pricing PDE, in a very similar way as presented in Chapter 4
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for equity-interest rate options. The approximate models perform very well in the
world of foreign exchange, for the experiments considered.

The solution to these models can also be used to obtain an initial guess when
the full-scale models are used.

5.A Appendix: Tables

In this appendix we present tables with details for the numerical experiments.

Ti K1(Ti) K2(Ti) K3(Ti) K4(Ti) K5(Ti) K6(Ti) K7(Ti)

6m 1.1961 1.2391 1.2837 1.3299 1.3778 1.4273 1.4787
1y 1.1276 1.1854 1.2462 1.3101 1.3773 1.4479 1.5221
3y 0.9515 1.0376 1.1315 1.2338 1.3454 1.4671 1.5999
5y 0.8309 0.9291 1.0390 1.1620 1.2994 1.4531 1.6250
7y 0.7358 0.8399 0.9587 1.0943 1.2491 1.4257 1.6274
10y 0.6224 0.7290 0.8538 1.0001 1.1714 1.3721 1.6071
15y 0.4815 0.5844 0.7093 0.8608 1.0447 1.2680 1.5389
20y 0.3788 0.4737 0.5924 0.7409 0.9265 1.1587 1.4491
30y 0.2414 0.3174 0.4174 0.5489 0.7218 0.9492 1.2482

Table 5.4: Expiries and strikes of FX options used in the FX-HHW model. Strikes
Kn(Ti) were calculated as given in (5.30) with y(0) = 1.35.

Ti K1(Ti) K2(Ti) K3(Ti) K4(Ti) K5(Ti) K6(Ti) K7(Ti)

6m 11.41 % 10.49 % 9.66 % 9.02 % 8.72 % 8.66 % 8.68 %
1y 12.23 % 10.98 % 9.82 % 8.95 % 8.59 % 8.59 % 8.65 %
3y 12.94 % 11.35 % 9.89 % 8.78 % 8.34 % 8.36 % 8.46 %
5y 13.44 % 11.84 % 10.38 % 9.27 % 8.76 % 8.71 % 8.83 %
7y 14.29 % 12.68 % 11.23 % 10.12 % 9.52 % 9.37 % 9.43 %
10y 16.43 % 14.79 % 13.34 % 12.18 % 11.43 % 11.07 % 10.99 %
15y 20.93 % 19.13 % 17.56 % 16.27 % 15.29 % 14.65 % 14.29 %
20y 22.96 % 21.19 % 19.68 % 18.44 % 17.50 % 16.84 % 16.46 %
30y 25.09 % 23.48 % 22.17 % 21.13 % 20.35 % 19.81 % 19.48 %

Table 5.5: Market implied Black volatilities for FX options as given in [93]. The strikes
Kn(Ti) were tabulated in Table 5.4.

Ti K1(Ti) K2(Ti) K3(Ti) K4(Ti) K5(Ti) K6(Ti) K7(Ti)

6m 0.12 % -0.12 % -0.25 % -0.23 % -0.01 % 0.20 % 0.22 %
1y 0.13 % -0.08 % -0.18 % -0.09 % 0.14 % 0.16 % -0.14 %
3y 0.16 % -0.07 % -0.17 % -0.08 % 0.18 % 0.22 % -0.14 %
5y 0.11 % -0.06 % -0.12 % -0.07 % 0.10 % 0.13 % -0.14 %
7y 0.07 % -0.03 % -0.06 % -0.03 % 0.06 % 0.10 % -0.08 %
10y 0.04 % -0.01 % -0.01 % -0.02 % 0.02 % 0.05 % -0.02 %
15y 0.11 % -0.05 % -0.09 % -0.04 % 0.03 % 0.09 % -0.05 %
20y 0.94 % 0.39 % 0.02 % -0.19 % -0.24 % -0.16 % 0.02 %
30y 1.65 % 0.70 % 0.00 % -0.48 % -0.74 % -0.82 % -0.74 %

Table 5.6: The calibration results for the FX-HHW model, in terms of the differences
between the market (given in Table 5.5) and FX-HHW model implied volatilities. Strikes
Kn(Ti) are given in Table 5.4.
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Ti method K1(Ti) K2(Ti) K3(Ti) K4(Ti) K5(Ti) K6(Ti) K7(Ti)

6m MC 0.1907 0.1636 0.1382 0.1148 0.0935 0.0748 0.0585
std dev 0.0004 0.0004 0.0005 0.0004 0.0004 0.0004 0.0004
COS 0.1908 0.1637 0.1382 0.1147 0.0934 0.0746 0.0583

1y MC 0.2566 0.2209 0.1870 0.1553 0.1264 0.1008 0.0785
std dev 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007
COS 0.2567 0.2210 0.1870 0.1554 0.1265 0.1008 0.0786

3y MC 0.3768 0.3281 0.2805 0.2349 0.1923 0.1538 0.1200
std dev 0.0014 0.0015 0.0015 0.0015 0.0015 0.0015 0.0014
COS 0.3765 0.3279 0.2804 0.2349 0.1926 0.1543 0.1207

5y MC 0.4216 0.3709 0.3205 0.2713 0.2246 0.1816 0.1432
std dev 0.0021 0.0021 0.0021 0.0020 0.0020 0.0019 0.0018
COS 0.4212 0.3706 0.3203 0.2713 0.2249 0.1822 0.1441

10y MC 0.4310 0.3871 0.3420 0.2967 0.2521 0.2096 0.1702
std dev 0.0033 0.0033 0.0033 0.0033 0.0033 0.0031 0.0030
COS 0.4311 0.3873 0.3423 0.2971 0.2528 0.2106 0.1714

20y MC 0.3362 0.3109 0.2838 0.2553 0.2260 0.1966 0.1677
std dev 0.0037 0.0037 0.0037 0.0037 0.0037 0.0036 0.0036
COS 0.3358 0.3104 0.2833 0.2548 0.2254 0.1960 0.1672

30y MC 0.2322 0.2191 0.2046 0.1888 0.1720 0.1545 0.1367
std dev 0.0050 0.0050 0.0050 0.0050 0.0049 0.0048 0.0048
COS 0.2319 0.2188 0.2042 0.1883 0.1714 0.1539 0.1359

Table 5.7: Average FX call option prices obtained by the FX-HHW model with 20
Monte Carlo simulations, 50.000 paths and 20 × Ti steps; MC stands for Monte Carlo
and COS for Fourier Cosine expansion technique ([32]) for the FX-HHW1 model with
500 expansion terms. The strikes Kn(Ti) are tabulated in Table 5.4.

Ti method K1(Ti) K2(Ti) K3(Ti) K4(Ti) K5(Ti) K6(Ti) K7(Ti)

2y MC 0.3336 0.2889 0.2456 0.2046 0.1667 0.1327 0.1030
std dev 0.0008 0.0009 0.0010 0.0010 0.0011 0.0011 0.0012
COS 0.3326 0.2880 0.2450 0.2043 0.1667 0.1330 0.1037

3y MC 0.3786 0.3299 0.2823 0.2366 0.1939 0.1553 0.1213
std dev 0.0006 0.0007 0.0008 0.0009 0.0011 0.0012 0.0013
COS 0.3768 0.3282 0.2808 0.2354 0.1931 0.1548 0.1212

5y MC 0.4243 0.3738 0.3234 0.2743 0.2274 0.1843 0.1457
std dev 0.0012 0.0013 0.0014 0.0015 0.0016 0.0016 0.0016
COS 0.4222 0.3717 0.3215 0.2727 0.2265 0.1838 0.1457

10y MC 0.4363 0.3928 0.3482 0.3031 0.2587 0.2162 0.1764
std dev 0.0012 0.0016 0.0019 0.0023 0.0026 0.0027 0.0028
COS 0.4338 0.3905 0.3461 0.3014 0.2576 0.2157 0.1767

20y MC 0.3417 0.3171 0.2907 0.2629 0.2342 0.2052 0.1768
std dev 0.0010 0.0013 0.0015 0.0018 0.0021 0.0025 0.0030
COS 0.3416 0.3176 0.2918 0.2647 0.2367 0.2085 0.1806

30y MC 0.2396 0.2281 0.2152 0.2011 0.1858 0.1699 0.1534
std dev 0.0012 0.0015 0.0018 0.0021 0.0024 0.0029 0.0035
COS 0.2393 0.2279 0.2152 0.2014 0.1866 0.1710 0.1548

Table 5.8: Average FX call option prices obtained by the FX-HLMM model with 20
Monte Carlo simulations, 50.000 paths and 20 × Ti steps; MC stands for Monte Carlo
and COS for the Fourier Cosine expansion technique described in Chapter 1 for the FX-
HLMM1 model with 500 expansion terms. Values of the strikes Kn(Ti) are tabulated in
Table 5.4.



CHAPTER 6

Conclusions and Outlook

Bud Fox: How much is enough?
Gordon Gekko: It’s not a question of enough,
pal. It’s a zero sum game, somebody wins,
somebody loses. Money itself isn’t lost or made,
it’s simply transferred from one perception to
another.

Gordon Gekko (“Wall Street”)

6.1 Conclusions

In this thesis we have presented novel approaches for modelling long-term hybrid
derivatives involving equity, foreign exchange, and interest rates asset classes.
No restrictions regarding the choice of correlation structure between the different
Wiener processes appearing had to be made.

We have defined hybrid models that belong to the class of affine diffusion
models and we have shown that the Schöbel-Zhu-Hull-White model fits in this
category. Due to the resulting semi-closed form of the Schöbel-Zhu-Hull-White
characteristic function, we were able to calibrate the model in an efficient way.

We have also investigated models with more advanced volatility structure,
like the Heston-Hull-White and the Heston-Cox-Ingersoll-Ross hybrid models.
By approximations of the non-affine terms in the corresponding instantaneous
covariance matrix, we placed the approximate hybrid models in the framework of
affine diffusion processes. For those models we have determined the characteristic
functions. The approximations in the models have been validated by comparing
the obtained implied volatilities to those of the full-scale hybrid models.

For the affine Heston-Gaussian multi-factor model we have discussed an
efficient Monte Carlo simulation scheme and a way to calculate the Greeks of
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plain vanilla options. We have also shown that the model provides option prices
similar to the (non-affine) Heston-Gaussian multi-factor model and superior to
Schöbel-Zhu variants, if the Feller condition is violated.

Moreover, we have proposed an equity-interest rate hybrid model with
stochastic volatility for stock and for the interest rates modelled by the Libor
Market Models. By changing the measure from the risk-neutral to the forward
measure, associated with the zero-coupon bond as the numéraire, the dimension
of the approximating characteristic function has been significantly reduced. This,
combined with freezing the Libor rates and appropriate linearizations of the non-
affine terms arising in the corresponding instantaneous covariance matrix, enabled
us to derive a closed-form iterative forward characteristic function. By this, the
approximate hybrid model can be used for calibration.

The main advantage of the latter model, the Heston-Libor Market Model,
developed lies in its ability to price hybrid products that are exposed to the
interest rate smile accurately and efficiently.

Finally, we have presented two foreign exchange models with stochastic
volatility and correlated stochastic interest rates. Both cross-currency models
were based on the Heston model and differ with respect to the interest rate
processes. In the first model we considered the domestic and foreign interest rates
to be driven by single factor short-rate processes. This model enabled pricing of
Foreign Exchange-Interest Rate hybrid products that were not exposed to the
smile in fixed income markets. For hybrid products sensitive to the interest rate
skew a second model was presented in which the interest rates were driven by the
stochastic volatility Libor Market Model.

The resulting efficient pricing methods may form the basis for the modelling
of complex structured hybrid products to be defined in the near future.

6.2 Outlook

Hybrid derivatives with equity structure that, beside interest rates also, depend
on the creditworthiness and performance of the underlying equity can be an
interesting extension of the models presented in this thesis. The hybrid model,
as such, would allow the valuation, in a single consistent model, of debt-equity
securities which are vulnerable to default, as well as of derivatives depending on
interest rates, equity and credit.

Extended equity-interest rate hybrid models could additionally take into
account the risk of default that a counterparty would bear if the reference entity
would not honor its financial obligations. In the case of an equity default swap,
for example, such a hybrid product could provide protection against some possible
events related to a specified reference asset.

Another interesting topic for future research could be the investigation on
estimating, from historical data, of the correlation between different asset classes.
Contrary to the case of the pure Heston model, where the correlation between a
stock and the variance process is obtained via model calibration to a volatility
surface from plain vanilla options, estimation of a correlation between stock
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and interest rate, for example, is not well studied in the literature so far. It
is particularly difficult as multiple interest rates (with different maturities) are
available in the market.

Additional improvement in hybrid modelling could be achieved if analytic
formulas for implied volatilities, for the models considered in this thesis, would
be derived. A modeling framework in which analytic, closed-form, expressions for
implied volatilities can be determined, could provide a significant reduction of the
computational time needed in the model calibration.

Alternatively, the stochastic volatility model of Heston could be replaced by
dynamics for which analytic approximations for implied volatilities are already
well established, like the SABR model [51].

The future for hybrid models and efficient calibration seems bright.
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[108] O.A. Vašiček. An equilibrium characterization of the term structure. J.
Financial Econ., 5:177–188, 1977.

[109] P. Wilmott. Cliquet options and volatility models. Wilmott Magazine, pages
78–83, 2002.

[110] B. Wong and C.C. Heyde. On changes of measure in stochastic volatility
models. J. App. Math. Stoch. Anal., pages 1–13, 2006.

[111] L. Wu and F. Zhang. Fast swaption pricing under the market model with
a square-root volatility process. Quant. Fin., 8(2):163–180, 2008.

[112] J. Zhu. Modular Pricing of Options. Springer Verlag, Berlin, 2000.



Curriculum Vitae

Lech Aleksander Grzelak was born in Zielona Góra, Poland, on March 12, 1982.
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