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Position-Dependent Motion Feedforward via
Gaussian Processes: Applied to Snap and Force

Ripple in Semiconductor Equipment
Maurice Poot , Max van Haren , Dragan Kostić , Jim Portegies, and Tom Oomen , Senior Member, IEEE

Abstract— The requirements for high accuracy and through-
put in next-generation data-intensive motion systems lead to
situations where position-dependent feedforward is essential.
This article aims to develop a framework for interpretable and
task-flexible position-dependent feedforward through systematic
learning with automated experimental design. A data-driven and
interpretable framework is developed by employing Gaussian
process (GP) regression, enabling accurate modeling of feed-
forward parameters as a continuous function of position. The
data is efficiently collected and illustrated through an iterative
learning control (ILC) algorithm. Moreover, a framework for
experimental design in the sense of automatically determining the
training positions is presented by exploiting the uncertainty esti-
mates of the GP and the specified first-principles knowledge. Two
relevant case studies show the importance and significant per-
formance improvement of the approach for position-dependent
snap feedforward for a simplified 1-D wafer stage simulation
and experimental application to position-dependent motor force
constant compensation in an industrial wirebonder.

Index Terms— Gaussian processes (GPs), iterative learning
control (ILC), mutual information.

I. Introduction

FEEDFORWARD control is essential for high accuracy
and throughput in next-generation data-intensive motion

systems. These motion systems, including wirebonders [1],
[2], lithography machines [3], and printer systems [4], consist
of actuators, mechanics, and sensors. Typically, the actuators
generate forces or torques and are considered inputs of the sys-
tem, and the sensors measure the position or rotation and are
considered outputs of the system. As a key development, pre-
cision mechatronics is becoming more lightweight and hence
exhibits flexible dynamics [2]. To enable high throughput and
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usability of these precision mechatronic systems, accurate con-
trol consisting of both feedback and feedforward is necessary.
In particular, systematically tunable feedforward that enables
flexibility in the motion task is desired.

Feedforward control has been substantially developed in
recent years to automatically tune the feedforward parameters
to achieve accurate feedforward control. In [5], data-based tun-
ing of manual feedforward is presented, including approaches
based on iterative learning control (ILC) [6] through polyno-
mial basis functions. The ILC-based approaches are further
developed toward an instrumental variable (IV) approach
in [7], which eliminates the bias on the parameters due to
noise. Further extensions to the structure of the model, such
as rational structures in [8], allow for greater accuracy in the
presence of flexible dynamics.

Increasing performance requirements lead to a situation
where the dynamics become position-dependent, which has
consequences for both feedback and feedforward control. Lin-
ear parameter varying (LPV) approaches have been developed
in [9], including related system identification methods [10],
but their performance increase is limited as these rely only
on feedback control [9]. A key component of state-of-the-art
feedforward controllers that enable performance beyond that
of feedback control is snap feedforward [11]. Snap feedfor-
ward compensates for the compliance of a system [12], that
is, the low-frequency contribution of the flexible dynamics.
Since compliance is typically a function of position due to
position-dependent flexible dynamics, a position-dependent
feedforward design is justified to enable high accuracy.

In addition to position-dependent dynamics, some actu-
ators used in precision mechatronics also exhibit position
dependence, for example, linear synchronous motors that are
subjected to force ripple [13]. Often, through identification
and modeling [14], that can also be performed in closed-loop
based on data [15], the position dependence of the force
ripple can be compensated, such that only position-dependent
flexible dynamics need compensation using feedforward
control.

Although position-dependent dynamics are well recog-
nized in control applications and many relevant control
approaches have been developed, at present a systematic
position-dependent motion control framework that is specif-
ically tailored toward typical position-dependent dynamics
occurring in motion systems is lacking. In particular, many
motion systems exhibit position-dependent dynamics but
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perform varying motions that stay close to a fixed position.
This requires an interpretable and task-flexible position-
dependent feedforward [8]. Moreover, systematic learning with
automated experiment design is essential for industry adoption.

The central idea of this article is to develop a framework
for position-dependent feedforward control using Gaussian
processes (GPs). GPs allow for nonparametric modeling and
interpolation using data and specification of prior knowledge
about the modeled function (see [16]). At the same time,
GP-based approaches allow calculation of the uncertainty of
the estimation, which is exploited in experiment design to
automatically place training positions through mutual infor-
mation optimization [17].

Recent relevant developments in GPs for application in
feedforward control (see [18]) have already led to substan-
tial performance improvements, but do not directly address
the class of motion control problems outlined above. For
example, GPs are used in feedforward control to extend the
model structure beyond that of traditional acceleration and
snap feedforward (see [19]) and allow for a more general
structure with a different perspective on model order selec-
tion. This approach is further extended to include prescribed
nonlinearities [20] and is further developed toward nonlin-
ear systems [21], enabling accurate control despite unknown
nonlinearities. Moreover, feedforward controllers are extended
with GPs in [22], where a GP is employed as an augmentation
of a rigid-body feedforward in a fully data-based manner,
which lacks interpretability.

The main contribution of this article is an interpretable and
task-flexible position-dependent feedforward framework for
motion systems. More specifically, current LTI feedforward
models are extended toward position-dependent feedforward
through modeling of the feedforward parameters as a function
of position using GPs. Additionally, this framework enables
systematic learning with automated experiment design, which
is essential for industry adoption. The subcontributions are the
following.

1) Position-dependent feedforward via GPs.
2) Systematic learning and automated experiment design

using ILC and mutual information optimization.
3) Application to position-dependent snap feedforward in a

simulation of a simplified 1-D wafer stage.
4) Experimental application to position-dependent motor

force constant compensation in an industrial wirebonder.

Preliminary results related to the main contribution and sub-
contribution 3) appeared in [23] and [24]. This article provides
a full framework and subcontributions 2) and 4). This frame-
work could lead to rapid commissioning and industry adoption,
enabled by efficient initialization through prior knowledge in
the GP, near-optimal distribution of training positions, and the
continuous learning and systematic learning nature of ILC.

The presented work relates to and differs from other work
in the following way. In this work, frozen position depen-
dency is considered, that is, linear dynamics are assumed at
frozen positions, which is inherently different from dynamic
approaches, such as linear parameter-varying feedforward [25]
and linear periodically time-varying feedforward [26]. In [27],

a position-dependent compliance function is modeled from
PDEs, which requires more specific prior knowledge than the
developed GP approach. Furthermore, other machine-learning
techniques besides GPs are introduced in feedforward con-
trol, such as neural networks that could also compensate
for position-dependent effects (see [28] and [29]), but these
approaches require more training data and are difficult to
interpret.

The outline is as follows. In Section II, the problem
is formulated. In Section III, the developed approach is
described, including interpolation, optimization, and learning.
In Sections IV and V, two case studies are described. The first
case study elaborates on position-dependent snap feedforward
using GPs in a simulation of a simplified 1-D wafer stage and
showcases the automated experiment design approach through
the near-optimal distribution of the training positions. The
second case study discusses the experimental validation of
the approach on an industrial wirebonder and showcases the
compensation of the force ripple. In Section VI, conclusions
and ongoing work are stated.

Notation: The considered systems are assumed to be linear
and time-invariant (LTI), nu inputs and ny outputs, unless oth-
erwise stated. In most cases, unless explicitly stated otherwise,
discrete-time systems are considered. For continuous-time
systems, s denotes a complex indeterminate. A continuous-
time LTI system for a fixed parameter p is denoted by G(p, s).
A single-input, single-output discrete-time transfer function
is generally rational in the complex indeterminate z and is
denoted as G(z). Signals are often assumed tacitly of length
N ∈ Z+. Let h(l), l ∈ Z be the infinite-time impulse response
vector of the system G(z). For a given input u, the output
y(k) =

∑∞
l=−∞ h(l)u(k − l). Assuming u(k) = 0 for k < 0 and

k > N − 1
y[0]
y[1]
...

y[N − 1]

︸      ︷︷      ︸
y

=


h(0) h(−1) · · · h(1 − N)
h(1) h(0) · · · h(2 − N)
...

...
. . .

...
h(N − 1) h(N − 2) · · · h(0)

︸                                      ︷︷                                      ︸
G


u[0]
u[1]
...

u[N − 1]

︸      ︷︷      ︸
u

(1)

with u, y ∈ RN the input and output vectors, respectively.
Note that G is not restricted to be a causal system. Repre-
sentations for MIMO systems with nu inputs and ny outputs
follow directly from stacking SISO signals and convolution
matrices. An LTI system for a fixed parameter p is denoted
by the convolution matrix G(p), where the elements h(l) are
a function of p. The lth element of a vector θ is expressed
as θ[l]. The weighted two-norm of a vector x is denoted as
∥x∥W := (x⊤Wx)1/2, where W is a weighting matrix. W is
positive definite (W ≻ 0) if and only if x⊤Wx > 0,∀x , 0.
The cardinality of a set A is denoted by |A|. A ⊆ B is used to
represent that A is a subset of B, meaning that all elements of
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Fig. 1. Three-dimensional model of a wirebonder by ASMPT with the
stacked xyz-stage used to bond wires on an integrated circuit.

Fig. 2. Control scheme with feedback and feedforward on the system which
consists of actuators, mechanics, and sensors. Here, E1 and E2 highlight the
subcomponents of the system where two position-dependent effects originate
from that are considered in the case studies CS1 and CS2.

A are inside B. Furthermore, A\B denotes the set difference
between A and B, which means elements in A but not in B.
A ∪ B expresses the set union, which means all elements in
A or B.

II. Problem Formulation
A. Motion Control for Small-Amplitude Motions

Typical motion systems consist of actuators, mechanics, and
sensors to enable systems to perform accurate motion tasks, for
example, the wirebonder depicted in Fig. 1. The closed-loop
feedback control scheme with feedforward for this system
is shown in Fig. 2. The main goal in motion control is a
servo task, that is, obtaining high tracking performance of the
output y for a reference trajectory r. In particular, the tracking
error e = r − y is to be minimized. In Fig. 2, a feedforward
controller F is added in conjunction to the traditional feedback
controller [2]. From Fig. 2, it follows that

e = S r−S G f − S v (2)

where S = (I + GC)−1 the sensitivity function, f = Fr
the feedforward control signal, and v represents measurement
noise that is assumed Gaussian with zero mean and variance
σIN . Recall that shaping of S by means of feedback control
design is limited in reducing the tracking error due to Bode’s
sensitivity integral [30, Sec. 3.1]. Hence, the goal of minimiz-
ing the tracking error, that is, obtaining zero reference-induced
error e = −S v, is achieved for f = Fr with F = G−1. The
feedback controller is assumed to be stabilizing and robust
with respect to any position-dependent effect. The focus is
on the design of the feedforward controller F to achieve the
goal of high tracking performance. The other requirements on
the feedforward in addition to the high tracking performance
are generalizations to different motion tasks, systematic and
automated tunable feedforward, and interpretability of the
feedforward control signal.

The motion systems under consideration perform relatively
short motions on different positions to create a product, that

Fig. 3. Schematic representation (not to scale) of semiconductor manu-
facturing processes with their small-amplitude motions. Example of CS1:
wafer illumination process in lithography where the behavior of the flexible
dynamics is clearly dependent on position (left). Example of CS2: wire
bonding process of an integrated circuit where the placement of the magnets
with respect to the coils causes position dependency in the actuators (right).

is, small-amplitude motions and possibly different reference
trajectories, with starting points spread over the broad operat-
ing range. Two examples of such systems and their processes
are shown schematically in Fig. 3 and are examples used in
the case studies CS1 and CS2.
CS1: In Fig. 3 (left), a lithography wafer stage is depicted

where a mask of an integrated circuit is illuminated in
short motions spread-out over a large silicon wafer [31].

CS2: In Fig. 3 (right), a wirebonder is shown where wires
are bonded on an integrated circuit, wire by wire,
often starting at different positions on the integrated
circuit [1].

These systems are approximately linear for short motion tasks,
that is, motions that stay close to a fixed position, yet these
linearized systems are different for different fixed positions.
In other words, nonlinear systems are considered for which
the nonlinearity can be interpreted as a form of position
dependence. This leads to the following assumption.

Assumption 1: For every position p, the system can be
approximated accurately by a linear time-invariant system for
motion tasks that stay close to the fixed position p. □

In this article, two position-dependent effects, originating
from different subcomponents of the system as highlighted in
Fig. 2, are analyzed and include the following.
E1: Position-dependent flexible dynamics, for example, com-

pliance.
E2: Position-dependent actuators, for example, force ripple.

Note that for both effects, the system can satisfy Assumption 1.
In addition, these underlying effects are present in the

relevant case studies considered in this article, that is, CS1
and CS2 directly connect to E1 and E2, respectively. Indeed,
in both case studies, other effects could also play a role but
these are not considered, for example, E2 in CS1, E1 in CS2,
and other effects that can be modeled through the developed
approach.

Next, the position-dependent flexible dynamics effect E1 is
further elaborated upon.

B. Position-Dependent Flexible Dynamics Effect E1
Present in CS1

Consider the mechanics and sensors denoted by E1 in Fig. 2.
For typical motion control systems as in Fig. 3, Assumption 1
translates to the following. For every position p, the system
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POOT et al.: POSITION-DEPENDENT MOTION FEEDFORWARD VIA GAUSSIAN PROCESSES 1971

is approximated accurately by an LTI system for which the
transfer function (depending on p) can be written as a modal
decomposition as [32], [33, Sec. 3.2]

G(p, s) =
nRB∑
i=1

ci(p)b⊤i (p)
s2︸            ︷︷            ︸

rigid-body modes

+

nRB+n f∑
i=nRB+1

ci(p)b⊤i (p)

s2 + 2ζiωis + ω2
i︸                         ︷︷                         ︸

flexible modes

(3)

where nRB is the number of rigid-body modes that are not
suspended, n f is the number of flexible modes, the vectors
ci(p) ∈ Rny , bi(p) ∈ Rnu are a function of position and
associated with the inertia or mode shapes, and ζi, ωi ∈ R ≥ 0.
Often, inertia is not a function of position, for example,
for translational systems, in which case bi(p), ci(p) for i =
1, . . . , nRB are position-independent.

Now, considering the linear system as a function of position
described by (3), a position-dependent feedforward is essential
for systems that change as a function of position. Although
dynamical behavior at low frequencies is often dominated by
rigid-body dynamics, the contribution of position-dependent
flexible modes of (3) at low frequencies, called compliance,
can often not be neglected [11], [34]. Snap feedforward sys-
tematically compensates for compliance (see [23]). Since the
system’s compliance is position-dependent (see (3)), the snap
feedforward parameter needs to be made position-dependent.
To summarize, E1 follows from the system in (3) where
the compliance changes as a function of position, which
necessitates the need to accurately model the snap parameter
as a function of position.

Next, the position-dependent actuators effect E2 is further
elaborated.

C. Position-Dependent Actuators Effect E2 Present in CS2

Consider the actuators denoted by E2 in Fig. 2. In many
motion systems, linear permanent magnet motors are used as
actuators (see [13]), where a force is generated by applying a
current to a coil that is subjected to a magnetic field generated
by magnets. This is illustrated in Fig. 3 (top right), where
the actuator translates horizontally and the magnets alternate
in polarity over the operating range. These actuators have
a high force density and allow high position accuracy, but
are subjected to position-dependent force ripple [35] due to
fluctuations in the magnetic field.

The nonlinear position-dependent force ripple effect is
modeled by the motor force constant and can be estimated
using traditional but troublesome calibration methods. The
motor force constant Kmfc(p) : [N] → [A] describes the
relation between the actuator output force and the coil input
current and is a function of position due to the placement
of the magnets. To estimate this relation, traditional force
measurements can be performed at different positions, but this
is a time-intensive and invasive operation, as it requires the
physical insertion of a force sensor. Alternatively, traditional
noninvasive measurements of the motor force constant can be
performed (see [13] and [15]). However, these noninvasive
measurements are time-intensive and require numerous slow
and dedicated experiments that cannot be performed during
normal machine operation.

A motor force constant that is not calibrated accurately
results in a systematic error in the feedforward signal as a
function of position and may significantly affect the tracking
accuracy. Typically, uncompensated variations of the motor
force constant will lead to feedforward parameters that need
to vary as a function of position (see (4)).

In summary, E2 follows from the position dependency in
linear motors caused by the force ripple modeled in the motor
force constant Kmfc(p). If the motor force constant is not
calibrated accurately, this position-dependent effect may cause
possibly additional position dependence in the feedforward
parameters, necessitating the need for accurate modeling of
the feedforward parameters as a function of position.

D. Problem Formulation

In view of the position-dependent effects E1 and E2,
as highlighted in Fig. 2, which can lead to parasitic effects,
this article aims to develop a framework for interpretable
position-dependent feedforward for accurate tracking of vary-
ing motion tasks.

To achieve an interpretable position-dependent feedforward
for these two cases, the feedforward is chosen to be a linear
combination of functionals of the reference r. Moreover, the
feedforward parameters, related to the coefficients in the linear
combination, may depend on the position of the system.
An example of such a feedforward signal is

f (p, r, t) = Kmfc(p)
(
k f a(p)r̈(t) + k f s(p) ....

r (t)

+ k f c(p) sign(ṙ(t))
)
. (4)

More generally, position-dependent feedforward of the follow-
ing form is considered:

f (p, r, t) = Kmfc(p)
nθ∑

i=1

θi(p)Ψi(r, t) (5)

where Kmfc(p) is a position-dependent constant, which in this
article often has the interpretation of an estimate of the motor
force constant, the functions θi(p) are the position-dependent
feedforward parameters, and the functionals Ψi(r) map the
reference signal to a new signal, and Ψi(r, t) stands for the eval-
uation of the signal Ψi(r) at time t. To enhance interpretability,
the function Ψi(r, t) is often taken of the form

Ψi(r, t) = ψi

(
dni

dtni
r(t)

)
(6)

for some ni ∈ N and for i = 1, . . . , nθ (see also [36]). The func-
tions ψi may be nonlinear, for example, ψi(x) = sign(x). After
discretizing signals, the derivatives get replaced by discrete
derivatives, for example, ((1 − z−1)/Ts), which closely relates
the feedforward parameterization to FIR parameterizations
(see [37, p. 53]). Note that the traditional motion feedforward
of [36] is recovered in the case the parameters are position
independent, that is, θi(p) = ki ∀ p, then the example (5)
would become

f (r, t) = Kmfc(p)
(
k f ar̈(t) + k f s

....
r (t) + k f c sign(ṙ(t))

)
(7)

where k f a is the acceleration parameter, k f s is the snap
parameter, and k f c is the Coulomb friction parameter. The
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Fig. 4. Iterative scheme for learning position-dependent feedforward
parameters θ(p) with estimation using ILC, modeling using a GP gθ(p) for
interpolation, and mutual information optimization for optimizing the next
near-optimal training position PMI.

advantage of such a feedforward control is its flexibility in the
motion task and the physical interpretability of the parameters.

To conclude, the problem of systematically learning an
interpretable position-dependent feedforward for accurate
tracking of a variety of motion tasks is reduced to estimating
and modeling the position-dependent parameters θi(p) of the
discrete-time feedforward signal f given by (5).

Next, the approach to estimate and model the position-
dependent feedforward parameters is presented, and afterward,
the two case studies CS1 and CS2 are discussed.

III. Approach
In this section, the approach to achieve position-dependent

feedforward is proposed. First, the concept is motivated. In the
remainder of this section, the estimation, interpolation, and
optimization subproblems are covered. Finally, an intercon-
nection and summary are given.

A. Motivation of the Approach
The key idea to determine the position-dependent parame-

ters of the feedforward signal (5) is to estimate the feedforward
parameters for a fixed position p, to interpolate with GP
regression, and to optimize the fixed positions near optimally
with mutual information optimization to achieve experiment
design, motivated in the following subproblems and visually
shown in Fig. 4.

1) Estimation: To accurately determine the parameters θ
for a fixed position p, learning approaches, for example,
ILC or IVs, can be used. These data-driven methods itera-
tively determine feedforward parameters that minimize a cost
function or the error for a reference trajectory. Hence, the
reference trajectory must not excite the position dependence
of the system, which requires Assumption 1 to hold. Using a
data-driven learning method, θ for a variety of fixed positions
p can be obtained, that is, the dataset {pi, θi}

n
i=1, where n is the

number of data points.
2) Interpolation: For (5) to be an accurate

position-dependent feedforward signal, accurate estimates of
θ for every unseen position p must be inferred using the
dataset. This aspect is rather challenging since the position
dependence of a parameter is often not known beforehand,
making parametric modeling for interpolation difficult.
In contrast to parametric modeling, nonparametric modeling
via GP regression enables accurate interpolation where prior
knowledge about the position dependence can directly be
specified in a kernel.

3) Optimization: To achieve a systematic learning approach
that ensures an accurate estimate of θ for the entire operating
range of the machine, the fixed positions p for which θ
will be learned must be determined. The GP provides an
estimate of the uncertainty of the conditioned parameter θ,
allowing optimization of the distribution of the data points over
the operating range using, for example, mutual information
optimization, resulting in automated experiment design.

In summary, the estimation, interpolation, and optimization
challenges motivate a data-driven learning approach of the
frozen feedforward parameters, for example, using ILC, a GP
regression approach for accurate nonparametric interpolation
of the parameter, and a mutual information optimization
approach for near-optimal distribution of the training positions.

In Section III-B, GP regression for interpolation is
discussed.

B. Interpolation of the Data Using GP Regression

To model the feedforward parameters as a continuous
function of position, GP regression is employed, constituting
Contribution 1). GP regression methods are a convenient
and versatile mathematical tool for function estimation and
interpolation. Given an unknown function g0, for example, one
of the feedforward parameters as a function of position, the
goal is to obtain an accurate model g of g0 from measurements.
The process of function estimation is performed as follows.
An initial guess of the unknown function is encoded in the
prior in the form of a probability distribution over functions.
Afterward, a few measurements of the unknown function are
observed. The prior distribution is then conditioned on these
measurements by Bayesian inference to obtain the posterior
distribution. The posterior distribution gives an estimate of
the unknown function and the variance of the estimation. This
posterior distribution can be easily computed if the prior is a
GP since then the posterior is also a GP.

1) GP Definition: A GP is a collection of real-valued
random variables g(p), of which every finite subcollection
follows a multivariate Gaussian distribution. Here, p ∈ X are
the values that index g(p), for example, the fixed position
of the system. A GP g(p) is fully specified by its mean and
covariance function [16, Sec. 2] and is denoted by

g(p) ∼ GP
(
m(p), k(p, p′)

)
(8)

where m : X → R is the mean function

m(p) := E
[
g(p)

]
, for p ∈ X (9)

and k : X × X → R is the covariance function, or kernel

k(p, p′) := Cov
(
g(p), g(p′)

)
, for p, p′ ∈ X. (10)

The covariance function and selection thereof are elaborated
on in Section III-B4.

2) Noisy Measurements: To model the unknown function
g0 : X → R, noisy measurements of the unknown function are
obtained, which are estimates of the feedforward parameters.
The noisy measurements consist of training inputs, or mea-
surement positions, in the input domain X

P = [p1, . . . , pn] (11)
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and corresponding noisy measurements in R at those inputs

Y = [y1, . . . , yn] (12)

that is, n noisy measurements estimates of the GP g. Hence,

yi = g(pi) + ϵi, for i = 1, . . . n (13)

where ϵi are i.i.d. normally distributed with mean 0 and
standard deviation σ.

As a result, there are n training inputs in P that correspond
to fixed positions pi and noisy measurements Y that correspond
to noisy estimations of the feedforward parameters θ. The
variance of the noisy measurements is σ2 and acts on the
estimation of the parameters that are assumed to be Gaussian.
This results in the datasetD : [Y, P]. Note that multiple param-
eter estimations per p are possible in the dataset, in which case
these estimates should be independent of each other according
to (13).

3) Conditioning the GP on the Data: After obtaining the
dataset, function estimation and interpolation, that is, predic-
tions of unseen inputs, can be performed by conditioning the
GP g(p) on the data. As such, the GP g(p) for p ∈ X after
conditioning, denoted by g(p) | Y , becomes a model of the
unknown function g0(p).

To describe the conditioned process, the Gaussian distribu-
tion of the conditioned variables g(p) for p ∈ P∗ must be
described for a finite subcollection of test inputs

P∗ := [p∗,1, . . . , p∗,n∗ ] (14)

for n∗ test inputs in X. The conditioned distribution of g(p)
for p ∈ P∗, denoted by g(P∗) | Y , can be computed using
Bayes’ rule and is a multivariate Gaussian distribution with
computationally tractable mean

µ∗ + K(P∗, P)
(
K(P, P) + σ2In

)−1
(y − µ) (15)

and covariance

K(P∗, P∗) − K(P∗, P)
(
K(P, P) + σ2In

)−1
K(P, P∗) (16)

where

µ∗ = E
[
g(p) : p ∈ P∗

]
µ = E

[
g(p) : p ∈ P

]
(17)

and the matrix K(A, B), for finite sequences A and B in X [16],
is defined by

K(A, B)i j := k(ai, b j). (18)

Conveniently, the variance of the conditioned GP yields an
uncertainty estimate that can be exploited later.

4) Kernel and Hyperparameter Optimization: The choice
of the kernel in the prior distribution is relevant as it can
encode prior knowledge, for example, smoothness, symmetry,
or periodicity, of the modeled function g. In our particular
case, the prior describes how the feedforward parameters are
expected to behave as a function of position, which is in
mechanical systems often smooth, as will be evident from the
two case studies in Sections III and IV.

The quality of GP regression, that is, interpolation of the
position-dependent parameter, depends on the data P,Y and

on the selected kernel and its hyperparameters. The latter can
be conveniently optimized by marginal likelihood optimization
based on the data (see [16, Ch. 5]). Hence, the training inputs
P should be carefully selected with respect to the operating
range of the machine to achieve good interpolation of the data.

In the next section, a solution is presented for systematically
distributing the data near-optimally over the input domain.

C. Experimental Design Using Mutual
Information Optimization

To achieve automated experiment design, measurement
positions must be placed over a broad operating range,
ideally using as few measurements as possible. The learn-
ing data is automatically and near-optimally distributed by
employing mutual information (MI) optimization, constituting
Contribution 2) and leading to rapid commissioning. Mutual
information optimization (see [17] for a general introduction)
aims to find measurements or training positions that are most
informative about the unmeasured positions. These training
positions are derived by exploiting the variance of the GP,
in particular, the criterion takes into account the effect of
training positions on the posterior uncertainty, enabling the
exploitation of the incorporated prior knowledge to distribute
the training data P over the input domain X. In comparison to
alternatives, such as the equidistant-spaced grid of the training
data, mutual information optimization results in an automated
and systematic learning approach to achieve an accurate
GP with less user intervention and few training data, thus
less experimentation time. Additionally, mutual information is
expected to lead to better results than entropy optimization,
that is, maximizing the uncertainty for the distribution of
training positions, since it is likely to waste information by
placement at the boundaries of the operating range [38]. This
section presents mutual information optimization, a greedy
approximation that makes computations feasible, and an a
priori and sequential approach.

1) Mutual Information Definition and Objective: Mutual
information optimization searches for the training positions
that most significantly reduce the uncertainty about the esti-
mates in the remaining space. These training positions are
selected from a predetermined and finite subset of all possible
training positions covering the broad operating range of the
machine, denoted by P̄.

To determine where to add the next measurement posi-
tion, in the context of mutual information optimization, it is
necessary to derive the probability distribution of the noisy
measurements. If measurements will take place at different
positions, the distribution of the noisy measurements yi of (13)
are described by the GP h(p), given by

h(p) ∼ GP
(
m(p), k(p, p′) + σ2

)
(19)

where σ is the standard deviation of the measurement noise.
The GP h(p) can be loosely regarded as the prior of the
measurements.

Now, using the distribution of the noisy measurements,
the idea is to select training positions P that will give good
predictions at all unmeasured positions P̄ \ P according to the
mutual information criterion. Mutual information between the
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measurements at the positions P and the measurements at the
remaining positions P̄ \ P [17], [39] is defined as

MI [P] = H
[
h(P̄ \ P

)
] − H

[
h(P̄ \ P) | h(P)

]
(20)

where H[A | B] is the conditional entropy function of the GP
A conditioned on B and is computed as

H[A | B] =
1
2

ln
(

detΣ2
A|B

)
+

1
2
(

ln(2π) + I
)
. (21)

In other words, the mutual information criterion describes
the difference in the entropy of the training position P with
the remaining training positions P̄ \ P, where the entropy is
expressed in terms of the variance of the GP.

The set of MI-optimal training positions PMI,opt is found by
maximizing the mutual information over an arbitrary set of
n = |PMI,opt| training positions, that is,

PMI,opt = argmax
P⊆P̄, |P|=n

MI [P] (22)

where MI[P] is given in (20). This optimization problem
is NP-complete (see [17, Th. 2]), hence a greedy one-step
algorithm is employed in the next section to find a computa-
tionally tractable approximation to the optimal solution.

2) Greedy Mutual Information Approximation: The greedy
mutual information approximation algorithm repeatedly adds
a single training position p ∈ X to the near-optimal greedy
MI set PMI until n training positions have been chosen. The
next near-optimal greedy MI set PMI

i+1, given the current set
PMI

i [17], is given by

PMI
i+1 = PMI

i ∪

{
argmax
p⊆

(
P̄\PMI

i

) (MI
[
h(PMI

i ∪ p)
]
−MI

[
h(PMI

i )
] )}

(23)

where

MI
[
h(PMI

i ∪ p)
]
−MI

[
h(PMI

i )
]
= H

[
h(p) | h(PMI

i )
]

−H
[
h(p) | h(P̂)

]
(24)

and P̂(p) := P̄ \
(
PMI

i ∪ p
)

the remaining set of possible
training positions in X after selecting p, which depends on p
(see [17] for the derivation of (24)). The greedy MI algorithm
of (23) selects the position p that is uncertain given the
previous positions PMI

i , that is, H
[
h(p) | h(PMI

i )
]

is large,
and informative for the uncertain unobserved positions, that is,
H

[
h(p) | h(P̂)

]
is small. The entropy function H as a function

of the variance of these conditioned GPs is given in (21). For a
GP as in (19) with zero mean function, the posterior variances
of h(p) for p conditioned on h(PMI

i ) and h(P̂), respectively, are
given by

σ2
h(p)|h(PMI

i )

= K(p, p)

+ σ2 − K
(
p, PMI

i

) (
K(PMI

i , PMI
i ) + σ2I

)−1
K(PMI

i , p) (25a)

σ2
h(p)|h(P̂)

= K(p, p)

+ σ2 − K(p, P̂)
(
K(P̂, P̂) + σ2I

)−1
K(P̂, p) (25b)

with the matrix K as defined in (18) and σ the standard
deviation of the measurement noise. Note that these posterior
variances only hold when p and P̂ and p and PMI

i are disjoint,
that is, p ∩ P̂ = ∅ and p ∩ PMI

i = ∅ due to consecutive
measurements at different positions. By substitution of (21)
and (24) into (23), the near-optimal greedy MI set can be
computed for each p ⊆

(
P̄ \ PMI

i
)

with

PMI
i+1 = PMI

i ∪ argmax
p⊆(P̄\PMI

i )

1
2

ln (δ(p)) (26)

where δ(p) is the ratio of the posterior variances of (25), that
is,

δ(p) :=
σ2

h(p)|h(PMI
i )

σ2
h(p)|h(P̂)

. (27)

The following should be noted. First, the computation is
quite heavy for fine grids P̄ since determining n near-optimal
greedy training position requires O(nn̄4), where n̄ = |P̄|
(see [17] for approaches to reduce the computational com-
plexity to O(nn̄)). Second, a sufficiently fine grid for P̄ is
achieved only for |n̄| > 2n since the mutual information is
approximately monotonic [17, Sec. 4.2]. Third, δ(p) in (27)
is a function of the kernel, hence the optimization of mutual
information exploits prior knowledge in the kernel and the
result is dependent on the selected hyperparameters of the GP.

3) A Priori and Sequential Mutual Information Optimiza-
tion: The optimization of the MI in (23) does not require
training output Y , thus the algorithm can be executed a priori
for some selected hyperparameters. Since it is difficult to
select the hyperparameters and no data Y is available to tune
the hyperparameters using marginal likelihood optimization as
described in Section III-B4, this a priori MI optimization is
typically not optimal.

In contrast to the a priori approach, the MI optimization can
be performed sequentially, that is, the hyperparameters of the
GP are optimized based on the training outputs Y that are mea-
sured in the training input PMI

i before computing (23). Hence,
for every iteration i in (23), the near-optimal training position
is based on the best possible hyperparameters (see [40]). This
sequential MI optimization approach in relation to the GP is
presented in Section III-E and illustrated in Fig. 4.

D. Estimation of the Feedforward Parameters Using ILC
Accurate estimates of the feedforward parameters have

to be learned to obtain an accurate representation of the
position-dependent feedforward parameters. For reference tra-
jectories that do not excite the position dependence of the
system, the parameters can be automatically learned using a
data-driven method, such as ILC with basis functions (ILCBF).

1) ILC Definition and Objective: Considering the
closed-loop scheme of Fig. 2, the error is derived as a
function of the feedforward signal per iteration. To facilitate
the exposition, the system is assumed SISO, for MIMO
extensions (see [41]). An experiment, or iteration or trial, has
length N ∈ N with reference r j ∈ R

N and measured output
y j ∈ R

N , where the trial index is denoted as j ∈ N. The
measurement noise v j is assumed to be Gaussian with zero
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mean and variance σ2
j IN . From Fig. 2, it follows that the

tracking error of trial j is given by

e j = S r j−S G f j−S v j. (28)

The objective in ILC is to minimize the tracking error of the
next trial

e j+1 = S r j+1−S G f j+1 − S v j+1. (29)

By subtracting (28) from (29), and under the assumption of
r j+1 = r j = r, that is, r is constant with respect to the trial, the
error propagation from trial j to j + 1 is given by

e j+1 = e j−S G
(

f j+1 − f j

)
−S (v j+1 − v j). (30)

The objective in ILC is to minimize the predicted tracking
error for trial j + 1, ê j+1, based on measurements e j and f j

and a model of the real system S G.
2) Feedforward Parameterization: Recall that the postu-

lated feedforward of (5) for a given fixed position p reduces
to (7). Moreover, this time-stacked feedforward signal can
be rewritten as a polynomial basis functions feedforward
parameterization, given by

f j = Ψ(r j)θ j (31)

where Ψ(r j) ∈ RN×nθ is the basis function matrix, where
often (r) is omitted for brevity, and θ ∈ Rnθ are the
feedforward parameters (see [5] and [42]). Regarding the
selection of these basis functions, zero reference-induced
errors, that is, e j = −S v j in (28), can be achieved for
f j = G−1r j, hence the basis functions should be chosen such
that F(θ j) ≈ G−1, where F(θ j) is the convolution matrix
of Ψ(z) with θ j (see [42]). Indeed, (7) is recovered in case
Ψ(r) =

[
(d2/dt2)r (d4/dt4)r sign((d/dt)r)

]
, Kmfc = 1, and

θ =
[
k f a k f s k f c

]⊤
.

3) Solution of ILC: To minimize the tracking error of the
next trial, the predicted error of trial j + 1, denoted by ê j+1,
is achieved by minimization of the cost function

J j(θ j+1) := ∥e j − Ŝ G
(
Ψ(r j+1)θ j+1 − f j

)
∥2We

(32)

where We ≻ 0, ê j+1 = e j − Ŝ G
(
Ψ(r j+1)θ j+1 − f j

)
the predicted

error for trial j + 1 based on measurements e j and f j, and
Ŝ G a model of the real system S G. The optimal feedforward
parameters θ, thus the feedforward parameters at position p
corresponding to (5), are given by

θ
opt
j+1 := arg min

θ j+1

J j(θ j+1). (33)

The solution is computed analytically and is given by

θ
opt
j+1 =

[
Ψ⊤Ŝ G

⊤
WeŜ GΨ

]−1
Ψ⊤Ŝ G

⊤
Wee j. (34)

Model mismatch may sometimes lead to instability of the
parameter update rule. An input penalty term ∥Ψ(r j+1)θ j+1∥

2
W f

with weight W f ⪰ 0 can be included in (32) to guarantee
monotonic convergence of the parameters ∥θ j−θ∞∥2, see [42].
Note that, in practice, a limited set of basis functions is
often sufficient for convergence of the parameter update rule.
Moreover, model mismatch usually results in slower learning,
as such, sufficient consecutive trials should be performed till
the parameters seem to converge.

4) Aspects Regarding Estimation of Feedforward Parame-
ters: Three important aspects of ILC in regard to estimating
feedforward parameters should be noted. First, for certain
systems the feedforward parameters found by ILC are indeed
accurate approximations of physical parameters, for other
systems these approximations can be very inaccurate since
the algorithm optimizes the cost function (32) rather than
the accuracy of the parameter estimation. For example, the
acceleration parameter should really be viewed as an effective
mass, that is, a mass parameter corrected for motor force
constants, and only in some cases corresponds to the actual
total mass of the system under consideration. In general, the
approximations of physical parameters can be made more
accurate with careful selection of the basis functions and the
reference trajectories, such that the basis functions describe
the system dynamics accurately in the frequency range of the
energy of the reference. In particular, for estimating accel-
eration, friction, or snap parameters, references with energy
in the low-frequency range should be used, as these avoid
excitation of high-frequency dynamics that cannot be captured
by the polynomial parameterization of (31). Furthermore, these
reference trajectories should not excite position dependence,
so that Assumption 1 can be exploited.

Second, the GP interpolates the results of the ILC algorithm,
that is, the feedforward parameters that minimize the error.
Thus, the GP can be viewed as estimating the outcome of ILC
when it would be applied to a previously unseen position.

Third, besides the data-driven method of ILC, other param-
eter optimization approaches such as IVs can be used to
estimate the feedforward parameters at a position (see [7] for
considerations).

To conclude, ILC with basis functions allows for data-driven
and systematic learning of the feedforward parameters at
different fixed positions.

E. Integration of the Estimation, Interpolation, and
Optimization Methods

To achieve a systematic approach for position-dependent
feedforward, the estimation, interpolation, and optimization
appraoch of Sections III-B–III-D are combined, as depicted
in the scheme of Fig. 4, and summarized below.

1) Estimation: Starting with a reference r for which the
system satisfies Assumption 1 and one or more initial positions
PMI

i , the feedforward parameters θ can be estimated using (34)
given a set of basis functions as in (31). Note that multiple
consecutive ILC trials can be performed to gain insights into
the variance of the parameters due to, for example, trial-
varying disturbances, however, due to measurement noise
care must be taken to ensure independence of consecutive
parameter estimations of ILC.

2) Interpolation: The GP can be constructed using the
obtained data θ, PMI

i . Note that for multiple feedforward
parameters, one can construct independent GPs and optimize
the hyperparameters of each GP separately. Possible exten-
sions include the combination of all parameters in one GP.
Considering independent GPs, the GP of the lth feedfor-
ward parameter, θ[l], is denoted by gθ[l], and for each GP,
a kernel and hyperparameters need to be selected, possibly
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incorporating prior knowledge and optimizing the hyperpa-
rameters based on the data (see Section III-B4).

3) Optimization: The near-optimal training positions PMI
i+1

can be determined using (26) based on the kernel and selected
hyperparameters and the set PMI

i . Note that if multiple GPs
are constructed, only one of the GPs can be selected to base
the mutual information optimization scheme on, for example,
the GP of the parameter that is expected to be the most
position-dependent. Again, possible extensions include the use
of the combined GP for mutual information optimization.
At the next near-optimal training position, the ILC estimation
procedure can be repeated to extend the dataset, starting the
loop over again by setting i = i + 1. This iterative procedure
can be stopped when there is sufficient data for the GP to
make accurate estimates. Note that the framework also allows
for a continuous learning approach, where the feedforward
parameters for an unseen position are regressed from the GP,
and subsequent consecutive estimates of ILCBF during normal
operation are added to the data of the GP.

IV. Case Study CS1: Snap
In this section, a case study of CS1 of the proposed

GP method is presented that includes mutual information
optimization in a simulation of a simplified 1-D wafer stage,
constituting contributions 2) and 3). In particular, the snap
feedforward parameter is modeled using a GP that enables
high control accuracy for the broad operating range, and the
benefits and ease of use of optimizing the training positions
to achieve automated experiment design are highlighted. The
main motivations for a simulation of a simplified 1-D wafer
stage are to enhance reproducibility and to isolate the effect
of the flexible dynamics, therefore, an unsupported flexible
beam is chosen as the simulation model. First, the flexible
beam setup is described, followed by the setup to estimate
the snap parameter. Second, the GP is introduced that mod-
els the snap parameter. Third, the influence of the training
positions obtained by mutual information optimization and an
equidistant-spaced grid is compared. Finally, the resulting per-
formance of the proposed GP method with and without mutual
information optimization is compared to position-independent
feedforward for different test positions.

A. Flexible Beam Simulation Setup
An unsupported flexible beam has dominant flexible dynam-

ics that are a function of position due to varying output
locations. A schematic of the beam is shown in Fig. 5 and
represents a simplified 1-D example of a wafer stage depicted
in Fig. 3. The beam has a length of 500 mm, two actuators
on both sides of the beam that have the same input, that is,
a1 = a2 = (u/2), and a sensor with varying position. The
output location is emulated by moving the sensor position
p ∈ X = [−250, 250] mm with respect to the center of the
beam (see Fig. 3). The rigid-body mode, that is, translation
mode, and two flexible modes are considered, thus nRB = 1 and
n f = 3 in (3). A Bode magnitude plot of the linear dynamics at
different positions is shown in Fig. 6 and clearly highlights the
position-dependent flexible dynamics. A stabilizing feedback
controller is used and consists of a lead filter and gain to

Fig. 5. Schematic of the unsupported flexible beam setup with dominant
flexible dynamics as a function of position due to varying performance
location emulated by changing sensor position p ∈ [−250, 250] mm. Actuators
on both sides generate the same input force, that is, a1 = a2 = (u/2).

Fig. 6. Bode magnitude plot of the flexible beam G(p) for p = −250 mm
( ), p = −215 mm ( ), and p = 0 mm ( ). The flexible dynamics of G(p)
at p = −215 mm ( ) and p = 0 mm ( ), obtained after subtraction of the
rigid-body dynamics ( ) according to (3), clearly highlight the difference in
compliance as function of position at low frequencies.

achieve a bandwidth of 4 Hz. The beam follows a small
fourth-order reference profile of 0.5 mm designed according
to [36]. Moreover, the dynamics of the beam satisfies Assump-
tion 1 since the position dependency is not aligned with the
direction of the motion.

B. Estimation of the Snap Parameter
To estimate the snap parameter at various positions, the

estimation method of Section III-D is used. The basis functions
in (31) are selected as Ψ(r j) =

[
(d2/dt2)r j (d4/dt4)r j

]
to

obtain the acceleration and snap feedforward parameters θ[1]
and θ[2], respectively. An accurate model Ĝ of the beam
at p = 0 mm, as shown in Fig. 6, is constructed using
the Euler–Bernoulli beam theory and is used to construct
the model Ŝ G for the ILC solution of (34). This model is
position-independent, hence there is substantial model mis-
match depending on the actual position of the output. In Fig. 7,
it is shown that ILC significantly reduces the two-norm of the
error compared to only feedback of trial 1 and obtains accurate
estimates of the feedforward parameters.

C. GP of the Snap Parameter

A GP with prior knowledge of the snap parameter is con-
structed to model the snap parameter as a continuous function
of position, as described in Section III-B. Since the flexible
beam is symmetric around p = 0 mm, that is, the middle of
the beam, a zero-mean prior with an axis-aligned reflective
symmetric kernel is chosen to reflect this first-principles
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Fig. 7. Error two-norm ( ) and acceleration parameter θ[1] ( ) and
snap parameter θ[2] ( ) per ILC trial number at p = 0 mm.

knowledge. The axis-aligned reflective symmetric kernel [43,
Ch. 2] is the sum of two kernels [16, Sec. 4.2.4] and is defined
as

kaars(p, p′) := kse(p, p′) + kse(p,−p′) (35)

with

kse(p, p′) := σ f e
−

(p−p′ )2

2ℓ2 (36)

where kse is a squared-exponential kernel, ℓ is the characteristic
length-scale defining the smoothness, and σ f the output vari-
ance that defines the average distance of the function from its
mean, that is, a scaling factor. The hyperparameters ℓ, σ f , and
σ are optimized based on marginal likelihood optimization, see
Section III-B4.

D. Comparison of Mutual Information Optimization and
Equidistantly Spaced Grid

To highlight the automated experiment design of mutual
information optimization, a comparison between MI optimiza-
tion and an equidistantly spaced grid is performed. In total, n =
4 training positions are selected for both methods. The equidis-
tantly spaced grid is defined as PG = [−240,−160,−80, 0],
that is, the positions are distributed equidistantly over half the
operating range due to knowledge about symmetry. For each
position pi, the ILC estimate of the snap parameter at trial
j = 7, θ7[2], is considered as training data yi. The resulting GP
regression of the snap feedforward parameter gθ[2] using the
grid is shown in Fig. 8. Clearly, using an equidistantly spaced
grid does not fully utilize the prior knowledge incorporated
in the kernel, as measured in the center position, that is, the
symmetry point p = 0 mm, can be regarded as measuring
twice on the boundary due to the symmetry.

The a priori MI approach is followed (see Section III-C3),
that is, the hyperparameters are fixed beforehand and
optimized based on marginal likelihood optimization (see
Section III-C). The set of all possible training positions
P̄ = [−250,−249, . . . , 250] and the initial point is PMI

1 =

−240 mm, and repeatedly the next near-optimal greedy MI
set PMI

i for i = 1, 2, 3, 4 is derived using (26), resulting in
PMI

4 = [−240,−142,−52, 196]. The evolution of δ(p) of (27)

Fig. 8. Snap parameter modeled by GP using the axis-aligned reflective
symmetric squared-exponential kernel and equidistant-spaced grid PG with
mean ( ), training data PG ( ), and ±2σ bounds ( ). Note the symmetry
in the mean and variance due to the kernel choice. The equidistantly spaced
grid does not fully utilize the prior knowledge incorporated in the kernel,
hence, user intervention is required to construct an equidistantly spaced grid
that, for example, avoids the center position.

Fig. 9. Evolution of mutual information metric δ(p) of (27) per number
of training positions i = 1, 2, 3, 4. The training position are denoted with ( )
and start with PMI

1 = −240 mm. The training position that maximizes δ(p) is
indicated by ( ) and is added to training data PMI

i+1 according to (23). Clearly,
δ(p) is symmetric around p = 0 mm, and prior knowledge is exploited in
mutual information optimization to distribute the training positions.

for i = 1, 2, 3, 4 in (23) is shown in Fig. 9. Indeed, the a priori
MI optimization scheme clearly utilizes prior knowledge of
symmetry and selects the position with the highest information
gain to distribute the training data near optimally without any
additional user effort. The snap parameter modeled by the
GP with MI-optimized training positions is shown in Fig. 10.
Note that the variance is lower for positions far from the
center position compared to the grid approach in Fig. 8 due
to optimization of the training positions.

E. Results
The performance with respect to the two-norm of the error

is evaluated at every position in the operating range, com-
paring acceleration feedforward, position-independent snap
feedforward, and the proposed method using MI optimization
and an equidistantly spaced grid. For the GP-based methods,
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Fig. 10. Snap parameter modeled by GP using the axis-aligned reflective
symmetric squared-exponential kernel and MI-optimized training data PMI

with mean ( ), training data PMI ( ), and ±2σ bounds ( ). Note that
the training positions are distributed optimally without any user intervention
compared to using an equidistantly spaced grid as in Fig. 8.

Fig. 11. Error two-norm comparison of position-dependent snap feedforward
with the proposed method with an equidistantly spaced grid ( ) with ±2σ
bounds ( ), the proposed method using MI optimization ( ) with ±2σ
bounds ( ), position-independent snap feedforward ( ), and acceleration
feedforward ( ) per position p. Clearly, the performance of acceleration
feedforward is significantly lower than the other approaches, and using the
equidistantly spaced grid leads to a higher variance, hence, the MI approach
is significantly better.

the snap parameter is regressed using (15) for the entire
operating range. For the acceleration feedforward and the
position-independent snap feedforward, the parameters learned
with ILC at p = 0 mm are used for all positions. The
error two-norm of the different approaches are shown in
Fig. 11. Clearly, the position-independent snap feedforward
approach highlights the benefits of snap feedforward com-
pared to acceleration feedforward. The grid and MI-based
approaches both outperform the position-independent snap
feedforward approach, especially toward the edges of the
beam where a factor 2 reduction in the two-norm of the
error is observed. In the center position, the least performance
gain is obtained, as is expected where the center feedforward
parameters are estimated. Note that the grid- and MI-based
approaches differ slightly in performance depending on the

Fig. 12. Error time-domain signals of using position-dependent snap
feedforward with the proposed method with an equidistantly spaced grid ( )
with −2σ and 2σ bounds, respectively ( and ), the proposed method using
MI optimization ( ) with −2σ and 2σ bounds, respectively ( and ),
and position-independent snap feedforward ( ) and acceleration feedforward
( ) at p = −220 mm. The maximum error of the equidistantly spaced grid is
slightly worse than the MI-optimized method due to the difference in variance.

position and can be attributed to slight variations in the GP
due to the distance between test positions and the training
data. Moreover, in Fig. 12, the time-domain error is shown for
p = −220 mm, highlighting that the peak error is significantly
reduced using the GP-based approaches. The time-domain
error for the parameter values of E[g(p) : p = −220] ± σ
is also shown in Fig. 12, reflecting the uncertainty of the
GP estimates on the time-domain error. The MI approach
has a lower variance and thus a lower time-domain error for
p = −220 mm compared to the equidistantly spaced grid.
To conclude, the position-dependent snap parameter can be
modeled using a GP with prior knowledge and is applicable in
CS1. The MI approach enables automated experiment design
and reduces user intervention by using the prior knowledge
specified.

V. Case Study CS2: Motor Force Constant
In this section, the case study CS2 is analyzed for the

proposed method on an industrial wirebonder machine sub-
jected to the force ripple, constituting Contribution 4). First,
the wirebonder setup, design aspects of ILC, and the GPs
are described. Fourth, the relation between the GP of the
position-dependent acceleration parameter and the motor force
constant is explained. Fifth, the results of the proposed
method are presented in comparison to position-independent
feedforward.

A. Wirebonder Experimental Setup
The experimental setup is an industrial wirebonder by

ASMPT, shown in Fig. 13, and consists of a stacked xyz-stage
design as depicted in Fig. 1. Here, the input currents for
the linear synchronous motors of the x- and y-axis and the
voice-coil motor of the z-axis are considered as inputs, and
the encoder measurements of the positions of the x- and
y-stage and rotation of the z-stage are considered as outputs.
A schematic view of the actuator for the x-axis only is shown
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Fig. 13. Industrial wirebonder from ASMPT consisting of a stacked
xyz-stage, as shown in Fig. 1, and with position-dependent actuators,
as schematically shown in Fig. 3 (right).

in Fig. 3 (right), where the force is expected to be a function
of position and current due to the movement of the coils with
respect to the magnets. Regarding the stacked-stage design of
the machine, only the actuator force of the x-stage is expected
to be a function of x-position, and the actuator force of the
y-stage is expected to be a function of both x- and y-position,
hence, the influence of z on position dependence is neglected.

This experimental validation aims to achieve an accurate
position-dependent feedforward for any given position p =
(x, y), where (x, y) ∈ [−1, 1]2 ⊆ R2 covers the entire normal-
ized operating range of the machine. The reference trajectories
for the x- and y-axes, denoted by rx and ry, respectively,
are fifth-order motion profiles with normalized distances of
0.0075 and 0.0213 with respect to the total operating range
for x and y, respectively, and are designed so that the machine
stays close to a fixed position p. The z-stage is regulated to
zero by feedback control, possibly influencing the performance
of the y-stage due to rigid-body coupling between the y- and
z-stages. Due to confidentiality reasons, all results related to
the industrial wirebonder are normalized with respect to the
maximum value of the respective figure.

B. Estimation of the Feedforward Parameters

The feedforward parameters are accurately estimated as
described in Section III-D. The basis functions of (31) are
derived as follows. The stacked xy-stage has a high stiffness
between actuators and sensors, that is, the rigid-body dynamics
are expected to be dominant, and friction effects in the
bearings are known to significantly affect the performance.
Furthermore, a certain level of rigid-body coupling is expected
between the z-stage in relation to the y-stage and no coupling
between the x- and y-stages is expected. Taking into account
these effects for the x- and y-axes, the basis function matrix
in (31) is defined as

Ψ(r j) =


d2

dt2 rx, j
d
dt

rx, j 0 0 0

0 0
d2

dt2 ry, j
d
dt

ry, j ψ(ry, j)


(37)

Fig. 14. Normalized error two-norm per ILC trial (left) in the center location
with corresponding acceleration parameters (middle) and velocity parameters
(right), where the x-axis is ( ) and the y-axis is ( ). The error two-norm
and the feedforward parameters converge within eight trials.

to obtain acceleration and velocity feedforward for both stages
in addition to rigid-body feedforward of the coupling between
y- and z-stages, described by the nonlinear basis function
ψ(ry, j). This is a decentralized feedforward design (see [41]),
due to the lack of coupling between the x- and y-stages.
The model Ŝ G used in (34) is constructed using a parametric
model Ĝ obtained from frequency response measurements and
is position independent, this model mismatch may lead to slow
convergence of the ILC algorithm in Section III-D.

In Fig. 14 (left), the two-norm of the error for both axes
in the center location is shown, highlighting the convergence
of the error in eight trials. Moreover, in the middle and right
plots, respectively, the acceleration and velocity parameters are
shown for both axes and variance in the parameters is clearly
present.

To construct an accurate training dataset for each parameter
in each position, 20 ILC trials are performed in each position.
The corresponding training position for each parameter is
pi = [x, y], where x, y denotes the initial position of the
respective axis for the training position i = 1, . . . , n. At every
training position pi, 8 estimates of the feedforward parameter
(θ j) j=13,...,20 are taken to construct the data yi corresponding to
pi. Importantly, note that due to the iterative nature of ILC,
the parameters (θ j) j=13,...,20 might not be i.i.d. as assumed in
the noisy measurements of (13). It is expected that for these
iteration numbers, ILC is close to the converged value and the
trial-varying disturbances lead to approximately independent
contributions, so that in practice the results are not influenced
much.

Next, optimization of training positions pi and construction
of the GPs are investigated.

C. GPs of the Feedforward Parameters

To describe the position dependence of the feedforward
parameters, for each parameter, a separate GP is constructed
with a zero mean prior and a squared-exponential covariance
function (36). Thus, no prior knowledge of symmetry is
incorporated, as in CS1 of Section IV, nor is any periodicity
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Fig. 15. Normalized training positions PMI
15 ( ) in the xy plane determined

using MI optimization and six arbitrary test positions ( ) for evaluating the
performance of the experiments.

assumed. Moreover, a sequential MI optimization scheme
with n = 15 total training positions starting at the center
position is used. In each consecutive training position, ILCBF
is performed to obtain eight estimates of the feedforward
parameter, after which the hyperparameters are optimized
based on the marginal likelihood optimization. Since MI
optimization requires only one GP and multiple GPs are
constructed, only the GP of the acceleration parameter of
the y-axis is used to determine the next near-optimal training
position. The resulting training positions PMI

15 are depicted in
Fig. 15 and show a near-optimal distribution of the training
data.

The constructed GP for the acceleration parameter, θ[1],
of the x-axis, gθ[1](p), is illustrated in Fig. 16, clearly highlight-
ing position dependence of the parameter in the x-direction
and no position dependence in the y-direction, as expected.
Furthermore, the GP accurately describes the fluctuation of
the acceleration parameter as a continuous function of position
using only n = 15 training positions, each with eight estimates
of θ[1]. The GPs of the other feedforward parameters are omit-
ted for brevity, as the position dependence of these parameters
does not exhibit interesting position-dependent behavior.

D. Relation of Position-Dependent Acceleration Parameter
and Motor Force Constant

The GP of the acceleration parameter of the x-axis in Fig. 16
exhibits a clear position-dependent behavior that can be related
to the variation in the motor force constant caused by the
force ripple in linear synchronous motors. In this section,
the position-dependent acceleration parameter GP is related to
the motor force constant, and a validation of the GP using
a traditional motor force constant calibration procedure is
performed.

The relation between the position-dependent acceleration
parameter and the motor force constant can be described as
follows. Recall (4), if Kmfc(p) differs from its actual value, the
feedforward parameters k f must compensate for this variation.
Under the assumption of dominant rigid-body dynamics, the

Fig. 16. Normalized GP of acceleration parameter of the x-axis, gθ1 (p), with
training positions ( ). Top view with training positions PMI

15 (top right).

Fig. 17. Normalized GP of the acceleration parameter of the x-axis, gθ(p), for
the y-axis in center location, that is, y = 0 and variation of motor force constant
K̃mfc(p) measured using traditional motor force constant calibration procedure.
Note that both methods describe the same position-dependent behavior and
this confirms that the position-dependent acceleration parameter modeled by
a GP compensates the variation of the motor force constant.

acceleration feedforward is the main contributor to the feed-
forward signal, hence, the variation in motor force constant
is directly captured by a varying acceleration parameter as a
function of position.

A traditional motor force constant calibration procedure
is performed on the wirebonder to validate the GP. The
motor force constant is calibrated by first segmenting the
operating range and performing small-amplitude motions in
each segment. When comparing the control output necessary
for performing that motion, variations of the control output are
related to variations in the motor force constant for each indi-
vidual segment. The motor force constant obtained from this
calibration method is shown in Fig. 17 and is compared to the
GP gθ[1](p) of Fig. 16 for a fixed position of y = 0 mm. Clearly,
both methods describe the same position-dependent behavior
of the actuator, and this confirms that the position-dependent
acceleration parameter modeled by a GP compensates for
the variation of the motor force constant. A slight offset in
Fig. 17 (right) is observed for the calibration of the motor
force constant with respect to gθ[1](p). This could be explained
by the directionality of the reference, as all motions are only
in the positive x-direction, or by the definition of the initial
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Fig. 18. Normalized error two-norm comparison of position-independent
feedforward from center position ( ), the position-dependent GP feed-
forward approach ( ), and best achievable performance of performing
ILCBF locally ( ) that indicates the interpolation error of the GP at the
6 test positions defined in Fig. 15. Clearly, the proposed method achieves an
accuracy similar to ILCBF, that is, a very low interpolation error is achieved
and it significantly outperforms the position-independent feedforward method.

Fig. 19. Normalized time-domain error signals at test position 2 of
position-independent feedforward from center position ( ), position-de-
pendent GP feedforward approach ( ), and best achievable performance
of performing ILCBF locally ( ) at test position 2. The maximum error
of the proposed approach significantly outperforms the position-independent
feedforward and almost achieves the performance of performing ILCBF
locally.

position of the machine, as the start point of the reference
is considered instead of the end or midpoint of the motion,
or could be a consequence of position-dependent friction.

E. Results

In Fig. 15, six arbitrary test positions are shown in which
the proposed method is compared to position-independent
feedforward, and the results are depicted in Fig. 18. The
position-independent feedforward method employs the feed-
forward parameters estimated at the center position throughout
all six test positions. At each test position, ILCBF is also
performed, showing the best possible performance given the
feedforward parameterization, thus indicating the interpola-
tion error of the GP. Clearly, the proposed method achieves

accuracy similar to ILCBF, that is, a very low interpolation
error is achieved using the GP approach, and it significantly
outperforms the position-independent feedforward method.
In particular, the maximum error in the time domain for the
second test position is more than a factor two lower using
the proposed method, as shown in Fig. 19. Interestingly, the
performance of position-independent feedforward is similar to
the GP-based method for test positions 1 and 3, which can be
explained by the period of the position dependence of Fig. 16
being equal to the magnet pitch, that is, the distance between
magnets, as shown schematically in Fig. 3 (right). To conclude,
the GP approach enables accurate feedforward control for the
entire operating range of the wire bonder subjected to force
ripple, showing the applicability of the framework in CS2.

VI. Conclusion
The presented framework for interpretable and task-flexible

position-dependent feedforward via GPs enables accurate con-
trol for position-dependent systems over the entire operating
range of machines. The data-driven framework combines
estimation, interpolation, and optimization methods. ILC with
basis functions enables data-driven estimation of feedforward
parameters for a given position, GPs enable accurate modeling
of feedforward parameters using prior knowledge that is incor-
porated in the kernel, and mutual information optimization
exploits the variance estimates of the GP to near-optimally
distribute the training positions for automated experiment
design. The benefits of the developed framework are illustrated
in a case study of a simplified 1-D wafer stage where improved
tracking accuracy is achieved by position-dependent snap
feedforward and automated experiment design is enabled by
utilizing prior knowledge, for example, symmetry, about the
system. In the case study of a wirebonder, significant perfor-
mance improvement of the developed approach is achieved
compared to position-independent feedforward. In addition,
position-dependent variations in the motor force constant,
which are caused by the force ripple in linear synchronous
motors, are clearly compensated for by the acceleration feed-
forward parameter as it recovers results obtained using a
traditional motor force constant calibration method.

Ongoing research focuses on modeling unknown nonlinear
effects using GPs that cannot be easily specified in the basis
functions [21], extending the basis functions with a different
approach to model-order selection [20], estimation and model-
ing of magnetic saturation in the actuators [44], and extensions
to evaluate the GP as function of position, similar to [45].
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