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SUMMARY

In recent years, the accuracy of Deep Neural Networks (DNNs) has improved significantly
because of three main factors: the availability of massive amounts training data, the in-
troduction of powerful low-cost computational resources, and the development of complex
deep learning models. The cloud can provide powerful computational resources to calcu-
late DNNs but limits their deployment due to data communication and privacy issues. Thus,
computing DNNs at the edge is becoming an important alternative to calculating these mod-
els in a centralized service. However, there is a mismatch between the resource-constrained
devices at the edge and the models with increased computational complexity. To alleviate
this mismatch, both the algorithms and hardware need to be explored to improve the effi-
ciency of training various feedforward and recurrent neural networks and inferring using a
DNN.

In this thesis, our focus is on the algorithms used for efficient inference in Convolutional
Neural Networks (CNNs) and this thesis mainly covers acceleration, quantization, and ef-
ficient neural network architecture design, as discussed in the following five contributions.
First, the proposed Diminished-1 Fermat Number Transform (DFNT) can accelerate inte-
ger CNNs without introducing any round-off error. The diminished-1 point-wise products
between DFNT transformed feature maps are used to calculate convolution and are reused
multiple times to reduce the number of multiplications and additions. To compute integer
convolution with typical parameter configurations, the DFNT achieves a speedup of 2−3x
compared with the direct method. Second, the proposed piecewise approximation scheme
reduces accuracy drop for multiple binary CNNs. The proposed scheme makes full use
of the pre-trained full-precision model since the distribution of the full-precision values
is similar to that of the approximated values. With the proposed piecewise approxima-
tion, both the Top-1 and Top-5 accuracy drop of ResNet on the ImageNet is only approx-
imately 1.0%. Third, neural architecture search and effective depth reduction techniques
are investigated to design neural network architectures for binary CNNs. When adapt-
ing neural network search, the discovered neural network architectures achieve a better
trade-off between accuracy and efficiency than current binary CNNs. With the negligible
overhead increase, the Top-1 accuracy of binary CNNs discovered by the NASB strategy
surpasses the existing single and multiple binary CNNs by 4.0% and 1.0%, respectively.
When unifying the fractal architecture and shortcut effective depth reduction techniques,
the developed unified architectures achieve better accuracy than Bi-Real ResNet and Bina-
ryDenseNet. With almost the same computational complexity cost, the Top-1 accuracy of
UA-ResNet37(41) and UA-DenseNet51(53) on ImageNet is 3.29% and 1.41% better than
Bi-Real ResNet18(64) and BinaryDenseNet51(32), respectively. Fourth, the feature reuse
reduction and attention mechanism are used to design efficient neural network architectures
for full-precision CNNs. The proposed scheme reduces the feature reuse within the convo-
lution to make channels accurate and outperforms the standard convolution with full feature

XI



XII CONTENTS

reuse. Under the same computational budget, the Top-1 accuracy of REAF-ResNet50 and
REAF+-MobileNetV2 on ImageNet is 0.37% and 0.69% better than their standard coun-
terparts, respectively. The proposed attention module solves the approximation problem
and the insufficient capacity problem of the attention maps, and it can boost the accuracy
of attention-based models further with proper integration. Integrating with the proposed
attention model, the current attentional activations-based models can increase their Top-1
accuracy on ImageNet classification by 0.57% and COCO-style Average Precision on the
COCO object detection by 0.45. Last, the proposed reconstruction method can automati-
cally discover an optimized generator to compute the reconstructed training dataset when
the original training dataset is not available for model compression. The accuracy of cur-
rent data-free compression improves when replacing the human-designed generator with
the searched generator. Using ResNet50 as the pre-trained model, 5-bit width quantization,
and an optimized generator, our data-free compression on ImageNet outperforms the Top-1
accuracy of the GDFQ method by 8.43%.

These solutions proposed in this thesis can improve inference efficiency in CNNs and
make it possible for complex CNNs to be deployed at resource-limited edge devices.



SAMENVATTING

In de afgelopen jaren is de nauwkeurigheid van Deep Neural Networks (DNNs) aanzienlijk
verbeterd vanwege drie belangrijke factoren: de beschikbaarheid van enorme hoeveelhe-
den trainingsgegevens, de introductie van krachtige, goedkope computermiddelen en de
ontwikkeling van complexe deep learning-modellen. De cloud biedt toegang tot krachtige
computers om DNN berekeningen uit te voeren, maar kan beperkt worden ingezet van-
wege problemen met datacommunicatie en privacy. DNN berekeningen in de edge worden
daarom een belangrijk alternatief voor het berekenen van deze modellen in een datacen-
trum. Er is echter een discrepantie tussen de middelen die computers in de edge tot hun
beschikking hebben en de complexiteit van de modellen. Om deze discrepantie te vermin-
deren, moeten zowel de algoritmen als de hardware worden onderzocht om de efficiëntie
van het trainen van verschillende feedforward en recurrent neural networks en inferencing
met behulp van een DNN te verbeteren.

In dit proefschrift ligt onze focus op de algoritmen die worden gebruikt voor effi-
ciënte inferencing voor convolutional neural networks (CNNs). Dit proefschrift behandelt
voornamelijk het versnellen, kwantiseren en ontwerpen van efficiënte architecturen voor
neurale netwerken, middels de volgende vijf bijdragen. Ten eerste kan de voorgestelde
Diminished-1 Fermat Number Transform (DFNT) integer CNNs versnellen zonder enige
afrondingsfouten te introduceren. De diminished-1 point-wise products tussen de DFNT-
getransformeerde feature maps worden gebruikt om convolutie te berekenen en worden
meerdere keren hergebruikt om het aantal vermenigvuldigingen en optellingen te vermin-
deren. Om convolutie van gehele getallen te berekenen met typische parameterconfigu-
raties, behaalt de DFNT-methode een versnelling van 2 − 3x vergeleken met de directe
methode. Ten tweede vermindert het voorgestelde piecewise approximation scheme de
nauwkeurigheidsafname voor meerdere binaire CNNs. Het voorgestelde schema maakt
volledig gebruik van het vooraf getrainde model met volledige precisie, aangezien de
verdeling van de waarden met volledige precisie vergelijkbaar is met die van de be-
naderde waarden. Met de voorgestelde piecewise approximation is zowel de top-1- als
de top-5-nauwkeurigheidsdaling van ResNet op ImageNet slechts ongeveer 1.0%. Ten
derde worden neural architecture search en effectieve diepteverminderingstechnieken on-
derzocht om architecturen voor binaire CNNs te ontwerpen. Bij het aanpassen van neu-
ral network search bereiken de ontdekte neurale netwerkarchitecturen een betere afweging
tussen nauwkeurigheid en efficiëntie dan de huidige binaire CNNs. Met een verwaarloos-
bare overhead overtreft de Top-1-nauwkeurigheid van binaire CNNs die via de NASB-
strategie zijn ontdekt de bestaande enkelvoudige en meervoudige binaire CNNs met re-
spectievelijk 4.0% en 1.0%. Bij het verenigen van de fractal-architectuur en effectieve tech-
nieken voor diepte-reductie, bereiken de ontwikkelde verenigde architecturen een betere
nauwkeurigheid dan Bi-Real ResNet en BinaryDenseNet. Met bijna dezelfde complexiteit
is de Top-1 nauwkeurigheid van UA-ResNet37 (41) en UA-DenseNet51 (53) op ImageNet
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3.29% en 1.41% beter dan respectievelijk Bi-Real ResNet18 (64) en BinaryDenseNet51
(32). Ten vierde worden het feature reuse reduction and attention mechanism gebruikt
om efficiënte neurale netwerkarchitecturen te ontwerpen voor CNNs met volledige pre-
cisie. De voorgestelde aanpak vermindert het hergebruik van features binnen de convolutie
om kanalen nauwkeurig te maken en overtreft de standaardconvolutie met volledig herge-
bruik van features. Met hetzelfde rekenbudget is de Top-1 nauwkeurigheid van REAF-
ResNet50 en REAF+-MobileNetV2 op ImageNet respectievelijk 0.37% en 0.69% beter
dan die van hun standaard tegenhangers. De voorgestelde attention module lost het be-
naderingsprobleem en het probleem van onvoldoende capaciteit van de attention maps
op, en kan de nauwkeurigheid van op attention-gebaseerde modellen verder vergroten
met de juiste integratie. Dankzij integratie met het voorgestelde attention model, kun-
nen de huidige op attention-activation gebaseerde modellen hun Top-1 nauwkeurigheid
op ImageNet-classificatie verhogen met 0.57% en COCO-style Average Precision op de
COCO-objectdetectie met 0.45. Ten slotte kan de voorgestelde reconstructiemethode au-
tomatisch een geoptimaliseerde generator ontdekken om de gereconstrueerde trainings-
dataset te berekenen wanneer de originele trainingsdataset niet beschikbaar is voor mod-
elcompressie. De nauwkeurigheid van de huidige datavrije compressie verbetert wanneer
de door mensen ontworpen generator wordt vervangen door de gezochte generator. Bij het
gebruik van ResNet50 met 5-bit kwantisering en een geoptimaliseerde generator als het
vooraf getrainde model, overtreft onze gegevensvrije compressie op ImageNet de Top-1-
nauwkeurigheid van de GDFQ-methode met 8.43%.

De oplossingen die in dit proefschrift worden voorgesteld kunnen zowel de inference-
efficiëntie in CNNs verbeteren alsmede het mogelijk maken van implementaties van com-
plexe CNNs op edge-apparaten met beperkte capaciteit.
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1
INTRODUCTION

The recent success of Deep Neural Networks (DNNs) can be attributed to three main fac-
tors: 1. the increase of the volume of training data, 2. the increase of complexity of models,
and 3. the increase of low cost computational power. Relying on cloud services to compute
DNNs has a number of major challenges both in terms of communication cost and privacy
issues. This resulted in a fast growing interest in computing DNNs at the edge. However,
lightweight devices used at the edge cannot provide enough resources to compute DNNs
with large computational complexity. Various algorithms and hardware are designed to en-
able computing DNNs at the edge. In particular, this thesis focuses on proposing new and
innovative algorithms for efficient inference in Convolutional Neural Networks (CNNs).

This chapter introduces the motivation behind efficient processing of DNNs in Section 1.1
and discusses the opportunities and challenges related to both algorithm and hardware in
Section 1.2. Then, it describes the research questions and the corresponding contributions
in Section 1.3 and Section 1.4, respectively. Finally, it presents the thesis organization in
Section 1.5.

1
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1.1. MOTIVATION
Today, research on DNNs has achieved remarkable progress in various fields, including
computer vision [1], natural language processing [2], healthcare [3], robotics [4], reinforce-
ment learning [5], and so on. For example, the Top-5 error rate of ResNet ensembles [1]
on the ImageNet classification dataset is 3.57% and is better than the human-level accuracy
of 5.10% in 2015. In 2018, Microsoft’s machine translation system [2] on the WMT 2017
Chinese to English news task has reached parity with professional human translations and
significantly exceeded the quality of crowd-sourced non-professional translations.

Reasons for the success of DNNs: The success of DNNs is attributed mainly to three
factors: an increase in the amount of available training data, an increase in neural network
architecture complexity, and an increase in low cost computation power.

• Data—Large-scale labeled training data has recently become available for DNNs.
For example, the ImageNet classification dataset contains 1.3 million images. The
training data, on which GPT-2 [6] is pre-trained, consists of over 8 million documents
for a total of 40GB of text. It has been reported in [7] that the performance on vision
tasks increases logarithmically with the increase in training data volume.

• Model—It has been observed in [1, 8] that an increase in neural network architecture
complexity can lead to an accuracy improvement. The neural network architecture
complexity can be measured by the number of parameters and the number of floating-
point operations.

• Compute—The increase in computation capacity is an essential prerequisite for ben-
efiting from the increase in both training data and neural network architecture com-
plexity. For example, the compute capacity of GPUs has been increasing significantly
in the past decade, reaching 5.6 TFLOPs per second for the K80 GPU in 2014, up to
130 TFLOPs per second for V100 in 2017.

Drawbacks of computing DNNs in a cloud: DNNs rely on cloud services to provide
a large volume of training data and powerful computation capacity, which impedes the
deployment for mainly two reasons: communication cost and privacy concerns.

• Many applications cannot afford the cost of sending data to the cloud for processing.
For example, autonomous driving [9] cannot tolerate the latency cost of transmitting
data to the cloud since real-time computation is one of the most crucial factors to
interact with a complex real-world environment.

• Many applications do not wish to send their data to the cloud to avoid information
leakage. For example, privacy regulation prevents biometric identification data and
other personal data [10] from being sent to the cloud.

As a result, there is a huge interest in deploying DNNs at the edge, where lightweight
devices can deliver computation locally.
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Characteristics of DNNs and lightweight devices: To deploy DNNs on lightweight de-
vices, we need to consider the characteristics of DNNs and lightweight devices as follows.

• Accuracy improvement of DNNs comes with a significant increase in computational
complexity. For example, the Top-1 accuracy of ResNet152 [1] on the ImageNet
classification dataset is 23.00% and is 7.24% better than that of ResNet18. However,
the number of FLOPs and the number of parameters to compute ResNet152 is 11.3×
109 and 60.2×106, respectively, while ResNet18 needs 1.8×109 FLOPs and 11.7×106

parameters to calculate, respectively.

• Lightweight devices provide constrained computation capacity in terms of FLOPs,
energy consumption, and on-chip storage size. For example, the latest mobile product
MediaTek Helio P90 consists of two Arm Cortex-A75 processors, and each processor
delivers 2.2×109 half-precision floating-point operations per second1. Typically, the
number of parameters and the number of FLOPs for mobile models [8] are required
to be less than 600×106 and 5×106, respectively.

Challenges of computing DNNs at the edge: The mismatch between the need of DNNs
to have an increased computation complexity on the one hand, and the resource-constrained
edge devices on the other hand, will lead to the following challenges.

• It is challenging for lightweight devices to provide low-latency and real-time com-
putation for DNNs. More arithmetic operations, more computation cycles, and more
memory reference cycles are needed to compute a larger model. Besides, it is slower
to access off-chip DRAM rather than on-chip SRAM.

• It is challenging for battery-constrained devices to provide enough energy to calculate
DNNs. A larger model, which cannot fit in on-chip storage, consumes more energy
to fetch weights from off-chip DRAM. Energy consumption for an off-chip memory
access is two orders of magnitude larger than that for an arithmetic operation [11].

1.2. OPPORTUNITIES AND CHALLENGES
In this section, we present a comparison between training and inference. Then, we compare
feedforward and recurrent neural networks. In particular, we illustrate CNNs. Finally, we
describe the algorithms and hardware for efficient inference in CNNs.

1.2.1. TRAINING VERSUS INFERENCE

We compare the training and inference processes and their corresponding computational
platform, and we will focus on inference rather than training in this thesis below.

Training: Training is an iterative process to determine the weights and bias of DNNs
with training data by minimizing the loss. There are three steps of the training process:

1https://www.mediatek.com/products/smartphones/mediatek-helio-p90
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Figure 1.1: Feedforward versus recurrent networks.

forward propagation, backward propagation, and parameter update. The forward propaga-
tion computes the output of DNNs, with which loss is defined. Then, the partial derivatives
of the gradient are derived from the chain rule in the backward propagation. Finally, the
parameters are updated based on the partial derivatives of the gradient and the learning rate.
Training has demanding computation and storage needs, and it is typically performed in
a cloud. This iterative process and the three steps needed during training require signifi-
cant computational resources. In addition, the training data and the intermediate outputs of
DNNs for backward propagation need a large storage volume.

Inference: Inference is a process to compute the output of the DNNs with the determined
weights and bias in the training process. In the inference process, there is only one step
needed: the forward propagation step. Inference is much less computationally intensive
than the training process, and it can happen either in the cloud or at the edge.

1.2.2. FEEDFORWARD VERSUS RECURRENT NEURAL NETWORKS

We present a comparison between feedforward and recurrent neural networks as shown in
Figure 1.1. Our thesis is about CNNs, one of the most widely used forms of feedforward
neural networks.

Feedforward neural networks: In a feedforward neural network, the input of each layer
is the output of the previous layer, and the output of the last layer is the output of the
feedforward neural network. The output of the feedforward neural network is independent
of the inputs previously fed into the feedforward neural network since there is no internal
memory.
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Recurrent neural networks: In a recurrent neural network, the intermediate values are
stored internally and will be used along with the later input of the recurrent neural network.
The output of the recurrent neural network is computed based on the current input of the
recurrent neural network and the intermediate values stored in the internal memory. Thus,
the recurrent neural network can learn long-term dependencies in the input.

1.2.3. CONVOLUTIONAL NEURAL NETWORKS

In this section, we briefly give an overview of CNN applications, neural network architec-
tures, and a description of various layers for CNNs.

Applications: CNNs have been explored for various application domains such as natural
language processing [12], health care [13], time series prediction [14], and visual recog-
nition [1]. In particular, CNNs are most commonly employed in computer vision systems
and solve problems for a broad array of visual tasks [15], such as image classification [1],
object detection [16], image segmentation [17], and face recognition [10]. Rather than us-
ing hand-crafted features, CNNs are trained in an end-to-end manner to generate high-level
abstraction of the training data. This thesis focuses on tasks related to visual recognition,
specifically image classification.

Neural network architectures: The main aspects of neural network architectures cover
depth, width, groups, attention mechanism, and neural architecture search. Thus, various
neural network architectures for CNNs have been designed to explore the influence of these
aspects both on accuracy as well as efficiency. LeNet-5 [18], AlexNet [19], ZFNet [20],
GoogLeNet [21], NiN [22], VGGNet [23], ResNet [1], DenseNet [24], SENet [25], and
NASNet [26] are mainly designed for improving accuracy. ResNeXt [27], SqueezeNet [28],
ShuffleNet [29], MobileNet [8], MnasNet [30], and GhostNet [31] are mainly proposed for
improving efficiency. The neural network architecture of AlexNet is shown in Figure 1.2.

Figure 1.2: The neural network architecture of AlexNet. AlexNet is one of the most in-
fluential neural network architectures. It won the 1st place on the ImageNet
challenge in 2012. This figure is from [19].

A description of CNN layers: A CNN is a stacking of various layers, including the
convolutional layer, normalization layer, activation layer, and pooling layer.
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• The convolutional layer is used to extract the features from the input data. The two
main characteristics of the convolutional layer are local connections and weight shar-
ing [18]. Each neuron of an output feature map has a receptive field and is connected
to a neighborhood of neurons of the input feature maps by a set of weights. Also,
different neurons of each output feature map use a set of weights.

• The normalization layer is used to speed up convergence during training and improve
accuracy. The normalization layer adjusts the distribution of the training data across
layers by the parameters of mean and standard deviation. There are local response
normalization [19], batch normalization [32], instance normalization, group normal-
ization, and layer normalization [33] for the normalization layer. Among them, batch
normalization has become a standard choice in CNNs.

• The activation layer is used to introduce nonlinearity for CNNs. There are a number
of functions used for the activation layer, such as sigmoid, hyperbolic tangent, and
Rectified Linear Unit (ReLU) [34]. Currently, the ReLU is popular in CNNs since it
can speed up the convergence during training.

• The pooling layer is used to reduce the spatial dimension and enable the spatial in-
variance to translation or distortion [18]. The popular pooling layers mainly include
the max pooling layer and the average pooling layer, where the maximum value and
average value within a receptive field propagate to the next layer, respectively.

1.2.4. ALGORITHMS FOR EFFICIENT INFERENCE
As shown in Figure 1.3, algorithms for efficient inference in DNNs mainly include acceler-
ation [35–38], pruning [39–45], quantization [46–49], knowledge distillation [50–56], and
efficient neural network architecture design [1, 21, 24, 27, 28, 57, 58].

Acceleration: Acceleration2 means reducing the number of operations used for infer-
ence by using fast algorithms [35–38]. Fast algorithms for convolution mainly include Fast
Fourier Transform (FFT) [35, 36], Strassen algorithm [37], and Winograd Transform [38].
Acceleration does not need to modify or fine-tune DNNs, which will maintain the accuracy
of the network. However, given a fast algorithm for acceleration, the speedup is bounded by
a theoretical maximum value and is closely related to the neural network architecture. For
example, the speedup is larger when FFT is used to accelerate a convolution with a larger
kernel size. [36] adopts FFT to accelerate a convolution with a kernel size of 3×3, where
the maximum speedup is 1.84 than the standard algorithms used in cuDNN [59] even with
the largest problem size.

Pruning: Pruning is a process to remove redundant connections or neurons, which does
not contribute significantly to accuracy. Pruning can reduce both the number of parame-
ters and the number of FLOPs required to compute DNNs. Criteria used to prune specific
connections or neurons include the second derivative of the loss function (Hessian matrix)
[39, 40], the magnitude of the weights [60], the magnitude of the activations [61, 62], and

2In this thesis below, we clarify that acceleration is achieved by algorithms rather than hardware.
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Figure 1.3: Algorithms and hardware for efficient inference in CNNs.

the LASSO penalty term [41–43]. Element-wise pruning, called unstructured pruning [60],
has the smallest granularity of sparsity and is difficult to accelerate without specialized
hardware support. Structured pruning [41, 43–45] can remove a group of connections or
neurons to enable an efficient implementation. It is reasonable to expect that a higher prun-
ing ratio will result in a larger accuracy degradation. However, it is worth exploring to limit
the accuracy drop introduced by a high pruning ratio.

Quantization: Quantization means reducing the bit-width to represent the weights and
activations. In the forward propagation, the quantization error is the distance between full-
precision numbers and discrete values. There are mainly uniform quantization [46, 47] and
non-uniform quantization [48, 49] to minimize the quantization error. In uniform quanti-
zation [46, 47], the full-precision numbers are quantized with a constant quantization step.
In non-uniform quantization [48, 49], the quantization intervals and the parameters are
jointly trained to minimize the quantization error. In the backward propagation, the gradi-
ent mismatch problem arises because of the non-differentiable quantizer. Different gradient
approximations of the non-differentiable quantizer [63–65] are used to alleviate the gradi-
ent mismatch problem. Typically, there is a larger accuracy gap between the full-precision
model and the quantized model with a shorter bit-width representation. Binary neural net-
works [66, 67] use binary values to replace full-precision counterparts, which leads to the
largest accuracy drop among quantizations with different bit-widths. Thus, improving ac-
curacy is needed for the deployment of binary neural networks in practical situations.

Knowledge distillation: Knowledge distillation transfers the knowledge from a teacher
model to a student model. The accuracy of the student model improves without additional
parameters or FLOPs needed to compute inference. The knowledge extracted from the
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teacher model includes the output of the last layer of the teacher model [50, 51], the out-
put of the intermediate layers [52–54], the relationship between feature maps of different
layers [55, 56], and the relationship between different data samples [68, 69]. In offline
distillation [50], the knowledge is transferred from a pre-trained teacher model to a stu-
dent model. When the pre-trained teacher model is not available, online distillation [70,
71], such as self-distillation [72], can have both the teacher model and the student model
updated simultaneously. Various distillation algorithms are used to improve the process
of transferring knowledge, including adversarial distillation [73], multi-teacher distillation
[74], cross-modal distillation [75], and graph-based distillation [76]. However, improving
knowledge quality, distillation algorithm, and teacher and student models’ architecture still
deserves efforts.

Efficient neural network architecture design: Current network engineering considers
both the accuracy and efficiency of neural networks. Given an accuracy constraint, de-
signing efficient neural network architecture means reducing the number of parameters and
the number of FLOPs. Feature reuse [1, 24] can not only alleviate the gradient vanish-
ing problem [77] but also improve efficiency. In GoogLeNet [21] and SqueezeNet [28],
convolutions with kernel size 1×1 are used to replace convolutions with kernel size 3×3.
In ResNeXt [27], group convolution with a new cardinality is more effective than going
deeper or wider. In Inception series [57], IGCV series [78], MobileNet series [79], Shuf-
fleNet series [58], and Espnet series [80], depthwise separable convolution has been widely
used to reduce computational complexity while increasing the representational efficiency.
The attention mechanism is described as the allocation of limited cognitive resources [81]
and adapted to develop attentional modules in [25, 82]. Neural architecture search can au-
tomatically discover efficient neural network architecture from a large search space, where
the performance of FBNet [83] and MnasNet [30] surpasses the human-designed network.
However, a better neural network architecture is still required to mitigate the contradiction
between accuracy and efficiency.

1.2.5. HARDWARE FOR EFFICIENT INFERENCE

We will focus on algorithms rather than hardware for efficient inference in this thesis below.
Thus, we briefly discuss the recent works about memory access when performing DNNs on
hardware accelerators.

Optimizing dataflows: Given several levels of a memory hierarchy, optimized dataflows
maximize data reuse from the low-cost memory hierarchy. In weight stationary dataflows
[84, 85], the weights are reused as many times as possible while they are presented in the
Register File (RF) at each Processing Element (PE). In output stationary dataflows [86,
87], the accumulation of the partial sums for each output activation value is processed
in the RF at each PE. In no local reuse dataflows [88, 89], the input activations and the
weights are read from the global buffer, and the partial sums are written back to the global
buffer since there is no RF allocated in each PE. In row stationary dataflows [90, 91], the
reuse of the weights, input activations, and partial sums are maximized in the RF at each
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PE. However, we need to optimize the dataflows continuously with the evolution of neural
network architectures.

Near-data processing: The goal is to move computing and data closer to each other in
order to reduce data movement. To bring memory near the computation, embedded DRAM
[89] integrates DRAM into the chip and 3-D memory [92] stacks DRAM on top of the chip.
To bring the computation into the memory, the multiply and accumulate operation can be
integrated into SRAM [93] and memristors [94, 95]. The multiplication and accumulation
operations are completed in the analog domain [96, 97], which enables the computation
close to the sensors. However, analog processing increases sensitivity to circuit and device
nonidealities and introduces additional costs for analog-to-digital conversion (ADC) and
digital-to-analog conversion (DAC).

1.3. RESEARCH QUESTIONS
Many challenges have been discussed in the preceding section and need to be addressed.
The thesis focuses on algorithms for efficient inference in CNNs. The research questions
that we will shed light on are summarized as follows.

How to accelerate integer CNNs? This question belongs to acceleration and quan-
tization. Current works have accelerated full-precision CNNs and have quantized full-
precision CNNs. However, there are little efforts towards acceleration algorithms for quan-
tized CNNs, specifically integer CNNs. The acceleration algorithm for integer CNNs is
required to introduce zero round-off error since there is already an accuracy drop because
of quantization.

How to improve multiple binary CNNs? This question belongs to quantization. Mul-
tiple binary CNNs achieve a better trade-off between accuracy and efficiency than single
binary CNNs and fixed-point CNNs. However, the accuracy gap between full-precision
CNNs and multiple binary CNNs is still considerable and needs to be reduced by a better ap-
proximation scheme. Regarding approximation, the distribution between the approximated
values and the full-precision values is required to be similar, which takes full advantage of
the pre-trained full-precision model.

How to design neural network architectures automatically for binary CNNs? This
question belongs to quantization and efficient neural network architecture design.
Among all the quantization methods with different bit-widths, the binarization error in the
forward propagation is the largest, and the gradient mismatch problem is the severest in
the backward propagation. Thus, the neural network architectures for full-precision models
need to be re-designed after binarization. The search space of the automated neural network
architectures is required to be carefully defined.

How to design neural network architectures manually for binary CNNs? This question
belongs to quantization and efficient neural network architecture design. It is rea-
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sonable to improve gradient backpropagation when the training difficulties increase. Cur-
rent human-designed neural network architectures rely on enhancing the shortcut effective
depth reduction techniques, i.e., increasing the number of shortcuts. However, increas-
ing the number of shortcuts for Bi-Real ResNet and BinaryDenseNet will not improve the
accuracy. Thus, developing better neural network architectures for binary CNNs requires
thoroughly utilizing effective depth reduction techniques.

How to reduce feature reuse within the convolution for full-precision CNNs? This
question belongs to efficient neural network architecture design. Current neural net-
work architectures encourage feature reuse between convolutional layers and within the
convolution. Feature reuse can help gradient backpropagation and improve efficiency.
However, feature reuse within the convolution will result in the approximation problem
of the channels. Thus, it is challenging to reduce feature reuse within the convolution to
address the approximation problem.

How to improve the attention module for full-precision CNNs? This question belongs
to efficient neural network architecture design. Attention-based models have achieved
noticeable accuracy improvement without introducing significant computational complex-
ity. In current attentional activations-based models, we identify the approximation and the
insufficient capacity problem of the attention maps. Thus, an improved attention module is
required to develop to address the above problem.

How to improve the reconstruction method for data-free compression? This question
belongs to quantization, knowledge distillation, and efficient neural network archi-
tecture design. The reconstruction method addresses the new problem that the original
training dataset is unavailable because of storage or privacy issues. However, the current
reconstruction method is limited to extract prior information from the pre-trained model.
Designing neural network architectures for the reconstruction method is worth exploring
and is orthogonal to the current reconstruction methods.

1.4. CONTRIBUTIONS
The contributions of this thesis are directly associated with the research questions presented
in the preceding section.

Propose Diminished-1 Fermat Number Transform to accelerate integer CNNs in
Chapter 2: Integer data types are not only widely used in the research community [47,
98], but also supported by the recent commercial platforms [99, 100]. To accelerate the
computation of integer convolution, we propose the Diminished-1 Fermat Number Trans-
form (DFNT) after defining arithmetic operations using diminished-1. The proposed accel-
eration algorithm computes convolution as the diminished-1 point-wise products between
DFNT transformed feature maps, which are reused multiple times. Besides, diminished-
1 representation enables the computation of arithmetic operations with b bits for integers
of b + 1 bits. Thus, the proposed algorithm needs fewer multiplications and additions to
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compute than the direct method. Experiments of integer convolution show that the pro-
posed algorithm achieves faster speed and better parallelism than the direct method without
introducing any round-off error.

Develop the piecewise approximation scheme for multiple binary CNNs in Chapter
3: Multiple binary CNNs achieve better accuracy than single binary CNNs and require
less cost than fixed-point CNNs. Thus, we propose a piecewise approximation scheme to
improve the performance of multiple binary CNNs. The scheme segments the whole range
of weights and activations into many pieces and uses a scaling coefficient to approximate
each piece. Using the scheme, the inference architecture of a full-precision convolution is
implemented as a group of parallel bitwise convolutions. The distribution of the approxi-
mated values is similar to that of the pre-trained full-precision values, which indicates that
the proposed scheme takes advantage of the pre-trained full-precision CNNs. Various ex-
periments and computational complexity are analyzed for the proposed scheme and current
quantization methods.

Develop the NASB strategy (i.e., automated neural network architectures) for binary
CNNs in Chapter 4: It is challenging to figure an optimized neural network architecture
for binary CNNs because of the large binarization error in the forward propagation and
severe gradient mismatch problem in the backward propagation. Thus, we propose the
NASB strategy, which leverages the neural architecture search (NAS) technique to design
neural network architectures for binary CNNs. The NASB strategy consists of connections
of a NASB-convolutional cell, operations of a NASB-convolutional cell, and a three-stage
training algorithm. The connections of the NASB strategy are combined with a human-
designed backbone and typical NAS-convolutional cells. The optimized neural network
architectures from the NASB strategy are suitable for binarization, which achieves a better
trade-off between accuracy and efficiency than human-designed binary CNNs.

Develop unified effective depth reduction techniques (i.e., human-designed neural net-
work architectures) for binary CNNs in Chapter 5: Effective Depth Reduction (EDR)
techniques for full-precision CNNs have been widely applied in network engineering to
improve gradient backpropagation. When training difficulties increase, enhancing one ef-
fective depth reduction technique is proposed. In particular, enhancing the shortcut EDR
technique has been used for binary CNNs. We identify the limitation of relying solely on
enhancing the shortcut EDR technique since the accuracy of Bi-Real ResNet and Bina-
ryDenseNet will not improve with the increase of the number of shortcuts. From a new
perspective, we unified multiple EDR techniques into one model and develop unified mod-
els to improve gradient propagation. We unify the shortcut and fractal architecture EDR
techniques and develop unified models for binary ResNet and DenseNet. Gradient analysis
shows that the gradient paths of our unified models are better than that of Bi-Real ResNet
and BinaryDenseNet. Experimental results demonstrate that both the shortcut and the frac-
tal architecture EDR technique are necessary for our unified models.

Develop Reducing Approximation of channels by Reducing Feature reuse (REAF)
scheme for full-precision CNNs in Chapter 6: Feature reuse is advantageous to effi-
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ciency and gradient backpropagation. However, feature reuse will lead to an approximation
problem of the channels within the convolution. In particular, the input feature maps to
compute every channel of the output feature maps of the convolution are the same in a stan-
dard convolution. We propose the REAF scheme, where the input feature maps to compute
every channel of the output feature maps of the convolution are customized and special-
ized. The proposed scheme with different configurations shows better accuracy than the
standard convolution. Besides, we develop the REAF+ scheme, which adopts parameter-
ized operations to enable the specialized input feature maps to compute every channel of
the output feature maps of the convolution. The proposed scheme can have more merged
channels than group convolution, which reduces feature reuse within the convolution. Fi-
nally, we analyze the class selectivity for the features that the proposed scheme and group
convolution reduce the feature reuse compared with the standard convolution.

Develop an attention module for full-precision CNNs in Chapter 7: We analyze the
problems of the current attentional activations-based models, including the approximation
problem and insufficient capacity problem of the attention maps. To address the above
problems, we propose an attention module, which mainly includes the Attentional Weight
(AW)-convolution. In the AW-convolution, the shape of attention maps matches that of the
weights rather than the activations. To reduce the computational cost, we refine the archi-
tecture of calculating the attention maps in the proposed attention module. Integrated with
the proposed attention module, the accuracy of the models without the attention mechanism
increases. More importantly, the accuracy of current attention-based models improves fur-
ther when integrating with the proposed attention module. The proposed attention module
is a complementary method to current attention-based models since it is designed to solve
the problems of current attention-based models.

Propose the AutoReCon reconstruction method for data-free compression in Chap-
ter 8: Computing the reconstructed training dataset is an essential step when the original
training dataset is not available due to transmission or privacy concerns. From a new point
of view, we consider network engineering of the reconstruction. Regarding the definition of
the reconstruction method, we compute the reconstruction loss given the pre-trained model
and the prior information exploited from the pre-trained model. Then, we propose the Au-
toReCon method, which applies neural architecture search for the current reconstruction
method. The AutoReCon method includes a stochastic super net-based search space and a
gradient-based search algorithm. Using the AutoReCon method for the data-free compres-
sion, there is an additional searching stage to discover an optimized generator. The accuracy
of current data-free quantization and knowledge distillation will improve with the optimized
generator because of the superiority of the optimized generator over the human-designed
generator.

1.5. THESIS ORGANIZATION
The remainder of this thesis is organized as follows.

Chapter 2 describes an acceleration algorithm for integer CNNs. It presents the proposed
Diminished-1 Fermat Number Transform to accelerate integer CNNs. Moreover, the ac-
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curacy, speed, scalability of the Diminished-1 Fermat Number is compared with the direct
baseline method.

Chapter 3 covers an approximation algorithm for multiple binary CNNs. It elaborates
how the proposed piecewise approximation scheme works in forward and backward prop-
agation. Also, it discusses the extensive experimental results and analyzes thoroughly effi-
ciency.

Chapter 4 discusses an automated neural network architecture algorithm for binary
CNNs. It describes the NASB strategy, including connections of a NASB-convolutional
cell, the operations of a NASB-convolutional cell, and a three-stage training algorithm.
Moreover, it shows diverse experiments to demonstrate the effectiveness of the NASB strat-
egy.

Chapter 5 presents unified effective depth reduction techniques for binary CNNs. It de-
scribes the unified architectures, which unifies the shortcut and fractal architecture effective
depth reduction techniques. It also analyzes the gradient path, computational complexity,
and experimental results.

Chapter 6 is concerned with reducing feature reuse within the convolution for full-
precision CNNs. It presents the proposed REAF and REAF+ schemes, which reduce feature
reuse within the convolution to reduce the approximation of channels. Finally, it presents
the comparisons with baseline models, which are composed of standard convolution and
group convolution.

Chapter 7 introduces an attention module for full-precision CNNs. First, it describes the
approximation problem and the insufficient capacity problem of the attention maps. Then,
it discusses the proposed attention module, which mainly includes the AW-convolution.
Finally, it presents experiments to demonstrate the benefit of integrating the proposed at-
tention module.

Chapter 8 shows an automatic reconstruction method for data-free compression of CNNs.
It describes the AutoReCon method, including the search space, search algorithm, and train-
ing process. In addition, it presents experiments of data-free compression to show the su-
periority of the proposed reconstruction method.

Chapter 9 concludes this thesis.





2
ACCELERATION WITH

DIMINISHED-1 FERMAT
NUMBER TRANSFORM

Convolutional Neural Networks (CNNs) are a class of widely used deep artificial neural
networks. However, training large CNNs to produce state-of-the-art results can take a long
time. In addition, we need to reduce compute time of the inference stage for trained net-
works to make them accessible for real-time applications. To achieve this, integer number
formats INT8 and INT16 with reduced precision are being used to create Integer Convolu-
tional Neural Networks (ICNNs) to allow them to be deployed on mobile devices or embed-
ded systems. In this chapter, Diminished-1 Fermat Number Transform (DFNT), which refers
to Fermat Number Transform (FNT) with diminished-1 number representation, is proposed
to accelerate ICNNs through algebraic properties of integer convolution. This is achieved
by performing the convolution step as diminished-1 point-wise products between DFNT
transformed feature maps, which can be reused multiple times in the calculation. DFNT
adapts b bits to represent and compute all the integers in the ring of integers modulo Fer-
mat number 2b +1, which is more efficient than FNT, which uses b+1 bits to represent and
perform arithmetic operations. In other words, DFNT computes arithmetic operations more
exactly than FNT if the hardware platform supports arithmetic operations with a maximum
of b bits. Using DFNT, integer convolution is implemented on a general-purpose proces-
sor, showing speedup of 2-3x with typical parameter configurations and better scalability
without any round-off error compared to the baseline.

The content of this chapter is based on [1].
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2.1. INTRODUCTION
Convolutional Neural Networks (CNNs) have emerged as one of the most influential neural
network architectures to tackle large scale machine learning problems in image recognition,
natural language processing, and audio analysis [2] [3]. Due to the high complexity of
CNNs, orders of magnitude more data is required to take advantage of these powerful neural
networks. For the training of CNNs on large datasets (such as ImageNet), several weeks
of training time is usually needed, even using parallel computing environments. For the
inference phase of trained CNNs, real-world applications with real-time requirements or
for application in the embedded domain, requires very short inference time as well as using
a low energy budget. Therefore, there is ongoing effort from the research community as
well as industry to accelerate the training and inference of CNNs [4] [5].

To be deployed on embedded systems or mobile devices, CNNs with discrete parameters,
i.e. Integer Convolutional Neural Networks (ICNNs), have been an active and promising
research topic. Generally, there is better computing support for fixed-point as compared
to floating-point operations. Currently, especially INT8 and INT16 are the most widely
used data types for weight and input in the quantization of CNNs, and their feasibility
has been demonstrated by many researchers [6] [7]. The benefits of these ICNNs include
storage cost reduction and computation requirement reduction because of shorter bit-width
of weight compared to single precision floating-point.

In this chapter we present a novel approach to speed up the training and inference of IC-
NNs using Diminished-1 Fermat Number Transform (DFNT), i.e, Fermat Number Trans-
form (FNT) using diminished-1 number representation. This helps to reduce the complexity
of integer convolutions through its algebraic properties. The innovative idea is based on per-
forming the convolution as diminished-1 point-wise products between DFNT transformed
feature maps, which can be reused multiple times. All input and output feature maps, and
gradients of the loss with respect to these feature maps and weight kernels of ICNNs can be
viewed as 2-D matrices. Therefore, most operations can be represented by convolutions be-
tween pairs of 2-D matrices. Since the convolutions are performed for all pairings between
two sets of 2-D matrices, computing DFNT of all the matrices only once can complete all
the convolutions as diminished-1 pairwise products. In addition, diminished-1 number rep-
resentation is used for FNT to perform binary arithmetic with b bits for all the integers of
b + 1 bits in the ring of integers modulo Fermat number 2b + 1, which enables exact and
efficient calculation.

The contributions of this chapter are as follows.

• This is the first work that optimizes the computation of ICNNs using the algebraic
properties of integer convolution without introducing any round-off error.

• The chapter presents DFNT to speed up the training and inference of ICNNs, where
diminished-1 number representation is used for FNT to enable exact and efficient
calculation.

• The chapter shows a sustained speedup of 2-3x without any round-off error in com-
puting the integer convolution with typical parameter configurations.

The rest of the chapter is organized as follows. Section 2.2 discusses related work mainly
for the acceleration of ICNNs. Section 2.3 reviews the theory of CNNs. Then, Section 2.4
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presents DFNT, including FNT and arithmetic operations using diminished-1 number rep-
resentation. Compared with the direct method, arithmetic complexity is analyzed in Sec-
tion 2.5 and experimental results are demonstrated in Section 2.6. Finally, we conclude this
chapter in Section 2.7.

2.2. RELATED WORK
Fast Fourier Transform (FFT) was first used to reduce the computation complexity of CNNs
by Mathieu et al. [2], refined by Vasilache et al. [3], and subsequently implemented in the
NVIDIA cuDNN library [8]. However, this approach was applied only for floating-point
calculations. The Strassen and Winograd algorithms for fast matrix multiplication were
used by Cong et al. [4] and Lavin et al. [5] to reduce the number of multiplications in con-
volution. [9] has explored the feasibility of using FNT to accelerate CNNs. However, FNT
requires b +1 bits to represent and perform all the integers in the ring of integers modulo
Fermat number 2b +1 since the representation of the quantity 2b = −1modFt requires the
(b+1)th bit. Our proposal of DFNT adapts b bits to represent and compute all the integers in
the ring of integers modulo Fermat number 2b +1, which is more efficient than FNT, which
uses b+1 bits to represent and perform arithmetic operations. These publications exploited
the algebraic structure of convolution without influencing accuracy. Other approaches aim
to reduce the complexity of the computation by computing convolution approximately [10],
performing training with separable filters [11].

ICNNs are widely used in the training, fine-tuning and inference of CNNs. Shuchang
et al. [6] used dynamic fixed-point format of INT8 in their proposed method DOREFA-
NET to train and fine-tune CNNs. Philipp et al. [12] presented the Ristretto approximation
framework, which can successfully condense CaffeNet and SqueezeNet to INT8. Benoit et
al. [13] proposed a quantization scheme with INT8, which allows inference to be carried out
using integer-only arithmetic and is adopted in Tensorflow Lite. Shuang et al. [14] devel-
oped a new method termed as “WAGE” to discretize both training and inference processes,
where activations, gradients and errors among layers are shifted and linearly constrained
to INT8. Suyog et al. [7] used only INT16 with stochastic rounding to train deep neu-
ral networks, and the demonstration on FPGA incurred little to no accuracy degradation.
Dipankar et al. [15] used INT16 in dynamic fixed point data format to train state-of-the-
art CNNs for ImageNet-1K dataset on general processor and achieved the highest reported
accuracy using half precision representation.

Data types INT8 and INT16 are not only widely explored by the research community, but
also have been supported in recent commercial platforms for deep neural network (DNN)
processing. The Google’s Tensor Processing Unit [16] announced in May 2016 was de-
signed for 8-bit integer arithmetic. The Nvidia’s PASCAL GPU [17] announced in April
2016 has 8-bit integer instructions for deep learning inference. Vector Neural Network
Instructions Word variable precision (4VNNIW) is a set of vector instructions for INT16
newly introduced by Intel Xeon Phi Knights-Mill [18], which was announced in 2017.
These use the AVX-512 SIMD instructions that are 512-bit extensions to 256-bit advanced
vector extension instructions for x86 instruction set architecture. AVX-512 Vector Length
Extensions is a set of vector instructions for INT8 supported by Skylake-SP and Skylake-X
processors [18], which were announced in 2017. These commercial approaches can accel-
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erate ICNNs through customizing hardware architecture design, which are considered as
orthogonal and complementary to those that exploit algebraic structures.

Despite the fact that much research has been done to utilize INT8 and INT16 to reduce
the complexity of CNNs, none of these effort have investigated the possibility to optimize
the computation time of integer convolution using their algebraic properties. This chapter
is the first to investigate possible speedup of the training as well as the inference of CNNs
using algebraic transformations without introducing any round-off error.

2.3. CONVOLUTIONAL NEURAL NETWORKS
For a given convolution layer, notations are fixed below. There are a set of input feature
maps x f indexed by f , each one being a 2-D image of dimensions n ×n. The output of
CNNs is recognized as a set of feature maps y f ′ indexed by f ′, each of which is also a
2-D image whose dimensions n′×n′ depend on weight kernel and its stride. The trainable
parameters of the convolution layer are a set of weight kernels w f ′ f , each of which is a 2-D
kernel of dimensions k ×k. Each input and output feature map is part of a batch size s.

In the forward pass, each output feature map is computed as a sum of the f input feature
maps correlating with the f trainable weight kernels correspondingly, where • refers to
cross-correlation.

y f ′ =∑
f

x f •w f ′ f (2.1)

During the backward pass, the gradients of the loss C with respect to the input is com-
puted as a sum of the f ′ gradients of the loss with respect to the output convolving with the
f ′ trainable weight kernels, where ∗ represents convolution.

∂C

∂x f
=∑

f ′

∂C

∂y f ′
∗w f ′ f (2.2)

Based on the gradients of the loss with respect to the input computed from equation (2),
the gradients of the loss with respect to the weight is computed as a sum of the s gradients
of the loss with respect to the output correlating with the s input feature maps.

∂C

∂w f ′ f
=∑

s

∂C

∂y f ′
•x f (2.3)

2.4. DIMINISHED-1 FERMAT NUMBER TRANSFORM
To represent all the integers in the ring of integers modulo Ft requires b +1 bits, where Ft

is the t th Fermat number. Ft = 2b +1, and b = 2t . In order to avoid performing binary arith-
metic for the additional bit in the b +1 representation, diminished-1 number representation
is used for FNT. In this section, DFNT is illustrated as an exact and efficient approach,
including FNT and the arithmetic operations with diminished-1 number representation to
perform FNT.
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Algorithm 1 Arithmetic Operations in Diminished-1
Function addition_d-1 (X , Y )

if X == 2b then
Z = Y

else if Y == 2b then
Z = X

else
Z = Xb + Yb + Cr

end if
return Z

End Function
Function d-1_to_nb (X )

if X == 2b then
x = 0

else
x = addition_d-1 (X , 1)

end if
return x

End Function
Function nb_to_d-1 (x)

X = addition_d-1 (x, 2b - 1)
return X

End Function
Function negation_d-1 (X )

if X == 2b then
Z = 2b

else
Z = 2b - Xb

end if
return Z

End Function
Function left shift_d-1 (X )

if X == 2b then
Z = 2b

else
Z = left circular shift (Xb)

end if
return Z

End Function
Function multiplication_d-1 (X , Y )

if X == 2b - 1 then
Z = negation_d-1 (Y )

else if Y ==2b - 1 then
X = negation_d-1 (X )

else
x = d-1_to_nb (X ); y = d-1_to_nb (Y ); {Zh , Zl } = xb × yb ; Z = subtraction_d-1 (Zl , Zh)

end if
return Z

End Function
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2.4.1. FERMAT NUMBER TRANSFORM
FNT [19] is a kind of number theoretic transform, which is defined on a finite ring of
integers carried out modulo Fermat numbers. FNT is exact, i.e. without round-off error.
One dimensional FNT of sequence x(l ) with length L is defined as follows.

X (k) ≡
L−1∑
l=0

(x(l )×al k ) mod Ft (2.4)

where k = 0,1, . . . ,L − 1. a is the root of unity of order L, and generally selected as a
power of 2 since it can be calculated through a shift operation. Especially when a = 2,
the largest length of the transform will be L = 2t+1. FNT is a FFT-like transform, which
can be expressed using decimation in time structure and results in the following efficient
implementation.

X (q) ≡ x1(q)+x2(q) mod Ft (2.5)

X (q +L/2) ≡ x1(q)−x2(q) mod Ft (2.6)

where x1(q) and x2(q) are calculated as follows.

x1(q) =
L/2−1∑

p=0
(x(2p)×22pq ) (2.7)

x2(q) = 2q
L/2−1∑

p=0
(x(2p +1)×22pq ) (2.8)

The corresponding inverse FNT is expressed as below.

x(l ) ≡ 1

L

L−1∑
k=0

(X (k)×a−lk ) mod Ft (2.9)

Two dimensional FNT is used to process two dimensional feature maps of convolution
layer, and defined as below. Two dimensional FNT is calculated based on one dimensional
FNT. A one dimensional FNT is used to operate on each row of the feature map, and then
it is used to operate on each column of the intermediate results, as follows.

X (p,k) ≡
Q−1∑
q=0

L−1∑
l=0

(x(q, l )×al k ×apq ) mod Ft (2.10)

2.4.2. ARITHMETIC OPERATIONS USING DIMINISHED-1
To perform binary arithmetic operations with b bits for integers of b + 1 bits, a modi-
fied binary number system, i.e. diminished-1 number representation [20], is adopted. In
diminished-1 number representation, the numbers from 1 to 2b are represented in order by
the normal binary numbers from 0 to 2b −1.

Using diminished-1 representation, pseudo code of binary arithmetic operations modulo
Ft is defined as Algorithm 1. x in normal binary (nb) number representation corresponds



2.5. ARITHMETIC COMPLEXITY ANALYSIS

2

21

0 10 20 30 40 50 60

0

2

4

·1011

Input size

N
o.

op
er

at
io

ns

Direct (addition & multiplication)
DFNT (addition)
DFNT (multiplication)

Figure 2.1: Number of operations of the forward pass for different input sizes with batch
size = 128, input channel = 96, output channel = 256, kernel size = 7.

to X in diminished-1 (d-1) number representation. In d-1 number representation, X , Y and
Z are of b +1 bits, and Xb and Yb indicate the b Least Significant Bits (LSBs) of X and Y
respectively. Zh and Zl are the b Most Significant Bits (MSBs) and the b LSBs, comprising
result of 2b-bit multiplication. In nb number representation, xb and yb are of b bits.

If operands are equal to special numbers, such as 2b and 2b − 1, special results will
be returned. Otherwise, b-bit operations in d-1 number representation will be performed.
nb_to_d-1 is the translation from nb to d-1 number representation, and d-1_to_nb is the
reverse process. If the operand X is not equal to 2b , the complemented Xb is the result of
its negation_d-1. If neither of the operands X and Y are equal to 2b , adding the sum of
Xb and Yb with their complemented carry bit Cr gives the result of their addition_d-1. If
the operand X is not equal to 2b , the left circular shift of Xb with its complemented bits
circulated into its LSBs performs its left shift_d-1. As for multiplication_d-1, if neither of
the operands X and Y are equal to 2b −1, they will be translated into nb number represen-
tation. Following a 2b-bit binary multiplication, a subtraction_d-1 of the b MSBs of the
product from the b LSBs is performed. Subtraction_d-1 is completed by addition_d-1 and
negation_d-1, and right shift_d-1 can be calculated in a similar way of left shift_d-1.

2.5. ARITHMETIC COMPLEXITY ANALYSIS
In this chapter, we use "same" as the padding algorithm for the convolution, which means
n = n′. The transform length n +k −1, which is not a power of 2, must be padded to the
next highest power. This limitation is not intrinsic to DFNT and can be explored in the
future. Since equations (1), (2) and (3) have exactly the same number of operations using
either the direct method or DFNT, all complexity analysis and experiments in this chapter
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Figure 2.2: Time versus input size with batch size = 128, input channel = 96, output channel
= 256, kernel size = 7

are illustrated only for equation (1).
Taking the forward pass, i.e, equation (1), with the input and weight of data type INT16

as an example, it accounts for a total of s× f ′× f ×n′2×k2 32-bit multiplications and 64-bit
additions, as shown in Table 2.1.

DFNT has a fast transform structure similar to FFT, and all operations are performed in
64-bit data path. As shown in Table 2.1, it requires 2(n +k −1)2 × log2(n +k −1)× (s × f +
f × f ′) addition_d-1 and left shift_d-1 operations for the transform of the input feature maps
and weight kernels, 2(n +k −1)2 × log2(n +k −1)× (s × f ′) addition_d-1 and left shift_d-1
operations for the inverse transform of the output feature maps, and s × f ′× f × (n +k −1)2

multiplication_d-1 and addition_d-1 operations for the pointwise products. The translation
between nb and d-1 number representation requires n2 × (s × f ) nb_to_d-1 operations for
the input, k2 × ( f × f ′) nb_to_d-1 operations for the weight, and n′2 × (s × f ′) d-1_to_nb
operations for the output.

Since k < n, this implies that n +k −1 < 2n. As a result (see Table 2.1), the total com-
plexity of convolution of the direct method comes from the product of five terms, whereas
DFNT has a sum of products with at most four terms.

Integer convolution is indeed composed of fixed-point multiply-and-accumulate opera-
tions, which means that the precision of the internal values should be higher than that of the
weight and the input. To guarantee precision, the input and weight of t bits require t-bit
× t-bit multiplication to generate 2t bits product, and the subsequent accumulation needs
2t +m-bit addition, where m is determined based on the largest size of weight kernels.
m ≥ log2( f ×k ×k), and it is typically in the range of 10 to 16 bits in modern popular IC-
NNs. To avoid overflow in convolution, for the input and weight of data type INT8, integer
convolution refers to INT32+= INT8×INT8, and it requires INT64+= INT16×INT16 for
data type INT16.
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Figure 2.3: Time versus kernel size with batch size = 128, input channel = 96, output chan-
nel = 256, transform size = 32

Table 2.1: Complexity of the direct method and DFNT
Items Number of operations

Direct (32-bit multiplication) s × f ′× f ×n′2 ×k2

Direct (64-bit addition) s × f ′× f ×n′2 ×k2

DFNT (d-1_to_nb) n′2 × (s × f ′)
DFNT (nb_to_d-1) n2 × (s × f )+k2 × ( f × f ′)

DFNT (multiplication_d-1) s × f ′× f × (n +k −1)2

DFNT (shift_d-1) 2(n +k −1)2 × log2(n +k −1)× (s × f + f × f ′+ s × f ′)
DFNT (addition_d-1) 2(n +k −1)2 × log2(n +k −1)× (s × f + f × f ′+ s × f ′)+ s × f ′× f × (n +k −1)2

Assume that four 32-bit multiplications are equal to one 64-bit multiplication, and two
32-bit additions are equal to one 64-bit addition. Fig. 2.1 shows the theoretical numbers of
operations using the direct method and DFNT for various input sizes, where their complex-
ities are unified as 64-bit addition and 32-bit multiplication.

2.6. EXPERIMENTAL RESULTS
The implementations were tested on a high-end machine consisting of 2.4 GHz Intel Xeon
processors with a total of 28 two-way hyper-threaded cores and 192 GB RAM. Using the
direct method, integer convolution is implemented as baseline to measure accuracy loss,
complexity reduction and scalability of DFNT. For both the direct method and DFNT, the
accuracy and speed of integer convolution with typical parameter configurations were mea-
sured for the weight and input of data types INT8 and INT16.

For the weight and input of data type INT8, 16-bit multiplication and 32-bit addition are
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Figure 2.4: Time versus batch size with kernel size = 7, input channel = 96, output channel
= 256, transform size = 32

Table 2.2: Accuracy comparisons of typical parameter configurations between the direct
method and DFNT

(k, n +k −1, f , f ′) (11, 32, 3, 96) (7, 32, 96, 256) (5, 16, 256, 384) (5, 16, 384, 384) (3, 16, 384, 384)
Mismatch/match (INT16) 0/100 0/100 0/100 0/100 0/100
Mismatch/match (INT8) 0/100 0/100 0/100 0/100 0/100

used to guarantee precision. Similarly, 32-bit multiplication and 64-bit addition are required
for the weight and input of data type INT16. Using DFNT, integers in the ring of module
F5 and F6 are used to calculate convolution for the weight and input of data types INT8
and INT16, respectively. In addition, diminished-1 arithmetic operations are performed in
32-bit and 64-bit data paths for the integers in the ring of module F5 and F6, respectively.

In terms of accuracy, DFNT has exactly the same precision as the direct method, since
there is no round-off error for DFNT. We ran accuracy experiments with typical parameter
configurations of convolution in ICNNs. In Table 2.2, tuple (k, n +k −1, f , f ′) refers to
the integer convolution layer with kernel size k, transform size n + k − 1, input channel
f and output channel f ′, and batch size is 128 for all configurations. For each of these
typical parameter configurations, the input and weight were generated randomly, and all the
numbers of the four dimensional output of the direct method and DFNT were compared.
All the numbers during this comparison are the same, which we will refer to as "match".
Otherwise, we will refer to it as "mismatch". As shown in Table 2.2, there is 0 "mismatch"
associated with a round-off error out of the 100 comparisons performed compared with the
direct method.

Similar to the overflow constraint in fixed-point precision, the peak output using DFNT
should be bounded according to Equation 2.11. Under this condition, implementing convo-
lution in the ring of integers modulo Ft can get the same result as that obtained with normal
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Figure 2.5: Time versus number of threads with batch size = 128, input channel = 96, output
channel = 256, kernel size = 7, transform size = 32

Table 2.3: Runtime of typical parameter configurations and ICNNs
(k, n +k −1, f , f ′) (11, 32, 3, 96) (7, 32, 96, 256) (5, 16, 256, 384) (5, 16, 384, 384) (3, 16, 384, 384) Total

Direct (INT16) 2.48 126.40 83.45 130.03 97.52 488.21
DFNT (INT16) 2.73 52.73 47.82 70.49 70.58 274.55
Direct (INT8) 1.95 109.65 72.67 109.60 94.07 438.35
DFNT (INT8) 2.33 45.34 40.82 60.32 60.16 237.47

arithmetic.

f −1∑
i=0

k−1∑
j=0

k−1∑
l=0

x[s,n,n, f ] ×w[k,k, f , f ′] ≤ Ft /2 (2.11)

We limit the number of threads to 1 since we are measuring reduction of total workloads
by runtime. The speed comparison for convolution between the direct method and DFNT
with varying input sizes, kernel sizes, and batch sizes are demonstrated in Figs. 2.2, 2.3 and
2.4, respectively. As shown in these figures, with a larger input size, a larger kernel size and
a larger batch size, a larger speedup of DFNT over the direct method can be expected for
the weight and input of data types INT8 and INT16.

All the loops of the direct method and DFNT are parallelized using OpenMP, and their
runtime with different number of threads is shown in Fig. 2.5. Compared with 1 thread, the
speedup of DFNT with 4 threads is 3.50 and higher than that of the direct method at 2.10,
which indicates a better scalability of DFNT over the direct method.

We measured execution time with typical parameter configurations of convolution in IC-
NNs, which are the same as in Table 2.2. As their runtime in seconds reported in Table 2.3
shows, DFNT performs faster than the direct method for all configurations. Using these
typical parameter configurations of integer convolution layers, a complete network can be
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obtained by inserting max-pooling and rectified linear unit layers and adding a fully con-
nected layer for prediction with 1000 outputs. Its runtime is measured and reported in the
last column, which accounts for the overall speedup of ICNNs.

2.7. CONCLUSION
We have introduced an DFNT method to accelerate integer convolution of ICNNs, which
can be used for both the training and inference processes. Since integer convolution is per-
formed as diminished-1 point-wise products between DFNT transformed feature maps, all
the feature maps only need to be transformed once and reused multiple times. By exploiting
diminished-1 number representation for FNT, the proposed DFNT can be calculated effi-
ciently and exactly. Compared to the direct method, a faster speed and better parallelism
without any round-off error have been shown according to the demonstration results on
general processor.
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PIECEWISE APPROXIMATION

Binary Convolutional Neural Networks (CNNs) can significantly reduce the number of
arithmetic operations and the size of memory storage, which makes the deployment of CNNs
on mobile or embedded systems more promising. However, the accuracy degradation of sin-
gle and multiple binary CNNs is unacceptable for modern neural architectures and large
scale datasets like ImageNet. In this chapter, we proposed a Piecewise Approximation (PA)
scheme for multiple binary CNNs which lessens accuracy loss by approximating full pre-
cision weights and activations efficiently, and maintains parallelism of bitwise operations
to guarantee efficiency. Unlike previous approaches, the proposed PA scheme segments
piece-wisely the full precision weights and activations, and approximates each piece with
a scaling coefficient. Our implementation on ResNet with different depths on ImageNet
can reduce both Top-1 and Top-5 classification accuracy gap compared with full precision
to approximately 1.0%. Benefiting from the binarization of the downsampling layer, our
proposed PA-ResNet50 requires less memory usage and two times fewer Flops than single
binary CNNs with 4 weights and 5 activations bases. The PA scheme can also generalize
to other architectures like DenseNet and MobileNet with similar approximation power as
ResNet which is promising for other tasks using binary convolutions.

The content of this chapter is based on [21].
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3.1. INTRODUCTION
CNNs have emerged as one of the most influential neural network architectures to tackle
large scale machine learning problems in image recognition, natural language processing,
and audio analysis [22, 23]. At the same time, their deployment on mobile devices and
embedded systems are gaining more and more attention due to the increasing interest from
industry and academia [24, 25]. However, the limited storage and computation resources
provided by these platforms are an obstacle that is being addressed by numerous researchers
working to reduce the complexity of CNNs [5, 26–28]. Fixed-point CNNs [1, 6, 29–32]
achieve even no accuracy loss with a suitable selection of bit-width, but the multiplica-
tion and the overflow processing of addition require considerable overhead. Binary CNNs
have been demonstrated as a promising technique to make the deployment of CNNs fea-
sible [33–36]. In single binary CNNs, full precision weights and activations are binarized
into 1 bit, so the multiplication and addition of the convolution are transformed into simple
bitwise operations, resulting in significant storage and computation requirements reduction
[37]. The accuracy degradation of the recently enhanced single binary CNN [38] is still
high (12.9% Top-1 and 9.7% Top-5 accuracy degradation for ResNet18 on ImageNet) since
much information has been discarded during binarization. ABC-Net [39] is the first mul-
tiple binary CNN, which shows encouraging result (around 5% Top-1 and Top-5 accuracy
degradation for ResNet on ImageNet). [40–43] calculate a series of binary values and their
corresponding scaling coefficients through minimizing the residual error recursively, but
they can not be paralleled. [44] propose Group-Net to explore structure approximation, and
it is a complimentary approximation to value approximation. Multiple binary CNNs can
be considered as a moderate way of quantization, that is much more accurate than single
binary CNNs and more efficient than fix-point CNNs. But, there is still a considerable gap
between full precision implementations and multiple binary CNNs, despite the fact that an
unlimited number of weights and activation bases can be used.

To further reduce the gap between the full precision and multiple binary CNNs, we pro-
posed Piece-wise Approximation (PA) scheme in this chapter. Our main contributions are
summarized as follows.

• PA scheme segments the whole range of the full precision weights and activations
into many pieces and uses a scaling coefficient to approximate each of them, which
can maintain parallelism of bitwise operation and lessen accuracy loss.

• With less overhead, our scheme achieves much higher accuracy than ABC-Net, which
indicates that it provides a better approximation for multiple binary CNNs. Benefited
from the binarization of the downsampling layer, our proposed PAResNet50 requires
less memory usage and two times Flops than Bi-Real Net with 4 weights and 5 activa-
tions bases, which shows its potential efficiency advantage over single binary CNNs
with a deeper network.

• With the increase of the number of the weight and activation bases, our proposed PA
scheme achieves the highest classification accuracy for ResNet on ImageNet among
all state-of-the-art single and multiple binary CNNs.
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3.2. RELATED WORK
In this Section, we describe the forward propagation and backpropagation of typical
schemes to quantize CNNs. In addition, the advantages and disadvantages of these quan-
tized CNNs are discussed concerning efficiency and accuracy.

3.2.1. SINGLE BINARY CONVOLUTIONAL NEURAL NETWORKS
In single binary convolutional neural networks [33–36, 45], weights and activations are
constrained to a single value +1 or −1. The deterministic binarization function is described
as follows.

xb =
{ +1, xr ≥ 0

−1, xr < 0
(3.1)

where xb is the binarized variable, and xr is the real-valued variable. During the backprop-
agation, the “Straight-Through Estimator” (STE) method [46] is adapted to calculate the
derivatives of the binarization functions as follows, where C is the loss function.

∂C

∂xr = ∂C

∂xb
(3.2)

Single binary CNNs is the most efficient quantization scheme among all the quantization
schemes described in this chapter. But, its accuracy degradation is too high to be deployed
in practice.

3.2.2. TERNARY CONVOLUTIONAL NEURAL NETWORKS
In ternary convolutional neural networks [47–50], ternary weights are used to reduce the
accuracy loss of single binary CNNs by introducing 0 as the third quantized value, as fol-
lows.

x t =


xp : xr >∆
0 : |xr | ≤∆
−xn : xr <−∆

(3.3)

where xp and xn are the positive and negative scaling coefficients, respectively, and ∆ is
a threshold to determine the ternarized variable x t . During the backpropagation, the STE
method is still applied.

Although the introduction of 0 improves the accuracy of single binary CNNs, it is still un-
acceptable to be deployed especially while training advanced CNNs on large scale dataset.

3.2.3. FIXED-POINT CONVOLUTIONAL NEURAL NETWORKS
In fixed-point convolutional neural network [6, 31, 32, 51], weights, activations, and gradi-
ents are quantized using fixed-point numbers of different bit-widths. Taking the weights as
an example, the quantization works as follows.

x f = 2 ·quantize f (
tanh(xr )

2max(|tanh(xr )|) +
1

2
)−1 (3.4)

where quantize f function quantizes the real-valued number xr to the f -bit fixed-point
number x f . During the backpropagation, the STE method still works.
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Figure 3.1: A sample of the forward propagation and backpropagation of weights approxi-
mation

With a configuration of different bit-widths for the weights, activations, and gradients,
the accuracy degradation of DoReFa-Net can be preserved and controlled. But, fixed-
point multipliers result in the most substantial overhead among that of all the quantization
schemes in this chapter.

3.2.4. MULTIPLE BINARY CONVOLUTIONAL NEURAL NETWORKS

In multiple binary convolutional neural networks [39–44], a combination of multiple binary
bases is adopted to approximate full precision weights and activations. Following is the
weights approximation using linear combination.

xr =
P∑

i=1
εi Di (3.5)

where εi is a trainable scaling coefficient and Di is a binary (−1 and +1) weight base.
During the backpropagation, STE method is still used.

The adoption of multiple binary bases in ABC-Net can lessen accuracy loss compared to
single binary CNNs and maintain efficiency by using parallel bitwise operations compared
to fix-point CNNs. Unfortunately, there is still a considerable gap between ABC-Net and
full precision although as many as needed weight and activation binary bases can be used.

3.3. PIECEWISE APPROXIMATION SCHEME
In this section, the PA scheme for multiple binary CNNs is illustrated, including the ap-
proximations of weights and activations. Also, the training algorithm and the inference
architecture of PA-Net are clarified.

3.3.1. WEIGHTS APPROXIMATION

Since approximating weights channel-wise needs much more computational resources dur-
ing training, we approximated weights as a whole in this chapter.
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Table 3.1: Endpoints of the weights with M = 8
Variables u1 u2 u3 u4
Values (× std(W )) −1.5 −1.0 −0.5 −0.25
Variables u5 u6 u7 u8
Values (× std(W )) 0.25 0.5 1.0 1.5

The real-valued weights are W ∈ Rh×w×ci n×cout , where h, w , ci n and cout represent the
height and width of a filter, the number of input and output channels, respectively. In the
forward propagation of PA scheme, these are estimated by W , which is a piecewise function
composed of the following M +1 pieces.

W ≈W =



α1 ×BW ,W j ∈ [−∞,u1]
αi ×BW ,W j ∈ [ui−1,ui ], i ∈ [2, M

2 ]
0.0×BW ,W j ∈ [u M

2
,u M

2 +1]

αi ×BW ,W j ∈ [ui ,ui+1], i ∈ [ M
2 +1, M −1]

αM ×BW ,W j ∈ [uM ,+∞]

(3.6)

where ui and αi are the endpoint and scaling coefficient of the pieces, respectively. W j is
a scalar and a single weight of the tensor W . W j ∈ [−∞,u1] refers to the j th weight of the
tensor W which is in the range of [−∞,u1]. BW is a tensor with all the values equal to 1.0
and has the same shape as W . The distributions of the weights of spatial convolution layers
and fully-connected layers are intending to follow Gaussian distribution, whose histogram
is in bell-shape, owing to the regularization effect of L2-norm weight penalty [50, 52, 53].
In particular, Gaussian distribution (i.e., N (µ,σ2)), where µ and σ are the calculated mean
and standard deviation of the weight sample W . Since the distribution of the weights is
close to Gaussian, all the endpoints of the weights are fixed using mean(W ) and std(W ),
which refer to the mean and standard deviation of the full precision weights, respectively.
The M endpoints are almost uniformly sampled from −2.0×std(W ) to 2.0×std(W ) except
those near 0.0. To set the endpoints of the weights properly, we attempted some different
settings, where the performance difference is negligible. Taking M = 8 as an example, we
directly recommend the endpoints set as listed in Table 3.1.

Except for the ( M
2 +1)-th piece, the mean of all the full precision weights of every piece

serves as the optimal estimation of its scaling coefficient.


α1 =reduce_mean(W ),W j ∈ [−∞,u1]
αi =reduce_mean(W ),W j ∈ [ui−1,ui ], i ∈ [2, M

2 ]
αi =reduce_mean(W ),W j ∈ [ui ,ui+1], i ∈ [ M

2 +1, M −1]
αM =reduce_mean(W ),W j ∈ [uM ,+∞]

(3.7)

During the backpropagation, the relationship between W and W has to be established,
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Figure 3.2: A sample of the forward propagation and backpropagation of activations ap-
proximation

and the whole range of the weights is segmented into M pieces.

∂W

∂W
=



λW (α2 −α1),W j ∈ [−∞, s1]
λW (αi+1 −αi ),W j ∈ [si−1, si ], i ∈ [2, M

2 −1]
λW (0.0−αM

2
),W j ∈ [s M

2 −1, s M
2

]

λW (αM
2 +1 −0.0),W j ∈ [s M

2
, s M

2 +1]

λW (αi+1 −αi ),W j ∈ [si , si+1], i ∈ [ M
2 +1, M −2]

λW (αM −αM−1),W j ∈ [sM−1,+∞]

(3.8)

where si is the endpoint of the pieces. λW is a hyper-parameter, which is different when
a different number of weight pieces is used. The endpoint si can be determined simply as
follows

si = (ui+1 +ui )/2.0, i ∈ [1, M −1] (3.9)

The forward propagation while W j ∈ [ui−1,ui+1] and backpropagation while W j ∈
[si−1, si ] are presented in Figure 3.1, where a linear function with slope λW (αi −αi−1)
is used to approximate the piecewise function during the backpropagation.

3.3.2. ACTIVATIONS APPROXIMATION

To utilize bitwise operation for convolution, activations should be binarized as well. How-
ever, the distribution of the activations will vary in the inference stage which motivates us
to apply batch normalization [54]. Batch normalization is applied before the approximation
of the activations to force them to have zero mean and unit standard deviation.

The real-valued input activations are A ∈ Rn×h×w×ci n , where n, h, w and ci n refer to
batch size, height, width and number of channels, respectively. In the forward propagation
of PA scheme, these are estimated by A, which is a piecewise function composed of the
following N +1 pieces.

A ≈ A =


0.0×B A , A j ∈ [−∞, v1]
βi ×B A , A j ∈ [vi , vi+1], i ∈ [1, N −1]
βN ×B A , A j ∈ [vN ,+∞]

(3.10)
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where vi and βi are the endpoint and scaling coefficient of the pieces, respectively. A j ∈
[vi , vi+1] refers to the activations of matrix A which are in the closed range of [vi , vi+1]. B A

is a tensor with all the values equal to 1.0 and has the same shape as A. Both the endpoint
vi and the scaling coefficient βi are trainable to learn the statistical features of the full
precision activations. The bounded activation function is omitted since the endpoints are
initialized with positive values.

During the backpropagation, the relationship between A and A has to be established, and
the whole range of the activations is segmented into N +2 pieces.

∂A

∂A
=


0.0, A j ∈ [−∞, t0]
λA × (β1 −0.0), A j ∈ [t0, t1]
λA × (βi+1 −βi ), A j ∈ [ti , ti+1], i = 1, ..., N −1
0.0, A j ∈ [tN ,+∞]

(3.11)

where ti is the endpoint of the pieces. λA is a hyper-parameter, which is the same for all
the layers in a given CNN and is different between different CNNs with different depths as
used this chapter. The endpoint ti can be determined as follows

ti = (vi + vi+1)/2.0, i = 1, ..., N −1
t0 = 2.0× v0 − s1

tN = vN +λ∆
(3.12)

where λ∆ is a hyper-parameter, which is the same for all the layers in a given CNN and is
different between different CNNs in this chapter.

The forward propagation while A j ∈ [vi−1, vi+1] and backpropagation while A j ∈
[ti−1, ti ] are presented in Figure 3.2, where a linear function with slope λA(βi −βi−1) is
used to approximate the piecewise function during the backpropagation.

The scaling coefficient βi is updated as follows

∂C

∂βi
= ∂C

∂A

∂A

∂βi
=

reduce_sum( ∂C
∂A

), A j ∈ [vi , vi+1], i ∈ [1, N −1]

reduce_sum( ∂C
∂A

), A j ∈ [vN ,+∞], i = N

(3.13)

Similarly, the endpoint vi is updated as

∂C

∂vi
= ∂C

∂A

∂A

∂vi
={

λA(β1 −0.0)×reduce_sum( ∂C
∂A

), A j ∈ [t0, t1], i = 1

λA(βi −βi−1)×reduce_sum( ∂C
∂A

), A j ∈ [ti−1, ti ], i ∈ [2, N ]

(3.14)

3.3.3. TRAINING ALGORITHM
A sample of the training algorithm of PA-Net is presented as Algorithm 2, where details
like batch normalization and pooling layers are omitted. SGD with momentum or ADAM
[55] optimizer can be used to update parameters. Since our PA scheme approximates full
precision weights and activations, using pre-trained models serves as initialization.



3

34 3. PIECEWISE APPROXIMATION

Algorithm 2 Training a L-layer multiple binary CNN by PA scheme

Input: A mini-batch of inputs A0 and targets A∗, weights W . Learning rate η, learning rate decay
factor λ. The number of endpoints M , scaling coefficient αi and endpoint ui for weights, the
number of endpoints N , scaling coefficient βi and endpoint vi for activations. PA is short for
Piecewise Approximation scheme.

Output: Updated scaling coefficient βi , endpoint vi , weights W and learning rate η.
1. Computing the parameter gradients:
1.1. Forward path:

1: for k = 1 to L do
2: W ← PA(W,ui ,αi , M)
3: A ←Conv(A,W )
4: if k < L then
5: A ← PA(A, vi ,βi , N )
6: end if
7: end for

1.2. Backward propagation:
8: for k = L to 1 do
9: if k < L then

10: (g A , gvi , gβi
) ←Back_PA(g A , A, vi ,βi , N )

11: end if
12: (g A , gW ) ←Back_Conv(g A , A,W )
13: gW ←Back_PA(gW ,W,ui ,αi , M)
14: end for

2. Accumulating the parameter gradients:
15: for k = 1 to L do
16: βi ← update(βi ,η, gβi

)
17: vi ← update(vi ,η, gvi )
18: W ← update(W,η, gW )
19: η←λη

20: end for

3.3.4. INFERENCE ARCHITECTURE

Regarding the inference implementation of PA-Net, the latency is one of the most important
metrics to be considered. Fortunately, the piecewise approximated weights or activations
can be viewed as a linear combination of multiple binary bases (+1 and 0), which indicates
a parallel inference architecture.

In the forward propagation, the approximated weights are represented as follows.

W =
M∑

i=1
αi Ti (3.15)
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where Ti is a binary weight base, given as

Ti =



{
BW ,W j ∈ [−∞,u1]
0.0×BW ,W j ∉ [−∞,u1]

, i = 1{
BW ,W j ∈ [ui−1,ui ]
0.0×BW ,W j ∉ [ui−1,ui ]

, i ∈ [2, M
2 ]{

BW ,W j ∈ [ui ,ui+1]
0.0×BW ,W j ∉ [ui ,ui+1]

, i ∈ [ M
2 +1, M −1]{

BW ,W j ∈ [uM ,+∞]
0.0×BW ,W j ∉ [uM ,+∞]

, i = M

(3.16)

Similarly, the approximated activations in the forward propagation are expressed as fol-
lows.

A =
N∑

i=1
βi Vi (3.17)

where Vi is a binary activation base, given as

Vi =


{

B A , A j ∈ [vi , vi+1]
0.0×B A , A j ∉ [vi , vi+1]

, i = 1, ..., N −1{
B A , A j ∈ [vN ,+∞]
0.0×B A , A j ∉ [vN ,+∞]

, i = N
(3.18)

Combined with the approximated weights, the forward propagation of the real-valued
convolution can be approximated by computing M × N parallel bitwise convolutions. It
is worth to notice that αiβ j will be merged as one new scaling coefficient φk during the
inference stage so that we omit their multiplication.

Conv(W, A) ≈ Conv(W , A) = Conv(
M∑

i=1
αi Ti ,

N∑
j=1

β j V j )

=
M∑

i=1

N∑
j=1

αiβ j Conv(Ti ,V j ) =
M×N∑
k=1

φkConv(Ti ,V j )

(3.19)

Taking M = 3 and N = 3 as an example, both the weights and activations use 3 bits to
approximated their full precision counterpart. A full precision convolution can be computed
with 9 parallel bitwise operations and 3 comparators, as shown in Figure 3.3, where the
latency cost is as small as that of single binary CNNs. On the left is the structure of the
activations approximation using binary activation bases V1, V2, and V3. On the right is the
structure of the weights approximation using binary weight bases T1, T2, and T3. Thus, we
implement the overall block structure of the convolution in the PA scheme with 9 parallel
bitwise operations. It is worth to notice that computing the binary convolution blocks in
this figure can be directly completed by AND and popcount operations, and the binary
convolution blocks do not consist of Batch Normalization or Relu layer.

3.3.5. EFFICIENCY ANALYSIS OF DIFFERENT BINARY VALUES
To the best of our knowledge, this is the first time to use binary values +1 and 0 instead of
binary values −1 and +1 for single or multiple binary CNNs, and we present their efficiency
analysis in terms of costumed hardware FPGA/ASIC.
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Figure 3.3: Parallel inference architecture of convolution in PA-Net

Table 3.2: 2-input 7-nm CMOS gates propagation delay, area, and power
Items Propagation delay [ps] Active area [nm2] Power [nW ]
XNOR 10.87 2.90×103 1.23×103

AND 9.62 1.45×103 6.24×102

When binary convolutions are computed by bitwise operation with binary values 0 and
+1, the dot product of two bit-vectors x and y is computed using bitwise operations as
follows.

x · y = bitcount(AND(x, y)), xi , yi ∈ {0,+1}∀i (3.20)

where bi tcount counts the number of bits in a bit-vector.
Similarly, when binary convolutions are computed by bitwise operation with binary val-

ues −1 and +1, the dot product of two bit-vectors x and y is computed using bitwise oper-
ations as follows.

x · y = N −2×bitcount(XNOR(x, y)), xi , yi ∈ {−1,+1}∀i (3.21)

where N is the number of bits in a bit-vector.
In Table 3.2, we present the area footprint, the input to output propagation delay and the

power consumption for 2-input Boolean gates using a commercial 7-nm FinFET technology
(supply voltage VDD = 0.7V ). The active area and power consumption cost of an XNOR
gate are two times as large as those of an AND gate, which indicates that the area and power
consumption cost of a binary convolution with binary values −1 and +1 are two times as
large as those of a binary convolution with binary values 0 and +1 (except for bitcount
operation).
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(a) Full precision weights (b) Approximated weights

Figure 3.4: Distribution of full precision and approximated weights.

3.4. EXPERIMENTAL RESULTS ON IMAGENET DATASET
We first trained and evaluated ResNet [22] using our proposed PA scheme on ImageNet
ILSVRC2012 classification dataset [56]. Then we generalize our scheme to other CNN
architectures such as DenseNet and MobileNet. Finally, the computational complexity of
PA-Net is analyzed on CPUs and customized hardware.

We set the batch size of all our implementations to 64 due to the limit on available time
and resources, which slightly limits the accuracy of the results. However, the accuracy is
expected to increase with a larger batch size.

3.4.1. WEIGHTS AND ACTIVATIONS APPROXIMATIONS

Using the ResNet18/group2/block1/conv1 layer, we sampled full precision weights and
their approximations with M = 8. Their histograms are shown in Figure 3.4a and 3.4b, re-
spectively. Horizontal axis and longitudinal axis represent the values and the number of val-
ues of weights/activations, respectively. For the full-precision and approximated weights,
their mode is around 0.0. The full-precision and approximated weights are in the range of
−0.02 to 0.02. The distributions of the full-precision and approximated weights are sym-
metric and in bell shape. Similarly, the comparison of activation histograms are shown in
Figure 3.5, which are acquired from the ResNet18/group2/block1/conv2 layer and include
the full precision activations in Figure 3.5a and their approximation with N = 5 in Fig-
ure 3.5b. For the full-precision and approximated activations, their mode is near 0.0 and
they are in the range of 0.0 to 4.0. The distribution of the full-precision and approximated
activations is the second half of the bell curve. As the comparisons show, the distributions of
the approximated weights and activations are similar to those of the full precision weights
and activations, respectively, which means that PA scheme provides an accurate way for
multiple binary bases to approximate the distribution of their full precision counterparts.

3.4.2. COMPARISON WITH ABC-NET

Both PA-Net and ABC-Net can utilize parallel bitwise operation and achieve higher accu-
racy than single binary CNNs, so the differences between them need to be analyzed. The
accuracy comparisons between PA-Net and ABC-Net are shown in Table 3.3.

Table 3.3 shows that PA-Net achieves higher accuracy than ABC-Net while requiring less
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(a) Full precision activations (b) Approximated activations

Figure 3.5: Distribution of full precision and approximated activations.

Table 3.3: Comparison with ABC-Net using ResNet as backbones
Model M N Top-1 Top-5 Top-1 gap Top-5 gap
ABC-ResNet18 5 full precision 68.3% 87.9% 1.0% 1.3%
PA-ResNet18 4 full precision 68.4% 88.3% 0.9% 0.9%
PA-ResNet18 8 full precision 69.3% 88.9% 0.0% 0.3%
ABC-ResNet18 5 5 65.0% 85.9% 4.3% 3.3%
PA-ResNet18 4 5 66.6% 87.1% 2.7% 2.1%
PA-ResNet18 8 7 68.1% 88.1% 1.2% 1.1%
ResNet18 full precision full precision 69.3% 89.2% − −
ABC-ResNet34 5 5 68.4% 88.2% 4.9% 3.1%
PA-ResNet34 4 5 70.1% 89.2% 3.2% 2.1%
PA-ResNet34 8 7 71.5% 90.0% 1.8% 1.3%
ResNet34 full precision full precision 73.3% 91.3% − −
ABC-ResNet50 5 5 70.1% 89.7% 6.0% 3.1%
PA-ResNet50 4 5 73.0% 91.0% 3.1% 1.8%
PA-ResNet50 8 7 74.3% 91.9% 1.8% 0.9%
ResNet50 full precision full precision 76.1% 92.8% − −

overhead, which strongly supports the idea that PA-Net provides a better approximation
than ABC-Net for both the weights and activations. In addition, Table 3.3 shows the unique
advantage of PA-Net over ABC-Net since PA-Net can give higher accuracy for multiple
binary CNNs by increasing M and N . However, we also re-implemented ABC-Net and
reproduced the results, which shows that its accuracy remains unchanged (or even becomes
worse) as we keep increasing M and N more than 5.

For the weights approximation only (i.e., when N is full precision), PA-ResNet18 gives
no Top-1 accuracy loss with M = 8. PA-ResNet achieves higher accuracy with M = 4 and
N = 5 than ABC-ResNet with M = 5 and N = 5, which means that PA-ResNet provides
better approximation with less overhead. PA-ResNet with M = 8 and N = 7 reduce the Top-
5 accuracy gap around 1.0%. But the accuracy of ABC-Net remains unchanged or even
becomes worse with the increase of M and N more than 5 based on our re-implementation.
PA-Net is expected to reach no accuracy loss with the increase of M and N , which we have
not attempted due to the limitations of computational resources, training time, and the slow
increase trend of accuracy with the increase of M and N .
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Table 3.4: Generalization to DenseNet and MobileNet.
Model M N Top-1 Top-5 Top-1 gap Top-5 gap
PA-DenseNet121 8 6 72.3% 90.8% 2.7% 1.5%
DenseNet121 full precision full precision 75.0% 92.3% − −
PA-1.0 MobileNet-224 8 7 69.0% 88.4% 1.6% 1.5%
1.0 MobileNet-224 full precision full precision 70.6% 89.9% − −

Table 3.5: Performances of the full-precision SSD300 network and its binary counterpart.
Detector Backbone Weights Activations mAP@0.5
SSD300 ResNet50 Full precision Full precision 74.35
SSD300 ResNet50 M = 4 Full precision 72.53
SSD300 ResNet50 M = 4 N = 5 58.60

3.4.3. GENERALIZATION TO OTHER CNN ARCHITECTURES

To demonstrate the generalization of PA scheme, we applied it on 1.0 MobileNet-224 [24]
and DenseNet121 [23]. The results are shown in Table 3.4. Due to memory limitation, we
implemented PA-DenseNet121 with N = 6. Its Top-1 accuracy loss is 2.7%, which is ex-
pected to decrease further with increasing N . Top-1 accuracy loss of PA-1.0 MobileNet-224
achieves 1.6% with N = 7. Pointwise convolution is binarized while depthwise convolution
is kept as full precision convolution since they do not need significant computational re-
sources.

3.4.4. GENERALIZATION TO OBJECT DETECTION

We choose SSD300 with the backbone network of ResNet50 as our baseline. The training
dataset is VOC2007 + 2012, while the testing dataset is VOC2007 [57]. In the SSD300
model, we use the layers from Conv1 to Conv5_x of the pre-trained ResNet50 as the back-
bone network, apply residual blocks as the extra layers, and keep the number of feature
maps the same as the original implementation [58]. All the backbone layers except Conv1
are binarized, while all the convolutional layers of the head network remain in full preci-
sion. We train the full precision ResNet50 on the ImageNet classification dataset as the
backbone network, and then the full precision object detector SSD300 using the pre-trained
ResNet50. Finally, we binarize and finetune the pre-trained object detector SSD300 with
the PA scheme.

Applying the PA scheme to the SSD300 network, we present the results in Table 3.5.
When only weights are binarized using the PA scheme with M = 4, the binary SSD300
model achieves comparable accuracy by 1.82 mAP reduction compared with its full preci-
sion baseline networks. When applying the PA scheme with binary weights (M = 4) and
binary activations (N = 5) for the SSD300 network, the binary SSD300 network shows
an accuracy reduction in 15.75 mAP, which outperforms the real-time full-precision Fast
YOLO [59] (52.7 mAP).
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Table 3.6: Accuracy comparisons of ResNet18 with different quantized methods.

Model W A Top −1 Top −5
Full Precision 32 32 69.3% 89.2%
BWN 1 32 60.8% 83.0%
XNOR-Net 1 1 51.2% 73.2%
Bi-Real Net 1 1 56.4% 79.5%
ABC-Net (M = 5, N = 5) 1 1 65.0% 85.9%
Group-Net (5 bases) 1 1 64.8% 85.7%
DoReFa-Net 2 2 62.6% 84.4%
SYQ 1 8 62.9% 84.6%
LQ-Net 2 2 64.9% 85.9%
PA-Net (M = 8, N = 7) 1 1 68.1% 88.0%
PA-Net (M = 8) 1 32 69.3% 88.9%

Table 3.7: Memory usage and Flops calculation of Bi-Real Net, PA-Net, and full precision
models.

Model Memory usage Memory saving Flops Speedup
Bi-Real ResNet18 33.6Mbit 11.14 × 1.67×108 10.86 ×
ABC-ResNet18 77.1Mbit 4.85 × 6.74×108 2.70 ×
PA-ResNet18 61.6Mbit 6.08 × 6.74×108 2.70 ×
ResNet18 374.1Mbit − 1.81×109 −
Bi-Real ResNet34 43.7Mbit 15.97 × 1.81×108 18.99 ×
ABC-ResNet34 106.3Mbit 6.56 × 1.27×109 2.88 ×
PA-ResNet34 85.0Mbit 8.20 × 1.27×109 2.88 ×
ResNet34 697.3Mbit − 3.66×109 −
Bi-Real ResNet50 176.8Mbit 4.62 × 5.45×108 7.08 ×
ABC-ResNet50 201.6Mbit 4.06 × 1.44×109 2.68 ×
PA-ResNet50 161.3Mbit 5.07 × 1.44×109 2.68 ×
ResNet50 817.8Mbit − 3.86×109 −

3.4.5. COMPARISONS WITH STATE-OF-THE-ART METHODS

The comparisons between PA-Net and recent developments are shown in Table 3.6, where
PA-Net adopts the configuration of M = 8 and N = 7. Regarding single binary models
BWN, XNOR-Net [37] and Bi-Real Net [38], and multiple parallel binary models ABC-
Net[39] and Group-Net[44], PA-Net outperforms them by much higher accuracy. When it
comes to the comparison with fix-point quantization DoreFa-Net [6, 31, 32], fixed-point
CNNs can achieve the same or even higher performance with carefully customized bit-
widths than PA-Net. But the advantage of PA-Net is the parallelism of inference architec-
ture, which provides a much lower latency using bitwise operation than fixed-point CNNs.



3.4. EXPERIMENTAL RESULTS ON IMAGENET DATASET

3

41

Table 3.8: Latency cost of Bi-Real Net, PA-Net, and full precision models. TX NOR , Tpop ,
Tmul , TAN D , Tcom , Tadd refer to the delay time of a XNOR, popcount, multipli-
cation, AND, comparison, and addition operation, respectively.

Model Latency cost Speedup
Bi-Real Net ci n hw × (TX NOR +Tpop )+Tmul ≈ (Tmul +Tadd )/(TX NOR +Tpop )
PA-Net ci n hw × (TAN D +Tpop )+5Tmul +4Tadd +Tcom ≈ (Tmul +Tadd )/(TAN D +Tpop )
Full precision ci n hw ×Tmul + (ci n hw −1)×Tadd −

3.4.6. COMPUTATIONAL COMPLEXITY ANALYSIS

In this part, we analyze and compare the computational complexity of Bi-Real Net (Liu
et al. 2018), PA-Net, and full precision models on current CPUs in terms of computation
and memory usage, and on customized hardware (i.e., FPGA/ASIC) in terms of latency.
Bi-Real Net maintains high efficiency and achieves the state-of-the-art accuracy as a single
binary CNN. During this analysis, PA scheme uses 4 bases for weights and 5 bases for
activations approximation.

Computation and memory usage analysis: We analyze and compare the computational
complexity of Bi-Real Net [38], PA-Net and full precision models, and their memory saving
and speedup are shown in Table 3.7.

Unlike full precision models which require real-valued parameters and operations, PA-
Net and Bi-Real Net have binary and real-valued parameters mixed, so their execution
requires both bitwise and real-valued operations. To compute the memory usage of PA-Net
and Bi-real Net, we use 32 bit times the number of real-valued parameters and 1 bit times
the number of binary values, which are summed together to get their total number bit. We
use Flops as the main metrics to measure the bitwise operations, the real-valued operations,
and the speedup of implementation. Since the current generation of CPUs can compute
bitwise AND and popcount operations in parallelism of 64, the Flops to compute PA-Net
and Bi-Real Net is equal to the number of the real-valued multiplications, comparisons, and
1/64 of the number of the bitwise operations.

We follow the suggestion from [37, 38] to keep the weights and activations of the first
convolutional and the last fully connected layer as real-valued. It is worthy to notice that
we binarize all the 1×1 downsampling layer in PA-Net to further reduce the computational
complexity.

For ResNet18, ResNet34, and ResNet50, our PA scheme can reduce memory usage by
more than 5 times and achieves a computation reduction of nearly 3 times, in comparison
with the full precision counterpart. Compared with Bi-Real ResNet50, the computation
reduction of our proposed PA-ResNet50 with 4 weights bases and 5 activations bases is
only two times smaller, and it even requires less memory usage because of the binarization
of the downsampling layer.

Combining Table 3 and Table 7, we can conclude that PA-Net can achieve better accuracy
(1.6%, 1.7%, and 2.9% for ResNet18, ResNet34, and ResNet50) while consuming fewer
parameters (15.4Mbit, 21.3Mbit, and 40.33Mbit for ResNet18, ResNet34, and ResNet50)
and the same Flops compared to ABC-Net during the inference stage.
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Latency analysis: To be implemented on customized hardware (i.e., FPGA/ASIC), la-
tency cost is one of the most important metrics for real-time applications. As shown in
Table 3.8, the latency cost of an individual convolution in Bi-Real Net, PA-Net, and full
precision models is analyzed, where we assume that the convolution implementation is par-
alleled thoroughly. Compared with full precision models, the latency cost of PA-Net and
Bi-Real Net is significantly reduced. TAN D is smaller than TX NOR , and the latency cost of
a convolution in PA-Net increased only by 4Tmul + 4Tadd +Tcom compared with that in
Bi-Real Net.

3.5. CONCLUSIONS
In this chapter, we introduced the PA scheme for multiple binary CNNs, which adopts
piecewise functions for both the forward propagation and backpropagation. Compared with
state-of-the-art single and multiple binary CNNs, our scheme provides a better approxima-
tion for both full precision weights and activations. We implemented our scheme over
several modern CNN architectures, such as ResNet, DenseNet, and MobileNet, and tested
on classification task using ImageNet dataset. Results are competitive and almost close the
accuracy gap compared with their full precision counterparts. Because of the binarization
of downsampling layer, our proposed PA-ResNet50 requires less memory usage and only
two times Flops than Bi-Real Net with 4 weights and 5 activations bases, which shows its
potential efficiency advantage over single binary CNNs with a deeper network.
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Binary Convolutional Neural Networks (CNNs) have significantly reduced the number of
arithmetic operations and the size of memory storage needed for CNNs, which makes their
deployment on mobile and embedded systems more feasible. However, after binarization,
the CNN architecture has to be redesigned and refined significantly due to two reasons: 1.
the large accumulation error of binarization in the forward propagation, and 2. the severe
gradient mismatch problem of binarization in the backward propagation. Even though sub-
stantial effort has been invested in designing architectures for single and multiple binary
CNNs, it is still difficult to find an optimized architecture for binary CNNs. In this chap-
ter, we propose a strategy, named NASB, which adapts Neural Architecture Search (NAS)
to find an optimized architecture for the binarization of CNNs. In the NASB strategy, the
operations and their connections define a unique searching space and the training and bina-
rization of the network progress in the three-stage training algorithm. Due to the flexibility
of this automated strategy, the obtained architecture is not only suitable for binarization
but also has low overhead, achieving a better trade-off between the accuracy and compu-
tational complexity compared to hand-optimized binary CNNs. The implementation of the
NASB strategy is evaluated on the ImageNet dataset and demonstrated as a better solution
compared to existing quantized CNNs. With insignificant overhead increase, NASB outper-
forms existing single and multiple binary CNNs by up to 4.0% and 1.0% Top-1 accuracy
respectively, bringing them closer to the precision of their full precision counterpart.

The content of this chapter is based on [60].
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4.1. INTRODUCTION
With the increasing depth and width of Convolutional Neural Networks (CNNs), these net-
works have demonstrated many breakthroughs in a wide range of applications, such as
image classification, object detection, and semantic segmentation [22, 25, 61]. However,
the large number of Flops and the storage associated with large numbers of parameters
limits deployment on resource-constrained mobile and embedded platforms.

Numerous researchers have proposed a variety of approaches to address the efficiency
problems associated with deploying CNNs, including low bit-width quantization [6, 62],
network pruning [63], and efficient architecture design [25, 64]. Binarization [37, 38] is the
most efficient quantization method among all those methods with reduced bit-widths, where
a real-valued weight or activation is represented with a single bit and the multiplication and
addition of a convolution can be implemented simply by XNOR and popcount bitwise op-
erations, which are roughly 64 times faster to compute and require thirty two times less
storage than their full precision counterparts. However, the extreme quantization method of
single binary CNNs introduces the largest accumulation error in the forward propagation.
In addition, during the backward propagation, its gradient flow is the most difficult to deter-
mine due to the high gradient mismatch problem [65] among all quantization methods with
reduced bit-widths.

Existing published work focuses on improving the quantization quality mainly by using
value approximation and structure approximation. These two approximations are comple-
mentary and could be exploited together. Value approximation seeks to find an optimized
algorithm to quantize weights and activations while preserving the original network archi-
tecture. Knowledge distillation [29, 66] and loss-aware [67] objectives are introduced to
find optimized local minima for quantized weights and activations. Advanced quantization
functions [6, 62, 65] are proposed to minimize the quantization error between quantized
values and their full-precision counterparts. Tight approximation of the derivative of the
non-differentiable activation function [38, 68] is explored to alleviate the gradient mis-
match problem. Unlike the above value approximation methods, structure approximation
seeks to redesign the architecture of quantized CNNs to match the representational capacity
of their original full-precision counterpart. Structure approximation is more important for
binary CNNs than for other low bit-width CNNs because binarization introduces the largest
accumulation error and the severest gradient mismatch problem among all quantization
methods with reduced bit-widths. Bi-Real Net [38] and Group-Net [69] are the state-of-
the-art structure approximation methods for single and multiple binary CNNs, respectively.
However, designing architectures for quantized CNNs is highly non-trivial especially for
binary CNNs.

In this chapter, the NASB strategy, a version of Neural Architecture Search (NAS)
adapted for binarization, is proposed to automatically seek an optimized structure approx-
imation for binary CNNs. After searching in a large space, the finalized CNN architecture
is suitable for binarization, and the accuracy of the binarized version outperforms previous
binary CNNs with insignificant computational complexity increase.

The main contributions of this chapter are:

• The NASB strategy, which adapts NAS to automatically find an optimized architec-
ture for the binarization of CNNs. In the NASB strategy, the operations and their
connections define a unique searching space and the training and binarization of the
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network progress in the three-stage training algorithm.

• A comparison to the recent literature of binary CNNs. NASB achieves a sizable
accuracy increase with negligible additional overhead, providing a better trade-off
between accuracy and efficiency.

• An evaluation of the NASB strategy for ResNet on the ImageNet classification
dataset, providing extensive experimental results to show its effectiveness.

4.2. RELATED WORK
In this section, recent network quantization methods and efficient architecture design de-
velopments of CNNs are described.

4.2.1. NETWORK QUANTIZATION

There is substantial interest in research and development of dedicated hardware for CNNs
to be deployed on embedded systems and mobile devices, which motivates the study of
network quantization. Low bit-width approaches [6, 32, 51, 62] use quantized weights and
activations using fixed-point numbers, which reduces model size and compute time, but
still requires multipliers to compute. Binary CNNs [33, 37, 45] are trained with weights and
activations constrained to binary values +1 or −1, which can be categorized as single binary
CNNs. The Ternary Weight Networks (TWN) [47] approach is proposed to reduce the loss
of single binary CNNs by introducing 0 as the third quantized value, while Trained Ternary
Quantization (TTQ) [48] enables the asymmetry and training of its scaling coefficients.
However, the accuracy degradation of single binary and ternary CNNs is unacceptable for
advanced CNNs like ResNet and large scale datasets like ImageNet. Multiple binary CNNs
[39, 40, 69, 70] are promising attempts to reduce the accuracy gap between binary CNNs
and their full precision counterpart. However, all the architectures of current single or
multiple binary CNNs are human-designed. Further architecture optimization is possible
using automated methods, such as [45], which encodes the number of channels in each
layer, but does not change the operations and their connections in the model; changes that
we do consider in our proposed NASB strategy.

4.2.2. EFFICIENT ARCHITECTURE DESIGN

Recently, more and more literature focuses on the efficient architecture design for the de-
ployment of CNNs. Replacing 3×3 convolutional weights with 1×1 weights (in SqueezeNet
[61] and GoogLeNet [71]) have been suggested to decrease the computational complexity.
Moreover, separable convolutions are adopted in Inception series [72] and further general-
ized as depthwise separable convolutions in Xception [73], MobileNet [25] and ShuffleNet
[64]. Group convolution has been used as an efficient way to enhance efficiency in [64,
74], where the input activations and convolutional kernels are factorized into groups and
executed independently inside each group. The MobileNet [75] and ShuffleNet [76] series
have been leveraging depthwise separable convolutions and shuffle operations to achieve
a better trade-off between efficiency and accuracy. ESPNetv2 [77] uses group point-wise
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Figure 4.1: Human-designed architecture for single and multiple binary CNNs. conv and
bconv refer to full precision and binary convolutional layer, respectively, while
Batch Normalization and the Relu layers are omitted.

and depth-wise dilated separable convolutions to learn representations from a large effec-
tive receptive field, delivering state-of-the-art performance across different tasks. NAS [78–
80] has demonstrated much success in automating network architecture design, achieving
state-of-the-art efficiency [81, 82].

4.3. METHOD
In this section, the problem of finding an architecture for the binarization of CNNs is defined
and presented. Then, we explain the NASB strategy, which adapts the NAS technique to
find an optimized architecture for binarizing CNNs. Finally, variants of the NASB strategy
are illustrated to enhance its efficiency.

4.3.1. PROBLEM DEFINITION
Given a full-precision convolutional cell, what is an optimized architecture to binarize it?
The accumulation error in the forward propagation of binarization is the largest and the
gradient flow in the backward propagation is the most difficult to take care of among all
quantization methods with different bit-widths. As a result, it is non-trivial to find an opti-
mized architecture for binarizing CNNs. For the purposes of this chapter, a convolutional
cell can be a convolutional layer, block, group, and network.

There have been various attempts to answer the above question, as shown in Fig. 4.1.
Fig. 4.1(a) is a full precision convolutional block. Fig. 4.1(b), (c), and (d) describe proposed
architectures in the literature representing XNOR [37], Bi-Real [38], and Group-Net [69],
respectively, where the scaling coefficients have been omitted. Although a lot of effort has
been dedicated to manually designing an architecture for single and multiple binary CNNs,
using an automated approach to explore an optimized convolutional cell architecture as
represented by the question marks in Fig. 1(e) remains a fertile area for research.

The question can be expressed as a directed acyclic graph in Fig. 4.1(e), which represents
an ordered sequence of three nodes and three edges with one operation for each edge. The
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Figure 4.2: Exploring connections of a NASB-convolutional cell at the searching stage.
conv and bconv refer to full precision and binary convolutional layer, respec-
tively. ops refers to a set of operations as shown in Fig. 4.3, among which
one operation is active during the training of the searching stage. ⊕ refers to
the element-wise addition between the tensors of the two nodes with the same
number.

number of nodes, edges, and operations for each edge can be freely selected. Each node xi

represents a feature map and each edge (i , j ) is associated with several operations oi , j to
transform xi . Here the convolutional cell has one input and output node, and its output is
obtained by addition of all intermediate nodes. In the following, the binarization and NAS
techniques adapted in this chapter are presented.

Binary convolutional neural networks Given a full precision convolutional layer, its
inputs, weights and outputs are denoted as I ∈ RN×Ci n×H×W , W ∈ RCi n×Cout×h×w and O ∈
RN×Cout×H×W , respectively, where N , Ci n , Cout , H , W , h and w refer to the batch size,
the number of input and output channels, the height and width of the feature maps, and the
height and width of the weights, respectively.

Using the binarization method of weights in [37], we approximate the full precision
weights W as binary weights bW with the sign of W and the scaling coefficient s, where
the scaling coefficient is computed as the mean of the absolute values of W . Adopting
the Straight Through Estimator (STE) [46], the forward and backward propagations of the
weights binarization are shown as follows.

Forward: bW = s × sign(W )

Backward:
∂L

∂W
= ∂L

∂bW
× ∂bW

∂W
≈ s × ∂L

∂bW

(4.1)

where L is the total loss.
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...identityzero bconv max pool

Figure 4.3: A set of operations in every ops.

Using the binarization method of activations in [38], we approximate the full precision
activations as binary activations b I by a piecewise polynomial function. The forward and
backward propagations of the activations binarization can be written as follows.

Forward: b I = sign(I )

Backward:
∂L

∂I
= ∂L

∂b I
× ∂b I

∂I
where

∂b I

∂I
=


2+2I ,−1 ≤ I < 0
2−2I ,0 ≤ I < 1
0,otherwise

(4.2)

Gradient based neural architecture search We adapt a gradient-based NAS in [83]. To
reduce the memory footprint during training the over-parameterized network, we use the
strategy from [80] to binarize and learn the M real-valued architecture parameters αi .

In the forward propagation, the M real-valued architecture parameters αi are transformed
to the real-valued path weights pi , and then to the binary gates gi as follows.

pi = exp(αi )
M∑

j=1
exp(α j )

(4.3)

gi = binarize(pi ) =
{

1,with probability pi

0,with probability (1−pi )
(4.4)

In the backward propagation, the STE [46] is also applied.

∂L

∂p j
≈ ∂L

∂g j
(4.5)

The gradient w.r.t. architecture parameters can be estimated as follows.

∂L

∂αi
=

M∑
j=1

∂L

∂p j

∂p j

∂αi
≈

M∑
j=1

∂L

∂g j

∂p j

∂αi
=

M∑
j=1

∂L

∂g j
p j (δi j −pi ) (4.6)

where δi j = 1 if i = j and δi j = 0 if i 6= j .
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4.3.2. NASB STRATEGY

In this section, we present the details of the NASB strategy. To apply NAS for binarizing
CNNs, the key innovation is to leverage the NAS technique to find a NASB-convolutional
cell as an optimized architecture for binarizing their full precision counterpart, where the
NASB-convolutional cell can be a replacement for a binarized convolutional layer, block,
group, and network. The NASB strategy consists of the following stages: searching stage,
pretraining stage, and finetuning stage. In the following, the search space of a NASB-
convolutional cell in the NASB strategy is described, including its connections and opera-
tions. The corresponding training algorithm is also presented.

Connections of a NASB-convolutional cell Considering that we are exploring an opti-
mized architecture for a convolutional group as an example, the connections of a NASB-
convolutional cell in the NASB strategy are explored at the searching stage as shown in
Fig. 4.2.

Fig. 4.2(a) describes all the connections of a NASB-convolutional cell during the training
of the searching stage, which consists of a backbone and a NAS-convolutional cell. The
left cell is the backbone of the NASB-convolutional cell, which is a standard convolutional
group in ResNet [22]. The right cell is considered as a NAS-convolutional cell, which is
a directed acyclic graph consisting of five nodes, ten edges, and ten operations for every
edge. Here five nodes are used to keep the layer depth of a NASB-convolutional cell in the
NASB strategy the same as its full precision counterpart, which will not increase the latency
during inference. The connections of the backbone are fixed and there is no need to specify
architecture parameters for it. During the training of the searching stage, the model weights
of the NASB-convolutional cell and architecture parameters of the NAS-convolutional cell
can be updated alternately, and only one operation on every edge in the NAS-convolutional
cell is sampled and active at every step. In this way, the inactive paths reduce the memory
requirements.

Fig. 4.2(b) is an example of the finalized architecture after completing the training of the
searching stage. In the NAS-convolutional cell, we retain only one predecessor for every
node and one operation for every edge except for the node with the number 0. Fig. 4.2(c)
is a more compact representation of Fig. 4.2(b), showing the output of every node in the
NASB-convolutional cell (except for the node with the number 0) defined as the addition of
the two inputs from the backbone and the NAS-convolutional cell.

Operations of a NASB-convolutional cell Taking the number of bitwise operations and
binary parameters of a 3×3 binary convolution as one unit, the number of bitwise operations
and binary parameters of all the operations used in the NASB strategy are unified as shown
in Table 4.1. The overhead of Batch Normalization and Relu layer is not included.

The number of bitwise operations and binary parameters of the binary convolution is
NCout HW × 2Ci nhw and Cout Ci nhw , respectively, when no bias is added. Scaling the
kernel size of the binary convolution by a scaling coefficient of sk , both the number of
bitwise operations and binary parameters are scaled by s2

k . Changing the dilation rate will
not increase the number of bitwise operations and binary parameters of the binary convo-
lution when the additional cost introduced by padding is omitted. The number of bitwise
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Table 4.1: The number of bitwise operations and binary parameters of the operations used
in NASB. F and B refer to full precision and binary precision, respectively. Bo
and Bp refer to Bitwise operations and Binary parameters, respectively.

Operations Bo Bp
op0 = Zero (F) 0 0
op1 = 3×3 average pooling (F) < 1 0
op2 = 3×3 max pooling (F) < 1 0
op3 = Identity (F) 0 0
op4 = 1×1 convolution (B) 1/9 1/9
op5 = 3×3 convolution (B) 1 1
op6 = 5×5 convolution (B) 25/9 25/9
op7 = 1×1 dilated convolution (B) 1/9 1/9
op8 = 3×3 dilated convolution (B) 1 1
op9 = 5×5 dilated convolution (B) 25/9 25/9

operations required for computing every individual output of the binary convolution is ap-
proximately 2Ci nhw , while the number of bitwise operations required for computing every
individual output of a 3× 3 max and average pooling is 8d and 16d , respectively, where
d is the bit-width of pooling operations and 2Ci nhw À 16d in general. Pooling will not
introduce any parameters.

Three-stage training algorithm As shown in Algorithm 3, the training algorithm of the
NASB strategy consists of three stages: the searching stage, pretraining stage, and finetun-
ing stage. The goal of the searching stage is to get an optimized binary CNN architecture,
which is done by using NAS to train a binary CNN model Ms from scratch on dataset
D. The pretraining stage is used to train a full precision CNN model Mp from scratch on
dataset D ′, whose architecture is finalized from the searching stage. The finetuning stage is
used to binarize the pre-trained CNN obtained from the pretraining stage and finetune it on
dataset D ′ to get a binary CNN model M f .

The binary CNN model finalized from the searching stage is the same as model M f used
in the finetuning stage except for some minor differences because of their different datasets.
Performing the searching stage on a small dataset D rather than directly on target dataset
D ′ can be regarded as a proxy task to find the optimized binary architecture model M f for
the finetuning stage, which can enable a large search space and significantly accelerate the
computation of the NASB strategy. After binarizing the full precision CNN model Mp from
the pretraining stage, we directly get the binary CNN model M f for the finetuning stage.

4.3.3. VARIANTS OF THE NASB STRATEGY

In this section, a number of variants of NASB are presented to improve the accuracy over
state-of-the-art multiple binary CNNs. Taking NASB ResNet18 as an example, there are
four NASB-convolutional cells, and each of them is composed of five nodes. We retain
only one predecessor for every node and one operation for every edge except for the node
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Algorithm 3 Three-stage training algorithm

Input: Dataset D = {(Xi ,Yi )}S
i=1 for the searching stage, dataset D ′ = {(X ′

i ,Y ′
i )}S

i=1 for the pretraining
and finetuning stages.

Output: Binary CNN model Ms for the searching stage, full precision CNN model Mp for the pre-
training stage, and binary CNN model M f for the finetuning stage.
Stage 1: The searching stage

1: for epoch = 1 to L do
2: for batch = 1 to T do
3: Randomly sample a mini-batch validation data from D, freeze the model weights of model

Ms , and update its architecture parameters.
Randomly sample a mini-batch training data from D, freeze the architecture parameters of
model Ms , and update its model weights.

4: end for
5: end for

Stage 2: The pretraining stage
6: for epoch = 1 to L do
7: for batch = 1 to T do
8: Randomly sample a mini-batch training data from D ′ and update the weights of model Mp .
9: end for

10: end for
Stage 3: The finetuning stage

11: for epoch = 1 to L do
12: for batch = 1 to T do
13: Randomly sample a mini-batch training data from D ′ and update the weights of model M f .
14: end for
15: end for

with the number 0. By changing the number of NASB-convolutional cells and operations
for every node, different variants of the NASB strategy are explored.

The NASBV1 strategy enlarges the search space of a NASB-convolutional cell. In
NASBV1 ResNet18, there are two NASB-convolutional cells, and each of them is com-
posed of nine nodes. In NASBV2 ResNet18, we adapt the method in [83] to retain four
operations instead of one operation for the output node of the NASB-convolutional cell. In
NASBV3 ResNet18, all the NASB-convolutional cells are copied once to get two binary
branches. The two branches can be parallelized thoroughly except that we merge the in-
formation of the two branches at the end of every block using an addition operation as in
[69]. All the NASB-convolutional cells are different from each other, which can explore the
optimized binary architecture for every NASB-convolutional cell. In NASBV4 ResNet18,
we retain four operations (except for identity) instead of one operation for every node of the
NASB-convolutional cell. In NASBV5 ResNet18, we retain eight operations for the output
node and six operations for the other nodes of the NASB-convolutional cell. Fig. 4.2(a) is
the connections of a NASB-convolutional cell at the searching stages for the NASB strategy
and the NASBV5 strategy. Fig. 4.4 is the derived architecture of the NASBV5 strategy after
the searching stage.
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Table 4.2: Accuracy of NASB ResNet18 variants
Variants Top-1 Top-5
NASB ResNet18 60.5% 82.2%
NASBV1 ResNet18 60.3% 82.3%
NASBV2 ResNet18 61.1% 82.7%
NASBV3 ResNet18 62.8% 84.1%
NASBV4 ResNet18 65.3% 85.9%
NASBV5 ResNet18 66.6% 87.0%

Table 4.3: Comparisons of ResNet18 with multiple binary methods.

Model Top-1 Top-5
Full precision 69.7% 89.4%
ABC-Net (M = 5, N = 5) 65.0% 85.9%
Group-Net (4 bases) 64.2% 85.6%
Group-Net** (4 bases) 66.3% 86.6%
NASBV4 65.3% 85.9%
NASBV5 66.6% 87.0%

4.4. EXPERIMENTAL RESULTS ON IMAGENET DATASET
We applied our proposed NASB strategy for the binarization of ResNet [22], trained and
evaluated on the ILSVRC2012 classification dataset [56]. The ILSVRC2012 classification
dataset is one of the most challenging image classification datasets and a 1000-category
dataset with over 1.2 million images in the training data and 50 thousand images in the
validation data. ResNet is one of the most popular and advanced CNNs.

4.4.1. IMPLEMENTATION DETAILS

During the searching stage, we train model Ms on CIFAR-10. Half of the CIFAR-10 train-
ing data is used as a validation set. The Relu layer is not added in the searching stage. We
train model Ms for 100 epochs with batch size 64. We use momentum SGD and Adam to
optimize the model weights and architecture parameters. The experiments are performed on
one GPU. In NASB ResNet18 and NASB ResNet34, all NASB-convolutional cells adopt
four nodes and they use three nodes for NASB ResNet50. Due to memory limitations, we
remove convolutions and dilated convolutions with kernel size three and five for NASB
ResNet50 during this stage.

During the pretraining stage, we train model Mp obtained from the last searching stage
on the ILSVRC2012 classification dataset. A 224×224 crop is randomly sampled from an
image or its horizontal flip, with the per-pixel mean subtracted. We do not apply any more
sophisticated data augmentation to the training data. We use standard single-crop testing
for evaluation. We insert the Relu layer and use the layer order as Conv→Relu→BN, and
the t anh function is applied to activation after the Batch Normalization layer.
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Table 4.4: Comparisons with single binary CNNs

Model Full BNN XNOR Bi-Real NASB

ResNet18
Top-1 69.7% 42.2% 51.2% 56.4% 60.5%
Top-5 89.4% 67.1% 73.2% 79.5% 82.2%

ResNet34
Top-1 73.2% − − 62.2% 64.0%
Top-5 91.4% − − 83.9% 84.7%

ResNet50
Top-1 76.0% − − 62.6% 65.7%
Top-5 92.9% − − 83.9% 85.8%

Table 4.5: Comparisons of ResNet18 with fixed-point quantization methods.

Model W A Top-1 Top-5
Full precision 32 32 69.7% 89.4%
Dorefa-Net 2 2 62.6% 84.4%
SYQ 1 8 62.9% 84.6%
Lq-Net 2 2 64.9% 85.9%
NASBV4 1 1 65.3% 85.9%

During the finetuning stage, we binarize and train the pre-trained model Mp from the pre-
training stage into model M f . The weights and activations are binarized using the method
described in Section 4.3.1. We keep 1×1 convolution to full-precision in this stage. We
adopt Adam as the optimizer and set weight decay to 0 since the binarization can be recog-
nized as a kind of regularization.

4.4.2. EXPERIMENTAL RESULTS OF NASB VARIANTS

The accuracy of different variants is compared in Table 4.2. The accuracy of NASBV1
ResNet18 is almost the same as that of NASB ResNet18. We conjecture that 28/36 of the
total edges in NASBV1 ResNet18 are removed rather than 6/10 of the total edges in NASB
ResNet18, which will change model Ms too much and remedy the benefits of a larger
search space. For other variants of the NASB strategy, we observe the increased operations
of NASB-convolutional cell results in a Top-1 accuracy improvement by up to 6.0%. It is
expected that with more operations retained, NASB variants can achieve higher accuracy.

We present the finalized architecture of four NASB-convolutional cells in NASBV5
ResNet18, as shown in Fig. 4.4, which is derived from Fig. 4.2(a) after the searching stage.
In this figure, we retain eight operations for the output node and six operations for the other
nodes of every NASB-convolutional cell. In addition, we have the following observations.
1). Most operations in the discovered architecture are the max pooling layers. The reason
that we suspect is the max pooling layer can preserve the features with the highest response.
2). 1 × 1 convolution is not chosen, which conforms to the experience of manually design-
ing the neural network architecture. 3). The discovered architecture has a larger receptive
field since it prefers 3 × 3 dilated convolution than 3 × 3 convolutions.
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Figure 4.4: Architecture of NASB-convolutional cells in NASBV5 ResNet18. Nconv cell
refers to NASB-convolutional cell. conv and bconv refer to full precision and
binary convolutional layer, respectively.

4.4.3. COMPARISONS WITH THE STATE-OF-THE-ART QUANTIZED
CNNS

As shown in Table 4.4, Table 4.3, and Table 4.5, we compare our NASB strategy with
single binary CNNs, multiple parallel binary CNNs, and fixed-point CNNs using different
quantization methods, respectively. All the comparison results are directly cited from the
corresponding papers.

As shown in Table 4.4, Bi-Real Net [38] is the state-of-the-art single binary CNNs. Com-
pared with Bi-Real ResNet with varying layers from 18 to 50, our proposed NASB ResNet
shows consistent accuracy improvement by 4.1%, 1.8%, and 3.1% Top-1 accuracy, respec-
tively.

As shown in Table 4.3, we compare our NASB strategy with ABC-Net and Group-Net,
which is a multiple binary CNN and can be implemented in a parallel way. Both NASBV4
and NASBV5 achieve higher accuray than ABC-Net. NASBV4 and NASBV5 show better
accuracy performance than Group-Net and Group-Net** by 1.1% and 0.3%, respectively.
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Table 4.6: Memory usage and Flops calculation of Bi-Real Net, Group-Net, NASB Net, and
full precision models

Model Memory usage Memory saving Flops Speedup
Bi-Real ResNet18 33.6Mbit 11.14 × 1.63×108 11.06 ×
NASB ResNet18 33.8Mbit 11.07 × 1.71×108 10.60 ×
ResNet18 374.1Mbit − 1.81×109 −
Bi-Real ResNet34 43.7Mbit 15.97 × 1.93×108 18.99 ×
NASB ResNet34 44.0Mbit 15.86 × 2.01×108 18.26 ×
ResNet34 697.3Mbit − 3.66×109 −
Bi-Real ResNet50 176.8Mbit 4.62 × 5.45×108 7.08 ×
NASB ResNet50 178.1Mbit 4.60 × 6.18×108 6.26 ×
ResNet50 817.8Mbit − 3.86×109 −
ABC-Net (M = 5, N = 5) ResNet18 72.3Mbit 5.17 × 6.74×108 2.70 ×
Group-Net (4 bases) ResNet18 62.1Mbit 6.03 × 2.62×108 6.90 ×
Group-Net** (4 bases) ResNet18 83.9Mbit 4.46 × 3.38×108 5.35 ×
NASBV4 ResNet18 70.7Mbit 5.30 × 2.81×108 6.45 ×
NASBV5 ResNet18 88.3Mbit 4.24 × 3.52×108 5.15 ×
ResNet18 374.1Mbit − 1.81×109 −

Table 4.5 shows Lq-Net is the current best-performing fixed-point method. Multiple bi-
nary CNNs with K binary branches are preferable to fixed-point CNNs with

p
K bit-width

considering the computational complexity and memory bandwidth [69]. Thus, NASBV4
with four operations retained per node has less overhead while still achieving better accu-
racy.

4.4.4. COMPUTATIONAL COMPLEXITY ANALYSIS

To analyze the computational complexity of our proposed NASB strategy, we compare
with Bi-Real Net, Group-Net, and full precision models in terms of memory usage and
computation speedup as shown in Table 4.6.

The memory usage is computed as the summation of the number of real-valued parame-
ters times thirty two bit and the number of binary parameters times one bit. We use Flops
to measure the computation and assume that bitwise XNOR and popcount operations can
be calculated as 64-way parallel operations on current CPUs. Thus, the Flops is calculated
as the sum of the number of real-valued operations plus 1/64 of the number of bitwise op-
erations. Following the suggestion from [37, 38, 69], we keep the first convolutional layer,
the last fully connected layer, and the downsampling layer as full precision.

Bi-Real Net [38] can be seen as a suboptimal binary CNN architecture of our NASB Net,
where one edge connected to its last node is retained for every node and one identity op-
eration remains for every edge. The finalized NAS-convolutional cells in NASB ResNet18
includes twelve max pooling and four identity operations, and they are composed of 20 max
pooling and twelve identity operations in NASB ResNet34. In NASB Res50, the NAS-
convolutional cells consist of 41 max pooling, six identity, and one 1x1 dilated convolution
operations. Compared to Bi-Real Net, the increased computational complexity is mainly
due to max pooling. The Flops or the number of bitwise operations of a 3x3 max pooling
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is less than that of a 3x3 convolution, and the additional number of trainable parameters
introduced by Batch Normalization of max pooling operation is 2Cout .

As shown in Table 4.6, both the additional memory usage and Flops of NASB ResNet
of varying depths are negligible compared to Bi-Real Net. ABC-Net requires significantly
more Flops than Group-Net and NASB variants. The increased memory usage and Flops of
NASBV5 and NASBV4 ResNet18 are insignificant compared to Group-Net** and Group-
Net.

4.5. CONCLUSION
In this chapter, we proposed NASB, a strategy to find an accurate architecture for binary
CNNs. Specifically, the NASB strategy uses the NAS technique to identify an optimized
architecture in a large search space, which is suitable for binarizing CNNs. We use the
ImageNet classification dataset to prove the effectiveness of our proposed approach. With
insignificant overhead increases, the NASB strategy and its variants achieve up to 4.0% and
1.0% Top-1 accuracy improvement compared with the state-of-the-art single and multiple
binary CNNs, respectively, providing a better trade-off between accuracy and efficiency.
It is worth to clarify that we can easily extend our proposed NASB strategy to fixed-point
quantized convolutional neural networks and other models for computer vision tasks be-
yond image classification, which can be explored further.
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UNIFIED EFFECTIVE DEPTH

REDUCTION TECHNIQUES

To improve gradient backpropagation, current network engineering for BCNNs relies on
enhancing the shortcut Effective Depth Reduction (EDR) technique1, i.e., increasing the
number of shortcuts, to improve the accuracy of BCNNs. Specifically, Bi-Real ResNet and
BinaryDenseNet introduce additional shortcuts in addition to the shortcuts already present
in their full precision counterparts. However, there is a slight accuracy drop (rather than
an increase) when we keep increasing the number of shortcuts further for Bi-Real ResNet
and BinaryDenseNet. Rather than relying solely on enhancing the shortcut EDR technique,
we take a view of unifying multiple EDR techniques to bring their advantages together
into one model to make gradient backpropagate more easily. In particular, we propose
to unify both the shortcut and fractal architecture EDR techniques into one model and
design two unified architectures for BCNNs: 1. Unified Architectures for binary ResNet
(UA-ResNet), and 2. Unified Architectures for binary DenseNet (UA-DenseNet). Gradi-
ent path analysis demonstrates that our unified architectures have better gradient paths
than Bi-Real ResNet and BinaryDenseNet to make the gradient backpropagate more easily,
which cannot be achieved by relying solely on enhancing the shortcut EDR technique. Re-
sults show that our proposed unified architectures achieve better accuracy compared with
Bi-Real ResNet and BinaryDenseNet. Specifically, the Top-1 accuracy of our proposed UA-
ResNet37(41) and UA-DenseNet51(53) on ImageNet outperforms Bi-Real ResNet18(64)
and BinaryDenseNet51(32) by 3.29% and 1.41%, respectively, with almost the same com-
putational complexity.

The content of this chapter is based on [84].
1In our chapter, ”Effective Depth Reduction (EDR)” refers to a technique of reducing the effective depth of DC-

NNs to improve gradient backpropagation, including shortcut [22, 23], fractal architecture [85], deep supervi-
sion [86], and student-teacher paradigm [87] (In the student-teacher paradigm, there is an interplay between
networks of different depths). The EDR techniques share a key characteristic: large nominal network depth,
but effectively shorter paths for gradient propagation during training.
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5.1. INTRODUCTION
Convolutional Neural Networks (CNNs) have become the paradigm of choice for visual
recognition and have made considerable breakthroughs in a wide range of visual tasks [88],
such as image recognition [22, 89], object detection [90], and segmentation [91]. To prac-
tically deploy CNNs in the field, their efficiency has become a key differentiator, especially
when targeting resource-limited embedded platforms.

Convolutional Neural Networks (CNNs) have become the paradigm of choice for visual
recognition [22, 88–91]. A significant amount research has been dedicated to increasing
the efficiency of CNNs, including pruning [92, 93], quantization [94], knowledge distilla-
tion [87, 95], and efficient network design [75]. In low bit-width quantization, fixed-point
integers are used instead of floating-point numbers [6], where binarization is an extreme
case of quantization. Binarization [37] is the most efficient among the different bit-widths
quantization methods. However, it results in a large accuracy degradation.

The current methods to improve the accuracy of binarization can be divided into two cat-
egories [44]: value approximation and structure approximation. In value approximation, we
preserve the topology of the full-precision CNNs during the binarization and seek a better
local minimum for binarized weights/activations by either minimizing the quantization er-
ror [45, 96–99], improving the loss function of the network [29, 67, 100, 101], or improving
the quantization functions [35, 38, 102–104]. In structure approximation [38, 44, 60, 105],
the architecture of the binary CNNs is redesigned to approximate the original full-precision
CNNs. The structure approximation focuses on the architecture design principles for effi-
cient and accurate BCNNs, which is complementary to the value approximation. Regarding
structure approximation, Bi-Real ResNet [38] and BinaryDenseNet [105] show significant
accuracy improvement without increasing the number of parameters, which indicates that
adopting more shortcuts can help the training of BCNNs.

Network engineering for BCNNs [38, 105] can get inspiration from network engineering
done for full-precision DCNNs [22, 23, 85–87] since they both try to improve gradient
backpropagation to ease training difficulties. To overcome the training difficulty caused
by the large depth of full-precision DCNNs, research has shown significant improvements
using Effective Depth Reduction (EDR) techniques to improve gradient backpropagation,
including shortcut [22, 23], fractal architecture [85], deep supervision [86], and student-
teacher paradigm [87]. Besides, BCNNs do not only suffer from the training difficulty
caused by their depth, but also the training difficulty caused by their binarization. Thus,
we need to further enhance the EDR techniques already used for full-precision DCNNs to
improve gradient backpropagation, that focus mainly on shortcut EDR techniques, such as
those used for Bi-Real ResNet [38] and BinaryDenseNet [105].

However, relying solely on enhancing the shortcut EDR technique has its limits since
there is no accuracy improvement with further increasing the number of shortcuts for Bi-
Real ResNet and BinaryDenseNet. Rather than relying solely on enhancing the shortcut
EDR technique, we look into the direction to unify multiple EDR techniques into one model
to make gradient backpropagate more easily and design unified architectures, that can bene-
fit from both the shortcut and fractal architecture EDR techniques. By unifying the residual
connection and fractal architecture EDR techniques into one model, we design Unified Ar-
chitectures for binary ResNet (UA-ResNet). Also, we design Unified Architectures for bi-
nary DenseNet (UA-DenseNet) by unifying the dense connection, residual connection, and
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fractal architecture EDR techniques together. Gradient path analysis demonstrates that our
unified architectures have better gradient paths than Bi-Real ResNet and BinaryDenseNet
to make the gradient backpropagate more easily, which cannot be achieved by relying solely
on enhancing the shortcut EDR technique.

To our best knowledge, there has been no research to show and discuss the feasibil-
ity of unifying multiple EDR techniques to make gradient backpropagate more easily to
solve the training difficulties for BCNNs and full-precision DCNNs. Moreover, there is no
previous work on network engineering to unify the shortcut and fractal architecture EDR
techniques into one model, since these techniques have only been used independently in
ResNet, DenseNet, FractalNet, and their variants. By unifying different EDR techniques,
more advanced unified architectures are expected to be explored in the future. The contri-
bution of this chapter is summarized as follows.

• We are the first work to propose the neural network architecture design principle
of unifying multiple EDR techniques, rather than relying solely on enhancing the
shortcut EDR technique, to make the gradient backpropagate more easily. Based on
the experiments of Bi-Real ResNet and BinaryDenseNet, we identify the limitation
of relying solely on enhancing the shortcut EDR technique and open the door to
unifying multiple EDR techniques to bring their advantages into one model.

• We are the first network engineering effort to unify residual connection, dense con-
nection, and fractal architecture EDR techniques together. We design two unified
architectures for BCNNs: 1. UA-ResNet unifying the residual connection and fractal
architecture EDR techniques, and 2. UA-DenseNet unifying the dense connection,
residual connection, and fractal architecture EDR techniques. Gradient path analysis
demonstrates that our unified architectures have better gradient paths than Bi-Real
ResNet and BinaryDenseNet to make the gradient backpropagate more easily, which
cannot be achieved by relying solely on enhancing the shortcut EDR technique.

• Under a given computational complexity budget, our unified architectures on clas-
sification tasks improve the accuracy of state-of-the-art Bi-Real ResNet and Binary-
DenseNet.

5.2. RELATED WORK
In this section, we review and compare the recent work of compact architecture design and
quantized CNNs.

5.2.1. COMPACT ARCHITECTURE DESIGN
Efficient architecture design has attracted lots of attention from researchers. 3×3 convolu-
tion has been replaced with 1×1 convolution in GoogLeNet [71] and SqueezeNet [61] to
reduce the computational complexity. Group convolution [106], depthwise separable con-
volution [75], shuffle operation [76], and shift operation [107] have been shown to reduce
the computational complexity of traditional convolution. Instead of relying on human ex-
perts, neural architecture search techniques [81, 82] can automatically provide optimized
platform-specific architectures, achieving state-of-the-art efficiency.
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Table 5.1: Binary ResNet and DenseNet variants on CIFAR-100. There are two blocks in
this Table. First block: ResNet variants adopting the residual connection EDR
technique. Second block: DenseNet variants adopting the dense connection
EDR technique.

Model Bit-width Top-1 Top-5 Training difficulty Shortcuts
ResNet18(64) b = 32 23.54% 6.55% Ddepth=18 5
Bi-Real ResNet18(64) b = 32 23.01% 6.24% Ddepth=18 13
Enhanced Bi-Real ResNet18(64) b = 32 23.07% 6.20% Ddepth=18 18
ResNet18(64) b = 2 29.59% 9.17% Ddepth=18, Dwi d th=2 5
Bi-Real ResNet18(64) b = 2 26.71% 7.46% Ddepth=18, Dwi d th=2 13
Enhanced Bi-Real ResNet18(64) b = 2 27.26% 7.58% Ddepth=18, Dwi d th=2 18
ResNet18(64) b = 1 32.57% 10.18% Ddepth=18, Dwi d th=1 5
Bi-Real ResNet18(64) b = 1 28.48% 8.65% Ddepth=18, Dwi d th=1 13
Enhanced Bi-Real ResNet18(64) b = 1 29.94% 8.88% Ddepth=18, Dwi d th=1 18

BinaryDenseNet51(32) b = 32 25.41% 7.30% Ddepth=51 46
Enhanced BinaryDenseNet51(32) b = 32 25.44% 7.27% Ddepth=97 92
BinaryDenseNet51(32) b = 2 26.61% 7.57% Ddepth=51, Dwi d th=2 46
Enhanced BinaryDenseNet51(32) b = 2 26.71% 7.60% Ddepth=97, Dwi d th=2 92
BinaryDenseNet51(32) b = 1 27.16% 7.77% Ddepth=51, Dwi d th=1 46
Enhanced BinaryDenseNet51(32) b = 1 27.35% 7.88% Ddepth=97, Dwi d th=1 92

5.2.2. QUANTIZED CONVOLUTIONAL NEURAL NETWORKS

Low bit-width quantization has been extensively explored in recent work, including reduc-
ing the gradient error [108], improving the loss function of the network [51, 109], and
minimizing the quantization error [50]. Moreover, mixed-precision quantized neural net-
works are developed to improve the performance further for low bit-width quantized neural
networks. Using neural architecture search, mixed-precision neural networks [110–112]
are developed to find the optimal bit-width (i.e., precision) for weights and activations of
each layer efficiently.

Improving network loss function [100], minimizing the quantization error [97], and re-
ducing the gradient error [104] have been studied to provide a better value approximation
for BCNNs. Channel-wise Interaction based Binary Convolutional Neural Network (CI-
BCNN) [100] uses a reinforcement learning model to mine the channel-wise interactions
and impose channel-wise priors to alleviate the inconsistency of signs in binary feature
maps. [97] obtains significant accuracy gains by minimizing the discrepancy between the
output of the binary and the corresponding real-valued convolution. Information Retention
Network (IR-Net) [104] has been proposed to retain the information that consists of the
forward activations and backward gradients. Regarding structure approximation, [38, 105]
enhances the shortcut EDR technique, i.e., adopting more shortcuts to help the training of
BCNNs.



5.3. UNIFIED ARCHITECTURES

5

61

5.3. UNIFIED ARCHITECTURES
In this section, we identify the limitation of relying solely on enhancing the shortcut EDR
technique. Rather than relying solely on enhancing the shortcut EDR technique, we pro-
pose to unify the shortcut and fractal architecture EDR techniques to make the gradient
backpropagate more easily and introduce our unified architectures for BCNNs. Besides,
gradient path analysis demonstrates that our unified architectures have better gradient paths
than Bi-Real ResNet and BinaryDenseNet to make the gradient backpropagate more easily,
which cannot be achieved by relying solely on enhancing the shortcut EDR technique. In
addition, to ensure a fair comparison we scale the number of base channels or the growth
rate of our unified architectures to have almost the same computational complexity as Bi-
Real ResNet and BinaryDenseNet.

5.3.1. LIMITATION OF SHORTCUT EDR TECHNIQUE

For full-precision DCNNs, there is a training difficulty caused by their large depth (Ddepth).
For BCNNs, there is a training difficulty caused by the large depth (Ddepth) and a train-
ing difficulty caused by the binarization (Dwi d th). Comparing Bi-Real ResNet to ResNet
in Table 5.1, we have two observations. The first observation is that the Top-1 accuracy
of ResNet18 with different bit-widths will improve with increasing the number of short-
cuts, by 0.53% for 32 bit-width, 2.88% for 2 bit-width, and 4.09% for 1 bit-width. The
second observation is that the accuracy benefit of increasing the number of shortcuts, will
be more obvious when the training difficulty increases, i.e., 4.09% > 2.88% > 0.53% with
Dwi d th=1 > Dwi d th=2 > Dwi d th=32.

More importantly, we identify one limitation when comparing Enhanced Bi-Real ResNet
and Enhanced BinaryDenseNet to Bi-Real ResNet and BinaryDenseNet. Enhanced Bi-Real
ResNet is obtained by adding more shortcuts to Bi-Real ResNet using the method in [113],
and Enhanced BinaryDenseNet is obtained by adding more shortcuts to BinaryDenseNet
following the method in [105]. Therefore, Enhanced BinaryDenseNet51(32) is the same as
BinaryDenseNet97(16). The Top-1 accuracy of Bi-Real ResNet will degrade with increas-
ing the number of shortcuts, by 0.06% for 32 bit-width, 0.55% for 2 bit-width, and 1.46% for
1 bit-width. Similarly, the Top-1 accuracy of Enhanced BinaryDenseNet51 is worse than
that of BinaryDenseNet51 by 0.03% for 32 bit-width, 0.10% for 2 bit-width, and 0.19% for
1 bit-width. There is a limitation of relying solely on enhancing the shortcut EDR technique
since there is a slight accuracy drop when we keep increasing the number of shortcuts for
Bi-Real ResNet and BinaryDenseNet. Rather than relying solely on enhancing the shortcut
EDR technique, i.e., increasing the number of shortcuts, the key to our proposal is to unify
multiple EDR techniques into one model to make gradient backpropagate more easily and
design unified architectures.

5.3.2. UNIFIED ARCHITECTURES FOR BINARY RESNET

The block of UA-ResNet unifies the residual connection and fractal architecture EDR tech-
niques in one model. In Bi-Real ResNet, enhancing the residual connection EDR technique
is achieved by introducing more residual connections, which uses the summation as the op-
eration of feature aggregation. Rather than relying solely on enhancing the residual connec-
tion EDR technique, the block of UA-ResNet brings the advantages of residual connection
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Figure 5.1: The diagrams of the blocks of unified architectures. Left: The block description
of binary UA-ResNet. Right: The block description of binary UA-DenseNet.

and fractal architecture EDR techniques into one unified model to resolve the training diffi-
culty of BCNNs. In UA-ResNet, a block (c3d4) is shown to the left of Figure 5.1, where the
number of columns and the longest depth between the input and output of the block is c = 3
and d = 4, respectively. Comparing this block to a block of FractalNet, we add a residual
connection to every convolutional layer. We define the base case and the iteration rule for
the block of UA-ResNet. Specifically, the base case is as follows where ⊕ refers to feature
aggregation of summation.

F R
1 (I ) =Conv(I )⊕ I (5.1)

Besides, we have successive fractals recursively as follows where ~ denotes composition
operation and ¯ represents the join layer.

F R
C+1(I ) = (F R

C ~F R
C (I ))¯ (Conv(I )⊕ I ) (5.2)

5.3.3. UNIFIED ARCHITECTURES FOR BINARY DENSENET

The block of UA-DenseNet unifies the residual connection, dense connection, as well as
fractal architecture EDR techniques in one model. Since the feature maps of all preceding
convolutional blocks in DenseNet will be concatenated and reused, the fractal architecture
EDR technique is applied to produce new feature maps. Moreover, all the convolutional
layers, where the number of input channels is the same as the number of output channels,
adopt the residual connection EDR technique, so the shortcut EDR technique is used as
often as possible.
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Table 5.2: Details of gradient paths in binary model blocks. (·|·) refers to the number of bi-
nary parameters on a gradient path and the number of layers for the gradient path
length. For example, 2×P BR |2 indicates that the number of binary parameters
on the gradient path GP1 in the Bi-Real ResNet block is 2×P BR and the length
of the gradient path is two layers. The details of gradient path GP5 in binary
UA-ResNet block is 0|0, which is not listed in the table.

Block GP1 GP2 GP3 GP4

Bi-Real ResNet 2×P BR |2 P BR |1 P BR |1 0|0
UA-ResNet 2×PU R |2 PU R |1 PU R |1 PU R |1
BinaryDenseNet P BD

1 +P BD
2 |2 P BD

1 |1 P BD
2 |1 0|0

UA-DenseNet PU D
1 +PU D

2 |2 PU D
1 |1 PU D

1 |1 0|0

In UA-DenseNet, a block (c3d4) is shown to the right of Figure 5.1, where the backbone,
i.e., the convolutional and join layers, is the same as that in a block of FractalNet. Two
characteristics need to be clarified for the block of UA-DenseNet. The fractal architecture
EDR technique is used to produce new feature maps, that will concatenate with the feature
maps of all preceding convolutional layers. All the convolution layers, where the number
of input channels is the same as the number of output channels, are associated with the
residual connections, so the shortcut EDR technique is used as often as possible. F1

D is the
base case for the block of UA-DenseNet, where only one convolutional layer is used. F1

D

is calculated as follows.
F1

D (I ) =Conv(I ) (5.3)

We define the truncated fractal F2
D as follows where three convolutional layers are used

and F R
1 is the truncated fractal in the block of UA-ResNet.

F2
D = F1

D ~F R
1 (I )¯Conv(I ) (5.4)

We define the truncated fractal F3
D as follows where seven convolutional layers are used.

F3
D = F2

D ~F R
2 (I )¯Conv(I ) (5.5)

At the end of the block of UA-DenseNet, we use feature aggregation of concatenation as
follows where ⊗ refers to feature aggregation of concatenation.

O = FC
D ⊗ I (5.6)

5.3.4. GRADIENT PATH ANALYSIS
This section demonstrates that our unified architectures have better gradient paths than Bi-
Real ResNet and BinaryDenseNet to make the gradient backpropagate more easily, which
cannot be achieved by relying solely on enhancing the shortcut EDR technique.

We use three metrics to evaluate the quality of gradient paths in a binary model: the total
number of gradient paths, the average length of the gradient paths, and the average number
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Figure 5.2: Analysis of gradient paths in binary ResNet and DenseNet variants. Top left:
Analysis of gradient paths in a Bi-Real ResNet block. Bottom left: Analysis of
gradient paths in a binary UA-ResNet block. Top right: Analysis of gradient
paths in a BinaryDenseNet block. Bottom right: Analysis of gradient paths in
a binary UA-DenseNet block. GP and Bconv refer to gradient path and binary
convolutional layer, respectively. P BR and PU R represent the number of binary
parameters of a convolutional layer in Bi-Real ResNet and binary UA-ResNet,
respectively. P BD and PU D represent the number of binary parameters of a
convolutional layer in BinaryDenseNet and binary UA-DenseNet, respectively.

of binary parameters on the gradient paths of the same length. Gradient backpropagation
of full-precision layers is much easier than that of binary convolutional layers. Thus, we
consider binary convolutional layers and ignore full-precision layers to compute the three
metrics. We present the gradient paths in the blocks of the binary ResNet and DenseNet
variants in Figure 5.2. We take binary model blocks with a depth of two layers as an
example to illustrate the analysis of gradient paths, which will work for other binary neural
network architecture configurations. We show the details of the gradient paths in Table 5.2.

Why do gradient paths in binary UA-ResNet blocks improve? The binary UA-ResNet
block has better gradient paths than the Bi-Real ResNet block for two reasons. 1. Binary
UA-ResNet block has more gradient paths. 2. A smaller average number of binary param-
eters on the gradient paths of the same length in the binary UA-ResNet block needs to be
updated.

The gradient path analysis in Bi-Real ResNet and binary UA-ResNet blocks is summa-
rized as follows. 1. The total number of gradient paths in Bi-Real ResNet and Binary
UA-ResNet blocks is 4 and 5, respectively. 2. The average length of the gradient paths
in Bi-Real ResNet and binary UA-ResNet blocks is one layer. 3. The average number of
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binary parameters on the gradient paths of one layer in Bi-Real ResNet and binary UA-
ResNet blocks is P BR and PU R , respectively. Considering the gradient paths of two layers,
the average number of binary parameters in Bi-Real ResNet and binary UA-ResNet blocks
is 2×P BR and 2×PU R , respectively. To ensure a fair comparison, we set the numbers of
binary parameters of model blocks to be roughly the same, i.e., 3×PU R ≈ 2×P BR . Thus,
P BR > PU R .

Why do gradient paths in binary UA-DenseNet blocks improve? Compared with the
BinaryDenseNet block, the UA-DenseNet block has a smaller average number of binary
parameters on the gradient paths of the same length to be updated, which results in improved
gradient paths.

The gradient path analysis in BinaryDenseNet and binary UA-DenseNet blocks is sum-
marized as follows. 1. The total number of gradient paths in BinaryDenseNet and binary
UA-DenseNet blocks is 4. 2. The average length of gradient paths in BinaryDenseNet and
binary UA-DenseNet blocks is one layer. 3. Regarding the gradient paths of one layer, the
average number of binary parameters in BinaryDenseNet and binary UA-DenseNet blocks

is P BD
1 +P BD

2
2 and PU D

1 , respectively. In terms of the gradient paths of two layers, the av-
erage number of binary parameters in BinaryDenseNet and binary UA-DenseNet blocks is
P BD

1 +P BD
2 and PU D

1 +PU D
2 , respectively. To ensure a fair comparison, we set the numbers of

binary parameters of model blocks to be roughly the same, i.e., P BD
1 +P BD

2 ≈ 2×PU D
1 +PU D

2 .

Therefore, P BD
1 +P BD

2
2 > PU D

1 and P BD
1 +P BD

2 > PU D
1 +PU D

2 .

Why does it not work to enhance the shortcut EDR technique further for Bi-Real
ResNet and BinaryDenseNet? The total number of gradient paths, the average length
of the gradient paths, and the average number of binary parameters on the gradient paths
of the same length in the Enhanced Bi-Real ResNet block are the same as those in the
Bi-Real ResNet block. Thus, increasing the number of residual connections for Bi-Real
ResNet cannot improve the gradient paths. The Enhanced BinaryDenseNet block has more
gradient paths, but a larger average length of the gradient paths than the BinaryDenseNet
block. Besides, the average number of binary parameters on the gradient paths of three
layers and four layers in the Enhanced BinaryDenseNet block is much larger than that in
the BinaryDenseNet block although there is a smaller average number of binary param-
eters on the gradient paths of one layer and two layers in the Enhanced BinaryDenseNet
block. Thus, increasing the dense connection further for BinaryDenseNet does not lead to
better gradient paths. More information and analysis of gradient paths in Bi-Real ResNet,
BinaryDenseNet, and their enhanced versions can be found in the appendix.

We present the gradient paths in the blocks of the binary ResNet and DenseNet variants
in Figure 5.3. We take binary model blocks with a depth of two layers as an example to
illustrate the analysis of gradient paths, which will work for other binary neural network
architecture configurations. We show the details of the gradient paths in Table 5.3.

Comparison between Bi-Real ResNet and Enhanced Bi-Real ResNet. The gradient
path analysis in Bi-Real ResNet and Enhanced Bi-Real ResNet blocks is summarized as
follows. 1. The total number of gradient paths in Bi-Real ResNet and Enhanced Bi-Real
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Figure 5.3: Analysis of gradient paths in binary ResNet and DenseNet variants. Top left:
Analysis of gradient paths in Bi-Real ResNet block. Top middle: Analysis
of gradient paths in Enhanced Bi-Real ResNet block. Top right: Analysis of
gradient paths in BinaryDenseNet block. Bottom: Analysis of gradient paths
in Enhanced BinaryDenseNet block. GP and Bconv refer to gradient path and
binary convolutional layer, respectively. P BR and P ER represent the number
of binary parameters of a convolutional layer in Bi-Real ResNet and Enhanced
Bi-Real ResNet, respectively. P BD and P ED represent the number of binary
parameters of a convolutional layer in BinaryDenseNet and Enhanced Binary-
DenseNet, respectively.

ResNet blocks is equal to 4. 2. The average length of the gradient paths in Bi-Real ResNet
and Enhanced Bi-Real ResNet blocks is one layer. 3. The average number of binary param-
eters on the gradient paths of one layer in Bi-Real ResNet and Enhanced Bi-Real ResNet
blocks is P BR and P ER , respectively. Considering the gradient paths of two layers, the aver-
age number of binary parameters in Bi-Real ResNet and Enhanced Bi-Real ResNet blocks
is 2×P BR and 2×P ER , respectively. To ensure a fair comparison, we set the numbers of
binary parameters of model blocks to be roughly the same, i.e., 2×PU R ≈ 2×P BR . Thus,
P BR = P ER .

Comparison between BinaryDenseNet and Enhanced BinaryDenseNet. The gradient
path analysis in BinaryDenseNet and Enhanced BinaryDenseNet blocks is summarized as
follows. 1. The total number of gradient paths in BinaryDenseNet and Enhanced Bina-
ryDenseNet blocks is 4 and 16, respectively. 2. The average length of gradient paths
in BinaryDenseNet and Enhanced BinaryDenseNet blocks is one layer and two layers,
respectively. 3. Regarding the gradient paths of one layer, the average number of bi-

nary parameters in BinaryDenseNet and Enhanced BinaryDenseNet blocks is P BD
1 +P BD

2
2 and
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Table 5.3: Details of gradient paths in binary model blocks. (·|·) refers to the number of
binary parameters on a gradient path and the number of layers for the gradient
path length. For example, 2×P BR |2 indicates that the number of binary param-
eters on the gradient path GP1 in the Bi-Real ResNet block is 2×P BR and the
length of the gradient path is two layers. BR and BD represent Bi-Real ResNet
and BinaryDenseNet, respectively.

Block GP1 GP2 GP3 GP4

BR 2×P BR |2 P BR |1 P BR |1 0|0
Enhanced BR 2×P ER |2 P ER |1 P ER |1 0|0
BD P BD

1 +P BD
2 |2 P BD

1 |1 P BD
2 |1 0|0

Enhanced BD P ED
1 +P ED

2 +P ED
3 +P ED

4 |4 P ED
2 +P ED

3 +P ED
4 |3 P ED

1 +P ED
3 +P ED

4 |3 P ED
1 +P ED

2 +P ED
4 |3

Block GP5 GP6 GP7 GP8
Enhanced BD P ED

1 +P ED
2 +P ED

3 |3 P ED
3 +P ED

4 |2 P ED
2 +P ED

4 |2 P ED
2 +P ED

3 |2
Block GP9 GP10 GP11 GP12
Enhanced BD P ED

1 +P ED
4 |2 P ED

1 +P ED
3 |2 P ED

1 +P ED
2 |2 P ED

1 |1
Block GP13 GP14 GP15 GP16
Enhanced BD P ED

2 |1 P ED
3 |1 P ED

4 |1 0|0

P ED
1 +P ED

2 +P ED
3 +P ED

4
4 , respectively. In terms of the gradient paths of two layers, the average

number of binary parameters in BinaryDenseNet and Enhanced BinaryDenseNet blocks is

P BD
1 +P BD

2 and P ED
1 +P ED

2 +P ED
3 +P ED

4
2 , respectively. In terms of the gradient paths of three

layers, the average number of binary parameters in BinaryDenseNet and Enhanced Bina-

ryDenseNet blocks is 0 and 3×(P ED
1 +P ED

2 +P ED
3 +P ED

4 )
4 , respectively. In terms of the gradient

paths of four layers, the average number of binary parameters in BinaryDenseNet and En-
hanced BinaryDenseNet blocks is 0 and P ED

1 +P ED
2 +P ED

3 +P ED
4 , respectively. To ensure a

fair comparison, we set the numbers of binary parameters of model blocks to be roughly the

same, i.e., P BD
1 +P BD

2 ≈ P ED
1 +P ED

2 +P ED
3 +P ED

4 . Therefore, P BD
1 +P BD

2
2 > P ED

1 +P ED
2 +P ED

3 +P ED
4

4 .
The average number of binary parameters on the gradient paths of one layer and two layers
in the Enhanced BinaryDenseNet block is half of that in the BinaryDenseNet block. How-
ever, there is a much larger average number of binary parameters on the gradient paths of
three layers and four layers in the Enhanced BinaryDenseNet block than that in the Binary-
DenseNet block.

Why is it reasonable to expect that a smaller average number of binary parameters
on the gradient paths of the same length results in an improvement of gradient paths?
Considering the gradient paths of the same length, we can interpret the average number of
binary parameters on these gradient paths as the average width of these gradient paths. It
is reasonable to expect that a smaller average number of binary parameters on the gradi-
ent paths of the same length (or a shorter average width of these gradient paths, which are
of the same length) results in an improvement of these gradient paths. Reducing gradient
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path length has been adopted for improving gradient backpropagation during training since
the gradient information received by earlier layers from a loss at the end of the model is
noisier than that received by deeper layers [85, 114, 115]. The gradient information noise
in a BCNN is more than that in a full-precision DCNN because of the gradient mismatch
problem introduced by the binarization. We do not have to consider the gradient vanishing
or exploding problem since we use ReLu as the no-linear function. The gradient informa-
tion noise accumulates with computing gradient backpropagation on the gradient paths. In
particular, a smaller amount of computation (i.e., the smaller number of multiplication and
addition) required for gradient backpropagation on the gradient paths indicates less accu-
mulation of gradient information noise. A smaller average number of binary parameters on
the gradient paths of the same length and a shorter average length of the gradient paths im-
plies a smaller amount of computation needed for gradient backpropagation on the gradient
paths. Thus, reducing the average length of the gradient paths and decreasing the average
number of binary parameters on the gradient paths of the same length can lead to improving
the gradient paths.

Why can the three metrics evaluate the quality of gradient paths? We summarize how
the three metrics are used to evaluate the quality of gradient paths as follows. Increasing the
total number of gradient paths, reducing the average length of the gradient paths, and de-
creasing the average number of binary parameters on the gradient paths of the same length
can improve the gradient paths. The summation of a larger total number of gradient paths
can reduce gradient information random noise, improving these gradient paths. A shorter
average length of the gradient paths and a smaller average number of binary parameters on
the gradient paths of the same length indicates a smaller amount of computation used for
gradient backpropagation, which reduces the accumulation of gradient information noise to
improve the gradient paths.

Why is there no contradiction between increasing representation capability and im-
proving gradient paths in a binary model? It is worth clarifying that there is no con-
tradiction between increasing representation capability and improving gradient paths in a
binary model. The representation capability is closely related to the number of binary pa-
rameters of a binary model. Specifically, increasing the number of binary parameters of
a binary model can enlarge the representation capability. We evaluate the gradient path
quality with the average length of these gradient paths and the average number of binary
parameters on these gradient paths of the same length (or the average width of these gra-
dient paths, which are of the same length). In particular, reducing the average length of
the gradient paths and decreasing the average number of binary parameters on the gradient
paths of the same length can improve the gradient paths. It is worth noting that the summa-
tion of the binary parameters on all the gradient paths in a binary model is not equal to the
number of binary parameters of the binary model. Thus, we can enlarge the representation
capability by increasing the number of binary parameters of a binary model and simultane-
ously improve the gradient paths by reducing the average length of these gradient paths and
decreasing the average number of binary parameters on these gradient paths of the same
length.
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Table 5.4: Binary ResNet and DenseNet variants on ImageNet. There are four blocks
in this Table. First block: ResNet18(64) and UA-ResNet variants to com-
pare with ResNet18(64). Second block: ResNet34(64) and UA-ResNet vari-
ants to compare with ResNet34(64). Third block: BinaryDenseNet51(32)
and UA-DenseNet to compare with BinaryDenseNet51(32). Fourth block:
BinaryDenseNet69(32) and UA-DenseNet variants to compare with Binary-
DenseNet69(32).

Model Bit-width Top-1 Top-5 Storage Computation Run-time memory
Bi-Real ResNet18(64) b = 1 40.42% 18.29% 33.18Mbit 1.64×108Flops 154.14MB
UA-ResNet21(53) b = 1 37.58% 16.06% 32.63Mbit 1.46×108Flops 170.20MB
UA-ResNet37(41) b = 1 37.13% 15.63% 32.24Mbit 1.28×108Flops 164.58MB
UA-ResNet69(31) b = 1 37.66% 15.77% 32.16Mbit 1.14×108Flops 149.32MB
Bi-Real ResNet34(64) b = 1 36.74% 15.36% 43.28Mbit 1.93×108Flops 154.14MB
UA-ResNet41(48) b = 1 35.62% 14.53% 42.61Mbit 1.64×108Flops 154.14MB
UA-ResNet77(35) b = 1 36.66% 15.07% 41.53Mbit 1.44×108Flops 140.49MB
BinaryDenseNet51(32) b = 1 38.14% 16.80% 34.80Mbit 2.70×108Flops 359.66MB
UA-DenseNet51(53) b = 1 36.73% 15.54% 34.53Mbit 2.97×108Flops 306.68MB
BinaryDenseNet69(32) b = 1 36.26% 15.24% 41.95Mbit 2.82×108Flops 359.66MB
UA-DenseNet69(48) b = 1 35.20% 14.59% 41.52Mbit 3.06×108Flops 282.59MB

5.3.5. COMPUTATIONAL COMPLEXITY ANALYSIS

To guarantee the fairness of the comparison, we scale the number of base channels or
the growth rate of unified architectures to match the computational complexity of binary
ResNet and DenseNet baselines. The computational complexity is analyzed in terms of
storage in Mbit, computation in Flops, and run-time memory in MB. Given a computation
complexity budget, we build more unified architectures with different base channels or the
growth rate (or depths, or numbers of columns in a block, or numbers of convolutional
layers on the longest path in a block) to show that our unified EDR techniques and unified
architectures are robust to architectural hyperparameters of neural networks. Taking UA-
ResNet41(48) and UA-DenseNet51(53) as examples, 41 and 51 are the depths of unified
architectures, while 48 and 53 refer to the number of base channels and the growth rate
after scaling, respectively.

Storage and computation. We adopt the number of parameters as the metric for storage
usage, and the number of Flops as the metric for computational efficiency. The number
of parameters is measured as the summation of 32bits times the number of floating-point
parameters and 1bit times the number of binary parameters in the model. The XNOR and
Popcount bitwise operations can be executed by the current CPUs with a parallelism of 64.
Therefore, the Flops is calculated by the number of floating-point multiplications plus 1/64
of the number of binary multiplication.
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Table 5.5: Binary ResNet and DenseNet variants on CIFAR-100. There are four blocks
in this Table. First block: ResNet18(64) and UA-ResNet variants to com-
pare with ResNet18(64). Second block: ResNet34(64) and UA-ResNet vari-
ants to compare with ResNet34(64). Third block: BinaryDenseNet51(32)
and UA-DenseNet variants to compare with BinaryDenseNet51(32). Fourth
block: BinaryDenseNet69(32) and UA-DenseNet variants to compare with Bi-
naryDenseNet69(32).

Model Bit-width Top-1 Top-5 Storage Computation Run-time memory
Bi-Real ResNet18(64) b = 1 28.48% 8.65% 18.18Mbit 1.67×107Flops 50.33MB
UA-ResNet21(50) b = 1 26.34% 7.89% 18.07Mbit 1.53×107Flops 52.43MB
UA-ResNet37(36) b = 1 26.67% 7.51% 17.57Mbit 1.42×107Flops 47.19MB
UA-ResNet69(26) b = 1 26.85% 7.57% 17.63Mbit 1.38×107Flops 40.89MB
Bi-Real ResNet34(64) b = 1 27.93% 8.37% 28.28Mbit 2.61×107Flops 50.33MB
UA-ResNet41(45) b = 1 25.36% 7.26% 27.64Mbit 2.28×107Flops 47.19MB
UA-ResNet77(32) b = 1 25.57% 6.86% 27.94Mbit 2.24×107Flops 41.94MB
UA-ResNet149(22) b = 1 26.38% 7.83% 26.35Mbit 2.08×107Flops 34.60MB
BinaryDenseNet51(32) b = 1 27.16% 7.77% 17.65Mbit 5.13×107Flops 117.44MB
UA-DenseNet51(48) b = 1 26.72% 7.51% 17.51Mbit 5.32×107Flops 92.27MB
BinaryDenseNet69(32) b = 1 26.88% 7.52% 23.70Mbit 5.50×107Flops 117.44MB
UA-DenseNet69(44) b = 1 26.38% 7.32% 23.33Mbit 5.67×107Flops 85.98MB

Run-time memory consumption. To estimate the run-time memory requirement, we cal-
culate the size of the weights and activations for a layer or an operation, plus all the activa-
tions of shortcut connections that cross past that layer or operation. The type of that layer
can be either a convolutional layer or a join layer. The type of that operation can be either
a summation operation or a concatenation operation. We report the largest among such
values for each model, which would serve as a lower bound for the run-time memory disre-
garding the layer or operation schedule even though the actual usage would largely depend
on individual hardware and framework implementation. The reported run-time memory is
estimated with a batch size of 64.

Computational complexity of shortcuts and join layers in unified architectures. The
shortcuts and join layers in unified architectures need more run-time memory and more
computation than those in Bi-Real ResNet and BinaryDenseNet since there are fewer short-
cuts and no join layers in Bi-Real ResNet and BinaryDenseNet. However, the binary convo-
lutional layers in unified architectures consume less run-time memory and less computation
than those in Bi-Real ResNet and BinaryDenseNet. To ensure a fair comparison, we scale
the number of base channels or the growth rate of unified architectures to match the com-
putational complexity of Bi-Real ResNet and BinaryDenseNet baselines. For example, we
build UA-ResNet21 with a scaled number of base channels equal to 53 to match the com-
putational complexity of Bi-Real ResNet18 with the number of base channels equal to 64.
Thus, our unified architectures require almost the same run-time memory and computation
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Figure 5.4: The building blocks and an exemplary network structure of our unified archi-
tectures. Left two columns: In UA-ResNet, a block (c3d4) has 3 columns
and 4 convolutional layers on the longest path. Middel two columns: In UA-
DenseNet, a block (c2d2) has 2 columns and 2 convolutional layers on the
longest path.

to execute as Bi-Real ResNet and BinaryDenseNet.

5.3.6. OVERVIEW OF UNIFIED ARCHITECTURES

As shown in Figure 5.4, we describe the overall view of our unified architectures with
the input images of size 224× 224. To ensure a fair comparison when we build our uni-
fied architectures, we scale the number of base channels or the growth rate of our unified
architectures to have almost the same computational complexity as Bi-Real ResNet and
BinaryDenseNet.

The left two columns are the UA-ResNet, i.e., UA-ResNet21(53) and UA-ResNet41(48),
respectively. 21 and 41 represent the depths of unified architectures, while 53 and 48 re-
fer to their base number of channels, which are scaled to match the computational com-
plexity of ResNet18 and ResNet34 after binarization, respectively. Similarly, we build
UA-DenseNet51(53) and UA-DenseNet69(48) to match the computational complexity of
DenseNet51(32) and DenseNet69(32) after binarization [105], respectively. 51 and 69 refer
to the depths of unified architectures, while 53 and 48 refer to the growth rate after scaling.
We calculate the model depth with the criteria that every convolutional layer is recognized
as one layer, which is different from that in [105] (i.e., every block is recognized as a layer).
To ensure consistency, BinaryDenseNet28(64) and BinaryDenseNet37(64) in [105] are re-
named as BinaryDenseNet51(32) and BinaryDenseNet69(32) in our chapter. The right two
columns present the composition of the initial layers, transition block, and final layers in
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unified architectures.

5.4. EXPERIMENTAL RESULTS
Compared with both Bi-Real ResNet and BinaryDenseNet on ImageNet and CIFAR-100,
our unified architectures with different base channels or growth rate consistently show sig-
nificant performance improvement, which necessitates the fractal EDR technique for our
unified architectures. Besides, we demonstrate the essential role of the shortcut EDR tech-
nique for our unified architectures, which supports that the key of our proposal is to unify
multiple EDR techniques into one model.

5.4.1. EXPERIMENTAL RESULTS ON IMAGENET
In this section, we present the experimental results of our unified architectures on ImageNet.
Compared with both Bi-Real ResNet and BinaryDenseNet, our unified architectures with
different base channels or growth rate consistently show significant performance improve-
ment, which necessitates the fractal EDR technique for our unified architectures. Besides,
we demonstrate the essential role of the shortcut EDR technique for our unified architec-
tures, which supports that the key of our proposal is to unify multiple EDR techniques into
one model.

ResNet variants on ImageNet. As shown in Table 5.4, we present the experimental
results of UA-ResNet on ImageNet. Our UA-ResNet variants with different base chan-
nels, including UA-ResNet21(53), UA-ResNet37(41), and UA-ResNet69(31), consistently
achieve significant performance improvement compared with Bi-Real ResNet18. In par-
ticular, UA-ResNet37(41) and UA-ResNet41(48) improve the Top-1 accuracy by 3.29%
and 1.12% compared with Bi-Real ResNet18(64) and Bi-Real ResNet34(64), respectively.
Regarding the computational complexity, UA-ResNet37(41) increases the run-time mem-
ory size by 10.44MB, but saves the number of parameters by 0.94Mbit and the number of
Flops by 0.36×108 (21.95%) compared with Bi-Real ResNet18(64). Similarly, the number
of parameters and the number of Flops required for our proposed UA-ResNet41(48) are
0.67Mbit and 0.29×108 less than those needed for Bi-Real ResNet34(64).

DenseNet variants on ImageNet. As shown in Table 5.4, we present the experimental
results of our UA-DenseNet on ImageNet. The Top-1 accuracy of UA-DenseNet51(53)
and UA-DenseNet69(48) are 1.41% and 1.06% better than those of BinaryDenseNet51(32)
and BinaryDenseNet69(32), respectively. In terms of the computational complexity, UA-
DenseNet51(53) and UA-DenseNet69(48) require 0.27× 108 Flops and 0.24× 108 Flops
less compared with BinaryDenseNet51(32) and BinaryDenseNet69(32), respectively, while
they save the number of parameters by 0.37Mbit and 0.37Mbit, respectively, and decrease
the run-time memory size by 52.98MB and 77.07MB, respectively.

5.4.2. EXPERIMENTAL RESULTS ON CIFAR-100
In this section, we present the experimental results of binary ResNet and DenseNet variants
on CIFAR-100, which shows that our proposed unified architectures with different base
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Table 5.6: Ablation study results of CIFAR-100. First block: DenseNet variants. Second
block: ResNet variants.

Model Bit-width Top-1 Top-5
UA-DenseNet51(48) b = 1 26.72% 7.51%
A-DenseNet51(48) b = 1 27.19% 7.26%
UA-DenseNet69(44) b = 1 26.38% 7.32%
A-DenseNet69(44) b = 1 26.63% 7.34%
UA-ResNet21(50) b = 1 26.34% 7.89%
A-ResNet21(50) b = 1 31.82% 9.70%
UA-ResNet41(45) b = 1 25.36% 7.26%
A-ResNet41(45) b = 1 40.14% 15.19%

channels or growth rate can consistently improve the accuracy of binary ResNet and binary
DenseNet significantly.

ResNet variants on CIFAR-100. As shown in Table 5.5, we present the accuracy of
unified architectures for binarizing ResNet18 and ResNet34. UA-ResNet variants with
different base channels consistently outperform Bi-Real ResNet baselines. Compared
with Bi-Real ResNet18(64) and Bi-Real ResNet34(64), the Top-1 accuracy of our UA-
ResNet21(50) and UA-ResNet41(45) are improved by 2.14% and 2.57%, respectively. Con-
sidering the computational complexity, our UA-ResNet21(50) use 0.11Mbit less for stor-
age, 0.14× 107 Flops less for computation, and 2.10MB more for run-time memory than
Bi-Real ResNet18(64). Our UA-ResNet41(45) saves the storage by 0.64Mbit, the compu-
tation by 0.33× 107 Flops, and the run-time memory by 3.14MB compared with Bi-Real
ResNet34(64), respectively.

DenseNet variants on CIFAR-100. As shown in Table 5.5, we present the accuracy
of our unified architectures for binary DenseNet51(32) and DenseNet69(32). The Top-1
accuracy of our proposed UA-DenseNet51(48) and UA-DenseNet69(44) are 0.44% and
0.50% better than those of BinaryDenseNet51(32) and BinaryDenseNet69(32), respec-
tively. The increased number of Flops required for our proposed UA-DenseNet51(48) and
UA-DenseNet69(44) is 0.19×107 and 0.17×107, respectively, while the decreased number
of parameters required for them is 0.06Mbit and 0.37Mbit, respectively, and the decreased
run-time memory size needed for them is 25.17MB and 31.46MB, respectively, compared
with BinaryDenseNet51(32) and BinaryDenseNet69(32).

5.4.3. ABLATION STUDY

In the above section, we have shown the advantage of unified architectures over Bi-Real
ResNet and BinaryDenseNet, which indicate the benefits of unifying the fractal architecture
EDR technique. In this section, we explore the role of shortcut EDR technique for unified
architectures.
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Table 5.7: Comparison with state-of-the-art methods on ImageNet. * refers to the baseline
from the published papers. # indicates the downsampling layers are binarized.
Complexity (a/b) means a Mbit and b GFlops.

Model Top-1/Top-5 Complexity
BNN ResNet18 #* [33] 57.80%/30.80% 27.9/0.14
XNOR-Net ResNet18 #* [37] 48.80%/26.80% 28.0/0.14
TBN-ResNet18 #* [49] 44.40%/25.80% 27.9/0.17
Trained Bin ResNet18 #* [116] 45.80%/22.10% 27.9/0.14
CI-Net ResNet18 #* [100] 43.30%/19.90% 27.9/0.14
XNOR-Net++ ResNet18 #* [98] 42.90%/20.10% 28.0/0.14
Bi-Real ResNet18 * [38] 43.60%/20.50% 33.2/0.16
CI-Net ResNet18 * [100] 40.10%/15.80% 33.2/0.16
Real-to-Bin ResNet18 * [97] 34.60%/13.80% 33.2/0.16
Bi-Real ResNet18(64) [38] 40.42%/18.29% 33.2/0.16
UA-ResNet37(41) 37.13%/15.63% 32.2/0.13
TBN-ResNet34 #* [49] 41.80%/19.00% 38.0/0.23
Bi-Real ResNet34 * [38] 37.80%/16.10% 43.3/0.19
Bi-Real ResNet34(64) [38] 36.74%/15.36% 43.3/0.19
UA-ResNet41(48) 35.62%/14.53% 42.6/0.16
BinaryDenseNet51(32) * [105] 39.30%/17.60% 34.8/0.27
BinaryDenseNet51(32) [105] 38.14%/16.80% 34.8/0.27
UA-DenseNet51(53) 36.73%/15.54% 34.5/0.30
BinaryDenseNet69(32) * [105] 37.50%/16.10% 42.0/0.28
BinaryDenseNet69(32) [105] 36.26%/15.24% 42.0/0.28
UA-DenseNet69(48) 35.20%/14.59% 41.5/0.31
Full-precision ResNet18 * 30.70%/10.80% 374.1/1.81
Full-precision ResNet34 * 26.80%/8.60% 697.3/3.66

The architectures of A-DenseNet51(48) and A-ResNet21(50) are obtained by removing
all the residual connections from UA-DenseNet51(48) and UA-ResNet21(50), respectively.
As shown in Table 5.6, the residual connection EDR technique can improve the Top-1 accu-
racy of A-DenseNet51(48) and A-DenseNet69(44) by 0.47% and 0.25%, respectively. Sim-
ilarly, the Top-1 accuracy degradation of A-ResNet21(50) and A-ResNet41(45) is 5.48%
and 14.78% without residual connections.

5.4.4. COMPARISON TO STATE-OF-THE-ART

As shown in Table 5.7, we compare with state-of-the-art BCNNs on ImageNet. Ex-
cept for the Real-to-Bin ResNet18 [97], the Top-1 accuracy of UA-ResNet37(41), UA-
ResNet41(48), UA-DenseNet51(53), and UA-DenseNet69(48) achieve 37.13%, 35.62%,
36.73%, and 35.20%, respectively, and outperform other binary ResNet and DenseNet vari-
ants by a large margin. More importantly, Real-to-Bin focuses on the minimization of
quantization error between the BCNNs and their full precision counterparts, while unified
architectures work towards the architecture design for BCNNs. Thus, it is also reasonable
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to expect that the performance of Real-to-Bin can be improved further when applying our
proposed unified architectures.

5.5. CONCLUSION
In this chapter, we identify the limitation of relying solely on enhancing the shortcut EDR
technique. Rather than relying solely on enhancing the shortcut EDR technique, we pro-
pose to unify multiple EDR techniques to make the gradient backpropagate more easily
and design unified architectures. In particular, UA-ResNet unifies the residual connection
and fractal architecture EDR techniques into one model. UA-DenseNet unifies the residual
connection, dense connection, and fractal architecture EDR techniques together. Gradient
path analysis demonstrates that our unified architectures have better gradient paths than Bi-
Real ResNet and BinaryDenseNet to make the gradient backpropagate more easily, which
cannot be achieved by relying solely on enhancing the shortcut EDR technique. Our uni-
fied architectures with different base channels or growth rate can consistently improve the
performance of binary ResNet and binary DenseNet by a large margin, indicating the ne-
cessity of unifying the fractal architecture EDR technique for our unified architectures. The
ablation study shows that it is essential to unifying the shortcut EDR technique for our
unified architectures. Thus, we conclude that the key of our proposal is to unify multiple
EDR techniques to make the gradient backpropagate more easily and each EDR technique
is indispensable to our unified architectures. Under a given computational complexity bud-
get, the Top-1 accuracy of our proposed unified architectures surpasses the state-of-the-art
Bi-Real ResNet18(64) by 3.29%, Bi-Real ResNet34(64) by 1.12%, BinaryDenseNet51(32)
by 1.41%, and BinaryDenseNet69(32) by 1.06% on ImageNet classification.





6
REDUCING FEATURE REUSE

WITHIN CONVOLUTION

High-level feature maps of Convolutional Neural Networks are computed by reusing their
corresponding low-level feature maps, which brings into full play feature reuse to improve
the computational efficiency. This form of feature reuse is referred to as feature reuse be-
tween convolutional layers. The second type of feature reuse is referred to as feature reuse
within the convolution, where the channels of the output feature maps of the convolution
are computed by reusing the same channels of the input feature maps, which results in an
approximation of the channels of the output feature maps. To compute them accurately,
we need specialized input feature maps for every channel of the output feature maps. In
this chapter, we first discuss the approximation problem introduced by full feature reuse
within the convolution and then propose a new feature reuse scheme called Reducing Ap-
proximation of channels by Reducing Feature reuse (REAF). The chapter also shows that
group convolution is a special case of our REAF scheme and we analyze the advantage of
REAF compared to such group convolution. Moreover, we develop the REAF+ scheme and
integrate it with group convolution-based models. Compared with baselines, experiments
on image classification demonstrate the effectiveness of our REAF and REAF+ schemes.
Under the given computational complexity budget, the Top-1 accuracy of REAF-ResNet50
and REAF+-MobileNetV2 on ImageNet will increase by 0.37% and 0.69% respectively.

The content of this chapter is based on [117].
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6.1. INTRODUCTION
Convolutional Neural Networks (CNNs) have achieved a series of breakthroughs on non-
trivial visual tasks [90, 118–121]. The features in a dataset can be learned in an end-to-
end manner by CNNs with minimal human effort and can be transferred to diverse visual
tasks [122]. Accordingly, researchers are dedicated to designing better networks for learn-
ing representations [123–126] instead of handcrafted features.

To enrich the representational power of CNNs, recent work investigates various aspects
of CNN network architecture [71, 127–129]. Constructing deep CNNs by stacking build-
ing blocks of the same shape is an effective strategy [71] since higher layers learn more
abstract and invariant representations [87, 130]. Inherited from this, networks with skip
connections [22, 127] enable the training CNNs with extreme depth. Inspired from the
Hebbian principle and multi-scale processing, multi-branch CNNs [72] achieve compelling
accuracy if the topology of each branch is carefully designed, and multiple branches are
expected to approximate large and dense layers of powerful representational capability.
Except for depth, the width of a network is an essential dimension to increase the model
capability [131]. Exposing the new dimension of cardinality [132] or deploying the new
approaches [124, 133, 134] can enlarge the representational ability of the model. To ad-
dress the limitation of spatial locality in convolution, the attention mechanism [133, 135] is
used to capture a larger feature interaction. Using automated strategy, Neural Architecture
Search achieves state-of-the-art accuracy [134] and platform-aware efficiency [81].

When it comes to the efficiency of designing CNNs, feature reuse is key to making it
feasible [74, 130, 136, 137]. More precisely, the features computed by earlier layers will
be reused by the latter layers, which is the feature reuse between convolutional layers and
is popular in both a plain network [138] and a multi-branch network [72]. The pursuit of
maximizing feature reuse between convolutional layers is an important concept in designing
these networks. Deeper CNNs encourage more feature reuse, which resulted in designing
VGG-net [138] and ResNet [22]. Deep CNNs with identity mapping have a problem of
diminishing feature reuse in [139], which motivates the development of wide ResNet [131],
ResNet with stochastic depth [140], and DenseNet [23]. Also, feature reuse plays a critical
role within the convolution in addition to between the convolutional layers. Specifically, all
the channels of the output activations of the convolution are computed by reusing all and
the same channels of the input activations.

Feature reuse is at the heart of the theoretical advantages behind deep learning and ex-
plains the power of distributed representations [130]. However, it is a limitation of the
representational capability of networks since the reused features are an approximation of
accurate features. Reducing or eliminating feature reuse from a given model will result in
comparable or higher model accuracy, which supports the approximation drawback of fea-
ture reuse. There is some research investigating eliminating feature reuse between convolu-
tional layers. For example, CondenseNet [74] removes such connections between layers to
avoid superfluous feature reuse in the network architecture. Besides, the lottery ticket [141],
selective allocation of channels [142], pruning [143, 144], and group convolution [106, 128]
can all be regarded as methods for reducing feature reuse within the convolution as ana-
lyzed in our work, which has not been pointed out in their original illustration. We initially
pointed out that feature reuse within the convolution leads to the problem of approximation
of the channels. Thus, by reducing feature reuse we can reduce the approximation within
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the convolution, which makes the calculation of the channels more accurate.
Our main contributions are summarized as follows.

• To our best knowledge, we are the first to point out and analyze the approximation
problem introduced by the feature reuse within the convolution. To solve the prob-
lem, we propose the Reducing Approximation of channels by Reducing Feature reuse
(REAF) scheme, which is a moderate version of feature reuse within the convolution.

• We compare our REAF scheme with group convolution and show that there are more
merged channels in our REAF scheme than those in group convolution even though
group convolution is a special case of our REAF scheme.

• We develop our REAF+ scheme with Bn and Relu layers as the parameterized oper-
ations and integrate it with group convolution-based models.

• We use extensive experiments to demonstrate the effectiveness of our REAF and
REAF+ schemes.

6.2. RELATED WORK
In this section, we describe the network engineering, including the multi-branch and con-
volution variants.

6.2.1. MULTI-BRANCH CONVOLUTIONAL NETWORKS
To ease the difficulty of training deep neural networks, an adaptive gating unit is used in
Highway networks [139], which evolves into identity mapping in ResNet [22]. Replacing
the identity mapping with more residual blocks, shake-shake networks [145], and multi-
residual networks [146] are extended to improve the accuracy and speed. FractalNets [85]
and Multilevel ResNets [113] expand the multiple paths in a fractal and recursive way,
respectively. The Inception series [72] aggregate the multifarious features of multi-scale
with a careful configuration for each branch.

6.2.2. CONVOLUTION VARIANTS
To enrich the representational capability, deformable convolution [123, 147] and active con-
volution [148] augment the spatial sampling locations with additional offsets. Considering
the computational complexity, group convolution [149], flattened convolution [150], tiled
convolution [151], octave convolution [152], and dilated convolution [118] are developed as
variants. Depthwise convolution [153] is an example of group convolution with the number
of groups being the same as the number of channels. Based on these convolution variants,
compact models are built, including IGCV series [154], MobileNet series [75], ShuffleNet
series [76], and Espnet series [77].

6.3. METHOD
In this section, we analyze the limitation of the convolution, i.e., the approximation of the
channels caused by the full feature reuse within the convolution. To address this problem,
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Figure 6.1: Illustration of convolution using different feature reuse schemes. Every circle
stands for every channel of the feature maps. Circles on the top, in the middle,
and on the bottom refer to the input feature maps, the input feature maps to
compute every channel of the output feature maps, and the output feature maps,
respectively. Circles in dashed lines indicate the absence of the channels.

we propose our REAF scheme for convolution, which introduces specialization to compute
the channels of the output feature maps. We optimize the REAF scheme and compare it
with group convolution since group convolution is a special case of our scheme. Finally,
we develop the REAF+ scheme to improve the performance of the group convolution-based
models.

6.3.1. PROBLEM DEFINITION
The output activations O ∈ RCout×H×W of the convolution are convolved between the input
activations I ∈ RCi n×H×W and the weights W ∈ RCout×Ci n×h×w , where the batch size N is
omitted. The channel-wise representation of the output activations O is shown as follows,
where O j refers to the j th channel of the output activations O and j = 0, ...,Cout −1.

O = {O0,O1, ...,OCout−1} (6.1)

To study feature reuse for every individual channel, we construct a variable A ∈
RCout×Ci n×H×W to compute all the channels of the output activations, where A j is the in-
put activation to compute the j th channel of the output activation O j . The feature reuse
within the convolution is shown in the left of Fig. 6.1, where we reuse all the channels of
the input activations I to calculate every individual channel of the output activations O .
Therefore, O j is convolved by the input activations A j and the weights W j as follows and
i = 0, ...,Ci n −1.

O j =
Ci n−1∑

i=0
A j i ×W j i =

Ci n−1∑
i=0

Ii ×W j i (6.2)

The information of the CNN transitions gradually from spatial coding to channel coding
by a hierarchy of representations. Regarding the feature reuse between the convolutional
layers, the learned hierarchical representation makes it reasonable to save computational
complexity for CNNs since the high-level features are composed of the low-level features.
However, when it comes to feature reuse within the convolution, i.e., every channel of the
output activations is computed by reusing the same input activations. The reused input
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Table 6.1: ResNet50 and REAF-ResNet50 with a 4-3-4 template using the reformulation
of the REAF scheme. Inside the brackets is the shape of a residual block, and
outside the brackets is the number of stacked blocks on a stage. "C=72" refers
to the base width of the mode. “4-3-4” suggests that the REAF scheme with the
configurations of G I = 4, GM = 3, and GO = 4 is applied to the convolution. The
numbers of parameters and FLOPs are comparable between these two models.

Stage Output ResNet50 REAF-ResNet50 (72-72, 4-3-4)

conv1 112 × 112 7 × 7, 64, stride 2 7 × 7, 64, stride 2

56 × 56 3 × 3 max pool, stride 2 3 × 3 max pool, stride 2

conv2 56 × 56

 1×1,64
3×3,64

1×1,256

×3

 1×1,72
3×3,72,4-3-4

1×1,256

×3

conv3 28 × 28

1×1,128
3×3,128
1×1,512

×4

 1×1,144
3×3,144,4-3-4

1×1,512

×4

conv4 14 × 14

 1×1,256
3×3,256

1×1,1024

×6

 1×1,288
3×3,288,4-3-4

1×1,1024

×6

conv5 7 × 7

 1×1,512
3×3,512

1×1,2048

×3

 1×1,576
3×3,576,4-3-4

1×1,2048

×3

1 × 1
global average pool global average pool
1000-d fc, softmax 1000-d fc, softmax

Parameters 25.56 × 106 26.11 × 106

FLOPs 3.86 × 109 3.97 × 109

activations are approximated tensors for all the channels of the output activations. As every
channel of feature maps is considered as a feature detector [155], the input feature maps
to compute every channel of the output feature maps of the convolution are expected to be
customized and specialized to make the computation more accurate.

6.3.2. REDUCING APPROXIMATION OF CHANNELS BY REDUCING
FEATURE REUSE

The approximation problem of the channels introduced by the feature reuse within the con-
volution can be expressed as A j = A j ′ and j , j ′ = 0, ...,Cout −1. To introduce specialized in-
put feature maps for every channel of the output feature maps, a straightforward scheme for
the convolution is shown in the middle of Fig. 6.1, where there is no feature reuse within the
convolution at all. The input activations are divided into G I groups, where Ci n =G I × Ai n

and Ai n is the number of channels of every group to compute every channel of the output
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Table 6.2: ResNeXt50 and REAF-ResNet50 with a 4-3-4 template using the reformulation
of the REAF scheme. Inside the brackets is the shape of a residual block, and
outside the brackets is the number of stacked blocks on a stage. "C=64" refers
to the base width of the mode. “4-3-4” suggests that the REAF scheme with the
configurations of G I = 4, GM = 3, and GO = 4 is applied to the convolution. "4"
refers to the number of groups G = 4 in ResNeXt50. The numbers of parameters
and FLOPs are comparable between these two models.

Stage Output ResNeXt50 REAF-ResNet50 (64-64, 4-3-4)

conv1 112 × 112 7 × 7, 64, stride 2 7 × 7, 64, stride 2

56 × 56 3 × 3 max pool, stride 2 3 × 3 max pool, stride 2

conv2 56 × 56

 1×1,64,4
3×3,64,4

1×1,256,4

×3

 1×1,72,4-3-4
3×3,72,4-3-4

1×1,256,4-3-4

×3

conv3 28 × 28

1×1,128,4
3×3,128,4
1×1,512,4

×4

1×1,144,4-3-4
3×3,144,4-3-4
1×1,512,4-3-4

×4

conv4 14 × 14

 1×1,256,4
3×3,256,4

1×1,1024,4

×6

 1×1,288,4-3-4
3×3,288,4-3-4

1×1,1024,4-3-4

×6

conv5 7 × 7

 1×1,512,4
3×3,512,4

1×1,2048,4

×3

 1×1,576,4-3-4
3×3,576,4-3-4

1×1,2048,4-3-4

×3

1 × 1
global average pool global average pool
1000-d fc, softmax 1000-d fc, softmax

Parameters 20.89 × 106 20.39 × 106

FLOPs 2.98 × 109 2.72 × 109

activations. We have G I = Cout . The input activations to compute the j th channel of the
output activations are A j , where A j is part of the input activations I as follows. Index refers

to the function that indexes the j th group from I .

A j = Index(I , j , Ai n) (6.3)

In this way, we do not reuse any channels of the input activations I to compute every
channel of the output activations O . O j is convolved by the input activations A j and the
weights W j as follows.

O j =
Ai n−1∑

i=0
A j i ×W j i =

Ai n−1∑
i=0

Index(I , j , Ai n)×W j i
(6.4)
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Considering computational complexity and distributed representations, it is inadvisable
to remove feature reuse totally within the convolution. To keep feature reuse and intro-
duce customized input activations to compute the channels, we introduce our scheme called
REAF, which is a moderate version of feature reuse for convolution as shown in the right
part of Fig. 6.1.

All the channels of the input activations I and the output activations O are divided into
G I and GO groups respectively, and there is only one channel in every group as shown in
the right part of Fig. 6.1. Cout = GO ×Bout and Bout is the number of channels of every
group of the output activations. To keep feature reuse and introduce specialization, we
draw GM groups from the G I groups of the input activations to compute every group of
the output activations. If all the channels of the input activations I are considered as a
set S of G I elements, every element is a group. The number of the (GM )-combinations is
denoted using elementary combinatorics text as C (G I ,GM ). All the (GM )-combinations are
enumerated as E0, ..., El , ..., EGO−1. Here l = b j /Bout c and l = 0, ...,GO − 1. Since it is
hard to get prior knowledge on how many times the groups of the input activations should
be reused, we try to keep the homogeneity of computing channels. Therefore, we have
C (G I ,GM ) = GO . Index refers to the function that indexes GM groups from I based on El

and concatenate them together.

A j = Index(I ,El , Ai n) (6.5)

To compute different groups of the output activations, the reused GM groups of the input
activations are different from each other. O j is convolved by the input activations A j and
the weights W j as follows.

O j =
Ai n×GM−1∑

i=0
A j i ×W j i =

Ai n×GM−1∑
i=0

Index(I ,El , Ai n)×W j i (6.6)

6.3.3. OPTIMIZING THE CONFIGURATIONS OF OUR SCHEME

Given a convolution with a computational complexity budget, the configurations of G I −
GM −GO can be optimized since they have an influence on the feature reuse within the con-
volution and the number of the merged channels. When G I −GM remains unchanged and
GO increases, the feature reuse within the group reduces since every group of the output
activations is computed by reusing different input activations. On the contrary, the fea-
ture reuse between the groups increases since the number of different channels between the
reused input activations of computing different groups of the output activations decreases.
When GO remains unchanged and G I −GM increases, the feature reuse within the convo-
lution reduces while the number of the merged channels decreases. In this chapter, we
focus on studying the extreme case of GM = G I −1 since GM = 1 (i.e., group convolution)
has been explored in [132]. Given a convolutional neural network, we apply our scheme
to its convolutions and optimize the configurations. Taking ResNet50 as an example, and
the overall REAF-ResNet50 architecture, i.e., apply our scheme on ResNet50, is listed in
as shown in Table 6.1. We keep the topology and computational complexity of the model
unchanged for a fair comparison. We adopt the REAF scheme for the middle convolution
of the bottleneck and adjust its width.
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As shown in Table 6.3, the experimental results of REAF-ResNet50 on CIFAR-100 clas-
sification are presented. C and C ′ refer to the base number of the input and output channels
of the middle convolution of the bottleneck and C =C ′ in default. When applying the REAF
scheme to the middle convolution, the accuracy will improve with a wide range of configu-
rations. When G I −GM = 1, REAF-ResNet50 with G I = 4 achieves the best Top-1 accuracy
among all the variants and 1.48% better than the baseline. With the increase and decrease
of the number of the groups from G I = 4, the accuracy will degrade, which suggests that
G I = 4 refers to an optimized configuration of the REAF scheme for the ResNet50.

6.3.4. ADVANTAGE OVER GROUP CONVOLUTION

Group convolution [132] has been widely adopted in the design of CNNs since it exposes
a new dimension, i.e., the size of the set of transformations. Meanwhile, group convolution
benefits from reducing feature reuse within the convolution as explained in our work, which
has not been pointed out by the original reference [132]. Group convolution is an example
of our REAF scheme when GM = 1. The number of merged channels in our proposed
scheme is GM −1 times larger than that in group convolution. Also note that the number of
merged channels in the REAF scheme with the optimized configuration is much more than
that in group convolution with the optimized number of groups G . Based on the experiments
in [132], a larger number of cardinality indicates a more effective choice for a given model
and the number of merged channels is 4 in group convolution with the optimized groups
G = 32. For example, in our proposed scheme with the optimized configuration 4-3-4 and
the number of merged channels is 54.

6.3.5. REAF+ SCHEME

We propose the REAF+ scheme, which adopts parameterized or parameter-free operations
to enable A j 6= A j ′ . Applying the REAF+ scheme, the performance of the models, including
the group convolution-based models or REAF scheme-based models, will improve further.
When the Bn and Relu layers are included, O j is convolved by the output activations O′ of
the last convolution and the weights W j as follows.

O j =Conv(A j ,W j ) =Conv(I ,W j ) =Conv(Relu(Bn(O
′
)),W j ) (6.7)

Taking the parameterized operations of Bn and Relu layers as an example, the REAF+
scheme can be expressed as follows. There are gO pairings of Bn and Relu layers introduced
when the output activations are divided into gO groups.

O j =Conv(A j ,W j ) =Conv(Relul (Bnl (O
′
)),W j ) (6.8)

6.4. EXPERIMENTAL RESULTS
We trained and evaluated our REAF-Net and REAF+-Net modes, i.e., applying our REAF
and REAF+ schemes on baseline models, on CIFAR-100 and ImageNet ILSVRC2012 clas-
sification dataset [56].
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Table 6.3: Experimental results of REAF-ResNet50 with different configurations.

Model Top-1 err. Top-5 err. GFLOPs #Params (M)

ResNet50 Baseline 22.06% 5.54% 1.22 23.71

REAF-ResNet50 (C=C’=64, 16-15-16) 21.70% 5.52% 1.18 23.01
REAF-ResNet50 (C=C’=64, 8-7-8) 21.57% 5.54% 1.14 22.30
REAF-ResNet50 (C=C’=70, 5-4-5) 20.89% 5.14% 1.22 24.11
REAF-ResNet50 (C=C’=72, 4-3-4) 20.58% 5.11% 1.24 24.32
REAF-ResNet50 (C=C’=72, 3-2-3) 21.80% 5.42% 1.20 23.20
REAF-ResNet50 (C=C’=80, 2-1-2) 22.52% 5.72% 1.22 23.75

REAF-ResNet50 (C=88, C’=56, 8-6-28) 22.78% 5.73% 1.23 23.60
REAF-ResNet50 (C=77, C’=63, 7-5-21) 21.94% 5.65% 1.18 22.76
REAF-ResNet50 (C=72, C’=75, 6-4-15) 22.26% 5.44% 1.23 23.74
REAF-ResNet50 (C=80, C’=70, 5-3-10) 22.14% 5.84% 1.21 23.23
REAF-ResNet50 (C=88, C’=72, 4-2-6) 21.51% 5.69% 1.23 23.40
REAF-ResNet50 (C=C’=90, 3-1-3) 21.50% 5.61% 1.25 23.66

REAF-ResNet50 (C=96, C’=56, 8-5-56) 20.82% 5.29% 1.23 23.21
REAF-ResNet50 (C=84, C’=70, 7-4-35) 20.91% 5.24% 1.23 23.50
REAF-ResNet50 (C=78, C’=80, 6-3-20) 20.77% 5.36% 1.21 23.22
REAF-ResNet50 (C=90, C’=80, 5-2-10) 20.80% 5.27% 1.23 23.36
REAF-ResNet50 (C=C’=96, 4-1-4) 21.30% 5.39% 1.25 23.44

REAF-ResNet50 (C=88, C’=70, 8-4-70) 20.56% 4.96% 1.21 23.00
REAF-ResNet50 (C=98, C’=70, 7-3-35) 21.35% 5.28% 1.24 23.29
REAF-ResNet50 (C=C’=90, 6-2-15) 20.58% 5.11% 1.25 23.56
REAF-ResNet50 (C=C’=100, 5-1-5) 21.58% 5.96% 1.24 23.19

REAF-ResNet50 (C=64, C’=112, 8-3-56) 20.71% 5.33% 1.21 23.59
REAF-ResNet50 (C=98, C’=84, 7-2-21) 21.38% 5.41% 1.21 22.76
REAF-ResNet50 (C=C’=102, 6-1-6) 20.28% 5.06% 1.21 22.74

REAF-ResNet50 (C=90, C’=84, 9-3-84) 21.28% 5.23% 1.20 22.68
REAF-ResNet50 (C=104, C’=84, 8-2-28) 21.11% 5.06% 1.21 22.71
REAF-ResNet50 (C=C’=105, 7-1-7) 21.08% 5.27% 1.22 22.75

REAF-ResNet50 (C=90, C’=108, 9-2-36) 20.59% 5.23% 1.24 23.58
REAF-ResNet50 (C=C’=112, 8-1-8) 20.46% 5.18% 1.28 23.75

6.4.1. EXPERIMENTS ON CIFAR-100 CLASSIFICATION

We apply our scheme on ResNet models and conduct experiments on low-resolution im-
agery CIFAR-100 datasets. We adopt crop translation and flipping data augmentation. We
train 200 epochs in total and the learning rate decays at the steps of 60, 120, and 160 with
a factor of 0.2. As the experimental results presented in Table 6.4, the Top-1 accuracy of
our REAF-ResNet outperforms that of ResNet baseline with various depths using compa-
rable computational complexity. Especially, our REAF-ResNet101 achieves a 1.76% top-1
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Table 6.4: Comparisons of REAF-ResNet and ResNet on CIFAR-100 classification.

Model Top-1 err. Top-5 err. GFLOPs #Params (M)

ResNet18 Baseline 22.21% 6.12% 0.56 11.22
REAF-ResNet18 (C=72, 4-3-4) 21.86% 5.82% 0.56 11.17

ResNet34 Baseline 21.30% 5.32% 1.16 21.33
REAF-ResNet34 (C=72, 4-3-4) 20.86% 5.23% 1.13 18.10

ResNet101 Baseline 21.20% 5.40% 2.44 42.70
REAF-ResNet101 (C=72, 4-3-4) 20.44% 4.89% 2.48 43.81

Table 6.5: Comparisons of REAF-ResNet and ResNet on ImageNet classification.

Model Top-1 err. Top-5 err. GFLOPs #Params (M)

ResNet18 Baseline 29.56% 10.36% 1.81 11.69
REAF-ResNet18 (C=72, 4-3-4) 29.29% 10.28% 1.95 11.74

ResNet50 Baseline 23.65% 6.89% 3.86 25.56
REAF-ResNet50 (C=88, C’=70, 8-4-70) 23.18% 6.90% 3.74 24.85
REAF-ResNet50 (C=72, 4-3-4) 23.28% 6.74% 3.97 26.11

WideResNet50 Baseline (widen=2.0) 22.09% 6.08% 11.44 68.88
REAF-WideResNet50 (C=136, 4-3-4) 21.89% 6.10% 10.50 63.11

ResNet101 Baseline 22.09% 6.18% 7.57 44.55
REAF-ResNet101 (C=72, 4-3-4) 21.84% 5.98% 7.79 45.83

accuracy improvement compared with the ResNet101 baseline.

6.4.2. EXPERIMENTS ON IMAGENET CLASSIFICATION

To show the performance of our proposed scheme on high-resolution images and large
datasets, we experiment with ResNet and REAF-ResNet on ImageNet classification. We
train 100 epochs in total with a batch size of 256. The learning rate starts at 0.1 and decays
every 30 epochs with a factor of 0.1. The weight decay is 1e −4 and the momentum is 0.9.
The image is resized for scale augmentation. A 224×224 crop is randomly sampled from an
image or its horizontal flip, with per-pixel normalization. As summarized in Table 6.5, the
Top-1 accuracy of our REAF-ResNet increases by 0.27%, 0.37%, and 0.25% for the depth
of 18, 50 and 101 layers respectively compared to the ResNet baseline.

6.4.3. COMPARISONS WITH GROUP CONVOLUTION

This subsection reports on experiments on CIFAR-100 and ImageNet classification datasets
to show the advantage of our proposed scheme over group convolution. We build ResNeXt
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Table 6.6: Comparisons between our REAF scheme and group convolution on classifica-
tion.

Model Top-1 err. Top-5 err. GFLOPs #Params (M)

ResNeXt50 on CIFAR-100 22.89% 6.19% 1.02 19.04
REAF-ResNet50 on CIFAR-100 22.15% 5.54% 1.00 18.73

ResNeXt101 on CIFAR-100 21.70% 5.62% 1.96 33.60
REAF-ResNet101 on CIFAR-100 20.59% 5.21% 1.92 33.01

ResNeXt50 on ImageNet 25.04% 7.80% 2.98 20.89
REAF-ResNet50 on ImageNet 24.30% 7.32% 2.72 20.39

Table 6.7: Results of group convolution-based and our REAF+ scheme-based models on
classification

Model Top-1 err. Top-5 err. GFLOPs #Params (M)

MobileNetV2 on CIFAR-100 31.53% 9.34% 67.59×10−3 2.37
REAF+-MobileNetV2 on CIFAR-100 30.98% 8.46% 67.90×10−3 2.38

ResNeXt50 on CIFAR-100 20.13% 4.99% 1.36 23.18
REAF+-ResNeXt50 on CIFAR-100 19.70% 4.76% 1.36 23.19

MobileNetV2 on ImageNet 35.02% 13.62% 3.14 3.50
REAF+-MobileNetV2 on ImageNet 34.33% 13.46% 3.17 3.52

and REAF-ResNet according to a given computational complexity budget, and their archi-
tectures can be found as shown in Table 6.2. The network architecture of ResNeXt50 and
REAF-ResNet50 in the section of comparisons with group convolution are listed. The base
width of ResNeXt and REAF-ResNet is C = 64. In ResNeXt, all the convolutions in the
building bottlenecks of ResNet are replaced with the group convolutions G = 4. Specifically,
the three convolutions in a bottleneck are replaced with group convolutions. Similarly, all
the convolutions in the building bottlenecks of REAF-ResNet adopt our proposed scheme
with a configuration of 4− 3− 4. In this way, the difference between group convolution
and our proposed scheme, introduced by the number of merged channels, can be observed
clearly. On the CIFAR-100 dataset, the Top-1 accuracy of the REAF-ResNet50 model is
0.74% better than that of ResNeXt50, and the gap is 1.11% for 101 layers as in Table 6.6.
Compared to ResNeXt50, the Top-1 accuracy of REAF-ResNet50 increases by 0.74% on
the ImageNet dataset.
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Figure 6.2: ResNet50+REAF-ResNet50.

Figure 6.3: ResNet101+REAF-ResNet101.

6.4.4. EXPERIMENTS OF REAF+ SCHEME

As shown in Table 6.7, we apply the REAF+ scheme to a group convolution-based model
and conduct experiments on the classification to show accuracy improvement. Applying the
REAF+ scheme with gO = 2 to the third convolution (i.e., the second pointwise convolution)
of the bottleneck, the Top-1 accuracy of MobileNetV2 and ResNeXt50 on CIFAR-100 will
improve by 0.55% and 0.43% respectively. The Top-1 accuracy of MobileNetV2 on Ima-
geNet will increase by 0.69%.
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Figure 6.4: ResNet50+ResNeXt50.

6.4.5. EFFECTS ON LEARNED REPRESENTATION

In this section, we compare the class selectivity index for the features in the ResNet baseline
and REAF-ResNet to interpret the effect of our proposed scheme on learned representation.
The class selectivity index is computed for every channel of the feature maps, as selectivity
= (umax −u−max )/(umax +u−max ). umax represents the highest class-conditional mean
activity and u−max represents the mean of class-conditional mean activity across all other
classes over given data distribution. Selectivity provides the degree to which features are
being shared across classes, which is a central property of distributed representations and
measure the extent of feature reuse. Using the validation dataset of the ImageNet, we calcu-
late the selectivity for the features of "layer1", "layer2", "layer3", "layer4", and "avgpool",
which are the output of the stage2, stage3, stage4, stage5, and AvgPool2d, respectively.

One trend is that the selectivity for the features of deep layers is more than that of earlier
layers, which conforms to the observations in [135, 156] and can be attributed to the results
of feature reuse between convolutional layers. Another trend identified in our work is that
our REAF scheme increases the selectivity for the features, which verifies its reduction
of feature reuse within the convolution. The distribution of the selectivity for ResNet and
REAF-ResNet appears to be closely matched, so we only analyze the layer, at which the
distribution separates most. Figures 6.2 and 6.3 present the selectivity comparison for the
features in ResNet and REAF-ResNet for 50 and 101 layers. The most distinct distribution
of the class selectivity appears at "layer1" in Figures 6.2 and 6.3 and the selectivity for
the features of the "layer1" in REAF-ResNet are more than that in ResNet. We compare
the selectivity for the features in ResNet50 and ResNeXt50 (i.e., REAF-ResNet50 with the
configuration of GM = 1) in Figure 6.4, respectively. Since ResNeXt is an example of our
REAF scheme, its learned representation is expected to increase the selectivity. The largest
mismatch of the selectivity distribution for the features between ResNet50 and ResNeXt50
falls to "layer4", where ResNeXt50 exhibits more selectivity that ResNet50.
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6.5. CONCLUSIONS
In this chapter, we analyze the approximation problem introduced by the full use of feature
reuse within the convolution, where the channels of the output activations are computed by
reusing the same input activations. To make computing channels more accurate, we propose
the REAF scheme, which is a moderate feature reuse version for convolution. Moreover,
the configuration of the REAF scheme is optimized for a given CNN. Besides, we clarify
the advantage of keeping more merged channels over group convolution. Also, we develop
the REAF+ scheme and integrate it with the group convolution-based models. Last but
not least, we present sufficient experiments on the classification to support our analysis
concerning the REAF and REAF+ schemes.



7
ATTENTION MODULE

Convolution can extract features by fusing spatial and channel-wise information within a
local receptive field, which matches well with the statistics of the natural images and makes
convolutional neural networks the most successful paradigm in many computer vision tasks.
On the contrary, operating in a local neighborhood prevents the convolution from capturing
long-range information. Attention mechanisms have been regarded as an advanced tech-
nique to capture long-range feature interactions and to boost the representation capability
for convolutional neural networks. However, we found two ignored problems in current
attentional activations-based models: the approximation problem and the insufficient ca-
pacity problem of the attention maps. To solve the two problems together, we propose
an attention module for convolutional neural networks by developing an AW-convolution,
where the shape of attention maps matches that of the weights rather than the activations.
Our proposed attention module is a complementary method to previous attention-based
schemes, such as those that apply the attention mechanism to explore the relationship be-
tween channel-wise and spatial features. Experiments on several datasets for image classi-
fication and object detection tasks show the effectiveness of our proposed attention module.
In particular, our proposed attention module achieves 1.00% Top-1 accuracy improvement
on ImageNet classification over a ResNet101 baseline and 0.63 COCO-style Average Preci-
sion improvement on the COCO object detection on top of a Faster R-CNN baseline with the
backbone of ResNet101-FPN. When integrating with the previous attentional activations-
based models, our proposed attention module can further increase their Top-1 accuracy on
ImageNet classification by up to 0.57% and COCO-style Average Precision on the COCO
object detection by up to 0.45.

The content of this chapter is based on [157].
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7.1. INTRODUCTION
Convolutional neural networks have demonstrated to be the gold-standard to solving various
problems in the field of computer vision, including image classification [22], object detec-
tion [158, 159], and segmentation [118]. To improve their performance, many researchers
explored various aspects of CNN design and implementation [160].

To enrich the representation power of CNNs, we can build substantially deeper convolu-
tional neural networks. For example, VGGNet [161] stacks very small 3×3 convolutional
layers, while ResNet [22] stacks residual blocks with skip connections. GoogLeNet [71]
uses multi-scales of processing to capture spatial correlation. Wide ResNet [162] shows that
the width increase of residual networks can enlarge the representation capability and reuse
the features better. Xception [73] and ResNeXt [132] expose new dimensions to increase
cardinalities. Besides, recent literature [163–165] have investigated the attention mecha-
nism since it can improve not only the representation power but also the representation of
interests. Convolutional neural networks can extract informative features by blending cross-
channel and spatial information [135]. Attention modules [166, 167] can learn "where" and
"what" to attend in channel and space axes, respectively, by focusing on important features
and suppressing unnecessary ones of the activations. Dynamic Filter Networks [124, 168]
generate the filters conditioned on the input and show the flexibility power of such filters
because of their adaptive nature, which has become popular in prediction [169] and Natural
Language Processing [170]. Both Dynamic Filter Networks and attention-based models are
adaptive based on the inputs, but there are significant differences between them. Attention-
based models [135, 166] produce attention maps using the attention mechanism to operate
on the activations of convolution. On the contrary, Dynamic Filer Networks [171, 172]
generate input information-specific kernels, such as position-specific kernels [171], seman-
tic label map-specific kernels [172], and few-shot learning setting-specific kernels [173],
which work as the weights of convolution. Our proposed attention module leverages the
attention mechanism to compute the attention maps for attending the activations of convo-
lution, so it is clear to categorized the models applied with our proposed attention module
as attention-based models instead of Dynamic Filter Networks.

Based on our analysis, the approximation problem and the insufficient capacity problem
of the attention maps are ignored in current attentional activations-based models. Motivated
by solving the two problems together, we develop an attention module and inspect the
complementary relationship between our proposed attention module and previously pub-
lished attention-based models, such as the attention augmented models and the attentional
activations-based models. Our contributions are summarized as follows.

• We point out and analyze two ignored problems of the current attentional activations-
based models: the approximation problem and the insufficient capacity problem of
the attention maps. To address the two problems together, we originally propose an
attention module by developing an AW-convolution, where the shape of the attention
maps matches that of the weights instead of the activations.

• Our proposed attention module is a complementary method to previous attention
mechanism-based modules, such as Attention Augmented (AA) convolution [174],
the SE [175] and CBAM [166] modules in the attentional activations-based models.
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Integrating with our proposed attention module, the accuracy of AA-Net, SE-Net,
and CBAM-Net will be improved further.

• We use image classification and object detection tasks to demonstrate the effective-
ness of our proposed attention module. With negligible computational complexity
increase, our proposed attention module can boost the image classification and ob-
ject detection task performance, and it can achieve better accuracy when integrating
with other attention-based models.

7.2. RELATED WORK
In this section, we discuss the recent developments of network engineering and attention
mechanism.

7.2.1. NETWORK ENGINEERING
"Network engineering" has been one of the most active research areas since it targets build-
ing powerful convolutional neural networks on image classification, which are the back-
bones of various computer vision tasks and ensure their remarkable performance [122].
Increasing the depth of convolutional neural networks has been regarded as an intuitive
way to boost performance, which is the philosophy of VGGNet [161] and ResNet [22]. In
addition, since the skip connection from ResNet shows a strong ability to assist the gradi-
ent flow, WideResNet [162], PyramidNet [176], Inception-ResNet [72], and ResNeXt [127,
132] are ResNet-based versions proposed to explore further the influence of the width, the
increase of the width, the multi-scale and the cardinality of convolution, respectively. In
terms of efficiency, DenseNet [23] reuses the feature maps by concatenating the feature
maps from different layers. In particular, MobileNet [153, 177] and ShuffleNet [76] series
present the advantage of depthwise convolution and the shuffle operation between various
group convolutions, respectively. Another design approach uses automated neural archi-
tecture search, which achieves state-of-the-art performance regarding both accuracy and
efficiency across a range of computer vision tasks [81].

7.2.2. ATTENTION MECHANISM
The attention mechanism plays an important role in the human vision perceptron since it
can allocate the available resources to selectively focus on processing the salient part in-
stead of the whole scene [178, 179]. Multiple attention mechanisms are used to address
a known weakness in convolution [71, 152, 167, 175, 180, 181], by capturing long-range
information interactions [182, 183]. The Inception family of architectures [71, 72], Multi-
grid Neural Architectures [181], and Octave Convolution [152] aggregate the scale-space
information, while Squeeze-and-Excitation Networks [175] and Gather-Excite [135] adap-
tively recalibrate channel-wise response by modeling interdependency between channels.
GALA [167], CBAM [166], and BAM [184] refine the feature maps separately in the chan-
nel and spatial dimensions. Attention Modules [185] and self-attention [174, 186] can be
used to exploit global context information. Precisely, non-local networks [187] deploy self-
attention as a generalized global operator to capture the relationship between all pairwise
convolutional feature maps interactions. Except for applying the attention mechanism to
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computer vision tasks [188], it has been a widespread adoption to modeling sequences in
Natural Language Processing [189].

7.3. PROPOSED ATTENTION MODULE
In this section, we analyze the two ignored problems in current attentional activations-
based models: the approximation problem and the insufficient capacity problem of the
attention maps. To address the two problems together, we develop an attention module that
mainly refers to the AW-convolution, where the shape of attention maps matches that of the
weights rather than the activations. Besides, we refine the branch of calculating the attention
maps to achieve a better trade-off between efficiency and accuracy. Last but not least, we
integrate our proposed attention module with other attention-based models to enlarge their
representational capability.

7.3.1. MOTIVATION
First, we define basic notations in a traditional convolutional layer. In a traditional convo-
lutional layer, the input activations, weights, and output activations are denoted as I , K , and
O, respectively. For the input activations I ∈ RN×C1×H×W , N , C1, H , and W refer to the
batch size, the number of input channels, the height, and width of the input feature maps,
respectively. For the weights K ∈ RC2×C1×h×w , C2, h and w refer to the number of out-
put channels, the height and width of the weights, respectively. For the output activations
O ∈ RN×C2×H×W , it is computed as the convolution between the input activations I and
the weights K . In particular, every individual value of the output activations O[l ,p,m,n] is
calculated as follows.

O[l ,p,m,n] =Convolution(I ,K ) =
C1∑

o=1

h−1∑
j=1

w−1∑
k=1

I[l ,o,m′+ j ,n′+k] ×K[p,o, j ,k] (7.1)

where l = 0, ..., N − 1, m = 0, ..., H − 1, n = 0, ...,W − 1, o = 0, ...,C1 − 1, p = 0, ...,C2 − 1,
m′ = m − h−1

2 , n′ = n − w−1
2 .

To apply the attention mechanism on the input activations I , previous attentional
activations-based models produce the channel attention maps Ac ∈ RN×C1×1×1 and spatial
attention maps As ∈ RN×1×H×W separately. For example, applying the channel attention
maps Ac on the input activations I is presented as O = Convolution((I ¯ Ac ),K ), where
¯ refers to the Hadamard product and broadcasting during element-wise multiplication is
omitted.

Approximation problem of the attention maps: Instead of directly computing the three-
dimensional attention map (N is omitted, otherwise the attention maps are of four dimen-
sions.), all the current attentional activations-based models produce the attention maps sep-
arately into the channel attention maps Ac and spatial attention maps As , which leads to
the approximation problem of attention maps. However, to thoroughly attend the input
activations I , we need to compute the attention maps A f ∈ RN×C1×H×W and apply it as
O =Convolution((I ¯ A f ),K ), which requires too much computational and parameter over-
head.
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Inspired by convolution, we adopt local connection and attention maps sharing to reduce
the size of the attention maps. We compute the attention maps Aa ∈ RN×C1×h×w as fol-
lows, where ⊗ is a special element-wise multiplication since it only works associated with
convolution.

O[l ,p,m,n] =Convolution(I ⊗ Aa ,K )

=
C1∑

o=1

h−1∑
j=1

w−1∑
k=1

(I[l ,o,m′+ j ,n′+k] × Aa [l ,o, j ,k])×K[p,o, j ,k]
(7.2)

Insufficient capacity problem of the attention maps To compute different channels of
the output activations of the convolution, the input activations are constrained to be recali-
brated by the same attention maps, which indicates the insufficient capacity of the attention
maps. As each channel of the feature maps is considered as a feature detector, differ-
ent channels of the output activations of the convolution expect the input activations to be
adapted by different attention maps.

Take two channels of output activations of a convolutional layer as an example, the two
channels are responsible for recognizing rectangle shape and triangle shape, respectively.
Thus, it is reasonable for the two channels to expect that there are different attention maps
for attending the input activations of the convolution (i.e., the attention maps to compute the
channel of recognizing the rectangle shape should be different from the attention maps to
compute the channel of recognizing the triangle shape). To meet this expectation, we need
to compute the attention maps Ai c ∈ RN×C2×C1×1×1 and apply it on the input activations as
follows.

O[l ,p,m,n] =Convolution(I ¯ Ai c [l ,p,:,:,:],K )

=
C1∑

o=1

h−1∑
j=1

w−1∑
k=1

(I[l ,o,m′+ j ,n′+k] × Ai c [l ,p,o,0,0])×K[p,o, j ,k]
(7.3)

To solve the approximation problem and the insufficient capacity problem of the atten-
tion maps together (i.e., combining the solution of Equation.7.2 and the solution of Equa-
tion. 7.3), we introduce our proposed attention module by developing the AW-convolution.
Specifically, we propose to compute the attention maps A ∈ RN×C2×C1×h×w and apply it as
follows where the attention maps A[l ,:,:,:,:] has the same shape as that of the weights instead
of the input activations. In this chapter, "Attentional weights" refers to the element-wise
multiplication result between the attention maps and the weights. Similarly, "Attentional
activations" refers to the element-wise multiplication result between the attention maps and
the activations in previous attentional activations-based models. Thus, I⊗A and A[l ,:,:,:,:]¯K
represent the attentional activations and attentional weights, respectively. To reduces half
the number of element-wise multiplications, we calculate attentional weights instead of
attentional activations as follows.

O[l ,p,m,n] =Convolution(I ⊗ A,K )

=
C1∑

o=1

h−1∑
j=1

w−1∑
k=1

I[l ,o,m′+ j ,n′+k] × (A[l ,p,o, j ,k] ×K[p,o, j ,k])

=Convolution(I , A[l ,:,:,:,:] ¯K ) =AW-Convolution(I , A¯K )

(7.4)
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(a) The AW-convolution architecture.

(b) The architecture of calculating attention maps A.

Figure 7.1: The architecture of our proposed attention module.

7.3.2. AW-CONVOLUTION IN PROPOSED ATTENTION MODULE
The AW-convolution in our proposed attention module is presented in Figure 7.1a. In this
figure, the attention maps A has five dimensions, which is computed from the input ac-
tivations I as A = F1(I ). F1 is a function to calculate the attention maps A given the
input activations I . Then, the attentional weights AK ∈ RN×C2×C1×h×w is calculated as
AK = F2(A,K ) = K + A ¯K . F2 is a function to calculate the attentional weights AK given
the weights K and the attention maps A. Finally, the output activations O is calculated from
the input activations I and the attentional weights AK as follows.

O[l ,p,m,n] = F3(I , AK ) =AW-Convolution(I , AK )

=
C1∑
i=1

h−1∑
j=1

w−1∑
k=1

I[l ,o,m′+ j ,n′+k] × AK[l ,p,o, j ,k] =Convolution(I , AK[l ,:,:,:,:])
(7.5)

where F3 is a function to calculate the output activations O given the input activations I
and the attentional weights AK . Compared with the traditional convolution, the attentional
weights AK of the AW-convolution in our proposed attention module has five dimensions
rather than four dimensions, which are different from each other for every individual sample
of the input activations batch to convolute.

It is also worth explaining the definition of the function F2. AK = K + A ¯K instead of
AK = A¯K is used to describe the function F2 since it can be regarded as a residual design
as follows.

O = F3(I , AK ) =AW-Convolution(I ,F2(A,K ))

=Convolution(I ,K )+AW-Convolution(I , A¯K )
(7.6)

7.3.3. CALCULATING THE ATTENTION MAPS
As shown in Figure 7.1b, the architecture to compute the attention maps A (i.e., the def-
inition of the function F1) is presented, which can be expressed as follows. Avgpool2d
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aggregates feature responses from the whole spatial extent and embeds them into A0, and
Pointconv1 and Pointconv2 followed by Relu redistribute the pooled information to capture
the dynamic and no-linear dependencies between channels and spatial spaces.

A = F1(I ) =ExpandC1 (A2) =ExpandC1 (Pointconv2(A1))

=ExpandC1 (Pointconv2(Pointconv1(A0)))

=ExpandC1 (Pointconv2(Pointconv1(Avgpool2d(I ))))

(7.7)

where Pointconv1 and Pointconv2 are pointwise convolutions. We add Batch Normalization
and Relu layers after Pointconv1, while adding Batch Normalization and Sigmoid layers
after Pointconv2, and they are omitted here to provide a clear expression.

In Figure 7.1b, Expand function along C1 dimension, denoted as ExpandC1
, is used as

an example, and Expand function can be also executed along N , C2, h, and w dimensions
in a similar way. ExpandC1 function is used to expand the tensor A2 ∈ RN×(C2C1/rC1 )×h×w

into the attention maps A ∈ RN×C2×C1×h×w with the reduction ratio rC1 , including necessary
squeeze, reshape, and expand operations. ExpandC1

can be expressed as follows.

A =ExpandC1 (A2) = A2.reshape(N ,C2,C1/rC1 ,h, w).unsqueeze(dim=3)
.expand(N ,C2,C1/rC1 ,rC1 ,h, w).reshape(N ,C2,C1,h, w)

(7.8)

Calculating the five-dimension attention maps A is not an easy computational task with-
out careful design. Thus, we analyze the additional computational complexity of an AW-
convolution compared with a traditional convolution as a reference to refine this design.
Considering the trade-off between computational complexity and accuracy, all the experi-
ments in the remainder of this chapter use the same settings for the architecture of calculat-
ing the attention maps A in our proposed attention module, including rC 1 = C1, rC2 = rhw

= 1, r = 16, used in all the stages, and AK = K + A¯K as the definition for the function F2.

7.3.4. REFINING THE ARCHITECTURE OF CALCULATING THE
ATTENTION MAPS

Compared with a traditional convolution, the additional parameters P AW introduced in the
AW-convolution are included in the Pointconv1, Pointconv2, and Batch Normalization lay-
ers, as follows.

P AW =C 2
1C 2

2 /(r r 2
C1

)+C 2
1C2/(r rC1 )+2C1C2(1/r +1)/rC1 (7.9)

where r is a reduction ratio between the two pointwise convolutions, and rC1 is the one in
the ExpandC1 function, reducing the computational complexity.

The additional number of FLOPs FAW needed to compute Avgpool2d, Pointconv1, Point-
conv2, Batch Normalization, non-linear functions, and elementwise-multiplication, is cal-
culated as follows.

FAW = HW C1 +9C 2
1C 2

2 /(r 2
C1

r )+9C 2
1C2/(rC1 r )+45C1C2(1/r +1)/rC1 +9C1C2 (7.10)

To refine the architecture of calculating the attention maps A, we attempted several de-
signs to reduce the computational complexity and minimize the accuracy drop. In particu-
lar, we mainly explore the design space by expanding along different dimensions. Besides,



7

98 7. ATTENTION MODULE

Table 7.1: Comparisons of AW-ResNet50 on CIFAR-100 image classification with different
settings for the architecture of calculating the attention maps A. The default
settings in this table are: rC1 = rC2 = rhw = r = 1, used in all the stages, and
AK = K + A¯K as the definition of the function F2.

Model Top-1 Error Top-5 Error GFLOPs Parameters (M)
ResNet50 Baseline [22] 22.33% 5.83% 1.22 23.71
AW-ResNet50 (rC1 =C1/2) 19.51% 4.65% 1.30 31.28
AW-ResNet50 (rC2 =C2/2) 20.40% 4.97% 1.30 31.28
AW-ResNet50 (rC1 =C1/2, rhw = hw) 20.37% 5.13% 1.24 31.28
AW-ResNet50 (s2, rC1 =C1/2) 20.57% 5.10% 1.22 23.78
AW-ResNet50 (s3, rC1 =C1/2) 20.57% 5.01% 1.22 24.10
AW-ResNet50 (s4, rC1 =C1/2) 20.99% 5.19% 1.25 26.08
AW-ResNet50 (s5, rC1 =C1/2) 21.18% 5.40% 1.27 28.44
AW-ResNet50 (rC1 =C1/2, AK = A¯K ) 20.14% 4.82% 1.30 31.28
AW-ResNet50 (rC1 =C1, r = 16) 19.87% 4.76% 1.23 23.87

we explore the influence of our proposed attention module for every single stage, which
refers to a collection of bottlenecks operating on the feature maps with a universal spa-
tial dimension. Also, we investigate the definition of the function F2. Finally, we adjust
the hyperparameter reduction ratios to achieve a better trade-off between computational
complexity and accuracy. The refined architecture is suggested based on the experimental
results of ResNet50 [22] on CIFAR-100 image classification [190], where we adapt our
proposed attention module by replacing a 3×3 traditional convolution with our proposed
3×3 AW-convolution in the bottlenecks.

According to the results shown in Table 7.1, we get a couple of indications. ExpandC1
is

a better choice (i.e., 0.89%) than ExpandC2
, while Expandhw will lead to an accuracy drop

(i.e., 0.86%) because of the loss of capturing spatial information for attentional weights.
Applying our proposed attention module in the early stage will give a better performance,
and we achieve the best result when all the stages adopt our proposed attention module. Us-
ing AK = K + A¯K as the definition of the function F2 provides a better result (i.e., 0.63%)
than AK = A ¯K since the residual design can help the training of deep models. Consid-
ering the trade-off between computational complexity and accuracy, all the experiments in
the remainder of this chapter use the same settings for the architecture of calculating the
attention maps A in our proposed attention module, including rC 1 =C1, rC2 = rhw = 1, r =
16, used in all the stages, and AK = K + A¯K as the definition for the function F2.

After refining the architecture, the additional parameters P AW and FLOPs FAW intro-
duced in an AW-convolution are as follows.

P AW =C 2
2 /r +C1C2/r +2C2(1/r +1)

FAW = HW C1 +9C 2
2 /r +9C1C2/r +45C2(1/r +1)+9C1C2

(7.11)
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Figure 7.2: The schema of bottlenecks and blocks when integrating with our proposed at-
tention module.

7.3.5. INTEGRATING WITH OTHER ATTENTION-BASED MODULES

In this section, we show how to integrate our proposed attention module with the previous
attention-based convolutional neural networks to demonstrate the complementary relation-
ship between our proposed attention module and other attention-based modules. Since ap-
plying our proposed attention module is using the AW-convolution to replace the traditional
convolution, we can easily integrate our proposed attention module with any convolutional
neural networks consisting of traditional convolution, including all the recently developed
attention-based models [166, 167, 174, 175, 184].

We choose the recent attentional activations-based models, i.e., SE-Net and CBAM-Net,
as examples to show how to integrate our proposed attention module with other attention-
based models. Here we use the popular ResNet [22] as the backbone to apply the attention
mechanism. As shown in Figure 7.2a, the left side is the structure of a primary bottleneck
in ResNet. The middle one is the structure of a bottleneck with SE/CBAM modules in
SE-ResNet/CBAM-ResNet. Integrating the central bottleneck with our proposed attention
module is completed by replacing its 3×3 convolution with a 3×3 AW-convolution, and
its final structure in AW-SE-ResNet/AW-CBAM-ResNet is shown on the right side. In
summary, our proposed attention module is a general module to be integrated seamlessly
with any CNNs architectures, including previous attention-based CNNs.

In Figure 7.2b, we integrate our proposed attention module with Attention Augmented
(AA) convolutional networks and describe the architecture of their possible AW-AA-
blocks. Experiments of AW-AA-Wide-ResNet [162, 174] on CIFAR-100 image classifi-
cation [190], as shown in Table 7.3, suggest that integrating our proposed attention module
with attention-based models should be explored carefully since different integration archi-
tectures achieve different accuracy. In some cases, an improper integration architecture
leads to a small accuracy drop. With a careful design for integration, our proposed attention
module is complementary to AA convolution and improves the accuracy of AA-Net further.

In particular, we augment Wide-ResNet-28-10 by replacing the first convolution of all
the residual blocks with Attention Augmented convolution, which is the AA-Wide-ResNet
baseline. Here we set Nh = 8 heads, k = 2v = 0.2, and a minimum of 20 dimensions per
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Table 7.2: Comparisons of attention-based models on ImageNet classification. * refers to
the baseline results from [166]. All the rest results are produced using the source
code from [166].

Model Top-1 Error Top-5 Error GFLOPs Parameters (M)
ResNet50 [22] * 24.56%(+0.00%) 7.50% 3.86 25.56
AW-ResNet50 23.38%(+1.18%) 6.79% 3.87 25.72
SE-ResNet50 [175] * 23.14%(+1.42%) 6.70% 3.87 28.09
AW-SE-ResNet50 22.72%(+1.84%) 6.47% 3.88 28.25
AW-CBAM-ResNet50 (MaxPool) 22.82%(+1.74%) 6.41% 3.89 28.25
AW-CBAM-ResNet50 (Spatial) 23.20%(+1.36%) 6.58% 3.90 28.25
ResNet101 Baseline [22] * 23.38%(+0.00%) 6.88% 7.57 44.55
AW-ResNet101 22.38%(+1.00%) 6.21% 7.58 44.95
SE-ResNet101 [175] * 22.35%(+1.03%) 6.19% 7.58 49.33
AW-SE-ResNet101 21.78%(+1.60%) 5.74% 7.59 49.73
AW-CBAM-ResNet101 (MaxPool) 21.64%(+1.74%) 5.76% 7.60 49.73
AW-CBAM-ResNet101 (Spatial) 22.32%(+1.06%) 6.18% 7.61 49.73
MobileNet Baseline [153] * 31.39%(+0.00%) 11.51% 0.569 4.23
SE-MobileNet [175] * 29.97%(+1.42%) 10.63% 0.581 5.07
AW-SE-MobileNet 29.41%(+1.98%) 10.59% 0.623 5.52
CBAM-MobileNet [166] 29.01%(+2.38%) 9.99% 0.611 5.07
AW-CBAM-MobileNet (Spatial) 28.82%(+2.57%) 9.98% 0.652 5.52

head for the keys as in [174]. In this figure, we can develop four possible architectures to
integrate our proposed attention module with AA-Wide-ResNet. On the left side of this
figure, we can build AA-Wide-ResNet-0 by replacing the second 3×3 convolution with our
AW-convolution in an AA-block. On the right side, there are three traditional convolutions
in an AA convolution, including conv1, conv2, conv3. The conv1 is parallel to the multi-
head attention, while the conv2 and conv3 are used to calculate QKV (i.e., queries, keys,
and values) and to output attention maps, respectively. On the medial side, we can replace
one traditional convolution from conv1, conv2, or conv3 with our AW-conv1, AW-conv2,
or AW-conv3 to construct AW-AA-Wide-ResNet-1, AW-AA-Wide-ResNet-2, or AW-AA-
Wide-ResNet-3, respectively. The Top-1 accuracy of AW-AA-Wide-ResNet-0 is 1.87%
higher than the AA-Wide-ResNet baseline, while AW-AA-Wide-ResNet-3 shows worse
performance by 0.10% drop.

7.4. EXPERIMENTAL RESULTS
In this section, we use extensive experiments to demonstrate the effectiveness of our pro-
posed attention module. We use ResNet [22], MobileNet [153], SSD300 [158], and Faster
R-CNN [159] as the baseline models, and various variants of these models are developed,
including using our proposed attention module for these baseline models and integrating our
proposed attention module with their attentional activations-based models. The datasets to
train these models include CIFAR-100 classification [190], ImageNet classification [191],
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VOC object detection datasets [192], and COCO object detection datasets [193].

7.4.1. DATA AUGMENTATION AND TRAINING SETTINGS

All the experiments in our work are implemented with the same settings for our proposed
attention module, including rC 1 = C1, rC2 = rhw = 1, r = 16, used in all the stages, and
AK = K + A¯K .

Data augmentation and training setting for CIFAR-100 classification. CIFAR-100
classification dataset [190] contains 50K training images and 10K test images and con-
sists of 32×32 color images drawn from 100 classes. Images are first zero-padded on each
side with four pixels. A random 32×32 patch is cropped from its padded image or its hor-
izontal flip before applying mean/std normalization. During testing, we use only mean/std
normalization. We set the batch size to 128 and use an SGD optimizer with a momentum
value of 0.9 and weight decay 5 ·10−4. We train 200 epochs in total, and the learning rate is
started at 0.1 and decayed at steps of 60, 120, and 160 by a decay factor of 0.2.

Data augmentation and training setting for ImageNet classification. ImageNet classi-
fication dataset [191] consists of 1.2 million images in the training dataset and 50K images
in the validation dataset. During the training, a 224×224 crop is randomly sampled from an
image or its horizontal flip, with the per-pixel mean subtracted. When validating, we per-
form data augmentation by resizing a shorter edge to 256 and center-cropping to 224×224
pixels, and similarly, normalizing the input images with mean channel subtraction. We train
90 epochs with a batch size of 256 and use an SGD optimizer with a momentum of 0.9 and
a weight decay of 1 ·10−4. The learning rate starts from 0.1 and will be divided by 10 every
30 epochs. We report singe-crop results on the validation dataset.

Data augmentation and training setting for PASCAL VOC2007. PASCAL VOC2007
[192] consists of 20 classes and is a popularly used benchmark for object detection. VGG16
is pre-trained on the ImageNet classification dataset [191], and we finetune the resulting
SSD300 model using an SGD optimizer with a momentum value of 0.9 and a weight decay
of 5e − 4, and a batch size of 32. We train 120K steps in total and schedule the learning
rate to start at 1e − 3 and decay at steps of 80K and 100K by a decay factor of 0.1. We
train SSDLite300 with MobileNet as the backbone for 200 epochs, and the learning rate is
started at 0.01 and scheduled by a cosine scheduler.

Data augmentation and training setting for COCO. COCO [193] is a large-scale object
detection dataset, including 80 object categories. ResNet101 is pre-trained on the ImageNet
classification, which is loaded in Faster R-CNN to finetune. All the batch normalization
in the AW-convolution of FPN is replaced with group normalization with the number of
channels as 16. We train 90K iterations in total with a batch size of 8, an SGD optimizer
with the momentum value of 0.9, and a weight decay of 1e −4. The base learning rate is
0.01, and a linear warming up is used in the first 1K iterations with a factor of 0.001. The
base learning rate is decayed at the step of 70K and 83.333K with a factor of 0.1.
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7.4.2. COMPUTATION COMPLEXITY

In this section, we explain how we calculate the additional computation complexity for
the SE module [175], CBAM module [166], and AW-convolution in our work. A residual
bottleneck is the basic unit of ResNet with more than 50 layers [22]. Taking a bottleneck in
ResNet [175] as an example, we use FLOPs and the number of parameters as the metrics
to report the computation complexity of convolution. We take all the additional operations
into considerations, including pooling, no-linear function, etc.

Computation complexity for the SE module. In a bottleneck of the SE-Net, we use the
additional FLOPs to compute the Average pooling, Full-connected, Relu, Sigmoid, Scale,
and Elementwise multiplication. We calculate the additional computation complexity to
introduce the SE module for convolution as follows.

FSE = 2HW Cs +2C 2
s /r +Cs /r +Cs (7.12)

where r , Cs , H , and W refers to the reduction ratio, the dimension of the output channels,
and the height and width of the output activations, respectively. It is worth to note here that
Cs = e ×C , and e = 4 is the expansion ratio of the bottleneck..

The additional parameters PSE introduced for a bottleneck come from the two fully-
connected layers of the gating mechanism as follows.

PSE = 2(eC )2/r +eC (1/r +1) (7.13)

Computation complexity for the CBAM module. In a bottleneck of the CBAM-Net, we
need to compute the channel and spatial attention maps separately. To calculate the chan-
nel attention maps, we need to introduce the following operations, including the Average
pooling, Max pooling, Full-connected, Relu, Sigmoid, Scale, and Elementwise multiplica-
tion. To calculate the spatial attention maps, we need to introduce the following operations,
including the Average pooling, Max pooling, Convolution, Batch Normalization, Sigmoid,
Scale, and Elementwise multiplication. We calculate the increased Flops as follows.

FC B AM = 6HW Cs +4C 2
s /r +2Cs /r +2Cs +105HW (7.14)

The additional parameters PC B AM introduced for a bottleneck come from the two fully-
connected layers of the gating mechanism as follows.

PC B AM = 2(eC )2/r +eC (1/r +1) (7.15)

Computation complexity for the AW-convolution. In a bottleneck of our AW-Net, we
require to add the following operations, including the Average pooling, Pointconv1 con-
volution, Pointconv2 convolution, Batch Normalization, non-linear functions, scale, and
elementwise-multiplication. To apply our proposed attention module on a bottleneck, we
calculate the number of FLOPs as follows.

FAW =HW C +18C 2/r +45C (1/r +1)+9C 2 (7.16)
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Table 7.3: Comparisons of attention-based models on CIFAR-100 classfication.

Model Top-1 Error Top-5 Error GFLOPs Parameters (M)
AA-Wide-ResNet Baseline [174] 28.01%(+0.00%) 7.92% 3.89 8.43
AW-AA-Wide-ResNet-0 26.14%(+1.87%) 7.43% 3.90 8.50
AW-AA-Wide-ResNet-1 27.17%(+0.84%) 7.49% 3.89 8.48
AW-AA-Wide-ResNet-2 27.09%(+0.92%) 8.00% 3.89 8.45
AW-AA-Wide-ResNet-3 28.11%(−0.10%) 8.24% 3.89 8.44
ResNet50 Baseline [22] 22.33%(+0.00%) 5.83% 1.22 23.71
AW-ResNet50 19.87%(+2.46%) 4.76% 1.23 23.87
SE-ResNet50 [175] 20.43%(+1.90%) 5.01% 1.23 26.24
AW-SE-ResNet50 19.00%(+3.33%) 4.51% 1.24 26.40
CBAM-ResNet50 [166] 19.46%(+2.87%) 4.56% 1.24 26.24
AW-CBAM-ResNet50 18.94%(+3.39%) 4.76% 1.25 26.40

The AW-convolution in a bottleneck increases the parameters compared with a traditional
convolution, as follows.

P AW = 2C 2/r +2C (1/r +1) (7.17)

Considering the analysis of the bottleneck above, the number of parameters when adopt-
ing the SE or CBAM module is approximately e2 = 16 times that when applying our pro-
posed attention module.

7.4.3. IMAGENET IMAGE CLASSIFICATION

To investigate the performance of our proposed attention module on high-resolution images,
we train ResNet50 and ResNet101 [22] and their attention-based variants on the ImageNet
classification dataset [191]. According to the results shown in Table 7.2, our proposed atten-
tion module is complementary to other attentional activations-based models. AW-ResNet50
achieves a 1.18% Top-1 error reduction compared with the ResNet50 baseline. Integrating
with our proposed attention module, SE-ResNet50 [175] can improve further by 0.42%
Top-1 accuracy. The Top-1 accuracy of our AW-SE-ResNet101 is 1.60% and 0.57% higher
than that of ResNet101 and SE-ResNet101, respectively. To integrate with CBAM-ResNet
[166] more carefully, we define CBAM-ResNet (MaxPool) and CBAM-ResNet (Spatial)
separately. In CBAM-ResNet (MaxPool), we do not deploy the spatial attention maps,
while we do not use max-pooled features in CBAM-ResNet (Spatial). The Top-1 accu-
racy of AW-CBAM-ResNet50 (MaxPool) and AW-CBAM-ResNet50 (Spatial) are better
than AW-ResNet50 by 0.56% and 0.18%, respectively, but worse than AW-SE-ResNet50.
The number of additional parameters for our proposed attention module is 0.16 M, which
is much smaller than 2.83 M (i.e., one-sixteenth) of SE and CBAM modules. Moreover, it
takes only 0.01 GFLOPs to apply our proposed attention module on the ResNet50 model on
ImageNet classification, which is comparable with 0.01 GFLOPs and 0.04 to adopt the SE
and CBAM modules and is negligible in terms of FLOPs to implement the baseline model.
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Table 7.4: Comparisons of attention-based ResNet various depths on CIFAR-100 classfica-
tion.

Model Top-1 Error Top-5 Error GFLOPs Parameters (M)
ResNet18 Baseline [22] 22.33% 5.93% 0.557 11.22
AW-ResNet18 21.29% 6.08% 0.564 11.31
SE-ResNet18 [175] 22.10% 6.25% 0.558 11.31
AW-SE-ResNet18 21.84% 5.87% 0.565 11.40
CBAM-ResNet18 [166] 22.12% 6.22% 0.559 11.31
AW-CBAM-ResNet18 22.18% 6.37% 0.566 11.40
ResNet101 Baseline [22] 20.02% 4.88% 2.44 42.70
AW-ResNet101 19.59% 4.96% 2.47 43.01
SE-ResNet101 [175] 19.88% 4.94% 2.45 47.48
AW-SE-ResNet101 19.63% 4.72% 2.48 47.79
CBAM-ResNet101 [166] 19.70% 4.75% 2.47 47.48
AW-CBAM-ResNet101 19.07% 4.61% 2.49 47.79

Table 7.5: Comparisons of attention-based Faster R-CNN on COCO.

Backbone Detector mAP@[0.5, 0.95] mAP@0.5 mAP@0.75
ResNet101-FPN [194] Faster R-CNN 37.13(+0.00%) 58.28 40.29
ResNet101-AW-FPN Faster R-CNN 37.76(+0.63%) 59.17 40.91
ResNet101-SE-FPN [175] Faster R-CNN 38.11(+0.98%) 59.41 41.33
ResNet101-AW-SE-FPN Faster R-CNN 38.45(+1.32%) 59.70 41.86
ResNet101-CBAM-FPN [166] Faster R-CNN 37.74(+0.61%) 58.84 40.77
ResNet101-AW-CBAM-FPN Faster R-CNN 38.19(+1.06%) 59.52 41.43

RESOURCE-CONSTRAINED ARCHITECTURE

Driven by demand for mobile applications, many depthwise convolution-based models are
developed to take care of the trade-off between accuracy and efficiency. To inspect the
generalization of our proposed attention module in this resource-constrained scenario, we
conduct the ImageNet classification [191] with the MobileNet architecture [153]. Since
our proposed attention module is efficient in terms of both the storage and computational
complexity, integrating it into the light-weight architecture is worth exploring. We apply
our proposed attention module to pointwise convolution instead of depthwise convolution
in every two depthwise separable convolutions. When integrating with the CBAM models
[166], we remove the max-pooled features and keep spatial attention maps. As shown in
Table 7.2, AW-SE-MobileNet and AW-CBAM-MobileNet achieve 0.56% and 0.19% Top-1
accuracy improvements compared with SE-MobileNet [175] and CBAM-MobileNet, re-
spectively. It is an impressive result that the Top-1 accuracy of AW-CBAM-MobileNet is
2.57% better than that of the MobileNet baseline. For the MobileNet model, our proposed
attention module increases the computation by 0.041 GFLOPs, while SE and CBAM mod-
ules need 0.012 and 0.041 GFLOPs, respectively. Also, the required parameters for our
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Table 7.6: Comparisons of attention-based SSD300 and SSDLite300 on VOC2007 test.

Backbone Detector mAP@0.5 GFLOPs Parameters
VGG16 SSD300 [158] 77.40 35.20 26.29
VGG16 AW-SSD300 77.77 35.21 26.75
VGG16 SE-SSD300 [175] 77.70 35.20 26.51
VGG16 AW-SE-SSD300 78.25 35.21 26.97
VGG16 CBAM-SSD300 [166] 78.18 35.21 26.51
VGG16 AW-CBAM-SSD300 78.10 35.22 26.97
MobileNet SSDLite300 [25] 68.71 0.800 3.39
MobileNet AW-SSDLite300 69.09 0.812 4.00
MobileNet SE-SSDLite300 [175] 68.85 0.803 3.69
MobileNet CBAM-SSDLite300 [166] 68.40 0.809 3.69
MobileNet AW-SE-SSDLite300 69.49 0.815 4.30

proposed attention module are 0.45 M, which is much less than 0.84 M for SE and CBAM
modules.

7.4.4. CIFAR-100 IMAGE CLASSIFICATION

We perform experiments of the CIFAR-100, which is a standard benchmark for low-
resolution images classification. According to the results shown in Table 7.3, we conclude
that our proposed attention module can boost the CIFAR-100 [190] accuracy of both the
ResNet50 baseline model [22] and their attentional activations-based models with negli-
gible additional computational complexity. AW-ResNet50 achieves a 2.46% Top-1 error
reduction compared with the ResNet50 baseline. Integrating with our proposed attention
module, SE-ResNet50 [175] and CBAM-ResNet50 [166] can increase Top-1 accuracy by
1.43% and 1.52%, respectively. In terms of the computational complexity, our proposed
attention module requires 0.01 GFLOPs, which is acceptable compared with 0.01 GFLOPs
for the SE module, 0.02 GFLOPs for the CBAM module, and 1.22 GFLOPs for the baseline
model. Besides, we only introduce 0.16 M parameters for our proposed attention module,
which is less than 2.53 M parameters for the SE and CBAM modules.

Generalized to Networks with various depths. We train ResNet with various depths
on CIRAR-100 image classification to show that our proposed attention module works for
CNNs with different depths. As shown in Table 7.4, AW-ResNet18 achieves the highest
Top-1 accuracy, scoring 1.04% better than the ResNet18 baseline. Integrating with our
proposed attention module, the Top-1 accuracy of SE-ResNet18 improves further by 0.26%.
Regarding deeper networks, the Top-1 accuracy of ResNet101, SE-ResNet101, and CBAM-
ResNet101 increase by 0.43%, 0.15%, and 0.63%, respectively when applying our proposed
attention module on top of them. Besides, our proposed attention module needs negligible
parameters when there are bottlenecks in deeper networks. The number of added parameters
for AW-ResNet101 is 0.31 M while it becomes 4.78 M for SE-ResNet101.
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7.4.5. OBJECT DETECTION ON COCO
To show the generalization of our proposed attention module, we apply it to object detec-
tion tasks. We evaluate our proposed attention module further on the COCO dataset [193],
which contains 118K images (i.e., train2017) for training and 5K images (i.e., val2017) for
validating. We use Faster R-CNN [159] as the detection method with the ResNet101-FPN
backbone [194]. Here we intend to evaluate the benefits of applying our proposed attention
module on the ResNet101-FPN backbone [194], where all the lateral and output convolu-
tions of the FPN adopt our AW-convolution. The SE and CBAM modules are placed right
before the lateral and output convolutions. As shown in Table 7.5, applying our proposed at-
tention module on ResNet101-FPN boosts mAP@[0.5, 0.95] by 0.63 for the Faster R-CNN
baseline. Integrating with attentional activations-based models, Faster R-CNNs with the
backbones of ResNet101-AW-SE-FPN and ResNet101-AW-CBAM-FPN outperform Faster
R-CNNs with the backbones of ResNet101-SE-FPN and ResNet101-CBAM-FPN by 0.34
and 0.45 on COCO’s standard metric AP.

7.4.6. GENERALIZED TO OBJECT DETECTION ON VOC2007 TEST

To show the generalization of our proposed attention module, we apply it to object detection
tasks. We train SSD300 [158] model with the backbone of VGG16 [161] and SSDLite300
[25] model with the backbone of MobileNet on the training union dataset of VOC2007
trainval and VOC2012 trainval (i.e., 07+12), and evaluate on the testing dataset of VOC2007
test [192].

Since improving the performance of the backbone can typically lead to improvements
in more sophisticated computer vision tasks, we apply our proposed attention module to
the detector instead of the base networks here. In SE-SSD300/CBAM-SSD300 models, we
follow the same design in [166] and plug SE/CBAM modules exactly before every classifier.
While in AW-SSD300 model, we replace the traditional convolution of every classifier as
our proposed AW-convolution, where rC1 = 1 and rC2 =C2.

According to the results shown in Table 7.6, our proposed attention module shows a
good generalization when it comes to object detection tasks. Using VGG16 as the base net-
work, AW-SSD300 achieves 0.37 mAP accuracy improvement compared with the SSD300
baseline and increases acceptable computational complexity by 0.01 GFLOPs and 0.46 M
parameters. Integrating our proposed attention module, the performance of SE-SSD300
improves by 0.55 mAP further, which is 0.07 mAP better than that of CBAM-SSD300.
Similarly, AW-SSDLite300, with the backbone of MobileNet, increases the performance of
the SSDLite300 baseline by 0.38 mAP. The accuracy of AW-SE-SSDLite300 is 0.64 mAP
better than that of SE-SSDLite300.

7.5. CONCLUSION
In this chapter, We analyze the two ignored problems in attentional activations-based mod-
els: the approximation problem and the insufficient capacity problem of the attention maps.
To address the two problems together, we propose an attention module by developing
the AW-convolution, where the shape of the attention maps matches that of the weights
rather than the activations, and integrate it with attention-based models as a complementary
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method to enlarge their attentional capability. We have implemented extensive experiments
to demonstrate the effectiveness of our proposed attention module, both on image classifi-
cation and object detection tasks. Our proposed attention module alone shows noticeable
accuracy improvement compared with baseline models. More importantly, integrating our
proposed module with previous attention-based models, such as AA-Net [174], SE-Net
[175], and CBAM-Net [166], will further boost their performance.





8
RECONSTRUCTION FOR

DATA-FREE COMPRESSION

The previous chapters are the algorithms to improve the inference efficiency of CNNs. In
this chapter, our work is towards a new problem of missing the original training dataset
when improving the inference efficiency of CNNs.

Data-free compression raises a new challenge because the original training dataset for a
pre-trained model to be compressed is not available due to privacy or transmission issues.
Thus, a common approach is to compute a reconstructed training dataset before compres-
sion. The current reconstruction methods compute the reconstructed training dataset with
a generator by exploiting information from the pre-trained model. However, current recon-
struction methods focus on extracting more information from the pre-trained model but do
not leverage network engineering. This work is the first to consider network engineering as
an approach to design the reconstruction method. Specifically, we propose the AutoReCon
method, which is a neural architecture search-based reconstruction method. In the pro-
posed AutoReCon method, the generator architecture is designed automatically given the
pre-trained model for reconstruction. Experimental results show that using generators dis-
covered by AutoRecon method always improve the performance of data-free compression.

The content of this chapter is based on [195].
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8.1. INTRODUCTION

To be deployed on resources-constrained hardware for real-time applications, the effi-
ciency of deep convolutional neural networks has been improved significantly by various
model compression techniques [21, 75, 196, 197]. Without altering the model architec-
ture, quantized neural networks [21] use a low bit width representation instead of full-
precision floating-point, saving expensive multiplications. Pruning [196] is an approach to
remove the weights or neurons based on certain criteria. In terms of efficient neural net-
work architectures, the MobileNet [75], ShuffleNet, and ESPNet [77] series make use of
depthwise-separable convolution, grouped convolution with shuffle operation, and efficient
spatial pyramid. The knowledge distillation paradigm [197] transfers the information from
a pre-trained teacher network to a portable student network.

Data-free compression [94, 198] has been an active research area when the original train-
ing dataset for the given pre-trained model is unavailable because of privacy or storage con-
cerns. Given the pre-trained model to be compressed, it is an essential step to reconstruct
the original training dataset by inverting representation. For example, accuracy degrada-
tion of ultra-low precision quantized models [199–201] is unacceptable without fine-tuning
on the reconstructed training dataset. The reconstruction method computes a reconstructed
training dataset by leveraging some extra metadata [202] or by extracting some prior infor-
mation [203] from the pre-trained model. Instead of computing the reconstructed training
dataset directly [94, 202, 204], recent reconstruction methods [198, 200, 203, 205–207]
employ a generator to generate a reconstructed training dataset in an end-to-end manner
and show better performance for data-free compression.

The quality of the reconstruction closely relates to the extracted information from the
pre-trained model. When more information is exploited from the pre-trained model, data-
free compression achieves better performance. Thus, the current reconstruction methods
[198, 200, 203, 204, 206, 207] focus on exploiting as much prior information as possible
from the pre-trained model. However, how the network engineering will contribute to the
reconstruction method remains unknown. Thus, we consider network engineering of the re-
construction method for the first time in the literature. This work aims to seek an optimized
generator architecture, with which data-free compression shows performance improvement.
It is worth mentioning that network engineering of the reconstruction and exploiting more
prior information from the pre-trained model are complementary rather than contradictory.
Both are important and should be explored for improving data-free compression. The con-
tribution of this chapter is summarized as follows.

• To our best knowledge, we are the first work to consider network engineering of the
reconstruction method.

• We propose the AutoReCon method, which is a neural architecture search-based re-
construction method to optimize generator architecture for reconstruction.

• Using the discovered generator, diverse experiments are conducted to demonstrate
the effectiveness of the AutoReCon method for data-free compression.
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8.2. RELATED WORK
In this section, we review the current work on neural architecture search and data-free
compression.

8.2.1. NEURAL ARCHITECTURE SEARCH

Neural architecture search has attracted a lot of attention since it can automatically search
for an optimized architecture for a certain task and achieve remarkable performance [60, 78,
83, 208]. The optimization algorithms of neural architecture search include reinforcement
learning [78], evolutionary algorithm, random search [209], and gradient-based algorithm
[83]. There is a lot of work towards reducing the computational resources required by
searching, including weight sharing [78], progressive search, one-short mechanism [83],
and using a proxy task. The performance of the discovered architecture by neural archi-
tecture search has surpassed human-designed architecture in many computer vision tasks,
including classification [83], detection [210], and image generation [208].

8.2.2. DATA-FREE MODEL COMPRESSION

Data-free compression covers data-free quantization and data-free knowledge distillation.
Without a generator, the reconstructed training dataset is computed directly in [94, 201,
202, 204]. [202] present a method for data-free knowledge distillation, where the recon-
structed training dataset is computed based on some extra recorded activations statistics
from the pre-trained model. In data-free knowledge distillation [204], the class similarities
are computed from the pre-trained model and the output space is modeled via Dirichlet
Sampling. [94] calculates the reconstructed training dataset to match the statistics of the
batch normalization layers of the pre-trained model and introduces the Pareto frontier to
enable mixed-precision quantization. [201] improves data-free quantization by equalizing
the weight ranges and correcting the biased quantization error.

The performance of data-free compression can be improved by employing a generator
for the reconstruction [198, 200, 203, 205–207]. [198] proposes a framework for data-
free knowledge distillation by exploiting generative adversarial networks, where the re-
constructed training dataset derivated from the generator is expected to lead to maximum
response on the discriminator of the pre-trained model. The KEGNET [206] framework
use the generator and decoder networks to estimate the conditional distribution of the origi-
nal training dataset for data-free knowledge distillation. In data-free knowledge distillation
[207], an adversarial generator is used to produce and search for the reconstructed train-
ing dataset on which the student poorly match the teacher. In this chapter, we improve on
the work of [200], which proposes a knowledge matching generator to produce a recon-
structed training dataset by exploiting classification boundary knowledge and distribution
information from the pre-trained model.

8.3. AUTORECON METHOD FOR DATA-FREE COMPRESSION
In this section, we define the reconstruction method for data-free compression. Then, we
introduce our proposed AutoReCon method, a neural architecture search-based reconstruc-
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Figure 8.1: The comparison between the current reconstruction method and the AutoReCon
method for data-free compression. The goal of every subfigure is to update the
models in gray color, given the pre-trained and fixed models in white color. a) an
overview of the current reconstruction method to update the generator by min-
imizing the reconstruction loss Lr , where the generator has a human-designed
architecture. b) an overview of the current reconstruction for data-free com-
pression to update the compressed model by minimizing the compression loss
Lc , after the generator with the human-designed architecture has been trained in
subfigure a). c) an overview of the AutoReCon method to update the generator
by minimizing Lr , where there is a super net for the generator. d) an overview
of the AutoReCon method for data-free compression to update the compressed
model by minimizing Lc , after the generator with a discovered architecture has
been trained in subfigure c).

tion method, and present its search space and search algorithm. Also, the training process
of the AutoReCon method for data-free compression is described.

8.3.1. DEFINITION OF RECONSTRUCTION METHOD

The pre-trained model Mp is obtained by training on the original training dataset To ={
xo , yo

}
. Given the pre-trained model Mp , we compute the reconstructed training dataset

Tr =
{

xr , yr
}

with the reconstruction method Φ, i.e., Tr =Φ(Mp ).
Considering the reconstruction method with a generator as shown in Figure 8.1a), the pre-

trained model Mp is fixed while the weights of the generator are updated by minimizing the
reconstruction loss Lr . The prior information extracted from the pre-trained model Mp by
the current methods is mainly the class boundary information and distribution information.
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Figure 8.2: The macro-architecture for the generator. The macro-architecture is a directed
acyclic graph consisting of an ordered sequence of nodes. For example, the
rectangle with the tag "B1-N1" represents the 1st node of the 1st convolutional
block. "B1-N5(B2-N1)" indicates the 5th node of the 1st convolutional block is
the same as the 1st node of the 2nd convolutional block.

If more prior information can be extracted from the pre-trained model, the reconstruction
method can be easily adjusted by incorporating more loss terms to the reconstruction loss.
Current reconstruction method Φ can be expressed as follows.

min
Wg

Lr (Wg ) = min
Wg

Eyo∼Pyo (yo ),z∼Pz (z)

[Lcl ass (Mp (Mg (z|yo);Wg ), yo)+Lbns (B Nr ,B No)]
(8.1)

where z and Wg are the random noise input vector and weights of the generator, and
Lcl ass (·, ·) is the cross-entropy loss function. Lbns (·, ·) measures the distribution distance
between the batch normalization statistics of the original training dataset B No and the batch
normalization statistics of the reconstructed training dataset B Nr .

8.3.2. AUTORECON METHOD

As shown in Figure 8.1a) and c), we present an overview of current reconstruction and the
AutoReCon method. The current reconstruction method includes a pre-trained model Mp

and a generator Mg with a human-designed architecture. In the AutoReCon method, we
aim to search for a superior generator architecture automatically for reconstruction.

Regarding the reconstruction task, our training objection function is written as follows,
where both weights Wg and architecture Ag of the generator can be updated by minimizing
the reconstruction loss.

min
Ag

Lval
r (Ag ,W ∗

g (Ag ))

s.t . W ∗
g (Ag ) = argmin

Wg

Ltrain
r (Ag ,Wg )

(8.2)

where Ltrain
r and Lval

r refer to the reconstruction loss function on the reconstructed train-
ing dataset and the reconstructed validation dataset, respectively. W ∗

g (Ag ) are the optimal
weights of the generator given the generator architecture Ag . Ag ∈ S and S is the whole
search space of the generator.
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Algorithm 4 The AutoReConmethod for data-free compression
Input: Pre-trained model Mp .
Output: Discovered generator Mg , compressed model Mc .

Stage 1: Searching for generator architecture.
1: for epoch = 1 to L1 do
2: for batch = 1 to T1 do
3: Obtain random noise z ∼ N (0,1) and label yo .

Generate reconstructed training dataset Tr with stochastic super net Ms .
Update weights of stochastic super net by minimizing reconstruction loss Lr .

4: end for
5: for batch = 1 to V1 do
6: Obtain random noise z ∼ N (0,1) and label yo .

Generate reconstructed validation dataset Vr with stochastic super net Ms .
Update architecture parameters of stochastic super net by minimizing reconstruction loss Lr .

7: end for
8: end for

Stage 2: Compression with discovered generator.
9: for epoch = 1 to L2 do

10: for batch = 1 to T2 do
11: Obtain random noise z ∼ N (0,1) and label yo .

Generate reconstructed training dataset Tr with the discovered generator Mg .
Update weights of compressed model Mc by minimizing compression loss Lc .

12: end for
13: end for

The search space: We construct a layer-wise search space with a fixed macro-
architecture for the generator. The macro-architecture defines the type of the edge, the
number of edges, the node connection, and the input/output dimension of each node. The
macro-architecture is shown in Figure 8.2, where there are three convolutional blocks and
five nodes in every convolutional block. We denote the generator as Mg (e1, ...,ei , ...,eE ),
where ei represents the i th edge and E is the number of edges. The nodes refer to the feature
maps and we calculate them as the summation of the outputs of their previous connected
edges. There are three types of edges: normal-edge, up-edge, and cross-edge. Normal-edge
connects two nodes with the same dimension. Up-edge is used to increase the spatial res-
olution. Normal-edge and Up-edge are within a convolutional block. Cross-edge connects
two adjacent convolutional blocks.

To construct a layer-wise search space for the generator, we set each edge as a mixture of
candidate operations, which has several parallel operations instead of one specific operation.
Thus, the over-parameterized generator is expressed as Mg (e1 =C1, ...,ei =Ci , ...,eE =CE )
and Ci is the mixture of candidate operations for the edge ei . As shown in Table 8.1,
different types of edges use different mixtures of candidate operations. Taking the edge Ci

as an example, we compute its output by summing the outputs of the mixture of candidate
operations as follows.

X i
out =Ci (X i

i n) =
F∑

j=1
Oi

j (X i
i n) (8.3)
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Table 8.1: For different types of edges, there are different mixtures of candidate operations.

Edge type Mixture of candidate operations

Normal-edge

Convolution 1 × 1, dilation=1
Convolution 3 × 3, dilation=1
Convolution 5 × 5, dilation=1
Convolution 3 × 3, dilation=2
Convolution 5 × 5, dilation=2
Identity
None

Up-edge
Nearest Neighbor Interpolation
Bilinear Interpolation

Cross-edge
Nearest Neighbor Interpolation
Bilinear Interpolation
None

where X i
i n and X i

out are the input and output of the i th edge. Oi
j denotes the j th candidate

operation of the i th edge and j = 1, ...,F . F is the number of candidate operations for an
edge.

The search algorithm: The search algorithm represents the search space as a stochastic
super net Ms . In the stochastic super net Ms , Oi

j is associated with an architecture parameter
αi

j . To derive a generator Ag from the stochastic super net Ms , the candidate operation Oi
j

is sampled with the probability p i
j , which is computed as follows.

p i
j (Oi

j ;αi ) = softmax(αi ) =
exp(αi

j )∑F
j=1 exp(αi

j )
(8.4)

Since sampling from the mixture of candidate operations for each edge is independent, the
probability of sampling a generator architecture Ag can be described as follows.

P (Ag ;αg ) =
E∏

i=1
p i

j (Oi
j ;αi ) (8.5)

In this case, we can approximate the problem of finding an optimized discrete generator
architecture by finding optimized sampling probabilities. The training objective function of
the AutoReCon method is re-written from Equation 8.2 as follows.

min
ag

Eag ∼Pag (ag )[L
val
r (ag ,W ∗

g (ag ))]

s.t . W ∗
g (ag ) = argmin

Wg

Ltrain
r (ag ,Wg )

(8.6)
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To make the reconstruction loss differentiable to the sampling probabilities, we compute
continuous variables mi

j by the Gumbel Softmax function as an alternative as follows.

mi
j =GumbelSoftmax(p i ) =

exp
[

(p i
j + g i

j )/τ
]

∑F
j=1 exp

[
(p i

j + g i
j )/τ

] (8.7)

where g i
j is the noise sampled from the Gumbel distribution (0,1) and τ is a temperature

parameter to control the sampling operation. Then, the continuous variables mi
j are directly

differentiable with respect to the sampling probabilities. Thus, the computation of the edge
Ci in Equation 8.3 can be expressed as follows.

X i
out =Ci (X i

i n) =
F∑

j=1
mi

j Oi
j (X i

i n) (8.8)

8.3.3. TRAINING PROCESS
Using the AutoReCon method, the training process for data-free compression is illustrated
as shown in Algorithm 4. The first stage of the training process is to search for genera-
tor architecture with our AutoReCon method, as shown in Figure 8.1c). The goal of the
first stage is to seek an optimized generator architecture from the stochastic super net. The
second stage of the training process is to compress the pre-trained model Mp with the dis-
covered generator Mg . The compression loss Lc can be introduced from quantization and/or
knowledge distillation. Compared with the current reconstruction methods, our AutoReCon
method considers network engineering and search for an optimized generator architecture
for reconstruction.

8.4. EXPERIMENTS
In this section, we run data-free compression experiments on image classification tasks.

8.4.1. IMPLEMENTATION DETAILS
Our interest is to show the performance improvement of data-free compression, which is
brought by the AutoReCon method. We adopt the GDFQ data-free compression method
[200] as a baseline for the following three reasons. First, it exploits both class boundary
information and distribution information from the pre-trained model Mp , compared to other
methods that use only one type of information [94, 198, 204, 206]. Second, it includes both
data-free quantization and data-free knowledge distillation, where knowledge distillation is
applied for the output layer (i.e., knowledge distillation is not applied for the intermedi-
ate layers). Third, it achieves state-of-the-art performance. We use the same experimental
settings as the GDFQ method to observe the influence of the generator architecture. In
the GDFQ method, the human-designed generator architecture for both CIFAR-100 and
ImageNet classification follows ACGAN. Besides, the human-designed generator for Im-
ageNet classification adopts the categorical conditional batch normalization layer to fuse
label information following SN-GAN.
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Table 8.2: Experimental results of data-free compression on CIFAR-100 and ImageNet
classification. w4a4 means that the weights and activations are quantized to
4-bit precision. Both our data-free compression method and the GDFQ adopt
knowledge distillation for the output layer. In each block, the first row presents
the accuracy of the full-precision pre-trained model on CIFAR-100. The second
row shows the accuracy of the full-precision pre-trained model on ImageNet. In
Top-1 colomn, (a/b) represents (CIFAR-100/ImageNet).

Method Pre-trained model Generator Quantization Top-1
- ResNet18 - - 78.83%/-
- ResNet18 - - -/71.47%
GDFQ ResNet18 Human-designed w6a6 78.00%/70.10%
GDFQ ResNet18 Human-designed w5a5 75.93%/68.38%
GDFQ ResNet18 Human-designed w4a4 60.23%/60.70%
GDFQ ResNet18 Human-designed w3a3 28.71%/20.69%
Ours ResNet18 In AutoReCon w6a6 78.52%/70.61%
Ours ResNet18 In AutoReCon w5a5 77.22%/68.88%
Ours ResNet18 In AutoReCon w4a4 71.02%/61.32%
Ours ResNet18 In AutoReCon w3a3 46.44%/23.37%
- MobileNetV2 - - 70.72%/-
- MobileNetV2 - - -/73.03%
GDFQ MobileNetV2 Human-designed w6a6 69.59%/71.18%
GDFQ MobileNetV2 Human-designed w5a5 65.27%/67.81%
GDFQ MobileNetV2 Human-designed w4a4 53.91%/59.80%
GDFQ MobileNetV2 Human-designed w3a3 8.50%/2.31%
Ours MobileNetV2 In AutoReCon w6a6 70.57%/71.53%
Ours MobileNetV2 In AutoReCon w5a5 67.95%/68.40%
Ours MobileNetV2 In AutoReCon w4a4 58.42%/60.13%
Ours MobileNetV2 In AutoReCon w3a3 10.21%/14.30%
- ResNet50 - - 79.36%/-
- ResNet50 - - -/77.72%
GDFQ ResNet50 Human-designed w6a6 78.79%/76.40%
GDFQ ResNet50 Human-designed w5a5 76.17%/70.79%
GDFQ ResNet50 Human-designed w4a4 61.44%/55.94%
GDFQ ResNet50 Human-designed w3a3 26.51%/1.20%
Ours ResNet50 In AutoReCon w6a6 79.12%/76.76%
Ours ResNet50 In AutoReCon w5a5 77.06%/74.13%
Ours ResNet50 In AutoReCon w4a4 68.20%/64.37%
Ours ResNet50 In AutoReCon w3a3 36.17%/1.63%

8.4.2. RESULTS ON IMAGE CLASSIFICATION

Results on CIFAR-100 classification: As shown in Table 8.2, we report the experimen-
tal results of data-free compression on the CIFAR-100 classification dataset. Using vari-
ous pre-trained models and low-bit width quantization, our data-free compression with an
optimized generator architecture achieves better accuracy than the GDFQ method with a
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Table 8.3: Experimental results of data-free compression on CIFAR-100 classification. The
GDFQ method uses a human-designed generator. Our data-free compression
uses the generator discovered by the AutoRe method.

Method Scale Top-1 Top-5
GDFQ s = 4 64.87% 86.76%
GDFQ s = 3 65.04% 86.93%
GDFQ s = 2 65.22% 87.19%
GDFQ s = 1 65.27% 87.30%
GDFQ s = 0.5 63.72% 86.21%
Ours s = 4 68.78%(+3.91%) 88.62%
Ours s = 3 68.09%(+3.05%) 89.01%
Ours s = 2 67.95%(+2.73%) 88.76%
Ours s = 1 67.58%(+2.31%) 88.42%
Ours s = 0.5 66.30%(+2.58%) 88.09%

Table 8.4: Experimental results of data-free compression on CIFAR-100 classification. The
first row is the accuracy of the pre-trained teacher model.

Method Generator Top-1
- - 77.50%
DAFL Human-designed 61.40%
DFAD Human-designed 67.70%
Ours Discovered by AutoReCon 69.98%(+2.28%)

human-designed generator. Using ResNet18 as the pre-trained model and 3-bit width quan-
tization, the Top-1 accuracy of the GDFQ method will improve by 17.73% if the human-
designed generator is replaced with the generator discovered by the AutoReCon method.
Using MobileNetV2 and 5-bit width quantization, the Top-1 accuracy of our data-free com-
pression shows an improvement of 4.51% compared with the GDFQ method. The Top-1
accuracy improvement becomes 9.66% using ResNet50 as the pre-trained model and 4-bit
width quantization.

Results on ImageNet classification: As shown in Table 8.2, we report the experimen-
tal results of data-free compression on the ImageNet classification dataset. Replacing the
human-designed generator with the generator discovered by our AutoReCon method, the
accuracy of the GDFQ method increases consistently using different pre-trained models and
low-bit width quantization. Using ResNet18 as the pre-trained model and 3-bit width quan-
tization, the Top-1 accuracy of the GDFQ method can increase by 2.68% when using the
generator discovered by the AutoReCon method. The Top-1 accuracy of the GDFQ method
increases by 11.99% using MobileNetV2 as the pre-trained model, 3-bit width quantization,
and the generator discovered by the AutoReCon method. Using ResNet50 as the pre-trained
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Table 8.5: Comparison of different data-free compression methods on ImageNet classifica-
tion. w4a4 means that the weights and activations are quantized to 4-bit preci-
sion. The first row of each block is the accuracy of the full-precision pre-trained
model.

Method Pre-trained model Quantization Top-1
- ResNet18 - 71.47%
DFQ ResNet18 w4a4 0.10%
ZeroQ ResNet18 w4a4 26.04%
DFC ResNet18 w4a4 55.49%
GDFQ ResNet18 w4a4 60.70%
Ours ResNet18 w4a4 61.60%
- MobileNetV2 - 73.03%
DFQ MobileNetV2 w4a4 0.11%
ZeroQ MobileNetV2 w4a4 3.31%
GDFQ MobileNetV2 w4a4 59.80%
Ours MobileNetV2 w4a4 60.02%
- ResNet50 - 77.72%
ZeroQ ResNet50 w4a4 0.12%
GDFQ ResNet50 w4a4 55.94%
Ours ResNet50 w4a4 57.49%

model and 5-bit width quantization, the Top-1 accuracy of our data-free compression with
an optimized generator surpasses the GDFQ method by 8.43%.

8.4.3. ABLATION STUDY

Scalability of discovered generator architectures: We explore the scalability of the dis-
covered generator architecture for data-free compression on the CIFAR-100 classification
dataset. We scale the base channels by a factor from s = 0.5 to s = 4 for the discovered
generator and the human-designed generator. The data-free compression results using Mo-
bileNetV2 as the pre-trained model, 5-bit width quantization, and knowledge distillation
applied for the output layer are shown in Table 8.3. Without modifying the optimized gen-
erator architecture, the performance of our data-free compression keeps increasing and is
always better than the GDFQ method when scaling the base channels by the factor from
s = 0.5 to 4.0. The accuracy of the GDFQ method decreases when we scale the base chan-
nels for the human-designed generator. Thus, we conclude that our searched generator ar-
chitecture has superior scalability compared to the human-designed generator for data-free
compression.

Generalization of AutoReCon method: Except for the GDFQ method, we use the
GFAD[205] method as a baseline to show the generalization of our AutoReCon method.
The generation loss in the GFAD method is replaced with the reconstruction loss of Equa-
tion 6, which enables the exploration of generator architecture. We use ResNet34 as the pre-
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Table 8.6: Experimental results of data-free compression on CIFAR-100 classification.
w4a4 means that the weights and activations are quantized to 4-bit precision.
The first row of each block is the accuracy of the full-precision pre-trained model.

Method Generator Quantization Top-1 Top-5
- - - 70.33% 91.46%
GDFQ Human-designed w8a8 70.19% 91.44%
GDFQ Human-designed w7a7 70.01% 91.20%
GDFQ Human-designed w6a6 68.98% 90.98%
GDFQ Human-designed w5a5 67.40% 89.57%
GDFQ Human-designed w4a4 63.01% 86.70%
GDFQ Human-designed w3a3 42.62% 71.70%
GDFQ Human-designed w2a2 1.23% 5.66%
Ours Discovered by AutoReCon w8a8 70.20%(+0.01%) 91.39%
Ours Discovered by AutoReCon w7a7 70.02%(+0.01%) 91.18%
Ours Discovered by AutoReCon w6a6 69.71%(+0.73%) 91.01%
Ours Discovered by AutoReCon w5a5 68.75%(+1.35%) 90.19%
Ours Discovered by AutoReCon w4a4 63.60%(+0.59%) 87.25%
Ours Discovered by AutoReCon w3a3 48.66%(+6.04%) 76.74%
Ours Discovered by AutoReCon w2a2 1.43%(+0.20%) 6.06%

trained teacher model and ResNet18 as the student model. The experimental results of data-
free knowledge distillation on CIFAR-100 is shown in Table 8.4. With a human-designed
generator, the GFAD method achieves better accuracy than the DAFL[198] method. The
Top-1 accuracy of our data-free knowledge distillation with a discovered generator is 2.28%
better than the baseline of the GFAD method with a human-designed generator.

Impact of different bit width quantiztion: As shown in Table 8.6, we report the accu-
racy improvement of our data-free compression method compared to the GDFQ method
[200] using ResNet20 as the pre-trained model, knowledge distillation applied for the out-
put layer and different low-bit width quantization. We are interested in the impact of dif-
ferent low-bit width quantization on the accuracy improvement of our method. From 2-bit
width to 8-bit width quantization, our data-free compression method is consistently better
than the GDFQ method in terms of accuracy since the AutoReCon method searched for an
optimized generator for the reconstruction. Using 8-bit width and 7-bit width quantization,
the accuracy improvement of our method is negligible since there is a small accuracy drop
introduced by quantization. Besides, the accuracy improvement of our method is small
using 2-bit width quantization because of the large quantization error. Thus, our method
shows the largest Top-1 accuracy improvement of 6.04% using 3-bit width quantization
compared with the GDFQ method.

8.4.4. COMPUTATION COMPLEXITY OF GENERATOR
The goal of the AutoReCon method is not to reduce the computational complexity of the
generator. However, we report the comparison of the human-designed generator and the
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Table 8.7: The computational complexity of different generators.

Generator Pre-trained model Parameters Flops
Human-designed generator - 40.36Mbit 3.83×109

Discovered by AutoReCon ResNet18 40.17Mbit 3.63×109

Discovered by AutoReCon MobileNetV2 40.25Mbit 1.43×109

Discovered by AutoReCon ResNet50 40.28Mbit 2.76×109

discovered generators as shown in Table 8.7. The generators are used for data-free com-
pression on the ImageNet classification dataset. With different pre-trained models, the
human-designed generator has the same architecture. There is a specific discovered gener-
ator architecture for a pre-trained model. In terms of model size, our discovered generator
requires similar parameters compared with the human-designed generator. The number of
Flops to compute our discovered generator is smaller compared with the human-designed
generator. For example, the discovered generator for the pre-trained model of MobileNetV2
needs 2.40×109 Flops less compared with the human-designed generator.

8.4.5. COMPARISON WITH STATE-OF-THE-ART METHODS
On the ImageNet classification dataset, we present the results of additional data-free com-
pression methods as shown in Table 8.5. The comparison is mainly for data-free quanti-
zation except that the GDFQ and our methods apply knowledge distillation on the output
layer. None of the compared methods apply knowledge distillation on the intermediate lay-
ers. The results of DFQ [201] and ZeroQ [94] are cited from the GDFQ paper and have a
rather low accuracy for ultra-low precision data-free quantization. The DFC [211] method
achieves a moderate accuracy with a combination of BN-Statistics and Inception schemes.
Our method achieves better accuracy compared to the GDFQ method since the AutoReCon
method discovers an optimized generator architecture for reconstruction.

8.5. CONCLUSION
In this chapter, we present the AutoReCon method, which is the first work to consider net-
work engineering of the reconstruction method to improve the performance of data-free
compression. In particular, our AutoReCon method can search for an optimized genera-
tor architecture from a stochastic super net with gradient-based neural architecture search
for reconstruction. When we plug our discovered generator to replace the human-designed
generator, our data-free compression benefits from the optimization of the generator ar-
chitecture and achieves better accuracy. Specifically, using ResNet50 as the pre-trained
model and 5-bit width quantization, the Top-1 accuracy of our data-free compression on
ImageNet with an optimized generator surpasses the GDFQ method by 8.43%. The Top-1
accuracy of the DFAD method on CIFAR-100 increases by 2.28% using ResNet34 as the
pre-trained teacher model, ResNet18 as the student model, and the generator discovered by
the AutoReCon method.





9
CONCLUSION AND FUTURE

DIRECTIONS

This chapter summarizes the overall achievements of this thesis and highlights some future
research directions. Section 9.1 provides the main conclusions of this thesis. Then, Section
9.2 discusses some future research directions.
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9.1. CONCLUSIONS
Throughout this thesis, we have developed solutions to the research questions formulated in
1.3. In this section, we mainly reiterate the research questions and summarize the answers
as follows.

Chapter 1 briefly introduced computing Deep Neural Networks (DNNs) on lightweight
devices and the research focus of this thesis. It first described the motivation of this thesis.
Then, it highlighted the opportunities and challenges facing efficient inference in convolu-
tional neural networks (CNNs). This thesis focused on addressing the challenges in algo-
rithms for efficient inference in CNNs. Afterward, it formulated the research questions and
the corresponding contributions to answer these questions.

How to accelerate integer CNNs? This question belongs to acceleration and quantiza-
tion. Chapter 2 proposed Diminished-1 Fermat Number Transform to accelerate integer
CNNs. The computational complexity analysis showed that the proposed algorithm re-
quires fewer multiplications and additions to compute integer convolution than the direct
method. Also, the implemented results revealed that the acceleration algorithm is faster
and has better parallelism than the direct method. When computing integer convolution
with typical parameter configurations, the DFNT achieves a speedup of 2-3x compared to
the direct method. Besides, the accuracy of the proposed acceleration algorithm is the same
as the direct method since there is no round-off error introduced.

How to improve multiple binary CNNs? This question belongs to quantization.
Chapter 3 described the piecewise approximation scheme for multiple binary CNNs. The
proposed scheme achieves the best accuracy among current single and multiple binary
CNNs. The proposed scheme is applied on full-precision CNNs with various architec-
tures and evaluated on classification and detection tasks to show the generalization. With
the proposed binarization scheme, the Top-1 and Top-5 accuracy drop of ResNet with vari-
ous depths on ImageNet can be reduced to approximately 1.0%. Computational complexity
analysis exhibited that the latency of the proposed scheme is almost the same as that of the
single binary. The memory usage and FLOPs of the proposed scheme required are less than
those needed for current multiple binary CNNs.

How to design neural network architectures automatically for binary CNNs? This
question belongs to quantization and efficient neural network architecture design.
Chapter 4 presented the NASB strategy for binary CNNs. The search space of the NASB
strategy is a combination between a human-designed backbone and a NAS-convolutional
cell. The NASB strategy discovered optimized neural network architectures, which are suit-
able for binarization. Based on the conducted experimental results, the discovered neural
network architectures from the NASB strategy achieve a better trade-off between accuracy
and efficiency than current single and multiple binary CNNs. Without a significant over-
head increase, the Top-1 accuracy of the binary CNNs searched from the NASB strategy is
4.0% and 1.0% better than existing single and multiple binary CNNs, respectively.
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How to design neural network architectures manually for binary CNNs? This question
belongs to quantization and efficient neural network architecture design. Chapter 5
introduced unified effective depth reduction (EDR) techniques for binary CNNs. The limi-
tation of relying solely on enhancing the shortcut EDR technique is identified. The chapter
then introduces the shortcut and fractal architecture EDR techniques to develop unified
models. With similar computational complexity, the Top-1 accuracy of the developed UA-
ResNet37(41) and UA-DenseNet51(53) on ImageNet surpasses Bi-Real ResNet18(64) and
BinaryDenseNet51(32) by 3.29% and 1.41%, respectively. Compared with Bi-Real ResNet
and BinaryDenseNet, the quality of gradient paths in the unified models improved, and the
accuracy of unified models on the classification datasets increased.

How to reduce feature reuse within the convolution for full-precision CNNs? This
question belongs to efficient neural network architecture design. Chapter 6 described
the REAF scheme for full-precision CNNs. Under the same computational budget con-
straint, the proposed scheme on classification datasets achieved better accuracy than stan-
dard convolution and group convolution. The proposed scheme with various configurations
is better than standard convolution. Under the given computational complexity budget, the
Top-1 accuracy of REAF-ResNet50 and REAF+-MobileNetV2 on ImageNet will improve
by 0.37% and 0.69% respectively. Compared with standard convolution, feature reuse re-
duction is observed from the class selectivity analysis in the proposed scheme and group
convolution.

How to improve the attention module for full-precision CNNs? This question belongs
to efficient neural network architecture design. Chapter 7 presented an attention mod-
ule for full-precision CNNs. The architecture of calculating the attention maps is refined
to reduce the computational complexity. Integrated with the proposed attention module,
the models without attention mechanisms achieve better accuracy on classification and de-
tection tasks. The accuracy of the attention-based models boosts further by plugging the
proposed attention module. The proposed attention module is demonstrated as a comple-
mentary method to current attention-based models. Integrating with the proposed attention
module, the previous attentional activations-based models can further improve their Top-1
accuracy on ImageNet classification by 0.57% and COCO-style Average Precision on the
COCO object detection by 0.45.

How to improve the reconstruction method for data-free compression? This question
belongs to quantization, knowledge distillation, and efficient neural network architec-
ture design. Chapter 8 described the AutoReCon method. The proposed method lever-
ages the neural network architecture for the current reconstruction method. The proposed
method consists of a stochastic super net and a gradient-based algorithm. Plugging the
discovered generator from the proposed method, the data-free quantization and knowledge
distillation on classification datasets achieve better accuracy. In particular, the Top-1 ac-
curacy of our data-free compression on ImageNet with a discovered generator outperforms
the GDFQ method by 8.43% when using ResNet50 as the pre-trained model and 5-bit width
quantization.
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9.2. FUTURE RESEARCH DIRECTIONS
In this thesis, we have developed various algorithms for efficient inference of CNNs. In
Chapter 2, using DFNT to accelerate ICNNs is expected to implement DFNT on customized
hardware platforms to demonstrate the speedup further. Considering the trade-off between
accuracy and efficiency, Chapter 5 is of better practical value than Chapter 4 and Chapter
3. In addition, the efficiency in Chapter 5 can be improved further by exploring differ-
ent architecture configurations of our proposed architectures. To investigate more efficient
convolutions, the feature reuse in Chapter 6 and the attention mechanism in Chapter 7 can
be improved further by quantitative analysis, where the reused features and the attention
capacity are quantified. For Chapter 8, our proposed method is expected to be extended to
detection and segmentation to show generalization.

In addition, there are still lots of other topics that need to be explored to improve the
efficiency of DNNs. We list the potential research topics as follows.

Training DNNs on the edge: Computing DNNs in the centralized cloud faces the two
main challenges of high data communication cost and privacy concerns. More importantly,
training with the new data continuously on the edge is important since DNNs need to adapt
to a specific domain. The inference of DNNs on the edge is well-explored from Chapter 2
to Chapter 7 in this thesis, but training DNNs on the edge still needs to be investigated. In
particular, the algorithms and hardware for efficient training in DNNs need to be developed.
The algorithm and hardware for efficient training are more complex than those for efficient
inference since the training process has two extra steps compared to the inference process.

Computer vision tasks beyond classification: We develop algorithms and hardware for
efficient computation in CNNs for a classification task. Then, the developed algorithms and
hardware without much modification are evaluated on detection and segmentation tasks,
such as Chapter 3 and Chapter 7. However, the detection and segmentation tasks require
more fine-grained information than the classification task. Thus, we suggest that there
should be specific algorithms and hardware for efficient computation in CNNs for the com-
puter vision tasks beyond the classification task. Taking efficient neural network architec-
ture design as an example, the neural network architecture of CNNs for the classification
task should be different from that for the detection task or the segmentation task.

Rotation or scaling equivariance: The efficiency of CNNs can be further improved by
designing neural network architecture to have more transformation equivariance. Current
CNNs have the translation equivariance since the convolution operation adopts weight shar-
ing. However, current CNNs have to memorize all the training samples with rotation or
scaling augmentation, which requires redundant weights and is inefficient. The neural net-
work architecture of currently used CNNs needs to be redesigned to enable the property of
rotation or scaling equivariance and to improve efficiency.
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