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Abstract. Mitigating the effects of wind turbine wakes is a central part of wind

farm design. This paper proposes a spectral solver for the axisymmetrical Ainslie

wake model based on modified Laguerre basis functions over the semi-infinite radial

domain and a marching scheme in the downstream direction. This orthogonal basis

promises fast convergence and a low number of DOFs for discretizing the continuity

and axial momentum equation, promising a computationally efficient method. The

numerical implementation of the model could not be finished in time; preliminary

results are presented but still show non-negligible conservation errors. The focus of

this work lies, therefore, on a detailed derivation of the method and a discussion of

the sources of numerical errors in the nonlinear terms, and due to the truncation of

the spectral basis, a comparison of the solver outputs to other methods remains part

of the ongoing work.

1. Introduction

Industrial wake models require speed and accuracy to compute AEP losses and induced

loads for the wake effects. Typically, more refined wake models come with a steep

increase in computational costs [3]. This paper investigates a numerical basis that

could reduce the system’s computational cost while increasing the order of the method.

To that end, a spectral method based on modified Laguerre functions is proposed. The

motivation behind these particular functions comes from an inherent fit to the boundary

conditions, an explicit expression for the triple integral, and the performance [6] on an

unbound radial domain.

Consequently, the spectral method has a lower degree of freedom and spectral

convergence, and the modified Laguerre functions are infinitely differentiable.

Employing these modified Laguerre functions, a two-equation wake model with a

fixed viscosity has been reduced to a simple fixed-point iteration, which may be

straightforwardly solved.
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This explorative study into the potential of Laguerre functions may motivate the

use of this basis for similar problems. If the model obtains an increase in computational

speed, the Laguerre basis could be a logical pick for wake modeling and similarly shaped

problems. In particular, axisymmetric problems can be described well with this paper’s

formulation.

The fields of interest for this implementation are wake and wind modeling in

aerodynamic models for wind turbines. This research intends to prove the concept

of implementing a Laguerre basis for axisymmetric flow modeling. Although Ainslie’s

model does not necessitate such a high-order basis, the result contains a sophisticated

method which shows similarly defined problems with higher requirements for the

numerical basis.

In Section 2, the details of the Modified Laguerre basis are laid out, which are then

manipulated to arrive at a concise system solution for the governing equations. Section

3 presents the verification of the model by modeling the diffusion term and the full

system separately. Section 4 shows the model’s results.

2. Methodology

The equations described by Ainslie J F[4] provide the physical basis for the wake model.

The functions used as the basis are a combination of a scaled Laguerre polynomial of

the order k and a scaled Gaussian weight

λk(r) = λk

(
r2

r20

)
= Lk

(
r2

r20

)
e
− r2

2r20 (1)

Asymptotically for r →∞, the functions λk(r) converge to zero. This property may be

exploited to develop a velocity description that approaches the free-stream velocity U∞,
hence naturally enforcing a Dirichlet boundary condition of the axial velocity component

at r →∞. The resulting ansatz is

U(x, r) = U∞ −
K∑
k=0

Lk

(
r2

r20

)
e
− r2

2r20︸ ︷︷ ︸
λk(r)

[
uk,r

x− xl

xr − xl

+ uk,l
xr − x

xr − xl

]
(2)

where uk,r is the velocity coefficient for the k-th Laguerre function for the downstream

component in the marching scheme (the ”right” side, index r), and uk,l, represents the

upstream component (the ”left” side, index l).

Laguerre polynomials may also be raised to an order α. The generalized form of

Laguerre polynomials are defined by the Rodrigues formula [1]

Lα
k (r) =

r−α

n!

(
d

dr
− 1

)k

rk+α (3)
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In this work, this particular notation is only needed for solving the derivative of the

Laguerre basis

λ′k(r) =
d

dr

(
Lk

(
r2

r20

)
e−r

2/2r20

)
= − r

r20

(
Lk

(
r2

r20

)
+ 2L1

k−1

(
r2

r20

))
e−r

2/2r20

= − r

r20

(
Lk

(
r2

r20

)
+ 2

k−1∑
i=0

Li

(
r2

r20

))
e−r

2/2r20

λ′k(r) = −
r

r20

(
λk(r) + 2

k−1∑
i=0

λi(r)

)
(4)

Alternatively, the derivative can also be expressed using Lk = L1
k − L1

k−1[1] as

λ′k(r) = −
r

r20

(
L1
k

(
r2

r20

)
+ L1

k−1

(
r2

r20

))
e−r

2/2r20 (5)

Another benefit of the Laguerre functions is their orthogonality relation[1]

ˆ ∞

0

λk(r)λm(r) rdr =
r20
2

ˆ ∞

0

Lk(
r2

r20
)Lm(

r2

r20
)e−s

2

dr =
r20
2
δk,m (6)

After the Galerkin projection, the non-linear terms in the model reduce to triple

product integral over the Laguerre basis functions, for which the explicit solution

exists[5]

ˆ ∞

0

λk(r)λq(r)λm(r)r dr =
r20
2

ˆ ∞

0

Lk(s)Lq(s)Lm(s)e
− 3s2

2 ds =
r20
2
Ck,q,m (7)

2.1. Marching Scheme

For the downstream discretization, a Finite Element marching scheme is employed.

The functions form a piecewise linear basis, of which the first derivatives are constants.

For a single element in the marching scheme, the right and left sides are discretized,

respectively, by t(x) = x−xl

xr−xl
and (1− t(x))

Uk(x) = [uk,rt(x) + uk,l(1− t(x))] (8)

The average of the two linear functions forms the Galerkin projection in the axial

dimension. Thus, the projection function becomes: bm(x, r) = λm(r)
´ xr

xl
dx.

This method combines an infinitely often continuously differentiable basis in

the radial dimension with a piecewise linear and only globally continuous but not

differentiable basis in the axial direction. This odd choice was made to simplify the

discretisation, focus on the spectral method for the radial domain only, and solve a

simple problem (Ainslie’s wake model) with it. The authors hope this radial basis will

be useful for a wider range of axisymmetrical problems.
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2.2. The Natural Basis for the Radial Velocity

Deriving the Unbounded Domain Laguerre model starts with coming to an expression for

V(x,r). Firstly, unlike the original publication, the mass equation(9) requires additional

arithmetic to arrive at an elegant result.

Although the divergence is defined in a three-dimensional cylindrical space, the

basis is azimuthally invariant. As a result, the azimuthally invariant terms in the

divergence cancel out, and the azimuthal components are neglected.

∇ ·

⎛
⎜⎝U(x, r)

V (x, r)

W (x, r)

⎞
⎟⎠ =

∂U(x, r)

∂x
+

1

r

∂

∂r
(rV (x, r)) +

1

r

∂W

∂θ︸ ︷︷ ︸
∂W
∂θ

=0

= 0 (9)

∂U(x, r)

∂x
+

1

r

∂

∂r
(rV (x, r)) = 0 (10)

The radial velocity component’s basis function is yet to be defined. Referring to the mass

equation, there is a way of coming to a natural definition for the velocity component.

One gets from the definition in equation 10:

1

r

∂

∂r
(rV (x, r)) = −∂U(x, r)

∂x

rV (x, r) = −
ˆ r

0

ρ
∂U(x, ρ)

∂x
dρ (11)

ρ is the alternative notation for the radial dimension but serves to differentiate the

integrated domain. By including the radial definition for U, an expression may be

derived.

rV (x, r) = −
Nr∑
k=0

∂Uk(x)

∂x

ˆ r

0

ρλk(ρ)dρ (12)

By integrating the derivative of a laguerre function and some arithmetic effort, one

comes to a natural expression for the axial velocity

V (x, r) =
Nr∑
k=0

1

r
(1− λk(r))[vk,rt(x) + vk,l(1− t(x))] (13)

One should note that this expression for V supports the axisymmetric boundary

condition and the condition for V going to zero for r → ∞. At r=0, the exponential

part of the Laguerre function (λ) tends faster to 1 than 1
r
tends to ∞, thus, enforcing

the axisymmetric boundary condition

lim
r→0

1

r
(1− λk(r)) = 0 (14)
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2.3. Mass equation

The equations can be worked out now that both velocity components are expressed.

Filling in the terms of equation 10

Nr∑
k=0

˚

Ω

bm(x, r)
∂U(x, r)

∂x
rdrdx+

Nr∑
k=0

˚

Ω

bm(x, r)
1

r

∂

∂r
(rV (x, r))rdrdx = 0 (15)

Moving onto the first term

¨

Ω

bm(x, r)
∂U(x, r)

∂x
r dr dx =

¨

Ω

Nr∑
k=0

λk(r)λm(r)

[
1

Δx
ukr − 1

Δx
ukl

]
r dr dx dφ

=
r20
2

Nr∑
k=0

δk,m [ukr − ukl] (16)

and the second term

¨

Ω

bm(x, r)
1

r

∂(rV )

∂r
r dr dx = −

¨

Ω

Nr∑
k=0

[t(x)vkr + (1− t(x))vkl]λ
′
k(r)λm(r)

r

r
dr dx

= −
¨

Ω

Nr∑
k=0

[t(x)vkr + (1− t(x))vkl]

(
− r

r20

)(
λk(r) + 2

k−1∑
i=0

λi(r)

)
︸ ︷︷ ︸

=λ′
k(r)

λm(r)
r

r
dr dx

= −
N∑
k=0

[
1

2
vkr +

1

2
vkl

](
− 1

r20

)
r20
2

(
δk,m + 2

k−1∑
i=0

δi,m

)

=
1

4

N∑
k=0

[vkr + vkl]

(
δk,m + 2

k−1∑
i=0

δi,m

)
(17)

with
´ xr

xl
1− t(x) dx =

´ xr

xl
t(x) dx = Δx/(2Δx) = 1/2.

2.4. Diffusion term

The general formulation of the two-dimensional diffusion equation is the starting point

for the term.

¨

Ω

νT∇ ·
(
∇
[
U(x, r)

V (x, r)

])
r dr dx (18)

The viscosity is kept to a constant value in this paper and, thus, may be taken out of

the integral. After applying the product rule to the filled-in equation 18 and applying

the divergence theorem
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ν̄T

¨

Ω

bm(x, r)∇ · (∇U(x, r)) dV = ν̄T

¨

Ω

∇ · (bm(x, r)∇U(x, r)) dV

︸ ︷︷ ︸‚
∂Ω

bm(x,r)ν̄T (�n·∇U(x,r))dA

−ν̄T
¨

Ω

(∇bm(x, r)) · (∇U(x, r)) dV

The only nonzero boundaries of the axisymmetric system are the two boundaries ∂Ω1,

∂Ω2, for which the integrals become

‹

∂Ω

bm(x, r)ν̄T (
n · ∇U(x, r)) dA = −
‹

∂Ω1:x=xl

bm(x, r)ν̄T (
n · ∇U(xl, r)) dA

‹

∂Ω2:x=xr

bm(x, r)ν̄T (
n · ∇U(xr, r)) dA

︸ ︷︷ ︸
(19)

‹

∂Ω

bm(x, r)ν̄T (
n · ∇U(x, r)) dA =
ν̄T
2Δx

I[ur − ul] (20)

thus, the diffusion term reads

ν̄T

¨

Ω

bm(x, r)∇ · (∇U(x, r)) dV =
ν̄T
2Δx

I[ud − uu]− ν̄T

¨

Ω

(∇bm(x, r)) · (∇U(x, r)) dV

(21)

Singling out the most right-hand term and writing it out becomes

− ν̄T

¨

Ω

∂bm(x, r)

∂r

∂U(x, r)

∂r
r dr dx =

− ν̄T

¨

Ω

Nr∑
k,q=0

λ′m(r)λ
′
k(r) (t(x)uk,r + (1− t(x))uk,l) r dr dx (22)

and solving for the radial dependent term only to make the system parabolic, using

equations 6 and 5, gives

ˆ ∞

0

λ′k(r)λ
′
m(r)r dr =

ˆ ∞

0

r

r20

(
L1
k

(
r2

r20

)
+ L1

k−1

(
r2

r20

))
r

r20

(
L1
k

(
r2

r20

)
+ L1

k−1

(
r2

r20

))
e−r

2/r20 r dr

=
1

2r20

Nr∑
k=0

((2k + 1)δk,m + kδk−1,m +mδk,m−1)︸ ︷︷ ︸
D

(23)
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−ν̄T
¨

Ω

∂bm(x, r)

∂r

∂U(x, r)

∂r
r dr dx = −ν̄T 1

2r20
ΔxD

(
1

2
uk,r +

1

2
uk,l

)
(24)

2.5. Advection terms

Starting from the axial dominant advection term, this term may be straightforwardly

solved

¨

Ω

U(x, r)
∂U(x, r)

∂x
λm(r)r dr dx =

Nr∑
k,l=0

ˆ ∞

0

λk(r)λl(r)λm(r)r dr︸ ︷︷ ︸
r20
2
Cmˆ xr

xl

[t(x)uk,r + (1− t(x))uk,l] [ul,r − ul,l] dx (25)

¨

Ω

U(x, r)
∂U(x, r)

∂x
λm(r)r dr dx =

r20
4

u

([
1 −1
1 −1

]
⊗Cm

)

u (26)

¨

Ω

U(x, r)
∂U(x, r)

∂x
λm(r)r dr dx =

r20
4
(
ur + 
ul)Cm(
ur − 
ul) (27)

introducing the vectors 
ur = (u0,r, . . . , uNr,r)
T and 
ul = (u0,l, . . . , uNr,l)

T .

The final term to be solved is the advection dependent on the radial velocity

¨

Ω

V (x, r)
∂U(x, r)

∂r
λm(r)r dr dx =

Nr∑
k,q=0

ˆ ∞

0

λ′k(r)(1− λq(r))λm(r)r dr

·
ˆ xr

xl

[t(x)uk,r + (1− t(x))uk,l] [t(x)vq,r + (1− t(x))vq,l] dx (28)

=
Nr∑

k,q=0

ˆ ∞

0

λm(r)(λk(r) + 2
k−1∑
i=0

λi(r))(1− λq(r)) dr

· 1
6
[2uk,rvqr + uk,lvqr + uk,rvql + 2uk,lvql] (29)

¨

Ω

V (x, r)
∂U(x, r)

∂r
λm(r)r dr dx =

1

6

Nr∑
k,q=0

δk,m − Ck,q,m + 2
k−1∑
i=0

δi,m − Ci,q,m︸ ︷︷ ︸
Bm

Vq

[
2 1

1 2

]
Uk

(30)

in matrix notation,

¨

Ω

V (x, r)
∂U(x, r)

∂r
λm(r)r dr dx =

1

6

[

vr 
vl

]([2 1

1 2

]
⊗Bm

)[

ur


ul

]
(31)
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(a) Mass conservation for the heat equa-

tion solved for different numbers of radial

modes (Nr) used to model the domain.

The number of inflow modes remains con-

stant.

(b) Mass and momentum conservation

for the full system described in the

methodology. Nr = 1 corresponds to

a boundary input of one radial mode,

whereas the regular inflow represents half

the domain modes. The domain is

modeled with 64 modes.

Figure 1: Errors in the conservation quantities. Subfigure (a) focuses solely on the

diffusion term, whereas (b) uses the full equations.

The non-linearity of the terms necessitates the inclusion of a solver. In this research,

the Newton-Raphson method is chosen. The fixed point form of the equations

r20
4
(
ur+
ul)Cm(
ur−
ul)− 1

6

[

vr 
vl

]([2 1

1 2

]
⊗Bm

)[

ur


ul

]
− 1

4r20
(D) (
ur−
ul) = 0 (32)

With the fixed point form of the equations in place, the results may be computed

straightaway. Beforehand, the model should be verified.

3. Verification

Although the resulting model from the derivations above comes about quite neatly, the

results show poor, conservative properties and instability for higher numbers of modes.

The system has been extensively tested and debugged to determine the issue. The

continuity of mass and momentum for the separate diffusion terms (heat equation) and

the full system are used as verification.

Figure 1a shows the conservation of mass for the heat equation. The error remains

at machine precision up to a certain point; the limit corresponds to the point where the

diffusion can no longer expand, and the error rises due to truncation.

The tri-diagonal structure of the diffusion operator lets one additional coefficient

be occupied with a finite value for each diffusion step. Starting with only the order-zero

coefficient �= 0, a model truncated at N has all entries in the coefficient vector �= 0 after
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N − 1 steps. After the N -th step, the truncated system can no longer represent the

solution. Figure 1a shows the error in the pure diffusion equation (preservation of the

integral under the function). The integral is preserved until the highest-order coefficient

is occupied; beyond that point, the integral is not preserved, and the error increases.

This has consequences for the solver. Due to the dense matrices Bm and Cm, the

Jacobian of the Newton-Raphson iteration is dense, resulting in all vector entries �= 0

after one single solver step already. Despite the values in the higher-order coefficients

being small, the truncation of the diffusion term leads to a non-recoverable loss of mass

and momentum after the second downstream step. This problem is enhanced if more

coefficients are �= 0 at the inflow, as shown in Figure 1b.

The conservation quantities for the model with a single inflow mode show a high

initial error, as demonstrated in figure 1b. The regular inflow number used for modeling

the wake corresponds to half the number of modes applied in the domain, which in this

example of 64 modes means 32 inflow coefficients. A single inflow coefficient is used as

the inflow condition to assess the effect on the error.

Figure 1b demonstrates the improved performance of the model for a lower number

of inflow coefficients. Besides a significant decrease in starting error, the slope for

the mass conservation error is smaller. Nonetheless, both inflow conditions show non-

negligible starting errors, suggesting another significant error source.

The heat equation is included to assess the performance of the diffusion term. Not

only does the fixed viscosity affect the scaling of the diffusion term, but so does the

radial scaling (r0). From equation 32, the direction for the relation becomes obvious.

The first advection term increases while the diffusion decreases for each increment in r0.

Changing the current implementation of the radial scaling to a coefficient that is not

fixed at the start of the domain but a function of downstream position and wind speed

may yield improvements for a similar implementation.

4. Results

This paper has focused on the mathematical system underlying unbounded domain

modeling. Based on the wind turbine input of [7], the flow field in subfigure 2a with

corresponding cross-sections in subfigure 2b is obtained. The results have been computed

for a constant eddy viscosity. The model, as established, shows the typical wake profile

of a wind turbine, including its expansion and diffusion.

Interestingly, similarly as for an under-expanded domain in finite element methods,

without enough radial expansion available, the truncation error hinders wake expansion.

However, focussing on figure 2b, it becomes obvious that numerical instability is starting

to develop. Often, the method does not converge for higher diffusive flows, even when

the step size is similarly decreased.

Comparing performance with other numerical implementations of the Laguerre

functions is impractical with the model in its current state. The comparison of

performance should be done at a later time.
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(a) The flowfield corresponds to 64 radial

modes and a prescribed viscosity of 80.

(b) Cross-sections velocity profiles at

different downstream distances.

Figure 2: Velocity in downstream direction demonstrated for the full flow field and cross

sections. The eddy viscosity has been kept constant for the domain.

5. Conclusion

This paper shows an implementation of the modified Laguerre functions for modeling

wind turbine wakes. Successfully, the DOF may be kept low and still provide a smooth

result. Laguerre functions are a logical basis for wind turbine wake modeling or similarly

defined problems.

Although the method is unbounded, it encounters truncation errors when the

solution expands. Additionally, there is an unexplained high starting error even for

an inflow of a vector containing a single coefficient. These errors are non-negligible

and require further work for the method to be used for any real-life application. Any

comparison with other Ainslie models is counterproductive for now.

In the current approach, the dependency of the solution on the scaling constant

demonstrates a critical flaw. Coupling the viscosity with the scaling variable could

potentially enhance the method. Ideally, the radial scaling expands with the wake along

the domain, and with the viscosity responding accordingly, the diffusion could still be

modeled satisfactorily.
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