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Chapter 1

Introduction

1.1 Parallel Robots with Configurable Platforms

1.1.1 Parallel Robots - Closing the loops

Robots are playing an increasingly prominent role in today’s society and already affect
a large spectrum of our live from robots built to manufacture goods and products in
factories to robots built to interact directly with humans in a professional or in an enter-
tainment context. Factors that can explain the rapid developments of robotics over the
last two decades are due to the computer revolution that allows smaller and more efficient
control hardware to operate in real-time and the miniaturization of accurate sensors and
powerful motors that can be implemented in a robotic system. However, no matter how
much efforts are put into the development of better control systems, algorithms, motors
and sensors, which will not be discussed here, robot performance is ultimately limited by
its mechanical structure, which presents inertia, friction, compliance and defines the work-
space and the inputs – outputs relations between the control system and the interaction
with the external world.

Some researchers have therefore considered the possibility to develop robots with different
kinematic structures. Even nowadays, most of the robots used in the industry present a
serial architecture that can somehow be related to a human arm. In those robots, each
joint must be actuated to fully control the end-effector. The main drawback of such open-
loop structures is that each motor must carry the weight and inertia of the motors further
in the chain over the workspace. Also, an open structure is in general less stiff than a
closed structure. High inertia and low stiffness lead to a poor mechanical transparency
that is limiting the robot performance.

On the other hand, it is possible to use a mechanical structure in which the links and
joints form closed-loops. Closing the loop of a kinematic chain has profound consequences
since the closure introduces a dependency on the joints velocity and the assembly of the
closed-loop can generate internal stresses in the structure that are present even when no
external force is applied to the mechanism. However, since a dependency in the joints
is created, it is now possible to control the whole structure by placing motors on only a
subset of the joints, ideally joints that are located on the base of the robot so the motors
have little contribution to the inertia and heavier, more powerful motors can be used.

3



4 Chapter 1. Introduction

In addition, the closed mechanical structure that is now linking the motors and the end-
effector will have in general a better stiffness than a comparable serial structure. This
increased stiffness can be used to reduce the size of the mechanical links, thus reducing
even more the total inertia.

The ratio between the stiffness and the inertia for a given structure can be called the
structural stiffness. The structural stiffness can also somehow be related to the ratio
between the payload and the total moving mass. Parallel robots are generally used for
tasks in which a high structural stiffness in needed. Typical applications include flight
simulators, high-speed pick-and-place machines and haptic devices. In a flight simulator,
the payload is so high (often 3 tons or more) that it would be difficult to imagine a fast
reacting robot based on a serial architecture performing this task. In the pick-and-place
industry, the number of cycles per minute is the key factor in the profitability of a robotic
system and the maximum speed of the robot is directly limited by its structural stiffness.
Finally, haptic devices need a high stiffness to properly render the force interactions with
a remote or virtual environment but they need to combine this with a low inertia so that
the forces perceived by the operator are not disturbed by the device.

1.1.2 Configurable Platforms

Pure parallel mechanisms are formed by two rigid links, called the base and the end-
effector, connected in parallel by serial chains, called legs. The novel concept behind
parallel mechanisms with configurable platforms is that the rigid link (non-configurable)
end-effector is replaced by an additional closed-loop chain (the configurable platform).
Some of the links of this closed-loop are attached to the legs so its configuration can be
fully controlled from the motors located on the base.

The use of a closed-loop instead of a rigid end-effector allows the robot to interact with
the environment from multiple contact points on the platform. The contact points have a
relative mobility between each other that can be fully controlled from the actuators located
on the base. This results in a robot that can combine motions and grasping capabilities
into a structure that provides an inherent high structural stiffness. High-speed pick-and-
place robots and haptic devices can both benefit from this type of architecture. In both
applications, the addition of grasping capabilities can be beneficial for some tasks and a
high mechanical structural stiffness will improves the performance of the device given a
certain hardware and software control system.

1.1.3 Some Definitions

Research over parallel mechanisms has grown exponentially in the last decades and this
sudden grown interest came with a lack of well-established terminology. This results in a
lack of coherence in the research community and some articles, despite overlapping sub-
jects, unfortunately fail to cite other papers properly partially due to the use of different
terminologies. To avoid confusion and help coherence, this section presents the definition
of some common terms that will be used in this thesis. The definitions are based on what
seems to be most commonly accepted in literature but are also made to suit well the
structure and content of this thesis, allowing an easier reading.
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Mechanism The International Federation for the Promotion of Mechanism and Ma-
chine Science (IFToMM) defines a mechanism as “Constrained system of bodies designed
to convert motions of, and forces on, one or several bodies into motions of, and forces on,
the remaining bodies”. In the first part of this thesis, a mechanism is defined as “a set of
rigid bodies with pairwise connections constraining their relative motions”. The bodies,
considered infinitely stiff, will be called “links” and the constrainning connections will be
call “joints”. A link can share an infinite number of joints but a joint strictly connects
two links. Joints can be revolute, prismatic or allow more than one independent degree
of freedom (DOF) between its two connected links. In this thesis, only 1-DOF joints are
considered without losing generality since multi-DOF joints can be virtually described as
a series of 1-DOF joints with zero-lenght links in between.

Pure Parallel Mechanism The term pure parallel mechanism is not officially recog-
nized by IFToMM but has been defined in some articles [85, 49, 18] as “A mechanism that
is composed of an end-effector connected to the base by independent, serial leg chains”.
The vast majority of research presented on closed-loop mechanisms refers to this partic-
ular class and this definition can be used to differentiate mechanisms that can be treated
with standard analysis methods[11] or type synthesis[42] methods from mechanisms that
have more exotic topology such as Delta or hybrid mechanisms.

Parallel Mechanism with Configurable Platform In the first part of this thesis,
a parallel mechanism with configurable platform (PMCP) is defined as “a parallel mech-
anism in which the rigid end-effector is replaced by a single closed-loop”. Some of the
links of the closed-loop configurable platform are connected to the legs while others are
not. The links that are connected to both the platform and the legs are called “platform
connector” while links that are not connected to any leg are called “platform segment”.

Robot There is no general definition of the term robot that satisfies everyone. Some
authors claim that “as soon as it is possible to control several degrees of freedom of the
end-effector via a mechanical system, this system can be called a robot” [51]. But the term
robot is also sometime used for 1-DOF devices that have a high level of decision-making
and cognitive functions. A car with an embedded computer can sometime be called a
robot depending on the level of sensors and programmability. A CNC milling machine is
rarely called a robot even if it has most of the characteristics to be called such. Robots in
popular culture are mainly associated to the class of humanoid robots. Common thought
among engineers is that they don’t know what a robot is but they can recognize one when
they see one.

Clearly, a robot must have at least the capability to interact with the environment in an
automated and programmable way. In the structure of this thesis, a robot is simply “A
mechanism in which the motion and forces of some of the joints are controlled with an
automated and programmable motor-sensor system”. This means that some of the joints
of the mechanism are now considered as the inputs of the system and some links are now
considered as the outputs of the system.

Fully Parallel Robot A fully parallel manipulator is defined as “A Parallel robot for
which the number of legs is strictly equal to the number of DOF of the end-effector”[24].
Because of this property, the control of these parallel robots can be done using a single



6 Chapter 1. Introduction

base-located motor in each leg. In a fully parallel robot, the grounded motors have little
contribution to the inertia of the mechanism and a more powerful motor can be used. In
this thesis, it is assumed that the the analysed robots are fully parallel.

Parallel Robot with Configurable Platform The results presented in the first part
of this thesis are characteristic for the mechanism itself and are independent of which
joints and links are considered as the inputs and outputs of the system. The second part
of this thesis focuses on the concepts that are related to the inputs – outputs relations
of parallel mechanisms with configurable platforms. A parallel robot with configurable
platform (PRCP) is “a robot based on a PMCP structure, in which each leg hosts a
single motor actuating the joint located on the base”. The actuated joint variables are
considered the inputs of the system and the variables that describe fully the pose and the
configuration of the configurable platform are the outputs of the system.

1.2 State of the Art

1.2.1 Literature

While a relatively large number of articles are published each year on topics related to
parallel robots with rigid, non-configurable platforms, articles concerning parallel robots
or parallel mechanisms with configurable platforms are very scarce even when considering
all possible different terminology that could be used to describe this concept.

The first article about a PRCP is probably from Yi and al. [81] who proposed in 2002 a
planar parallel mechanism with a parallelogrammic planar platform that can be folded.
Based on the special geometry of the platform, they described the kinematic analysis
of their mechanism. The analysis they proposed was specific to this particular design
without generalization of the concept and the spatial case was not addressed.

Mohamed and Gosselin [56] proposed in 2005 a first generalization of the concept of both
planar and spatial PRCPs. They emphasised the general concept of PRCPs and proposed
several designs of planar robots and one design of spatial robot with prismatic actuators.
They proposed a general framework to compute the mobility of these mechanisms but this
framework was not valid for overconstrained mechanisms and the case of overconstrained
PRCPs was not addressed.

In the title and introduction of their paper, they call those robots “kinematically re-
dundant parallel manipulators with configurable platforms” where kinematic redundancy
means that the mobility of the manipulator is greater than the required degrees of free-
dom. According to this definition, kinematic redundancy is a concept that is only defined
relatively to the task and not a property of the mechanism itself. While the concept of
kinematic redundancy can be well applied to a 6D robot executing a 5 DOF wielding task
or a 7 DOF robot arm moving in space, it is difficult to apply it to PRCPs because the
configurable platform doesn’t have a single physical end-effector to perform the required
main task. As long as it is accepted that PRCPs have more than one end-effector and
that the grasping capabilities are parts of the task of the robot, the concept of kinematic
redundancy doesn’t apply to them.

Other articles in the literature that focus on specific architectures of PRCPs include the
design of the Par4, by Company and al. [59] in 2005. Like for Yi, their robot also uses a



1.2. State of the Art 7

1 DOF paralellogrammic configurable platform, but in this case, the configuration of the
platform is used to provide rotation via a gearing system instead of grasping. Although
they already introduced the concept of “articulated nacelle” in earlier articles with the
H4 and the I4 robot, the nacelle of these two robots was not formed by a closed-loop
chain but was simply a two by two connection of the legs. Such architectures are not
considered as PRCPs since they don’t have a closed-loop platform that allows multi end-
effectors and grasping capability. The Heli4 from the same laboratory also connects four
legs two by two and can also be defined as “robots with articulated nacelle”. Their specific
kinematic and singularity analysis of these robots was presented. It was also found in
their research that the Par4, their only robot with a PMCP structure, has much better
dynamic properties than the H4, I4 and Heli4 robot.

Due to the large number of publications concerning parallel robots in general, it is not
possible to shortly give an overview of the state of the art of all the topics in particular.
The first book solely dedicated to parallels robots was written by Merlet in 2000[51] and
contained already more than 650 citations. Type synthesis is the branch of parallel robots
that focuses on systematic methods to create new architectures given a certain motion
requirement. Current developed methods include Kong and Gosselin[42] in 2007, which
addressed the synthesis of pure parallel robot, and Gogu[23] in 2010, which addressed
more complex type of legs. It should be noted that none of the current type synthesis
methods include PRCPs.

Unlike general parallel robots, PRCPs can interact with the environment from multiple
contact points, thanks to the configurable platform. They are therefore very suitable
for applications that require grasping capabilities and a high structural stiffness, such
as haptic devices. There are currently a few haptic systems that can generate grasping
capability. In those devices, the master robot interacts with the operator through two
distinct end-effectors or two tips. This provides a multi point contact that is transferred
from virtual or distant objects to the human operator and the operator can use his index
and thumb to grasp and interact with the objects in a more natural way than with a
single point contact. The solution generally used to provide grasping capabilities is to
add a gripper at the top of an existing robot [60]. However, in case of parallel robots,
their good performance relies mainly on the fact that all their actuators are located on the
base. Since grasping forces are often in the same order of magnitude than the other types
of force, the mass of the motor that is needed to actuate the gripper may considerably
increase the total inertia, as this motor has to be positioned over the whole workspace.

Another solution, sometimes used in haptic systems, consists in coordinating two inde-
pendent devices, one per finger tip, to simulate the grasping sensations [57],[53]. This is
done at the expense of unnecessary complexity and inertia, and the total system generates
usually more degrees of freedom than needed between the two finger tips. In the second
part of this thesis, the design and implementation of the PentaG device, a novel 5 DOF
robot based on a PMCP structure, is presented for haptic applications. To the knowledge
of the author, it is the only haptic device that provides grasping capabilities with all the
motors located on the base and without the use of cable transmission that would increase
friction and decrease accuracy.

1.2.2 Industry

The only PRCP currently commercially available on the market is the Adept Quattro,
which was initially developed by Fundacion Fatronik, who integrated the Par4 design
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into a commercial product. The targeted market is the fast pick-and-place and assembly
production lines. In this design, the 1 DOF configurable platform is not used to provide
grasping capabilities but is used to provide rotation of the end-effector via a gearing
system. In a standard Delta robot, the rotation is provided by a central shaft with a
passive prismatic joint that have the tendency to limit the dynamic performance of the
robot and therefore the maximal number of cycles per minutes that the robot can achieve.

Thanks to the use of a configurable platform for the rotation of the end-effector, the central
prismatic leg could be replaced by a fourth Delta leg. Those types of leg are recognised
for their excellent dynamic properties. The robot was launched into the market in 2007
and has gained enormous popularity since then. Adept developed additional advanced
control strategies and embedded vision systems and they now claim to have the fastest
robot of the whole pick-and-place industry.

To the best knowledge of the author, no commercial device, neither in the pick-and-place
or in the haptic market, uses currently a configurable platform to provide grasping cap-
abilities. In the pick-and-place industry, robots use generally a vacuum gripper to handle
the products. However, vacuum gripping is often not possible when the products present
non-flat, porous or irregular surfaces as common in the food industry and mechanical
grippers must then be mounted on the rigid platform, increasing the total inertia and
degrading the robot performance. In the PentaG architecture, all the motors are located
on the base and the device can be in principle lighter and faster than comparable robots
with actuated mechanical gripper.

1.3 Objectives and Contributions of this thesis

The first part for this thesis focuses on fundamentals of parallel mechanisms with config-
urable platforms (PMCPs). Mechanisms that do not satisfy the Chebichev criterion of
mobility have fascinated kinematicians since decades. Those mechanisms have been called
exceptional or paradoxical. They fail to satisfy the mobility criterion because their con-
straint equations are not full rank. They are nowadays generally called overconstrained
mechanisms. Mobility and oversconstraint of mechanisms are intimately linked and must
be considered at once. Each overconstraint is associated to an additional underconstraint,
also known as degree of freedom which increases the total mobility of the mechanism in
comparison of the prediction to the Chebichev criterion. Once this indisputable fact is
established, one can now wonder how to determine the rank of the constraint equations
in a mechanism.

Constraint equations can be organized into a matrix form for which the rank is computed
when numerical values are used. However these numerical values are dependent on the
configuration of the mechanism. The number of DOF and the direction of the mobility
obtained are only valid for this particular position of the mechanism. The computation
of the rank of a matrix with numerical values is also sensitive to round-off errors and
exact values for the geometry of the mechanism must be used, which is not realistic
in practice. Finally, not only the direction of the mobility may be dependent on the
mechanism configurations but also the number of degree of freedom and the number of
overconstraints may change in particular configurations such as serial singularities and
constraint singularities.

Screw Theory is a powerful conceptual framework to analyse the kinematics and statics of
spatial mechanisms. The compactness of the notation and the geometrical insights given
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by this framework are very useful to calculate analytical vector based representations that
are independent of the particular configuration of a mechanism. Most of the basic vector
space operations on common screw systems have already been studied analytically and
those results can be used directly in more complex analyses.

Graph Theory can be described as the study of pairwise relations between a set of ob-
jects. While Screw Theory is concerned with the particular geometrical relations between
the joints of a mechanism, Graph Theory, when applied to a mechanism, only focuses
on the connectivity between the various links of a mechanism from a network point of
view, regardless of the type and position of the joints connecting those links. A com-
plete description of a general mechanism in a particular configuration can be obtained
by assigning a screw system to each edge of its corresponding graph. Mobility and over-
constraint analysis of pure parallel mechanisms exploit the relatively simple topology of
these mechanisms in the derivation of their equations. Properties of the corresponding
graph become handy when analysing mechanisms that have a more exotic topology such
as Delta mechanism, hybrid mechanism and PMCPs.

PRCPs have been so far scarcely investigated in the literature or used in the industry.
Especially, the mobility of overconstrained PMCPs hasn’t been addressed yet in a gen-
eral analytical vector representation. Mobility and overconstraint are among the most
fundamental aspects of mechanisms. Not so long time ago, the only way to verify the
full-cycle mobility and the possibility of assembly of a mechanism was to actually build
it to observe its behaviour. This is less required nowadays with the advance of CAD
programs in which the mobility and assembly of any mechanism can be tested relatively
quickly. Still these software programs usually rely on numerical iterations to compute the
assembly of the mechanism so they are not aware of the geometrical conditions needed
for the assembly. These conditions link the manufacturing tolerance of the parts to the
stiffness and play in the mechanism and must be evaluated before the construction of the
prototype. In addition to a more purely scientific contribution to the field of mechanism
science, the theoretical analysis of mobility and overconstraint of PMCPs presented in
the first part of this thesis can help engineers and designers to consider these alternative
mechanisms as valid options and is also an essential aspect in the future development of
a broader type synthesis method that includes those mechanisms.

Therefore the objective of the first part of this thesis is to investigate the fundamentals
of mobility and overconstraints of PMCPs and to provide a general method to obtain a
configuration-free, analytical vector representation of the distribution of their mobility
and overconstraint via Screw Theory and Graph Theory.

The second part of this thesis focuses on the analysis of parallel robots with configurable
platforms (PRCPs) and the specific analysis, optimization, design and implementation of
the PentaG robot, a novel 5 DOF PRCP that include a 2 DOF configurable platform. In
the second part of this thesis, concepts that are related to the input – output relations of
PRCPs, i.e. robots that are based on a PMCP structure are investigated.

Obviously, robots are expected to accomplish certain tasks and task requirements are
needed in their optimization and design process. Parallel robots are recognized for their
inherently high structural stiffness. Unlike general parallel robots, PRCPs can interact
with the environment from multiple contact points, thanks to the configurable platform.
They are therefore very suitable for applications that require grasping capabilities and
a high structural stiffness such as pick-and-place devices and haptic devices. The novel
PentaG robot is a good example of a PRCP and its kinematics analysis, optimization
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and detailed design for haptic application is presented. The particular mobility and
overconstraint of the PentaG mechanism are properties of the mechanism itself that are
independent of the choice of the actuated joints. The direct and inverse kinematics,
dexterity, statics, singularities, working modes and assembly modes are based on the
input – output relations between the robot actuators and end-effectors.

A motivation for the design and implementation of the PentaG haptic prototype is to
see to which extend the general design principles and analysis tools that are used in the
study and implementation of parallel robots can be applied in the design and analysis
of PRCPs. The first step in the design of a parallel robot is the choice or the creation
of a mechanism that has the desired mobility. It is aimed for that the fundamentals
of PMCPs covered in the first part of this thesis can help robot designers to consider
new PMCPs that satisfy their mobility requirements. The second step is generally the
computation of the kinematic relations between the actuators and the end-effector of the
robot. General formulas for the kinematics and singularity analysis of parallel robots are
based on their relatively simple topology and modified formulations should be investigated
for the kinematic analysis of PRCPs. The next steps are the geometrical optimisation,
the detailed design based on elastic body considerations, and finally the drive system and
control system design.

The objective of the second part of this thesis is therefore to show the feasibility of PRCPs
that use the configurable platform as a grasping device and to show how the general design
principles of conventional parallel robots can be applied directly or must be modified for
the design of a PRCP. During the design process, the applicability of the new techniques
that are developed for the PentaG robot design will be extended to PRCPs in general or
extended to all parallel robots when possible.

1.4 Structure of this thesis

The thesis is structured into two distinct parts. The first part includes Chapter 2 and
3 and focuses on the fundamentals of mobility and overconstraint analysis of PMCPs
and the properties of those mechanisms regardless if the system is actuated or not. The
second part includes Chapter 4, 5 and 6 and focuses on the input-output relations of
PRCPs and presents the design, optimization and implementation of the PentaG robot
for haptic application. When possible, the results obtained in the design process of the
PentaG are generalized to any PRCPs.

Chapter 2 presents a state of the art method in the mobility analysis of overconstrained
parallel mechanisms. The method presented is not based on one article in particular
but instead uses elements and techniques from various published methods. The basics
of Screw Theory are introduced and a 4-RRR parallel mechanism is used as an example
to show how the method combined with an analytical vector representation can be used
to generate an analytical solution of the distribution of mobility and overconstraints in
this mechanism. In particular, the concept of restricted screw systems is introduced
to calculate analytically both the local mobility and overconstraint using vector space
operations of screw systems.

Chapter 3 extends the method presented in Chapter 2 to mechanisms that are not purely
parallel and to PMCPs. The basics of Graph Theory are introduced and are used to
analyse the topology of those mechanism. Current existing methods for the mobility and



1.4. Structure of this thesis 11

overconstraints analysis of mechanisms that are not purely parallel but have a series-
parallel graph are unified with a graph reduction analysis of their topology and recursive
formulas are derived for the general case. It will be shown that PMCPs have a wheel graph
that is non series-parallel and a method based on a matrix representation of the mobility
of their legs and the concept of restricted screw systems is used to obtain an analytical
distribution of their global mobility. The special self duality of PMCPs is then exploited
to extend the method to the overconstraint analysis. Two mechanisms, a 4-RRR with a
8R configurable platform and the PentaG mechanism are used to illustrate the method
and an analytical representation of the distribution of their mobility and overconstraints
is presented.

Chapter 4 introduces the novel PentaG robot and its kinematic analysis including an
analytical representation of its inverse position and velocity kinematics. Unlike general
parallel robots, a two stages method must be used in the calculation of the inverse kin-
ematics of general PRCPs. Direct position and velocity kinematics, statics, dexterity and
stiffness are obtained from numerical procedures using the inverse velocity kinematic as
input. Serial singular configurations are defined analytically and the working modes of the
PentaG robot are enumerated. Parallel singular configurations are obtained numerically.
New types of serial and parallel singular configurations that are specific to PRCPs are
described. In addition, a general method to statically balance from springs translational
parallel robots with or without configurable platform from springs is presented.

Chapter 5 presents the geometrical optimization of the PentaG robot when used as a
haptic device. The concept of useful workspace is presented and the robot is optimised
in order to maximise its compactness relatively to the size of the useful workspace. The
optimization problem is tedious due to a large number of geometrical parameters and a
complex discontinuous objective function that has several local optima and is computa-
tional intensive. Several techniques are shown to reduce the parameters to a number that
is manageable and a more efficient algorithm is developed to reduce the computation time
of the objective function. Due to the discontinuities and local optima of the objective
function, Genetic Algorithms are used in the search for a global optimal solution. The
final results are presented using an atlas of the dexterity of the robot in the horizontal
plane for various heights, rotation and grasping values.

Chapter 6 shows the detailed design and implementation of a prototype of the PentaG
robot for haptic application. The kinematic parameters obtained in Chapter 5 are used in
this prototype and a new technique to optimise the structural stiffness of the robot without
modifying its kinematic parameters is presented. Specifications are defined at the finger
tips of the robot based on human ergonomic and the propagation of those specifications to
the design of the motor-sensor system is done using a statistical distribution over the useful
workspace. The implementation of the final design is presented and both simulations and
simple experiments are used to show the validity of the final prototype and method.

Finally, Chapter 7 gives a list of what are considered the claims and original contributions
that can be drawn from this thesis.
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Parallel Mechanisms with
Configurable Platforms
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Chapter 2

Mobility and Overconstraints
Analysis of Parallel Mechanisms

2.1 Introduction

Serial robots are the most common robots in use in the industry. A serial robot is formed
by a set of n links connected by n − 1 kinematic pairs or joints. Since they have no
closed-loop, all joints are independent and must be actuated by a motor in order to fully
control the robot. Serial robots may have a structure which is anthropomorphic to the
human arm, with a series of shoulder, elbow and wrist joints. One of the most common
types of robot used in the industry is the Scara Robot, a 4 DOF serial robot that can
perform translations in the 3D space and rotation around the vertical axis. Such motions
are called Schoenflies motions [34] and are typically encountered in pick-and-place and
packaging industries. Figure 2.1 a) shows a schematic representation of a Scara Robot.
The base is noted B and the end-effector EE. All joints are actuated and the possible
movements of the four motors are represented with arrows.

In a parallel robot, the end-effector is linked to the base by a set of independent chains
acting in parallel. Due to the presence of closed-loops, the joints of parallel robots are
not independent and only some of them, generally located on the base, need to be actu-
ated in order to fully control the robot. Over the last two decades, parallel robots have
increasingly replaced their serial counterpart in a large number of applications. Typical
applications include flight simulators, high-speed pick-and-place machines, haptic devices
and machine tool. Figure 2.1 b) shows a schematic representation of 4 DOF Delta robot
that can perform the same type of movement than the Scara robot. Although they can
perform the same task, these two robots are very different in structure and performance.
These two examples are used to illustrate the difference between serial and parallel robots.

The main drawback of serial robots is that each motor has to carry and move the weight
of the next motor in the chain. In a typical Scara robot, the mass of the motors represents
a large part of the total moving mass and inertia. In a parallel robot such as the Delta,
all the motors are grounded on the base and have little contribution to the inertia of
the mechanism. A second drawback of serial robots is the fact that an open mechanical
structure has less stiffness than a comparable closed structure. The obvious result of
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Figure 2.1: Schematic Representation of a) a 4 DOF Scara Robot and b) a 4 DOF Delta
Robot

these two characteristics is that serial robots have a much lower payload-to-weight ratio
than parallel robots. The payload-to-weight ratio can be considered as a measure of the
structural stiffness of a robot.

In any application that requires a high structural stiffness, parallel robots will normally
show a better performance. For flight simulators, the payload is so high that the use of a
serial robot is not possible. For the pick-and-place industry, the inertia of the robot must
be reduced and the stiffness increased in order to reach a very high speed. Finally, when
using a haptic device, mass should be decreased so the human operator doesn’t feel the
inertia of the device itself, and stiffness should be increased so the he can feel clearly the
forces from the motors.

The main disadvantage of parallel robots is that they have a workspace that is usually
smaller than the robot itself. Another disadvantage is that the workspace may include
some singular positions, in which one loses control of the mechanism. The first parallel
robot is generally attributed to Gough [29] who designed a 6 DOF parallel platform to
test tires wear and tear.

For maximum application flexibility, a robot should have 6 DOF. For many applications,
less than 6 DOF are required and there are advantages in these cases to use a limited DOF
parallel robot. Limited-DOF parallel robots have a less complex mechanical structure,
lower manufacturing cost, and a simple control algorithm [40]. Typically, the first and
probably the most crucial step in the design of a parallel robot is the choice of the closed-
loop structure that will satisfy the motion requirements from the application. The choice
of the mechanical structure will greatly influence the results of the following steps in the
design process, such as the geometric optimization and control system design. As opposed
to serial structures, there are a very large number of parallel structures that can lead to
the same type of mobility.

The presence of closed-loops in parallel mechanisms introduces dependencies on the joints
of the mechanisms which makes the computation of their mobility a rather complex pro-
cess. In addition, the closed-loops may also introduce overconstraints in the mechanism.
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Over-constraints must carefully be taken into account regarding the manufacturing tol-
erances in order to be able to assemble the mechanism. Clearly, a good general under-
standing of the concepts of mobilities and overconstraints in parallel mechanisms can lead
to a better choice of the appropriated mechanical structure. Mobility of over-constrained
closed-loop mechanisms is a subject that is more than 150 years old and still an important
research topic in parallel robotics.

The first section of this chapter presents the current knowledge about the mobility analysis
of parallel mechanisms. The method described here relies heavily on the use of screw
theory, which is also introduced in this chapter. It seems that the major concern in recent
publications about mechanism mobilities [22, 11] is the computation of local mobilities
and the nature and distribution of the overconstraints. Both overconstraints and local
mobilities can be seen as screw redundancies in the mechanical system. In the second
section of this chapter, an original mathematical framework is introduced to calculate
the local mobilities and overconstrains. The last section of this chapter discusses the
advantages of the proposed method.

2.2 Standard Method for the Mobility Analysis of Over-
constrained Parallel Mechanisms

In this section, a state-of-the-art method based on screw theory is presented to determine
the mobility of overconstrained parallel mechanisms. The mobility or spatial degree of
freedom (DOF) of a mechanism is defined by IFToMM as “the number of independent
coordinates needed to define the configuration of a kinematic chain or closed-loop mech-
anism”. As it will be shown in this section, the concept of mobility is closely related to the
concept of overconstraints, since mobilities can also be considered as under-constraints.
Motion and constraints of parallel mechanisms are most naturally described by screw
theory, for which a quick introduction is provided. The method is finally illustrated by
the analysis of a 4-RRR parallel mechanism.

2.2.1 Modified Chebychev–Grübler–Kutzbach Criterion

A first formula for the calculation of the mobility of mechanism is generally attributed
to Chebyshev [9] in 1869. Further contributions came from Grübler [30] in 1884 and
from Kutzbach [43] in 1929 to form the Chebychev–Grübler–Kutzbach mobility criterion.
When considering a general mechanism with n rigid links and m joints, each joint having
fi DOF. Most authors also consider a parameter d, which stands for the mechanism
motion system dimension. d = 6 in case of a spatial mechanism and d = 3 for a planar
or a spherical mechanism. However, planar and spherical mechanisms can be considered
as special cases of overconstrained spatial mechanisms and an analysis with d = 6 can
be done without loss of generality. The Chebychev–Grübler–Kutzbach criterion for the
mobility M , the number of independent parameters needed to describe the configuration
of a spatial mechanism, is given by

M = 6 (n−m− 1) +

m∑
i=1

fi (2.1)
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The Chebyshev formula can be understood physically in two ways that lead to the same
result. A first approach is to consider that all the rigid links aren’t initially connected to
each other and float freely into space. Each rigid body has 6 DOF and the total freedom
of the system is given by 6 (n− 1), since one link must be considered has the reference.
Each joint allows fi DOF of mobilities and constraints (6− fi) DOF between 2 links.
The total number of constraints is therefore given by

∑m
i=1 (6− fi). The mobility M of

a closed-loop mechanism is given by

M = 6 (n− 1)−
m∑
i=1

(6− fi) (2.2)

which is equivalent to Equation 2.1. A second approach is to consider that for each closed-
loop, one link is virtually cut in half in order to open the loop. Initially, the mechanism
has n links, m joints and m− n+ 1 independent closed-loops. Without any closed-loop,
all m joints are independent and the complete mechanical system has

∑m
i=1 (fi) DOF.

The m − n + 1 half-split links are now glued together to reconstruct each loop. Each
time the two halves of a link are alligned to reconstruct it, 6 DOF are removed from the
system. Therefore, the mobility M of a closed-loop mechanism is given by

M =

m∑
i=1

(fi)− 6 (m− n+ 1) (2.3)

which is also equivalent to Equation 2.1. However, people realized quickly that many
mechanisms had a different mobility than the one predicted by the Chebychev–Grübler–Kutzbach
criterion. This is due to special geometrical arrangements that introduce redundancies
in the constraints. In both physical interpretations, it is indeed possible that certain
constraints were imposed on degrees of freedom of the system that were already con-
strained. These redundant constraints are called overconstraints. This phenomenon was
already pointed out in the 60’s by Waldron [77] among other authors. If the number of
over-constraint is noted RC , the actual mobility of a mechanism is given by

M = 6 (n−m− 1) +

m∑
i=1

(fi) +RC (2.4)

This equation is valid for any mechanism. The problem of course is now to calculate RC ,
the number of overconstraints. The term M in Equation 2.4 represents the mobility of
the whole mechanism, including the mobility that may be locally present in redundant
serial chain. Those local mobilities are independent of the end-effector motion and are
present even when the end-effector is fully constrained. In such case, M will be greater
than the number of DOF between the base and the end-effector. Some authors prefer to
note M as the mobility between the end-effector and the base, and add a term, that is
noted here RM , which corresponds to the total number of local DOF. In his review of
mechanism mobility criteria in 2005, Gogu [22] proposed to consider the local mobilities
separately. A form of this modified criterion can be given by

M = 6 (n−m− 1) +

m∑
i=1

(fi) +RC −RM (2.5)
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Figure 2.2: The Screw

The problem being to calculate RC and RM , the number of overconstraints and local
mobilities present in the mechanism. In order to do this, more information is needed
than simply the amount of joints and links but the geometrical arrangements of the
constraints imposed by the joints in space must be considered. This leads not only to
the right number of DOF in closed-loop mechanisms, but also to a description of the
orientation and distribution of the mobilities and constraints within the mechanism. For
this purpose, screw theory provides an elegant and intuitive framework.

2.2.2 Basic Results From Screw Theory

Screw theory is a conceptual and mathematical framework that combines linear and
rotational velocities, and linear forces and moments into a 6 dimensional vector space.
The theory finds its origin in the work of the Irish astronomer Sir Robert Stawel Ball [1],
and was further developed for kinematic analysis by Hunt [36], Roth [61], Waldron [77],
Phillips [65], and Dai [12] among others. The two fundamental theorems are the Poinsot
theorem in 1803, which states that any system of forces and moments applied to a rigid
body can be replaced by a single force combined with a single couple along the same axis,
and the Chasles theorem in 1830, which states that any displacement of a rigid body can
be replaced by a single rotation combined with a single translation along the same axis.
The theorem is generally attributed to Chasles althougt Mozzi and Cauchy are credited
with earlier results that are similar.

2.2.2.1 The Screw

A screw is a geometric element formed by a straight line in 3D space to which a scalar
called pitch is associated. A vector representation of a unit screw $̂ is given by
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Figure 2.3: A zero pitch screw and an infinite pitch screw used as a twist or a wrench.
An infinite pitch screw is a directed free vector. The first part of a twist represents an
angular velocity while the second part represents a linear velocity at the origin of the
reference frame. The first part of a wrench represents a linear force while the second part
represents a torque applied at the origin of the reference frame.

$̂ =

[
$F
$S

]
=


[

ŝ
ŝ× r + hŝ

]
if h is finite[

0
ŝ

]
if h =∞

(2.6)

where $F and $S are the first and second part of the screw and are 3 dimensional vectors,
ŝ is a unit vector directed along the screw. r is a vector from any point along the screw
to the origin of the coordinate frame, and h is the scalar pitch. This is shown on Figure
2.2.

A unit screw can be multiplied by magnitude scalar λ to either form a twist, representing
instantaneous velocity at the origin of the coordinate frame, or a wrench, representing
instantaneous forces at the origin of the coordinate frame. The first part of a twist is an
angular velocity around ŝ and the second part is the translational velocity. The first part
of a wrench is a linear force and the second part is a couple. In a mechanism, a zero pitch
screw represents a revolute joint or a linear force while an infinite pitch screw represents
a prismatic joint or a torque. This is summarised in Figure 2.3.

2.2.2.2 Screw Systems

The configuration space of a single rigid body in the 3D Euclidean space is described by
the Special Euclidean group of transformations SE(3) which has 6 DOF. A 6-dimensional
vector space based on the geometry of screws can be constructed to represent instantan-
eous velocities on those configurations. A n ≤ 6 screw system is a vector subspace within
the screw vector space that is formed by all the screws that can be obtained from a linear
combination of n independent basis unit screws. The basis of a screw system is not unique
and various sets of basis screws can be used to describe the same screw system, as long
as the n basis screws are independent. A n screw system S with unit basis screws $̂i,
i = 1..n is noted as

S =
{

$̂1, · · · , $̂i, · · · , $̂n
}

(2.7)
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S is used to represent a general screw system. A twist system is noted T and represents
velocities while a wrench system is notedW and represents forces. The reciprocal product
between two screws $1 and $2 is given by

$1 ◦ $2 = $1

[
03,3 I3,3
I3,3 03,3

]
$2 (2.8)

The reciprocal product between a twist and a wrench on a rigid body gives the power that
is transmitted to the body. Two screws $1 and $2 are said to be reciprocal if $1 ◦ $2 = 0.
Two screw systems S1 and S2 are reciprocal if all the screws in S1 are reciprocal to all the
screws in S2. Any screw system S of dimension n has a unique reciprocal screw system
S⊥of dimension (6− n).

S =
(
S⊥
)⊥

(2.9)

where ()
⊥denotes the reciprocal screw system. Considering two rigid bodies, the twist

system T , representing their relative mobility, is reciprocal to the wrench system W ,
representing their relative constraints, and therefore T = W⊥ and W = T⊥. Screw
systems are vector subspaces of the Lie algebra se(3) and two basic operations, the sum
and intersection, are often performed on them during kinematic analysis. The sum of two
screw systems S1 and S2 is given by all the screws that can be generated by all linear
combinations of the basis screws of both S1 and S2 combined and is noted S1 + S2. The
intersection of two screw systems S1 and S2 comprises all the screws which are common
to both S1 and S2 and is noted S1 ∩ S2. Note that, unlike the sum of sets, the sum of
vector spaces S1 + S2 include vectors which doesn’t belong to neither S1 or S2 but are
obtained by linear combination of screws from both systems. If the intersection of two
screw systems is zero S1 ∩ S2 = {0} , a valid basis for S1 + S2 can be obtained by the
union of the two sets of basis screws of S1 and S2. The sum of two non-intersecting screw
systems is called the direct sum and is noted S1 ⊕ S2.

2.2.3 Mobility of Overconstrained Parallel Mechanisms

A pure parallel mechanism is a mechanism in which two links, the base and the end-
effector, are linked in parallel by two or more independent chains. The origin of the
method can be found in the works of Waldron [77] who first established the serial and
parallel laws for instantaneous kinematics. The serial law states that the mobility between
the two end links of a serial chain is given by the sum of the twist systems of all joints
within the chain. For a serial chain i with q joints j = 1..q, the twist system is expressed
as

Ti =

q∑
j=1

Tij (2.10)

where Tij is the twist system of joint j, and Ti is the twist system between the 2 end
links of the serial chain i. For example, if the axis of rotation of a one-dof revolute joint
is given by ŝ and the position of the joint relatively to the reference frame is given by r,
the corresponding twist system is given by Tij =

[
ŝ r× ŝ

]T , where the second part
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r× ŝ represented the linear velocity created at the reference frame by the rotation of the
joint. The parallel law states that the mobility between 2 links connected by parallel
independent chains is given by the intersection of the twist systems of all chains. For a
parallel mechanism with i = 1..p independent chains, the twist system is expressed as

T =

p⋂
j=1

Ti (2.11)

where Ti is a vector space representing the twist system of the serial chain i. A dual
set of laws exists for the wrench systems of parallel mechanisms. In a serial chain, the
constraints system between the 2 end links is given by the intersection of the wrench
systems of all joints within the chain. For a serial chain i with j = 1..q joints, the wrench
system is

Wi =

q⋂
j=1

Wij (2.12)

where Wij is the wrench system of joint j and Wi is the wrench system of the serial chain
i. The constraints between 2 links connected in parallel by independent chains is given by
the sum of the wrench systems of all chains. For a parallel mechanism with p independent
chains i = 1..p, the wrench system is

W =

p∑
i=1

Wi (2.13)

For any screw system, either representing a single joint, a serial chain or the whole parallel
mechanism, the twist system, which represents the mobility, and the wrench system,
which represents the constraints, are reciprocal to each other and T = W⊥ and W = T⊥.
Reciprocal screw systems also follow a form of De Morgan’s law in the following way

(∑
i

Si

)⊥
=
⋂
i

S⊥i

(⋂
i

Si

)⊥
=
∑
i

S⊥i

(2.14)

Combining Equation 2.10 to 2.13, a formulation is obtained for the mobilities and the
constraints between the end-effector and the base of a parallel mechanism in which the
legs are formed by serial chains.

T =
p⋂
i=1

(
q∑
j=1

Tij

)

W =
p∑
i=1

(
q⋂
j=1

W ij

) (2.15)

The two equations in 2.15 are reciprocal, and W = T⊥. The set of screws that belongs to
the screw system T , which is formed generally by an infinite number of screws, describe
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all the possible instantaneous motion between the base and the end-effector. The number
of DOF, corresponding to the term M in equation 2.5 is simply given by M = dim (T ),
i.e. the maximum number of independent screws in T .

It is usually simpler to perform sum and intersection operations on screw systems of
smaller dimension than on larger ones. Operations on small screw systems are simpler
and already well known for several special cases while operations on screw systems of
dimension greater than 3 are known to be more tedious. Reciprocal screw systems are
also well defined for several known screw systems. The wrench space of a single joint is
generally of higher dimension than its twist space. On the other hand, in most parallel
mechanisms, the twist space of a serial chain is of higher dimension that its wrench space.
Because of all those reasons, kinematicians usually prefer to combine Equation 2.14 and
2.15 and use the following equation to calculate the mobility of parallel robots.

T = W⊥ =

(
p∑
i=1

Wi

)⊥
=

(
p∑
i=1

(
T⊥i
))⊥

=

 p∑
i=1

 q∑
j=1

Tij

⊥

⊥

(2.16)

Another advantage of using Equation 2.16 instead of the two equations in 2.15 is the
possibility to calculate in one process both the local mobilities and the overconstraints,
referred as RM and RC respectively in Equation 2.5. The number of local mobility in
each leg is the dimension of the redundancy that occurs in the sum of the joint twist
systems. The number of overconstraints is the dimension of the redundancy that occurs
in the sum of the leg wrench systems. Using the same notation, their values are given by

RM =
∑p
i=1

(∑q
j=1 dim (Tij)− dim (Ti)

)
RC =

∑p
i=1 dim (Wi)− dim (W )

(2.17)

2.2.4 An Example

In this section, the standard mobility method is applied to a 4-RRR parallel mechanism
like the one used in [11]. The mathematical analysis differs a little and is shorter than
[11] which focused on dividing the constraints into mechanism constraints and end-effector
constraints. The mechanism constraints are the constraints common to all the legs, and
its reciprocal screw system forms the d dimensional mechanism motion system. If d < 6,
the mechanism can be considered a special case of general spatial mechanisms, but it’s
always possible to perform the analysis using the general spatial d = 6 framework. A
d = 3 framework is often used to simplify the analysis of planar mechanisms such as in
[5], which uses 3-D planar screw systems. In theory, one should be aware that closed-
loop d = 3 planar mechanisms, like any d < 6 mechanisms are always overconstrained
from a d = 6 analysis point of view, and that a full analysis in d = 6 will reveal those
overconstraints. In practice, this means that manufacturing tolerances should always be
taken into account for the assembly of planar closed-loop mechanisms. In this chapter, it
is always considered that d = 6 without loss of generality.

The analysis of the 4-RRR is shown here to illustrate the standard mobility analysis
method, but it will also serve as a basis to illustrate further concepts developed in this
chapter.
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Figure 2.4: a) Schematic representation and b) graph representation of the 4-RRR pure
parallel mechanism. Each vertex represents a rigid link and each edge represents a revolute
joint with the twist system $ij .

Figure 2.4 shows a schematic and a graph representation of the 4-RRR mechanism. It
is possible to represent the topology of a mechanism with a graph in which each vertex
represents a link and each edge represents a joint. Each of the four legs of the mechanism
has 3 coplanar revolute joints and each leg is oriented perpendicularly to its neighbor legs.
The screw $ij represents the twist of the revolute joint j of leg i and is given by

$ij =

[
ŝi

ŝi × rij

]
(2.18)

where ŝi is a unit vector parallel to the axis of rotation of the revolute joints of leg i and
rij is a vector from any point on the axis of rotation of the joint j of leg i to the origin of
the coordinate frame. The first step of equation 2.16 is used to calculate the twist system
iT of leg i. Each leg is formed by three parallel joints all oriented along the axis ŝi and
positioned at ri1, ri2 and ri3 respectively.

Ti =
∑3
j=1 $ij =

{[
ŝi

ŝi × ri1

]
,

[
ŝi

ŝi × ri2

]
,

[
ŝi

ŝi × ri3

]}

Ti =

{[
0

ŝi × (ri2−ri1)

]
,

[
0

ŝi × (ri3−ri2)

]
,

[
ŝi

ŝi × ri3

]} (2.19)

Where the independent screws within the brackets represent a non unique basis of the
screw system Ti. The first set of basis screws correspond directly to the joint screws
while the second set is a more convenient set obtained by linear combinations of the basis
screws. Each leg has 3 DOF that can be interpreted as two linear translations in the
plane perpendicular to the ŝi axis and a rotation around ŝi located on the last joint. The
screw system that is reciprocal to Ti represents the constraints of the serial leg.

Wi = T⊥i =

{[
0

ŝi × (ri2−ri1)

]
,

[
0

ŝi × (ri3−ri2)

]
,

[
ŝi

ŝi × ri3

]}
(2.20)
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where each screw inWi is reciprocal to each screw in Ti such that their reciprocal product
as defined in equation 2.8 is equal to zero. In the current case, the screw system is self-
reciprocal. The constraints of the leg can be interpreted as two couples in the plane
perpendicular to ŝi and a linear force in the ŝi direction at the third joint location.

The total constraints applied on the end-effector are given by the sum of the constraints
of each leg. The four constraint systems are

1W =

{[
0

ŝ1 × (r12−r11)

]
,

[
0

ŝ1 × (r13−r12)

]
,

[
ŝ1

ŝ1 × r13

]}
2W =

{[
0

ŝ2 × (r22−r21)

]
,

[
0

ŝ2 × (r23−r22)

]
,

[
ŝ2

ŝ2 × r23

]}
3W =

{[
0

ŝ3 × (r32−r21)

]
,

[
0

ŝ3 × (r33−r22)

]
,

[
ŝ3

ŝ3 × r13

]}
4W =

{[
0

ŝ4 × (r42−r41)

]
,

[
0

ŝ4 × (r43−r42)

]
,

[
ŝ4

ŝ2 × r23

]}
(2.21)

A set of independent screws that represents the 12 constraints of equation 2.21 must be
calculated. For opposite legs i = 1, 3 and i = 2, 4, the axis ŝi are parallel and the second
parts of the basis screws span the same plane perpendicular to ŝi . It can be concluded
that all constraints in leg 3 and 4 are redundant. Among the 6 screws of leg 1 and 2,
four of them are pure moment constraints, so only three can be independent. Finally, the
wrench system of the end-effector can be expressed as

W =

4∑
i=1

Wi =

{[
0

ŝ1 × (r12−r11)

]
,

[
0

ŝ1 × (r13−r12)

]
,[

0
ŝ2 × (r22−r21)

]
,

[
ŝ1

ŝ1 × r13

]
,

[
ŝ2

ŝ2 × r23

]}
(2.22)

The ŝ1 and ŝ2 axis are orthogonal. The only screw which is reciprocal to the 5 screws of
W gives the twist system of the end-effector.

T = W⊥ =

[
0

ŝ1 × ŝ2

]
(2.23)

The end-effector can only perform linear translations perpendicular to the revolute axis
of the base. Referring to equation 2.5, the degree of mobility of the end-effector is M =
dim(T ) = 1, the number of overconstraints is given by RC =

∑4
i=1 dim

(
iW
)
−dim (W ) =

12− 5 = 7, and the number of local mobility RM is zero since iRM =
∑3
j=1 dim

(
i$j
)
−

dim
(
iT
)

= 0 for each leg. The mechanism has n = 10 links and m = 12 single DOF
joints. This can be verifies with Equation 2.5.

M = 6 (n−m− 1) +
∑m
i=1 (fi) +RC −RM

1 = −18 + 12 + 7− 0
(2.24)
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2.2.5 Analytical VS Numerical Method for the Calculation of the
Mobility

The mobility analysis presented in Section 2.2.4 uses an analytical representation of vec-
tors. It can be noted that no preferred reference frame was mentioned during the process
in order to show that the method is independent of the choice of any particular reference
frame. In practice however, the choice of a judicious coordinate frame can highly facilitate
the analysis without compromising the generality of the results. Some geometric relations
between the vectors were assumed in order to calculate dependencies and reciprocity of
the screw systems. In this analysis for example, it was assumed that all joints in a leg
were parallel and that the legs were orthogonal. The method can of course be applied dir-
ectly with numerical values for a given configuration. Although often simpler to perform
and technically possible to automate with an algorithm, there are several disadvantages
of using numerical values instead of vector representations to calculate the mobility of
mechanisms.

The first one concerns the numerical errors that can occur in divisions by the use of
floating-point numerical values. On two occasions, the method requires the computation
of the number of independent screws when performing the sum of screws systems. In other
words, it required the computation of the rank of matrices. This can be only performed
correctly if the numerical values don’t contain numerical errors. Screw systems of lower
dimensions are relatively well known analytically and have been widely studied. Given an
analytical expression of a screw system and considering some geometric vector relations,
it is generally easy to determine the dimension of the screws system and its reciprocal.

A second point is that analytical formulations are not configuration dependent and give
better insights in the nature and the inter-relations of the constraints and mobilities in
the system. For example, using vectors to represent the mobility of a serial chain can
help to determine if the twist system obtained is valid for the full-cycle mobility of the
chain or will change according to the chain configuration.

Finally, vector representation may allows the determination of the singularities of the
mechanism by inspection. Singularities occur when the rank of a screw system changes in
a certain configuration. Serial singularities occurs when the dimension of the sum of twist
systems is reduced in a certain configuration while constraint singularities [83] occurs when
the dimension of the sum of wrench systems is reduced in a certain configurations. As
opposed to parallel robot singularities [26] which depend on input-output relations from
the actuators to end-effector, these singularities don’t depend on the actuators positions
and are a fundamental property of the mechanism itself. Vector representation can help
to establish for which conditions and configurations these singularities occur while it is
impossible to do with numerical method. When the mobility is obtained from numerical
methods, one should repeat the process again with a different configuration to insure that
the mechanism wasn’t already in a singular configuration when the mobility was first
calculated.

2.3 Solutions to Screw Systems under Linear Homo-
geneous Equations

In the standard mobility analysis method presented in Section 2.2, the number of the
local mobilities RM and the number of overconstraints RC were calculated as the number
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of redundant basic screws in the sum of screw systems. Given p screw systems Si with
i = 1..p, the redundancy R is given by

R =

p∑
i=1

dim (Si)− dim

(
p∑
i=1

Si

)
(2.25)

which is the total dimensions of the screw systems minus the dimension of the sum of
the screw systems. The number of local mobilities and the number of overconstraints can
both be calculated with Equation 2.25. However the equation only tells the number of
redundancies and doesn’t tell us how these redundancies are organized into screw systems
and how they are distributed on the total screw system S =

∑p
i=1 Si. Local mobilities

occur if some joints can have a non-zero velocity while the end links of the chain is fully
constraint. In such a case, the sum of the twist screws associated with the joint velocities
must be zero. When overconstraints occur, internal stresses are introduced in the joints
when the mechanism is assembled. If no external load is applied on the mechanism, the
sum of the internal stresses on one link must be zero. In both cases, the set of screws
describing the local mobilities and the overconstraints must satisfy a homogenous system
of 6 equations. In this section, a framework that allows us to describe analytically the
screw systems of these redundancies is presented.

A screw system S can be represented by a set of independent basis unit screws $̂i. The
number of basis screws n corresponds to the dimension of the screw system and any
particular screw $ within the system can be obtained by a linear combination of the basis
screws.

S =
{

$̂1, · · · , $̂i, · · · , $̂n
}

(2.26)

$ =

n∑
i=1

λi$̂i (2.27)

The screws $̂i are said to span the screw system S. The set of basis screws is not unique
and different sets can span the same screw system. Given a set of basis screws, each
screw $ within S is defined by a unique set of magnitudes λi since the basis screws $̂i are
independent. The sum of p screw systems represents all the screws that can be obtained
from linear combinations of the p set of basis screws. The sum of the p screw systems Si
with i = 1..p. is noted S

S =

p∑
i=1

Si (2.28)

where Si =
{

$̂i1, · · · , $̂ij , · · · , $̂ini

}
. Any particular screw $ within S can be obtained

from linear combinations of the unit basis screws $̂ij .

$ =

p∑
i=1

ni∑
j=1

λij $̂ij (2.29)
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If the screw systems Si have some intersections, i.e the unit screws $̂ij are not independent,
an infinite number of set of magnitude λij can be used to obtain $. In practice, when
performing the sum of p screw systems, the inputs are the p sets of basis screws and the
output is a single set of independent basis screws that span the resulting sum. If the
screw systems don’t intersects, i.e Si ∩

(∑
k 6=i Sk

)
= {0}, the basis screws of the sum S

are simply all the basis screws $̂ij of the p screw systems.

As mentioned, local mobilities and overconstraints are represented by the set of screws
that are restricted by a homogeneous system of linear equations. The next section presents
a general procedure to calculate these redundancies.

2.3.1 Restricted Screw System

Lets Si be a screw system that can be described by a set of qi independent basis unit
screws $̂ij noted Si =

{
$̂i1, · · · , $̂ij , · · · , $̂iqi

}
. Any screw $i in Si can be described by a

linear combination of the basis screws. Six linear homogenous equations now restrict the
p screw systems such that the sum of the screws $ij = $̂ijλij is zero. The set of restricted
screws $ij are the unit screws $̂ij and magnitudes λij that satisfy the following relations

p∑
i=1

qi∑
j=1

$̂ijλij = 06,1 (2.30)

Putting the last screw system on the right side, Equation 2.30 can be rewritten the
following way

p−1∑
i=1

qi∑
j=1

$̂ijλij = −
qp∑
j=p

$̂pjλpj (2.31)

The complete space of solutions of this system of equations, like any non-homogeneous
system of linear equations, can be represented by the addition of the subspace of particular
solutions and the subspace of homogeneous solutions. The particular solutions SRp form
a screw system given by

SRp = Sp
⋂(

p−1∑
i=1

Si

)
(2.32)

which is spanned by a set of independent basis screws $Rpk. The set of homogeneous
solutions must satisfy the following relation

p−1∑
i=1

qi∑
j=1

$̂ijλij = 06,1 (2.33)

The last screw system is again put on the rigth side to obtain
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p−2∑
i=1

qi∑
j=1

$̂ijλij = −
qp∑

j=(p−1)

$̂(p−1)jλ(p−1)j (2.34)

which is the same as Equation 2.30 except that the i = p screw system has been removed.
A particular solution SRp−1 to Equation 2.33 can be found again as

SRp−1 = Sp−1
⋂(

p−2∑
i=1

Si

)
(2.35)

By applying recursively this relation until i = 2, a set of p− 1 screw systems is obtained
in which SRi represents all the independent solutions of the sum of screw systems under
homogeneous linear equations. The restricted screw system SRi form a vector subspace
of Si given by

SRi = Si
⋂i−1∑

j=1

Sj

 (2.36)

It will now be proven that the sum of the dimensions of the restricted screw systems SRi
is equal to the redundancy of the system, and that this result is independent of the order
in which the screw systems are labelled in Equation 2.36. The total of the dimension of
the restricted screw systems R is given by

R =

p∑
i=2

dim
(
SRi
)

(2.37)

R =

p∑
i=2

dim

Si⋂
i−1∑
j=1

Sj

 (2.38)

The dimension of the intersection of two screw systems S1 and S2 is given by

dim
(
S1

⋂
S2

)
= dim (S1) + dim (S2)− dim (S1 + S2) (2.39)

Applying this result to 2.37 gives

R =

p∑
i=2

dim (Si) + dim

i−1∑
j=1

Sj

− dim
 i∑
j=1

Sj

 (2.40)

R =

p∑
i=2

dim (Si) + dim (S1)− dim

 p∑
j=1

Sj

 (2.41)

R =

p∑
i=1

dim (Si)− dim

(
p∑
i=1

Si

)
(2.42)
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which is the same result as Equation 2.25. It can be seen that in both terms of equation
2.42 the order in which the screw systems are labelled is not important. By definition,
SR1 = {0} , and a different labelling order will produce different solutions for the restricted
screw system SRi ⊆ Si defined by Equation 2.36, but the total dimension will be the same
and correspond to the redundancy of the system. .

2.3.2 Unrestricted Screw Systems and Distribution

In Section 2.3.1, a number of restricted screw systems SRi ⊆ Si were defined, to which the
dimensions correspond to the redundancy in the sum of screw systems. The restricted
screw systems SRi are formed by all the screws that are solution to the right part of the
following equation

i−1∑
k=1

qk∑
j=1

$̂kjλkj = −
qi∑
j=1

$̂ijλij (2.43)

The restricted screw system is included in the original screw system SRi ⊆ Si, and can be
expressed with a set of basis screws SRi =

{[
$̂R1 , · · · , $̂RqRi

]}
, where qRi is the dimension

of the restricted screw system. An independent variable λRij can be assigned to each
redundancy and Equation 2.43 can be expressed as

i−1∑
k=1

qk∑
j=1

$̂kjλkj =

qRi∑
j=1

$̂Rijλ
R
ij (2.44)

The solutions for the left part represent the distribution of the redundancy expressed by
the variables λRij on the remaining k = 1..i − 1 screw systems. If the screw systems Sk
intersect, there are multiple ways to distribute SRi on the sum of the Sk screw systems.
Any solution can be chosen and will represent the redundancies correctly, and the different
solutions lead to different physical interpretations which are equivalent. A convenient way
to distribute the redundancy is the use of the unrestricted screw system. For a restricted
screw system SRi ⊆ Si that has been defined based on the intersection of Si with the
previous screw systems, it is possible to find a complement unrestricted screw systems
SUi that satisfies the following equation

SRi ⊕ SUi = Si (2.45)

where the operator⊕ is the direct sum. A direct sum implies that the two vector subspaces
SRi and SUi do not intersect, so SRi

⋂
SUi = {0} . The complement screw system is not

unique and the choices of unrestrited screw systems will lead to equally valid but different
physical interpretations. A complementary screw system can be expressed with a set of
basis screws SUi =

{
$Ui , · · · , $UqUi

}
, where qUi = dim

(
SUi
)
and qRi + qUi = qi. A specific

solution of Equation 2.44 can now be expressed as

i−1∑
k=1

qCk∑
j=1

$̂Ukjλ
Ui
kj =

qRi∑
j=1

$̂Rijλ
R
ij (2.46)
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Figure 2.5: A planar 6R serial chain in which each the mobility of each joint is represented
by a zero-pitch screw.

Given a set of values for λRij , this equation has an unique solution in the space of values
for λUikj .

This formulation can be applied to the distribution of local mobilities and the distribution
of overconstraints in a mechanism. In case of local mobilities, the velocity of joint i can
be expressed as

Ti =

qRi∑
j=1

$̂Rijλ
R
ij +

p∑
k=i+1

qUk∑
j=1

$̂Uijλ
Ui
kj (2.47)

where λUikj is a linear function of λRij described by Equation 2.46. The distribution of
overconstraints can be represented in the same way. The next two sections show an
example of local mobilities distribution and an example of overconstraints distribution
using this method.

2.3.3 Example 1: Distribution of Local Mobilities in a 6R Planar
Chain.

In this section, the method proposed for the distribution of redundancy in sum of screw
systems is used to define analytically the local mobilities in a serial chain. Figure 2.5
shows a planar serial chain formed by six revolute joints with parallel axis. Joints are
labeled i = 1..6 from the base to the end-effector. Each joint has 1 DOF and the same
rotation vectors s. ri is any vector from the axis i to the origin of the reference frame.
The screw system of joint i is given by

Si =

[
ŝ

ŝ×ri

]
(2.48)

The method can be applied directly to calculate the global and local mobility of the
chain. For each joint, the restricted screw system is calculated using Equation 2.36 and
an unrestricted screw system is calculated using Equation 2.45.
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SR1 = {0} SU1 =

[
ŝ

ŝ×r1

]

SR2 = S2

⋂
SU1 = {0} SU2 =

[
ŝ

ŝ×r2

]

SR3 = S3

⋂(
SU1
⊕
SU2
)

= {0} SU3 =

[
ŝ

ŝ×r3

]

SR4 = S4

⋂(⊕3
i=1 S

U
i

)
=

[
ŝ

ŝ×r4

]
SU4 = {0}

SR5 = S5

⋂(⊕4
i=1 S

U
i

)
=

[
ŝ

ŝ×r5

]
SU5 = {0}

SR6 = S6

⋂(⊕5
i=1 S

U
i

)
=

[
ŝ

ŝ×r6

]
SU6 = {0}

(2.49)

The method leads to a direct physical interpretation of the mobilities of the chain. The
mobilities are distributed among 4 screws systems; the 3-dimensional unrestricted screw
system S =

{
SU1 , S

U
2 , S

U
3

}
and the three restricted screw systems SR4 , SR5 , and SR6 .

Mobility variables can be assigned to each systems and can be distributed in a unique
way on the unrestricted screw system S. Let us define the 3 mobilities of S as λ1, λ2,
λ3 and the three local mobilities of SRi as λR4 , λR5 ,λR6 . There is always a unique way in
which SRi projects on S such that

λRi S
R
i = −ρ1iSU1 − ρ2iSU2 − ρ3iSU3 (2.50)

The velocity of each joint θ̇i can be now be expressed as function of the global and local
mobility variables  λU1

λU2
λU3

 =

 −ρ14 −ρ15 −ρ16
−ρ24 −ρ25 −ρ26
−ρ34 −ρ35 −ρ36

 λR4
λR5
λR6

 (2.51)

In this case, θ̇i = λRi and the velocity of the first three joints can be expressed as the
function of the velocity of the last three joints when the end-effector is locked in position.
The method can be applied to any type of serial chain. The division of each joint screw
system into restricted and unrestricted screw systems lead to a distinction between the
global mobility variables and the local mobility variables. In the next section, the exact
same method is applied to find and distribute the constraints and overconstraints in a
pure parallel mechanism.

2.3.4 Example 2: Distribution of the overconstraints in a 4-RRR
Parallel Mechanism

The same 4-RRR mechanism that was used in Section 2.2.4 is used in this section to
illustrate the calculation of the overconstraints with the proposed method. In the previous
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Figure 2.6: The 4-RRR parallel mechanism. Each joint of leg i is oriented in the ŝi
direction and the position of the joint axis j is given by the vector rij .

section, the constraints W between the base and the end-effector were calculated as W =∑4
i=1Wi and the number of overconstraints was given by RC =

∑4
1 dim (Wi)− dim (W ).

Little details were given about how to find a valid basis for W and it was not mentioned
how to distribute the overconstraints in the mechanism. The general method presented in
this section will be used to achieve this goal. The vectors used to represents the wrench
systems of the mechanism are shown in Figure 2.6 .

The wrench system Wi of each leg was described by Equation 2.21. As mentioned in
Section 2.2.5, the calculation of screw system intersections is often facilitated by the use
of a appropriated coordinate system. Using a coordinate frame where x = s1 and y = s2,
the 4 wrench systems can be expressed as

W1 =

{[
0
y

]
,

[
0
z

]
,

[
x
0

]}

W2 =

{[
0
x

]
,

[
0
z

]
,

[
y
0

]}

W3 =

{[
0
y

]
,

[
0
z

]
,

[
x
0

]}

W4 =

{[
0
x

]
,

[
0
z

]
,

[
y
0

]}
(2.52)

The exact same procedure as the previous example is used to find the restricted and
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unrestricted wrench systems.

WR
1 = {0} WU

1 =

{[
0
y

]
,

[
0
z

]
,

[
x
0

]}

WR
2 = W 2

⋂
WU

1 =

[
0
z

]
WU

2 =

{[
0
x

]
,

[
y
0

]}

WR
3 = W3

⋂(
WU

1

⊕
WU

2

)
=

{[
0
y

]
,

[
0
z

]
,

[
x
0

]}
WU

3 = {0}

WR
4 = W4

⋂(⊕3
i=1W

U
i

)
=

{[
0
x

]
,

[
0
z

]
,

[
y
0

]}
WU

4 = {0}

(2.53)

From this analysis, it is clear that the unrestricted wrench system W = WU
1 ⊕WU

2 is of
dimension 5. The three restricted wrench systems WR

1 , WR
2 , and WR

3 are of dimension
one, three, and three respectively, for a total of seven overconstraints. Each restricted
wrench system WR is expressed with a set of basis screws WR

i =
{

$Ri1, · · · , $Rij , · · · $Riqi
}

where qi is the dimension of the restricted screw system. Each basis screw of the restricted
wrench system can be projected in a unique way on an unrestricted screw system W =
WU

1 ⊕WU
2 such that

λRij$
R
ij = −

3∑
j=1

ρ1j$
U
1j −

2∑
j=1

ρ2j$
U
2j (2.54)

The seven independent internal stresses, corresponding to the screws λRij$Rij of the wrench
systems WR

2 , WR
3 and WR

4 are distributed on WU
1 and WU

2 in the following way:


λU11
λU12
λU13
λU21
λU21

 =


0 −1 0 0 0 0 0
−1 0 −1 0 0 −1 0
0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 0 −1





λR21
λR31
λR32
λR33
λR41
λR42
λR43


(2.55)

where λij$ij is the internal stress on the wrench screw j of leg i. If the seven independent
internal stresses λRij$Rij in the attached joint between the legs and the end-effector are
measured, the matrix gives the internal stresses in the remaining five constraints so that
the end-effector is in static equilibrium. Each leg must excert an opposite wrench at its
end joints in order to stay in equilibrium and therefore the internal stresses in the base
link are symmetrical to the internal stresses in the end-effector. The internal stresses
within a leg is transmitted by each joint of the leg. This method can be applied to any
pure parallel mechanism to calculate the number of independent overconstraints and to
calculate the distribution of the internal stresses caused by these overconstraints over all
joints and links of the mechanism.
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2.4 Discussion and Summary

The first part of this chapter presented a general method based on screw theory for the
mobility analysis of overconstrained pure parallel mechanisms that can be considered
standard. The method is not based on one article in particular but instead uses elements
and techniques based on the work of Hunt [37], Mohamed [55], and Phillips [65, 64] and
uses the rules of twist addition for serial connections and twist intersection for parallel
connections. More recently Gogu [22] discussed the concept of local mobilities and Dai
[11] discussed the types of constraints and overconstraints in parallel mechanisms and
made the distinction between the mechanism constraints system and the end-effector
constraints system. Little was explained about how the local mobilities are distributed
on the joints velocities or how the overconstraints are distributed as internal stress in the
joints of the mechanisms.

The concepts of local mobilities and overconstraints are both related to sum of screw sys-
tems that must satisfy a set of homogeneous linear equations. In the second part of this
chapter the concept of restricted screw systems was introduced and a framework for their
calculation was presented. For each screw system that is included in the homogeneous
equations, the procedure creates two subspaces, namely the restricted and unrestricted
screw systems. In mobility analysis, the unrestricted screw systems represent the mobility
of the end link in a serial chain and the restricted screw system represents the local mo-
bilities. In constraints analysis, the unrestricted screw systems represent the constraints
between the base and the end-effector and the restricted screw systems represent the
overconstraints of the mechanism.

The method uses the vector space operations of intersection, complementary subspace
and parallel projection of screw systems. These operations are often well known for usual
screw systems, which facilitate the use of configuration-free analytical vector calculations
which are valid for the full-cycle workspace instead of conguration-dependent numerical
computations which are only valid locally. In addition, analytical vector calculation could
be used to detect geometric conditions for serial singularities and constraint singularities.





Chapter 3

Mobility and Overconstraints
Analysis of Parallel Mechanisms
with Configurable Platforms

3.1 Introduction

In their article on the velocity analysis of interconnected chain mechanisms [85], Zoppi
and al define a “pure” parallel mechanism as a parallel mechanism which has two terminal
links; the base and the end-effector, connected in parallel by a set of independent serial
chains. Several authors [49, 78, 18] have also proposed a similar definition for the term
“pure” parallel mechanism although the term is not yet officially recognized by IFToMM.
According to this definition, most closed-loop spatial mechanisms presented in the literat-
ure are purely parallel such as the well-known Gough Stewart platform[29]. The mobility
and overconstraint analysis of any pure parallel mechanism can be computed with the
method presented in Section 2. Less research has been done on robotic systems based
on mechanisms that are not purely parallel. Among them are the hybrid robots [75]
which consist of a number of serially connected parallel robots or the famous Delta robot
[10], the legs of which are not formed of pure serial chains but contain a parallelogram
mechanism. Mechanisms that are not purely parallel are often ignored by type synthesis
methods such as in [42]. Yet, research on alternative classes of mechanisms can bring new
possibilities in robot architecture design.

In general, parallel mechanisms with configurable platforms (PMCP) can bring two types
of new possibilities for robot designers. On the first hand, they can offer additional
kinematic solutions for a given motion requirement. As opposed to serial robots, for
parallel robots a large number of different architectures can lead to the same motion
pattern. In the first steps of robot design process, several architectures that fit the
motion requirements are generally considered and one must be selected based on other
requirements such has kinematic dexterity or structural stiffness. PMCPs can use their
configurable platforms to generate additional motions of the end-effector and will offer
different kinematic properties than pure parallel mechanisms for the same type of motion.
On the second hand, as opposed to parallel robots, robots with a PMCP structure can

37
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have multiple end-effectors on the configurable platform while all the motors are located
on the base. This is not possible with pure parallel robots. These multiple end-effectors
can be used as grasping devices for example. From a structural stiffness point of view, it
is more desirable to have all motors on the base than attaching a grasping hand at the
top of a rigid platform. In the case of the PentaG robot, both of the advantages described
above are present since the 2 DOF platform is used to provide both rotation and grasping
capabilities to the robot.

Yet, very few researches have been done on parallel mechanisms with configurable plat-
forms. The first example presented in the literature of a parallel robot in which the
platform in not rigid (i.e. configurable) can be attributed to Yi and al in 2002[81]. Some
specific robot architectures that include a configurable platform have been presented since
then in [16, 62, 41] along with their specific kinematic analysis. In 2005, Gosselin and al.
[56] highlighted the idea of using configurable platforms in parallel robots and presented
a general method for their mobility analysis. However, the method they presented is not
applicable for mechanisms that are overconstrained and the overconstraints analysis was
not addressed.

In the first part of this chapter, the mobility and overconstraint analysis method that
was presented in chapter 2 is extended to a much broader class of mechanisms. The
concept of series-parallel mechanisms is introduced and the extended method is general-
ized to any series-parallel mechanisms. Examples are presented for hybrid mechanism,
delta mechanisms and cross-jointing mechanisms. A general method is then proposed to
perform the analysis of the mobilities and overconstraints of parallel mechanisms with
configurable platforms. One key aspect of the proposed method is based on the concept
of restricted and unrestricted screw systems that were used in Section 2.3 to compute the
local mobility of serial chains and the overconstraints of pure parallel mechanisms.

A special type of duality between mobility and overconstraints of PMCPs is then intro-
duced. It will be shown that unlike most of other classes of mechanisms, PMCPs have a
particular self dual topology that allows the calculations of their mobility and overcon-
straints to be calculated using the same mathematically method. The general method is
then applied to two different PMCPs and an analytical representation and interpretation
of the complete distribution of their mobility and overconstraints is presented. Funda-
mental understanding of the mobility and overconstraints of PMCPs is a key element in
the development of a broader type synthesis method for robot architecture that would
include such mechanisms.

3.2 Mobility of Series-Parallel Mechanisms

3.2.1 Introduction

In this section, the mobility and overconstraints analysis developed in Chapter 2 will be
extended and generalized to a broader class of mechanisms that are not purely parallel.
The limitation of this extended method is defined by a single property of the corresponding
graph of the mechanism, namely if the graph is series-parallel. Using the concepts of serial
and parallel graph reductions, some already known classes of mechanisms that fall into
this more general class of mechanisms, such as Delta mechanisms and hybrid mechanisms,
are presented within the new general framework. Their formulas for the mobility and the
overconstraint calculation are represented in terms of their different layers of serial and
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Figure 3.1: a) The serial reduction and b) the parallel reduction in Graph Theory

parallel connections between two terminal links and recursive formulas for the general case
of any series-parallel mechanism are presented. Finally, some remarks on cross-jointing
mechanisms and non series-parallel graph are mentioned.

3.2.2 Series-Parallel Graphs

The study of the instantaneous kinematics of mechanical chains was pioneered by Waldron
[77] when he first introduced the series and parallel laws of instantaneous kinematics.
These two rules are still used in the mobility and overconstraints analysis of pure parallel
mechanisms presented in Chapter 2. The series and parallel laws for mobility analysis are
quite similar to the serial and parallel graph reduction used in Graph Theory. Graphs are
mathematical structures used to model pairwise relations between objects. A graph is a
set of edges that connect pairs of vertices. They have been used in the study of various
fields such as communication networks, chemistry, and electrical networks.

Mechanism architectures can be represented by a graph by assigning a vertex to each
link and an edge to each joint. In this case, each edge connects strictly 2 vertices while
vertices can be connected to multiple edges. The degree of a vertex is the number of edges
that are connected to this vertex. A series-parallel graph is a graph with 2 distinguished
vertices called terminal vertices that can be constructed by a sequence of series and parallel
compositions. Any series-parallel graph can be reduced to a K2 graph (a graph with only
2 vertices connected by a single edge) by a sequence of the following operations, shown
on Figure 3.1.

• a) Replacement of a vertex of degree 2 and its pair of edges with a single edge.

• b) Replacement of a pair of parallel edges with a single edge that connects their
common endpoints.

A series-parallel mechanism could be defined as a mechanism that can be represented with
a series-parallel graph. In the standard mobility analysis method presented in section 2.2,
the equivalent twist system of a serial leg was computed as the sum of the twist systems
of its joints, and the equivalent twist system of parallel legs as the intersection of the leg
twist systems. Those systems correspond to the graph reduction operations a) and b)
respectively. For a pure parallel mechanism, a twist system is finally obtained between
the 2 terminal links, the base and the end-effector as in Equation 2.16. The dimension
of the twist system corresponds to the number of DOF between the base and the end-
effector. Once the mobility is calculated, a global variable can be assigned to each DOF
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Figure 3.2: Examples of graph representation of a a) pure parallel, b) hybrid, c) Delta,
and d) cross-jointing mechanism. B stands for the base, EE stands for the end-effector,
and the bold vertices are the terminal links of the graph.

and distributed on all the joints of the mechanism in order to express each joint velocity
as function of the end-effector velocity. In this process, the original series-parallel graph is
reconstructed with the inverse of operation a) and b). If some legs have local mobilities,
defined as RM in Equation 2.5, those are independent of the mobility of the end-effector
and increase the total number of DOF of the mechanism. A more detailed discussion
of local mobilities and overconstrains is presented in Section 2.3.3. Using the serial and
parallel laws, the method can be extended to mechanisms that are not purely parallel
as long as they can be represented by a series-parallel graph. The definition of series-
parallel graph ensures that it will be possible to reduce their corresponding graph to two
terminal links using only the two reduction laws. In the next sections, general formulas
are presented for the mobility analysis of some series-parallel mechanisms that are not
purely parallel. Figure 3.2 shows an example for four classes of mechanisms that are
series-parallel. In those graphs, B stands for the base, EE stands for the end-effector,
and the bold vertices are the terminal vertices of the graph.

3.2.3 Hybrid Mechanisms

Hybrid mechanisms are formed by a serial sequence of parallel mechanisms. They often
offer performance which are a compromise between serial mechanisms and pure parallel
mechanisms. Figure 3.2 b) shows an example of a graph representation of an hybrid
mechanism. From a graph theory point of view, hybrid mechanisms are formed by 3
layers of mechanical connections and their graph can be reduced therefore in a 3-steps
sequence of series, then parallel, then series reductions. The first two levels correspond
to the standard mobility analysis described by Equation 2.16 for each of the pure parallel
mechanisms forming the hybrid mechanisms. The third step is the computation of the
mobility of the serial sequence of parallel mechanisms. Given a hybrid mechanism formed
by i = 1..p pure parallel mechanisms, each having ji = 1..qi parallel legs, each having
kij = 1..rij joints represented by the twist system Tijk, the mobility between the base
and the end-effector is given by

T =

p∑
i=1

 qi⋂
ji

 rij∑
kij

Tijk

 (3.1)
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An equivalent and more convenient computation can be obtained by using reciprocal
screw systems as it was done in Equation 2.16.

T =

p∑
i=1

 q∑
ji=1

 r∑
kij=1

Tijk

⊥

⊥

(3.2)

The twist system obtained represents the mobility between the base and the end-effector.
These mobilities are independent of local mobilities. As mentioned earlier, sum of twist
systems can lead to local mobilities while the sum of wrench systems can lead to overcon-
straints. Since hybrid mechanisms have 2 layers of serial compositions, two distinct types
of local mobilities are possible. The first type is the one encountered in pure parallel
mechanisms when a serial leg has more DOF than the mobility between its two end-links.
Using the same notation as Equation 3.2, the total number of first type local mobilities
RM1 is given by

RM1 =

p∑
i=1

q∑
j=1

 rij∑
kij=1

dim (Tijk)− dim (Tij)

 (3.3)

The second type of local mobilities represents the redundancy of the serial sequence of
parallel mechanism. As it is often the case in hybrid mechanism, the total number of
DOF of all parallel mechanisms is larger than the number of DOF between the base
and the end-effector. This means that the parallel mechanisms can still move while the
end-effector is locked in position. The number of type 2 local mobilities RM2 for hybrid
mechanisms is given by

RM2 =

p∑
i=1

dim (Ti)− dim (T ) (3.4)

The total number of local mobilities is then RM = RM1 + RM2. Hybrid mechanisms
have one layer of parallel compositions and therefore there is one type of overconstraints
possible. The number of overconstraints RC is given by

RC =

p∑
i=1

 q∑
j=1

dim (Wij)− dim (Wi)

 (3.5)

The end-effector mobility is given by M = dim (T ) while the total mobility of the hybrid
mechanism is given by M + RM1 + RM2. For a mechanism with a total of n links and
m one-DOF joints, the mobility Equation 2.5 is still valid and M = 6 (n−m− 1) +∑m
i=1 (fi) +RC −RM1 −RM2 .

3.2.4 Delta Mechanisms

Delta robots were introduced as 3 translational DOF robots for the pick-and-place in-
dustry. Their high performance has made them widely used for high-speed applications.
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Figure 3.3: 3 DOF Delta mechanisms with a) revolute joints and b) spherical joints

Figure 3.4: The graph representation of a 3 DOF Delta mechanism

One of their characteristics is the use of a parallelogram unit in each leg to constraint
the orientation of the end-effector. The parallelogram unit is a four-bar mechanism that
can be constructed with either revolute or spherical joints. Figure 3.3 shows a schematic
representation of a 3 DOF Delta mechanism using revolute or spherical joints and Figure
3.4 shows a graph representation of such mechanism. When spherical joints are used in
the parallelogram units, it is common practice to remove joints $11, $21, $31 and joints
$13, $23, $33 as represented in Figure 3.3 b). From a graph theory point of view, due to
the parallelogram units, a Delta mechanisms has four layers of serial and parallel com-
positions. The first two layers concerns the parallelogram units while the last two layers
are the same as for the pure parallel mechanisms.

If Tikl is the twist system of the joint l = 1..2 of leg k = 1..2 of the parallelogram unit i,
the mobility of the parallelogram unit Ti is given by

Ti =

 2∑
k=1

(
2∑
l=1

Tikl

)⊥⊥ (3.6)
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For revolute joints, dim (Ti) = 1 and for spherical joints dim (Ti) = 3. In practice, the
extra mobilities for the use of spherical joints are constrained when the legs of the Delta
mechanism are assembled, and the full Delta mechanism has the same end-effector mo-
bility regardless if revolute or spherical joints are used. However, the use of revolute or
spherical joints will affect the number and distribution of local mobilities and overcon-
straints in the mechanism. A classic 3 DOF Delta mechanism has i = 1..3 legs and each
legs has j = 1..3 revolute joints with parallel axis, noted Tij , and one parallelogram unit.
Using the four layers of series-parallel composition, the mobility of the end-effector is
given by

T =

 3∑
i=1

 3∑
j=1

Tij +

 2∑
k=1

(
2∑
l=1

Tikl

)⊥⊥

⊥

⊥

(3.7)

This mechanism has two layers of serial composition and two layers of parallel composition.
The upper parallel composition represents the assembly of the three legs. The upper serial
compositions represent the assembly of the three revolute joints with the parallelogram
unit. The lower parallel compositions represent the closure of the parallelogram chain in
the parallelogram units. Finally, the lower serial compositions represent the addition of
the two revolute joints on one side of the parallelogram units. Each serial layer can lead
to a type of local mobilities while each parallel layer can lead to a type of overconstraints.
Those are quite different depending if Tkij represents a revolute or a spherical joint. The
total local mobilities and the overconstraints in the parallelogram unit are noted RM1

and RC1 , and the local mobility and overconstraints in the Delta mechanism are noted
RM2 and RC2. The total number of rigid links is noted n, the total number of joints
is given by m, and fi represents the number of DOF of joint i. The values obtained
for revolute or spherical configurations are summarised in Table 3.1. In both cases, the
end-effector mobility is 3 translational DOF and the dimensions of end-effector mobility,
overconstraints, and local mobilities satisfy the following relation:

M = 6 (n−m− 1) +

m∑
i=1

(fi) +RC1 +RC2 −RM1 −RM2 (3.8)

In case of revolute joints, the parallelogram unit forms a planar mechanism and and each
unit has therefore 3 overconstraints. Each leg constraints the rigid platform in two rota-
tions. When assembling the three legs of the Delta mechanism, three of these constraints
are redundant. In case of spherical joints, the two long bars of the parallelogram unit are
free to rotate along their axis. Each parallelogram unit has two local mobilities and zero
overconstraints. Each leg constraints the platform in one orientation and the combined
action of the legs combine the three orientation without overconstraining the mechan-
ism. Although the end-effector mobility is the same for these two versions of the Delta
mechanism, the number and distribution of local mobilities and overconstraints on the
different layers of series-parallel compositions is quite different.

3.2.5 General Series-Parallel Mechanisms

The principle of layer compositions can be extended to any general series-parallel mechan-
isms. As it was shown, the two types of local mobilities of hybrid mechanisms and the two
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Distribution of Mobilities and overConstraints in a 3 DOF Delta mechanism
Tkij : Revolute Joints Tkij : Spherical Joints

RM1 0 3x2=6
RC1 3x3=9 0
RM2 0 0
RC2 3 0
n 17 11
m 21 15∑m

i=1 (fi) 21 39
M 3 3

Table 3.1: Distribution of Mobilities and overconstraints in a 3 DOF Delta mechanism
with revolute joints or spherical joints. In practice, the 6 local mobilities of the spherical
joints version are often constrained with some rubber springs. The 12 overconstraints
of the revolute joints version will introduce manufacturability tolerances that must be
respected to limit the internal stresses due to the assembly.

Figure 3.5: A Example of a general series-parallel chain described by Equation 3.9

type of overconstraints of Delta mechanisms with revolute joints occur on different layers
of series-parallel compositions. They have to be computed separately and they distribute
on different levels of the mechanism. One can consider a general chain i formed by a serial
sequence of ji = 1..si joints represented by the twist system Tij and ji = si..pi parallel
units. Each parallel unit ji = si..pi is formed by parallel chains kij = 1..qij represented
by the twist system Tijk. Figure 3.5 shows an example of such a chain. The twist system
Ti of chain i is given by

Ti =

si∑
ji=1

Tij +

pi∑
ji=si

 qij∑
kij=1

(Tijk)
⊥

⊥ (3.9)

The twist systemsTi, Tij , and Tijk belong to three different layers of composition. This
formula can be used recursively to compute the twist system of any general series-parallel
mechanism.

When analysing the first layer of a hybrid mechanism i as presented in Section 3.2.3,
si = 0, pi is the number of pure parallel mechanisms, qij is the number of leg of mechanism
j and Tijk is the twist system of this leg. In the first layer of a Delta mechanisms i, as
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presented in Section 3.2.4 si = 0, pi = 1 , qij = 3 and Tijk is the twist system of a Delta
leg.

Equation 3.9 can be used on any layer of composition. When considering only a single
Delta leg i, then si = 3, pi = 1, qij = 2, Tij is the twist system of the revolute joint j in
the leg and Tijk is the twist system of 2 joints in the parallelogram unit. A last layer is
needed to compute Tijk , denoted now Ti, which can be done again using Equation 3.9
with si = 2, pi = 0 , qij = 3, and Tij as the twist system of one joint in the parallelogram
unit.

Given a chain i described with Equation 3.9, one layer of local mobilities can occur. Its
dimension is given by

RM = dim (Ti)−
si∑
ji=1

dim (Tij)−
pi∑
ji=s

dim

 qij∑
kij=1

(Tijk)
⊥

⊥ (3.10)

One layer of overconstraint is also possible. Its dimension is given by

RC =

pi∑
ji=s

dim
 qij∑
kij=1

(Tijk)
⊥

− qij∑
kij=1

dim (Tijk)
⊥

 (3.11)

This computation can be done on each layer of series-parallel composition to reveal all
the local mobilities and overconstraints of any series-parallel mechanism.

3.2.6 Cross-Jointing Mechanisms

A cross-jointing mechanism has two legs between its base and its end-effector that are
connected together by a joining chain somewhere on the legs. Figure 3.6 shows the graph
representation of such a mechanism. Ti1 and Ti2 are the twist systems of the first part
and the second part of leg i and Tj is the twist system of the joining chain. These twist
systems can represent any layers of series-parallel compositions described by the recursive
Equation 3.9 for general series-parallel mechanism. The top layer of composition, shown
in Figure 3.6 is not a series-parallel graph between the base and the end-effector. It is
however a series-parallel graph between the two jointing links shown in bold on the figure.

Since the graph is series-parallel, the serial and parallel laws can still be used to compute
the mobility between the terminal links, to which global variables can be assigned. The
mobility between the base and the end-effector is a function of these global variables, the
local variables that are present in the base chain T11 , T21, and the local variables that are
present in the end-effector chain T12, T22. To compute the mobility between the base and
the end-effector, these mobilities must be distributed on the base link and the end-effector
link. Section 2.3 presents a method to solve screw systems under homogenous equation.
This method can be used to distribute the mobilities and to find the twist system between
the base and end-effector of cross-jointing mechanisms.
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Figure 3.6: Graph Representation of a Cross-Jointing Mechanism

3.2.7 Non Series-Parallel Mechanisms

As it was seen in this section, it is possible to compute the equivalent twist system of
serial chains by addition of twist systems, and the equivalent twist system of parallel
chains by the intersection of twist systems. Those correspond to the graph reduction
operations a) and b) respectively. For any series-parallel mechanisms, a twist system can
be obtained between the 2 terminal links, generally the base and the end-effector. The
dimension of the twist system corresponds to the number of DOF between the base and
the end-effector. A global variable is assigned to each DOF of the mechanism, and by
reconstruction of the original graph, these global variables are distributed on each joint
of the mechanism.

For mechanisms that are not series-parallel, additional rules must be applied to compute
and distribute their mobilities. As pointed out in [14], there is an analogy with series-
parallel electrical circuits. If an electrical circuit can be represented as a series-parallel
graph, the equivalent resistance between 2 terminal points can be computed using only
the series law and parallel law for resistors. If the circuit is not series-parallel, one must
use Kirchhoff’s laws to find the equivalent resistance. An obvious way to determine if a
graph is series-parallel is to verify that it is indeed possible to reduce it to a K2 graph by
a sequence of serial and parallel reductions. An alternative and sometime faster method
is to ensure that the graph doesn’t contain the complete graph K4 as a minor. A graph
B is a minor of a graph A if it is a subset of vertices and edges of A to which zero or more
edge contractions has been performed. An edge contraction is the removal of an edge of
a graph and the merging of the two vertices it previously connected. Figure shows a K4

graph, which is also the smallest non series-parallel graph possible.

The corresponding graph of parallel mechanisms with configurable platforms always have
theK4 graph as a minor therefore, their mobility and overconstraints cannot be computed
using the standard method of Chapter 2, or the extended method presented in this section.

3.3 Mobility Analysis of Parallel Mechanisms with Con-
figurable Platforms

The concept behind parallel robots with configurable platforms is to replace the rigid
(non-configurable) platform with a closed kinematic chain from which the mobility can
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Figure 3.7: The complete K4 graph. Non series-parallel graph always have the K4 graph
as a minor graph.

be used to perform additional tasks such as grasping or actuation of a tool. The platform
is actuated from the base by a coupling action of additional legs which number depends
on the mobility of the configurable platform.

Although they offer interesting advantages and different possibilities than parallel mech-
anisms, they have been barely addressed in the literature so far. One of the main reasons
is maybe due to the fact that they have a non series-parallel architecture which make
the standard method of mobility, overconstraints and synthesis non applicable to them.
Mohamed and Gosselin [56] proposed in 2005 a first generalization of the concept of both
planar and spatial PRCPs. In their article, they proposed a method to calculate their
mobility using a matrix representation in which each row represents the constraints im-
posed by an independent closed-loop i = 1..c and each column represents the velocity of
a joint. In a PMCP, each independent closed-loop is formed by two legs and one platform
segment. If the twist systems of the leg i = 1..c are noted TLi = {$Li1, · · · $Lij , · · · $Liqi},
where qi = dim (TLi)and $Lij is a basis screw of TLi the twist systems of the platform
segments i = 1..c are noted TPi =

{
$Pi1, · · · $Pij , · · · $Piqj

}
, the constraint equations can

be represented as


TL1 −TL2 · · · 0
0 TL2 · · · 0
...

...
. . . 0

−TL1 0 0 TLc


6c,

∑n
i=1 dim(TLi)


θ̇L1
θ̇L1
...
θ̇Lc

 = · · ·


TP1 0 · · · 0
0 TP2 · · · 0
...

...
. . . 0

0 0 0 TPc


6c,

∑n
i=1 dim(TPi)


θ̇P1

θ̇P2

...
θ̇Pc

 (3.12)

where θ̇Li and θ̇Pi are the vectors representing the global variables of leg i and plat-
form segment i respectively. The column variables $Lij and $Pij have been compressed
into their respective screw systems TLi and TPi in order to make the notation easier.
This system of linear equations has 6c equations and

∑n
i=1 (dim (TLi) + dim (TPi)) un-

knowns. If the legs and the platform of the PMCP don’t have local mobilities, the total
number of unknowns in equal to the total number of joints m in the mechanism and∑n
i=1 (dim (TLi) + dim (TPi)) = m. Also, only if the mechanism doesn’t present any
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overconstraints, the first Chebychev-Grübler-Kutzbach criterion of Equation 2.2 can be
applied and the mobility of the mechanism is then given by M = m− 6c. Assuming that
the mobility is controlled at each leg of the robot by a set of active joints θ̇Li,act and that
the set of leg passive (non-actuated) joints is noted θ̇Li,pas, Equation 3.12 can be rewrited
as


TL1,act 0 · · · 0

0 TL2,act · · · 0
...

...
. . . 0

0 0 0 TLc,act


6c,M


θ̇L1,act
θ̇L2,act

...
θ̇Ln,act

 = · · ·


TL1 −TL2 · · · 0 TP1 0 · · · 0
0 TL2 · · · 0 0 TP2 · · · 0
...

...
. . . 0

...
...

. . . 0
−TL1 0 0 TLc 0 0 0 TPc


6c,m−M



θ̇L1,pas
θ̇L2,pas

...
θ̇L3,pas
θ̇P1,pas

θ̇P2,pas

...
θ̇Pn,pas


(3.13)

Since 6c = m−M in mechanisms that doesn’t present local mobilities and overconstraints,
the second matrix is a rectangular matrix. Using numerical values, it is possible to invert
this matrix in order to obtain the velocity of each passive joints as function of the velocity
of the active joints.

As it is shown, this framework is not valid for overconstrained mechanisms, since they have
a non-rectangular matrix of passive joints and and the case of overconstrained PRCPs was
not mentioned in the article. In addition, the procedure requires the inversion of a matrix
which, given its dimension, is not invertible using analytical vector representation. In this
section, a general method is presented for the mobility analysis of overconstrainted parallel
robots with configurable platforms that leads to an analytical vector representation of
their mobility.

3.3.1 Graph Reduction

The first step of the method is to perform the graph reduction by series and parallel laws,
so that the local mobilities and overconstraints that may occur in the lower layers are
taken into acount. The graph reduction of the mechanism is performed until a non series-
parallel 3-connected graph with a twist system for each edge is obtained. The reduced
graph of any parallel mechanisms with configurable platforms is a wheel graph such as
the graphs shown in Figure 3.8. In those graphs, the centre vertex represents the base,
the spokes of the wheel represents the legs and the outer cycle represents the configurable
platform. Any wheel graph has the complete graph K4 as a minor and is therefore non
series-parallel.

Either the legs edges or the platform edges can be formed by unlimitedly large and complex
mechanisms as long as those are series-parallel. In such a case, it is always possible to
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Figure 3.8: Directed wheel graphs a) W4= K4 b) W5 and c) W6. The centre vertex
represents the base, the spokes of the wheel represents the legs and the outer cycle rep-
resents the configurable platform. The order i of the graph Wi represents the number of
independent legs. The directions of the edges are chosen arbitrarily and determine the
direction for positive velocity.

reduce the whole mechanism into a wheel graph. At the end of the graph reduction,
a twist system is obtained for each leg and for each platform segments. When during
the graph reduction process, some local mobilities or overconstraints appears, such as
described in Section 2.3.3, they can be computed separately since they will not affect the
mobility between the top layer links represented by the wheel graph vertices. For leg i,
the leg twist system is noted TLi = {$Li1, · · · $Lij , · · · $Lin}, where n = dim (TLi)and $Lij
is a basis screw of TLi.

3.3.2 Legs Matrix of Mobilities

The wheel graph and the twist systems associated with each edge are the inputs for the
method. Each twist system represents the global mobility of the edge when disconnected
from the remainder of the mechanism. As opposed to classical parallel mechanisms,
PMCPs don’t have a single end-effector but instead have one end-effector for each leg.
The mobility of these end-effectors are not independent and are function of the global
DOF of the mechanism. The first step is to create the initial leg matrix of mobility. In
this matrix, each row of screws represents the mobility of one leg, i.e. one end-effector,
and each column represents an independent variable associated to the global DOF of the
whole system. The initial matrix tG represents the mechanism without connections to
the configurable platform, i.e that each leg are independent. For a mechanism with n
legs, the matrix is

0G =


TL1 0 0 0
0 TL2 0 0

0 0
. . . 0

0 0 0 TLn


6n,

∑n
i=1 dim(TLi)

(3.14)

Each row of G represents the motion of the last link of each leg relatively to the base. It
is possible to perform any linear operations on the columns of G to obtain a valid and
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equivalent representation of the DOF of the system with a different physical meaning.
Such linear operations on the matrix columns will be used in the following steps to
compute the dependency of the leg mobility introduced by the configurable platform.

3.3.3 Connection of the Platform to the Legs

The mobility of a platform chain P1 is represented by the twist system TP1 = {$P11, · · · $P1i, · · · $P1n}.
When P1 is connected, it constraints the mobility of leg L2 relatively to leg L1. If a vari-
able λ is assigned to each column of the initial leg mobility matrix in Equation 3.14, the
connection with the first platform chain requires the following equations to be satisfied:

dim(TL2)∑
j=1

$L2iλL2i −
dim(TL1)∑
i=1

$L1iλL1i =

dim(TP1)∑
i=1

$P1iλP1i (3.15)

As pointed out in Section 2.3 the entire solution set can be represented by a restricted
and an unrestricted screw systems. The unrestricted screw system representing the set
of particular solutions is given in this case by TP1

⋂
(TL1 + TL2) and correspond to the

allowed mobility of the platform segment. The restricted screw system representing the
set of solution to the corresponding homogeneous equations is given by TL1

⋂
TL2 and

corresponds to mobility of the platform relatively to the base when the joints of the
platform are locked i.e. when all λP1i = 0 .

Using this principle, the dependency between the mobility of each leg by the connections
of the platform chains can be computed from the leg matrix. The method consists of
three steps for each platform chains. If the platform chain TPi connects the legs TLi and
TL(i+1), the 3 steps are then

1) Compute the mobility of leg L (i− 1) relatively to Li by substracting rows (i− 1) from
row i in matrix G. The result is a set of screws which are not necessarily independent and
span a screw system. From this set of screws, compute a restricted and an unrestricted
screw systems such as presented in section 2.3

2) Perform linear operations on the columns of G such that the restricted SR and un-
restricted screw systems SU depend on separated variables λ to obtain a new matrix
G′.

3) Compute the intersection of the platform mobility TPi with the unrestricted screw
system SU . Perform a change of variables such that the columns of SU correspond to
the intersection TPi

⋂
SU . The remaining columns can be deleted.

For example, when connecting leg L1 and leg L2 with platform segment P1, the first step
is to compute the mobility of leg L2 relatively to leg L1 by substracting row 1 from row
2 in the matrix G.

0G(2−1) =
[
−TL1 TL2 0 0

]
(3.16)

The restricted screw system of this set of basis screws is given by SR1 = TL1
⋂
TL2 and

represent the mobility of the two legs when they are connected together with a rigid
platform. The unrestricted screw system SU1 is the complement of SR1 and is defined by
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SR1
⊕
SU1 = TL1. In the second step, a change of variables is performed so that SR1 will

be canceled in 3.16. After this change of variable, 0G(2−1) and 0G′ become

0G′(2−1) =
[

0 −SU1 TL2 0 0
]

(3.17)

0G′ =


SR1 SU1 0 0 0
SR1 0 TL2 0 0

0 0 0
. . . 0

0 0 0 0 TLn


6n,

∑n
i=1 dim(TLi)

(3.18)

where SU1 ∩ TL2 = {0} by definition. The third step is to compute the motion allowed
by the platform segment, which in this case is given by TRP1 = TP1

⋂(
SU1 + TL2

)
. All

basis screws in SU1 and TL2 are independent but not necessarily orthogonal. A unique
non-orthogonal projection of TRP1 on SU1 parallel to TL2, noted TRP1/S

U
1 //TL2, and TRP1

on TL2 parallel to SU1 , noted TRP1/TL2//S
U
1 , can be obtained. Finally, the matrix 1G is

obtained, which corresponds to the mobility of the mechanism when the platform segment
P1 is connected.

1G =


SR1 TUP1/S

U
1 //TL2 0 0 0

SR1 0 TUP1/TL2//S
U
1 0 0

0 0 0
. . . 0

0 0 0 0 TLn

 (3.19)

Physically, the first columns represents the motion of leg L1 and leg L2 when they are
connected by a rigid end-effector. The second and third columns represent the distribution
of the motion of the platform chain P1 on leg L1 and L2 respectively.

The key idea behind this method is that the global variables, i.e the columns of the matrix
G, that are removed by the connection of the platform chain between two legs are inde-
pendent of the global variables describing the common mobility of these two legs. Indeed,
the connection of a configurable platform chain cannot constraint DOF of the mechanism
that would have been present if the platform chain would have been rigid. This method
ensures that the proper mobility is calculated each time a platform segment is connected
to the legs. The use of the generative matrix G can be related to the work presented in
[20], although the vector space operations used here are different. Compared to [20], the
use of the leg edges as an initial input results in less vector space operations for parallel
mechanisms with configurable platforms and the remaining operations are particularly
suitable to perform their mobility analysis with analytical vector representations. The
three steps must be repeated for each platform segment until the final matrix is obtained.
The number of columns of the final matrix corresponds to the number of DOF of the
parallel mechanism with configurable platform. The motion of each leg as function of the
global DOF of the mechanism is given by each row of G. Any linear operations on the
matrix columns are still possible at this stage to obtain a more convenient representation.
It is, for example interesting to separate the DOF of the platform mobility and the DOF
of the platform configuration.
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3.4 Overconstraints Analysis of Parallel Mechanisms
with Configurable Platforms

3.4.1 Self Dual Topogoly of Parallel Mechanisms with Configur-
able Platforms

The input of the mobility analysis method for parallel mechanisms with configurable
platforms described in the previous section is a directed wheel graph with a twist system
associated to each edge. Using the principle of restricted and unrestricted screw systems,
the mobility of each leg relatively to the base is computed as function of a set of global
independent variables of the system, i.e. DOF. The mobility of each platform chain can
be computed as the relative mobility between the two connected legs as function of the
global variables.

In a more mathematical abstraction, the method gives the solutions to screw systems that
are restricted by homogeneous equations described by the cycles of a wheel graph. Any
physical phenomena that correspond to this mathematical description can be analyzed
with this procedure. As presented in Section 2.2.2, screw systems can be used to describe
mobilities between rigid bodies, in which case they are called twist systems, but are also
used to describe constraints between rigid bodies, in which case they are called wrench
systems.

Overconstraints may occur in closed-loop mechanism and can be defined as special con-
ditions that should be met to close loops. If those conditions are not satisfied, links must
slightly deform, generating internal stress on the link and reaction forces at the joint in-
terfaces. Those internal forces are present in the mechanism even when no external forces
act on the mechanism and the mechanism is not moving. By consequence, the sum of all
internal stresses due to overconstraints on a single link must be equal to zero.

The homogeneous conditions that the wrench systems must satisfy on a rigid body are
analogous to the homogeneous conditions that the twist systems must satisfy within a
closed-loop. In graph theory, the dual graph B of an original graph A is a graph in which
each vertex of B corresponds to a loop of A and vice-versa. Edges that are incident
to a vertex in the original graph are in the same direction as the corresponding loop of
the dual graph and vice versa. If the twist systems of the dual edges are defined as the
reciprocal of the twist systems of the original edges, the mechanism corresponding to the
dual graph is dual to the original mechanism. In 2007[13], Davies used the concept of
dual graphs to show that the dual mechanism of a planar four-bar linkage is a parallel
mechanism with 4 parallel SU legs. The article highlighted the fact that mobilities are
often easier to imagine than overconstraints and that the methods used to calculate the
mobility of a given dual mechanism can be used to calculate the overconstraints of the
original mechanism. Actually, the dual mechanism of a pure parallel mechanism is always
a single closed-loop and vice versa. Fig. 1 shows an example of the graph representation
of a pure parallel mechanism with 5 legs and its dual single closed-loop.

The mobility of the pure parallel mechanism on the left is
⋂
Si and the overconstraints

of the single-loop on the left is also
⋂
Si. The overconstraints of pure parallel mech-

anisms corresponds to the restricted wrench systems of their leg which are given by
S⊥j
⋂(∑j−1

i=1 S
⊥
i

)
for j = 2..5 for a pure parallel mechanisms with 5 legs. In a dual

way, the mobility of the single closed-loop is also described by the set of twist systems
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Figure 3.9: Graph representation of a parallel mechanism with five legs and its dual single
closed-loop. The screw system over the big arrow represents the mobility of the parallel
mechanism and the overconstraints of the single closed-loop. The screw systems below
the arrow represent the overconstraints of the parallel mechanism and the mobility of the
single closed-loop.

S⊥j
⋂(∑j−1

i=1 S
⊥
i

)
for j = 2..5. Similar dual relations can be found for the dual mech-

anisms of an hybrid mechanism and a Delta mechanism shown in Figure 3.10 a) and b)
respectively.

It is clear that, for most of mechanisms, the mathematical procedure to calculate its
mobility differs from the procedure to calculate its overconstraints. It was proposed in
Section 3.3.1 that the reduced graph of a PMCP is always a wheel graph. A remarkable
property of all wheel graphs is that they are self-dual. The dual mechanism of a PMCP
is therefore always a PMCP. This self duality can be exploited to our advantage since,
for PMCP, any general method for the mobility analysis can also be used directly for the
overconstraint analysis.

Figure 3.11 shows the dual graphs for PMCPs with 3, 4 and 5 legs. The principle can be
extended to mechanisms with more legs. In the dual wrench graphs, vertices represent
closed-loop while cycles represent rigid links. For each edge, twist systems T are replaced
by their reciprocal wrench systems W = T⊥. The consequence of this is that in the
wrench graph, the configurable platform is now represented by the spokes of the wheel
while the legs are represented by the outer cycle.

Thanks to the self dual topology of PMCPs, the same mathematical procedure can be
applied for both their mobility and overconstraint analysis. The method presented in Sec-
tion 3.3 for the mobility analysis is then used again in the overconstraint analysis. While
the mobility and overconstraint methods are mathematically equivalent, their physical
interpretation is different. The next section presents the physical interpretation of the
mobility calculation method of PMCPs when it is applied to the calculation of the over-
constraints.

3.4.2 Platform Matrix of Overconstraints

As it was the case for the mobility analysis, the first step is to create an initial matrix
from the wrench systems of the spokes of the wheel graph. For a mechanism with n legs,
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Figure 3.10: Graph representation of the dual mechanisms of a) a hybrid mechanism and
b) a Delta mechanism. The distribution of the mobilities in the mechanisms in the left
column corresponds to the distribution of the overconstraints in the mechanisms of the
right column and vice-versa.
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Figure 3.11: Dual twist graphs and wrench graphs for parallel mechanisms with config-
urable platforms with 3, 4 and 5 legs
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the initial platform wrench matrix tH is

tH =


WP1 0 0 0

0 WP2 0 0

0 0
. . . 0

0 0 0 WPn


6n,

∑n
i=1 dim(WPi)

(3.20)

Physically, this matrix represents the overconstraints of the mechanism when all the
joints of all legs are locked. In this situation, any constraint that a platform segment
imposes between two legs is an independent overconstraint since the legs are already
fully constraint. As it was the case for the mobility matrix, any linear operations on the
columns of H are possible.

3.4.3 Connection of the legs to the Platform

The same mathematical procedure than was presented in section 3.3.3 is used to determine
the overconstraints of the mechanism. In the initial matrix tH, every wrench of the
platform segments correspond to an independent overconstraint since all the leg joints are
locked. The physical procedure consists of unlocking each leg and compute the remaining
overconstraints present in the platform.

The three steps procedure is explained here again when applied to overconstraint com-
putation. Considering that leg WLi connects with platform segments WPi and WP (i−1),
the precedure is

1) Compute the constraints that can be applied on the leg by platform segment Pi and
Pi−1 by substracting the row i− 1 from row i in matrix H. The results is a set of screws
which are not necessarily independent and span a screw system. Compute the restricted
and unrestricted screw systems such as presented in section 2.3

2) Perform linear operations on the columns of H such that the restricted SR and un-
restricted screw systems SUR depends on separated variables λ to obtain a new matrix
H ′.

3) Compute the intersection of the leg constraintsWLi with the unrestricted screw system
SUR . Perform a change of variables such that the columns of SU contract into the
intersection WLi

⋂
SU . The remaining columns can be deleted.

The global variables, i.e the columns of the matrix H, that are removed in this process
correspond to wrenches that could have been applied by the platform segments on the leg
but cannot be balanced by the leg wrench system. These variables are independent of the
variables describing the common wrench system between the two platform segments. The
three steps must be repeated for each platform link until the final matrix H is obtained.
The number of columns of the final matrix represents the number of overconstraints of
the mechanism. The rows represent the internal forces introduced by the overconstraints
into the platform segments.

3.5 Summary of the General Method

In a parallel mechanism with configurable platform, each leg and each platform segment
is formed by a series-parallel mechanism. In section 3.2.5, it was shown that the series
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and parallel rules used in parallel mechanism analysis can be extended to any mechanism
as long as their associate graph is series-parallel. This results in a computation of a twist
system and its reciprocal wrench between the two terminal links of the series-parallel
mechanism. During this analysis, local mobilities and local overconstraints can be re-
vealed. They can be treated separately since they do not affect the global mobility or
overconstraints distributed in the top layer of the parallel mechanism with configurable
platform. The top layer of a PMCP corresponds to a wheel graph in which the central
vertex is the base, the spokes represents the legs, the rim vertices represents the platform
connectors that are connected to both the leg and the platform, and the edges of the rim
represent the platform segments.

The input of the method is a directed wheel graph with a twist system associated to
each edge. The output is the distribution of a set of independent variables on each screw
system of the spoke edges such that the sum of the finite screws in each cycle of the wheel
graph is zero. The three basic screw systems operations that are used during the process
are the intersection of screw systems, calculation of complementary screw systems and
parallel projection of screw systems. One consists in the computation of the restricted
and unrestricted screw systems for two adjacent spoke edges. The second consists in
the computation of the intersection of the rim edges with the unrestricted screw system
of the two spokes they connect. Linear changes of variables are performed from the
calculation of the restricted and unrestricted screw systems for two adjacent spoke edges.
The independent variables that were lost in the intersection operations between the rim
edges and the unrestricted screw system of the spoke edges correspond to the dependency
created by the rim edges.

In mobility analysis of closed-loop mechanisms, the sum of the velocities of the joints
forming a closed-loop must be zero. In the overconstraint analysis of closed-loop mech-
anisms, the sum of the internal forces created by the overconstraints on any rigid links
must be equal to zero. The dual graph of a given original planar graph is a graph that
has a vertex corresponding to each plane region of the original graph, and an edge joining
two neighbouring regions for each edge in the original graph. Wheel graphs are always
planar and have the property to be self-dual.

By using as input to the method the original graph of twist systems or the corresponding
dual graph of wrench systems, both the mobility and the overconstraints can be computed
with the same mathematical method. The physical interpretations of the mathematical
concepts involved in the method are of course quite different. Table 3.2 presents a compar-
ison of the physical interpretation of the method for the mobility and the overconstraint
analysis.

PMCPs have the remarkable property of having a self dual topology. This is due to
the fact that pure parallel mechanisms are dual to a single closed-loop and vice-versa.
Combining a single closed-loop and a parallel mechanism together results therefore in a
self dual topology and this property can be used to facilitate their general analysis. The
next section describes the mobility and overconstraints of two PMCPs using the proposed
method. It will be shown that the methods lead to the correct description of the mobility
and overconstraint of the mechanism, but also that the method can be used to obtain an
analytical vector representation of the solutions.
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Mathematical Concept Physical interpretation in
mobility analysis

Physical interpretation in
overconstraint analysis

Vertices of the wheel
graph

Terminal links Closed-loops of the
mechanism

Cycles of the wheel graph Closed-loops of the
mechanism

Terminal links

Spokes of the wheel graph Leg twist systems Platform wrench systems
Outer edges of the wheel

graph
Platform twist systems Leg wrench systems

rows of the matrix Velocity of leg attach
points relatively to the

base

Internal forces
transmitted by a platform

segment due to
overconstraints

Columns of the matrix Independent mobilities for
the whole mechanism

Independent
overconstraints of the
whole mechanism

Initial matrix All leg are free and are not
connected to the platform

All joints of all leg are
locked and are connected

to the platform
Restricted screw systems Commom mobility of 2

legs when connected to a
rigid platform

Overconstraint present in
the platform when not
connected to the leg

Unrestricted screw
systems

Relative mobility of 2 legs
when they are not

connected

Overconstraints imposed
the 2 platform segments
when they are rigidly
connected to the base

Intersection operations Relative mobility
permited by the platform
segment between two legs

Overconstraints permited
by the legs

Final matrix Distribution of the global
DOF of the mechanism on
the mobility of each leg

Distribution of the global
overconstraints of the

mechanism on the internal
stress of platform segment

Table 3.2: The particular self dual topology of PMCPs allows the use of the same math-
ematical method for the calculation of their mobility and the calculation of their overcon-
straints. Each mathematical concept of the proposed method has then a dual physical
interpretation.
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3.6 Examples

To illustrate the proposed method, this section presents the mobility and overconstraints
analysis of two parallel mechanisms with configurable platforms. The first example is a
4-RRR parallel mechanism with a planar 8R configurable platform for which the analysis
is performed numerically. Numerical computations are sometime less tedious to perform
and could be theoretically automated in a computer algorithm. A problem concerning
automated algorithms is that the method repeatedly involves the computation of rank of
matrices so round-off errors must not introduce errors in the computation of the dimen-
sions of the various screw systems involved.

Numerical computations have also the disadvantage that they can only be performed for a
given configuration, and the resulting velocities and internal forces cannot be generalized
to other configuration of the mechanisms. If the mechanism is not already in a singular
configuration, the number of DOF and the number of overconstraints is constant for any
non-singular configuration.

The second example presented in this section is the PentaG mechanism, which serves as
architecture for the PentaG robot presented in the following chapters of this thesis. In
this example, the analysis is computed using a vector representation of the screw systems
that is not dependent on the mechanism configuration. Although somehow more tedious
to perform, the vector based representation obtained is valid for any configuration and
gives much more insights in the nature of the mobility and overconstraints present in the
PentaG mechanism.

3.6.1 Example 1: a 4-RRR Parallel mechanisms with a planar 8R
configurable platform

The mobility and overconstraints analysis of a pure 4-RRR parallel mechanism with a rigid
platform was presented in Section 2.2.4. The example used in this section is a modified
version of this mechanism in which the rigid platform is replaced by a planar chain
made of 8 revolute joints, as shown in Figure 3.12. Since the mechanism is not anymore
represented by a series-parallel mechanism, the extended method presented previously in
this chapter in Section 3.2 cannot be used to analyze the mobility and overconstraints of
this mechanism. However, the proposed method for parallel mechanisms with configurable
platforms can be used directly here for this purpose.

3.6.1.1 Graph Reduction and Edge Screws Systems

The first step of the method is to reduce the corresponding graph of the mechanism to a
wheel graph where the centre vertex represents the base and the outside rim represents
the configurable platform. For each edge of this graph, a twist system and the reciprocal
wrench system are computed. For the 4-RRR robot with a 8R planar configurable plat-
form, the reduced graph of twist systems and the corresponding dual graph of wrench
systems is presented in Figure 3.13. In Table 3.3, a screw system basis is given for both
the twist system and the reciprocal wrench system of each leg L1, L2, L3 and L4 and
each platform segment P1, P2, P3 and P4. In the notation used, sLij and , rLij are
respectively the axis of rotation and the position of joint j of leg i and sPij and rPij are
respectively the axis of rotation and the position of joint j of the platform segment i.
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Figure 3.12: A 4-RRR parallel robot with a 8R configurable platform

For a given screw system, the set of independent basis screws that span the screw system
is not unique, and any convenient set of basis screws can be used as inputs to the method.
In Equations 3.21, linear combinations of the basis screws that represent the 3 joints of
leg L1 are performed so that the new basis screws represent now a translation in the y
direction, a translation in the z translation, and a rotation around the x axis. Equation
3.23 shows similar transformations applied to the twist system of platform segment TP1.
A basis for each leg and platform twist system is shown in Table 3.3.

TL1 = TL3 =
{[

0
y

]
,
[
0
z

]
,
[

x
rLi3 × x

]}
i = 1, 3 (3.21)

TL2 = TL4 =
{[

0
y

]
,
[
0
z

]
,
[

y
rLi3 × x

]}
i = 2, 4 (3.22)

TPi=
{[

0
(rP12 − rP11)× z

]
,
[

z
rP12 × z

]}
(3.23)

3.6.1.2 Mobility Analysis

The first step is to construct the initial leg matrix of Mobility G for the situation where
all the legs are free and are not connected to the platform. Each rows of screws represent
the mobility of a leg relatively to the base and each column represents an independent
variable associated with a DOF of the mechanism. This matrix is useful to keep track
of the influence of changes of variables and dependencies of variables introduced by the
connection of the platform on the legs.

tG =

TL1 0 0 0
0 TL2 0 0
0 0 TL3 0
0 0 0 TL4


24,12

(3.24)

The first platform connection TP1 connects leg 2 to leg 1. The first step consists in a
change of variables λ→ λ′ so that the screws motion from leg 1 to leg 2 for the restricted
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Figure 3.13: The dual reduced graphs of a) the twist systems and b) the wrench systems
of the 4-RRR+8-R parallel mechanism with configurable platform

Legs and Platform Twist Systems

TL1 = TL3 =
{[

0
y

]
,
[
0
z

]
,
[
x
0

]}
i = 1, 3

TL2 = TL4 =
{[

0
x

]
,
[
0
z

]
,
[
y
0

]}
i = 2, 4

TPi=
{[

0
(rPi2 − rPi1)× z

]
,
[

z
rPi2 × z

]}
i = 1..4

Legs and Platform Wrench Systems

WL1 = WL3 =
{[

0
x

]
,
[
0
z

]
,
[
y
0

]}
i = 1, 3

WL2 = WL4 =
{[

0
y

]
,
[
0
z

]
,
[
x
0

]}
i = 2, 4

WPi=
{[

0
x

]
,
[
0
y

]
,
[
(rPi2 − rPi1)
rPi1 × rPi2

]
,
[
z
0

]}
i = 1..4

Table 3.3: Sets of basis screws for the legs and the platform screw systems of the
4RRR+8R mechanism
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and unrestricted screw systems depend on separated variables. In this case, the change
of variables is given by λ′1 = λ1 + λ5.

tG′ =


[
0
z

][
0
y

][
x
0

]
0 0 0 0 0[

0
z

]
0 0

[
0
x

][
0
z

][
y
0

]
0 0

0 0 0 0 0 0 TL3 0
0 0 0 0 0 0 0 TL4

 (3.25)

The second step is to compute the intersection of the leg connection TP1 with the unres-
tricted 5 DOF screw system of row 2 and row 1. This represents the motion allowed by
the platform segment from leg 1 to leg 2. In this case, the five variables λ2 to λ5 combine
into a 1 DOF motion [0(rP12 − rP11)× z]

T of the platform segment P1.

1G =


[
0
z

]
−ρ1

[
0
y

]
0 0[

0
z

]
ρ2

[
0
x

]
0 0

0 0 TL3 0
0 0 0 TL4

 (3.26)

where ρ2x + ρ1y = (rP12 − rP11) × z. The matrix 1G represents the mobility of the
mechanism when only the platform segment P1 is connected between leg 1 and 2. The
first column shows that the two legs can move together in the z direction. The second
column shows that they have also 1 DOF of motion relative to each other in the xy
plane. The motion of the platform connection P1 can be obtained by substracting row 1
from row 2 in 1G. Using now 1G as input, the procedure is repeated again for platform
segments P2, P3 and P4 to obtain 2G, 3G and 4G. For each segment connection, the
first step is to compute the restricted and unrestricted screw systems between the two
connected legs and proceed to a change of variable accordingly to obtain iG′. The second
step is to compute the intersection of the platform segment motion with the unrestricted
screw system representing the motion between the two connected legs to obtain the next
matrix. The procedure for each platform connection is shown in the following equations

1G′ =


[
0
z

]
−ρ1

[
0
y

]
0 0 0 0[

0
z

]
ρ2

[
0
x

]
0 0 0 0[

0
z

]
0

[
0
y

][
0
z

][
x
0

]
0

0 0 0 0 0 TL4

 2G =


[
0
z

]
−ρ1

[
0
y

]
0[

0
z

]
ρ2

[
0
x

]
0[

0
z

]
ρ1

[
0
y

]
0

0 0 TL4

 (3.27)

The change of variables applied are 1λ′1 =1 λ1 + λ14 and 2λ2 =1 λ2 + ρ1 ·1 λ3 where
ρ1y − ρ2x = (rP22 − rP21)× z.

2G′ =



[
0
z

]
−ρ1

[
0
y

]
0 0 0[

0
z

]
ρ2

[
0
x

]
0 0 0[

0
z

]
ρ1

[
0
y

]
0 0 0[

0
z

]
0

[
0
x

][
0
z

][
y
0

]


3G =



[
0
z

]
−ρ1

[
0
y

][
0
z

]
ρ2

[
0
x

][
0
z

]
ρ1

[
0
y

][
0
z

]
−ρ2

[
0
x

]

 (3.28)

where −ρ2x− ρ1y = (rP32 − rP31)× z.
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The motion from leg 4 to leg 1 corresponding to row 1 minus row 4 of 3G is given by the
single screw [0(−ρ1y − ρ2x)]

T . This screw system is by definition unrestricted since it
has only 1 DOF, so there is no need to proceed to a change of variables. One of the basis
screw of the lst platform segment TP4 is [0(rP42 − rP41)× z]

T , which intersect perfectly
with [0(−ρ1y − ρ2x)]

T . The final result is

4G =3 G =



[
0
z

]
−ρ1

[
0
y

][
0
z

]
ρ2

[
0
x

][
0
z

]
ρ1

[
0
y

][
0
z

]
−ρ2

[
0
x

]

 (3.29)

This parallel mechanism with configurable platform has 2 DOF of mobility. The first
column shows that the platform can move in the z direction, even if the platform is rigid.
The second column shows that the platform can be configured in 1 DOF, which create a
motion in each of the 4 legs.

3.6.1.3 Overconstraints Analysis

Due to the duality between mobilities and overconstraints analysis of PMCPs, the exact
same method is applied in a dual way to compute the overconstraints of this mechanism.
The dual graph of wrench systems is used as input to the method. The first step is to
construct the initial platform wrench matrix tH of overconstraints which corresponds to
the overconstraints in the mechanism if all of the joints of all legs are locked. In this
situation, any constrain imposed by the platform segments on two legs corresponds to an
independent overconstraint. Each row of screws represents the internal forces present in a
single platform segment due to manufacturing misalignment and each column represents
an independent misalignment.

0H =

WP1 0 0 0
0 WP2 0 0
0 0 WP3 0
0 0 0 WP4

 (3.30)

The leg L2 connects platform segment P2 to P1. The first step consists of a change of
variables so that the screws constraints from P1 to P2 for the restricted and unrestricted
screw systems depend on separated variables. In this case, the change of variables is
given by λ′1 = λ1 + λ5, λ′2 = λ2 + λ6 and λ′3 = λ3 + λ7. These 3 variables correspond to
overconstraints in the configurable platform and are not dependent of the leg constraints.

0H ′ =


[
0
x

][
0
y

][
z
0

][
(rP12 − rP11)
rP11 × rP12

]
0 0 0 0 0 0[

0
x

][
0
y

][
z
0

]
0

[
0
x

][
0
y

][
z
0

][
(rP22 − rP21)
rP21 × rP22

]
0 0

0 0 0 0 0 0 0 0 WP3 0
0 0 0 0 0 0 0 0 0 WP4

 (3.31)

The second step is to compute the intersection of the leg connection WL2 with the unres-
tricted 5 DOF wrench system of row 2 and row 1. In this case, the five variables λ4 to λ8
combine into two constraints of WL2.
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1H =


[
0
x

][
0
y

][
z
0

]
0

[
(rP12 − rP11)
rP11 × rP12

]
0 0[

0
x

][
0
y

][
z
0

][
0
x

]
−
[
(rP22 − rP21)
rP21 × rP22

]
0 0

0 0 0 0 0 WP3 0
0 0 0 0 0 0 WP4

 (3.32)

where ρ2 (rP22 − rP21) − ρ1 (rP12 − rP11) = x. The matrix 1H represents the overcon-
straints of the mechanism when only the joints of leg L2 are unlocked and the joints of
the remaining legs are still locked. The first three columns show that the two platform
segments share planar overconstraints that are not transmitted to the leg. The last two
columns show that their combined constraint also produce 2 overconstraints on leg L2.
The overconstraints in leg L2 can be obtained by substracting row 1 from row 2 in 1H.
Using now 1H as input, the procedure is repeated again for leg L2, L3 and L4 to obtain
2H, 3H and 4H. For each leg connection, the first step is to compute the restricted and
unrestricted screw systems between the two connected platform segment and proceed to
a change of variable accordingly to obtain iH ′. The second step is to compute the inter-
section of the leg constraints with the unrestricted screw system representing the total
constraints imposed by the two platform segments on the unlocked leg to obtain the next
matrix. The procedure for each leg connection is shown in the following equations

1H ′ =


[
0
x

][
0
y

][
z
0

]
0

[
(rP12 − rP11)
rP11 × rP12

]
0 0 0 0 0[

0
x

][
0
y

][
z
0

][
0
x

]
−
[
(rP22 − rP21)
rP21 × rP22

]
0 0 0 0 0[

0
x

][
0
y

][
z
0

][
0
x

]
0

[
0
x

][
0
y

][
z
0

][
(rP32 − rP31)
rP31 × rP32

]
0

0 0 0 0 0 0 0 0 0 WP4

 (3.33)

2H =


[
0
x

][
0
y

][
z
0

]
0 0

[
(rP12 − rP11)
rP11 × rP12

]
0[

0
x

][
0
y

][
z
0

][
0
x

]
0 −

[
(rP22 − rP21)
rP21 × rP22

]
0[

0
x

][
0
y

][
z
0

][
0
x

][
0
y

] [
(rP32 − rP31)
rP31 × rP32

]
0

0 0 0 0 0 0 WP4

 (3.34)

2H ′ =



[
0
x

][
0
y

][
z
0

]
0 0

[
(rP12 − rP11)
rP11 × rP12

]
0 0 0 0[

0
x

][
0
y

][
z
0

][
0
x

]
0 −

[
(rP22 − rP21)
rP21 × rP22

]
0 0 0 0[

0
x

][
0
y

][
z
0

][
0
x

][
0
y

] [
(rP32 − rP31)
rP31 × rP32

]
0 0 0 0[

0
x

][
0
y

][
z
0

][
0
x

][
0
y

]
0

[
0
x

][
0
y

][
z
0

][
(rP42 − rP41)
rP41 × rP42

]

 (3.35)

3H =



[
0
x

][
0
y

][
z
0

]
0 0 0

[
(rP12 − rP11)
rP11 × rP12

][
0
x

][
0
y

][
z
0

][
0
x

]
0 0 −

[
(rP22 − rP21)
rP21 × rP22

][
0
x

][
0
y

][
z
0

][
0
x

][
0
y

]
0

[
(rP32 − rP31)
rP31 × rP32

][
0
x

][
0
y

][
z
0

][
0
x

][
0
y

][
0
x

]
−
[
(rP42 − rP41)
rP41 × rP42

]

 (3.36)
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3H ′ =



[
0
x

][
0
y

][
z
0

]
0 0 0

[
(rP12 − rP11)
rP11 × rP12

][
0
x

][
0
y

][
z
0

][
0
x

]
0 0 −

[
(rP22 − rP21)
rP21 × rP22

][
0
x

][
0
y

][
z
0

][
0
x

][
0
y

]
0

[
(rP32 − rP31)
rP31 × rP32

][
0
x

][
0
y

][
z
0

]
0
[
0
y

][
0
x

]
−
[
(rP42 − rP41)
rP41 × rP42

]

 (3.37)

4H =



[
0
x

][
0
y

][
z
0

]
0 0

[
(rP12 − rP11)
rP11 × rP12

][
0
x

][
0
y

][
z
0

][
0
x

]
0 −

[
(rP22 − rP21)
rP21 × rP22

][
0
x

][
0
y

][
z
0

][
0
x

][
0
y

] [
(rP32 − rP31)
rP31 × rP32

][
0
x

][
0
y

][
z
0

]
0
[
0
y

]
−
[
(rP42 − rP41)
rP41 × rP42

]

 (3.38)

This parallel mechanism with configurable platform has 6 overconstraints. Each column
represents an independent overconstraint i.e. a geometrical condition that needs to be met
in order to assemble the mechanism. When these conditions are not perfectly satisfied,
the links must stretch or bend to permit the assembly and this will introduce internal
stresses in the rigid links. Several overconstraints can be present at the same time and the
internal stress that they generate can be added linearly for each link. For this reason it is
always possible to perform linear operations on the columns of H and still obtain a valid
representation with a different but equivalent physical meaning. Some linear changes of
variables are performed on column 4 and 5 of 4H to obtain a matrix from which it is
easier to make a physical interpretation.

4H =



[
0
x

][
0
y

][
z
0

][
0
−x
][

0
−y
] [

(rP12 − rP11)
rP11 × rP12

][
0
x

][
0
y

][
z
0

] [
0
x

] [
0
−y
]
−
[
(rP22 − rP21)
rP21 × rP22

][
0
x

][
0
y

][
z
0

] [
0
x

] [
0
y

] [
(rP32 − rP31)
rP31 × rP32

][
0
x

][
0
y

][
z
0

][
0
−x
] [

0
y

]
−
[
(rP42 − rP41)
rP41 × rP42

]

 (3.39)

The first three columns are due to the fact that the configurable platform is formed by a
planar loop. Those types of overconstraints are common to all planar linkages. In a planar
linkage made of revolute joints, the sum of the difference in the orientation of the joint
axis must be zero. In addition, the sum of differences in height of the joint attachment
must also be zero. Columns 4 shows that the base joint of leg 2 and leg 4 must lie in the
same plane. Columns 5 shows that the base joint of leg 1 and leg 3 must also be in the
same plane. Note that the four base joints don’t have to be in the same plane, but only
the opposite legs taken 2 by 2. The last column shows that only a certain combination
of lengths is possible for the platform segments. If one imagine that the last platform
segment P4 is a bit shorter than P1, P2 and P3. This would create stretching in P2 and
P4 and compression in P1 and P3.

All the information needed to compute internal forces due to overconstraints is contained
in the matrix 4H. Each row represents the internal stresses produced on platform seg-
ments P1, P2, P3 and P4. rows can be subtracted to obtain the stress inside the last
link of each leg. For example, row 2 minus row 1 gives the stress present in the last link
of L1. The stress present on the base link is given by the summation of the stress of the
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Figure 3.14: Distribution of the internal stresses due to one of the overconstraint of the
4RRR+8R mechanism. The plain arrows represents linear forces and the dot arrows
represent torques. The sum of the internal stresses on each rigid body is zero. All the
internal stresses are dependent on a single variable. This variable is represented by the
6th column of the platform matrix of overconstraints 4H, which shows linear compression
in platform segments P1 and P3 and linear traction in platform segments P2 and P4.

four leg. If some additional information are available concerning the actual stiffness of the
links, it is possible to compute a relation between all the manufacturing tolerances and
the internal stresses and derive some tolerance requirements depending on the maximal
stress that are permitted by the links. Figure 3.14 shows the distribution of the internal
stresses corresponding to the column 6 of the matrix H4 in the whole PMCP. Figure
3.15 shows a representation of the physical meaning of the intermediate matrices for the
mobility and overconstraint analysis of the 4RRR+8R mechanism.

3.6.2 Example 2: PentaG Mechanism

3.6.2.1 Graph Reduction and Screw Systems

The first step of the method is to reduce the graph representing the PentaG into a wheel
graph representing the terminal links of the parallel robot with configurable platform
using the two standard reduction laws. Figure 3.16 shows the original graph of the
PentaG mechanism. In this graph, each link is denoted as nij where i = 1..5, p represent
a leg or the platform and j is the number of the link. The joints are noted mij in a similar
way.

All the joints of the PentaG mechanism are revolute joint with 1 DOF. The screw $ij
corresponding to joint mij is expressed as

Tij =
[

ŝij
rij × sij

]
(3.40)

where ŝij is a unit vector oriented in the direction of the axis of rotation of the joint and
rij is the vector from the origin of the global coordinate frame to the position of the joint.
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Figure 3.15: Mobility and overconstraints of the 4RRR+8R mechanism
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Figure 3.16: a) Shematic representation of the PentaG mechanism and b) its Graph
Representation.

For numerical computation, rij can be any vector from the origin to any point on the
row corresponding to the axis of rotation of the joint since the result of the cross product
rij × sij is the same regardless the point on the row used to compute rij .

The first reduction possible is a serial reduction that applies on links ni3 and ni4 of legs
i = 1..5 and on links np5, np6, np7, and np8 of the configurable platform. The graph
resulting from this reduction is presented in figure 3.17 a). The screw systems obtained
from those serial reductions are:

Tia = Ti3 + Ti4 =
{[

ŝic
ri3 × ŝic

]
,
[

ŝic
ri4 × ŝic

]}
=
{[

0
(ri4 − ri3)× ŝic

]
,
[

ŝic
ri4 × ŝic

]}
(3.41)

Tib = Ti5 + Ti6 =
{[

ŝic
ri5 × ŝic

]
,
[

ŝic
ri6 × ŝic

]}
=
{[

0
(ri5 − ri6)× ŝic

]
,
[

ŝic
ri6 × ŝic

]}
(3.42)

Tpj = Tp,2j−1 + Tp,2j=
{[

ŝp
rp,2j−1 × ŝp

]
,
[

ŝp
rp,2j × ŝp

]}
Tpj=

{[
0

(rp,2j − rp,2j−1)× ŝp

]
,
[

ŝp
ri4 × ŝp

]}
(3.43)

Following this serial reduction, a parallel reduction is now possible in each parallelogram
unit. The resulting graph is shown in Figure 3.17 b). In a parallel reduction, the res-
ulting twist system represents the intersection of the original twist systems. Information
concerning the overconstraints of the mechanism may be lost during the intersection pro-
cedure and it is therefore better to proceed to the addition of the wrench system. The
wrench systems of the parallelogram units are given by
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Figure 3.17: Graph representation of the PentaG mechanism after a) the first serial
reduction and b) the first parallel reduction

Wia =
{[

(ri4 − ri3)
ri3 × ri4

]
,
[
ŝic
0

]
,
[

0
(ri4 − ri3)× ŝic

]
,
[

0
(ri4 − ri3)

]}
(3.44)

Wib =
{[

(ri6 − ri5)
ri5 × ri6

]
,
[
ŝic
0

]
,
[

0
(ri6 − ri5)× ŝic

]
,
[

0
(ri6 − ri5)

]}
(3.45)

The overconstraints can be obtained from the restricted wrench system of Wia and Wib

as defined in Section 2.3. Since (ri4 − ri3) and (ri6 − ri5) are both perpendicular to ŝic
the restricted screw system is

WR
ic = Wia

⋂
Wib =

{[
ŝic
0

]
,
[

0
(ri4 − ri3)× ŝic

]
,
[

0
(ri4 − ri3)

]}
(3.46)

For that reason, there are therefore 3 overconstraints for each parallelogram units -as it is
the case for most planar mechanisms- and therefore 15 overconstraints for the complete
mechanism. The twist system of the parallelogram units is given by

Tic = Tia
⋂
Tib =

[
0

(ri4 − ri3)× ŝic

]
(3.47)

which shows that each parallelogram unit has translational DOF.

In the next graph reduction step, the twist systems of the legs are computed. The resulting
graph is shown in Figure 3.18 a). The twist system Tid of each leg is given by

Tid = Ti1 + Ti2 + Tic + Ti7 =
{[

ŝid
ri1 × ŝid

]
,
[

ŝid
ri2 × ŝid

]
,
[

0
(ri4 − ri3)× ŝic

]
,
[

ŝid
ri7 × ŝid

]}
(3.48)
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Figure 3.18: Graph representation of the PentaG mechanism after a) the second serial
reduction and b) the second parallel reduction

Tid =
{[

0
(ri2 − ri1)× ŝid

]
,
[

0
(ri7 − ri2)× ŝid

]
,
[

0
(ri4 − ri3)× ŝic

]
,
[

ŝid
ri7 × ŝid

]}
(3.49)

The four twist systems don’t intersect so there is no local mobility in the legs. A linear
transformation of the basis screws of those system are performed Equation 3.48 to Equa-
tion 3.49 to facilitate the next computations. The last possible reduction is the parallel
reduction between leg i = 1 and leg i = 5. The resulting graph is shown in Figure 3.18 b).
Since this is a parallel reduction, the wrench system is first computed to reveal possible
local overconstraints.

W1d = T⊥1d =
{[

0
ŝ1c × ŝ1d

]
,
[

0
(r14 − r13)× ŝ1d

]}
(3.50)

W5d = T⊥5d =
{[

0
ŝ5c × ŝ5d

]
,
[

0
(r54 − r53)× ŝ5d

]}
(3.51)

The restricted system obtained represents the overconstraint of this parallel construction.

WR
L1 = W1d

⋂
W5d =

[
0

ŝ1d × ŝ5d

]
(3.52)

One overconstraint occurs when these two legs are assembled. Considering the overcon-
straints already revealed for the parallelogram units, the total of local overconstraints is
16. The twist system TL1 is given by

TL1 = T1d
⋂
T5d =

{[
0

(ri2 − ri1)× ŝid

]
,
[

0
(ri7 − ri2)× ŝid

]
,
[

0
(ri4 − ri3)× ŝic

]}
(3.53)
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Figure 3.19: Dual a) Twist Graph and b) Wrench Graph of the PentaG

This complete the graph reduction procedure. By now, no more serial or parallel reduc-
tions are possible due to the non series-parallel nature of the PentaG mechanism and the
result of the graph reduction procedure is a wheel graph with corresponding edges twist
systems. No local mobilities were present in the legs or the platform. A total of 16 local
overconstraints in the wheel edges has been revealed, 3 in each parallelogram unit and 1
between leg 1 and leg 5.

From the graph reduction process, a wheel graph of twist systems and a dual wheel graph
of wrench systems shown in Figure 3.19 is finally obtained. A set of basis screws for each
screw system is given in Table 3.4.

Legs and Platform Twist Systems

TL1 =
{[

0
x

]
,
[
0
y

]
,
[
0
z

]}
TLi =

{[
0
x

]
,
[
0
y

]
,
[
0
z

]
,
[

ŝid
ri7 × ŝid

]}
i = 2..4

TPi =
{[

0
(rp,2i − rp,2i−1)× ŝp

]
,
[

z
rp,2i × z

]}
i = 1..4

Legs and Platform Wrench Systems

WL1 =
{[

0
x

]
,
[
0
y

]
,
[
0
z

]}
WLi =

{[
0
z

]
,
[

0
z× ŝid

]}
i = 2..4

WPi =
{[

ẑ
0

]
,
[
(rp,2i − rp,2i−1)
rp,2i × rp,2i−1

]
,
[
0
x̂

]
,
[
0
ŷ

]}
i = 1..4

Table 3.4: Sets of basis screws for the legs and the platform screw systems of the PentaG
mechanism
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3.6.2.2 Mobility Analysis

The inputs of the mobility method is the wheel graph of twist systems of Figure 3.19
a). First, the initial leg matrix of mobility tG is built. This matrix has 15 columns
representing the 15 DOF of the legs when the configurable platform is not connected. For
each DOF, i.e for each column, a global variable λi can be assigned

tG =

TL1 0 0 0
0 TL2 0 0
0 0 TL3 0
0 0 0 TL4


24,15

(3.54)

The first platform connection P1 connects leg 2 to leg 1. The mobility of leg 2 relatively
to leg 1 is obtained from the subtraction of row 2 and row 1 in tG.

tG(2−1) = [−TL1TL2 00]6,15 (3.55)

tG(2−1) =
[[

0
−x
][

0
−y
][

0
−z
] [

0
x

][
0
y

][
0
z

][
ŝid

ri7 × ŝid

]
06,406,4

]
6,15

(3.56)

A change of variable is then performed so that the variables of the restricted screw systems
of tG(2−1) are canceled. The change of variables performed are tλ81 = tλ1 + tλ4, tλ82 =
tλ2 + tλ5 and tλ83 = tλ3 + tλ6, leading to SR1 =

{[
0
x

]
,
[
0
y

]
,
[
0
z

]}
and SU1 = {Ø}. The

new generative matrix tG8 is

tG′ =


[
0
x

][
0
y

][
0
z

]
0 0 0 0 0 0[

0
x

][
0
y

][
0
z

][
0
x

][
0
y

][
0
z

][
ŝid

ri7 × ŝid

]
0 0

0 0 0 0 0 0 0 TL3 0
0 0 0 0 0 0 0 0 TL4


24,15

(3.57)

The second step is to compute the intersection of the platform segment P1 with the
unrestricted 4 DOF twist system between leg 2 and leg 1.

TUP1 = TP1

⋂(
SU1 + TL2

)
= TP1

⋂
TL2 =

[
0

(rp2 − rp1)× ŝp

]
(3.58)

The leg mobility matrix obtained after the connection of platform segment P1 is

1G =


[
0
x

][
0
y

][
0
z

]
0 0 0[

0
x

][
0
y

][
0
z

] [
0

(rp2 − rp1)× ŝp

]
0 0

0 0 TL3 0
0 0 0 TL4


6,12

(3.59)

The procedure to connected platform edge P2 and P3 is very similar to the procedure to
connect P1. The generative matrix after connection of platform edge P1, P2 and P3 is
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3G =



[
0
x

][
0
y

][
0
z

]
0 0 0[

0
x

][
0
y

][
0
z

] [
0

(rp2 − rp1)× ŝp

]
0 0[

0
x

][
0
y

][
0
z

] [
0

(rp2 − rp1)× ŝp

] [
0

(rp4 − rp3)× ŝp

]
0[

0
x

][
0
y

][
0
z

] [
0

(rp2 − rp1)× ŝp

] [
0

(rp4 − rp3)× ŝp

] [
0

(rp6 − rp5)× ŝp

]


6,6

(3.60)

The last platform edge to close is P4. The twist system of P4 must be the same than
L4 − L1.

3G(4−1) =
[
06,3

[
0

(rp2 − rp1)× ŝp

][
0

(rp4 − rp3)× ŝp

][
0

(rp6 − rp5)× ŝp

]]
6,15

(3.61)

Since all vectors rpi are in the same plane, the 3 screws representing the motion of leg 1
relatively to leg 4 are not independent. In order to separate the restricted and unrestricted
screw systems, a change of variable ′λ4 = λ4 − ρ1λ5 − ρ2λ6 is applied where ρ1 and ρ2
are defined such that

[
0

(rp2 − rp1)× ŝp

]
= ρ1

[
0

(rp4 − rp3)× ŝp

]
+ ρ2

[
0

(rp6 − rp5)× ŝp

]
(3.62)

The leg mobility matrix becomes

3G′(4−1) =
[
06,3 0

[
0

(rp4 − rp3)× ŝp

][
0

(rp6 − rp5)× ŝp

]]
6,15

(3.63)

3G′ =



[
0
x

][
0
y

][
0
z

]
0 0 0[

0
x

][
0
y

][
0
z

] [
0

(rp2 − rp1)× ŝp

]
0 0[

0
x

][
0
y

][
0
z

]
ρ2
[

0
(rp6 − rp5)× ŝp

][
0

(rp4 − rp3)× ŝp

]
0[

0
x

][
0
y

][
0
z

]
0

[
0

(rp4 − rp3)× ŝp

] [
0

(rp6 − rp5)× ŝp

]


6,6

(3.64)

Finally, the intersection of the twist system of the last platform segment P4 with the
unrestricted screw system of Equation 3.63 is performed. The 2 last columns combine
into a single screw representing the motion of the platform segment P4. The change of
variable is 4λ5 = ρ3λ5 + ρ4λ6 with ρ3 and ρ4 such that

[
0

(rp8 − rp7)× ŝp

]
= ρ3

[
0

(rp4 − rp3)× ŝp

]
+ ρ4

[
0

(rp6 − rp5)× ŝp

]
(3.65)

The final matrix is then
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4G =



[
0
x

][
0
y

][
0
z

]
0 0[

0
x

][
0
y

][
0
z

] [
0

(rp2 − rp1)× ŝp

]
0[

0
x

][
0
y

][
0
z

]
ρ2
[

0
(rp6 − rp5)× ŝp

]
ρ3

[
0

(rp4 − rp3)× ŝp

][
0
x

][
0
y

][
0
z

]
0

[
0

(rp8 − rp7)× ŝp

]


6,5

(3.66)

This matrix shows that the PentaG mechanism has 5 DOF. The first three columns
correspond to the mobility of the legs when the platform is rigid. The fourth column
is the motion of platform segment P2 and the fifth column is the motion of platform
segment P4. Each row represents the mobility of the legs relatively to the base.

3.6.2.3 Overconstraints Analysis

Because of the duality between mobilities and overconstraints analysis, the same method
is applied to compute the overconstraints. The inputs of the method is the dual graph of
wrench systems shown in Figure 3.19 b). The first step is to construct the initial platform
wrench matrix tH

tH =

WP1 0 0 0
0 WP2 0 0
0 0 WP3 0
0 0 0 WP4


24,16

(3.67)

Mathematically, the overconstraint analysis of the PentaG is identical to the mobility
analysis presented in section 3.6.2.2. The initial matrix corresponds to the overconstraints
of the mechanism when all leg joints are locked. The three steps method is applied to
each leg to unlock them. The first step is to compute the total forces exerted by P2 and
P1 using a subtraction of row 1 to row 2 in 3.67.

tH(2−1) =
[
−
[
ẑ
0

]
−
[
0
ŷ

]
−
[
0
x̂

]
−
[
(rp2 − rp1)
rp2 × rp1

][
ẑ
0

][
0
ŷ

][
0
x̂

][
(rp4 − rp3)
rp4 × rp3

]
00
]
24,16

(3.68)

A change of variable is performed so that the dependent screws in tH(2−1) vanish. The
new matrices are

tH ′(2−1) =
[
000−

[
(rp2 − rp1)
rp2 × rp1

][
ẑ
0

][
(rp4 − rp3)
rp4 × rp3

][
0
x̂

][
0
ŷ

]
00
]
24,16

(3.69)

tH ′ =


[
ẑ
0

][
0
x̂

][
0
ŷ

][
(rp2 − rp1)
rp2 × rp1

]
0 0 0 0 0 0[

ẑ
0

][
0
x̂

][
0
ŷ

]
0

[
ẑ
0

][
0
x̂

][
0
ŷ

][
(rp4 − rp3)
rp4 × rp3

]
0 0

0 0 0 0 0 0 0 0 WP3 0
0 0 0 0 0 0 0 0 0 WP4


24,16

(3.70)

The restricted screw system on the left of tH ′ corresponds to the wrenches that can be
transmitted directly from P1 to P2. When leg L2 is unlocked, the unrestricted screw
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system on the right part of tH ′ must intersect with the wrench system of L2. The new
matrix 2H is

2H =


[
ẑ
0

][
0
x̂

][
0
ŷ

]
0 0 0[

ẑ
0

][
0
x̂

][
0
ŷ

][
0

z× ŝ2d

]
0 0

0 0 0 0 WP3 0
0 0 0 0 0 WP4


24,12

(3.71)

Unlocking leg L3 and L4 leads to similar operations. The platform wrench matrix 234H
obtained after those operations is

234H =



[
ẑ
0

][
0
x̂

][
0
ŷ

]
0 0 0[

ẑ
0

][
0
x̂

][
0
ŷ

][
0

z× ŝ2d

]
0 0[

ẑ
0

][
0
x̂

][
0
ŷ

][
0

z× ŝ2d

][
0

z× ŝ3d

]
0[

ẑ
0

][
0
x̂

][
0
ŷ

][
0

z× ŝ2d

][
0

z× ŝ3d

][
0

z× ŝ4d

]


24,6

(3.72)

Leg L1 is connecting platform segment P4 to P1. Subtraction of row 4 from row 1 gives

234H(1−4) =
[
000−

[
0

z× ŝ2d

]
−
[

0
z× ŝ3d

]
−
[

0
z× ŝ4d

]]
(3.73)

After a change of variables so that columns 4 of 234H(1−4) vanish, the matrix 234H ′

becomes

234H ′ =



[
ẑ
0

][
0
x̂

][
0
ŷ

]
0 0 0[

ẑ
0

][
0
x̂

][
0
ŷ

] [
0

z× ŝ2d

]
0 0[

ẑ
0

][
0
x̂

][
0
ŷ

]
ρ2

[
0

z× ŝ4d

][
0

z× ŝ3d

]
0[

ẑ
0

][
0
x̂

][
0
ŷ

]
0

[
0

z× ŝ3d

][
0

z× ŝ4d

]


24,6

(3.74)

where the scalar ρ2 is defined such that the equation[
0

z× ŝ2d

]
= ρ1

[
0

z× ŝ3d

]
+ ρ2

[
0

z× ŝ3d

]
(3.75)

is respected.

The last two columns of 234H ′(1−4) are included in the leg constraints WL1, so no change
occur in the overconstraints of the mechanism when the last leg L1 is unlocked. This
means that the final platform constraint matrix 1234H is the same as 234H or 234H ′ if the
change of variables is kept.

1234H = 234H =



[
ẑ
0

][
0
x̂

][
0
ŷ

]
0 0 0[

ẑ
0

][
0
x̂

][
0
ŷ

][
0

z× ŝ2d

]
0 0[

ẑ
0

][
0
x̂

][
0
ŷ

][
0

z× ŝ2d

][
0

z× ŝ3d

]
0[

ẑ
0

][
0
x̂

][
0
ŷ

][
0

z× ŝ2d

][
0

z× ŝ3d

][
0

z× ŝ4d

]


24,6

(3.76)
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Physically, the first 3 columns of 1234H represent the planar overconstraints of the planar
configurable platform, which occur in any planar linkage. The last three columns show
that the base joints of all legs must be in the same plane. During the graph reduction
operation, 15 planar local overconstraints due to the parallelogram units and 1 local
overconstraint due to the alignment of base joints in leg 1 and 5 were revealed. No local
mobilities were found. The total of overconstraints for the PentaG mechanism is therefore
15+1+6=22. The mobility of this mechanism was computed in Section 3.6.2.2 and it was
found that the number of DOF is 5. In total, the PentaG mechanism has 34 rigid links and
43 revolute joints. Those numbers respect the modified Chebychev–Grübler–Kutzbach
criterion for quick mobility calculation presented in Section 2.2.1.

M=6 (n−m− 1) +

m∑
i=1

(fi) +RC −RM = 6 (34− 43− 1) + 43 + 22− 0 = 5 (3.77)

3.7 Summary

In this chapter, the concept of series-parallel mechanism was introduced and it was shown
that the analysis method for pure parallel mechanisms presented in Chapter 2 can be
extended for the analysis of any general series-parallel mechanism, applying the serial and
parallel laws for twist and wrench systems. The concept of series-parallel mechanisms
was defined based on the properties of their associated graph. A variety of already
known classes of mechanisms, such as Delta robots and hybrid mechanisms, fall into
this more general category of mechanisms and their different layers of serial and parallel
connections have been presented within this new general framework using the concept
of graph reduction. For each class, the standard method of mobility and overconstraints
analysis can be extended using this framework as long as the mechanism is series-parallel.
General recursive formulas and methods have then been presented that are applicable to
any series-parallel mechanism.

It was seen that the series-parallel reduction of a parallel mechanism with configurable
platform (PMCP), as defined in this thesis, always results in a wheel graph. Since wheel
graphs fall into the category of non series-parallel graphs, the mobilities and overcon-
straints analysis of PMCPs cannot be computed with the extended standard method for
series-parallel mechanisms and different methods must be used. A general method was
proposed to perform the analysis of the mobility and overconstraints of parallel mechan-
isms with configurable platforms (PMCPs). One key aspect of the new proposed method
is based on the concept of restricted and unrestricted screw systems that were used in
section 2.3 to compute the local mobility of serial chains and the overconstraints of pure
parallel mechanisms. A physical interpretation is provided for each step of the method.

The method underlines the separation between the global variables that are associated
with the rigid motion of the platform and the global variables associated with the config-
uration of the platform. In the mobility analysis of PMCPs, the restricted screw system
between two legs corresponds to the mobility of the legs relatively to the base if they
are connected with a rigid platform. The unrestricted screw system corresponds to their
relative mobility when they are not connected. Using an appropriated change of variables,
the constraints imposed by the configurable platform on unrestricted the screw systems of
the legs is computed. The process is repeated for each platform connection and a matrix
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representing the velocity of each leg as function of the global DOF of the mechanism is
finally obtained.

Wheel graphs have the particular property of being self-dual and unlike most of other
classes of mechanisms, PMCPs have a self dual topology. This is due to the fact that
pure parallel mechanisms are dual to a single closed loop and vice versa. Combining a
single closed-loop and a parallel mechanism together results in a self dual mechanism.
The particular self dual topology of PMCPs can be exploited in their analysis. General
methods developed for calculating the mobility of PMCPs can be reused directly to cal-
culate their overconstraints and vice versa. The proposed mobility analysis method for
PMCPs was then applied directly to the analysis of overconstraints of PMCPs, and the
dual physical interpretation was presented.

The general method was then applied to two different parallel mechanisms with config-
urable platforms and an analytical solution and an interpretation of the complete dis-
tribution of their mobility and overconstraints was obtained. From the method, it was
shown that the 4-RRR+8R mechanism has 2 DOF and 6 overconstraints while the PentaG
has 5 DOF and 22 overconstraints. Those numbers are in agreement with the modified
Chebychev–Grübler–Kutzbach criterion.

Very few parallel mechanisms with configurable platforms have been presented in the
literature or used in the industry. Such mechanisms are ignored by type synthesis methods
of mechanisms such as in [42]. They are promising since they offer alternative kinematic
solutions for existing robots and can also bring new possibilities in robot architecture
design, as it is the case for the PentaG, which offer grasping capabilities while all actuators
are located on the base. A better understanding of the fundamentals of their mobility
and overconstraints, as presented in this chapter, will help robot designers to consider
them as a valid option in their choice of a robot architecture. Fundamentals of mobility
and overconstraints analysis of PMCPs is an essential aspect in the future development
of a broader type synthesis method that includes those mechanisms.
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Chapter 4

Kinematics of the PentaG Robot

This chapter presents the kinematics analysis of the PentaG robot, as a logical step after
the design of the PentaG mechanism. The International Federation for the Promotion of
Mechanism and Machine Science (Iftomm) has defined kinematics to be “the branch of
theoretical mechanics dealing with the geometry of motion, irrespective of the causes that
produce the motion”. For each configuration, the motion of the end-effector of a robot
corresponds to certain motion of the motors controlling the robot. The robot motion
can be expressed either in the joint space or in the end-effector Cartesian space and the
kinematic mapping describes the relation between these two spaces. In robot kinematics,
the links of the robot are modeled as perfectly rigid bodies so their movement can be
analyzed with the use of geometry.

The position kinematic relations are highly non-linear while the velocity kinematic re-
lations can be linearised locally for a given configuration. Furthermore, the direct kin-
ematics problem, which consists of mapping the joint motion into the Cartesian motion,
must be distinguished from the inverse kinematic problem, which consists of mapping
the end-effector motion into the joint motion. These two problems are very different
by nature and complexity. For a serial robot, the direct position kinematics (DPK) is
relatively simple and has a single solution, while the inverse position kinematics (IPK)
is more complex and has in general multiple solutions. For parallel robots, the inverse
position kinematic problem is of equal complexity than for serial robots, and the direct
position kinematic problem is even more complex and has challenged kinematicians in
the last decades. Direct position kinematics is one of the most active fields of research in
parallel robotics and there are many parallel robots for which no analytical solutions for
the DPK have been found yet and for which numerical solutions must be used, despite
their limitations.

The velocity mapping from the joint space to the Cartesian space can be expressed locally
in a linear way by a the Jacobian matrix. The value of the Jacobian is generally dependent
on the configuration of the robot, with the exception of the isotropic robots, which have
the remarkable property of a constant value Jacobian for any configuration over the
workspace. As it will be shown in this chapter, many configuration-dependent properties
of the robot, for instance accuracy, static, dexterity and stiffness, can be derived from the
value of the Jacobian matrix in the corresponding configuration. An important concept
in velocity kinematics is the presence of singular configurations. For those particular
configurations, the Jacobian matrix is not of full rank and the end-effector will have
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Figure 4.1: A schematic representation of the PentaG robot: A 5 DOF parallel robot
with a configurable platform

uncontrollable degrees of freedom. This subject has also been extensively studied by
kinematicians over the last two decades, especially for parallel robots, since parallel robot
may possess a type of singularity that is not encountered in serial robots and has been
called parallel singularities. Many open questions remain about singularity analysis of
parallel robots and a general method to describe the degeneracy of the Jacobian, i.e. the
singular configuration, as a function of the design parameters of the robot was never been
fully addressed.

Aside from revealing the specific kinematics of the PentaG robot, an original contribution
of this chapter is the modification of the classical method of kinematic analysis of parallel
robot to allow the analysis of parallel robots with configurable platforms. In first place,
the inverse and direct position kinematic relations are described followed by the derivation
of the inverse Jacobian. The problem of static balancing is then addressed. Section 4.4
deals with the serial and parallel singularities of the PentaG. New types of singularities,
related to the configurable platform and absent in classical robot are analyzed.

4.1 Position Kinematics

Direct position kinematics is concerned with the mapping of the joint positions into
end-effector positions while inverse position kinematics is concerned with the mapping
of end-effector position into joint position. On the contrary of serial robots, for which
the direct position kinematic is easier to analyse than the inverse kinematics, the direct
kinematic analysis of parallel robot is much more complex than its inverse kinematics.
For parallel robots, both direct and inverse position kinematic mapping have in general
multiple solutions. The multiple solutions of the inverse kinematics are called working
modes while the multiple solutions of the direct kinematics are called assembly modes.

4.1.1 Inverse Position Kinematics

The inverse position kinematics problem is to establish the values of the position of the
actuators as function of the position of the end-effector. This problem is very similar to
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the IPK problem encountered in serial robots. For a serial robot, one is interested in
the value of each joint of the serial chain as a function of the end-effector position. A
parallel mechanism can be considered as a collection of serial chains that share the same
end-effector. In order to calculate the IPK of a parallel robot, the IPK of each leg can
be calculated independently. The IPK solutions for serial robots can therefore almost be
used directly for the IPK of parallel robots.

Finding an analytical expression of the IPK of a general serial chain has been the subject
of many researches in the beginning 90s [45, 44, 50, 67]. One significant advance on this
problem was to show that the IPK of a general 6 joints serial chain has at most 16 solutions
corresponding to the roots of a polynomial of order 16[66]. In practice, some geometrical
conditions must be satisfied so that all the solutions are real. For many robots, some of
the solutions to the polynomial are always imaginary and the IPK problem of these serial
robots has less than 16 real solutions. In some industrial serial robot, iterative methods
based on numerical techniques are used to compute the IPK in real-time. In this section,
the analytical solutions of the IPK of the PentaG are presented based on geometrical
arguments. Analytical solutions have the advantage of being computer efficient for the
real-time control of the robot. The problem is to find the following relation f :

q=f (χ)[q1q2q3q4q5
]

=f

xyz
θ
ρ

 (4.1)

where qi is the angle of the actuator i with the horizontal plane, χ is the position of the
end-effector, and f represent the non-linear relation of the IPK. The IPK of the PentaG
differs from the IPK of classical parallel robots due to the configurable platform. Because
of this platform, the problem can be divided into two sub-problems. The first is the
computation of the IPK of the platform, which consist of finding the position of the leg
attach point ci of leg i as function of the end-effector position χ, and the second is the
computation of the IPK for the actuator position qi as function of the leg attach points
ci.

ci = fp (χ)
qi = fl (ci)

i = 1..5 (4.2)

The techniques used here are based on simple geometric calculations. It will be shown
that both the IPK of the platform and the IPK of the legs have multiple solutions. Each
solution corresponds to a working mode. Robots are normally designed to operate only in
one working mode. The solution corresponding to the working mode used for the PentaG
will be presented in detail. The other working modes are briefly discussed in Section
4.1.1.3.

4.1.1.1 Inverse Position Kinematic of the Configurable Platform

The IPK of the configurable platform corresponds to the non-linear function fp that
maps the 5-dimensional vector χ, which corresponds to the position, orientation and
grasping of the two finger tips, into five 3-dimensional vectors ci = [xi yi zi ]

T , each of
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Figure 4.2: Inverse Position Kinematic of the configurable platform. The position of the
leg attach points c2 and c4 in a) corresponds to the solution of the intersection of two
circles in b).

which corresponding to the position of the attach point of leg i. Since z − zi is constant
for each leg i, the problem is reduced to a 2D geometric problem in the horizontal plane.
Figure 4.1 shows a schematic representation of the complete 5 DOF PentaG robot. Figure
4.2 a) shows the position of the end-effector χ = [xyzθρ]

T , the attach points ci and the
geometric parameters used in the IPK of the configurable platform. By the construction
of the robot, the last link of each leg is constrained in rotation around the vertical axis.
The vector a1, a2R, a2L and a3, which determine the position of the platform joints
relatively to the leg attach points ci are therefore constant for any configuration. Since
those vectors are constant, the position of the leg attach point of leg #1, #3 and #5 are
easily computed as

c1 =
[x
y
z

]
+ ρ

[
sin (θ)
−cos (θ)
−h

]
+ a1 (4.3)

c3 =
[x
y
z

]
+ ρ

[
−sin (θ)
cos (θ)
−h

]
(4.4)

c5 =
[x
y
z

]
+ ρ

[
sin (θ)
−cos (θ)
−h

]
− a1 (4.5)

For the attach points of legs #2 and #4, the intersections of the platform links need to
be computed. The lengths of the platform links are symmetric on each side of the finger
tips. The positions c2 and c4 are located at the intersection of two circles with radius b1
and b2. The closure equations for the attach point c2 are given by

‖c2 − a2R − c1‖ = b1

‖c3 + a3 − c2 − a2R‖ = b2
(4.6)

And the closure equations for the attach point c4 are given by
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‖c4 − a2L − c5‖ = b1

‖c3 − a3 − c4 − a2L‖ = b2
(4.7)

The point c2 corresponds to the intersection point of a circle centered at (c1 + a2R) with
a radius b1 and a circle centered at (c3 + a3 − a2R) with a radius b2. The point c4 can be
computed in a similar way and corresponds to the intersection point of a circle centered at
(c5 − a2L) with radius b1 and a circle centered at (c3 − a3 − a2L) with radius b2. Figure
4.2 b) shows the intersection points of two circles centered in p1 and p2 with radius r1
and r2 respectively. If |r1 − r2| < ‖p2 − p1‖ < (r1 + r2), intersection of circles has two
solutions which correspond to two different working modes for the configurable platform.

The intersection points are computed in the following way. Considering two right triangles
p1p3p4 and p2p3p4. one can write

d21 + h2 = r21

d22 + h2 = r22

d1 + d2 = ‖p2 − p1‖
(4.8)

to obtain a system of three non linear equations and three unknowns. Solving for d1, d2
and h gives

d1 =
‖p2−p1‖2+r21−r

2
2

2‖p2−p1‖

d2 =
‖p2−p1‖2+r22−r

2
1

2‖p2−p1‖

h =
√
r21 − d21

(4.9)

The points p4 are finally given by

p4 = p1 +
[
d1 ±h
∓h d1

] (p2 − p1)

‖p2 − p1‖
(4.10)

The plus-minus signs reflect the fact that the problem has two solutions. To compute
c2 and c4, the terms in equation 4.10 should be replaced by the terms of the closures
equations 4.6 and 4.7. The solution corresponding to the working mode used for the
platform is then selected. The positions of the leg attach points c2 and c4are finally
given by

c2=(c1 + a2R) +
[
d2 h2
−h2 d2

] (c3 + a3 − 2a2R − c1)

‖c3 + a3 − 2a2R − c1‖
(4.11)

d2=
‖c3 + a3 − 2a2R − c1‖2 + b21 − b22

2 ‖c3 + a3 − 2a2R − c1‖
(4.12)

h2=
√
b21 − d22 (4.13)

and
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Figure 4.3: The IPK solutions of the legs using geometrical intersections. The position of
the leg attach point ci is given by the solution of the IPK of the configurable platform.
The axis of rotation si of the grounded actuator is also known. The two possible solutions
correspond to the intersection points of a sphere with a circle.

c4=(c5 + a2L) +
[
d4−h4
h4 d4

] (c3 − a3 − 2a2L − c5)

‖c3 − a3 − 2a2L − c5‖
(4.14)

d4=
‖c3 − a3 − 2a2L − c5‖2 + b21 − b22

2 ‖c3 − a3 − 2a2L − c5‖
(4.15)

h4=
√
b21 − d24 (4.16)

4.1.1.2 Leg Inverse Kinematics

In the previous section, the position of the five leg attach points ci was described as
function of the end-effector position χ. The second step of the IPK problem is to find
the angle of the ground-based actuators as function of the leg attach points. The results
of the first equation in 4.2 are used as input for the second equation in 4.2. Each leg
has the same structure, so the same type of solution applies to each leg. Figure 4.3 a)
shows a schematic representation of a leg. In order to compute qi, the actuator position,
the position of the leg mid-point pi needs to be computed. The actuator position mi is
constant for any configuration and the leg attach point ci is computed from the IPK of
the platform. From the structure of the leg, one can see that the mid-point pi must be
located on the surface of a sphere centered in ci, and on a circle that is centered on mi

and perpendicular to the axis of rotation of the actuator si, as shown in Figure 4.3 b).

To compute the sphere-circle intersection points, the leg attach point ci must first be
expressed in a reference frame that is centered on mi, with the Z axis along the vertical
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and the X perpendicular to si. The leg attach point fi, which corresponds to the leg
attach point ci expressed in the new reference frame can be expressed as

fi =

[
cos (φ− π)−sin (φ− π)0
sin (φ− π) cos (φ− π) 0

0 0 1

]
(ci −mi) (4.17)

where φ is the angle between si and the Y axis of the global reference frame. In this new
reference frame, the mid-point pi is given by the intersection of two circles in the XZ
plane. The centre and radius of the second circle are given by [fix 0fiz ] and

√
l22 − f2iy

respectively. The circle-circle intersection Equation 4.10 is then used to compute the
intersection point in the XZ plane and actuator angle qi.

qi = tan−1 (pz/px) (4.18)

pi =
[
di ±hi
∓hi di

] [
fix
fiz

]
√

(f2ix + f2iz)
(4.19)

d =

(
f2x + f2z

)
+ l21 − l22

2
√

(f2x + f2z )
(4.20)

h =
√
l21 − d2 (4.21)

4.1.1.3 Working Modes

Since circles in the same plane can intersect on two points and that circles intersection
was used in both the IPK of the platform and the IPK of the legs, the IPK of the whole
PentaG robot has several solutions. Those solutions are referred as the working modes of
the robot and one must choose the correct solution corresponding to the working mode in
which the robot operates. Normally, robots are designed to work in a single working mode.
The poses which are at the limit of two working modes correspond to a serial singularity
or type I singularities [26]. For a classic parallel robot, these singularities occur when one
of the leg reaches the limits of the workspace corresponding to its serial chain. From the
IPK analysis of the PentaG, and according to the definition of serial singularity of parallel
robots, it is shown for the first time that parallel robots with configurable platforms have
a different type of serial singularities that are not due to the workspace boundaries of the
leg but are due to the workspace boundaries of the configurable platform.

This phenomenon can be understood with the help of Figure 4.2 b) representing the
intersection of two circles. Consider a planar serial chain made of 3 revolute joints,
with the base joint located in p1 and the end-effector joint located on p2. The second
joint is at one of the two positions define by p4, which corresponds to one of the two
working modes and the only way to change working mode for a fixed end-effector position
p2 is to disassemble and reassemble the mechanism. If the position of the end-effector
is now moved until ‖p2 − p1‖ = |r1 ± r2|, the two solutions degenerate into a single
solution. This specific pose is a serial singularity, which is located at the boundary of the



88 Chapter 4. Kinematics of the PentaG Robot

configurable platform workspace and can be used as a transition between two working
modes. Serial singularities and other type of singularities will be described in detail in
Section 4.4.

In the case of the PentaG, two circle-circle intersections have been used for the IPK of
the platform and there are therefore 22 = 4 working modes for the platform. Each leg
has also 2 solutions and there are therefore 25 = 32 working modes for the legs given a
certain platform working mode. The total number of working modes of the PentaG is
then 22+5 = 4× 32 = 128. This means that given a certain end-effector position χ, there
are 128 sets of actuator positions q possible.

4.1.2 Direct Position Kinematics

The direct position kinematics (DPK) is the expression of the position of the end-effector
as function of the position of the actuator. The DPK is of great interest in control since
the relation is needed to compute the position of the end-effector from the position data
of the motor sensors. In a serial robot, all the joints are actuated and the calculation
of the DPK of serial robots is generally straight forward. This is a very different situ-
ation for parallel robots, for which most of the joints are not actuated. In general, the
DPK problem has multiple solutions and it is generally extremely difficult to obtain an
analytical expression of the position of the end-effector as a function of the actuators
position. Due to their complexity and importance, DPK problems are one of the major
focuses of current research on parallel robots. For example, although introduced in the
60’s and used in various applications since decades, it’s only around the mid 90’s that
kinematicians found out that the DPK of general Gough platform has up to 40 different
solutions [79] and found some analytical formulations of the DPK using Study’s paramet-
ers [38]. In most parallel robots, the DPK is solved numerically using initial knowledge
of the position of the end-effector. This section presents the DKP problem of the PentaG
and explores some analytical and numerical methods to obtain solutions that can be used
in real-time control.

4.1.2.1 Analytical Methods

Since the IPK of the PentaG was solved using intersections of geometrical objects, it is
tempting to use the same approach for the DPK of the PentaG. As the actuator positions
qi is known from the motor sensors, the coordinates of points pi (see Figure 4.3 a) ) at
the base of the parallelogram unit of each leg i can be calculated. The leg attach joints
ci on the configurable platform can freely rotate around point pi, forming five spheres
with radius `2 centered on pi. The DPK problem can now be expressed as finding centre
position, rotation and grasping values χ = [xyzθρ]

T for the configurable platform such
that each of the five leg attach points ci are located somewhere on the surface of those
five spheres.

This problem was solved analytically for the PentaG robot if the height of the platform
is initially known but it was unfortunately not possible to obtain an analytical expression
for the complete direct kinematic of the PentaG for an unknown height. In the absence
of an analytical solution, numerical methods were investigated in order to solve the direct
position kinematic problem.
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4.1.2.2 Numerical Methods

It wasn’t possible to obtain an analytical expression of the DPK of the PentaG, at least
not something that can be directly implemented into an algorithm for real-time control.
The computation of the DPK is nevertheless mandatory to extract the position of the
end-effector from the data of the actuator sensors. In this section, a numerical procedure
is presented, which is based on the Jacobian matrix J , that converges to the right solution
of the DPK problem, given that a initial guess solution that is close enough to the real
solution is used as input. The Jacobian matrix J of the PentaG will be presented in detail
in section 4.2.1 as the locally linear function of the velocity of the end-effector as function
of the angular velocity of the actuators.

χ̇ = J5,5 (χ) q̇ (4.22)

Multiplying both sides of 4.22 by an infinitesimal change in time 4t, one see that the
Jacobian can also be applied to small displacements.

4χ = J4q (4.23)

The numerical method used here can be related to Newton numerical method for finding
the roots of a function. The procedure uses as input the actuator position q, an estimate
χ0 of the end-effector position, the jacobian J (χ) and inverse kinematic relation q = f (χ).
The procedure is as follows:

• Compute the inverse kinematic relation of the first end-effector position estimate to
find a first actuator position estimate: q0 = f (χ0)

• Compute the difference between the estimated actuator position and the actual
actuator position: 4q0 = q0 − q

• Apply the Jacobian to obtain the change in end-effector position. 4χ0 = J (χ0)4q0

• Find a new end-effector position estimate: χ1 = 4χ0 + χ0

• Repeat the procedure by replacing χi−1 with χi until 4qi is smaller than the sensor
resolutions.

The useful workspace of the robot was designed to contain no singularities (see Section
4.4), so the Jacobian matrix is a smooth function in this region where the robot is normally
used. Implementation of this algorithm on the prototype shows that as long as the
mechanism remains in the useful workspace, the iteration needs in most cases between 1
and 3 steps to obtain an accuracy of 10−6 rad.

4.1.2.3 Assembly Modes

The several solutions to the DPK are called assembly modes. If the robot is in a certain
configuration with the actuators locked, one could disassemble the joints and reassemble
the robot in a different configuration with the same actuator values −→q . Since it was
not possible to express the direct position kinematic in an analytical form, it is difficult



90 Chapter 4. Kinematics of the PentaG Robot

to evaluate the actual number of assembly modes of the PentaG. In parallel robots, the
boundaries between assembly modes are configurations where parallel singularity occurs,
see Section 4.4. From the singularity analysis, it was concluded that at least 3 assembly
modes exist in the workspace of the PentaG. However, the robot should always operate
inside its useful workspace (see Chapter 5), which is free of singularities, and therefore
shouldn’t change its assembly mode.

4.2 Velocity Kinematics and Static Analysis

This section deals with velocity relationships between the various links and joints of the
PentaG robot. On the contrary of position kinematics, velocity kinematics is locally linear,
which implies that it can be described with linear algebra for a particular configuration.
The analytical solutions in this section are presented as function of variable position
vectors representing robot configurations. In a particular configuration, one can assign
numerical values to these vectors using the solutions to the position kinematic problem
presented in Section 4.1.1.

Several fundamental properties of a robot can be deduced from its velocity kinematic
analysis. The linear velocity equations can be assembled into a matrix called the Jac-
obian matrix, from which it is possible to derive the mobility, accuracy, statics, stiffness
and the singular configurations of the robot. Due to the presence of the configurable
platform, it is not possible to apply classical and standard methods for the computation
of the Jacobian matrix. In this section, alternative techniques are developed and some
kinematic phenomenons such as platform singularities, which are unknown to classical
parallel robots, are described.

4.2.1 The Jacobian Matrix

In velocity kinematics, the Jacobian matrix J represents the linear relation between the
actuator velocity q̇ and the end-effector velocity χ̇ for a given configuration of the ro-
bot. If the robot doesn’t have actuation redundancy, the Jacobian matrix is a square
configuration-dependent n × n matrix where n is the number of DOF of the robot. For
the PentaG, the Jacobian is a 5X5 matrix.

χ̇ = J q̇ (4.24)

Assuming that the Jacobian is full rank, it can be inverted numerically to obtain the
inverse Jacobian which gives us the actuator velocities as function of the end-effector
velocities.

q̇ = J−1χ̇ (4.25)

As it was the case for position kinematics, the inverse Jacobian matrix is easier to compute
analytically than the direct Jacobian matrix. The Jacobian can also be used to describe
the static force relation between the actuator and the end-effector. For a small displace-
ment of the end-effector, the instantaneous power transmitted, with no loss hypothesis,
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by the actuators must equal the power delivered by the end-effector. The power delivered
by the actuators Pa and at the end-effector Pe are given by

Pa = τT q̇ = [τ1 τ2 τ3 τ4 τ5 ]

q̇1q̇2q̇3
q̇4
q̇5

 (4.26)

Pe = FT χ̇ = [fx fy fz τθ τρ ]

q̇1q̇2q̇3
q̇4
q̇5

 (4.27)

From power conservation principle, the static force relation is then given by

Pa=Pe (4.28)
τT q̇=FT χ̇ (4.29)
τT q̇=FTJ q̇ (4.30)
τT =FTJ (4.31)
τ=JTF (4.32)

Since the Jacobian matrix is dependent on the configuration of the robot, an analytical
expression of the elements of the Jacobian matrix is needed, so that the numerical values
corresponding to a particular position can be computed directly from this analytical
formulation into the control algorithm. Since the Jacobian matrix is the derivative of the
position kinematic, it may be tempting to obtain those solutions from the derivative of
the expressions for the IPK found in Section 4.1.1. It should be noted that the terms in
the actuator position Equation 4.18 are themselves solutions from several equations, also
involving terms which are solutions of more equations. For these reasons, a direct single
formula for the expression of actuator position as function of the end-effector position will
lead to a very large equation difficult to manipulate. The derivative of such equation, for
each term inside the Jacobian matrix, would be a very tedious process that would lead
to an even longer equation.

Several standard method based on screw theory have been developed to compute the
Jacobian of fully parallel robots. One of the most common procedure used for Jacobian
analysis was developed by Mohamed and Duffy[55] and use the concept of reciprocal
screws. In the case of the PentaG, it is unclear if this procedure can be used due to the
presence of the configurable platform of the robot. The strategy used for the Jacobian
computation of the PentaG is quite different and is based on the particular geometry of
the robot and on static analysis. In order to obtain a analytical expression of the Jacobian,
a more direct approach based on the velocity/static relation described by Equation 4.32
is used.

4.2.1.1 The Jacobian Matrix of the leg

As it was the case for the IPK, the problem can be divided in two parts; the Jacobian
analysis of the configurable platform and the Jacobian analysis of the legs. Also in a
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similar way to position kinematics it is generally easier to compute the inverse of the Jac-
obian than the Jacobian matrix itself. The direct Jacobian can be obtained by inverting
the matrix formed by the numerical values found in the inverse Jacobian. Since static
analysis is often more intuitive to compute than velocity analysis, a first goal is to find
the transpose of the inverse Jacobian that satisfies the following relation.

fc,i = J−T τi (4.33)

where fc,i is a 3 dimensional vector representing the forces exerted on the leg attach point
ci of leg i and τi is the torque force exerted by the actuator i. This relation is dependent
on the configuration of the leg, which can be represented by the vectors si, l1,i, and l2,i
as shown on Figure 4.4. Those vectors can be computed from the results obtained in the
inverse position kinematics analysis developed in Section 4.1.1.2. From static analysis,
the force on the leg middle point li is

fl,i =

(
ŝ1,i × l̂1,i

)
|l1,i|

τi (4.34)

Due to the construction of the parallelogram unit, the only linear forces that can be trans-
mitted from the point li to the point ci are in the direction of the vector l̂2,i. Therefore,
the force fc,i has the same direction as the unit vector l̂2,i and its components in the
direction of fl,i must cancel the force applied on the point li .

fc,i =
l̂2,i

l̂2,i · (ŝi,1 × l1,i)
τi (4.35)

From the static relation and the power conservation principle, the inverse Jacobian J−1l,i
for leg i is computed as

fc,i=J
−T
l,i τi (4.36)

q̇i=J
−1
l,i vc,i (4.37)

q̇i=
l̂T2,i

l̂2,i · (ŝi,1 × l1,i)
vc,i (4.38)

where q̇i is the velocity of actuator i, and vc,i is the 3D vector representing the velocity
of the leg attach point ci. The velocity relation is linear locally and dependent on the
orientation of the leg vectors l1,i and l2,i.

4.2.1.2 The Jacobian matrix of the configurable platform

In this section, the velocity of the leg attached points vc,i as function of the end-effector
velocity χ̇ is presented. Since the leg attach points for leg i = 1, 3, 5 is rigidly connected
to the finger tips, the velocity relation is simple for these three legs. The computation
of the velocity of the leg attach points for leg i = 2, 4 requires more careful analysis.
From the construction of the mechanism, it is known that the links that form the attach
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Figure 4.4: Static of one leg of the PentaG

Figure 4.5: Vector notation used in the calculation of the inverse Jacobian of the config-
urable platform
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points of the platform are constraint in rotation. Figure 4.5 shows the vectors used in
the computation of the Jacobian matrix of the configurable platform. Only the links
represented by the vectors b1, b2, b3, and b4 can rotate around the vertical axis.

The velocity of the end-effector is expressed with a 5 dimensional vector χ̇ =
[
ẋ ẏ ż θ̇ ρ̇

]T .
From this vector representation, the velocities ė1 and ė2 of the two finger tips can be
calculated as

ė1 = [I3X3 −ẑ× g−ĝ]


ẋ
ẏ
ż
θ̇
ρ̇

 (4.39)

ė2 = [I3X3 ẑ× g ĝ]


ẋ
ẏ
ż
θ̇
ρ̇

 (4.40)

Since the legs i = 1, 3, 5 have their attach point ci rigidly connected to the finger tip
position, their velocity is easily given by ċ1 = ċ5 = ė1and ċ3 = ė2. The velocity vectors
ċ2 and ċ4 are computed from a certain combination of velocities ė1 and ė2. The component
of the velocity that are due to the movements of the platform and the component of the
velocity that are due to the deformation of the platform can be separated linearly. This is
done by virtually considering the point e1 as the base of the configurable platform. The
velocity due to the angular component of the end-effector velocity θ̇ is first computed.
When the point e1 is considered fixed, the point c2 can only move in the direction ẑ× b̂1.
The velocity of the point e2 relatively to point e1 as function of the angular velocity θ̇ is
given by

ė2 − ė1 = (ẑ×2g) θ̇ (4.41)

The power conservation principle can be used again. If the point e2 is constrained to move
in the ẑ×ĝ direction, and the point c2 is constrained to move in the ẑ× b̂1 direction, both
relatively to point e1, the linear relation between the force fe2 applied on point e2 and
the force fc2, applied on point c2 is given by

fe2 =
(ẑ×ĝ) · b2(
ẑ× b̂1

)
· b2

fc2 (4.42)

In the velocity domain, relatively to the velocity of point e1, this gives

ċ2 =
(ẑ×ĝ) · b2(
ẑ× b̂1

)
· b2

(
ẑ× b̂1

)
|ė2| (4.43)

using equation 4.41 to compute the magnitude of ė2 and adding the term (−ẑ× g) θ̇, so
the velocity is expressed relatively to the velocity end-effector centre point ṗ = [ẋ ẏ ż ]

T
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ċ2 =

 (ẑ×2g) · b2(
ẑ× b̂1

)
· b2

(
ẑ× b̂1

)
− ẑ× g

 θ̇ (4.44)

A similar procedure is used to compute the velocity of c2 as a function of the end-effector
grasping velocity ρ̇. In this case, the velocity of e2 relatively to the velocity of e1 is given
by ė2− ė1 = (2g) ρ̇ and the velocity of e1 relatively to the centre point p is given by −ĝρ̇.
The same reasoning is used to adapt Equation 4.44 to the grasping velocity ρ̇

ċ2 =

 2ĝ · b2(
ẑ× b̂1

)
· b2

(
ẑ× b̂1

)
− ĝ

 ρ̇ (4.45)

Equations 4.45 and 4.44 give the velocity of point c2 relatively to the centre point p1.
The centre point of velocity need to be added to obtain the velocity relatively to the base.
The full Jacobian of point c2 as a function of the end-effector position is given by

ċ2 =
[
I3X3

(ẑ×2g)·b2

(ẑ×b̂1)·b2

(
ẑ× b̂1

)
− ẑ× g 2ĝ·b2

(ẑ×b̂1)·b2

(
ẑ× b̂1

)
− ĝ

]
ẋ
ẏ
ż
θ̇
ρ̇

 (4.46)

The same reasoning can be applied to find the relation between the velocity of point c4
and the velocity of the end-effector.

ċ4 =
[
I3X3

(ẑ×2g)·b4

(ẑ×b̂1)·b4

(
ẑ× b̂3

)
− ẑ× g 2ĝ·b4

(ẑ×b̂3)·b4

(
ẑ× b̂3

)
− ĝ

]
ẋ
ẏ
ż
θ̇
ρ̇

 (4.47)

The velocities of the five leg attach points have now been described as function of the
end-effector velocity.

4.2.1.3 The PentaG Jacobian Matrix

In section 4.2.1.1 the inverse Jacobian matrix for each leg has been computed as

q̇i = J−1l,i vc,i =
l̂T2,i

l̂2,i · (ŝi,1 × l1,i)
vc,i (4.48)

And in section 4.2.1.2, the inverse Jacobian matrix J−1c,i for the leg attach points on the
platform has been computed as

J−1c,1 =[I3X3 −ẑ× g−ĝ] (4.49)

J−1c,2 =
[
I3X3

(ẑ×2g)·b2

(ẑ×b̂1)·b2

(
ẑ× b̂1

)
− ẑ× g 2ĝ·b2

(ẑ×b̂1)·b2

(
ẑ× b̂1

)
− ĝ

]
(4.50)
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J−1c,3 =[I3X3 ẑ× g ĝ] (4.51)

J−1c,4 =
[
I3X3

(ẑ×2g)·b4

(ẑ×b̂3)·b4

(
ẑ× b̂3

)
− ẑ× g 2ĝ·b4

(ẑ×b̂3)·b4

(
ẑ× b̂3

)
− ĝ

]
(4.52)

J−1c,5 =[I3X3 −ẑ× g−ĝ] (4.53)

To obtain the full inverse Jacobian matrix that describes the angular velocity of the
actuators as function of the angular velocity of the end-effector, the inverse Jacobian of
each attach point can be multiplied with the inverse Jacobian of the corresponding leg.
The expression of the inverse Jacobian J−1 is then given by

q̇=J−1χ̇ (4.54)

q̇1q̇2q̇3
q̇4
q̇5

=


J−1l,1 J

−1
c,1

J−1l,2 J
−1
c,2

J−1l,3 J
−1
c,3

J−1l,4 J
−1
c,4

J−1l,5 J
−1
c,51



ẋ
ẏ
ż
θ̇
ρ̇

 (4.55)

It can be noted that the calculation of the inverse Jacobian matrix of PRCPs is different
than for pure parallel mechanims. It must be performed in two steps where both the
inverse Jacobians of the platform attach points J−1c,i , of dimension 3X5, and the inverse
Jacobians of the legs J−1l,i , of dimension 1X3, are calculated. The same principle can
be applied to the calculation of the Jacobian of the static forces. Equation 4.32 already
presented the mapping relation between the end-effector forces F and the actuator torques
τ as the transpose of the Jacobian matrix, τ = JTF. The Jacobian of force transmissions
is then expressed as

fxfyfzτθ
fρ

=
[
J−Tc,1 J

−T
l,1 J−Tc,2 J

−T
l,2 J−Tc,3 J

−T
l,3 J−Tc,4 J

−T
l,4 J−Tc,5 J

−T
l,5

][τ1τ2τ3τ4τ5
]

(4.56)

This analytical relation can be implemented directly in the controller for real-time com-
putation. For a desired end-effector velocity, the corresponding actuators velocity is
computed from Equation 4.55. An analytical expression of the direct Jacobian Matrix by
inversion of the inverse Jacobian Matrix will be difficult to calculate since the Jacobian
Matrix is of dimension 5X5. If the value of the direct Jacobian Matrix J is needed, a
numerical computation of the inverse of the Jacobian Matrix J−1 for a given configuration
will be more efficient. The Jacobian Matrix also allows us to establish several relevant
properties and performance of the robot, and plays a central role in the robot analysis.
Some of these properties are presented in the following sections.

4.2.2 Accuracy and Stiffness

Since the Jacobian Matrix describes the velocity relation and that velocity corresponds
to the derivative of position over time, the Jacobian Matrix can be also used to describe
the linear relation between small displacements.
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χ̇=J q̇ (4.57)
∆χ

∆t
=J

∆q

∆t
(4.58)

∆χ=J∆q (4.59)

The Jacobian can be used to compute the resolution of the workspace as a function of
the resolution of the encoders. The errors on the position encoders are bounded by the
encoder resolutions. All errors are independent and the possible actual encoder positions
form a 5-dimensional hyper-cube in the joint space. By mapping each corner of this hyper-
cube with the Jacobian into the end-effector space, a 5 dimensional hyper-polyhedron (A
3D polyhedron is a solid with flat faces and strait edges) is obtained, which represents
the sensitivity against variations of the robot for a given configuration.

Assuming that the mechanical links of the robot are perfectly rigid, the stiffness at the
end-effector can be described as a function of the stiffness of the actuators. For rotary
motor i, the angular displacement ∆qi produces by a torque τi with a stiffness k are
related by

τi = k∆qi (4.60)

Assuming that the same stiffness k is applied to each actuator, the stiffness of the end-
effector, when all actuators are locked is described by

F=J−T τ (4.61)
F=J−T k∆q (4.62)
F=kJ−TJ−1∆χ (4.63)

The matrix K = kJ−TJ−1 is called the stiffness matrix. The actual value of k depends
on the type of motor used and the gains of the controller.

4.3 Static Balancing

Static balancing is a technique to create equilibrium throughout a considerable range of
motion of a mechanism, even in the absence of friction [32]. Static balance is charac-
terized by a constant system potential, regardless of its configuration. In principle, any
conservative system can be statically balanced. A common application of static balance
is present in gravity equilibration. Gravity balancing has many advantages including
reduced operating effort, energy conservation and reduced heat production in actuators,
and safety in case of power failure. An overview of gravity balancers using counterweights
or springs is available in [32].

It has been shown that any linkage can be statically balanced [73] but practical implement-
ations are largely limited to serial open-chain mechanisms and single-degree-of-freedom
closed-chain linkages [32]. However, also parallel kinematic manipulators and mechan-
isms may benefit from static balancing. In parallel mechanisms, static balancing is much
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less common. Reported strategies include the incorporation of balancers in the legs of
parallel mechanisms (‘integrated balancing systems’), or use separate additional legs to
house the balancers (‘separate balancing systems’) [33]. Some publications on statically
balanced parallel mechanisms exist for gravity equilibration [39, 27, 28, 17, 68]. Also in
cable-actuated parallel mechanisms the use of springs is proposed to decrease the effect
of gravity in static mode [3].

One evident problem in the reported cases of static balancing in parallel mechanisms is
the increased mechanical complexity of the resulting mechanisms. Usually auxiliary links
and many springs are added to achieve static balance. In [33] it is argued that even spatial
kinematic mechanisms theoretically need only a single balancing spring or counterweight
to achieve perfect static balance, yet for instance in [28] twelve springs are applied. These
springs need to have zero free length for perfect static balance, which are hard to obtain
or require further mechanical complication.

More recently, [2] proposed a pantograph mechanism and a counterweight as a separate
compensation system to gravity balance parallel mechanisms, where the auxiliary pan-
tograph needs to apply at the centre of mass of the moving platform. Also [80] uses a
pantograph, this time as an integrated compensation system to dynamically force balance
the Delta robot, which implies static balance. Four counterweights and one auxiliary pan-
tograph are needed for perfect gravity equilibration. It therefore remains an open issue
how to create mechanically simple gravity balancers.

This section proposes a concept for perfect static balancing for a subclass of translational
parallel mechanisms, which includes the well known Delta Robot [10], but also the PentaG
which uses the same type of limbs as the Delta robot. The specific kinematic features are
exploited to arrive at simple gravity balancers without auxiliary links.

4.3.1 Concept

Much of the mechanical complexity that is observed in present static balancers in par-
allel mechanisms is due to the need to create a vertical reference to which attach the
springs, as shown in Figure 4.6. This vertical may move but needs to remain vertical,
i.e. should translate only. In translational mechanisms, this feature of pure translation
is inherently present. Therefore it requires no auxiliary mechanism to create the proper
spring attachment points: a vertical can simply be attached to the moving platform.

This feature can be employed as illustrated in Figure 4.7 a) for a planar example of a
2RRR robot with an auxiliary passive RRR leg complementing one of the driven legs in
a double parallelogram arrangement to create the translational behavior of the platform.
Each leg is now furnished with two zero-freelength springs. The first one is connected
between the base and the grounded links, and the second one between the platform and
the floating links. Note that the passive leg is not used to house the springs but purely
to create the translational motion.

Assuming that the centre of mass of the platform is on its centre line, then the mass m
is equally distributed between the two active legs. Considering one such leg as in figure
4.7 b), the platform spring can be rearranged such that its potential energy function is
not affected by applying modification rules [32]. First the platform spring element is
shifted up to the floating joint as in Figure 4.7 c). To maintain the vertical, an auxiliary
parallelogram would need to be formed by two added links. As a next step, the spring
element is shifted to the base joint as shown on Figure 4.7 d). To maintain the proper
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Figure 4.6: 2 DOF open chains with end load and static balancers: (a) vertical type, (b)
parallel type.

synchronization with the platform, the floating link is extended and one link is added
to form a pantograph. This way, it is shown that the leg corresponds to a well known
balancer, i.e. the balanced five-bar also known as the Anglepoise linkage [7], and also
known as the parallel type [73]. This shows that the mechanism is gravity balanced from
a potential energy perspective.

Similarly, it can be shown that the same concept can be applied to the Delta robot. In
spite of its more complex spatial motion, the very same balancing spring arrangement
applies. Furthermore, the concept can also be applied to the PentaG, in spite of the fact
that its platform is articulated. This is presented in the next section.

Figure 4.7: Planar translational platform: (a) complete with proposed balancer, (b) one
leg, (c) bottom spring shifted to floating joint, (d) spring shifted further to base joint.
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Figure 4.8: Notation for a Delta Leg

4.3.2 Application to the PentaG

For a platform with a mass mp , the change in potential energy ∆Vp of the platform is
directly related to the change of the vertical position of the attached leg ∆z by ∆Vp =
m∆zp . The vertical distance between the COM of each leg and the attachment point
is not constant for every ∆z. However, given a certain height for the attachment point
∆zp , this is constant for any horizontal displacement. Therefore, the change in potential
energy of a leg i is defined as ∆Vp = fi (zp).

The function fi (zp) will be explained in detail further. To fully balance the robot to
gravity, the sum of the change of potential energy ∆Vi has to cancel ∆Vp , for any
configuration.

∆Vp +

5∑
i=1

∆Vi=0 (4.64)

mp∆zp +

5∑
i=1

fi (zp)=0 (4.65)

A delta leg can be decomposed into two main units; the base link, rotating around the
motor shaft, and the parallelogram unit, attached to the platform with a revolute joint.

In literature, for example [73], a double pendulum or a parallelogram structure is always
used to provide a vertical connection point for the parallelogram unit. However, in the
case of the 3 DOF delta robot[10] , 4 DOF par4 robot[59], or 5 DOF PentaG robot, one
can make use of the fact that the platform always stays horizontal. Instead of balancing
the parallelogram unit from below, it could be balanced from above by mounting the
spring to a connection point on the platform. Obviously the advantage of the latter is
the simplicity: less extra elements are added to the system and the increase in mass is
greatly reduced.

In Figure 4.8, a single leg of the PentaG robot is shown. The leg is modeled as a double
pendulum with point masses at the top of each of the pendulum, and both bars having
their own mass. The length of the revolute unit and parallelogram unit are respectively
l1 and l2 and the mass m1 and m2 . The centre of gravity of the limbs is exactly halfway
their length, and for the parallelogram unit exactly in the middle of the two long bars.
The point masses at the middle and the top are mmid and mtop respectively. The angles
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between the joint units and the horizontal are respectively α and β . In addition, the
sideway rotation of the parallelogram relative to it’s position in the XZ plane is noted γ
. The global coordinate system (X,Y, Z) is fixed to the outside world where (0, 0, 0) is
defined at the base joint. The local coordinate system (X ′, Y ′, Z ′) has its origin at the
bottom joint, where the platform is connected to the leg, and has the same orientation
as the global coordinate system. Springs are connected between the joint units and the
frames at locations respectively defined by the parameters r and h. At the revolute joint
unit, a spring is applied between the environment at the coordinates (X,Y, Z) = (0, 0, h)
and the limb at distance r1 from the base joint. Because the parallelogram unit consists
of two bars, two springs are connected between the point (X ′, Y ′, Z ′) = (0, 0,−h) to each
of the bars at distance r2 from the bottom end of the bar. The stiffness of the lower
spring is k1 and for both the upper springs the stiffness is k2 . All springs have zero free
length.

The potential energy due to gravity for one leg is given by:

Vgravity =

(
1

2
m1 +m2 +mmid +mtop

)
gl1sin (α) +

(
1

2
m2 +mtop

)
gl2sin (β) cos (γ)

(4.66)

For the lower spring, the elongation is given by:

e21 = h21 + r21 − 2h1r1sin (α) (4.67)

For the upper springs, the (X ′, Y ′, Z ′) coordinates of the connection points of the springs
to the limbs are:

(X ′, Y ′, Z ′) = (−r2cos (γ) cos (β) ,−r2sin (γ)± ω,−r2cos (γ) sin (β)) (4.68)

where ω is the half distance between the two long bars of the parallelogram unit. There-
fore, the elongations of these springs are:

e22a=
(

(r2cos (γ) cos (β))
2

+ (r2sin (γ)− ω)
2

+ (r2cos (γ) sin (β)− h2)
2
)

(4.69)

e22a=h22 + r22 + ω2 − 2ωr2sin (γ)− 2h2r2cos (γ) sin (β) (4.70)

and

e22a=
(

(r2cos (γ) cos (β))
2

+ (r2sin (γ) + ω)
2

+ (r2cos (γ) sin (β)− h2)
2
)

(4.71)

e22a=h22 + r22 + ω2 + 2ωr2sin (γ)− 2h2r2cos (γ) sin (β) (4.72)

The potential energy in the springs is then:

Vsprings =
1

2
k1
(
h21 + r21 − 2h1r1sin (α)

)
+ k2

(
h22 + r22 + ω2 − 2h2r2cos (γ) sin (β)

)
(4.73)
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leg m1 m2 mmid mtop

1 0.0344 0.0158 0.0018 0.0128
2 0.0314 0.0051 0.0006 0.0123
3 0.0285 0.0144 0.0015 0.0145
4 0.0314 0.0051 0.0006 0.0123
5 0.0344 0.0158 0.0018 0.0128

Table 4.1: Limb masses of the PentaG

leg k1(N/m) k2(N/m)
1 46.7 23.5
2 29 14.7
3 42.4 22.4
4 29 14.7
5 46.7 23.5

Table 4.2: Stiffness Values used for the proposed balancing method

Comparing this with the potential energy due to gravity, it follows that this leg will be
balanced perfectly under the two following conditions:

k1h1r1=

(
1

2
m1 +m2 +mmid +mtop

)
gl1 (4.74)

2k2h2r2=

(
1

2
m2 +mtop

)
gl2 (4.75)

The entire robot will be balanced perfectly if the weight of the platform is divided over the
five legs and each leg fulfils the conditions found previously. Since the platform has pure
translational motions, the mass of the platform mplatform can be distributed arbitrarily
between the five legs. Distribute the support of the platform equally between the 5 legs
for each leg, mtop,i is equal to the mass of the upper short link of the parallelogrammupper

plus a fifth of the platform mass, plus the mass of the extra structure at the platform
needed to attach the spring mk. The mass of the spring is neglected:

mtop,i =
1

5
mplatform +mupper,i +mk,i (4.76)

4.3.3 Simulation

To show a numerical example, the masses of the various links of the PentaG prototype,
shown in Table 4.1, are used. The total mass of the platform is mplatform = 0.0435.

The value of h and r are set to 20mm and 60mm respectively. the following values for
the spring stiffness are obtained:

These values were checked in a MatLab SimMechanics simulation model, in which the ro-
bot is built from basic link, joints and springs elements. In this model, a helical trajectory,
covering most of the robot workspace was generated for the platform, and the actuator
torques needed to perform this trajectory were recorded. In addition, the 2 DOF of the
platform were also actuated from the base motors, in order to show that this balancing
technique applies not only to Delta robot, but also to more recent Delta-like robots with
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Figure 4.9: Actuator Torques without static balancing

configurable platform. The motion is performed slowly (around 1 rad/s), to minimize the
effects of the inertia on the actuator torques. The following helical trajectory (in meters)
is used for the platform:

X=0.05sin (t) (4.77)
Y =0.05cos (t) (4.78)
Z=0.14 + 0.05t (4.79)

where t is the time in second. The rotation θ , and the grasping distance between the
finger tips ρ of the platform is:

θ=0.3sin (t) (4.80)
ρ=0.01sin (t) (4.81)

Figures 4.9 and 4.10 show the five actuator torques needed to perform this motion with
and without the balancing system respectively. In the unbalanced robot, the actuators
are mainly used to equilibrate the gravity force acting on the links and platform. In the
balanced version, the actuators only need to generate the inertial forces, which are low
since the motion is performed slowly.

A ratio of approximately 1000 can be observed between the torques used in the unbalanced
and in the balanced robot, which is also approximately the ratio between the gravity forces
and the inertia forces that are expected for the slow motion used. Thus, this model shows
that the robot indeed is statically balanced under the above conditions.

4.3.4 Discussion

The proposed balancer is based on zero-free-length springs. In practice these are hard to
obtain, although it is possible to produce them by special coiling techniques and tailored
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Figure 4.10: Actuator Torques with Static Balancing

heat treatment. If one chooses to emulate the zero-free-length behavior, for instance
with a pulley and string arrangement or other mechanical means, then some mechanical
complexity is added to the system, as well as some friction. This may degrade the dynamic
performance of the robot somewhat.

It was chosen to distribute the load of the platform mass equally among the limbs of the
manipulator. This results in the least additional load on the links. However, the number
of springs is considerable, i.e. ten in the case of the PentaG. Due to the translational
motion, each point of the platform has the same gravity potential. Therefore the mass
can be distributed arbitrarily among the limbs. If one is interested in minimizing the
number of springs, for instance, the load can be taken by a single limb, requiring only
two springs, regardless of the number of legs.

In the balancers, not only the platform mass but also the link masses, and even the spring
mass can be taken into account. The spring mass can be equally distributed amongst its
end points, and added to the platform or link mass as appropriate.

The addition of mass and, especially in this case, the addition of friction is not a desirable
feature for haptic devices. In applying static balancing, one must be careful that the
advantages gained from the gravity compensation are not cancelled out by the disadvant-
ages that come with additional masses and friction. For those reasons, it was chosen to
not implement for now this solution in the current haptic version of the PentaG proto-
type. However, friction is much less of a problem for manipulator robots, and the novel
proposed balancing solution might be highly beneficial for pick-and-place robots based on
Delta, par4, and the PentaG architectures.

Actually the specific mobility, the high stiffness and low inertia of the PentaG architecture
make it a good candidate to be used as high-speed pick-and-place robot. In its pick-and-
place version, the PentaG robot is turned upside down with the base connected to a ceiling
and the finger tips replaced with a gripper linkage to pick and move objects. A detailed
explanation of the pick-and-place version of the PentaG robot is presented in Chapter 6.
A patent has been granted for the pick-and-place version of the PentaG and the company
owning this patent intents to use the novel static balancing method presented in this
section on their prototype.
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In summary, the static balancing method presented in this section can in theory perfectly
compensate for gravity for any type of translational robot using Delta legs. The key idea
is the use of the constrained platform (rigid or configurable) to provide a vertical attach
point to the springs balancing the upper part of the Delta legs. The main advantage of
the method compared to what was already proposed is the low number of springs used
and the absence of additional moving links to compensate the upper links, resulting in
less additional mass and friction.

4.4 Singular Configurations

In mathematics, a singularity is a point where a mathematical object is not well-defined
or loses some properties such as differentiability. In linear algebra, a square matrix is
said to be singular if it is not full rank. Singular square matrices are not invertible,
their determinant is zero and they have a non trivial null space. The concepts of local
singularities and constraint singularities already discussed briefly in Chapter 2. These
singularities are properties of the mechanism itself and are not dependent on which joints
of the mechanism are actuated in order to control the robot.

This section descibes singularities that are related to the actuated joints, namely on the
linear relation between the actuator velocity inputs and the end-effector velocity outputs.
In Section 4.2, this velocity relation was described by a five by five Jacobian matrix and an
analytical expression for the inverse Jacobian was presented. Among the firsts to study
singularities of parallel robots were Gosselin and Angeles[26] with later generalization
from Zlatanov [84]. Based on their work, two types of singularity for parallel robots can
be defined; serial singularities and parallel singularities. These concepts can be extended
to parallel robots with configurable platforms.

Considering the Jacobian square matrix J , the actuator velocity vector q̇, and the end-
effector velocity vector χ̇ of a general robot, the value of J is dependent of the configuration
of the robot.

J (χ) q̇ = χ̇ (4.82)

When the robot reaches a configuration χ where the determinant the Jacobian vanishes,
i.e. det (J (χ)) = 0 and the lines in J are no longer independent, a first consequence is that
the null space of J is no longer trivial and it is possible to find non-zero actuator velocities
q̇ that produce zero end-effector velocity χ̇ = 0. A second consequence is that the end-
effector space lost a dimension in this configuration. It is now impossible to produce some
of the velocity outputs χ̇, no matter which actuator speed q̇ is used as input. This implies
that the robot is in a configuration with is at the limit of the end-effector workspace.

Due to the power conservation principle, the Jacobian matrix can also be used to describe
force transmission; τ = JTF. It follows that in the singular configuration described above,
some forces applied on the end-effector can be balanced by the robot even if no torque is
applied on the actuators, and that some actuator torques cannot be balanced by applying
forces on the end-effector.

For configurations near those singularities, the end-effector moves slowly with high accur-
acy while high but inaccurate forces can be applied by the actuators on the end-effector.
These types of configurations are called singularities of type I or serial singularities. Serial
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singularities also form boundaries between the working modes of the robot. Given an ini-
tial end-effector position and actuator position, the robot can reach a serial singularity,
and then go back to this initial end-effector position with different values for actuators.

In the neighbourhood of serial singular configurations (near the limits of the end-effector
workspace), the determinant of the Jacobian J tends toward zero while the determinant
of the inverse Jacobian J−1 tends toward infinity. This suggests the existence of a second
type of singularities called type II or parallel singularities that occurs when the determ-
inant of the inverse Jacobian is zero and the determinant of the direct Jacobian tends
toward infinity. Those singularities are called parallel because unlike type I singularities,
they only occur in parallel robot and are not present in serial robots.

The properties of parallel singularity configurations are dual to the properties of serial
singularity configurations. In parallel singular configurations, the end-effector can have
a non-zero velocity while the actuators are all locked. Some combined velocities of the
actuators are impossible which means that those configurations are located at the limits
of the actuator space. Some combined forces from the actuators will produce zero forces
on the end-effector and it is not possible to balance some end-effector forces with the
actuators. Near parallel singularities, the end-effector can move very fast and is inaccur-
ate while only low forces can be applied by the actuators on the end-effector. Parallel
singularities form boundaries of the assembly modes. Given an initial actuator position
and end-effector position, the robot can reach a parallel singularity, and then go back to
the initial actuator position with a different end-effector position.

In practice, these properties make the parallel singularities much more problematic than
serial singularities. First, parallel singularities are located inside the end-effector work-
space while serial singularities are confined to the workspace boundaries. Near parallel
singularities, the position sensing, derived from the direct position kinematic and the ac-
tuator sensor values, is inaccurate and only weak forces can be applied on the end-effector
due to the low force transmission ratio. Considering closed-loop controller and dynamics
effects, it is likely that the robot loses control of the end-effector if it comes too close of
a parallel singularity. In the design process of parallel robots, one should try to remove
parallel singularities from the centre of the workspace and be aware of the location of
those singularities, in any. This is the subject of chapter 5.

An example of serial and parallel singularities with a simple 2 DOF planar robot is
presented in Figure 4.11 a). In this robot, the two actuators q1 and q2 are used to control
the position of the middle joint in the χ1 and χ2 direction of the plane. Figure 4.11 b)
and Figure 4.11 c) show the robot in a serial and parallel singularity configuration. By
inspection of this simple mechanism one can deduce that, in those configurations, the
mechanism has indeed the special properties of serial and parallel singularities discussed
above.

In this section, the concepts of serial singularities and parallel singularities will be exten-
ded to parallel robots with configurable platforms. It will be shown that serial singularities
are presents not only at the workspace limits of the legs, but also at the workspace limit
of the platform. The PentaG robot has unfortunately some parallel singularities inside
its workspace and that those singularities are dependent of both the configuration of the
legs of the robot and the configuration of the platform.
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Figure 4.11: A 2 DOF Parallel mechanism in a) non singular configuration b) in serial
singularity configuration c) and in parallel singularity configuration

4.4.1 Serial Singularities of the PentaG

As it is the case for parallel robots, serial singularities occur also in parallel robots with
configurable platforms like the PentaG. Serial singularities are by definition poses of the
end-effector where the determinant of the direct Jacobian matrix is zero. Although an
analytical expression of the direct Jacobian was not possible, the determinant of the
inverse Jacobian tends toward infinity in serial singular configuration. An analytical
expression of the inverse Jacobian matrix was found in section 4.2.1 as

q̇=J−1χ̇ (4.83)

q̇1q̇2q̇3
q̇4
q̇5

=


J−1l,1 J

−1
c,1

J−1l,2 J
−1
c,2

J−1l,3 J
−1
c,3

J−1l,4 J
−1
c,4

J−1l,5 J
−1
c,51



ẋ
ẏ
ż
θ̇
ρ̇

 (4.84)

J−1l,i =
l̂T2,i

l̂2,i · (ŝi,1 × l1,i)
(4.85)

J−1c,1 =[I3X3−ẑ× g−ĝ] (4.86)

J−1c,2 =
[
I3X3

(ẑ×2g)·b2

(ẑ×b̂1)·b2

(
ẑ× b̂1

)
− ẑ× g 2ĝ·b2

(ẑ×b̂1)·b2

(
ẑ× b̂1

)
− ĝ

]
(4.87)
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J−1c,3 =[I3X3 ẑ× gĝ] (4.88)

J−1c,4 =
[
I3X3

(ẑ×2g)·b4

(ẑ×b̂3)·b4

(
ẑ× b̂3

)
− ẑ× g 2ĝ·b4

(ẑ×b̂3)·b4

(
ẑ× b̂3

)
− ĝ

]
(4.89)

J−1c,5 =[I3X3−ẑ× g−ĝ] (4.90)

Computing the determinant of a 5x5 matrix is a rather long process that requires 145
additions and 120 multiplications on the elements of the matrix. Performing this com-
putation analytically would be tedious. Instead, an inspection of each individual element
of the matrix is performed to derive the conditions for which those elements tend toward
infinity. If some matrix elements are infinite, the determinant of the matrix is likely to
be also infinite.

By inspection of the leg inverse Jacobians J−1l,i , the two conditions in which serial singu-
larities occur are

l̂2,i × l1,i = 0 (4.91)

or

l̂2,i × ŝi,1 = 0 (4.92)

which both lead to a zero denominator for the fraction. The first condition corresponds
to a configuration where a leg is fully extended of fully folded and the second condition
corresponds to a configuration where the parallelogram unit is fully horizontal. Those
conditions correspond to the limit of the workspace on a single leg. The workspace limits
of the whole parallel robot are formed by combination of the five leg workspace and
depend on which leg reach its limit first in each direction.

When one of the legs of the PentaG reaches one of the serial singularity conditions, the
properties of serial singularity apply. The impossible end-effector velocity outputs for

the first and second conditions are given by
˙

χ̇ =
[
l̂1,i00

]T and χ̇ = [ŝi,1 00] respectively.
Those vectors also correspond to the forces that can be applied on the end-effector which
can be balanced with no torque applied on the motors. In both cases, the null space of
the Jacobian corresponds to a non-zero velocity for actuator i while the four remaining
actuators are locked. No forces on the end-effector can balance a torque on motor i for
those configurations. Those serial singular configurations correspond to the boundaries
between two working modes. For the first condition, the changing mode occurs when
the base link of the leg goes inward the base of the robot instead of outward when
leaving the singular configuration. For the second condition, the changing mode concern
the parallelogram unit for which the long links will cross each other. In practice, the
second condition cannot happens since the angular values of the parallelogram joints are
mechanically limited. The first condition is possible and happened often during manual
handling of the robot.

It may be tempting to apply mechanical locks on the leg actuator to prevent the reach of
serial singularities as it is the case for the parallelogram units. It is however impossible
since the actuator values for which serial singularities occurs are coupled and the singular
values of a single actuator depends on the position of the four other actuators. By
imposing mechanical locks on the actuators to avoid serial singularities, one will greatly
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reduce the reachable workspace of the robot. In other words, in the actuator space,
the maximal singularity-free 5 dimensional hyper-cube for which the boundaries would
correspond to actuator mechanical locks is much smaller than the more complex-shaped
region corresponding to the full workspace of the robot.

Unlike classical parallel robots, for which serial singularities are dependent of the config-
uration of the robot legs, parallel robots with configurable platforms have an additional
type of serial singularity that is related to the platform. By inspection of the terms of
the inverse Jacobian of the configurable platform J−1c,i , one can notice that infinite values
for leg i = 2 and i = 4 occur for the following condition:

b̂1 × b̂2 = 0 (4.93)

or

b̂3 × b̂4 = 0 (4.94)

These conditions correspond to alignment of the b links of the platform and represent the
limits of the platform workspace when the platform is taken alone. When the platform
reaches one of these two condition, the PentaG robot is in a serial singular configuration.
The impossible end-effector velocity output corresponds to an extension of the platform
in the direction of the aligned b links. This direction also corresponds to the forces that
can be applied on the end-effector which can be balanced with no torque applied on the
motors. The null space of the Jacobian corresponds to non-zero velocity for actuator i = 2
for the first condition or i = 4 for the second condition while the four remaining actuators
are locked. No forces on the end-effector can be balanced by the motor torques for those
configurations. Those serial singular configurations correspond to the boundaries between
two working modes of the configurable platform.

Unlike the serial singularities of the legs, the serial singularities of the platform can easily
be prevented mechanically without too much sacrifice of the platform workspace. Instead
of constraining the angular values of the platform joints, one can constraint the distance
between leg attach point 1 and 5 and leg attach point 3. This was done for the robot
by simply attaching a thin wire between those links. The wire gets fully extended before
the alignment of the b links and is preventing the platform to reach those positions. The
reason why the workspace is not greatly affected by this mechanical constraint is because
the constraint is imposed in the end-effector Cartesian space and not on the joint space.

Since large forces can be applied on the end-effector near the leg serial singularities and
that those singularities are located at the limit of the workspace, they are generally easy
to avoid with the robot controller. This is not the case of parallel singularities that can
be found in the middle of the workspace.

4.4.2 Parallel Singularities of the PentaG

By definition, parallel singularities occur when the determinant of the inverse Jacobian
matrix is zero. An investigation of the individual elements of the inverse Jacobian matrix
can be performed in search of conditions that make the determinant to vanish. This
method doesn’t guaranty that all parallel singularities can be found since some non zero
elements could cancel each other in the computation of the determinant and lead to a
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parallel singular configuration but at least a subset of the possible parallel singularities
can be obtained.

The leg inverse Jacobian J−1l,i is a 1x3 matrix that multiplies the 3x5 platform Jacobian
matrix J−1c,i to form the ith line of the full Jacobian matrix J−1. The numerator of J−1l,i is
given by l̂T2,i. This means that if the leg attach point ci moves in a direction perpendicular
to l̂T2,i, no angular velocity is produced on actuator i. If this happens simultaneously for
each leg attach point, the robot is in a parallel singular configuration. The geometrical
condition is expressed as follows:

If l̂T2,i is the orientation of the long links of the parallelogram unit i and ci is the position
of the attach point between the parallelogram unit and the configurable platform, parallel
singularity of the PentaG occur when the configurable platform can move in such a way
that it produces on all leg attach points ci either no movement or a movement in the plane
perpendicular to l̂T2,i .

Although this statement gives us a geometric interpretation of the parallel singularities
of the PentaG, the actual configurations for which this condition is satisfied are difficult
to compute. In order to get a better insight of the position of these parallel singularities,
the determinant of the inverse Jacobian can be compute numerically as a function of
the end-effector position over the whole workspace. Figure 4.12 shows the computed
value of the determinant of the inverse of the Jacobian matrix in the XY plane for a
given height, orientation and grasping. The geometric dimension of the robot are the one
obtained from the geometric optimization presented in chapter 5. The absolute values of
the determinant for a given point is represented by a logarithmic color scale starting from
blue form small values to red for high values. On this graphical representation, one can
notice that the absolute value of the determinant tends toward infinity at the limits of the
workspace, corresponding the serial singularity configuration described in section 4.4.1.
Also noticeable is the presence of values that tend toward zero, and represented by the
two blue continuous curves. These configurations correspond to parallel singularities and
are unfortunately located inside the workspace of the robot. One of the main objective of
the geometric optimization presented in chapter 5 is to move those parallel singularities
away from the centre of the workspace.

For almost all combinations of height, orientation and grasping, these two lines appear
at various distances from the centre, suggesting that they are of the same nature. The
null space of a singular inverse Jacobian matrix represents the direction for which the
control of the end-effector is lost. Computation of the null space of a large number of
singular configurations over the whole workspace reveals that all of them correspond to
the condition for parallel singularity defined above.

Figure 4.13 shows one particular singular configuration. In this configuration, the null
space of the inverse Jacobian is a rotation of finger tip #2 around finger tip #1 which
produces no motion on leg attach points i = 1 and i = 5 and produce a motion perpen-
dicular to l̂T2,i for leg i = 2, i = 3 and i = 4. This example was chosen because of its
simplicity, since the control is lost in a pure rotation. In general, the degree of freedom
that is lost in a parallel singular configuration is a combination of 5 DOF used to describe
the position of the end-effector.
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Figure 4.12: The value of the Determinant of the inverse of the Jacobian in the XY plane
for a given height, orientation and grasping

Figure 4.13: Top view of one parallel singular configuration of the PentaG robot. In this
particular configuration, the 5 base-located motors can’t prevent a rotation of the upper
finger tip around the lower finger tip of the configurable platform.
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4.5 Summary

In this chapter, some aspects of the kinematic analysis of the PentaG robot were presented.
Due to its unique configurable platform, classical and standard methods for kinematic
analysis cannot be directly applied to this robot. A method based on static analysis was
used to compute both the inverse position kinematics and the inverse Jacobian. In both
cases, the problem must be divided into two sub-problems where the kinematics of the
platform must be computed before computing the kinematics of the legs. This two step
method can easily be generalized to other robots with configurable platforms. Direct
position kinematics was solved using a numerical procedure while the direct Jacobian
matrix can be obtained by numerical inversion of the inverse Jacobian matrix in non
singular configurations, and all working modes were enumerated.

Taking advantage of the fact that the platform of the robot is constrained in the XY
plane, a novel static balancing method was proposed that reduces the number of springs
and additional links needed while achieving perfect balancing. The method is not only
applicable to the PentaG, but also to any translational parallel robot including the Delta
robot. Due to the friction added to the system by the balancing system, it was chosen to
not apply this balancer to the haptic version of the PentaG prototype but to use it for a
pick-and-place version of the robot.

Input-output singularities of the Jacobian matrix were analyzed. Serial singularity con-
ditions were derived and a new type of serial singularity, specific to parallel robots with
configurable platforms was described. Conditions for parallel singularity of the PentaG
were also described and numerical analysis of the robot workspace was performed to locate
those singularities. These conditions can also be generalized to other parallel robots with
configurable platforms. Unfortunately, in the case of the PentaG, parallel singularities are
present inside the robot workspace and a careful design of the robot dimensions should
be performed in order to reduce the influence of these singularities. This is the subject of
the next chapter.



Chapter 5

Optimal Kinematic Design of the
PentaG

5.1 Introduction

Geometric optimization of the design parameters is a fundamental step in the design pro-
cess of parallel robots and follows naturally after the choice of mechanical architecture
(Chapter 3) and the analysis of its kinematics (Chapter 4). By their nature, parallel ro-
bots are faster, stiffer, and stronger than their serial counterparts but it is well known that
parallel robots suffer from smaller workspace which may contain parallel singularities[26].
As it was shown in Chapter 4, the performances (e.g. workspace, dexterity, force trans-
mission and stiffness) of the PentaG, like most of parallel robots, are very sensitive to
the geometric dimensions of the robot. In general, optimization and customization of
design parameters of parallel robot is mandatory to fully exploit the merits of parallel
architectures[4]. It has been said that the lack of good optimization process in the design
of early parallel robots, i.e. prior to 1990, had lead to many poorly conceived parallel ro-
bots with bad performances, which has harm their reputation and delayed their use in the
industry as a interesting alternative to conventional design. Fortunately, especially since
the last two decades, parallel robot designers have reasserted the fundamental importance
of geometric optimization on the robot performance, and this constitutes currently one
of the largest topics of research in the field, (see for instance [8], [25],[71], [47], [48]). As
opposed to serial robots, geometric optimization of parallel robots is much more complex.
Two main reasons make this optimization process rather difficult.

The first problem is the number of design parameters involved. Parallel robots have
much more links and joints than serial one and, in general, may have tens of geometric
parameters that can be considered as design variables. Each parameter can have a high
influence on the performance of the robot and their combined influence is generally highly
coupled.

The second problem that is commonly encountered is the high complexity of the objective
function. Most performance criteria are based on properties of the Jacobian matrix, such
as its condition number, which is generally impossible to compute in an analytic way.
The performance is not only dependent on the geometry of the robot, but also on the
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position at which the robot stands. In order to deal with a performance index that
only depends on the robot geometry and not on its position, global performance index
must be computed from the integration of local performance index over the complete
workspace. It is therefore generally computer intensive to evaluate a robot performance
index for a given geometry. In the optimization process, the objective function created
by the performance indices will generally have a large number of local optimum and large
number of discontinuities over the space of design parameters.

This chapter presents the optimization procedure that was used for the geometric design
of the PentaG and the techniques developed to overcome the problems previously men-
tioned. A first original contribution is the enumeration of all the geometric parameters
of the PentaG based on a novel modified version of the Denavit-Hartenburg notation[15]
adapted to closed-loop mechanisms. The set of geometric conditions that are necessary
to close the mechanical loops of the PentaG and ensure that the mechanism has the ap-
proriated mobility are then presented. General design guidelines and principle are then
presented and described. These principles are used to reduce the number of design para-
meters to a small set of critical parameters that can be efficiently used in the optimization
algorithm. In the second section, several objective functions are considered for the op-
timization and their respective advantages and disadvantages are discussed regarding the
PentaG robot and its application. Using the sign of the determinant of the Jacobian
matrix as an indicator of the presence of a singularity between two given points, a fast
algorithm is developed to compute the volume of the centered singularity-free workspace
zone for a given set of design parameters. The advantages and restrictions of a selection
of search algorithms that are commonly used in parallel robot optimization and the rel-
evance of choosing Genetic Algorithms for the geometric optimization of the PentaG are
then discussed. The results obtained from the optimisation process are then presented
and analysed.

5.2 Kinematic Parameters

This section presents the geometric parameters of the PentaG, i.e. the parameters that
are involved in the kinematic relations between all the links of the PentaG architecture.
As previously mentioned, the kinematics of a mechanism describe the motion of the links
without consideration of the cause of this motion. For this reason, only the relative
positions of the kinematic pairs (i.e. joints) of the mechanism are needed to describe its
kinematics, and the parameters describing the particular shape of the rigid bodies (such
as the parameters involved in their inertia matrix) are considered in the dynamic model
but are not relevant for the kinematic analysis.

A kinematic pair is a connection between two bodies that imposes constraints on their
relative movement. The geometric design parameters of the PentaG define in which way
all the links and joints of the robot are assembled. The goal of this section is to define
all the possible independent geometric parameters of the PentaG and then reduce this
number to a minimal set of parameters that are critical to the robot performance. The
elegant Denavit-Hartenberg notation [15] can be used to define the maximum set of inde-
pendent geometric parameters that influence the kinematic of a serial robot. Normally, 6
independent parameters are needed to define the relative position of two links connected
by a joint. By introducing conventions on the location of the reference frames on the
successive links of a serial robot, the Denavit-Hartenberg notation uses only 4 independ-
ent parameters to define uniquely a reference frame on each link. The four parameters
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Figure 5.1: Denavit-Hartenburg convention for serial robots. 4 parameters are used to
describe the position of a joint axis relatively to the axis of the previous joint.

are derived from the fact that prismatic and revolute joints can be described by a line
of translations or rotations, and only four parameters are needed to uniquely describe a
line in 3D space. The same principle that is used in the Denavit-Hartenberg notation can
also be used to compute the minimum set of kinematic parameters of a serial chain.

5.2.1 On the Number of Kinematic Parameters

In order to determine which subset of kinematic parameters should be considered in the
geometric optimization, it is interesting to first have a look at the whole set of geometric
parameters that have an influence on the kinematics. The problem of finding the minimum
but complete set of kinematic parameters for serial chains has been the subject of several
articles [19, 58, 69, 21]. Four independent parameters are needed to describe a line in 3D
space, and 6 independent parameters are needed to describe a second reference frame.
For a serial chain with m revolute joints, and a reference frame located on the base and
the end-effector, the number of independent kinematic parameters P is given by

P = 4m+ 6 (5.1)

since four independent parameters are needed to describe the position of a line relatively
to the base reference frame. Those parameters are used in the Denavit-Hartenburg con-
vention for serial robots. Figure 5.1 shows the original DH parameters for a serial robot
with two joints and one rigid link between the base and the end-effector. This is only one
of the DH conventions that can be used. Some authors find it more intuitive to define θi
as the angular position of the joint i instead of the joint i− 1. No matter which version
of the DH parameter convention is used, the total number of parameters is the same.

For general closed-loop mechanisms, there is no equivalent and generally accepted conven-
tion, although some interesting conventions have been suggested recently[76]. A notation
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for the geometric parameters of closed-loop mechanisms based on an extension of the DH
notation that could be applied to any mechanism is here proposed.

In the original DH notation,m of the 4m+6 parameters are not strictly speaking kinematic
parameters that depend on the geometry of the serial robot but are rather values of the
joint position, depending on the configuration of the robot. If the mobility of the robot is
defined as M , the number of independent kinematic parameters i.e geometric parameters
that are not dependent on the configuration of the serial robot is given by

P = 4m+ 6−M (5.2)

In a closed-loop mechanism, dependency is created between the values of the joints and
overconstraints create also dependency between the kinematic parameters. No matter if
the dependency is created on the joint values or on the kinematic parameters values, each
independent closed-loop removes 6 independent parameters.

The PentaG mechanism is a closed-loop mechanism with m = 43 joints and E = 2
end-effectors and M = 5 DOF. The number of independent parameters is given by

P = 4m+ 6E −M = 172 + 12− 5 = 179 (5.3)

The PentaG mechanism has 10 independent closed-loops which create 6 ·10 dependencies
on the parameters. The kinematic parameters can be separated from the mobility para-
meters in order to establish the maximal number of independent kinematic parameters
that can be used for the geometric optimization of the PentaG robot. If all the joints
of the mechanism are disassembled, each link possesses either the inner bearing part or
the outer bearing part of the connected joints. These will be called attach points. In a
disassembled link i, the number of kinematic parameters needed to define the axis of the
attach points is given by

Pi = 4mi + 6 (RFi − 1) (5.4)

where mi is equal to the number of attact points and RFi is the number of reference
frames on the disassembled link. On each attach point axis, a reference point can be
defined where the common perpendicular d intersect with the axis. When the mechanism
is reassembled, one additional kinematic parameter is needed per joint to define the
distance between the reference points of the two attach points.

These parameters define the kinematics of the robot and can be used in an extended
version of the Denavit-Hartenburg convention that include closed-loop mechanisms. In
closed-loop mechanisms, some of the links have more than two joint connections and
more parameters are needed as shown in Figure 5.2. In table 5.1, the links of the PentaG
in regard of their number of attach points and the number of parameters needed to
define all attach points on each link are listed. 158 kinematic parameters are needed to
define all joint attach point axes on the n = 34 links. In addition, m = 43 kinematic
parameters are needed to define the assembly of the joints on the attach point axes.
The total of kinematic parameters is therfore 158+43= 201. It was already established
that the PentaG mechanism has 22 overconstraints which introduce dependencies on the
kinematic parameters. Among the 201 kinematic parameters, 22 are dependents and 179
are independents, as predicted by Equation 5.3.
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Figure 5.2: A link with three joint attach points. 4mk + 6 (RF − 1) = 6 kinematic
parameters are needed to defined the relative position of the three attach points.

Number of
attach points

Number of
reference
frames

Parameters
per link

Number
of links

Total Number
of Kinematic
Parameters

2 0 2 19 38
3 0 6 12 72
3 1 12 1 12
4 1 16 1 16
5 1 20 1 20

Attach point parameters (1 per joint) 43
Dependencies due to overconstraints -22

Total 179

Table 5.1: Geometric parameters of the PentaG
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5.2.2 Geometric Conditions for the Feasibility of the PentaG

Among the parameters presented in section 5.2.1, only a certain combination of them will
produce a mechanism with the mobility of the PentaG. These geometric conditions insure
that the robot can be assembled and that the two end-effectors will have the desired
full cycle mobility relative to the base, apart from singularities. The list of geometric
conditions for the feasibility of the PentaG are:

• The axes of rotation of the 5 base actuators im1 must lie in a plane.

• The axes of rotation of the second joint im2 of a leg i must be parallel to the axes
of rotation of the base joint im1 .

• The axes of rotation of the 4 joints in a parallelogram unit must be parallel to each
other and perpendicular to the second leg joint im2 .

• In the parallelogram unit, the length of in3 must be equal to the length of in4 and
the length of in2 must be equal to the length of in5

• The axes of rotation of the leg third joint im7 must be perpendicular to the joints
in the parallelogram unit.

• The axes of rotation of the 8 joints pmj on the configurable platform must be parallel
to each other and perpendicular to the third joint of the leg.

• The sum of vertical offsets of the attach points in the parallelogram units and the
configurable platform must be zero in order to close the loop.

Theoretically, all the remaining geometric parameters are free of choice but in practice,
several of them are not considered as variable design parameters because of technical
considerations or simplicity. For example, the vertical offsets d of the joints pmj of the
configurable platform relative to leg attach point im7 on link in5 are equal for the 8 joints.
On the configurable platform, a decision was made for simplicity but also for technical
considerations to put the leg attach points and the platform joints in a straight line.

5.2.3 Reduction of the Number of Parameters

As mentioned in the introduction, the geometric optimization of parallel robots is a tedious
task because the number of parameters is large and because the computation of the
objective function is complex and computational intensive. It will be quite difficult to
manage an optimization on the more than 100 parameters that define the geometry of the
PentaG robot. A first task in the optimization process is therefore to reduce the number
of parameter to a minimum set of critical parameters.

There are no direct guidelines to reduce this number of parameters and one must use
some common sense and insights about the geometry of the robot to achieve this goal.
Here is a summary of the key techniques and principles that have been used in the case
of the PentaG.

• Removal of the parameters that don’t influence the position and velocity kinematics
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Some of the geometric parameters are not used in the kinematic relations between the
end-effector and the base of the robot. Therefore, many performance aspects, such as the
dexterity, static and workspace, will not be influenced by those parameters. For example,
in the case of the PentaG, the length of the parallelogram units are important but not their
width from a kinematic point of view. The vertical thickness of the configurable platform
also doesn’t influence the velocity kinematics but it influences the position kinematic.
These parameters have been removed from the vector input of the optimization process
although their values must still be considered in the final design for technical reasons.

• Symmetry of the design

The number of parameters is greatly reduced when symmetry is applied to various geo-
metric elements of the robot. One of the first decisions that were taken was the use of five
identical legs, although the legs play different roles on the constraints of the configurable
platform. The position of the actuators was also chosen to present a circular symmetry.
This simplifies greatly the design since the optimization has to be performed on only one
leg. The configurable platform also has a full symmetry in the YZ plane so the number
of design parameters in the platform is reduced by half. The use of symmetry offers also
a side advantage. In a haptic device, or in any parallel robot in general, designers aim
at a rather homogenous performances over the workspace so they can expect the same
performance for any position of the robot. Symmetrical design generally leads to more
homogeneous performance.

• Technical considerations and simplicity

Several of the possible design parameters consist of offsets between the positions of the
joints and are not desirable from a technical point of view or in regard to secondary
performance criteria. For example, in the initial geometric optimization of the PentaG,
offsets were allowed in the plane of the platform for the position of the platform joints.
A larger number of parameters offer more design possibilities and some of the considered
platforms with offsets had good kinematic properties but since the offsets may lead to
an increase in the bending stress in the platforms and also in an increase of the total
number of parameters, the decision was made to align the platform joints with the leg
attach points. Figure 5.3 shows the platform parameters with offsets and without offsets.
Three platform parameters have been removed due to this decision.

Another example can be used to illustrate the principle of simplicity. In pilot optimiza-
tions, the axes of rotation of the actuators were not necessarily tangent to a circle around
the centre point on the base. In other words, the actuator could be located at a offset
distance from this tangent point meaning that the parallelogram units will not face the
centre point of the base as it is the case for some Delta robots used in the industry. Since
this parameter is not of great impact on the kinematic performance, it was removed from
the parameter list in the latter optimizations.

Finally, by using the principle of symmetry, simplicity, and relative influence on kinemat-
ics, the total number of parameters to optimize have been reduced to only 8. The set Γ
of the geometric parameters to optimize is
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Figure 5.3: The parameters of the configurable platform a) with offsets and b) without
offsets

Γ =


m
l1
l2a1a2a3
b1
b2

 (5.5)

The first three parameters are related to the dimensions of the legs and are shown in
Figure 5.4. The next five parameters are related to the dimensions of the configurable
platform and are shown in Figure 5.3 b). The optimization algorithm should find the
set of geometric parameters that best fits the objective function. Technical aspects are
considered to include upper and lower limit constraints to the vector Γ . This is the
subject of the next section. The remaining of the 174 parameters described in Section
5.2.1 are set to satisfy the mobility and assembly condition of the PentaG or have been
removed from the optimization input during the parameter reduction process.

5.2.4 Upper and Lower Limits of Parameters

Given the set of geometric parameters that should be optimised, a multidimensional
parameter space can be created where each dimension represents a parameter and each
point within this space represents a unique geometric design of the robot. Clearly, these
dimensions are not infinite and practical considerations for the design of the robot are
used to define a lower and an upper limit for each parameter. The choise of the input
parameters and their limits is the first step of the optimization procedure but in practice,
the optimisation process is highly iterative between each step, as it is the case for complete
design of the whole robot. Some of the early results of the optimization were interesting
from workspace and kinematic point of view but were not practically realisable from
a technical point of view. However, these pilot optimizations were very useful to set
appropriated limits on the input parameters that were used in the final optimization. The
upper and lower limits should exclude the parameter values that are clearly unwanted but
should offer a range that is large enough to maximize the design possibilities. Since all
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Figure 5.4: The three geometric parameters of the leg

the robot parameters can always be scaled up or down together to create a bigger or a
smaller robot with the same relative workspace, the centre of the workspace of the robot
was chosen to be at 150 mm above the centre point of the base. This dimension acts as a
reference dimension for all other dimensions. The upper and lower limits that have been
used in the final optimization are given below in mm.

m = [50, 120]
l1 = [70, 120]
l2 = [150, 200]
a1 = [13, 30]
a2 = [3, 15]
a3 = [10, 30]
b1 = [25, 80]
b2 = [25, 80]

(5.6)

The first three parameters m, l1, and l2 represent respectively the distance between the
actuators and the centre of the base, the length of the base link of the leg and the length
of the parallelogram unit. Their upper limits were set to ensure some compactness of
the robot. Additional constraints were imposed on the maximum length of the base link
since the force that the actuators exert on the robot is inversely proportional to l1. The
lower limit of m was set to give enough place on the base to mount the actuators and the
lower limits on l1 and l2 were set to ensure that the legs can reach the platform in various
positions.

The last five parameters represent the length of the links in the configurable platform.
The parameters a1, a2, and a3 represent links that are connected to the legs and are
constrained in rotation while the parameters b1 and b2 represent the links that connects
the legs together and are allowed to rotate around a vertical axis. The upper limits were
set for compactness of the configurable platform. Since the links of the platform are the
furthest from the base, their combined influence on the total inertia is higher than the
influence of the legs and therefore a compact platform is desirable. It was first considered
to use negative values for the lower limits of a1, a2, and a3. Indeed, some design solutions
in which the links defined by b1 and b2 were crossing each other resulted in interesting
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workspace and kinematic properties. But in order to built such a robot, the platform links
should have been placed in different horizontal planes which would have induced bending
stress in the whole platform. The lower limits were therefore set to positive values and
were normally defined by the minimal space possible between two joints or between a joint
and a finger tip. It was also considered to proceed to two separated optimizations for the
legs and for the configurable platform. Since the dimension of the legs and the platform
seemed to have a highly coupled influence on the robot workspace and kinematics, it was
finally decided to carry out the optimization with the 8 parameters together.

5.3 Objective Function

One of the early steps of the optimisation process is to define a list of requirements
that is expected from the robot according to the task. This step should normally be
done before the reduction of the number of parameters described in Section 5.2 since the
performance indices that will be used in the optimization process will influence which
geometric parameters are critical and which parameters are less important and can be
removed in the parameter reduction process. Many performance aspects can be considered
such as the stiffness, dynamics or inertia but the two aspects that are by far the most
used in parallel robot optimization are the volume of the workspace and the dexterity of
the robot. Various performance indices have been proposed to quantify the performance
of a specific design in a single number [54, 47].

Among the most popular is the “global condition index” proposed by Gosselin[?]. In sec-
tion 4.4, it was shown how the condition number of the Jacobian matrix characterizes the
dexterity of the robot. The global condition index is defined as the local condition number
integrated over the workspace and divided by the volume of the workspace. Although
useful, there are some drawbacks in the use of the global condition number as a criterion
for the optimum design. A first drawback is that the computation of the integral of the
condition number over the workspace is almost always impossible to do analytically and
numerical methods must be used in which the workspace is sampled and the average value
and the condition number is computed from the sampled configurations. The result will
depend on the density of the sampling and since the workspace is multidimensional, a
dense sampling will be very computer intensive. The second drawback is that the global
condition index doesn’t tell us how uniform and smooth is the dexterity of the robot over
the workspace. A second global conditioning index based on the ratio of the maximum
and minimum values of the condition number should be also used. As described in Section
4.4, singular configurations occur when the condition number becomes infinite and the
actuators lose control of the end-effector in at least one direction. The transition between
a dexterous position and a singular position can be very abrupt and a less dense sampling
may fail to detect the singularities within the workspace.

A second type of performance indices that are often used is the workspace performance
index. The main criteria used here is the total volume of the workspace. It should be noted
that for a robot with at least one rotational DOF, the boundaries of the workspace are
usually coupled between the translational and rotational DOF and arbitrarily equivalent
units must chosen between translational and rotational units when the total volume of
the workspace is computed. Some authors use the total orientation workspace [52], which
includes all the positions of the end-effector that may be reached with all the orientations
within a certain ranges of the orientation angles, as performance index.
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In a general parallel robot, like a machine-tool robot, the presence of singularities within
the workspace can be tolerated because the controller is fully in charge of the position of
the robot and can avoid them. Regions of the workspace which are close to singularities
must be avoided since they result in poor force transmission performance, in the sense
that the device cannot apply forces at the end-effector in certain directions. In the case
of haptic devices, the operator is in charge of the position of the robot and since it is
not possible to predict which position he will want to reach, the workspace in which
he operates must be singularity-free. For haptic applications, the useful workspace is
defined as a centered singularity-free region, where the user can safely operate the robot
in every DOF allowed by the architecture. This region should have a shape that is simple
enough so the operator can recognize easily which zones are inside and outside the useful
workspace. For safety, the haptic device should prevent the operator to move outside
the useful workspace either with mechanical locks on the device or with a force from the
actuators that push the operator away from the useful workspace limits.

Various approaches can be used to optimise the geometry of the robot according to the
various performance indices. Some authors use a weight function of different performance
criteria to create a single criterion[46]. The problem with these methods is the arbitrarily
choice of the weight of each performance criteria and the additional computations that
come with the evaluation of multiple performance criteria, each of them being already
rather computer intensive. A more efficient approach is to use a single performance index
that is considered fundamental in the global performance of the robots and uses secondary
performance indices to choose between solutions that are obtained from the optimization
that has been performed with the primary performance index.

The main innovation in the PentaG is the use of a configurable platform that can provide
grasping capabilities while all the actuators are located on the base. The robot can offer
multi-point contacts without moving around the weight of the gripper motor. This results
in a device with a higher structural stiffness, resulting in increased transparency for the
whole haptic system. The choice of the geometric parameters has a direct impact on the
total moving mass of the robot. For a same workspace size, a more compact robot will
have lower moving mass. The 8 geometric parameters described in Section 5.2 can be
scaled up or down all together to produce smaller or bigger robots with corresponding
workspace size. Given a certain workspace that is suitable for the human ergonomic,
the goal of the optimisation is to increase the compactness of the robot. The use of
compactness as the primary performance criterium for the optimization of the PentaG is
in line with the primary requirement to keep the robot as light as possible. Compactness
was already identified as one of the most important criteria for haptic devices based on
parallel architectures[82]. Several secondary requirements are also considered ranging
from global dexterity, stiffness and technical feasibility.

5.3.1 Maximum Useful Workspace

In the previous section, the useful workspace (UW) for a haptic device was defined as a
singularity-free region with a simple geometry in the middle of the total workspace. The
basic shape chosen for the useful workspace of the PentaG robot is the half-ellipsoid. An
ellipsoid is the three dimensional analogue of an ellipse. If the ellipsoid is centered on the
origin of the coordinate system, its surface is defined by the equation

x2

a2
+
y2

b2
+
z2

c2
= 1 (5.7)
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Figure 5.5: The half ellipsoid and its principal axes

where a, b, and c are the length of the semi-principal axes. When a = b = c, the ellipsoid
degenerates into a sphere. For our purpose, the axes lengths a and b are chosen to be
equal and the vertical dimension c to be one and a half the values of a and b. The upper
half ellipsoid is simply the part of the ellipsoid where z ≥ 0. This particular shape was
used because it is simple and seems to approximate the best the more complex shape
of the actual singularity-free region. Figure 5.5 shows the half ellipsoid and its principal
axes. The volume of the useful workspace is given by

V = 4
3πabc

V = 16
9 πc

3 (5.8)

The centre of the half ellipsoid useful workspace is located at a certain height right over
the centre on the base plane. To increase the compactness of the robot, the volume of the
useful workspace relative to a certain height of the workspace must be maximised. The
height of the workspace is used as a dimensional reference for all the upper and lower
limits of the geometrical parameters.

The half ellipsoid only represents the 3 translational DOF of the PentaG. For each com-
bination of rotation and grasping, a different 3D useful workspace is obtained. For the
PentaG robot, the complete useful workspace is defined as the half ellipsoid in which the
operator can rotate ±45 degrees and grasp from 4 to 8 cm everywhere without encounter-
ing a singularity. These values are obtained from ergonomic considerations for the human
operators. They will also be useful to define the upper and lower limits of the geometric
parameters of the configurable platform.

5.3.2 Computation of the Singularity-Free Workspace

In order to compute the maximal singularity-free workspace volume, the singular config-
uration which is the closest to the centre point of the workspace must be detected. In
a singular configuration, the determinant of the Jacobian matrix is zero. Searching for
null determinants by sampling the whole workspace will require a dense sampling since
the transition between dexterous region and singular region can be sharp. Furthermore,
the robot has 5 DOF, which implies a 5 dimensional sampling that would be computer
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Algorithm 5.1 The Pseudo Code of the Useful Workspace Volume

Inputs :
Geometric Parameters (P)

Data :
he ight o f the UW centre (H)
sampling po int s on the boundar ies o f a unit UW
rota t i on and grasp ing sampling po int s o f a unit UW
Number o f boundar ies sampling po int s (NB)
Number o f r o t a t i on and grasp ing sampling po int s (NRG)
Reso lut ion (R)

Outputs :
Volume of the u s e f u l workspace (V)

I n i t i a l i z a t i o n :
Flag = 0
Z = H
S = SJD fo r the UW centre at zero grasp ing and zero ro ta t i on

WHILE ( Flag=0) DO
Compute the boundary sampling po int s f o r a UW of he ight (Z−H)
FOR i :=1 to NB

FOR j :=1 to NRG
Compute the i nve r s e kinematic ( IK) f o r the point de f ined by i and j
Use IK to compute the l o c a l jacob ian matrix ( J )
Compute the s ign o f the determinant o f the jacob ian matrix (SDJ)
I f (SDJ∗S<=0)

Flag = 1
end

end
end
Z = Z + R

end
V = 16/9∗ pi ∗(Z−R)^3

intensive. A second useful property of singular configurations is that the determinants
of the Jacobian on each side of the singularity have opposite signs. For the computa-
tion of the useful workspace, we only want to know if a singularity is present between
the centre of the workspace and the border of the workspace. In order to obtain the
size of the maximal singularity-free half-ellipsoid of a particular design, we compute the
sign of the determinant of the Jacobian (SDJ) at various points on the boundaries of the
half-ellipsoid and increase gradually the dimension of the half-ellipsoid until one of the
boundary points has a SDJ that is different than the centre of the workspace. For each
of the boundary points, the computation must be done for a sampling of the rotational
values and the grasping values.

The pseudo code of the objective function is given in Algorithm 5.1.

The sampling resolution used for increasing the size of the useful workspace was 5 mm.
25 sampling points on the boundaries of the UW, 6 sampling points for the rotation and
6 sampling points for the grasping were used. The total number of jacobian computation
for one WHILE loop is 25×6×6 = 900. The code was implemented in Matlab and typical
time computation for one performance index was around 120 milliseconds on a desktop
computer.

5.4 Optimisation Method

As opposed to serial robots, performance indices of parallel robots have generally a much
higher variability along the robot dimensions. The performance index that was chosen in
the previous section is dependent of the location of the singularities within the workspace
of the robot. Beside the fact that the number of parameters to optimise is large, the
objective function has a large number of local optima and discontinuities and can vary
sharply for small variations of the geometric parameters.
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Several optimisation algorithms have been proposed for parallel robots. If the number of
design parameters can be reduced to 2 or 3, one may choose to use a brute force approach
and compute the performance index for all the sets of design parameters possible and
choose the most appropriated. The number of possible designs increases in an exponential
way with the number of design parameters. Since the performance of the PentaG is highly
dependent on the dimension of both the legs and the configurable platform, it was not
appropriate to reduce the number of design parameters to less than 8.

5.4.1 Genetic Algorithms

Genetic Algorithms have been increasingly popular in many fields of engineering because
of their highly adaptivity to broad range of optimization problems. The development of
Genetic algorithms is attributed to John Holland [35] who developed the method in the
70s. The method is described here briefly. The algorithm mimics the process of natural
selection to find a set of solutions that fit the best the objective function. In the context
of genetic algorithm, each design parameter represents a “gene” and the vector of 8 design
parameters presented in Equation 5.5 represents a “chromosome”. An initial population
of chromosomes is formed by randomly assigning values to each gene within the range of
their upper and lower limits. The objective function is then evaluated on each member of
the population. The algorithm then uses concepts inspired from natural selection, such
as elites, crossovers and mutations to produce a new generation of the population. The
elites are the part of the population that scored the best on the objective function and
are guaranteed to survive to the next generation. The rest of the population is called
parents and the new generation is formed by combination of the chromosomes of the
parents. The parents that satisfied the best the objective function are used more often
in the combination. Finally, mutations are introduced by random variations of some of
the genes in the new population. The algorithm is stopped after a certain number of
generations or after no more improvement is noticed from generation to generation.

The main advantages of the genetic algorithms are their capabilities to deal with a large
number of parameters, optimize the variables on a very complex objective function, and
produce a list of optimum parameters instead of a single result. Their main disadvantage
is that there is no absolute certainty that a genetic algorithm will find a global optimum.
These advantages are very well suitable to the current problem but the lack of confidence
that the solution consists of a global optimum should restraint their use to optimization
problems in which traditional optimization approaches fail. Genetic Algorithms have
been used in optimisation of many parallel robot design parameters as in [72] and [63] for
example.

In the case of the PentaG, the specific requirements about the rotation and the grasping
translation of the platform geometry makes the objective function highly discontinuous
over the geometric parameter space. This is due to the fact that for certain platform
geometric parameters, the platform cannot even reach ±45 degrees of rotation and the
determinant of the Jacobian matrix cannot be computed. In addition, the locations of the
singularities are quite sensitive to the platform dimensions and the number of parameters
is rather large. Since the optimisation is done on a single criterion, a set of various
solutions is useful since the solution that fits best the secondary requirements can be
chosen among the various solutions. For all these reasons, it was decided to use Genetic
Algorithms for the optimization of the design parameters.
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The stopping criteria used in the genetic algorithm was generations stalling. The average
of the values of the objective function over the population of the last generations is
evaluated and if there is no improvement, the algorithm stops. Many settings of the
algorithm need to be well tuned to produce significant results. The settings that had to
be adjusted in this optimisation were

• Upper and Lower Limits of Parameters

• Population size of each generation

• Elites, Crossover, and Mutation ratios

• The number of stall generations and the improvement tolerance

Among those settings, the size of the population is the most influential in terms of quality
of the results and time of computation. A large population is more likely to find the global
optimum among the various local optima but it is also computational intensive. A good
approach is to perform several pilot computations with small populations in order to
choose efficient values for the other settings such as the parameters limits and the elites,
crossover and mutation ratios.

Typical computation time on desktop computer was around 1 minute for small populations
of 10 designs per generation, from 1 to 4 hours for medium population of 50 to 100 designs
per generation, and from 1 to 2 days for large population of 500 to 2000 designs per
generation.

5.5 Results

Once the algorithm settings were found to be efficient for the problem at hands, larger
population sizes optimisations were performed. The goal again was to find an optimum
solution for the volume of the useful workspace that also satisfies the secondary perform-
ance criteria. Since the algorithm needs a stalling situation to stop, the best solutions
are found in the elite part of the last generation. If the algorithm was efficient enough to
find a local optimum, the elites should have little difference among them.

Optimisations performed with small populations showed generally noticeable differences
among the elites, meaning that the algorithm failed to find a local optimum. This step
was however useful to set the design limits and populations ratios. Medium population
generally showed homogenous among the elites, which suggests that a local optimum was
found. However different randomly starting populations gave sometime different final
results, suggesting that the optimum found with medium size population is not a global
optimum. Large populations are computational-intensive and may take up to 1 or 2 days
of computations. Four runs of large populations have been computed with populations
of 500, 1000, 1000, and 1500 individuals respectively, starting from randomly selected
populations. The four runs converged to the same result, suggesting that this is maybe a
global optimum, but it is not possible to be sure about that. The advantages of Genetic
Algorithm are here obvious. A functional solution to an optimization problem, which
given its complexity couldn’t be solved by classical optimisation method, is obtained.
Although the repeatability of the results suggests that an optimum has been found, the
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nature of Genetic Algorithms prevents us to have certainty about this. The parameters,
in millimeters, of the chosen optimal design were

Γ =


100
90
200
23
5
21
48
30

 (5.9)

It is already known that the optimal design satisfies the secondary objective concerning
the technical feasibility. The next step is to ensure that the dexterity of the robot is good
enough. The condition number of the Jacobian is a good indicator of the dexterity of the
of the robot since it represents how much the output values of the transfer function can
change for a small change in the input arguments. Since the dexterity is computed with
the condition number of the jacobian, it can also be verified that the useful workspace is
indeed singularity-free.

The local dexterity index of the robot can be computed for all positions of the workspace.
The workspace is of dimension 5, which makes it difficult to represent it in a graphical
form. The technique used here was to separate the dimension of the workspace into
continuous dimensions and discrete dimensions. The X and Y dimensions were chosen
to be continuous while the values for the height Z, the rotation angle θ, and the grasp-
ing p are computed at discrete intervals. Discrete dimensions are represented with five
samples each. Figure 5.6 shows the results for the height Z = 150. A 5X5 grid is formed
by the samples of rotation and grasping. In each element of the grid, the values of the
condition number are computed over the XY plane for the corresponding set of height,
rotation, and grasping values. The values in the XY plane also have to be discredited for
the computation, but a sampling that is dense enough can be used so that the graphical
representation of the results approximates a continuous representation. In the following
figures, each dimension X and Y have discredited into 2500 samples. The condition num-
ber is represented by a color scale from blue, for perfect conditioning to red, for singular
configuration. Since the condition number becomes infinite in singular configurations,
a logarithmic scale has been used. Figures 5.6, 5.7, 5.8 and 5.9 shows the results for a
height of 150, 190, 220 and 250 mm over the centre of the base of the workspace.

It can be noticed first that the total workspace becomes smaller at higher height. This
justifies the use of the top half ellipsoid as a natural shape for the useful workspace of the
robot. It is also seen that at any height, the singularities are getting closer to the centre
point for extreme rotation and grasping. If the task that is intended to be performed
doesn’t require the full range of rotation and grasping of the configurable platform, the
volume of the total workspace in the X, Y and Z coordinates can be increased. Inside
the useful workspace, the Jacobian matrix is usually well conditioned with a condition
number lower than 10. This ensures a good kinematic transfer between the actuators and
the end-effectors of the robot for the chosen workspace. Figures 5.10 and 5.11 show the
relative dimensions of the total workspace, the useful workspace and the half ellipsoid.
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Figure 5.6: Condition Number of the Jacobian matrix at height Z = 150 mm

Figure 5.7: Condition Number of the Jacobian matrix at height Z = 190 mm
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Figure 5.8: Condition Number of the Jacobian matrix at height Z = 220 mm

Figure 5.9: Condition Number of the Jacobian matrix at height Z = 250 mm
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Figure 5.10: Optmised useful workspace in comparison of the total workspace of the
robot. At the boundaries of the useful workspace exists one particular configuration
of the platform (θ, ρ) that produces a parallel singularity. This occurs generally for
maximum rotation θ = ±45o.

5.6 Summary

In this chapter the optimisation procedure that has been used for the geometric design of
the PentaG is presented. The problem at hand was quite complex due to the number of
parameters and the complexity of the objective function. A general notation for mech-
anisms, which was based on the Denavit-Hartenburg convention and that can be used to
represent any closed-loop mechanism, was presented . Based on this notation, a set of
general geometric parameters was defined and these parameters can be used to uniquely
define a particular geometry of the PentaG. The conditions on the general parameters, for
which the PentaG can be assembled and has the desired mobility, have been enumerated.
General guidelines and principles used to reduce the number of parameters to a smaller
set that is manageable in an optimisation algorithm were then presented. Due to the im-
portance of compactness and avoidance of singularities in haptic devices, it was chosen to
optimise the geometry of the robot for a maximum singularity-free workspace. Inside this
workspace, a simple shape was defined; a half ellipsoid, that can be easily recognizable by
the human operator as the useful workspace. The secondary performance aspects such as
dexterity, stiffness and technical feasibility have been influential in the choice of the set of
parameters and their upper and lower limits. An efficient algorithm, based on the sign of
the determinant of the Jacobian matrix, has been designed to compute the 5 DOF of the
useful workspace for a given geometry. Due to the complexity of the objective function,
genetic algorithms have been used to search for a optimum for the geometric parameters.
The final results for the useful workspace were verified by a graphical representation of
the dexterity and singularities of the whole workspace based on the discretisation of some
of the DOF of the robot.

5.7 Discussion

As mentioned in the introduction, the optimisation of the geometric parameters of parallel
robots is fundamental in order to take full advantage of the parallel structure. Due to the
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Figure 5.11: The half ellipsoid in comparison of the useful workspace
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complexity of the structure, it is not intuitive to locate the singularities and this optimiza-
tion process improved greatly the size of the useful workspace compared to initial designs.
Most of initial designs based on trial-and-error had actually at least one singularity near
the workspace centre, which was not acceptable. The optimisation process is presented
in a linear way through this chapter but it is in practice a highly iterative process. It is
therefore important to go back and forth from the optimization results to the range of
parameters and optimization settings with several pilot optimizations. It should be noted
that although singularities must be avoided, most of them are not at the boundaries of
the whole workspace and are not considered dangerous for the human or the robot. In
singular positions, the robot loses control of one of the DOF but can still exert forces in
the other DOF. What is likely to happen in singular positions is that the controller will
ask for an infinite force from the actuators in the lost DOF direction. Excessive forces
on the actuator can be prevented by introducing saturation in the controller. However,
the robot was designed to be controllable in 5 DOF and it is highly desirable to remove
singularities as far as possible from the centre.

The singularities at the boundaries of the workspace are more critical. Those occur for
example when the legs are fully extended or when the platform links are parallel or
extended. If the user passes through these singularities, the robot may change assembly
mode and the position and velocity kinematic model inside the controller will not be valid
anymore. Clearly such situations must be avoided and force repulsion or an audio signal
could be used to inform the user that he is near a boundary singularity. That is why a
simple shape was chosen to represent the useful workspace so the human operator can
recognize easily in which region he should stay. From our experience with actual users,
this was well understood and no incidents occurred since the central useful workspace was
large enough to let them perform their task in a comfortable way.





Chapter 6

Prototype Design and
Implementation

6.1 Introduction

The PentaG robot is a high structural stiffness device based on a parallel architecture
with configurable platform that offers 3T1R motions and grasping capabilities. It is
therefore very suitable for any applications that required this type of motion in addition
to grasping and a high structural stiffness. Two applications that come in mind are high
speed pick-and-place and haptic teleoperation for micro-assembly.

Pick-and-place robots are designed for manufacturing, assembly, material handling and
packaging applications. Speed and acceleration are the most important aspects to increase
performance and commercial profitability of such devices. In order to reach a high number
of cycles per minutes, pick-and-place robots need to have a high structural stiffness.
The well-known Delta robot [10], shown in Figure 2.1 b), developed in the 80’s and
commercialized in the 90’s, offered new solutions for the pick-and-place applications.
This 4 DOF robot uses a vacuum grippers to handle the products. However, vacuum
gripping is often not possible when the products present non-flat, porous or irregular
surfaces as common in the food industry and mechanical grippers must then be mounted
on the rigid platform, increasing the total inertia and degrading the robot performance.
In the PentaG architecture, all the motors are located on the base and the device can be
in principle lighter and faster than comparable robots with actuated mechanical gripper.

Haptic teleoperation devices are used to remotely control robotic tools and reproduce con-
tact forces to the operator. The specific types of motion of the PentaG architecture make
it highly suitable for teleoperation in micro-assembly. Via this master robot, the operator
controls a slave robot to perform a 2½D micro-assembly task and receives force-feedback
information from the micro-force interactions between the slave robot and the assembled
micro-parts. This can be useful, when automated micro-assembly is not possible such as
in prototyping and low batch production scenarios. It is important to notice the impact
of structural stiffness in the performance of the haptic device, especially when impedance
control is used. One can conclude that the moving mass should be as low as possible in
order to not disturb the commanded forces that have to be felt by the operator. How-
ever, the master robot needs a minimum of stiffness to be able to render high-frequency
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force-feedback. In addition, multi-point contact provides more information to the human
operator and the operator can use his index and thumb to grasp and interact with the
objects in a more natural way than with a single point contact. The configurable plat-
form allows a design where all actuators are mounted on the base, which results in higher
structural stiffness than if a grasping device was attached to a rigid platform.

For both applications, an optimisation that minimises the inertia-stiffness ratio of the
robot structure is useful to improve the performance of the device since it increases the
mechanical bandwidth of the system. The particular choices of actuators, sensors, ampli-
fiers and transmission depend more on the chosen application since pick-and-place devices
and haptic devices have very different requirements in term of velocity, forces, accuracy,
friction, backlash, and backdrivability. In the following sections, the technical design of a
haptic device based on the PentaG architecture is presented.

Section 6.2 of this chapter presents a novel and general method to minimise the total
inertia of parallel robots while satisfying a minimum stiffness requirement. The results
of this optimisation are then implemented in the design of the mechanical parts of a
PentaG robot for haptic application. Section 6.3 of this chapter presents the design of
the other components of the robot including the bearings, actuators, sensors, hardware
and software controller based on analysis of the propagation of the specifications from the
finger tips to the various components of the robot.

6.2 Inertia-Stiffness Optimisation

In an impedance control scenario, a haptic device records the movements of an operator
and gives force feedback by mimicking the forces that would be present if the operator was
interacting directly with a virtual or remote environment. For realistic force feedback,
the device should be able to simulate high frequency forces while maintaining low inertia
for free-air motion. Ideally, the inertia of the device should be zero.

In the PentaG architecture, the lengths of the parts have been already defined in Chapter
5 as they highly influence the kinematics of the robot. The kinematic parameters were
chosen in a way that increase the compactness of the structure, therefore reducing the
inertia. It was then verified that the force transfer functions was sufficient in the whole
useful workspace, providing enough stiffness. The shape and size of the cross-section of
the parts, as well as the material used haven’t been defined so far since they have no
influence on the kinematics of the robot. However they have a direct influence on the
perceived inertia and stiffness of structure. Given a certain shape of the cross-section of
a general robot link, increasing the cross-sectional area results in higher stiffness but also
in a higher inertia.

Both the inertia and the stiffness that are perceived by the operator at the finger tips of
a haptic device depend on the coupled influence of all mechanical parts of the robot. In
addition, the perceived inertia and stiffness depend also on the position of the robot in the
workspace. Since all those parameters are coupled, a global inertia-stiffness optimisation
method must include all parts and positions simultaneously.

This section proposes a novel and general inertia-stiffness optimisation method that
doesn’t influence the kinematic parameters of the robot. Given the overall stiffness of
the machine, the stiffness of each of the individual parts can be chosen such that the in-
ertia of the total structure is as low as possible. Each part moves differently as a function
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of the motion of the finger tips. Parts that move relatively slower can be made stiffer
and therefore heavier, for they have a relatively low contribution to the total perceived
inertia.

For each mechanical link of the structure, an “Inertia Participation” and a “Compliance
Contribution” are defined. The computation of the inertia participation required a rigid
body model and the computation of the compliance contribution required a finite element
model. Both are presented in Section 6.2.1. The computation of the inertia participation
is presented in Section 6.2.2 and represents the average disturbance forces felt at the finger
tips due to the inertia of the parts. Those forces depend on the position, the velocity
and the accelerations of the finger tips. The computation of the compliance contribution
is presented in Section 6.2.3 and represents the difference in stiffness perceived at the
finger tips between an infinitely stiff part and the actual part, when the actuators are
locked. The perceived stiffness depends on the load direction and the position of the
robot. The optimization method and the results are then presented in Section 6.2.4 and
6.2.5 respectively.

6.2.1 Rigid Bodies Model and Finite Element Model

The analysis of the PentaG robot presented in Chapter 4 and the geometric optimization
presented in Chapter 5 only deal with the kinematic parameters i.e. they were concerned
with the motions of the robot without consideration of the forces that cause of these
motions. In order to compute the disturbance forces at the finger tips created by the
inertia of the various moving parts of the robot, a rigid body model that links forces and
motions in all rigid parts must be formulated. Since this model is not intended to be
used in real-time computation but only for the optimization process, a numerical model
is sufficient for this purpose.

SimMechanics is a Matlab Simulink toolbox that allows easy implementation of multi-
body simulation. The inputs of the rigid bodies model are the kinematics connections, the
definitions of the joints, and the masses and moments of inertia of the parts. A number
of possible boundary conditions can be applied on the model, like gravity, tip forces and
tip velocities/accelerations.

Due to the overconstraints in the mechanism, it is not possible to determine all the
internal forces in the robot with a simple rigid bodies analysis. A second model is needed
to compute the constrained forces. This model was made using the finite elements package
Ansys. In this model each link is a beam with a certain cross section and stiffness. For
each type of part a distinct element type, material model and real constant set is created.
The material properties are modulus of elasticity, Poisson ratio and density. The final
part of the FEM model consists of the constraints and the loads. Since the FEM model
is controlled by a Matlab program, batch analysis over the workspace can be performed
and results for each position are recorded in a Matlab file. The FEM model has been
compared to the SimMechanics model in order to verify its validity. The two software
programs work in very different ways so similar results for a large quantity of load cases
increase the confidence in the model.
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6.2.2 Inertia participation

6.2.2.1 Tip forces as function of velocity and acceleration

The inertia participation is defined as the average force the user experiences during free
manipulation. These tip forces depend on both the velocity and acceleration the user
imposes on the tips. For example, the acceleration of the actuator q̈ depends on both
both velocities χ̇ and accelerations χ̈ at the tips.

q̈ (χ, χ̇, χ̈) =
d (q̇ (χ, χ̇))

dt
=
d
(
J−1 (χ) χ̇

)
dt

= J̇−1 (χ,χ̇) χ̇+ J−1 (χ) χ̈ (6.1)

In general, the acceleration of each link of the robot depends on both the velocity and on
the acceleration of the finger tips and these contributions can be calculated separately.
Following simple tests with subjects moving a 3 DOF Novint Falcon haptic device in free-
air, typical hand velocity and acceleration during haptic manipulations were evaluated at
vm = 0.23m/s and am = 1.5m/s2 respectively and those values are used for the velocity
and acceleration cases.

6.2.2.2 Velocity and Acceleration Cases

The finger tips connected to the configurable platform of the PentaG robot can move in
five independent directions. To determine the inertia participation, only velocities and
accelerations that point into purely x, y or z direction were considered, the grasping
movements in θ and ρ direction are neglected because during the high precision gripping
operations (5 DOF) the velocities and accelerations stay relatively low, in contrast to the
transport manoeuvres (3 DOF), where the movements are faster. This choice was made
to reduce computation time, limiting the number of cases to six, i.e.:

χ̇1=[vm 0000]
T
,χ̈1= 0

χ̇2=[0vm 000]
T
,χ̈2= 0

χ̇3=[00vm 00]
T
,χ̈3= 0

χ̇4= 0 ,χ̈4=[am 0000]
T

χ̇5= 0 ,χ̈5=[0am 000]
T

χ̇6= 0 ,χ̈6=[00am 00]
T

(6.2)

By assigning a mass to the part of interest in the rigid body model and leaving the other
masses to zero it is possible to calculate the tip disturbance forces as function of that
mass, for each of the six cases. The tip forces resulting from the total structure is made
up from the contributions of all parts. The inertia participation of a part type is the
average of the tip forces of all load cases. Average forces are computed for both finger tips
F tip1 and F tip2, and the inertia participation F I is calculated as F I = |F tip1|+ |F tip2|.

Since the inertia participation, as most properties of the robot, depend on the posture, the
workspace has beeen sampled and for each posture the six load cases have to be applied
to find the mean inertia participation. As each posture (x, y, z, θ, ρ) is symmetrical to
(−x, y, z,−θ, ρ), it suffices to only investigate positive x coordinates when both positive
and negative θcoordinates are examined.

For each part of the mechanism, a single number is then computed, the inertia particip-
ation, which represents the average forces of the different load cases over the sampling
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Part Average force (per part of each part type) [N/kg]
type Platform velocity Platform acceleration

Due to
mass of
part

Due to
rota-
tional

inertia of
part

Due to
mass of
part

Due to
rota-
tional

inertia of
part

Total
[N/kg]

n11,n51 0.08 0.03 0.23 0.08 0.42
n21,n41 0.10 0.04 0.27 0.09 0.5
n31 0.09 0.03 0.25 0.09 0.46

n12,n52 0.33 0.00 0.93 0.00 1.26
n22,n42 0.41 0.00 1.08 0.00 1.49
n32 0.35 0.00 1.02 0.00 1.37

n13,n14,n53,n54 0.15 0.03 0.87 0.11 1.16
n23,n24,n43,n44 0.19 0.04 0.95 0.13 1.31

n33, n34 0.17 0.04 0.90 0.11 1.22
n15,n55 0 0.00 1.46 0.00 1.46
n25,n45 0 0.00 1.63 0.00 1.63
n35 0 0.00 1.46 0.00 1.46
np1 0 0 1.46 0 1.46

np2,np4 0 0 1.63 0 1.63
np3 0 0 1.46 0 1.46

np5,np6 0 0 1.51 0 1.51
np7,np8 0 0 1.51 0 1.51

Table 6.1: Inertia Participation of each type of rigid links. In this notation,nij is the link
j of leg i. Links with identical shape and symmetrical inertia participation are shown on
the same line. Platform links np1 to np4 are directly connected to the robot legs and are
constrained in rotation. Platform links np5 to np8 provide the mobility to the configurable
platform. The final inertia participation is the average inertia perceived at the finger tips
per unit of mass for all velocity and acceleration cases sampled over the useful workspace.
Results shown that, in general, rotational inertia has a much lower contribution than
mass inertia.

position of the workspace, per unit of mass of the part. Results are shown in Table 6.1.
The notation used is the same as in the graph presented in Figure 3.16. Due to the
symmetry of the workspace, leg 1 is symmetrical to leg 5 and leg 2 is symmetrical to leg
4. Parts with identical shape and symmetrical contribution are presented on a single line.
17 part types were identified and each of them represents a mass parameter to optimize.

6.2.3 Compliance Contribution

Each part of the structure has a certain stiffness in the different load directions. The
stiffness of the total robot is build up from the stiffness of the different parts. When
applying a force on a structure, the structure deflects some amount in the direction
of the force and possibly also in another direction orthogonal to the force. When one
of the parts of the structure is made infinitely stiff, the structure as a whole will be
stiffer and the deflection in direction of the applied force will be smaller. The difference
between the deflections of both cases can be considered as an estimation of the compliance
contribution.

The FEM model is used to compute the stiffness of the structure for a given posture of
the mechanism. The stiffness at the finger tips is computed when the motors are locked
and the mechanism has zero mobility. The directions of the loads were not chosen in the
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end effector coordinates x, y, z, θ, % but in finger tips coordinates xtip1, ytip1, ztip1, xtip2,
ytip2, ztip2. For rigid body dynamics, five coordinates are sufficient to fully capture the
position of both tips, but when taking the finite stiffness into account, six independent
coordinates are needed, because position ztip1 can be different from ztip2. For each of
the six directions, the compliance is calculated by applying a unit force in the respective
direction. When applying a force on a tip, the tip will displace over a distance δ in the
direction in which the force is applied, but one might expect also a displacement of the
tip in orthogonal direction to the applied force and a displacement of the other tip in
some direction. Therefore, for each applied force, six displacements are found.

The stiffness of the structure greatly varies as function of the position in the workspace.
For each of the sampled points, a number of static finite element analysis has to be done,
which is time-consuming and this limits the number of samples that can be taken. The
workspace was sampled using a set of 45 points in the x,y,z coordinates, each with 5
values for rotation θ and 5 values for grasping ρ, so in total 1125 postures.

The optimisation method minimises the inertia, while putting constraints on both the
mean compliance and the 0.99-quantile of the compliance. It was chosen to eliminate
the extreme 1% compliance computations so that the final results are not driven by a
single point but is still valid for the vast majority of the workspace. Interesting is that
the sum of the compliance contributions of all 17 part types, calculated individually for
each type, comes close to the complete compliance that can be calculated with the whole
FEM model. This is an indication that the above method is at least a good estimation
of the compliance contribution.

6.2.4 Optimisation

The goal of the optimisation is to minimise the mean inertia participation, while keeping
the compliance at a certain level. The parameters to optimise are included in a vectorm
which represents the mass of each of the part types. The inertia participation of these
masses can be calculated using the inertia participation I of Table 6.1:

f (m) = ITm.

Changing the mass of a part also changes its stiffness. The length of the parts has been
defined in the kinematic optimization and are fixed. The stiffness of parts can however be
modified by changing the cross-section. For the optimisation it is presupposed that the
shape of the cross-section stays the same as the initial geometry, for which the compliance
participation was calculated. It was chosen to use a tubular cross-section for all parts
except for parts np1, np2, np3 and np4 which make the connection between the legs and
the configurable platform. These parts hold all the bearings of the platform and leg
attach points and have a rectangular cross-section. All cross-sections can be scaled with
a scale factor s. The mass of the part scales with a factor s2, so s =

√
m
m0

. The parts
have different stiffness for the different load types. Bending, torsion and compression of
the links can occur and normally bending stiffness and torsion stiffness are lower than
the stiffness under compression. Therefore, it can be assumed that deflections are most
likely to be a result of the limited bending and torsion stiffness.The bending and torsion
stiffness both scale as s4 and therefore it is assumed that when scaling the cross-section
of a part, the stiffness scales with s4 and the compliance with s−4. So when the mass of
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a part is changed, the compliance contribution changes approximately as follows:

C

C0
=
(m0

m

)2
= s−4

By adding up for each sampled posture and load case the compliance contribution, the
total compliance after changing the mass of the parts can be approximated.

The part mass is optimised, such that the inertia participation is as low as possible, while
meeting the two conditions on the compliance i.e. the mean compliance C and the 0.99-
quantile of the compliance C0.99. With n the number of sampled workspace points, p the
sample number and t the part type number, the optimisation is implemented in Matlab
using the function fgoalattain, using a goal of m = 0.

minm f (m)such that
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n
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m > 0

(6.3)

The shape of the cross-section has to be defined manually before they are scaled by the
optimisation procedure. The final goal of the method is however not to find some geometry
with theoretical identical stiffness, but to design parts that can be manufactured and can
be integrated in the rest of the structure. The design adds a lot of practical constraints to
the geometries that can be chosen. Therefore, the initial choice of cross-section is based
on the typical loads a part is expected to deal with. During the detailed design, the
cross-sections can be changed, based on considerations like manufacturability.

6.2.5 Results

For the compliance constraints a mean compliance of C̄ = 1 · 10−4 m and 0.99-quantile of
the compliance C0.99 = 3 · 10−4 m were chosen. The mean compliance value corresponds
to accuracy of kinaesthetic position feeling in the human, which is about 100 μm. More
details on specifications derived from human kinaesthetic properties are presented in
Section 6.3.1 of this chapter. Table 6.2 lists the required radii, bending stiffness and
resulting mass and inertia participation of the different part types. Parts np1, np2, np3
and np4 have a square cross section instead of a tube cross-section. Their rotational inertia
is not computed since those parts are not rotating. The parts that contribute the most
to the inertia participation are the lower limbs and the upper limbs, for almost 60%. The
total inertia participation is 0.22 N, which means that the user will feel average tip forces
at his hand of 0.22 N. Combining this with the earlier found mean acceleration ā = 1.5
m/s2, this is comparable with a mass of 150 g. These values are theoretical/desired since
the mass of bearings, axles and extra features of parts is not yet included. A new resulting
inertia participation, calculated for the detailed design is presented in Section 6.4.

The resulting compliances of the structure in different postures are plot in Figure 6.1.
Clearly, the 0.99-quantile constraint is limiting. The resulting average stiffness of the
structure is 2 · 104 N/m.

Closely related to the stiffness of the parts are the eigenfrequencies of the structure.
The eigenfrequencies were not part of the inertia-stiffness optimisation of the structure
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Parts For single part of each part type Number Total per part type
Length
l

[mm]

Outer
ra-
dius
ro

[mm]

Inner
ra-
dius
ri

[mm]

Bending
stiff-
ness
Iyy/Izz
[105 m4]

Inertia
Iy/Iz
[105 kgm2]

Mass
m

[kg]

of
parts

Mass
m
[kg]

Inertia
parti-
cipa-
tion
[N]

n11,n51 90 6.5 4.4 3.09 2.20 0.032 2 0.064 0.027
n21,n41 90 6.2 4.2 2.61 2.02 0.029 2 0.059 0.029
n31 90 5.4 3.7 1.48 1.51 0.022 1 0.022 0.010
n12,n52 44 3.3 0.0 2.28 0.07 0.004 2 0.008 0.010
n22,n42 44 2.7 0.0 1.00 0.04 0.003 2 0.005 0.008
n32 46 3.5 0.0 2.59 0.09 0.005 1 0.005 0.007
n13,n14,
n53,n54

200 3.6 2.6 0.03 2.20 0.007 4 0.026 0.031

n23,n24,
n43,n44

200 2.7 1.9 0.01 1.19 0.004 4 0.014 0.019

n33,n34 200 4.0 2.8 0.04 2.67 0.008 2 0.016 0.020
n15,n55 44 3.2 0.0 2.06 0.06 0.004 2 0.008 0.011
n25,n45 44 2.7 0.0 1.01 0.04 0.003 2 0.005 0.009
n35 46 3.4 0.0 2.21 0.08 0.004 1 0.004 0.007
np1 46 height=

7.9
width=
6.9

0.77 - 0.007 1 0.007 0.010

np2,np4 11.1 height=
4.9

width=
5.4

1.21 - 0.001 2 0.002 0.003

np3 42 height=
6

width=
5

0.69 - 0.003 1 0.003 0.005

np5,np6 48 4.1 3.2 2.68 0.05 0.003 2 0.005 0.008
np7,np8 30 3.2 2.3 4.50 0.01 0.001 2 0.002 0.004
total - - - - - - 33 0.26 0.22

Table 6.2: Results of the inertia-stiffness optimisation. Same notation is used as in Table
6.1.
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Figure 6.1: Histograms of the compliances for a sample of different postures in the work-
space. For each posture, compliances in six directions are taken into account.
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Figure 6.2: Histograms showing the first eigenfrequencies for workspace sample. Clearly,
the eigenfrequencies are posture dependent.

but they are important for the bandwidth of the system. The frequency content of the
movements the user can make is low, typically up to 10 Hz [6]. The desired actuation
bandwidth is higher, 30 Hz, which has to do with the fact that this is about the maximum
frequency that can be felt kinaesthetically.

For the resulting geometries and stiffness, the eigenfrequencies were analysed, using the
finite element model in Ansys. This was done with a mesh of ten elements per link. As
with almost all properties of the device, also the eigenfrequency depends on the robot
position, For a number of postures in the useful workspace, the eigenfrequencies were
calculated. Figure 6.2 shows histograms of the frequencies of the first eigenmode. The
first eigenfrequencies ranges ranges between 20 and 100 Hz. Due to the non-linear and
not fully predictable stiffness of the bearings, the actual eigenfrequencies may be different,
but it is for certain that the first eigenfrequency can be below 30 Hz. This means that
the feedback to the hand can be distorted.

6.3 Technical Design

6.3.1 Specifications

Component specifications of haptic devices, such as motors, sensors and bearings, may
sometime be tedious to define since ultimately, the device should allow the user to per-
form his task efficiently in a comfortable way. There are different ways to define task
performance and ergonomic. Task performance can be judged based on criteria sush as
completion time, accuracy, average force exerted ect.. or any arbitrary combination of
those criteria. Ergonomics are dependent on the individual and are difficult to measure
objectively. In addition, the relation between the specification at the finger tips and the
specification of the rest of the system is dependent on the position of the robot. The
derivation of the specifications involves the computation of a high number of sampling
points within the workspace and is based on average results and worst-case scenarios
results.

Nevertheless, specifications are important in the detailed design of any robotic system as
they serve as guideline for the many decisions and trade-off involved in a design process. A
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Specification Quantity
Maximum force to the

user finger
7 N

Largest disturbance force 0.3 N
Force feedback bandwidth 30 Hz

Position resolution 0.1 mm
Position precision 1 mm

Table 6.3: List of Specifications at the finger tips interface for the PentaG haptic device

complete teleoperation system has two types of interface with the outside world; the task
environment and the human operator. The haptic device is physically disconnected from
the task environment and interacts virtually with it via a bilateral control. For stability
reasons, this bilateral control cannot perfectly reproduce the environment interactions to
the haptic device and some transparency of the environment is already lost between the
user and environment. The bilateral controller can also be used to enhance the real forces
interaction by amplification, filtering, or augmented force feedback guidance to help the
operator to complete his task. Since the haptic device is not physically connected to the
task, few design specifications will come directly from the task requirements.

On the other hand, the haptic device is physically connected to the human operator
interface. In an impedance control sheme, the role of the haptic device is to record
human operator motions and provide on the human hand force feedback information. If
a haptic device is perfectly adapted to the human motion and perception limits, it makes
no sense to require more from the haptic device, since the human operator will not be
able to actuate or sense this. The specifications are therefore derived from the human
actuation and sensing capabilities.

Table 6.3 shows the list of specifications that have been used for the implementation of the
PentaG haptic device. Comfortable forces have to be at most 15% of the maximum force
the human can exert [70]. Assuming maximum grasping forces of the fingers in the order of
30-50 N, operators can comfortably exert forces of 5-7 N. The resolution of finger forces is
circa 0.3 N [74] and this value is used as the maximum allowed disturbance force between
the finger tips forces and the command input force. The human actuation bandwidth
is around 10 Hz while the bandwidth of perception of kinaesthetic movement is around
30 Hz [31]. Since a haptic device is used both for actuation and perception, the highest
of those two values is used as specification for the system. The accuracy of kinaesthetic
position feeling in the human is about 100 μm for frequencies up to 30 Hz. Therefore
the resolution of position measurement should be 100 μm. Absolute positioning should
be accurate up to the human free air positioning accuracy of 1 mm. The specifications at
the finger tips are summarized in Table 6.3.

6.3.1.1 Specification Transfer

The mechanical transfer between the actuators and the finger tips is highly dependent on
the position of the haptic device. Because of this, it is not possible to derive single spe-
cification numbers for the actuators and sensors based on a unique position. In Chapter
5, a useful workspace was defined within which the human operator is intended to use the
robot. In order to obtain single numerical values for the actuator specifications, a distri-
bution of the propagation of the finger tips specifications to the actuator specifications
was done for a 5 dimensional grid that cover the entire useful workspace of the robot. For
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each robot position, a set of load cases or displacement cases is defined that cover the
5 dimensions of the finger tips in this specific position. From this distribution, actuator
specifications are chosen to respect the specifications at the finger tips for 95% of the
distribution. A statistical approach is needed here due to the extreme large range of dif-
ferent transfer functions between the finger tips and the actuator over the workspace and
all cases. Design requires compromises and trade-off between the different requirements
and a design that would satisfy one of the specifications for 100% of the workspace will
be well over-designed for the vast majority of the workspace and makes the satisfaction
of the other requirements impossible to achieve. Figure 6.3 presents the distribution of
the propagation of the specifications from the finger tips to the actuator-sensor system
for each specification listed in Table 6.3. Also presented are the values corresponding to
the limit of the worst 10%, 5% and 1% of the cases.

The motion range of the actuator and sensor are entirely defined by the inverse kinematics
of Section 4.1.1. A probability range should not be used here because the entire workspace
should be reachable. The motion range of each actuator relatively to the horizontal plane
is −42◦ until 85◦ for the useful workspace.

In order to determine the sensor resolution, the smallest motion-step that a human is
able to detect must also be seen by the sensor system. To determine the entire space in
which the fingertips are able to move without a change in the sensor readout, the entire
space spanned by all combinations of positive and negative actuator angle deviations are
transferred from the actuator angle space to the fingertip space using the inverse kinematic
relations. Note that this assumes small angular deviations. This method of mapping the
corners of a space between coordinate systems can be found in [51]. The largest deviation
in fingertip space determines the scale-factor needed to define the smallest detectable
sensor step. Using a maximum fingertip displacement of 0.1 mm the sensor resolution
should be 6.4 · 10−5 rad for the 95% interval.

Based on the maximum force of 7 N a user should be able to exert to the device, 34 load-
cases for each grid position on the fingertips of the device are defined and the resulting
actuator torques are computed. This results for the 95% interval in an actuator torque of
2.3 Nm. Since static disturbance forces may be present at all actuators and sensor at the
same time, the worst case is determined by evaluating all combinations of positive and
negative unit disturbance torques at the actuator side. The factor needed to scale down
the worst case resulting fingertip force to 0.2 N determines the allowed disturbance. For
the 95% interval this is 4.8 · 10−3 Nm. The force on the user due to viscous damping
in the actuator equals F friction = cactuatorJ

−TJ−1χ̇. To determine the end-effector
velocities that are applied, it is assumed that disturbing actuator forces due to grasping
and end-effector rotation velocities (ρ̇ and θ̇) are negligible compared to the actuator
motion due to end-effector motion (ẋ, ẏ and ż). Therefore the typical user speed of
vm = 0.19m/s is applied in equally distributed directions in Cartesian space using a unity
friction coefficient. The scaling factor between the magnitude of the fingertip forces and
the maximum allowed budget of 0.1 N then determines the allowed friction coefficient.
This is 1.44 · 10−3 Nm

rad/s for the 95% interval.

In a way comparable to the dynamic friction, an equation for the force due to inertia
of the actuator can be derived. There is however an extra term due to the dependency
of the Jacobian on χ: F = Iactuator

(
J−TJ−1χ̈+ J−T J̇−1χ̇

)
. can be derived: F =

IactuatorJ
−TJ−1χ̈. This can be evaluated in exactly the same was as the dynamic friction,

only using a maximum acceleration of am = 1.5m/s2. The results for the 95% interval is
1.87 · 10−4 kgm2.
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Figure 6.3: Distribution of the finger tip specifications over the useful workspace and the
load cases to the actuator-sensor system
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6.3.2 Actuators

The required function of the actuation system is to supply a well defined torque to the
lower limb of the structure, such that the desired force is exerted to the operator. When
observing commercially available haptic interfaces based on parallel mechanisms, such as
for example the Omega from Force Dimension, the actuation system contains mostly a
conventional DC-motor and a transmission system. However, any transmission system
will magnify the disturbance forces produced by the motor inertia and friction. It can be
concluded that to achieve minimal disturbance forces, a small transmission ratio must be
used. In the extreme case this would mean application of a very large motor and a very
small transmission ratio. This is however not possible due to size and cost limitations
on the motor. Also every type of transmission will introduce unwanted forces, especially
when large forces have to be passed through. Therefore using a motor with a large torque
output that does not require a transmission and fits within the specified dimensions would
be recommended. By using a brush-less type of motor the allowed output torques can be
higher and the parasitic forces lower than with a brushed type motor. By using a direct
drive approach for the motors, the disturbance forces created by the motor inertia and
friction are small enough to be orders of magnitude lower than the disturbance forces
created by the optimized inertia of the robot structure defined in Section 6.2. From a
number of available motor manufacturers a DC brush-less motor type has been selected.
For the specified maximum torque the stall torque can be used because this torque will
only occur on a limited number of locations when the maximum force is requested. The
Faulhaber 4490 048BS met the specifications in terms of torque.

6.3.3 Sensors

The sensors measure the angle between the lower limb of each leg and the base-plate. The
final concept is the optical encoder, combined with a small transmission. The transmission
is introduced to limit the needed encoder resolution so that the budget spent on encoders
remains in balance with the cost of the rest of the prototype. The sensor transmission
will be of the cable type. This will provide a play-free transmission that will prevent
slip. Because the inertia and dynamic friction of encoders is much more limited, the
disturbance forces created by the encoder transmission is expected to be less critical.

Using the direct drive motor concept and the rotary encoder with wire transmission, the
detailed design of the actuation and sensing system can be made. Orientation on available
rotary encoders that remain within the specifications, led to the conclusion that the upper
limit for the encoder resolution is around 5000 pulses per revolution. To minimise the
required transmission, the quad-counts of the encoder will be used, resulting in an effective
resolution of 2π

5000·4 = 3.1 · 10−4 rad. Dividing by the required resolution gives an encoder
transmission of 3.1·10−4

6.4·10−5 = 4.9. Using a small margin the transmission ratio is defined at
5. The barrel at the encoder around which the wire is wound has a spiralled groove with
a radius larger than the wire to provide smooth winding of the wire.

The selected Scancon 2MCA encoder has a 5000 pulses or 10000 steps per revolution
resolution. Because of the transmission that has been used, the encoder should have
effectively 20000 positions on a single revolution. The effective inertia of this encoder at
the lower limb, including the effect of the transmission, is small compared to the rest of
the system. Figure 6.4 shows a picture of a complete actuation-sensor system for a single
leg.



148 Chapter 6. Prototype Design and Implementation

Figure 6.4: Implementation of the actuator-sensor system. The lower part of the robot
leg is fixed to the motor shaft with screws and a motor flange, so that the leg is still
detachable from the motor is case of maintenance or reparation of the robot. Also visible
are the motor holder, the encoder holder, the wire bus, and the base plate.



6.3. Technical Design 149

6.3.4 Bearings

Two possibilities for the revolute joints are slider bearings and rolling bearings. Rolling
bearings consists of two rings, with rolling elements in between. Slider bearings consist
of a bush with a thin inner layer of a material with a low friction coefficient like Teflon or
polyacetal, such that a metal axle can run with relatively low friction. Rolling bearings
will normally show less friction then slider bearings. There are all kinds of roller bearings,
but an easy to use and often applied one is the deep groove ball bearing. A slider bearing
does not constrain in axial direction, so additional bearings are needed for handling axial
force. Combined with the fact that slider bearings have higher friction, deep groove ball
bearings were chosen.

All bearings have some play. Play is unwanted in the mechanism, as it causes losses
in the mechanism during oscillations and consequently results in less transparent force
feedback. Play was eliminated by pre-loading the bearings, such that all bearings are
always pushed to one side and always keep contact. The pre-load force has to be higher
than the expected maximum load of the bearing. Still a deep groove ball bearing has a
problem with play and its inability to take radial moments. A solution to both problems
is to use a pair of bearings at each hinge. Radial moments at the hinge will be resolved
into two force components that work in radial force, exactly the type of load a deep groove
bearing is designed for.

There are different possibilities for the mounting of the bearings and to constraint them
axially; by using circlips inside the hole or other stops to be put in afterwards or by gluing.
The first alternative makes the parts more laborious to fabricate, as the part needs extra
features like internal grooves. The pre-load should be applied either at the inner ring or
the outer ring, but in both cases a spring and some suspension of the spring is needed. Also
using an axle with thread was considered, to remove the play by screwing a nut instead
of a spring, but in that case the fit between axle and bearing is bad and the axial loading
inexact and possibly high. Gluing however does not have these disadvantages. During
the curing of the glue either inner or outer rings are lightly pressed towards each other,
such that the play is removed. The axial force applied during gluing can be precisely
controlled. The hole in neither the part nor the axle need extra features. Because of
these advantages, gluing was chosen. The main disadvantage of gluing the bearing is that
disassembly is not so easy. In case the robot needs some maintenance or reparation, the
glue has to be heated such that it degenerates in order to take a joint apart.

6.3.5 Mechanical Parts Design

6.3.5.1 Lower limb

Figure 6.5 shows the final design of the lower limb assembly. The lower limb is a complex
part as it is has to connect the mechanism to the motors and sensors. The PentaG has
no transmission between lower limb and motor, but the sensor needs a transmission of
approximately four times by means of a cable transmission. In the figure, the front plate
is removed to show the inside of the part, but normally the profile is closed by a plate of
the same shape. The part is directly connected to the motor axle through the big hole at
the left. At the right, a tube is inserted, in which the bearings are placed, such that the
bearings can be placed at the desired mutual distance.
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Figure 6.5: Lower limb pictures. In the upper picture the inner structure is clearly visible.
In the lower picture also the cover plate is shown. The cover plate and the lower limb are
glued together.

The inertia-stiffness optimisation was done for a rigid beam with tubular cross-section
for the lower limbs. However, it was chosen instead to use a variable cross-section with a
cover plate as shown in Figure 6.5. The required bending stiffness of the lower limbs is
circa kF = 3.6 · 105 N/m. The final lower limb was tested using a FEM and has a stiffness
of kFy = 4.0 ·105 N/m. The actual stiffness is higher than the calculated required stiffness,
with a lower mass than a tubular cross-section. The thickness of the left out flat surface
at the side is 1 mm, the thickness of the walls 2 mm. Making them smaller increases the
chance of damage during milling.

6.3.5.2 Parallelogram units

The PentaG robot has five parallelogram units. Figure 6.6 a) shows a drawing of such a
parallelogram. It consists of two equal horizontal rods ni2 and ni5 and two equal upper
limbs ni3 and ni4.

The horizontal rods are made out of one part. It consists of a single axle with a diameter
of 5 mm, with two small ridges for the bearings to position the lower limb and platform
bearings against. The far ends are milled on both sides, to make a flat contact with the
small rings horizontal rod and the bearings of the upper limb fork. The upper limbs are
for the greater part made out of carbon composite material. This material consists from
stiff carbon fibres hold together by epoxy resin. The material is light and has a high
stiffness to weight ratio. At the hinges, bearings or pins should be connected to the part,
which is hard to realise in the carbon composite. Therefore, inserts are needed that can
be connected to the carbon profile. These inserts can be made from aluminium and a
drawing is shown of one of them is shown in Figure 6.6 b).

6.3.5.3 Configurable Platform

In the configurable platform, platform link nP1 is connected to two legs and platform
links nP2, nP3 and nP4 are each connected to a single leg. Links nP5, nP6, nP7 and nP8

connected the previous links together to close the configurable platform. In the useful
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Figure 6.6: Drawing of the Parallelogram Units

Figure 6.7: Drawing of the platform.
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Figure 6.8: Drawings of a) the nP1 link, b) the nP2 and nP3 links, and c) the the nP3

link with bearings.

workspace defined in Section 5.5, the joints of the configurable platform must covert a
range of about 50 degrees. In some positions, the links of the configurable platform cross
the upper horizontal rods of the limbs. The consequence is that the nP5, nP6, nP7 and
nP8 parts have to lie higher than the upper horizontal rods in order to avoid collision.

The nP1 link is drawn as part of the platform in Figure 6.7. This part is a complex,
holding four bearing pairs. To make the part lighter three extra holes are bored. These
holes could be used to attach the finger tips and possibly force sensors. To make the part
as small as possible, the vertical holes of the platform joint and the horizontal hole of the
leg joint intersect each other, which is clearly visible in the semi-transparent drawing of
Figure 6.8 a). Of course the axles do not intersect.

The nP2 and nP4 parts (see Figure 6.8 b)) are comparable to the A1-part, but are
connected to a single leg. Therefore, the part can be relatively small. The wall thickness
is however nowhere smaller than 1 mm, as parts that have to be milled could otherwise
break due to the high machining forces.

The nP3 part is in fact comparable to the nP2 and nP4 parts, but the connections are
further apart and the part is consequently bigger. As the part is indeed longer, a problem
of possible collision between the bottom of the nP3 part and the connected upper limbs
appears. The available space is tight and therefore on both sides a vertical chamfer is
applied, see Figure 6.8 c). This chamfer also prevents the part from collision with the
upper limbs.

The nP5, nP6, nP7 and nP8 parts hold the pins that connect them to the nP1, nP2, nP3

and nP4 and therefore don’t have bearings. The base material is standard aluminium
6060 tube with a wall thickness 1.5 mm. It is milled to get a small wall thickness of 1
mm, while the far ends are left thicker, for more strength at the contact points with the
axles. Two types are shown in Figure 6.9.

6.3.5.4 Comparison between the desired and the final geometry

The optimisation of Section 6.2 resulted in an ideal geometry with a certain inertia parti-
cipation. During the detailed design, sometimes it was necessary to deviate from the ideal
geometry. This concern especially the np1, np2, np3 and np4 links which are small and are
holding 6 to 8 bearings each. Now the geometry of all parts is determined, it is interesting
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Figure 6.9: a) nP5 and nP7 parts b) nP6 and nP8 parts

to evaluate the final properties of the structure. The inertia participation of the final geo-
metry was computed using the same method as in Section 6.2. Meant by additional parts
are the parts that were not taken into consideration in the inertia-stiffness optimisation,
namely the bearings and the axles. The total inertia participation of the final geometry
is 0.31 N, whereas that of the geometry used in the inertia-stiffness optimisation is 0.22
N. The inertia participation is thus increased by 33% during the detailed design.

6.3.6 Hardware Control

A flexible and easily programmable controller system is required to experiment with dif-
ferent controller structures. Therefore the system runs on standard PC hardware using a
dedicated controller card. The real-time operating system xPC Target runs the controller
and maintains the connection to the Matlab environment. Different considered solutions
for the interface card are: separate analogue, digital and encoder cards and all-in-one
cards. Using multiple single purpose cards appeared to be a relatively expensive solution
and would require a large PC system as well. The performance of the selected Quanser
Q8 all-in-one card appeared to be sufficient and the costs lower than when using separ-
ate cards. The PC that will be running the system should have sufficient space for the
interface card, an xPC Target supported network card and a recent processor. The TU
Delft standard system: Dell Optiplex 780 is chosen.

6.3.7 Software Control

Figure 6.10 shows a schematic representation of the robot control structure. The control
implemented is a haptic impedance control where the position of the robot is recorded
and sent to a slave robot or virtual environment and the iteration forces are fed back to
the robot. The input part reads the encoder and light barrier signals and computes the
absolute angles q of the lower limbs.

As mentioned in the Section 4.1.2, it was not possible to obtain an analytical solution to
the direct position kinematic (DPK) problem and therefore a iterative procedure that was
fast enough to be used in real-time was developed. Using this procedure, the end-effector
position χ is computed and sent to a virtual environment or to a remote slave device.
The end-effector position is also used to compute the Jacobian matrix J for the current
position. This matrix is used to convert the force feedback signals received from the slave
side into desired motor torques. The forces due to gravity do disturbs the feedback forces
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Figure 6.10: Schematic Overview of the Software Structure

Table 6.4: Mechanical system properties of the actuator-sensor system. Of all properties
except the maximum force the extreme values excluding the 5% worst cases are given.
For the maximum force the 10% worst cases are omitted.

Property Value at
Lower limb Fingertip

(workspace
extreme)

Fingertip
(workspace
average)

Inertia 1.7 · 10−5 kgm2 9.1 · 10−3 N 5.1 · 10−3 N
Dynamic friction 9.55 · 10−6 Nm/rad/s 6.6 · 10−4 N 3.7 · 10−4 N
Static friction 4.65 · 10−2 Nm 0.2 N 0.14 N
Measurement
resolution

6.28 · 10−5 rad 0.1 mm 2.7 · 10−2 mm

Maximum force 1.7 Nm 6.3 N 10 N

and should be compensated as much as possible. For this purpose, a Jacobian matrix was
developed to compute the transmission of the gravity force from the centre of mass of
each link into the actuator torque. All requested torques are added and the corresponding
output voltage in computed. Maximum absolute values for the output voltage are defined
to prevent that high torques that could damage the device or harm the operator.

6.3.8 Properties of the actuator-sensor systems

After evaluating the design choices an overview of the performance of the planned system
is made and given in Table 6.4. Note that the mentioned static friction is relatively high,
but is must be noted that this is a worst case value based on the maximum expected
encoder friction, which is the largest contribution to this value. Additionally the struc-
ture introduces on average 0.31 N at the fingertips of disturbing forces and an average
deformation of 0.35 mm for the velocity, accelerations and load cases over the useful
workspace.

6.4 Implementation and Testing

The aluminium parts and the carbon tubes of the configurable platform and the legs were
assembled together by fixing the various deep-groove bearings in place. The final structure
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Figure 6.11: Final Assembly of the PentaG robot

was mounted on the 5 motors located on the base. Figure 6.11 shows a picture of the final
assembly, finger tips not included. In order to make the connection between the robot and
the hardware control, several connection cables must be constructed and soldered. Wire
connections were needed between the sensors and the control card, between the amplifiers
and the control card and between the motors and the amplifiers.

In order to validate the position kinematic relations described in Chapter 4 and to cal-
ibrate the actual robot, external measurements of the position of the end-effectors have
been performed and than compared to the encoder values predicted by the kinematic
relations. In this setup, an external measurement was done using a vertical linear stage,
with a precision of 50 µm. The linear stage is rigidly connected with bolts to a common
base with the PentaG prototype. A plate with holes is fixed to the stage and the two
end-effectors are bolted to the plate for various position, rotation and grasping values.
The measurment setup is shown on Figure 6.12.

In the test, 30 different measurements are carried out on three height layers: 180mm,
205mm and 250mm. In each layer, 10 postures are measured, with different positions,
rotation angles and grasping distances, chosen to cover a representative sampling of the
entire useful workspace described in Chapter 5. The results were first used to calibrate
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some of the lengths of the robot links. Since each leg must be calibrated individually,
the number of calibration parameters is 3X5 parameters for the legs and 5 parameters
for the platform. The calibration method used is standard to robot calibration and
uses a identification Jacobian matrix that describes the variations of the measurements
as function of the varation of the kinematic parameters. This identification matrix is
used in a quasi-Newton method algorythm to find the set of kinematic parameters that
minimises the errors on the measurments. Most of the links have been manufactured
to a tolerance of 0.05 mm which is precise enough to have very little influence on the
kinematic. However, the parallelogram units were slightly longer than predicted due to
the gluing imprecision between the carbon tube and the limb forks. Actual lengths of the
parallelogram units were typically between 201 and 203 mm instead of the prescribed 200
mm. This was first revealed by the calibration procedure and then measured on the robot.
Computation of the robot dexterity and workspace for these new parallelogram lengths
show no significant influence on the dexterity of the configurable platform and a small
increase in the size of the workspace. It was chosen to keep the same dimension for the
useful workspace defined in Chapter 5. The correction on the other kinematic parameters
was in general smaller than 0.05 mm. After these corrections in the kinematic model, the
maximal difference between the kinematic model and the external measurement on the
motor position, for the 30 measured position, was around 0.001 rad as shown on Figure
6.13. It is interesting to notice that leg 1, 3 and 5 present lower errors in general than leg
2 and 4. This is probably due to the fact that leg 1, 3 and 5 are directly connected to one
of the end-effector while more joints and links separate leg 2 and 4 from the end-effectors,
resulting in more kinematic uncertainties from play and tolorances. It should also be
noted that those errors are in average about 20 times higher than the resolution of the
encodor system.

Those values of course combine the uncertainties of both the robot and the external
measurement setup. Since the linear stage is solidly bolted to the rigid base, that it has a
high precision in translation, and since the position of the holes in the platform is known
with a high precision, it is expected that the relative position certainty of the external
measurement setup is much higher than the PentaG robot, as it should be. The initial
distance between the reference frame of the robot and the reference frame of the external
measurement setup was also obtain with a calibration procedure.

The total mass of the robot moving parts, including all bearings, hinges and axles but
excluding the shafts of the motors and encoders located on the base is given in Table
6.5. The total mass is less than half kilo and thanks to the inertia-stiffness optimization,
most of the mass is located near the motors, resulting in low perceived inertia at the
end-effectors.

The stiffness if highly dependent on the position of the robot in the 5 DOF workspace. An
experimental evaluation of stiffness performance can consist in measuring the compliant
displacements due to a known external wrench. Nevertheless, the compliant displacements
are composed of 3 linear and 3 angular components for each of the two end-effectors.
In particular, the measurement of small angular compliant displacements can be very
complex to achieve through commercially available sensors. The structural stiffness of
a robotic system is closely related with the dynamic behaviour of the robotic system.
Instead to determining set of stiffness that are only valid for a particular position and
particular loads, it is interesting to study some limits of the performances that involve
displacement over the complete useful workspace.

A simple PD position control was implemented using control gains Kp = 100 and Kd = 5



6.4. Implementation and Testing 157

Figure 6.12: External end-effector measurement setup.

Figure 6.13: Distribution of the errors between the measured values and the values pre-
dicted by the kinematic model for 30 positions inside the useful workspace, after calibra-
tion.
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Total mass and inertia contribution of the moving parts of the final design
Mass Total Inertia Contribution

Configurable Platform 69.3 grams 0.100 N
5 Parallelogram Units 94.6 grams 0.117 N

5 Lowers Limbs 270.4 grams 0.094 N
5 actuator-sensor systems - 0.015 N

Total 434.3 grams 0.326 N

Table 6.5: Total masses and inertia contribution at the finger tips of all the moving
parts of the final design of the PentaG Prototype, including bearings, pins, inserts but
excluding the motors and encoder shafts. Thanks to direct drive actuation, the total
inertia contribution of the 5 motor-encodor systems is only 0.015 N, which brings the
average inertia felt at the finger tips at 0.326 N.

Command motion
covering the

useful workspace

maximal
frequency f

maximal smooth
acceleration

of the finger tips
z = 0.2 + 0.06sin (2πft) m 3.7 Hz 32.4m/s2

y = 0.05sin(2πft) m
z = 0.2 m
ρ = 0.04 m

3.5 Hz 24.1m/s2

x = 0.05sin(2πft) m
z = 0.2 m
ρ = 0.04 m

3.3 Hz 21.5m/s2

θ = 0.7sin(2πft) rad
z = 0.2 m
ρ = 0.04 m

2.4 Hz 12.7m/s2

ρ = 0.04 + 0.04sin(2πft) m
z = 0.2 m

3 Hz 28.4m/s2

Table 6.6: Maximal accelerations reached for a sinusoidal motion covering the entire useful
workspace in each decoupled DOF of the PentaG prototype

in each DOF. The derivative of the error was computed numerically at a sampling time of
1 KHz. A command motion for each translational DOF was implemented as a sinusoidal
motion, with an amplitude that cover the complete range of the useful workspace and
the frequency of the motion was increased at each tests. The idea was to evaluate the
maximum accelerations possible while keeping the tracking error below a certain threshold
level, in this case 5 × 10−2 rad for all actuators. These results of course depend on the
controller gains and the saturation voltage for the motors but also give a good idea of the
structural stiffness of the robot over the complete useful workspace.

The maximum frequency reached for a sinusoidal motion that was continuously stable
during that test was in the z direction at fz = 3.7 Hz, which corresponds to an acceleration
of 0.06 · (2π · 3.7)

2
= 32.4m/s2 or around 3 G-forces which occur at the boundaries of the

useful workspace. Other sinusoidal command motions with amplitude corresponding to
the limits of the useful workspace were done in the horizontal plane at the middle height
in the x and y direction. In every test, it is always the stability of the rotational DOF of
the configurable platform that cause problems during high accelerations. An inspection
of the dexterity of the robot shows that the lowest dexterity values are indeed for the
rotational DOF and are located near the boundaries of the useful workspace.
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6.5 Conclusion

In this chapter, the various design steps from an optimized kinematic model of the PentaG
mechanism to the actual fabrication, assembly and realization of a complete haptic robot
based on this architecture was presented. Some of the specific techniques developed
during the design process are novel and can be adapted to the design of general parallel
robots, regardless of the application or the presence of a configurable platform. Two
of these general contributions are the inertia-stiffness optimization and the propagation
of the specifications from the end-effector to the rest of the system by sampling of the
workspace. The application of these two techniques is illustrated in the design of the
haptic PentaG robot. The result is a haptic device with grasping capabilities that has a
remarkably low inertia while having sufficient stiffness to render proper force feedback.





Chapter 7

Conclusions

7.1 Contribution of this thesis

The following contributions can be drawn from this thesis:

• A method based on screw theory to analytically calculate the local mobility and
the overconstraints of general pure parallel mechanisms was introduced. In both
cases, the solutions are the set of all finite screws in a set of screw systems that
satisfy 6 homogeneous linear equations. It was already known that this solution, in
the variable space, corresponds to the kernel of a matrix where each basis screw is
represented by a column. It was also known that the dimension of this solution is
equal to the difference between the sum of the dimensions of all the screw systems
and the dimension of the screw systems sum. For each screw system included in
the system of six homogeneous linear equations, the procedure creates two vector
subspaces, namely a restricted screw system and a complement unrestricted screw
systems. The restricted screw systems obtained represent either local mobility or
overconstraints and their unique projection into the independent unrestricted screw
systems represent their distribution in the whole pure parallel mechanism. The
method only uses the vector space operations of intersections, complementary sub-
spaces, and parallel projections. These operations are often well known for usual
screw systems, which facilitate the use of configuration-free analytical vector calcu-
lation which are valid for the full-cycle workspace instead of configuration-dependent
numerical computation which are only valid locally. In addition, analytical vector
calculation can be used to detect geometric conditions for serial singularities and
constraint singularities.

• The concept of series-parallel mechanism was defined based on the properties of
their associated graph. A variety of already known classes of mechanisms, such
as Delta robots and hybrid mechanisms, fall into this more general category of
mechanism and their different layers of serial and parallel connections have been
presented in this new general framework using the concept of graph reduction. For
each class, the standard method of mobility and overconstraints analysis can be
extended using this framework as long as the mechanism is series-parallel. General
recursive formulas and methods have then been presented that are applicable to any
series-parallel mechanism.

161
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• It was seen that the series-parallel reduction of a parallel mechanism with config-
urable platform (PMCP), as defined in this thesis, always results in a wheel graph.
Since wheel graphs fall into the category of non series-parallel graphs, the mobil-
ity and over-constraint analysis of PMCPs cannot be computed with the extended
standard method for series-parallel mechanisms. Wheel graphs have the particular
property of being self-dual and unlike most of other classes of mechanisms, PMCPs
have a self dual topology. This is due to the fact that pure parallel mechanisms are
dual to a single closed loop and vice-versa. Combining a single closed-loop and a
parallel mechanism together results in a self dual mechanism. The particular self
dual topology of PMCPs can be exploited in their analysis. Any general method
developed for calculating the mobility of PMCPs can be reused directly to calculate
their overconstraints and vice-versa.

• A general method was proposed to perform the analysis of the mobility of PMCPs.
One key aspect of the new proposed method is based on the concept of restricted
and unrestricted screw systems of the legs. In the mobility analysis of PMCPs,
the restricted screw system between two legs corresponds to the mobility of the
legs relatively to the base when they are connected together with a rigid platform.
The unrestricted screw system corresponds to their relative mobility when they
are not connected. Both the restricted and unrestricted screw systems represent
independent type of mobility. By using an appropriated change of variables in
a matrix representation, the constraints imposed by the configurable platform on
the mobility of the legs is calculated. The process is repeated for each platform
connection until an analytical matrix representation of the mobility of each leg as
function of the global DOF of the mechanism is finally obtained.

• The general overconstraint analysis method of PMCPs was introduced based on the
self-dual topology of those mechanisms. Since the homogenous conditions imposed
by the closed-loops on the joint velocities is analogue to the homogeneous condition
imposed on the rigid links by the internal stresses due to the over-constraints, and
since wheel graph are self-dual, the method can also be applied in a dual way to the
analysis of the over-constraints of the mechanism. The input for the over-constraints
analysis method is the dual graph of the reciprocal screw systems of the input of
the mobility analysis method. Overconstraint analysis is useful to determine the
manufacturing tolerances that allow the assembly of the mechanism. Fundamentals
of mobility and over-constraints analysis of PMCPs is an essential aspect in the
future development of a broader type synthesis method of mechanism that includes
PMCPs.

• The architecture of the PentaG robot, a 5 DOF parallel robot with configurable
platform (PRCP) that generates 3T1R in addition to grasping capabilities was in-
troduced. It is the first operational robot that offers grasping capabilities from a
configurable platform while all the motors are located on the base. This concept
offers in principle a higher structural stiffness than conventional parallel robot with
grasping actuator attached to a rigid platform.

• The inverse position kinematics and the inverse instantaneous velocity of the PentaG
robot were presented. In both cases, the problem must be divided into two sub-
problems where the kinematics of the platform is calculated before the kinematics
of the legs. This two step method can easily be generalized to other PRCPs. It
follows that the standard method for the static analysis of pure parallel robots must



7.2. Some Remarks 163

also be modified in the case of PRCPs. The static analysis also required two step
in which the static of the legs is calculated before the statics of the configurable
platform.

• Serial singularity conditions of the PentaG robot were derived and a new type
of serial singularity, specific to PRCPs was described. In addition to the serial
singularities that can occur in the legs of PRCPs, the configurable platform can
also present serial platform singularities that are not related to the configuration of
the legs. Serial singularities represent boundaries of the various working modes of
a robot and the 128 working modes of the PentaG robot were described, including
the working mode generated by the presence of serial platform singularities.

• Parallel singularities occur in PRCPs when the configurable platform can instantly
move in such a way that it produces at the same time on every leg attach point either
no movement or a movement that generates no motion of the leg actuators. In the
case of the PentaG robot, those legs attach point movements correspond to a motion
in a direction perpendicular to the direction of the parallelogram units of the legs.
Two distinct parallel singularities were found inside the workspace of the PentaG
robot. Each of them forms a 4-dimensional hypersurface in the 5-dimensional end-
effectors space.

• A novel static balancing method was proposed that reduces the number of springs
and additional links needed to achieve perfect balancing of translational parallel
robot. The method is based on the fact that for those robots, the platform is
already constrained in orientation by the kinematic of the robot and can be used as
a fixed attach point for springs that balance the part of the legs near the platform.
The method can be applied to any translational parallel robot with or without
configurable platform including the Delta robot and the PentaG robot.

• A general method to calculate the maximal number of independent kinematic para-
meters, which was based on the Denavit-Hartenburg convention, was proposed and
can be used for any closed-loop mechanism. For each independent loop that is closed
in a general mechanism, 6 parameters which represent either joint positions or geo-
metric condition between joint axes become dependent and the proposed notation
is based on this principle.

• A novel inertia-stiffness optimisation method was proposed which is independent
of the kinematic of the robot. By linking the stiffness and inertia contribution of
each link of the robot with the size of the cross-section of the link, it is possible
to improve the structural stiffness of the robot by distributing most of the inertia
near the base of the structure while keeping an acceptable stiffness. The method is
novel and applicable to any parallel robot and has the interesting advantage of not
affecting the kinematic parameters of the robot, which means that this optimization
method can be performed on a later stage of the design process where the kinematic
parameters are already fixed.

7.2 Some Remarks

• As seen during the kinematic optimisation of the PentaG robot, symmetry in the
design is a highly desirable feature that greatly reduces the complexity of the kin-
ematic optimisation problem. It is also desirable because it reduces the complexity
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of the performance analysis and generally offers more homogeneous performances
throughout the workspace.

• In a haptic device based on parallel robot architecture, the useful workspace of the
device should be limited to a centered singularity-free subregion of the complete
workspace where the operator can move freely. The useful workspace should be
defined as a simple shape that can easily be recognised by the operator.

• Despite their inherent disadvantages, such as the lack of certainty to find a global
optimum and the lack of constant optimisation response time, Genetic Algorithms
are powerful to quickly find good solutions to complex optimisation problems with
a large number of parameters and discontinuous and sensitive objective function.
They should be seriously considered when traditional optimisation approaches fail.

• Due to the extreme large range of different transfer functions over the workspace
of parallel robots, a statistical approach of the distribution of the propagation of
the specifications from the end-effector to the actuators-sensors system is useful to
prevent over-design of the hardware control system for one particular specification
that would make the satisfaction of the other specifications difficult to achieve.

• The main advantage of PRCPs is that they combine motions and grasping cap-
abilities into a structure hat provides an inherent high structural stiffness. Two
applications that can benefit from this new class of architecture are high-speed
pick-and-place robots and haptic devices. In both applications, addition of grasp-
ing capabilities can be beneficial for some tasks and a high mechanical structural
stiffness improves the performance of the device given a certain hardware and soft-
ware control system.
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Summary

This thesis explores the fundamentals of a new class of parallel mechanisms called parallel
mechanisms with configurable platforms as well as the design and analysis of parallel
robots that are based on those mechanisms. Pure parallel robots are formed by two
rigid links, the base and the end-effector, connected in parallel by independent serial
chains, called legs. The novel concept behind parallel robots with configurable platforms
is that the rigid (non-configurable) end-effector is replaced by a closed-loop chain (the
configurable platform). Some of the links of this closed-loop chain are attached to the
legs so its configuration can be fully controlled from the motors located on the base.
The use of a closed-loop chain instead of a rigid end-effector allows the robot to interact
with the environment from multiple contact points on the platform. This results in a
robot that can combine motion and grasping capabilities into a structure that provides
an inherent high structural stiffness. All the actuators are grounded on the base requiring
no additional motor at the end-effector location to provide the grasping. High-speed pick-
and-place robots and haptic interfaces are examples of devices that can benefit from this
new type of architecture. In both applications, the addition of grasping capabilities is
needed for some tasks and a high mechanical structural stiffness is desirable to improve
the performance of the device given a certain hardware and software control system.

This thesis is structured into two distinct parts. The first part explores the fundamentals
of the topology of parallel mechanisms with configurable platform (PMCPs) and proposes
general methods to obtain an analytical vector representation of the distribution of their
mobility and overconstraints via Screw Theory and Graph Theory. A motivation for this
analysis is that a better understanding of the fundamentals of PMCPs will help robot
designers to consider them as a valid option in their choices of robot architectures. Also,
this analysis constitutes also an essential aspect in a future development of a broader
type synthesis method that includes those mechanisms. The second part focuses on the
general input-output relations of parallel robots with configurable platforms (PRCPs)
and presents the design, optimisation and implementation for haptic application of the
PentaG robot, a novel 5 DOF parallel robot that includes a 2 DOF configurable platform.
The motivations for the design and implementation of the PentaG prototype are to show
the feasibility of PRCPs that use the configurable platform as a grasping device and to
see to what extent the design principles and analysis tools that are generally used in the
study and implementation of pure parallel robots can be applied or must be modified in
the design and analysis of PRCPs.

First, a state of the art method for the mobility analysis of overconstrained pure parallel
mechanisms is presented. Mechanisms that do not satisfy the Chebichev criterion of mo-
bility are nowadays generally called overconstrained mechanisms because their constraint
equations are not full rank. Mobility and overconstraints of mechanisms are intimately
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linked since each overconstraint creates an extra mobility in regard of the Chebichev cri-
terion. The use of numerical values to compute the rank of these equations is sensitive to
round-off errors and the solutions obtained from numerical values for the distribution of
the mobility and overconstraints are only valid for a particular position of the mechanism.
The concept of restricted screw systems is then introduced to analytically calculate both
the local mobility and overconstraints distribution of pure parallel mechanisms using vec-
tor space operations of intersections, complementary subspaces, and parallel projections
on screw systems.

A topological analysis of mechanisms that are not purely parallel, such as Hybrid and
Delta mechanisms, is then presented via Graph Theory. Current existing methods for the
mobility and overconstraint analysis of mechanisms that are not purely parallel but have a
series-parallel graph are unified with a graph reduction analysis of their topologies. Their
several layers of local mobilities and overconstraints are described and recursive formulas
are derived for the general case. It is seen that the upper topological layer of PMCPs is
always represented by a wheel graph, which is a non series-parallel graph. A method based
on a matrix representation of the mobility of their legs and the concept of restricted screw
systems is used to obtain an analytical distribution of their global mobility. An important
self-dual property of their topology, that is particular to PMCPs, is then revealed and is
exploited to extend the method used for their mobility analysis to their overconstraint
analysis. Two mechanisms, a 4-RRR with a 8R configurable platform mechanism and the
PentaG mechanism, are used to illustrate the method and an analytical representation of
the distribution of their global mobilities and overconstraints is presented.

The second part of this thesis starts with the introduction of the PentaG robot and
its kinematic analysis. Unlike classical parallel robots, the inverse position and velocity
kinematic analysis of PRCPs must be performed in a two stages method where the kin-
ematics of the platform is calculated before the kinematics of the legs. Serial singular
configurations are defined analytically and the working modes of the PentaG robot are
enumerated. Parallel singular configurations are obtained numerically. New types of serial
and parallel singular configurations related to the platform and particular to PRCPs are
then described. In addition, a novel static balancing method that reduces the number
of springs and additional links needed to achieve perfect static balancing of translational
parallel robots with or without configurable platforms is presented.

A geometrical optimisation of the PentaG robot for use as a haptic device is then per-
formed. The concept of the haptic useful workspace is presented and the robot is optimised
in order to maximise its compactness relatively to the size of the useful workspace. Several
techniques are shown to reduce the number of kinematic parameters to a number that is
manageable and an efficient algorithm is developed to reduce the computation time of the
objective function. Due to the discontinuities and local optima of the objective function,
Genetic Algorithms are used for the search for a optimal solution.

Finally, the detailed design and implementation of a prototype of the PentaG robot for
haptic application is presented. The kinematic parameters obtained from the optimisation
process are used for this prototype and a new method to optimise the structural stiffness
of the robot without modifying its kinematic parameters is presented. The method links
the stiffness and inertia contribution of each link of the robot to its cross-sectional area
and improves the structural stiffness of the robot by distributing most of the inertia
near the base of the structure while keeping an acceptable stiffness. Specifications are
defined at the fingertips of the robot based on human ergonomics and the propagation of
those specifications to the design of the motor-sensor system is done using a statistical
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distribution over the useful workspace. The implementation of the final design is presented
and both simulations and experiments are used to show the validity of the final prototype
and new design methods.





Samenvatting

Deze thesis verkent de beginselen van een nieuwe klasse parallelle mechanismen genaamd
‘parallelle mechanismen met configureerbare platformen’ alsmede het ontwerp en de ana-
lyse van robots die gebaseerd zijn op deze mechanismen. Zuiver parallelle robots bestaan
uit twee rigide verbindingselementen, de basis en de eindeffector, die parallel verbonden
zijn door middel van onafhankelijke seriële ketens, genaamd ‘benen’. Het nieuwe concept
dat ten grondslag ligt aan parallelle mechanismen met configureerbare platformen is dat
de rigide (niet-configureerbare) eindeffector vervangen is door een gesloten keten (het
configureerbare platform). Sommige verbindingselementen van deze gesloten keten zijn
verbonden aan de benen, zodat de configuratie van het platform volledig gecontroleerd
kan worden met de motoren die zich op de basis bevinden. Het gebruik van een gesloten
keten in plaats van een rigide eindeffector stelt de robot in staat om te interacteren met de
omgeving vanuit meerdere contactpunten op het platform. Dit resulteert in een robot die
het vermogen om te bewegen en grijpen combineert in een mechanisme met een inherent
hoge, structurele stijfheid, omdat er geen motoren nodig zijn op de eindeffector om te
kunnen grijpen, gezien deze allemaal direct verbonden zijn aan de basis. Hoge snelheid
pak-en-plaats robots en haptische apparaten kunnen beiden profiteren van dit type archi-
tectuur. Het vermogen om te grijpen is in beide toepassingen noodzakelijk om sommige
taken uit te voeren en daarbij is een hoge mechanische, structurele stijfheid gewenst om
de prestatie van het apparaat te verbeteren, gegeven bepaalde hardware en een bepaald
softwarematige controle systeem.

Deze thesis is gestructureerd in twee afzonderlijke delen. Het eerste deel verkent de
beginselen van de topologie van parallelle mechanismen met configureerbare platformen
(PMCPs) en draagt algemene methoden voor om een analytische vectorrepresentatie van
de distributie van hun beweeglijkheid en overbepaaldheid te verkrijgen via Screw The-
ory en grafentheorie. Een motivatie voor deze analyse is dat een beter begrip van de
beginselen van PMCPs robot ontwerpers zal helpen om dit type mechanisme te over-
wegen als een realistische optie voor de robot architectuur. Tevens vormt deze analyse
een essentieel aspect in de toekomstige ontwikkeling van een meer algemene ‘type syn-
thesemethode’ welke ook deze mechanismen bevat. Het tweede gedeelte van deze thesis
richt zich op de algemene input-output relaties van parallelle robots met configureerbare
platformen (PRCPs) en presenteert het ontwerp, de optimalisatie en de implementatie
voor haptische toepassingen van de PentaG robot. De PentaG robot is een nieuwe, vijf
graden van vrijheid parallel robot waarvan 2 graden van vrijheid zijn te danken aan het
configureerbare platform. De motivatie voor het ontwerp en de implementatie van het
prototype van de PentaG is ten eerste om de haalbaarheid aan te tonen van PRCPs die
een configureerbaar platform gebruiken om te grijpen en ten tweede om te bepalen tot op
welke hoogte de ontwerpprincipes en analysetools die in het algemeen gebruikt worden in
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de studie en implementatie van zuiver parallelle robots toegepast kunnen worden, of dat
deze moeten worden gemodificeerd voor het ontwerp en de analyse van PRCPs.

In het eerste deel wordt een state-of-the-art methode gepresenteerd voor de analyse van de
beweeglijkheid en overbepaaldheid van zuiver parallelle mechanismen. Mechanismen die
niet voldoen aan het Chebichev criterium van beweeglijkheid worden heden dag over het
algemeen overbepaalde mechanismen genoemd omdat hun overbepaaldheidsvergelijkin-
gen matrices bevatten die geen volle rang hebben. Beweeglijkheid en overbepaaldheid
van mechanismen zijn nauw verbonden omdat elke overbepaaldheid een extra mobiliteit
creëert volgens het Chebichev criterium. Het gebruik van numerieke waardes om de
rang van deze matrices te bepalen is gevoelig voor afrondfouten en de oplossingen die
met numerieke waardes worden verkregen voor de distributie van de beweeglijkheid en
overbepaaldheid zijn enkel geldig voor een specifieke positie van het mechanisme. Het
concept van beperkte Screw systemen wordt vervolgens geïntroduceerd om zowel de lokale
beweeglijkheid en verdeling van overbepaaldheden van zuiver parallelle mechanismen te
berekenen met behulp van intersectieoperaties op de vectorruimte, complementaire deel-
ruimtes, en parallelle projecties op Screw systemen.

Een topologische analyse van mechanismen dat niet alleen puur parallel zijn, zoals hybride
en delta mechanismen, is vervolgens gepresenteerd door middel van grafentheorie. Huidig
bestaande methoden voor de analyse van beweeglijkheid en overbepaaldheid van mech-
anisme dat niet geheel parallel maar een serie-parallel graaf hebben zijn samengevoegd
met een graaf reductie analyse van hun topology. Hun meerdere lagen van lokale be-
weeglijkheid en overbepaaldheid zijn beschreven en recursieve formules zijn herleid in het
algemeen. Het is gezien dat de bovenste topologische laag van PMCPs altijd weergegeven
worden met een wielgraaf, wat een niet serie-parallele graaf is. Een methode gebaseerd
op een matrix weergave van de beweeglijkheid van hun benen en het concept van syste-
men van Screw zijn gebruikt om een analytische verdeling te verkrijgen van hun globale
beweeglijkheid. Een belangrijke zelfduale eigenschap van hun topologie, wat een spe-
cifieke eigenschap is van PMCPs, is dan onthuld en gebruikt om de methode voor hun
beweeglijkheids analyse uit te breiden naar hun analyse van overbepaaldheid. Twee mech-
anismen, een 4-RRR met een 8R configureerbaar platform mechanismen en de PentaG
mechanismen, zijn gebruikt om de methode te illustreren en een analytische weergave van
de verdeling van hun globale beweeglijkheid en overbepaaldheid is gepresenteerd.

Het tweede gedeelte van de thesis begint met een introductie van de PentaG robot en zijn
kinematische analyse. In tegenstelling tot klassieke parallele robots, de inverse positie en
snelheid kinematische analyse van PRCPs moet uitgevoerd worden in een twee stappen
methode waarbij de kinematica van het platform is berekend voordat de kinematica van
de benen. Seriële singuliere configuraties zijn analytisch bepaald en de werkings-modes
van de PentaGrobot zijn opgesomd. Parallelle singuliere configuraties gerelateerd aan
het platform en in het bijzonder aan PRCPs zijn dan beschreven. Ter aanvulling, een
nieuw statisch gebalanceerde methode dat het aantal veren reduceert en aanvullende
verbindingselementen nodig heeft om perfect statisch balans te bereiken van transleerbaar
parallele robots met of zonder configureerbare platformen is gepresenteerd.

Een meetkundige optimisatie van de PentaG robot voor het gebruik van haptische ap-
paraten is vervolgens uitgevoerd. Het concept van het haptisch bruikbare werkgebied
is gepresenteerd en de robot is geoptimaliseerd teneinde de compactheid te maximalis-
eren in zijn compactheid relatief aan de grootte van het bruikbare werkgebied. Meerdere
technieken zijn weergegeven om het aantal kinematische parameters te reduceren tot een
hanteerbaar aantal en een efficiënt algoritme is ontwikkeld om de berekeningstijd van het
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optimaliseringsprobleem te reduceren, genetische algoritmen zijn gebruikt bij het zoeken
naar een optimale oplossing.

Ten slotte is het gedetailleerde ontwerp en de implementatie van een prototype van de
PentaG robot voor een haptische applicatie gepresenteerd. De kinematische parameters
die verkregen zijn van het optimalisatie proces zijn gebruikt voor dit prototype en een
nieuwe methode om de stijfheid van het mechanisme van de robot zonder aanpassing van
de kinematische parameters te optimaliseren is gepresenteerd. De methode koppelt de
stijfheids- en traagheidsbijdrage van elk verbindingselement van de robot tot zijn door-
snedeoppervlakte en verbeterd de stijfheid van het mechanisme van de robot door het
grootste gedeelte van de traagheid bij de basis te verdelen van het mechanisme terwijl een
acceptabele stijfheid gehanteerd blijft. Specificaties zijn bij de vingertoppen van de robot
gedefinieerd gebaseerd op menselijke ergonomie en de voortzetting van deze specificaties
tot het ontwerp van het motor meet systeem is gedaan door gebruik te maken van stat-
istische verdeling over het gehele werkgebied. De implementatie van het uiteindelijke ont-
werp is gepresenteerd en zowel simulaties als experimenten zijn gebruik om de geldigheid
aan te tonen van het uiteindelijke prototype en de nieuwe ontwerp methoden.
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