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Abstract

This research introduces a novel approach for 3D object
detection utilizing language models, with a particular focus
on addressing the challenges that have been encountered
in the autonomous vehicle domain. The primary objec-
tive revolves around addressing the constraints associated
with object detection models that rely heavily on labeled
data and are resource-intensive, while also showing limited
proficiency in recognizing new, unseen objects. The thesis
presents the PointGLIP model, a novel integration of zero-
shot and few-shot learning methodologies, that utilizes lan-
guage models to augment object detection in 3D point cloud
data. PointGLIP utilizes GLIP encoders, which are known
for their capability to combine textual and visual data. This
methodology facilitates the transfer of pre-trained informa-
tion from a 2D domain to a 3D domain by converting point
clouds into depth maps. This conversion process enables
object detection without the need for extensive or any prior
3D training. The model’s ability to generalize and transfer
learning from 2D to 3D environments is demonstrated by
experiments conducted utilizing the nuScenes dataset. The
results revealed that the model shows poor performance in
the context of both zero-shot and few-shot learning. This
shows that the model struggles to perform detections with
depth maps which indicates a struggle in the transfer of
knowledge from 2D to 3D contexts. In 2D, the integra-
tion of descriptive text through language models provides
a unique approach to contextual understanding, though the
outcomes demonstrated that further refinements are neces-
sary for consistent reliability.

1. Introduction

The automobile industry is currently undergoing a shift
towards the use of autonomous vehicles, which have
demonstrated substantial advancements in recent years. The
progress in 2D and 3D computer vision problems has been
propelled by the emergence of deep learning techniques.
Autonomous vehicles are outfitted with sensors that enable
them to perceive their environment, facilitating navigation

and collision avoidance. With the ongoing transformation
of the automobile industry towards autonomous driving,
there is a growing demand for advanced perception tasks,
including but not limited to object detection, image seg-
mentation, and pose estimation. At present, the commercial
autonomous vehicle has successfully attained level 3 of the
SAE International standards, thus allowing for automated
navigation under predefined circumstances. According to
the Society of Automotive Engineers (SAE), the vehicle at
this stage exhibits a degree of autonomous functionality, al-
lowing for limited self-driving capabilities. At this level, the
vehicle is capable of limited self-driving and will drive if the
necessary conditions are met [29]. Although the present au-
tonomous driving system mandates that individuals remain
ready to assume control of the vehicle when required and
maintain awareness of their surroundings, the forthcoming
advancements in autonomous driving technology will pro-
gressively lessen the reliance on human intervention. Ob-
ject detection plays a crucial role in increasing the auton-
omy of these vehicles by identifying the location of nearby
objects.

Current fully supervised object detection algorithms [20),

] perform well in detecting common categories such as
pedestrians, vehicles, and traffic signs, among others. Data
is critical for the training of these object detection algo-
rithms. These models require a large amount of data to train
on. The process of annotating autonomous driving data
is time- and resource-intensive, especially for lidar point
cloud and radar data. Additionally, there is a disparity be-
tween typical data and more informative data that reveals
corner cases such as the presence of an ambulance, a fire
truck, or a person resting on the side of the road. These
models lean towards overfitting when the training data is
less. Due to the lack of availability of ample samples of
these uncommon objects while training these model still has
difficulty recognizing uncommon objects. Identifying these
objects will increase the detection model’s robustness and
the vehicle’s reliability. In addition, if the model is to detect
a new object, it must be trained on a large number of sam-
ples of that object, which requires a significant amount of
time and resources.



In order to mitigate the issue of limited data availabil-
ity for the model, research has been carried out in the do-
mains of zero-shot and few-shot learning. Zero-shot learn-
ing is a type of learning in which a model can learn from
the data without being trained explicitly. In contrast to few-
shot learning, in which a model can only learn from a lim-
ited number of examples [36]. These models have under-
gone pre-training using a substantial amount of data, allow-
ing them to effectively apply their acquired knowledge to
other downstream tasks, including object detection and im-
age classification. In recent years, several language mod-
els have emerged as important tools for zero-shot learning,
leveraging their semantic understanding and transfer learn-
ing capabilities to discern and process visual information
in scenarios with scarce or no labeled data. Availability of
data, self-supervised learning, development of transformer
model architecture, and improvement of computer hardware
have led to the rise of large language models (LLM) in the
last few years, like with Dall-e, ChatGPT, CLIP [30], BERT
[9], Bard, GPT-3 [3], etc. In computer vision, there are
several tasks utilizing language models, such as classifica-
tion [30], object tracking [27], image captioning [28], text-
to-image generation [31,33], and image retrieval [ 1, 17]. By
combining text comprehension with visual perception, lan-
guage models can provide a more comprehensive analysis
of scenes and objects. Language models can aid in object
detection by providing a contextual understanding of ob-
jects through textual description comprehension. This tex-
tual comprehension complements the language model by
identifying semantic connections that can aid the object de-
tection process, especially new objects. Language mod-
els can facilitate zero-shot or few-shot learning, whereas
traditional object detection models require lots of labeled
data. The language model can generate textual descriptors
for classes of objects that have not been explicitly trained
in the vision model, enabling it to generalize better. The
use of language models for computer vision has risen in
the last couple of years because of the massive availabil-
ity of image and caption pairs. Due to the unavailability
of textual descriptions of 3D data, however, language mod-
els for 3D perception remain underdeveloped. In addition,
research has been conducted in the field of 3D image clas-
sification, but it has been limited to classification [5, 18].
PointGLIP, an object detection model based on the GLIP
language model, is proposed to address the issue of the lack
of 3D data availability and the identification of new, unseen
objects.

We propose PointGLIP which transfers 2D pre-trained
knowledge of visual and textual encoders to a 3D under-
standing of point clouds. Similar to other prevalent lan-
guage models in computer vision [5, 18], this model allows
for zero-shot and few-shot learning, addressing the lack of
3D data for uncommon objects. To solve the problem of

identifying new class categories, the model can be trained
on both text and image data, and texts contain a broader set
of visual concepts than any predefined concept in images.
This facilitates the model’s applicability to new visual con-
cepts and domains. The model converts the point cloud into
2D depth maps to resolve the lack of textual description data
for 3D point clouds in language models.
In summary, our contributions are as follows:

* We propose a 3D object detector incorporating a lan-
guage model for zero-shot and few-shot applications.
This model extends GLIP’s capabilities, bringing con-
textual and semantic insights to point cloud analysis.

* The model also showcases how the use of text descrip-
tion can help identify objects and can also help in de-
tecting new unseen objects.

» The experimental results conducted on the widely used
nuScenes dataset indicate that the utilization of raw
depth maps for transferring pre-trained 2D knowledge
into 3D on GLIP encoders is insufficient for achieving
3D object detection.

2. Related works
2.1. Zero-shot and few-shot learning

The paradigms of few-shot learning and zero-shot learn-
ing aim to tackle the difficulty of learning when there is a
shortage of labeled data. In the few-shot learning paradigm,
the model undergoes training on a diverse range of tasks to
obtain a suitable initialization. The process of initialization
can then be refined on a limited dataset for a specific pur-
pose to produce precise predictions. In contrast, the zero-
shot approach aimed to leverage semantic connections be-
tween familiar and unfamiliar categories, frequently utiliz-
ing embeddings or qualities to recognize novel categories.
Zero-shot learning has been the subject of research in the
context of 2D classification tasks, as evidenced by studies
conducted by researchers [25,30,40]. Similarly, the applica-
tion of zero-shot learning to 3D classification tasks has also
been explored, as indicated by investigations conducted by
researchers [6-8,43]. However, limited progress has been
made in the domain of object detection, particularly in the
realm of three-dimensional (3D) object detection. The rea-
son for this is that object detection also entails a challeng-
ing localization task. The existing approaches for few-shot
learning can be broadly classified into two categories: meta-
learning methods and transfer-learning methods. Meta-
learning methods employ a learning-to-learn mechanism,
wherein the model is trained on many few-shot tasks de-
rived from a base dataset. This approach facilitates rapid
adaptation of the model to real few-shot tasks. In addition,
transfer-learning techniques involve the first pre-training of



the detector on the base dataset, followed by fine-tuning on
the novel dataset.

2.2. Transfer Learning

Object detection models can acquire general features
from a large dataset by utilizing a network that has been
pre-trained on the large dataset. With less data, these detec-
tors can subsequently be fine-tuned for the particular object
detection task. As an example, a CNN trained on ImageNet
[11], an extensive collection comprising millions of images
across numerous categories will be equipped with filters ca-
pable of distinguishing a wide array of objects, textures, and
shapes. Subsequently, these can be tailored by fine-tuning
for a specific downstream task, such as object detection or
segmentation. The increasing amount of textual data acces-
sible via the internet has significantly expanded the utility
of language models in the domain of transfer learning for
perception tasks. By combining language and vision, these
method facilitates the interpretation and analysis of 2D and
3D scenes, enabling a deeper understanding of objects and
their relationships in complex environments.

2.3. Language models in vision

Language models like ALIGN [23] and CLIP [30] model
which is pre-trained on text-image pair show good perfor-
mance in downstream tasks like zero-shot image classifica-
tion. The CLIP [30] consists of a text and image encoder.
Both encoders generate a joint embedding which is then
used to calculate the similarity between images and text
using contrastive learning. Similarly, CO-OP [47] further
automates the textual prompt in the CLIP [30] model to im-
prove CLIP performance. CLIP-Adapter [14] further pro-
poses fine-tuning with feature adapter on either the visual
or language branch of the CLIP [30] model to improve its
performance. Other works that include CLIP are MaskCLIP
[13] for semantic segmentation, DenseCLIP [32] for image
pixel prediction, DetCLIP [41], Tip-Adapter [44], etc. For
a task like object detection, a more object-level represen-
tation is required which the CLIP model lacks. For object
detection, GLIP [27] proposes a model that combines object
detection with phrase grounding by redefining detection as
grounding. This allows it to learn from both data and find
objects in pictures and connect them with the right words.
Phrase grounding is the process of linking natural language
phrases with actual world items or regions. It includes com-
prehending the meaning of a natural language phrase and
recognizing the objects or regions of the world to which
it refers. In a sentence such as “the cat is sitting on the
mat,” phrase grounding would require recognizing the cat
and the mat as physical things, as well as the location of the
mat where the cat is sitting. To convert an object detection
model into a grounding model, they replace the part of the
program that identifies objects with a new part that matches

language phrases to regions in the image. They do this by
calculating a score that measures how well the language in
the phrase matches the visual features of the region in the
image. Then they use this score to associate the phrase with
the region in the image.

All these language models conduct knowledge transfer
within the same modality i.e. images. For lidar modality
LidarCLIP [18] proposes a technique for linking text to li-
dar data via CLIP embedding. The model supervises the
lidar encoder using a frozen CLIP encoder. The objective
is to teach the lidar encoder to resemble the CLIP embed-
ding. CLIP’s extensive and diverse semantic understanding
is transferred to the lidar encoder using both picture and
lidar point cloud. Mean squared error is used to maximize
the similarity between the two embeddings. PointCLIP [45]
circumvents the requirement for a lidar encoder and in-
stead encodes 3D point clouds into multi-view depth maps,
aligning them with 3D category texts using CLIP, a vision-
language model, for efficient, zero-shot classification.

3. Method

Our framework aims to address the two shortcomings
that are present in supervised 3D object detection models.
1) The training process for these models requires a sub-
stantial quantity of annotated data, thereby taking consid-
erable time and resources. 2) The generalizability of the
model is inadequate, posing a challenge in the detection of
an unseen object. In this section, we introduce the proposed
PointGLIP. In Section 3.1, we first revisit PointCLIP as we
adopted a similar approach to PointCLIP to transfer 2D pre-
trained knowledge to into 3D. In Section 3.2 we will discuss
the changes made to adapt the PointCLIP model.

3.1. PointCLIP

PointCLIP [45] is a 3D classification model that aims
to extend the capabilities of CLIP (Contrastive Vision-
Language Pre-training) from 2D visual recognition to 3D
point cloud understanding by using the CLIP’s visual and
textual encoders. The visual encoder is ResNet-50 [16]
and the textual encoder is transformer [38]. Initially, it
simply projects all the points from the point cloud onto
a pre-defined image plane to generate multi-view depth
maps. They adopted a perspective projection [ 5] without
any post-rendering [35]. These depth maps do not contain
any color information and are from raw points which
results in low time and computation cost.

Each view generated from the projection is then pro-
cessed independently through a CLIP pre-trained visual en-
coder to obtain view-wise features. For text, they used a
template for each category as a ’point cloud depth map of
a [CLASS]”. The textual descriptions of 3D categories are
encoded using CLIP’s textual encoder to create a zero-shot
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Figure 1. The pipeline of the proposed model. The visual encoder is fine-tuned on nuScenes images in the upper part of the image.
Then for the point cloud, this fine-tuned encoder is used on depth maps generated by the projection of the point cloud on 6 camera plane.
Simultaneously, the textual description of the image is passed through a noun parser and then the nouns are passed on to the language
encoder. The output is the object detected in depth maps based on the text provided in the input. This whole process is zero-shot as the

model is not trained or fine-tuned on point clouds or depth maps.

classifier. The final prediction for the point cloud is ob-
tained by aggregating the predictions across different views
in a weighted manner, acknowledging that different views
contribute differently to the recognition of the entire scene.
The correlation between vision and language representa-
tions is used for zero-shot classification, i.e., recognizing
categories that were not seen during training. The evalu-
ation is carried out through zero-shot classification, where
the model predicts 3D categories based on the alignment
between CLIP-encoded point cloud and 3D category texts
without having seen examples of these categories during
training. The model is suited for denser point clouds like in
indoor applications that’s why they have tested it on Mod-
elNet10 [39], ModelNet40 [39], and ScanObjectNN [37].

3.2. Proposed Model

Due to the fact that the PointCLIP model is well-suited
for classification tasks and dense point clouds, we modified
it to accommodate object detection tasks and autonomous
vehicle dataset. Implementing a different dataset and mod-
ifying the model to function with a larger, sparser dataset
are among these modifications. Then, to convert the model
from a classification model into an object detection model,
the visual and textual encoders were modified. Finally, the
perspective projection was applied to the new dataset and
its ground truth. These modifications will be discussed in
this section.

3.2.1 Visual and textual encoders

To bridge the modal gap between 2D images and 3D point
clouds so that we can use the pre-trained 2D model in the
3D object detection model, we adopted both the visual and
textual encoders from GLIP [27] to replace the CLIP’s en-
coders as they were suited for the classification task. The
visual encoder used is DyHead [10] and BERT [12] is the
textual encoder. The GLIP encoders [27] are employed in
this research as they integrate object detection with phrase
grounding, enabling the model to undergo pre-training us-
ing both image and text data. The integration of a text or
language model within the GLIP framework serves as a
repository of knowledge that provides contextual and se-
mantic comprehension. When it comes to identifying new
objects inside an image, the language model shows the abil-
ity to interpret textual labels or descriptions that correspond
to the visual elements present. The GLIP model is capa-
ble of concluding the characteristics of unfamiliar things
by establishing correlations with associated entities that it
has acquired knowledge from textual input. Through this
process, GLIP exhibits the ability to extrapolate beyond the
constraints of its training data and effectively identify and
comprehend items, much like the method by which hu-
mans recognize intangible objects they have encountered
just through textual information.

For a good trade-off between computation time and per-
formance, we chose the GLIP-T encoder, which is based on
the Swin-Tiny backbone for the visual encoder, the BERT
model for the textual encoder, and was pre-trained on the
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Figure 2. A normalized depth map of a point cloud

following data: 1) 0365 [34], 2) GoldG, 0.8M human-
annotated gold grounding data curated by MDETR [24], in-
cluding Flickr30K, VG Caption [26], and GQA [22], and 3)
Cap4M, 4M image-text pairs collected from the web with
boxes generated by GLIP-T [27]. We tried few-shot learn-
ing with nuScenes images dataset. However, due to the low
average precision score in the few-shot setting, we adopted
fine-tuning the encoder with the images by varying the num-
ber of images used for fine-tuning. Furthermore, in order to
adapt the GLIP to work on nuScenes dataset, all the an-
notations are converted into MS COCO annotation format,
which is required in GLIP. For the language part in GLIP de-
tection, it takes a textual prompt as input along with the im-
age. In the text, the nouns are extracted by passing through
the NLP parser [2] which identifies all the nouns and then
performs the grounding task along with the vision encoder.
Given object classes [construction_vehicle, barrier, bus,...,
animal], for detecting all classes in an image, we use the
following prompt as the input, where we put the names of
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all the classes joined by ,
Prompt= "construction_vehicle, barrier, bus, ... , animal”

In this each class name is a candidate phrase to be grounded.

3.2.2 Point cloud to 2D depth map conversion

In order to transform a point cloud into representations
that can be accessed by the GLIP framework, the gen-
eration of 2D depth maps from the point cloud are per-
formed. The initial step involves the selection of a pro-
jection method. Two often used methods for represent-
ing objects in two-dimensional space are perspective pro-
jection and orthographic projection. The choice between
these methods depends on the specific application and the
desired outcomes. In the context of perspective projection,
it may be observed that points located at greater distances

from the camera viewpoint will tend to seem closer together
in the two-dimensional array, simulating the perceptual ex-
perience of human vision. On the other hand, orthographic
projection is characterized by its ability to preserve the rela-
tive distances between points, regardless of their depth. We
chose a perspective projection method, inspired by Point-
CLIP [45], due to its lower computational requirements and
ability to replicate human visual perception. This approach
generates realistic images while preserving the depth in-
formation. The depth maps are derived from six distinct
viewpoints in an attempt to replicate the camera perspec-
tives seen in the nuScenes dataset, which the model has
been fine-tuned on. The views are precisely characterized
as a composite of Euler angles and translation vectors, rep-
resenting the orientation and position, respectively, for each
viewpoint. These parameters are derived from the camera
extrinsic parameters of the nuScenes dataset. This defines
the coordinate system and a virtual camera viewpoint, or
“viewing frustum,” from which the point cloud will be ob-
served. The method initially calculates the 2D projection
coordinates on the image plane for each point, using the
3D coordinates provided in the camera’s coordinate system.
Subsequently, a grid-based approach is utilized to allocate
the depth value of every individual point across the pixels
of the image. The basic approach involves defining a re-
gion surrounding every projected point using the parameters
size_x and size_y. The depth value is distributed across the
pixels inside this region, and this distribution is affected by
the specific sub-pixel position of the point. The given depth
value of a pixel is directly proportional to its proximity to
the exact projected point, as the allocation is weighted. By
modifying the weights, a smoother transition between depth
values is created, replicating the natural gradients seen in
real-world images. In order to account for scenarios when
points extend outside the limits of the image, this approach
incorporates a masking technique. By using this approach,
any points that fall beyond the valid range of the image are
deleted, guaranteeing that only relevant pixels are modified.
After the distribution of the depth values, the method fol-
lows to normalize the results. This normalization process
takes into consideration scenarios where numerous depth
values may have been assigned to the same pixel. The mean
depth for each pixel is calculated using a procedure that in-
volves adding the weights and the weighted depth values,
followed by an element-wise division. This process ensures
the completeness of the depth map. It is essential to recog-
nize that in the process of conversion, there is a potential
for the loss or distortion of information about the original
spatial connections between points. The extent of this loss
or distortion is contingent upon the specific projection and
discretization methods utilized. In a manner similar to the
point cloud, the ground truth values of bounding boxes are
similarly transformed into two-dimensional points. After-



ward, any spots that are subject to occlusion or lie beyond
the range of view of the camera, as determined by the six
pairs of Euler angles and translation, are eliminated. As a
consequence, the number of bounding box parameters is re-
duced from the original 11 to only 5. The parameters consist
of the minimum values for x and y, the maximum values for
x and y, and the class ID of the object.

3.2.3 Other Changes

(a) nuScenes back camera image
and size y along with 3 interpo-
lated points.

——
(c) Depth maps with 4 as size x d) Depth maps with 6 as size x
and size y along with 5 interpo- and size y along with 3 interpo-
lated points. lated points.

Figure 3. Depth map comparison with image.

The point cloud contains variations in the number of
points inside point clouds from different samples, a max-
imum limit of 50,000 points per sample was established.
Additionally, ghost-bounding boxes were added to repre-
sent the ground truth. This approach was implemented be-
cause of the disparity in the number of bounding boxes in
each sample. By incorporating ghost boxes with a value of
0 for all bounding box parameters, we were able to attain
a more uniform distribution of bounding boxes throughout
each sample. The ground truth consists of 11 parameters
that define a bounding box. These parameters include the
X, y, and z coordinates of the bounding box’s center, as well
as the length and width of the box. Additionally, the rota-
tion quaternion of the bounding box and the class ID of the
object are included. These ghost-bounding boxes were re-
moved in the evaluation process. After the point cloud to
depth maps conversion process, it was seen that the depth
maps exhibited sparsity. To address this issue, cubic in-
terpolation was used to introduce more points in the depth
maps. Moreover, the size_x and size_y parameters were in-
creased from 1 to 4 to improve the density of depth maps.
Figure 3 shows a comparison of depth maps with an image.
Figure 3a is a camera RGB image from nuScenes dataset.
Figures 3b, 3c, 3d are depth maps with different size_x and

size_y values and different numbers of added points by cu-
bic interpolation.

To summarize the model Figure |1 showcases the model
architecture. Initially, the visual encoder is fine-tuned on
image data. This fine-tuning made the encoder detect ob-
jects in images with image and textual descriptions as input.
Now for 3D object detection, the point cloud is transformed
into 6 different 2D depth maps, which are then fed to the
encoder. Similarly, the caption data is first repeated for the
6 depth maps and then fed to the textual encoder. This depth
map and caption pair then output the detection in the depth
maps. The encoder is not trained on these depth maps and
the 3D data, which makes the model run in a zero-shot man-
ner.

4. Experiment
4.1. Dataset and Evaluation Matrix

Dataset. nuScenes [4] a big, publicly accessible dataset
for autonomous driving recorded in Boston and Singapore
is chosen because it provides detection of 23 objects, which
covers not just conventional classes such as automobiles,
trucks, pedestrians, etc., but also includes rare classes such
as police officers, traffic cones, child pedestrians, and police
vehicles, among others. It contains one thousand unique
driving sequences from six cameras, a 32-beam lidar, five
radars, GPS, and an inertial measurement unit.

Evaluation Metrics. The algorithm computes the In-
tersection over Union (IoU) metric to evaluate the overlap
between the identified object and the ground truth objects.
The objects are classified as true positives, false positives, or
false negatives based on the Intersection over Union (IoU)
metric. Subsequently, the detections are organized in as-
cending order based on their respective ratings. After per-
forming the calculation of precision and recall curves, the
next step involves the interpolation of the precision curve.
Ultimately, the algorithm calculates the Average Precision
(AP) for each class and then determines the Mean Average
Precision (mAP) by aggregating the AP values across all
classes.

4.2. Results
4.2.1 GLIP Results

The GLIP model is initially trained on the 3,5,10 shot con-
figuration for the visual encoder. Then instead of a few-
shot, the model was fine-tuned using 1%, 2%, and 5% im-
ages from the nuScenes dataset. The outcomes of fine-
tuning and few-shot are shown in table 1. The fine-tuning
was performed for two distinct reasons. One reason was
the model average precision score being so low between
1% and 5% when few-shot was utilized. The other rea-
son is that the few-shot method was not completely few-
shot, as one image contained multiple objects of different
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Figure 4. Graph to show amount of data used to fine-tune GLIP vs
average precision.

GLIP Model Mode AP@50 AP@75
GLIP-T 1-shot 1.67 0.32
GLIP-T 3-shot 3.42 1.23
GLIP-T 10-shot 4.62 1.62
GLIP-T Fine-tune 1% 394 22.1
GLIP-T Fine-tune 2% 447 22.6
GLIP-T Fine-tune 5% 49 26.5

Table 1. Table to show both the few-shot and fine-tune perfor-
mance of GLIP model.

classes, resulting in more images for certain classes (e.g.,
cars, trucks, etc.) for the same number of images used for
the other classes. The dimensions of the image remain un-
changed from nuScenes camera images at 1600x900. To
perform validation, one thousand images were utilized. The
outcomes of the fine-tuning process are illustrated in the fig-
ure 4. The graph showcases the remarkable generalization
and transfer learning capabilities of the GLIP model as it
reaches 49 AP with only 5% of nuScenes images, which
was not previously trained on autonomous vehicle datasets
such as nuScenes. This score is still lower as compared to
fully supervised 3D object detection methods such as CIA-
SSD [46], and MDRNet [19] which achieve above 85% av-
erage precision. The advantage of using GLIP comes in
identifying an uncommon object category or an object that
the model has not seen as it requires less data to fine-tune
and also the model can be pre-trained using textual data.

4.2.2 Zeroshot Object Detection

Setting We utilized the visual encoder which was fine-tuned
on 5% of the nuScenes data for zero-shot object detection,
as it exhibited an average precision score of 49%. BERT
[12] is employed as the textual encoder and DyHead [10]
is utilized as the visual encoder. Since zero-shot does not
necessitate training data, the complete test set was utilized
for evaluation with a batch size of 100 point cloud. We

evaluated a 20% portion of the nuscenes point cloud. These
point clouds are first projected onto 6 camera perspectives
in order to emulate the camera views found in the nuScenes
dataset. The input for the textual prompt consists of the
names of all classes that are joined by ”, ”. By applying cu-
bic interpolation between every two points, the point cloud
is densified by 5 points. Additionally, the pixel size for each
point in the depth is increased to 4 along the x and y axes to
enhance the density of the depth map. Both the intersection
over union threshold and the confidence threshold of GLIP
visual encoders are maintained at 0.5 during evaluation.

Performance In the zero-shot configuration, the model
exhibited poor performance, failing to accurately identify
an individual object. 259 were false positives and 461883
were false negatives. As a consequence, the mean average
precision and average precision class-wise are both equal to
0.0. This demonstrates that the model lacks the ability to
transfer knowledge effectively from 2D to 3D.

4.2.3 Few-shot Object Detection

Setting We utilized the same encoders as before for the few-
shot configuration; however, these encoders were trained
using depth maps derived from the point cloud. The depth
maps utilized in this experiment are identical to those pro-
duced in the zero-shot experiment. 2% of the total number
of images in the nuScenes dataset were utilized to gener-
ate these depth maps. The model structure and all other
parameter values remained unchanged from the zero-shot
object detection experiment with a batch size of 10. Further
to utilize the depth maps in GLIP training the ground truth
was also transformed for the depth maps and then converted
into COCO annotation format. For depth maps also we used
1000 images for validation similar to images fine-tuning of
GLIP.

Performance In a few-shot setting, the GLIP model
stopped because of early stopping after no improvement
was observed after 8 epochs. The model shows 6.99%
AP@50 and 4.89% AP @75 before early stopping.

4.2.4 Object detection with more descriptive text

This experiment shows the use of language in object detec-
tion tasks. The language model adds contextual understand-
ing of objects which enables the model to detect objects that
have not been fully trained on in the vision model. Figure
5 shows some output of the GLIP model when given dif-
ferent prompt as input along with the image. For figure 5a
and figure 5b the prompt given was classes from nuScenes
dataset and the output was correct. In figure 5c the output
was wrong as the model detected left in the image. The
GLIP model contains the capability to comprehend and in-
corporate detailed spatial and relational language cues, such

as directional terms like “left,” “right,” “top,” and others,
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(c) Prompt was “Traffic cones on the left of the vehicle”

Figure 5. GLIP image output with different prompts.

into its visual recognition mechanism. The model’s ability
to perceive and comprehend spatial relationships enables
it to accurately determine the location and identity of ob-
jects inside an image, utilizing their respective positions and
orientations, as explained in the provided text. The men-
tioned descriptions are transformed into feature represen-
tations, which are subsequently combined with visual fea-
tures. This procedure guarantees that the model possesses
the ability to not only identify items but also comprehend
their spatial relationships as defined in the text. In this par-
ticular instance, the detection yielded inaccurate results due
to the model’s lack of training on textual descriptions con-
taining directional phrases in the nuScenes dataset. In this
experiment, we used the same visual encoder which was
fine-tuned on 5% of the nuScenes dataset, and the same lan-
guage encoder as other experiments.

5. Discussion

In the zero-shot setting, the reason the above model fails
to detect any object shows that the model generalization
and transfer learning capabilities of the GLIP model are not
powerful enough to detect objects in depth maps when it
is pre-trained and fine-tuned on images. To resolve this we
further tried to fine-tune the model with a depth map we call
it a few-shot as now the model is fine-tuned on depth maps.
This didn "t improve the results which indicate that directly
using raw depth maps in GLIP is not the right direction to
incorporate language models in 3D object detection. The
model is limited by GLIP capability. GLIP performed well
around 50% when we used it on images with only 5% data.
One way is to improve the depth map quality by not just pro-
jecting the points onto the image plane but by using a deep
learning model to learn how to create depth maps from point
clouds for a particular image plane. Improving the depth
map could improve the detection. The language model in
the vision domain like in PointCLIP works well with the
depth maps because it was a classification task. Object de-
tection tasks involve object-level representation which the
PointCLIP [45] model lacks. Another reason is that in clas-
sification tasks there was only one object per point cloud
but in the case of our approach we chose nuScenes dataset
which has multiple objects in a point cloud and occlusion is
also present in these point clouds which makes it harder for
the encoder to detect objects. Moreover, models, like Point-
CLIP was tested on synthetic datasets like ModelNet10
citewu20153d, ModelNet40 [39], and ScanObjectNN [37]
which were dense. On the other hand nuscenes [4] is a
sparse dataset.

6. Future Work

In improving the current model, there are several promis-
ing avenues for future research. Firstly, as discussed above
improving the quality of the depth maps presents a signif-
icant opportunity for enhancement. Another potential di-
rection involves integrating a lidar encoder to process lidar
point clouds effectively. This approach would be comple-
mented by employing the GLIP image encoder on images,
facilitating a supervisory mechanism for the lidar encoder
specifically for 3D object detection. Such an architecture
has already been explored with promising results in the
context of classification tasks, as evidenced by the Lidar-
CLIP [18] study. Moreover, the introduction of an adapter
to the model represents a further area for exploration. This
adapter, once incorporated, could potentially elevate the
model’s performance. This adapter can be fine-tuned with a
few images and point clouds while freezing the other mod-
ules. A similar approach is presented by CLIP2Point [21].



7. Conclusion

In conclusion, this project delved into the integration of
language models with 3D object detection. Our research
introduced an approach with our zero-shot and few-shot
object detection model, blending textual inputs with point
cloud data to enhance object detection capabilities. This
method addresses two critical challenges in fully supervised
object detection models: the extensive need for labeled data,
which is both time-consuming and resource-intensive, and
the models’ limited generalization ability to recognize new
objects. By implementing zero-shot and few-shot learning
techniques, our model tries to demonstrate the ability to de-
tect objects with minimal or no prior 3D training, which is
good for the generalization ability of the object detection
model and can be used in identifying new objects. Addi-
tionally, the incorporation of language models plays a piv-
otal role in this advancement. Their proven excellence in
zero-shot and few-shot performance across various vision
tasks, such as classification and object detection, brings
an essential contextual and semantic understanding to the
framework. Due to the scarcity of textual description data
for point clouds, we used a 2D model called GLIP and used
transfer learning to transfer the knowledge of the 2D en-
coder into the point cloud. To bridge this gap, we employed
GLIP, a 2D language model adept at merging textual and
visual data. By leveraging GLIP’s capability to transfer 2D
pre-trained knowledge into a 3D context through the con-
version of point clouds into depth maps. For few-shot, we
trained the GLIP visual encoder with the depth maps gen-
erated by the projection of the point cloud onto 6 cameras
view. The integration of language models, despite offering
intriguing contextual insights, requires further refinement
for consistent application in real-world scenarios. The study
underscores the necessity for continued research and devel-
opment in this domain, especially concerning the quality of
depth map generation and the potential integration of a lidar
encoder. Future advancements in these areas could signifi-
cantly enhance the model’s performance, paving the way for
more robust and efficient autonomous vehicle technologies.
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