
Different approaches to fitting and extrapolating the learning curve

Donghwi Kim
Supervisor(s): Tom Viering, Marco Loog

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2022



Abstract

Extrapolation of the learning curve provides an es-
timation of how much data is needed to achieve
the desired performance. It can be beneficial
when gathering data is complex, or computation re-
source is limited. One of the essential processes of
learning curve extrapolation is curve fitting. This
research first analyses the behaviour of existing
curve fitting methods such as Newton, Levenberg-
Marquardt and Evolutionary algorithms when fit-
ting different function models on learning curves.
Furthermore, it also illustrates a few techniques to
improve the learning curve fitting and extrapolation
procedure.

1 Introduction
Predicting how much data is needed to achieve the de-
sired accuracy in machine learning can be helpful when
computation resources are limited or data collection is
difficult or expensive [14]. For example, when doing the
hyper-parameter tuning, with the assistance of the learning
curve extrapolation, turning that is predicted to be poor can
be disregarded in the early stages and save the computation
resource [5]. The learning curve plots the performance
of the training set corresponding to the sample sizes. The
extrapolation of the learning curve provides an estimation
of the number of samples needed to reach expected per-
formance [4]. In order to make the most of learning curve
extrapolation, the method of curve fitting and extrapolation
should be considered precisely.

Until now, several research studies have been done on
curve fitting and learning curve extrapolation. Curve fitting
is finding the best parameter values for some mathematical
model function that best fits some data point series. So
far, several studies have aimed to find the most suitable
algorithm for curve fitting. Some researchers have evaluated
different curve-fitting algorithms such as Newton, Gauss-
Newton and Levenberg-Marquardt methods and concluded
that Levenberg-Marquardt performs well in general cases
regarding computation time and accuracy [9]. Also, some
researchers have applied the genetic algorithm to fit curves
[8]. It turned out that the genetic algorithm often performs
better than Levenberg-Marquardt as it initiates with a
population containing multiple candidate solutions making
it less dependent on the quality of the initial parameter
values than Levenberg-Marquardt, which starts from one
initial parameter values [16]. Most research on learning
curves used the Levenberg-Marquardt method to fit and
extrapolate learning curves to perform their experiment [14;
3; 1]. Furthermore, some research has reduced the search
space by limiting the bounds of parameter values by applying
the idea that the error rate of the learning curve is between 0
and 1, and the error rate of a typical well-behaving learning
curve decreases for larger training size, making the curve fit-
ting and extrapolation process more efficient and accurate [1].

Even though several different curve-fitting algorithms
exist, most studies on learning curves have experimented
with only using the Levenberg-Marquardt method. Also,
research on applying the genetic algorithm to curve fitting,
in general, discusses only the accuracy, and it may be
questionable whether it is still good regarding computational
resources. The wrong selection of the initial parameter
values of the model function or curve fitting algorithm may
lead to an inaccurate curve fitting result [6]. Nevertheless, a
study on a different curve-fitting method for fitting learning
curves has not been done in-depth. Another concern on
learning curve fitting is that extrapolation performance could
be terrible even if the model function has fitted well on
the given empirical learning curve with a limited training
size [3]. Bad extrapolation result, for example, when the
estimated error rate is not in the range between 0 and 1 while
the error rate of a learning curve can never reach the value
under 0 or above 1, does not help predict the data size needed
to achieve specific accuracy.

This research will analyse the pros and cons of the dif-
ferent existing curve fitting algorithms for fitting the learning
curve. It will also explore some ways of configuring the ini-
tial parameter values of the model function. Furthermore, it
will examine some approaches to avoid terrible extrapolation
results by modifying the objective function used in the curve
fitting process.

The organisation of the sections is as follows. Section
2 illustrates the definition and details of each method experi-
mented with in this research. After that, section 3 presents
a few techniques to improve the learning curve-fitting
procedure. Section 4 contains the setup configuration of
curve fitting methods and information on the datasets used in
the experiment. Section 5 presents experiment results, and
section 6 discusses impactful or doubtful results. Section 7
summarises the research and discusses the future recommen-
dations. Finally, section 8 discusses the reproducibility of the
experiments.

2 Methodology
This research analyses the performance of the following dif-
ferent methodologies for the fitting and extrapolating learning
curve.

2.1 Learning curve extrapolation
The learning curve extrapolation estimates how much more
data is needed to achieve the desired accuracy by fitting some
model function to the empirical learning curve generated with
limited data size for training. The evaluation process of ex-
trapolation is as follows. When given empirical learning
curves generated from sufficient data size, the performance
of extrapolation is measured using the hold-out method by
dividing empirical learning curve into training anchors for fit-
ting model functions and test anchors for evaluating extrapo-
lation performance [3]. The figure 1 shows an example of the
division of empirical learning into training anchor and test an-
chor, and extrapolation of the learning curve. After dividing



Figure 1: This figure shows an example of the division of the em-
pirical learning curve into training anchor and test anchor. It is also
possible to find extrapolation results on the test anchor generated by
fitting the pow4 model function on the training anchor.

the empirical learning curve, the next task is to fit the model
function on the empirical learning curve on the training an-
chor. In general, the main goal of the fitting curve is finding
the best parameter values for a model function that minimises
the mean squared error between the empirical learning curve
and the model function on the training anchor. It is possible
to achieve this goal with some curve fitting method described
in section 2.2, which aims to find the parameter values for
the model function that minimise the objective function (1).
With optimal parameter values found for the model function
through the curve fitting process on the test anchor, it is pos-
sible to extrapolate the learning curve on the test anchor. Fi-
nally, it is feasible to evaluate extrapolation performance by
measuring the error between the extrapolated learning curve
and the empirical learning curve on the test anchor.

2.2 Curve fitting methods
As mentioned in the previous subsection, the main goal of the
fitting curve is finding the best parameter values for a model
function that minimises the mean squared error between the
empirical learning curve on the training anchor. The objec-
tive function that the curve fitting method aims find parameter
values that minimise it is as follows:

f(x⃗) =

n∑
i=0

(ei −mi(x⃗))
2 (1)

where x⃗ is the vector containing parameter values, 0 to n is
the index of training sizes on the training anchor, ei is the er-
ror rate from the empirical learning curve on ith training size,
and mi(x⃗) is the error rate estimated from the model function

using parameter values x⃗ on ith training size. The example
of model function can be found on table 1. Two different
types of curve fitting methods are considered: the local op-
timisation method and the global optimisation method. The
local optimisation method, such as Newton and Levenberg-
Marquardt, starts from one initial point representing the po-
tential best parameter values of the model function and finds
the best solution in a limited search space near the initial
point. On the other hand, for global optimisation algorithms,
such evolutionary algorithms initiate with a population con-
taining multiple candidate solutions that evolve throughout
the iterative process. Unlike local optimisation algorithms,
it aims to find the best solution in the entire search space.
The following paragraphs will explain some curve-fitting al-
gorithms in detail.

Newton method
The Newton method aims to find the parameter values, x⃗ such
that ∇f(x⃗) = 0 by iteratively updating x⃗ using the gradi-
ent and the hessian matrix of objective function, f(x⃗). Note
that f(x⃗) has a local minimum at x⃗ where ∇f(x⃗) = 0. The
following equation illustrates the procedure of updating x⃗ in
iterations.

x⃗k+1 = x⃗k −∇2f(x⃗k)
−1∇f(x⃗k)

where x⃗k is the parameter values, ∇f(x⃗k) is the gradient
and ∇2f(x⃗k) is the hessian matrix of the objective function,
f(x⃗k) at iteration k. [9].

Levenberg-Marquardt method
The Levenberg–Marquardt method (LM) is a combination
of two optimisation methods: gradient descent and Gauss-
Newton [6]. When parameter values are far from the optimal
value, LM behaves like the gradient descent method, which
finds optimal parameter values by updating parameter values
in the steepest-descent direction [6; 10]. When parameter
values are close to the optimal values, LM acts like Gauss-
Newton. The Gauss-Newton method minimises the sum of
the squared errors by assuming the objective function locally
quadratic and finds the minimum of quadratic [9].

Differential evolution method
Differential evolution algorithm (DE) starts with the initial-
isation of population, which contains several candidate so-
lutions. In each iteration, the population evolves through the
crossover process on selected well-performing solutions from
the population and mutation that keep solutions in the popula-
tion diverse [12]. The algorithm terminates when it has found
the optimal solution or reached the maximum iteration set be-
forehand. After termination of the algorithm, the local opti-
misation algorithm can be applied to the best solution in the
population to enhance the performance slightly. It is called
the polishing method.

3 Proposed further method
This research experimented with two techniques to further
improve the learning curve-fitting procedure. The following
subsections describe the details of each technique.



(a) Distribution of parameter
values of log2

(b) Distribution of parameter
values of pow3

Figure 2: The figures shows distribution of parameter values of the
model function log2 and pow3 defined on section 4. The green scat-
tered plot illustrates the distribution of the optimal parameter val-
ues for model functions of many different empirical learning curves,
while the red plot represents the K-means centroids of the distribu-
tion. Note that datasets and learners from appendix A were used to
generate empirical learning curves for this experiment.

3.1 Deriving initial parameter values with assist of
k-means clustering algorithm

For local optimisation algorithms, which initiate with one ini-
tial point, a bad choice of initial parameters value may lead
to poor curve fitting results [16]. Limiting the bounds of ran-
dom initial parameter values can be one way to prevent poor
curve fitting results [1]. However, the search space is still
huge when there are many parameters in the model function,
or the possible bounds of each parameter values are signifi-
cant. Nevertheless, figure 2 shows that even though each pa-
rameter value lies on a large bound, the distribution of prob-
able combinations of parameter values is dense. One way of
finding the best initial parameter values using the distribution
of parameter values of quantity of empirical learning curves
is as follows, which is the method of initialising parameter
values with assist of K-means clustering algorithm (KMI).

For KMI, the learning curve database is divided into two
parts: one group of the dataset for determining the initial
points and another for evaluating the curve fitting and extrap-
olation performance. The simplified process for each group
of the datasets is shown in figure 3. First, for the group of
datasets for determining the initial points, the model function
is fitted on the entire empirical learning curves with the curve-
fitting algorithm. Next, the K-means clustering algorithm de-
rives centroids of optimal parameter values found from the
previous step that fit the model function well on the empirical
learning curve. The example of calculated centroids of pa-
rameter values from many empirical learning curves is shown
in figure 2. For the datasets for evaluating the curve fitting
and extrapolation performance, procedures remain the same
as in section 2, except for using K-means centroids calculated
in the previous step as the initial parameter values instead of
random values.

3.2 Modification of objective function to avoid bad
extrapolation

The problem of the fitting learning curve has characteristics
that a typical curve-fitting problem does not possess. Unlike

Figure 3: Process of driving initial parameter values and perfor-
mance evaluation of KMI.

the general curve-fitting problem, the goal of the fitting
learning curve is to extrapolate the learning curve on the test
anchor to predict how much more data is needed to reach
specific accuracy. Thus, if the extrapolation result is terrible,
for example, when the predicted error rate is not between
0 and 1, it may be useless. Few different methods exist to
avoid poor extrapolation results on the test anchor. One way
could be running a curve-fitting algorithm repeatedly with a
different initial point until it returns the values of parameters
that have good extrapolation results on test anchors [3].
A further approach to this method can be limiting bounds
to initial parameter values to avoid using initial parameter
values that potentially result in bad extrapolation when using
random initial parameter values [1]. The following paragraph
illustrates the method to avoid bad extrapolation results
throughout curve fitting algorithm execution via modification
of the object function.

The following modification of the objective function is
considered in the experiment:

f(x⃗) =

n∑
i=0

(ei −mi(x⃗))
2

+

k∑
i=n+1

((max(1,mi(x⃗))− 1) + min(0,mi(x⃗))
2

(2)



f(x⃗) =

n∑
i=0

(ei −mi(x⃗))
2

+

k∑
i=n+1

((max(en,mi(x⃗))− en) + min(0,mi(x⃗)))
2

(3)
where x⃗ is the vector containing parameter values, 0 to n is
the index of training sizes on the training anchor, n + 1 to
k is the index of training sizes on the test anchor, ei is the
error rate from the empirical learning curve on ith training
size, and mi(x⃗) is the error rate estimated from the model
function using parameter values x⃗ on ith training size. The
following paragraph explains each objective function in detail

The objective function of standard learning curve fitting
considers how well the model function is fitted on the
empirical learning curve on the training anchor, as shown
in equation (1). The modified objective considers the
performance of curve-fitting on the training anchor as well
as examines how extrapolation behaves on the test anchor.
The error range of the learning curve is always between 0
and 1. The first modification, shown in equation (2), adds
an additional penalty to the objective function when the
error rate of extrapolated learning curve goes below 0 or
above 1 for test anchor size. Another characteristic of the
most learning curve, the well-behaving learning curves, is
that the error rate decreases for the greater training size.
The second modification, shown in equation (3), adds an
additional penalty to the objective function when the error
rate estimated from extrapolation on the test anchor is larger
than the error rate of the last training anchor from empirical
learning curve.

4 Experimental Setup
The following subsections illustrate several important setup
environments for the algorithm or method used in the experi-
ment.

Data Collection and empirical curve generation
The datasets from OpenML [2] are used to create the em-
pirical learning curves. Generation of the empirical learning
curve for evaluation of the experiment result is done with five
datasets using twelve different learners. The details of the
datasets and learners used for the experiment can be found in
appendix B. The information of datasets and leaners used to
generate empirical learning curves for KMI to derive the ini-
tial parameter values is shown in appendix A. The empirical
learning curve was generated via LCDB [3] using the strati-
fied fold method.

Model function
This research examines the following model functions shown
in the table 1 with parameters given bounds.

Algorithm implementation
The experiment on the different algorithms, Newton,
Levenberg-Marquardt and differential evolution, was done
using the SciPy optimisation library [15]. It is possible to
find the important setting of the environment of the algorithm

Bounds of the parameters
Model Function a b c d

min max min max min max min max
log2 −a log x+ b −1 0 0 1 - - - -
pow2 −ax−b −1 0 −1 0 - - - -
exp3 a exp−bx+ c −10 100 −10 100 −100 10 - -
pow3 a− bx−c 0 150 0 150 0 10 - -
exp4 c− b exp−axd −10 100 −10 100 −100 10 −5 15

pow4 a− b ∗ (x+ d)−c 0 150 0 150 −5 50 −1 10

Table 1: The table illustrates model function and its bounds for the
parameter. The bound first have been derived analytically and mod-
ified afterwards by examining shape of the actual existing empirical
learning curves. Note that anchor sizes x has been scaled to be in
range between 0 and 1.

in appendix C. Detailed description of each environment
setting can be found on Scipy [15]. For KMI, the SciPy
cluster library [15] was used to calculate the centroids of
optimal parameter values of the different model functions for
the number of empirical learning curves.

No further modification has been applied to the New-
ton and Levenberg-Marquardt method shown in section 2.2.
For LM and Newton methods, two approaches have been
used for initialising parameter values: random parameter
values given bound defined in table 1 and parameter values
derived by KMI explained in section 3.1. Furthermore,
the hybrid approach of using two curve fitting methods,
which is applying the Levenberg-Marquardt method to the
one best result found by the Newton method, has also been
experimented. For this approach, the optimal parameter
values are computed with the Newton method with the trial
on several initial points. After that, the LM is executed using
the one best parameter values found by the Newton method
as an initial point.

The DE has experimented on the different numbers of
the initial population. The initial population was derived
from the KMI. For the crossover and mutation methods,
no modification was applied. It is possible to find further
information on mutation and crossover methods on [12].
The Levenberg-Marquardt method was used as a polish-
ing method, which is applied to the best solution of the
population from last iteration to improve the performance
slightly.

5 Results
This section illustrates the experiment result of the method-
ologies described in the previous sections.

Figure 4 illustrates how the method of initialising the
parameter values affects the performance of the curve fitting
for LM. Note that the performance of the curve fitting in
this context refers to how the curve fitting of the model
function is done successfully on the empirical learning curve
on the training anchor. First, for the simple function model,
such as log2 and pow2 with two parameters with small
bounds, it was possible to reach its maximum curve fitting
performance with trials on very few initial points. Also, the
curve fitting performance was equivalent for both methods



Figure 4: This figure compares the curve fitting performance of the
different methods of initialising parameter values for different func-
tion models and the number of initial points used.

of initialising the parameter values, which are the random
initialisation method and KMI. In other words, the quality
of the initial parameter values chosen did not affect curve
fitting performance for simple model functions. However,
for the complicated models functions, such as pow4 and
exp4 with four parameters with large bounds, trials on a
sufficient amount of initial points were required to achieve its
maximum performance with randomly initialised parameter
values. It was possible to achieve maximum curve fitting
performance of complicated function models with the trials
on fewer initial points with KMI compared to using randomly
initialised parameter values. Still, it was noticeable in figure
4 that even with the KMI, the complicated function model
still needs more than ten initial points to reach its maximum
curve fitting performance. In comparison, the simple func-
tion model achieved its maximum curve fitting performance
with less than five initial points. Nevertheless, the figure 4
shows that when experimented on a sufficient number of the
initial point, the more parameter the model function had,
the better it fitted on the empirical learning curve on the
training anchor. In other words, when a sufficient number of
initial points are used, the complicated function model, such
as pow4, fits better on the empirical learning curve on the
training anchor than the simple function model, such as log2
and pow2.

Figure 5 shows a comparison regarding curve fitting
performance and computation time on the Newton method
and LM using different methods of initialising parameter
values. As also explained in the previous paragraph, for LM,
the method of initialising parameter values had an impact
on curve fitting performance for only complicated function
models, such as pow4. On the other hand, for the Newton
method, the method of initialising parameter values impacted
all model functions, and the curve fitting performance gap
between KMI and random initialisation of parameter values
was more significant than that of LM. It means that the
performance of the Newton method was more dependent on
the quality of initial parameter values when compared to the
LM. Comparing the Newton method and LM shows that LM

performs better on curve fitting regardless of model function
and method of initialising parameter values. Considering
computation time, complicated models, such as pow4, the
Newton method finds its solution significantly faster than
the LM. However, for the simple model function, log2, the
computation time of the LM and Newton methods did not
differ significantly. Furthermore, figure 5 also shows that for
complicated model functions, applying the LM to the one
best parameter values found by the Newton method using
KMI performed almost good as only using LM while having
considerably faster computation time.

Figure 5: The first figure compares the curve fitting performance
of different curve fitting algorithms and the method of initialising
the parameter values. To measure the curve fitting performance,
MSE error between empirical learning curve and extrapolated learn-
ing curve on training anchor is used. The second figure compares
the computation time of different curve fitting algorithms and the
method of initialising the parameter values. Note that 10 initial
points were used for these experiment.

Figure 6 illustrates the performance of curve fitting and
computation time of DE on different population sizes and
compares DE to LM. For the simple function model, log2,
with minimal initial population size, DE reached its maxi-
mum curve fitting performance equivalent to that achieved
with LM. Figure 6a shows that from population size less



(a) log2 comparison of DE to
LM with 5 initial points

(b) pow4 comparison of DE to
LM with 20 initial points

Figure 6: The figure compares DE using different sizes of the initial
population to the LM. The dashed lines illustrate the performance
of LM regarding computation time and curve-fitting performance,
while the solid line represents the performance of the differential
evolution algorithm. Note that for both DE and Lm, KMI was used
for the initial population and points, respectively.

than five, the performance of DE converged to performance
equivalent to LM using five initial points. However, DE with
population size five took a slightly longer computation time
than LM with five initial points. On the other hand, for the
complicated function model, pow4, larger population size
for DE improved curve fitting performance. However, the
increase in the size of population also leads to an increase
in computation time. Figure 6b shows that even with a
population size of 40, the curve fitting performance of DE
was still below the performance of LM with only 20 initial
points, and LM took much less computation time to achieve
this result.

Figure 7 shows the extrapolation performance for dif-
ferent model functions using different buckets for training
anchors for different curve fitting algorithms, methods
of initialising parameter values and different objective
functions. Note that the extrapolation performance in this
context refers to how well the extrapolated learning curve
predicts how much accuracy it can achieve with training
sizes on the test anchor. For the objective function (1)
that only considers curve fitting performance on training
anchor, when comparing methods of initialising parameter
values, KMI had equal or better extrapolation performance
than randomly initialising the parameter values. Figure 7
shows that for object function (1), both the Newton method
and LM, respectively, showed equal or better extrapolation
performance when using KMI than randomly initialising the
parameter values for all bucket sizes for training anchors for
all model functions. It was also notable that the extrapolation
performance gap between randomly initialising the parameter
values and KMI was comparably larger for Newton than for
LM. When comparing the Newton method and LM, the LM
generally showed better performance. Figure 7 illustrates
that except for the log2 model using the small bucket,
using objective functions (1) and KMI, LM always showed
better performance on extrapolation than the Newton method.

The detailed description of the objective functions (1),
(2) and (3) are described in section 3.2. Compared to the
object function (1), the (2) performed better on the extrap-
olation. Figure 7 shows that for both the Newton method
and LM using KMI, the objective function (2) performed
better on extrapolation than (1) on all the buckets sizes for
training anchor for both log2 and pow4 model functions.
When the objective function (3) is compared to the (2) for
LM, there was very slight or no increase in the extrapolation
performance. For the Newton method, a extrapolation
performance comparison between objective functions (2)
and (3) was inconsistent for different the buckets used for
training anchor and model functions. Figure 7 shows that for
the Newton method, objective function (3) performs better
than (2) for some model functions for some bucket size used
for training anchor and sometimes other way around.

Objective functions

(1)
Considers curve fitting performance
of model function on empirical
learning curve on training anchor

(2)
Addition to (1), adds extra penalty when error rate of
extrapolated learning curve on test anchor
is not in range between 0 and 1

(2)
Addition to (2), adds extra penalty
when error rate estimated by extrapolated learning curve on test anchor
goes above the error rate of last training anchor from empirical learning curve

Figure 7: The first table briefly describes each objective function
considered in the experiment, and it is possible to find the detailed
information in section 3.2. The second table shows the percentile of
good extrapolation of total extrapolation result. The good extrapo-
lation result here refers to the case where the difference between the
error rate of the last test anchor predicted by learning curve extrap-
olation and the empirical learning curve is less than 0.1. This exper-
iment considers the different methods of initialising the parameter
values, objective function and curve fitting for different bucket sizes
of training anchor for log2 and pow4 model functions. Bucket size
0.1∼0.2 means that the first 10∼20% of the entire empirical learn-
ing curve is used as a training anchor and the rest as a test anchor.
Note that 15 initial points were used for this experiment.

6 Discussion
This section discusses some doubtful or interesting result
found from the previous section.

Regarding initialisation of the parameter values, the re-
sult showed that KMI performed better on curve fitting than
random initialisation of the parameter values, especially for
the complicated function models. It is shown in figure 4. The
advantage of the KMI illustrated in section 3.1 can be that



whenever it is possible to retrieve the number of datasets for
deriving the initial parameter values, the KMI method can
be easily applied to any function model disregarding how
many parameters it has. Thus, KMI can be a suitable method
for finding good initial parameters for model functions with
too many parameters or possible bounds of each parameter
are too large. Nevertheless, the setup cost for KMI, such
as preparing the number of datasets for deriving the initial
parameter values and computation time for retrieving the
centroid through the K-means clustering algorithm, should
be considered when choosing this method. For example,
for simple models, log2, which showed good curve fitting
performance on any method of initialising parameter values
with the trial on a minimal number of initial points, KMI
might not be the most efficient way.

The LM showed better curve fitting performance than
the Newton method. This is shown in figure 5. Specifically
for simple function models, its computation time was very
slightly faster than the Newton method. On the other hand,
for the complicated function models, LM performed better on
curve fitting than the Newton method, but it took comparably
more computation time. One notable result regarding initial
parameter values was that when KMI was used instead of
randomly initialising the parameter values, the increase
in curve fitting performance of the Newton method was
relatively higher than that of LM. The reason the curve
fitting performance LM got less affected by the quality of the
initial parameter could be that, as mentioned in section 2.2,
LM uses the gradient descent method when the parameter
values are far away from the optimal solution. Note that
unlike the Newton method, which uses a gradient and the
Hessian matrix of the objective function, the gradient descent
method only uses a gradient to update parameter values in
every iteration, making it slower but more accurate when the
objective function is complicated [10]. Another noticeable
result was that for complicated function models when using
KMI, applying LM to only one best solution found by the
Newton method showed curve fitting performance almost
close to running LM on all initial points. But this approach
took less computation time than running LM on all initial
points. This approach might be a good alternative to using
only LM for complicated function models when given limited
computational resources, but curve fitting performance is
also essential.

The result found that the DE did not perform better
than LM and took more computation time. This is shown
in the figure 6. Specifically, simple model functions only
took a slightly longer computation time while showing the
equivalent curve fitting performance to the LM. However, for
the complicated model functions, even with large population
size and spending longer computation time, DE could not
reach the curve fitting performance of LM. One reason
DE did not perform well could be that the crossover and
mutation methods used in this experiment might not have
been applicable for fitting curves. Improving crossover and
mutation methods may improve the curve fitting performance
of DE. Another reason DE did not show good curve fitting

performance compared to LM could be too large possible
bounds of each parameter. Figure 2 illustrates that even if
the possible bounds of each parameter are big, the probable
combination of each parameter may be limited. The char-
acteristic of DE illustrated on 2.2 that explores the whole
search space might not have been the most efficient way to
find the solution in this case.

(a) LM using KMI with
objective function (1)

(b) Newton method using
KMI with objective function

(1)

Figure 8: It is a sample of extrapolation results that compares LM
and Newton methods using the objective function (1) and KMI for
log2 with a small training anchor bucket size from the experiment
illustrated in figure 7.

Regarding the method of initialising the parameter values,
KMI resulted in having better performance on both curve
fitting and extrapolation than randomly initialising the
parameter values. Considering the curve fitting method, the
LM always performed better than the Newton method on
the curve fitting. Also, LM showed better performance on
extrapolation in most of the cases. However, the Newton
method showed better extrapolation than the LM for the log2
function model using the small bucket for training anchor
with KMI and objective function (1). It is shown in figure 7.
One cause may be that log2 was not a suitable function model
for fitting some learning curves, having bad extrapolation
even with the successful curve fitting on the training anchor.
From figure 7, it was also notable that for LM, compared
to the pow4 model function, the extrapolation performance
of the log2 was always worse. For example, figure 8 shows
that even though LM fitted the log2 model function better
on empirical learning curve on the training anchor than the
Newton method, the newton method performed better on
the extrapolation. From this, it can be concluded that, in
general, the better curve fitting performance results in better
extrapolation results when an appropriate model function is
chosen.

Modifying the objective function improved the extrapolation
performance to some extent, which is shown in figure 7.
Specifically, the objective function (2) that limits the bound
of the error rate to be between 0 and 1 performed better on
extrapolation when compared to the objective function (1). It
is because, for all the learning curves, the error rate is always
between 0 and 1. The objective function (3) explained in



(a) LM using KMI with
objective function (2)

(b) LM using KMI with
objective function (3)

Figure 9: It is a sample of extrapolation results that compares ob-
jective function 2 and 3 using LM from the experiment illustrated in
figure 7.

section 3.2 assumes the learning curve typically behaves
well, meaning that the error rate decreases for the larger
training size. The result showed that the objective function
(3) slightly performed better than the objective function
(2) for LM. The factor that led objective function (3) to
perform slightly better than (2) may be the characteristic
of the datasets and learners that were used to generate the
empirical learning curves for the experiment. For example,
in figure 9, one sample from the experiment shows that
objective function (3) showed better extrapolation than
(2) when the empirical learning curve behaved weirdly on
the training anchor but well behaved on the test anchor.
However, suppose many empirical learning curves used in
the experiment did not behave well on both training and test
anchor. In that case, the result of comparing object functions
(2) and (3) may have differed.

7 Conclusions and Future Work
It has shown that the simpler the function model is easier to
fit on the empirical learning curve, taking less computation
time, but the worse the extrapolation result is. In order to
improve the curve fitting performance for the complicated
function models that shows good extrapolation performance,
this research has experimented with different approaches, and
one founding was using KMI instead of randomly initialising
the parameter values may be a solution to improve curve
fitting performance. Nevertheless, instead of finding ways
to fit complicated function models, solving the problem of
finding the simple function model with good extrapolation
performance could be an alternative way to achieve better
extrapolation results in a short computation time.

This research has shown some modifications to the ob-
jective function used in the curve fitting process, which may
enhance the extrapolation performance when used appropri-
ately. The further approach can be modifying the objective
function for each learning curve based on the characteristic
of the dataset and labels, chosen learner or hyperparameter
of the learner, which may affect the behaviour of the learning
curve.

8 Responsible Research
This paragraph will briefly discuss the reproducibility of the
experiment done in this research considering the recommen-
dations of the Yale Law School Roundtable [11]. The first
recommendation is to provide a link to the source and data
used to generate the results [11]. For this research, the source
code is accessible on the https://github.com/donghwikim7/lcf
and datasets used to generate results are listed in the ap-
pendix. The second recommendation is to assign a unique id
to each version of the released code [11]. However, there is
no planned update on the implementation, and thus this rec-
ommendation is not considered. The third recommendation
is to describe the computing environment and software ver-
sion used in the publication [11]. The experiment has done
on Ryzen 3600 with six core and twelve threads on Windows
11. It is possible to find the version of the software libraries
used in the experiment on https://github.com/donghwikim7/
lcf/blob/main/lcf.yaml. The fourth recommendation is to use
open licensing for the code for reusability [11]. The imple-
mentation is MIT licenced so that anyone can reuse it. The
fifth recommendation was to use an open-access contract for
published papers [11]. This research will be available on the
TU Delft repository so the public can access it. The sixth rec-
ommendation is to consider the readability and usability in
the future [11]. The implementation has been done on Python
[13] using Numpy [7] and SciPY [15] library, which will be
readable in the future when possible.

References
[1] Best-fit learning curve model for the c4.5 algorithm. In-

formatica, 25(3):385–399, 2014.
[2] Giuseppe Casalicchio, Jakob Bossek, Michel Lang, Do-

minik Kirchhoff, Pascal Kerschke, Benjamin Hofner,
Heidi Seibold, Joaquin Vanschoren, and Bernd Bischl.
OpenML: An R package to connect to the machine
learning platform OpenML. Computational Statistics,
pages 1–15, 2017.

[3] Marco Loog Jan Van Rijn Felix Mohr, Tom Viering.
Lcdb 1.0: An extensive learning curve ndatabase for
classification tasks. ”under review”, .

[4] Lewis J. Frey and Douglas H. Fisher. Modeling decision
tree performance with the power law. In David Hecker-
man and Joe Whittaker, editors, Proceedings of the Sev-
enth International Workshop on Artificial Intelligence
and Statistics, volume R2 of Proceedings of Machine
Learning Research. PMLR, 03–06 Jan 1999. Reissued
by PMLR on 20 August 2020.

[5] Matilde Gargiani, Aaron Klein, Stefan Falkner, and
Frank Hutter. Probabilistic rollouts for learning curve
extrapolation across hyperparameter settings, 2019.

[6] Henri P. Gavin. The levenberg-marquardt method
for nonlinear least squares curve-fitting problems c ©.
2013.

[7] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,

https://github.com/donghwikim7/lcf
https://github.com/donghwikim7/lcf/blob/main/lcf.yaml
https://github.com/donghwikim7/lcf/blob/main/lcf.yaml


Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan
Hoyer, Marten H. van Kerkwijk, Matthew Brett, Al-
lan Haldane, Jaime Fernández del Rı́o, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Shep-
pard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362,
September 2020.

[8] C.L. Karr, D.A. Stanley, B.J. Scheiner, and United
States. Bureau of Mines. Genetic Algorithm Applied to
Least Squares Curve Fitting. Number no. 9339 in Ge-
netic Algorithm Applied to Least Squares Curve Fitting.
U.S. Department of the Interior, Bureau of Mines, 1991.

[9] Farhad Morad. Non-linear curve fitting, 2019.
[10] Chafik Samir, P.-A Absil, Anuj Srivastava, and Eric

Klassen. A gradient-descent method for curve fitting on
riemannian manifolds. Foundations of Computational
Mathematics, 12:49–73, 02 2012.

[11] V.C. Stodden. Reproducible research: Addressing the
need for data and code sharing in computational sci-
ence. Computing in Science and Engineering, 12:8–13,
01 2010.

[12] Rainer Storn and Kenneth Price. Differential evolution
- a simple and efficient heuristic for global optimization
over continuous spaces. Journal of Global Optimiza-
tion, 11:341–359, 01 1997.

[13] Guido Van Rossum and Fred L. Drake. Python 3 Refer-
ence Manual. CreateSpace, Scotts Valley, CA, 2009.

[14] Tom Viering and Marco Loog. The shape of learn-
ing curves: a review. arXiv preprint arXiv:2103.10948,
2021.

[15] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J
Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Van-
derPlas, Denis Laxalde, Josef Perktold, Robert Cimr-
man, Ian Henriksen, E. A. Quintero, Charles R. Har-
ris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pe-
dregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Com-
puting in Python. Nature Methods, 17:261–272, 2020.

[16] Sinem ŞENTÜRK. Applied genetic algortihms ap-
proach to curve fitting problems, 2009.

Appendix A Datasets and learners used to
generate empirical learning
curve for deriving initial point
for KMI

A.1 Learners
• SVC linear
• SVC poly

• SVC rbf
• SVC sigmoid
• sklearn.tree.DecisionTreeClassifier
• sklearn.tree.ExtraTreeClassifier
• sklearn.linear model.LogisticRegression
• sklearn.linear model.PassiveAggressiveClassifier
• sklearn.linear model.Perceptron
• sklearn.linear model.RidgeClassifier
• sklearn.linear model.SGDClassifier
• sklearn.neural network.MLPClassifier
• sklearn.discriminant analysis.

LinearDiscriminantAnalysis
• sklearn.discriminant analysis.

QuadraticDiscriminantAnalysis
• sklearn.naive bayes.BernoulliNB
• sklearn.naive bayes.MultinomialNB
• sklearn.neighbors.KNeighborsClassifier
• sklearn.ensemble.ExtraTreesClassifier
• sklearn.ensemble.RandomForestClassifier
• sklearn.ensemble.GradientBoostingClassifier

A.2 Datasets
• 12 (mfeat-factors)
• 14 (mfeat-fourier)
• 16 (mfeat-karhunen)
• 18 (mfeat-morphological)
• 21 (car)
• 22 (mfeat-zernike)
• 23 (cmc)
• 24 (mushroom)
• 26 (nursery)
• 28 (optdigits)
• 30 (page-blocks)
• 31 (credit-g)
• 32 (pendigits)
• 36 (segment)
• 38 (sick)
• 46 (splice)
• 54 (vehicle)
• 57 (hypothyroid)
• 60 (waveform-5000)
• 179 (adult)
• 180 (covertype)
• 181 (yeast)
• 182 (satimage)



• 183 (abalone)
• 184 (kropt)
• 185 (baseball)
• 188 (eucalyptus)
• 273 (IMDB.drama)
• 293 (covertype)
• 300 (isolet)
• 351 (codrna)
• 354 (poker)
• 357 (vehicle sensIT)
• 389 (fbis.wc)
• 390 (new3s.wc)
• 391 (re0.wc)
• 392 (oh0.wc)
• 393 (la2s.wc)
• 395 (re1.wc)
• 396 (la1s.wc)
• 398 (wap.wc)
• 399 (ohscal.wc)
• 401 (oh10.wc)
• 485 (analcatdata vehicle)
• 554 (mnist 784)
• 679 (rmftsa sleepdata)
• 715 (fri c3 1000 25)
• 718 (fri c4 1000 100)
• 720 (abalone)
• 722 (pol)
• 723 (fri c4 1000 25)
• 727 (2dplanes)
• 728 (analcatdata supreme)
• 734 (ailerons)
• 735 (cpu small)
• 737 (space ga)
• 740 (fri c3 1000 10)
• 741 (rmftsa sleepdata)
• 743 (fri c1 1000 5)
• 751 (fri c4 1000 10)
• 752 (puma32H)
• 761 (cpu act)
• 772 (quake)
• 797 (fri c4 1000 50)
• 799 (fri c0 1000 5)
• 803 (delta ailerons)
• 806 (fri c3 1000 50)

• 807 (kin8nm)
• 813 (fri c3 1000 5)
• 816 (puma8NH)
• 819 (delta elevators)
• 821 (house 16H)
• 822 (cal housing)
• 823 (houses)
• 833 (bank32nh)
• 837 (fri c1 1000 50)
• 843 (house 8L)
• 845 (fri c0 1000 10)
• 846 (elevators)
• 847 (wind)
• 849 (fri c0 1000 25)
• 866 (fri c2 1000 50)
• 871 (pollen)
• 881 (mv)
• 897 (colleges aaup)
• 901 (fried)
• 903 (fri c2 1000 25)
• 904 (fri c0 1000 50)
• 910 (fri c1 1000 10)
• 912 (fri c2 1000 5)
• 913 (fri c2 1000 10)
• 914 (balloon)
• 917 (fri c1 1000 25)
• 923 (visualizing soil)
• 930 (colleges usnews)
• 934 (socmob)
• 953 (splice)
• 958 (segment)
• 959 (nursery)
• 962 (mfeat-morphological)
• 966 (analcatdata halloffame)
• 971 (mfeat-fourier)
• 976 (JapaneseVowels)
• 977 (letter)
• 978 (mfeat-factors)
• 979 (waveform-5000)
• 980 (optdigits)
• 991 (car)
• 993 (kdd ipums la 97-small)
• 995 (mfeat-zernike)
• 1000 (hypothyroid)



• 1002 (ipums la 98-small)
• 1018 (ipums la 99-small)
• 1019 (pendigits)
• 1020 (mfeat-karhunen)
• 1021 (page-blocks)
• 1036 (sylva agnostic)
• 1037 (ada prior)
• 1039 (hiva agnostic)
• 1040 (sylva prior)
• 1041 (gina prior2)
• 1042 (gina prior)
• 1049 (pc4)
• 1050 (pc3)
• 1053 (jm1)
• 1059 (ar1)
• 1067 (kc1)
• 1068 (pc1)
• 1069 (pc2)
• 1111 (KDDCup09 appetency)
• 1116 (musk)
• 1119 (adult-census)
• 1120 (MagicTelescope)
• 1128 (OVA Breast)
• 1130 (OVA Lung)
• 1134 (OVA Kidney)
• 1138 (OVA Uterus)
• 1139 (OVA Omentum)
• 1142 (OVA Endometrium)
• 1146 (OVA Prostate)
• 1161 (OVA Colon)
• 1166 (OVA Ovary)
• 1216 (Click prediction small)
• 1242 (vehicleNorm)
• 1457 (amazon-commerce-reviews)
• 1461 (bank-marketing)
• 1464 (blood-transfusion-service-center)
• 1475 (first-order-theorem-proving)
• 1485 (madelon)
• 1486 (nomao)
• 1487 (ozone-level-8hr)
• 1489 (phoneme)
• 1494 (qsar-biodeg)
• 1501 (semeion)
• 1515 (micro-mass)

• 1569 (poker-hand)
• 1590 (adult)
• 4134 (Bioresponse)
• 4135 (Amazon employee access)
• 4136 (Dexter)
• 4137 (Dorothea)
• 4534 (PhishingWebsites)
• 4538 (GesturePhaseSegmentationProcessed)
• 4541 (Diabetes130US)
• 4552 (BachChoralHarmony)
• 23380 (cjs)
• 23512 (higgs)
• 23517 (numerai28.6)
• 40497 (thyroid-ann)
• 40498 (wine-quality-white)
• 40668 (connect-4)
• 40670 (dna)
• 40685 (shuttle)
• 40691 (wine-quality-red)
• 40701 (churn)
• 40900 (Satellite)
• 40926 (CIFAR 10 small)
• 40971 (collins)
• 40975 (car)
• 40978 (Internet-Advertisements)
• 40981 (Australian)
• 40982 (steel-plates-fault)
• 40983 (wilt)
• 40984 (segment)
• 40996 (Fashion-MNIST)
• 41026 (gisette)
• 41027 (jungle chess 2pcs raw endgame complete)
• 41064 (convex)
• 41065 (mnist rotation)
• 41066 (secom)
• 41138 (APSFailure)
• 41143 (jasmine)
• 41144 (madeline)
• 41145 (philippine)
• 41146 (sylvine)
• 41147 (albert)
• 41150 (MiniBooNE)
• 41156 (ada)
• 41157 (arcene)



• 41158 (gina)
• 41159 (guillermo)
• 41161 (riccardo)
• 41162 (kick)
• 41163 (dilbert)
• 41164 (fabert)
• 41165 (robert)
• 41166 (volkert)
• 41167 (dionis)
• 41168 (jannis)
• 41169 (helena)
• 41946 (Sick numeric)
• 42732 (sf-police-incidents)
• 42733 (Click prediction small)
• 42734 (okcupid-stem)

Appendix B Datasets and learners used to
generate empirical learning
curve for experiment

B.1 Learners used for each dataset
• 3 (kr-vs-kp)

– SVC linear
– SVC poly
– SVC rbf
– SVC sigmoid
– sklearn.ensemble.ExtraTreesClassifier
– sklearn.ensemble.GradientBoostingClassifier
– sklearn.ensemble.RandomForestClassifier
– sklearn.linear model.LogisticRegression
– sklearn.linear model.PassiveAggressiveClassifier
– sklearn.linear model.Perceptron
– sklearn.linear model.RidgeClassifier
– sklearn.linear model.SGDClassifier

• 6 (letter)
– SVC linear
– SVC poly
– SVC rbf
– SVC sigmoid
– sklearn.discriminant analysis

.LinearDiscriminantAnalysis
– sklearn.discriminant analysis

.QuadraticDiscriminantAnalysis
– sklearn.ensemble.ExtraTreesClassifier
– sklearn.ensemble.GradientBoostingClassifier
– sklearn.ensemble.RandomForestClassifier
– sklearn.linear model.LogisticRegression
– sklearn.linear model.PassiveAggressiveClassifier
– sklearn.linear model.Perceptron

• 44 (spambase)
– SVC linear
– SVC poly
– SVC rbf
– SVC sigmoid
– sklearn.discriminant analysis

.LinearDiscriminantAnalysis
– sklearn.discriminant analysis

.QuadraticDiscriminantAnalysis
– sklearn.ensemble.ExtraTreesClassifier
– sklearn.ensemble.GradientBoostingClassifier
– sklearn.ensemble.RandomForestClassifier
– sklearn.linear model.LogisticRegression
– sklearn.linear model.PassiveAggressiveClassifier
– sklearn.linear model.Perceptron

• 1468 (cnae-9)
– SVC linear
– SVC poly
– SVC rbf
– SVC sigmoid
– sklearn.discriminant analysis

.LinearDiscriminantAnalysis
– sklearn.discriminant analysis

.QuadraticDiscriminantAnalysis
– sklearn.ensemble.ExtraTreesClassifier
– sklearn.ensemble.GradientBoostingClassifier
– sklearn.ensemble.RandomForestClassifier
– sklearn.linear model.LogisticRegression
– sklearn.linear model.PassiveAggressiveClassifier
– sklearn.linear model.Perceptron

• 41142 (christine)
– SVC linear
– SVC poly
– SVC rbf
– SVC sigmoid
– sklearn.discriminant analysis

.LinearDiscriminantAnalysis
– sklearn.discriminant analysis

.QuadraticDiscriminantAnalysis
– sklearn.ensemble.ExtraTreesClassifier
– sklearn.ensemble.GradientBoostingClassifier
– sklearn.ensemble.RandomForestClassifier
– sklearn.linear model.LogisticRegression
– sklearn.linear model.PassiveAggressiveClassifier
– sklearn.linear model.Perceptron

B.2 Datasets infomation
Appendix C Curve fitting methods setting
C.1 Newton

• tolerance (objective function): 1.48e− 08

• maximum iteration: 100



id name instances features numerical classes missing

3 kr-vs-kp 3196 36 0 2 0%
6 letter 20000 16 16 26 0%
44 lespambase 4601 57 57 2 0%
1468 cnae-9 1080 856 856 9 0%
41142 christine 5418 1636 1599 2 0%

C.2 Levenberg–Marquardt
• tolerance (objective function): 1e− 08

• tolerance (parameter values): 1e− 08

• maximum iteration: 100 ∗ n ∗ (n+ 1)
where n is number of parameter model function has

Appendix D Differential evolution
• recombination: 0.7
• mutation: (0.5, 1)
• maximum iteration: 1000
• polishing method: Levenberg–Marquardt


	Introduction
	Methodology
	Learning curve extrapolation
	Curve fitting methods
	Newton method
	Levenberg-Marquardt method
	Differential evolution method


	Proposed further method
	Deriving initial parameter values with assist of k-means clustering algorithm
	Modification of objective function to avoid bad extrapolation

	Experimental Setup
	Data Collection and empirical curve generation
	Model function
	Algorithm implementation


	Results
	Discussion
	Conclusions and Future Work
	Responsible Research
	Datasets and learners used to generate empirical learning curve for deriving initial point for KMI
	Learners
	Datasets

	Datasets and learners used to generate empirical learning curve for experiment
	Learners used for each dataset
	Datasets infomation

	Curve fitting methods setting
	Newton
	Levenberg–Marquardt

	Differential evolution

