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Evolution of Robust High Speed Optical-Flow-Based Landing for
Autonomous MAVs
Kirk Y.W. Scheper∗, Guido C.H.E. de Croon
Micro Air Vehicle Laboratory, Aerospace Engineering, Delft University of Technology, Delft, Netherlands

H IGHL IGHTS

• Neurocontrollers for high speed optical-flow-based landing were automatically developed with better results than the user-defined baseline.
• The optimized behavior was seamlessly transferred to the real world with the aid of a closed loop control system.
• Preprocessing the sensory input allowed the behavior to be tested with both a CMOS camera and Dynamic Vision Sensor with no noticeable changes to

the performance.
• No significant performance differences were observed despite clear differences in the neurocontroller input.
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ABSTRACT
Automatic optimization of robotic behavior has been the long-standing goal of Evolutionary Robotics. Al-
lowing the problem at hand to be solved by automation often leads to novel approaches and new insights. A
common problem encountered with this approach is that when this optimization occurs in a simulated en-
vironment, the optimized policies are subject to the reality gap when implemented in the real world. This
often results in sub-optimal behavior, if it works at all. This paper investigates the automatic optimization
of neurocontrollers to perform quick but safe landing maneuvers for a quadrotor micro air vehicle using the
divergence of the optical flow field of a downward looking camera. The optimized policies showed that a
piece-wise linear control scheme is more effective than the simple linear scheme commonly used, something
not yet considered by human designers. Additionally, we show the utility in using abstraction on the input
and output of the controller as a tool to improve the robustness of the optimized policies to the reality gap by
testing our policies optimized in simulation on real world vehicles. We tested the neurocontrollers using two
different methods to generate and process the visual input, one using a conventional CMOS camera and one
a dynamic vision sensor, both of which perform significantly differently than the simulated sensor. The use
of the abstracted input resulted in near seamless transfer to the real world with the controllers showing high
robustness to a clear reality gap.

1. Introduction
Insects are a significant source of inspiration for devel-

oping novel solutions to autonomous flight of Micro Air Ve-
hicles (MAVs). Even with limited computational and energy
resources, insects are able to effectively complete challeng-
ing tasks with relatively complex behaviors. One behavior
that is of particular interest, is landing.

Insects have been shown to primarily rely on visual in-
puts when landing, whereby many insects regulate a con-
stant rate of expansion (or divergence) of optical flow [1] to
perform a smooth landing [2]. This approach has inspired
some robotic implementations of constant divergence land-
ing strategies [3]. Although simple in concept, this approach
is quite difficult to implement in reality. A direct implemen-
tation causes the robot to become unstable as the vehicle
nears the ground. This is a result of the non-linear inter-
action between the vehicle control and sensing, in the pres-
ence of delay, measurement noise and environmental distur-
bance [4]. Different augmentations to the standard control
scheme have been made, most, simply perform slow land-
ings [3], use long landing legs to delay the onset of this insta-
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bility and touch the ground before they occur or by switching
to alternative measures like time-to-contact [5, 6] or veloc-
ity in-plane of the camera [7, 8]. More recently, there have
been attempts to identify the instability and adapt the landing
strategy by adjusting control gains [9, 10].

An alternative to these manually designed approaches is
to have an optimization technique automatically develop a
suitable solution that is robust to these instabilities. This op-
timizationmay reveal new solutions to this problem, and per-
haps even alternative hypotheses on what flying insects such
as honeybees may be doing. Some attempts have been made
to do this [11] but to the best knowledge of the authors, none
of these have been implemented on real world robots.

This is due in part, to the effects of the differences be-
tween the simulated environment, commonly used for be-
havioral optimization, and the real world. This resultant dif-
ference in the robotic behavior is commonly referred to as the
reality gap [12, 13, 14]. Several approaches have been used
to make controllers more robust to the reality gap with the
most significant being adding appropriate and varied noise
[15], co-evaluation of controllers in the real world to test
transferability [16] and inspired by conventional control the-
ory, there are approaches utilizing abstracted outputs from
the neurocontroller with a closed loop control system to ac-
tively reduce the effect of reality gap [17, 18].

In this paper, we describe a method to optimize a quick
Preprint submitted to Elsevier
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but safe landing maneuver for a quadrotor MAV equipped
with a downward facing camera. The neurocontrollers are
given only the divergence of the optical flow field from the
camera as input and its time derivative. Although this ab-
stracted input may reduce the possible behaviors the con-
trollers can express, building on the work in [19], we will
demonstrate that this abstraction leads to a robust transfer
from simulation to reality after virtual optimization.

The following consists of a summary definition of op-
tical flow in Section 2. The flight platform and simulation
environment is then described in Section 3. Next, the per-
formance of conventional constant divergence landing ap-
proaches are presented in Section 4 to provide some baseline
performance to compare the optimized policies against. The
evolutionary setup and neural models used for the neurocon-
trollers is then described in Section 5. This is followed by
a presentation and analysis of the optimized policies in Sec-
tion 6. The reality gap and the results from the real world
experiments are presented in Section 7 and Section 8 from
which we draw some conclusions in Section 9.

2. Optical Flow Definition
To perform optical flow based landing as in [20, 21, 9,

10], we must first define the optical flow parameters. The
formulation here is a summarized version of that presented
in [20]. This algorithm provides a good trade-off of accurate
optical flow estimates while using relatively limited compu-
tational resources. This allows the perception and control
loop to operate at high frequency and low latency on the em-
bedded flight platform used in this paper. Alternative optical
flow estimationmethods could be used given that the estima-
tion runs fast enough to facilitate the flight control. An in-
vestigation of the accuracy and reliability of the optical flow
estimation is out of the scope of this paper.

If we assume that we have a downward-looking camera
overlooking a static planar scene, as shown in Fig. 1, we can
derive the perceived optical flow as the result of the camera
ego-motion. The derivation of this optical flow model relies
on the two reference frames, the inertial world frame is de-
noted by and the camera frame centered at the focal point
of the camera denoted by . In each of these frames, position
is defined through the coordinates (X, Y , Z), with (U , V ,
W ) as the corresponding velocity components. The orienta-
tion of  with respect to is described by the Euler angles
�, �, and  , denoting roll, pitch, and yaw, respectively. Sim-
ilarly, p, q, and r denote the corresponding rotational rates.

The camera egomotion can be related to the optical flow,
and visual observables based on the pinhole camera model
[23] with camera pixel coordinates are denoted by (x, y),
while (u,v) represent optical flow components, measured in
pixels per second. These can be non-dimensionalized using
the intrinsic calibration of the camera.

u = −
U
Z

+
W
Z

x − q + ry + pxy − qx2

v = −
V
Z

+
W
Z

y + p − rx − qxy + py2
(1)

XW

YW

ZW

θ, q
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YC
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UC
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Figure 1: Definitions of the world () and camera () ref-
erences frames. Also shown are the Euler angles (�, �,  ),
rotational rates (p, q r), and translational velocities (U , V ,
W ) that describe the motion of  [22].

Eq. (1) shows that the optical flow of a point can be resolved
into translational and rotational components. Since the latter
is independent of the three-dimensional structure of the vi-
sual scene, these expressions can be derotated if information
on the rotational rates of the camera is available. This dero-
tation leads to pure translational optical flow components,
denoted by (uT , vT ). Moreover, if the scene is a planar sur-
face, the depthZ of all visible world points are interrelated
through:

Z = Z0 +ZXX +ZY Y (2)
where Z0 is defined as the distance to the surface along the
optical axis of the camera, and ZX and ZY represent the
slopes of the planar scene with respect to the X- and Y -axis
of .

In [23], the relation between the position of an arbitrary
point in  and its projection onto the image plane is given by
(x, y) = (X∕Z , Y∕Z). Consequently, Eq. (2) may also
be written in the form:

Z −Z0
Z

= ZXx +ZY y (3)

Further, let the scaled velocities of the camera #x, #y, and
#z be defined as follows:

#x =
U
Z0

, #y =
V
Z0

, #z =
W
Z0

(4)

Then, according to the derivations in [20], substituting Eq. (3)
and Eq. (4) into Eq. (1) leads to the following expressions for
translational optical flow:

uT = (−#x + #zx)(1 −ZXx −ZY y)
vT = (−#y + #zy)(1 −ZXx −ZY y)

(5)

From Eq. (5), and under the aforementioned assumptions,
the scaled velocities, which provide non-metric information
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on camera ego-motion, can be derived from the translational
optical flow of multiple image points. #x and #y are the op-posites of the so-called ventral flows, a quantification of the
average flows in the X- and Y -axis of  respectively [9].
Hence, !x = −#x and !y = −#y. On the other hand, #zis proportional to the divergence of the optical flow field,
D = 2#z [9].The flow divergence can alternatively be estimated sim-
ply by the relative change in the distance (l) between any two
points at over time (t) [10]. This method is referred to as size
divergence (Dst ). A reliable estimate of the divergence (D̂)
can be generated by averaging the divergence estimate from
a set ofN points in the image.

Dst =
1
Δt
lt−Δt − lt
lt−Δt

D̂ = 1
N

N
∑

i=1
Dst

(6)

In this work, we used a FAST corner detector and a Lukas–
Kanade tracker implemented using OpenCV as in [10], we
refer the reader there for more details. Throughout this pa-
per, N is limited to 100 if there were more than 100 points
or simply all points if fewer have been tracked.

3. Flight Platform and Simulation
Environment
The flight platform used in this paper is the Parrot Bebop

2 quadrotor MAV1, a picture of this vehicle flying in our in-
door test environment can be found in Fig. 2. This vehicle is
equipped with a 780 MHz dual-core Arm Cortex A9 proces-
sor, forward and downward facing CMOS cameras, sonar,
and barometer enabling autonomous flight capabilities for up
to 25 minutes. Full 3D flight control is enabled with the on-
board use of the open source PaparazziUAV autopilot soft-
ware [24]. In this work, we extract global optical flow from
the downward facing camera using the Lucas–Kanade opti-
cal flow method executed onboard the vehicle [25]2.

Throughout the paper, an Optitrack3 motion capture sys-
tem was used to measure a ground truth of the vehicle po-
sition and motion. As the control task in this paper is only
in the vertical axis, this ground truth measure was commu-
nicated to the vehicle to facilitate the control of the lateral
axis of the vehicle. This was however not used in the ver-
tical loop where instead the optical flow estimated onboard
the vehicle was used.

To optimize our behavior in simulation, we first need a
model of the vehicle. To this end we use a simple dynamical
model of the vehicle, which is restricted to vertical motion
only. The thrust generated by the rotors is modeled as a first
order response with the dynamics defined in (7).

(Δt + �T )Ṫi = Tsp − Ti−1 (7)
1https://www.parrot.com/nl/en/drones/parrot-bebop-2
2Code used in this paper can be found https://github.com/

kirkscheper/paparazzi/tree/updated_event_based_flow
3https://optitrack.com/

Figure 2: Parrot Bebop 2 quadrotor MAV equipped with
SEEM1 Dynamic Vision Sensor.

where Tsp is the thrust set-point and spin-up spin-down time
constant �T has a nominal value of 0.02 s. The thrust output
is limited in the range [-0.8⋅g, 0.5⋅g] as a conservative model
the maximum acceleration of the real vehicle.

The model used to describe the divergence estimation is
based on the work presented in [21]. The observed diver-
gence is the result of adding latency to the true divergence
along with two types of noise, simple white noise drawn
from N(0,�2w) and an additional noise proportional to the
divergence magnitude drawn from N(0,�2p ). [21] identified
typical values for �w and �p as 0.1 s−1 and the latency L in
the range of [50, 100] ms. We use similar nominal values for
the standard deviations �w and �p are 0.1 s−1 and an exag-
gerated range for the latency L in the range of [1,4] samples
or [20, 133] ms. Some additional computational jitter has
been included, this simulates the situation of missed frames
which happens when there are either insufficient or too many
image features to be tracked. The chance of amissed frame is
randomly determined with a given probability held constant
for each simulation run randomly drawn from the range [0,
0.2].

4. Baseline Performance
Before we start to optimize a divergence based landing

controller, let us first investigate the naive approach of a con-
stant gain, constant divergence landing as studied in [3, 26,
4].

Fig. 3 shows the time history of a two constant diver-
gence landing controllers performing a landing with a diver-
gence set-point of 0.5. Controller C1 has a relatively high
gain and C2 a low gain. The controllers are activated 1 s
after the simulation starts. Fig. 17 shows the steady-state re-
sponse of the controller with the time history control signal
super-imposed.

These plots show that controller C1 quickly reaches the
desired divergence but as the vehicle descends the controller

https://www.parrot.com/nl/en/drones/parrot-bebop-2
https://github.com/kirkscheper/paparazzi/tree/updated_event_based_flow
https://github.com/kirkscheper/paparazzi/tree/updated_event_based_flow
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Figure 3: Time history of a constant divergence landing with
two controllers of differing gain. C1 is a controller with high
gain and C2 with low gain.

becomes increasingly unstable. This instability is due to de-
lays in the sensing and control loop and is well described
in [4]. In contrast, C2 does not quickly achieve the desired
divergence due to the low gain in the controller. Addition-
ally, due to the non-linear relationship between the diver-
gence and acceleration, the vehicle overshoots the desired
set-point before finally slowing. Despite this poor tracking
performance, the low gain does delay the onset of instabil-
ity observed with C1, resulting in a rather smooth landing
profile.

5. Evolutionary Optimization
Every evolutionary process is defined by: a population of

candidate individuals, each with a given policy which must
be evaluated; a way to evaluate these policies; a selection
mechanism to filter out bad policies; and a method to al-
ter the individuals to generate new policies. Here, we use
a mutation-only evolutionary algorithm similar to (� + �)
approach, where a population is maintained from which off-
spring are generated using a mutation operator. Offspring
that are better than members of the population replace these
members. The difference with the standard implementation
is that we retest the current population on a random set of
simulation parameters with every generation, rather than once
as is commonly done. With the high level of non-determinism
in our simulated environment, this ensures no individuals are
preferred simply because they were tested on an easy set of

Table 1
Evolutionary parameters

Name Value
Number of Generations 250
Number of Runs 4
Range of delays [1, 4] samples
Range of computational jitter probability [0, 0.2]
Range of divergence noise (�2w) [0.05, 0.15] 1/s
Range of divergence noise (�2p) [0, 0.25] 1/s
Range of thrust time constant (�T ) [0.005, 0.04]
Range of simulation frequency [30, 50] Hz

conditions.
The evaluation of the individuals is done by simulating

the policy on four independent simulation runs, initializing
the vehicle at a standstill from four different altitudes, namely
2, 4, 6 and 8 m. The simulation ends when the vehicle ex-
ceeds 15 m above the ground, gets within 5 cm of the ground
or exceeds 30 s of simulation time.

We use a multi-objective approach here, where the in-
dividuals must minimize three fitness functions measured at
the end of a simulation: the total time to land (f1); the finalheight (f2); and the final velocity (f3). NSGA-II is used to
perform a non-dominated sorting of the population and de-
terminewhich individuals are better than others in thismulti-
objective framework [27].

All the simulation parameters mentioned in Section 3 are
randomly perturbed and set at the start of a generation. The
ranges of the evolutionary parameters used in this work are
summarized in Table 1. Altogether, this should encourage
the optimization to develop a policy that can reliably land
quickly and safely from different altitudes. This is all devel-
oped using the DEAP framework [28] with multi-threaded
implementation utilizing scoop in Python45.

The policy of each individual is encoded in a simple neu-
ral network. The neural potential (
) of each neuron in the
neurocontroller is updated with a simple discrete time Euler
integration as described in Eq. (8).


(t) = 
(t − 1) + 
̇(t − 1)Δt (8)
where t represents the current time step and Δt is the time
step of the integration.

The input to the neurocontroller is the simulated diver-
gence and the derivative of the divergence ΔD = Dt−Dt−ΔT

Δt .
The output was used to control the thrust of the vehicle lead-
ing to an acceleration. We utilized three types of neural net-
works to investigate the effect of recurrent connections on
the evolved solution. We implemented a feed-forward neural
network (hereafter referred simply as NN), a recurrent neural
network (RNN) and a continuous time recurrent neural net-
work (CTRNN). All networks had three layers, the first with
2 neurons, the hidden layer with 8 neurons and the output
with 1 neuron.

4The software is openly available at: https://github.com/DEAP/deap
5Software used for the evolutionary process in this paper is openly

available at: https://github.com/kirkscheper/divergence_landing

https://github.com/DEAP/deap
https://github.com/kirkscheper/divergence_landing
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5.1. NN

The neural potential of an NN is defined by the instanta-
neous inputs to the network such that the potential of a neu-
ron i in a given layer l connected to N l−1 neurons in the
previous layer is determined simply by:


 li = �
l(
N l−1
∑

j=1
wlij


l−1
j ) + �li + I

l
i (9)

where wij is the weight of the neural connection between
the neuron i in layer l = (2± 3±⋯) and a given neuron j
is the previous layer, � is the neural bias, I is the external
input to the neuron and � is the activation function of the
neuron. Here, the activation function is linear for the output
layer and the Rectified Linear Unit (ReLU) function for the
hidden layer. We can rewrite this equation using Eq. (8) to
generate the neural dynamics.

Δt
̇i = −
i + �(
N
∑

j=1
wij
j) + �i + Ii (10)

5.2. RNN
The NN has no effective way of explicitly considering

previous states in determining it’s current action. The be-
havior is simply a result of the emergent interaction of the
vehicle actions and the environment. Adding explicit mem-
ory may enable the vehicle to exhibit more complex behav-
iors. RNNs are not only affected by an external input and the
weighted sum of connected neurons but also by a weighted
internal connection to the previous potential as shown in
Eq. (11).


̇i = 
iri + �(
N
∑

j=1
wij
j) + �i + Ii (11)

where r is the weight applied to the recurrent connection.
Like the NN, the activation function is linear for the output
layer and the ReLU function for the hidden layer.

Again, using Eq. (8), we can derive the neural dynamics:

Δt
̇i = 
i(ri − 1) + �(
N
∑

j=1
wij
j) + �i + Ii (12)

5.3. CTRNN
One pitfall of the RNN is that the recurrent connection

does not consider the time between updates. This can be an
important consideration for systems with variable time steps
between updates. As such, we have also implemented the
classic CTRNN as shown in Eq. (13) [29].

(Δt + �i)
̇i = −
i +
N
∑

j=1
wij�(
j + �j) + Ii (13)

where � is its time constant (� > 0). The hyperbolic tan-
gent activation function is used here (�(x) = tanh = (ex −
e−x)∕(ex + e−x)).
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Figure 4: Performance of genetic optimization measured with
� which is the ratio of the encapsulated volume and area of the
pareto front. A smaller � would suggest a general improvement
in the minimization of all individuals while they spread out over
the available optimum policies. The pareto front was generated
by evaluating the entire population at each generation to the
same set of simulated environmental conditions.
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Figure 5: Performance of pareto front tested on 250 evalua-
tions. Individuals selected for further analysis are bold.

6. Evolution Results
The use of the non-dominated sorting and selection, re-

sults in the genetic optimization spreading the population of
policies over the pareto front of the fitness landscape. As
such, to evaluate the performance of the optimization, it is
sensible to look at the ratio of the encapsulated volume and
the area of the pareto front (� = volume∕area) as shown
in Fig. 4. This figure shows that the performance gener-
ally improves before leveling off after about 150 generations.
This performance is also mostly stable as the performance
remains flat after 150 generations. This also shows that this
trend is consistent over the multiple initializations of the op-
timization and over the different types of neural architecture.

Fig. 5 shows the accumulated Pareto front of all individ-
uals from the different runs of the optimization. This figure
only shows the performance on the touchdown velocity and
the time fitness as the fitness based on the height was consis-
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Figure 6: Sensitivity analysis of a portion of pareto front show-
ing 25tℎ, 50tℎ and 75tℎ percentile of performance over 250 eval-
uations.

tently minimized for all individuals. As such, all optimized
policies converged to perform the desired landing task. This
figure shows how the policies are spread over the inherent
trade-off of reliable quick vs soft landing. The performance
seems not to be strongly correlated with the neural archi-
tecture as all three types are represented in the pareto front.
Additionally, the three architectures seem well distributed.

To investigate the sensitivity of the performance to dif-
ferent environmental conditions, we subjected the individ-
uals of the pareto front to a validation test with 250 simu-
lations while varying the environmental settings of the run.
All individuals where subjected to the same set of conditions
to make for a fair comparison. Fig. 6 shows that the indi-
viduals that optimized to have slow and soft landings have
a small spread in the fitness performance whilst individuals
that were optimized to faster landings have a larger variation
in landing speed. This suggests that the policies that perform
faster landings may show oscillatory behavior causing their
touchdown speed to vary depending on the sensor noise or
environmental perturbations. We will investigate this more
below.

As it is not feasible to analyse them all, three individuals
from the each architecture are be selected for further anal-
ysis of the landing behavior. The remainder of this section
will dive deeper into the types of behaviors optimized by the
different neurocontrollers.
6.1. NN

Three neurocontrollers were selected from the Pareto front
for some further analysis, their performance is shown in Fig. 7
and their steady-state response in Fig. 18. Controller NN1 isa slow lander, NN3 is a fast lander and NN2 is intermediate.

Looking first at the world states in Fig. 7, we can see
that NN1 and NN2 perform smooth landings with little oscil-
lation and touchdown at very low velocities. Examining the
steady-state response, NN1 is similar to the low gain baseline
C2 except that instead of being a constant gain for all inputs,NN1 is piece-wise linear with a high gain for positive valuesD and a low gain for negative values. This asymmetric con-
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Figure 7: Vehicle states and observations from simulation with
NN1 (blue), NN2 (red) and NN3 (yellow).

trol scheme is a significant result as this will delay the onset
of the oscillation seen in higher gain controllers.

NN2 is similar to NN1 but has a higher gain and a no-
ticeable gradient in the ΔD with reduced thrust at negative
ΔD. This is also an interesting result as a negativeΔDoccurs
when the vehicle is slowingwhile descending or accelerating
while ascending. In both cases, it would indeed be desirable
to reduce the control input.

NN3 has clear oscillations and is similar to the high gain
controller C1 but is even higher gain, this causes the con-
troller to act as a bang-bang controller. This type of control
will cause the rotors of the vehicle to try to spin up and down
very often, however, due to their inertia, they do not achieve
the desired values. As such this control scheme relies on the
simulated spin-up and spin-down reaction time of the rotors
(�T ) for the desired behavior to work well and will likely nottransfer well to the real world. This may also explain why
the controllers on the left of the pareto front in Fig. 6 have
vertically elongated bounding boxes.
6.2. RNN

The selected RNN neurocontrollers are shown in Fig. 8
and Fig. 19. RNN1 and RNN2 show similar behavior to the
policies with NN1 and NN2. These relatively high gain land-ings with a gradient on the ΔD seems to be a reliable way to
perform this type of high speed yet smooth landing. RNN3is a little different than NN3 in that high speed landings witha negative divergence rate have a lower throttle response.
This would occur when the vehicle is descending quickly
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Figure 8: Vehicle states and observations from simulation with
RNN1 (blue), RNN2 (red) and RNN3 (yellow).

but slowing down. This control scheme would ensure that
the vehicle doesn’t over react when the vehicle is descending
quickly but not accelerating towards the ground. This results
in a reduced oscillatory behavior with the RNN3 controller.
6.3. CTRNN

The three CTRNN neurocontrollers selected from the
Pareto front in Fig. 9 and Fig. 20 all show variations on a
similar control scheme. Effectively, these controllers split
the control scheme into 4 segments, depending on the sign
combination of the inputs D andΔD.When descending with
an increasing divergence, the vehicle will try to decelerate.
When descending with an decreasing divergence, the vehi-
cle will decelerate less aggressively. When ascending with
increasing rate, the vehicle will reduce thrust. Finally, when
the vehicle is descending with a negative divergence rate, the
vehicle will reduce thrust less aggressively than the increas-
ing rate case. This results in high speed yet smooth landings
with little oscillation. This approach is similar to that shown
by RNN3. Portions of these controllers seem discretized,
but as they only show the steady state throttle response, the
temporal response may be more smooth.

7. Reality Gap
Everything discussed so far has been in a simulated en-

vironment, one that is a significant simplification of reality
to facilitate high speed evaluation of the neurocontrollers.
As we move to the real world, we can therefore expect vari-
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Figure 9: Vehicle states and observations from simulation with
CTRNN1 (blue), CTRNN2 (red) and CTRNN3 (yellow).

ous differences leading to a reality gap. This section aims to
identify some of these differences.

Let us first look at the control of the vehicle, in simu-
lation, the output of the neurocontroller was acceleration,
which after being fed through a low pass filter to simulate
the spin-up of the rotors was implemented by the simulated
rotors. In reality, this desired acceleration must first be con-
verted to a thrust command for the rotors. If we use a naive
approach here, we can simply determine a linear transform
from desired acceleration to thrust, the results of which are
shown in the top plot of Fig. 10. This figure shows a set of
real world neurocontroller landings using a constant scaling
factor for desired acceleration to thrust. As the vehicle starts
to move the command tracking is good but as it starts to de-
scend the tracking degrades. This is almost certainly due, in
part, to the unmodeled drag and non-linear aerodynamic ef-
fects of descending through the downwash of the propellers.

This poor tracking leads to a noticeable reality gap in the
landing performance. This can be reduced with the use of a
closed loop controller as proposed in [18], instead of a lin-
ear transform. The results using a Proportional-Integral (PI)
controller, minimizing the error between the commanded and
measured acceleration on the vehicle, are shown in the bot-
tom plot of Fig. 10. The controller effectively abstracts away
from the rawmotor commands to a desired acceleration, which
significantly improves the tracking performance allowing us
to cross this reality gap.

The goal of this paper is to highlight the use of abstracted
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Figure 10: Thrust command (blue) and subsequent vehicle ac-
celeration (red) for some real world landings. (Top) Unmod-
eled dynamics such as drag and other non-linear aerodynamic
effects lead to a poor thrust command tracking using a naive
approach. (Bottom) The tracking error can be substantially
reduced with the use of a simple closed loop PI controller.

Figure 11: Depiction of the difference between frame-based
and event-based vision data. Frame-based cameras measure
light at all the pixels synchronously resulting in an image frame,
optic flow is generated by identifying a feature in the current
image in a previous image, the translation is the flow. Event-
based cameras asynchronously generate an event for each pixel
with a microsecond timestamp, optic flow is generated by fit-
ting a plane through the 3D surface (x,y,t) of the most recent
events.

inputs to improve the robustness of optimized policies to dif-
ferences in the input. To do this we will investigate the per-
formance of the vehicle with the use of two different types of
cameras with significantly different divergence signal output
performance characteristics.

The first camera uses the monochromatic information
from the bottom looking CMOS camera built into the Par-

Table 2
Camera properties

Property Simulated CMOS DVS
Sensor - mt9v117 SEES1

Resolution used - 240 x 240 262 x 262
Field of View - 58◦ 79◦

Divergence Rate [30, 50] Hz 45 Hz 100 Hz

rot Bebop 2 using the size divergence estimation method de-
scribed in [10]. The second camera is the Insightness SEEM1
Dynamic Vision Sensor (DVS) using the efficient plane fit-
ting optical flow estimation technique described in [9]. This
event based camera does not generate frames as a conven-
tional image sensor but rather measures logarithmic light
changes at each pixel independently and asynchronously. This
makes the sensor conditioned to operate with high speedmo-
tion with low latency and relatively low data throughput. A
simple comparison of the difference in data from the frame-
based and event-based data can be seen in Fig. 11. This type
of camera has been previously used to facilitate high speed
landings as shown in [9]. A schematic showing the optical
flow processing pipeline for the CMOS and event-camera
can be found in Fig. 12.

Fig. 13 shows a comparison of the divergence estima-
tion error from these two cameras highlighting how differ-
ent the output of these camera is and how different they both
are to the camera statistics used in simulation. Some addi-
tional differences in the camera properties are summarized
in Table 2. We will investigate in the next chapter if these
differences result in a significant reality gap.

8. Flight Test Results
Using the closed loop PI controller to control the thrust

as described in the previous section, we performed a set of
landings with some of the neurocontrollers identified in Sec-
tion 5. All flights were initiated from a steady hover at an
altitude of 4 m. Fig. 14 shows the results from the con-
trollers NN1 and NN2, Fig. 15 shows the results from RNN1and RNN2 and Fig. 16 shows the results from CTRNN1 andCTRNN2. These results are plotted for both the CMOS and
DVS cameras to see how well these two sensors affect the
landing profile. The results from simulation have also been
plotted to see how well the real world performance fits with
the simulated, a measure for the eventual reality gap. NN3,RNN3 and CTRNN3 were not tested in reality as their rel-
atively high touchdown velocity in simulation may cause
damage to our real world vehicle. This is in-fact a benefit
of the multi-objective optimization scheme used here, the
user can simply choose a policy that performs the trade-off
of the fitness functions as desired.

In spite of the differences in the generation of the diver-
gence between the two cameras, the landing performance is
very similar. These two systems are also so similar to the
simulated landing that the plot is hardly visible. This would
suggest that the eventual reality gap is small despite signifi-
cant differences in the way the input was generated.
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Figure 12: Process schematic of the optical flow computation for the CMOS camera (top) and the event-camera (below).
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Figure 13: Divergence estimation error for the CMOS (blue)
and DVS (red) cameras. The trend and distribution of these
two cameras are quite different.

Also notable is the repeatability of the landing maneu-
vers. The landingswere performed three times each and each
landing resulted in very similar trajectories. This shows that
the evolutionary optimization converged to a robust solution
as suggested by the analysis in Section 5.

9. Conclusion
This paper investigated the influence of abstraction of the

sensory input to the reality gap for automatically optimized
UAV agents tasked with performing quick yet safe landing.
We have shown over multiple evolutionary runs and neu-
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Figure 14: Vehicle states and observations from real world
flights with the NN1 (blue) and NN2 (red) controllers. The
results using the CMOS camera is shown in solid and the DVS
in dashed. The simulated performance is also plotted in dot-
dash for comparison.
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Figure 15: Vehicle states and observations from real world
flights with the RNN1 (blue) and RNN2 (red). The results
using the CMOS camera is shown in solid and the DVS in
dashed. The simulated performance is also plotted in dot-dash
for comparison.

rocontroller architectures, that abstraction does not unduly
hamper the optimization power of the optimization as the
agents developed a robust and effective method to land.

The optimized agents showed some landing strategies
that were before not imagined by the human designers. One
notable strategy is that instead of a simple proportional con-
troller for the entire state space, an asymmetric responsemay
be more appropriate to delay the onset of oscillations when
performing the landing procedure. A strong response when
the divergence error is positive and a weaker response when
negative seems a good approach.

Tests in the real world showed the presence of significant
differences between simulation and reality. The most sig-
nificant was that the acceleration command tracking perfor-
mance was poor, likely due to the drag and other non-linear
aerodynamic effects which were not considered in simula-
tion due to their modeling complexity. The resultant reality
gap was crossed with the use of a closed loop controller rep-
resenting another layer of abstraction, from the low-level raw
motor control values to a desired vertical acceleration, which
ensures robustness to the real world uncertainty.

Finally, we showed that abstraction on the sensory input
of the neurocontroller was robust to the reality gap when us-
ing two different input estimation techniques. Although two
cameras with different imaging techniques were used, the
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Figure 16: Vehicle states and observations from real world
flights with the CTRNN1 (blue) and CTRNN2 (red). The re-
sults using the CMOS camera is shown in solid and the DVS in
dashed. The simulated performance is also plotted in dot-dash
for comparison.

resultant landing profile was very similar. Abstraction can
therefore be a powerful tool when crossing the reality gap.

Futurework could investigate how this approach can gen-
eralize to different vehicles operating in different real world
environments. This would help to demonstrate the effective-
ness of the approach to not only cross the reality gap but to
address the more general transfer problem.
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Appendix: Controller Steady State
Input-Output Mappings
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Figure 17: Steady state input-output mapping for hand de-
signed controllers.

(a) NN1

(b) NN2

(c) NN3

Figure 18: Steady state input-output mapping for NN con-
trollers.
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(a) RNN1

(b) RNN2

(c) RNN3

Figure 19: Steady state input-output mapping for NN con-
trollers.
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