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1 

 Chapter 1. 
 
Introduction 

 

Abstract 
Congestion is a major issue in traffic systems around the globe, with high economical, societal, 
and health-related costs incurred. Mitigating congestion is a difficult issue. Counterintuitively, 
building more roads might not lead to a congestion reduction. This is because, as more road 
area becomes available and congestion reduces, more people might choose to take up their car 
as a primary mode of transportation, again increasing congestion. 
This chapter describes another solution to the problem: reducing congestion through a change 
in human behaviour. First the costs and previously attempted congestion reduction strategies 
will be discussed, followed by an overview of how congestion might arise through moving 
bottlenecks. Finally, lane-specific control as a possible solution to the congestion problem is 
discussed. 
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1.1 Introduction 
Around the globe, traffic jams are a source of stress and irritation (Hennessy & Wiesenthal, 
1999) to drivers. 2019 saw a 17% increase of congestion on Dutch roads1 compared to 2018, 
when it rose 20% compared to the year before. Congestion reduced by 63% during the 2020 
COVID-19 pandemic2. Although it remains an open question how the post-pandemic situation 
will develop, it is at least conceivable that congestion levels will again increase. It cost the 
Dutch transport sector roughly €1.5 bln in 2019 alone (Economische Wegwijzer 2020). 
 
Aside from being expensive, congestion increases accident rates, which in turn raise the costs, 
both human and financial, of congestion further. There exists a U-shaped relation between 
accident rates and the traffic volume-to-capacity ratio (Zhou & Sisiopiku, 1997), where both 
low and high traffic volume to capacity ratios lead to increased accident rates. Low volume 
traffic offers a monotonous driving environment, which potentially contributes to fatigue or 
distraction, or allows for more opportunities to speed causing run-off-road accidents, thereby 
increasing accident rates. Furthermore, increases in speed variability lead to an increase in 
accidents (Quddus, 2013), and especially at the tail end of congestion there are large differences 
in speed. 
 
Lastly, besides cost and increased accident rates, congestion asserts a cost on human health as 
well. Lower speeds increase vehicle emissions. For example, Requia et al. (2018) link increased 
particular matter emissions due to congested traffic to 206 yearly deaths in the Toronto and 
Hamilton area in Canada alone. Worldwide, particulate matter pollution has been linked to 
roughly 4.2 million yearly premature deaths (Forouzanfar et al., 2016). Congestion related 
increases in emissions of CO2 (Barth & Boriboonsomsin, 2008) needlessly exacerbate already 
critical climate issues related to carbon dioxide concentrations warming the planet, as well as 
NOx emissions from even the latest euro-6 engines (Ko et al., 2019). Clearly, ways to reduce 
congestion need to be found not just to alleviate driver irritation and economic damage, but to 
protect the health of ourselves as well as that of our planet. 
 
This dissertation is not about the need for more asphalt, nor about the need to reduce mobility, 
rather it explores how to persuade drivers to use the already existing roads more effectively 
through lane-specific advice, thereby alleviating congestion on (Dutch) multi-lane motorways. 
The present chapter describes the context of the work developed in this thesis. The next sections 
will outline examples of efforts taken and planned to reduce congestion (1.1), how congestion 
may arise (1.2), how inefficient lane use creates problems (1.3), and how lane-specific control 
might reduce the problem (1.4). 

1.2 Efforts to Solve Congestion 
Congestion has long been a part of the worldwide traffic system despite considerable research 
and efforts to mitigate it, which indicates the complexity of the challenge. In the Netherlands 
and abroad subtantial work has gone into expanding infrastructure, yet unfortunately congestion 
keeps growing year on year. 
 

 
1 https://www.anwb.nl/verkeer/nieuws/nederland/2019/december/knelpunten-2019 
 
2 https://www.anwb.nl/verkeer/nieuws/nederland/2020/december/thuiswerken-leidt-tot-63-
procent-minder-files-in-2020 
 

https://www.anwb.nl/verkeer/nieuws/nederland/2019/december/knelpunten-2019
https://www.anwb.nl/verkeer/nieuws/nederland/2020/december/thuiswerken-leidt-tot-63-procent-minder-files-in-2020
https://www.anwb.nl/verkeer/nieuws/nederland/2020/december/thuiswerken-leidt-tot-63-procent-minder-files-in-2020
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Is this surprising? It turns out that reducing congestion is not simply a matter of expanding the 
road network or adding more lanes to existing roads. In a study published in 2011, Duranton, 
& Turner (2011) analysed two decades of traffic data (1983 - 2003). They showed that the 
number of vehicle kilometres travelled increases proportionally with the number of road 
kilometres available. In other words: building more road kilometres does not lead to less 
congestion. This is explained by a latent travel demand. When roads get congested frequently, 
a modal shift might happen for parts of the population: those who can, will choose to commute 
by bike, public transport, travel at another time of day, or choose to change their working 
location. The same is true for the transportation industry: congestion-related delays are 
expensive, and as congestion frequency increases, other modes of transport become more cost-
effective and attractive.  
 
When the available kilometres of road are expanded, the latent demand will manifest as more 
people switch travel modes, and congestion will not be reduced substantially. To repeat: 
building more roads invites more traffic onto them, not necessarily leading to a reduction in 
congestion rates. This has been dubbed the ‘fundamental law of road congestion’. Although the 
law was formulated based on US data, it has been found to hold in European contexts as well 
with an elasticity of between 0.7 and 1.0 (Garcia-Lopez, Pasidis, & Viladecans-Marsal, 2017). 
This does not mean governments should stop investing in roads. A well connected and 
maintained road network is crucial, but the focus should not be only on building more roads, 
but more on other means of reducing congestion and through this reducing the negative impacts 
of congestion. 
 
One such initiative to reduce congestion was the ‘Spitsmijden’ project (‘avoiding rush hour 
travel’ in English) (Meurs et al., 2015). It rewards drivers financially for travelling outside of 
rush hours. This relies on extrinsic motivation to change behaviour: rather than wanting to 
change the behaviour themselves (intrinsic motivation), compensation is offered to those who 
change their behaviour. The ‘spitsmijden’ project reported relapses after rewards stopped, but 
the relapses were only partial. These relapses were to be expected, as for example it is known 
from research that offering extrinsic rewards as motivation will only lead to short-term 
behavioural change, and can actually undermine intrinsic motivation (Deci, Koestner, & Ryan, 
1999). The project reported how low-effort behavioural changes like changing route, travelling 
at a different time of day, or working from home, showed a high rate of relapsing to old 
behaviours once the rewards stopped. Interestingly, behaviours that required substantial effort 
from participants, such as changing mode to bike, e-bike, or public transit, showed much lower 
relapse rates. Encouraging participants to put in effort themselves is a clever way of exploiting 
the sunk cost effect (Arkes & Blumer, 1985), an effect whereby there is a greater tendency to 
continue with a behaviour if an investment of time, effort, or money has already been made. 
The ‘spitsmijden’ project is part of the larger ‘optimising use’ initiative (‘beter benutten’ in 
Dutch), which concluded in 2018 and showed overall positive results on encouraging modal 
shifts, improving travel time and reducing emissions (Programma Beter Benutten Vervolg | 
Eindrapportage, 2018). It turns out reducing congestion through other means than expanding 
infrastructure can be effective, too. 
 
Further progress can likely be made by replacing the current fixed-rate vehicle tax in the 
Netherlands with a kilometre-based tax. This may help reduce the number of car kilometres by 
as much as 25% (Ubbels, Rietveld, & Peeters, 2002) as well as reduce emissions from cars by 
up to 70%, by stimulating the move to cleaner cars and different modes of transit. After initial 
support from the government (Besseling, Geurs, Hilbers, Lebouille, & Thissen, 2008), the 
political will for the plan unfortunately evaporated completely in 2016. 
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Before discussing how to reduce congestion through other means, the next section first explains 
how a particular type of congestion can arise, and how the occurrence of these types of 
congestion can be reduced. 

1.3 ‘Ghosts in the Machine’, or Something Else? 
Congestion usually occurs at a bottleneck, and ‘spookfiles’ (‘phantom traffic jams’) are a 
special type of bottleneck: when traffic density increases, headway decreases as vehicles start 
travelling closer together. At that point any small disturbance, such as a mild braking action by 
a single car, may trigger the car behind it to brake stronger (Calvert, Van Den Broek, & Van 
Noort, 2011; Van Den Broek, Netten, Hoedemaeker, & Ploeg, 2010), followed by the next car 
braking stronger still. This causes shockwaves in the traffic stream, causing a fluctuation of 
alternating braking and accelerating traffic. These shockwaves propagate upstream over the 
road at a speed of approximately 18 km/h (Lu & Skabardonis, 2007), often snowballing along 
the way to the point of causing congestion. Small disturbances might be absorbed by the traffic 
system without leading to congestion (Schakel, Arem, & Netten, 2010), but the risk of 
shockwaves causing a breakdown in traffic flow increases as traffic density increases 
(Sugiyamal et al., 2008). It is estimated that about 20% of Dutch traffic jams are ‘spookfiles’ 
(Suijs, Wismans, Krol, & Van Berkum, 2015).  
 
Human behaviour contributes to phantom traffic jams in several ways. Aside from braking 
actions, lane changes can create disturbances in traffic flow, as well as reduce capacity because 
a vehicle briefly occupies two lanes (Coifman, Mishalani, Wang, & Krishnamurthy, 2006). 
Often, drivers choose to change lanes under the assumption that another lane is travelling faster, 
an assumption that may be more illusion than reality (Redelmeier & Tibshirani, 1999). These 
lane changes can induce braking actions by other vehicles in the adjacent lane (Ahn & Cassidy, 
2007), initiating a shockwave that can, again, cause a breakdown in traffic flow resulting in 
congestion (Banks, 2002) that seemingly appears out of nothing. 

1.4 Inefficient Lane Usage Driving Congestion 
As traffic density on a road segment increases, the distribution of traffic over available lanes 
changes with it. For example, Knoop et al. found that the lane distribution of vehicles 
significantly changes with speed (Knoop, Duret, Buisson, & Van Arem, 2010). Under normal 
100km/h conditions, the outside lane (right-most lane) is underutilised because many drivers 
choose to drive on the other (faster) lanes. This creates an apparent paradox: there is sufficient 
road capacity available, but nonetheless congestion occurs frequently.  
 
The problem is that, although the road still has spare capacity available, the left lane is already 
at capacity and may become unstable. Shockwaves can now form that eventually cripple flow 
on all lanes through minor braking actions or lane changes as discussed in the previous section, 
especially when a lane is at or near capacity. Once congestion sets in and a small traffic queue 
forms the problem worsens immediately: the total capacity of the road drops between 6% (Hall 
& Agyemang-Duah, 1991) and 25% (Yuan, Knoop, & Hoogendoorn, 2014). The location of 
capacity drop now acts as a moving bottleneck and the congested area rapidly grows. This 
occurs because the queue discharge rate is lower than the capacity of the bottleneck area. In 
other words: there are more vehicles entering the congested section than there are exiting, 
leading to a growing traffic jam. Several reasons are a cause of this, and include increased time 
headways (Treiber & Helbing, 2003), increased lane change behaviour under congested 
conditions (Laval & Daganzo, 2006), and drivers not accelerating out of the queue efficiently 
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(Schakel & Van Arem, 2014). As the queue grows upstream past other potential bottlenecks 
such as off-ramps, traffic that would not normally pass the moving bottleneck becomes included 
in the congestion as well, further compounding the growth of the congested section. The key to 
preventing the occurrence of these phantom traffic jams while the road is not yet at capacity, 
then, is to somehow make sure all available lanes are utilized properly. 

1.5 Reducing Congestion Through Lane-Specific Control 
Lane specific control may offer a solution to the described shockwave congestion (Yao, Knoop, 
& van Arem, 2017). Lane specific control means directing single vehicles to specific lanes, 
which allows for fine-grained control of the traffic state. By proactively distributing traffic over 
the available road space, the road area is better utilised and the ability of dense traffic to absorb 
arising shockwaves can be improved, leading to a reduction in congestion. Several challenges 
need to be solved to allow for lane specific control. 
 
First, to control vehicles on a lane-level requires real-time information of the specific on which 
each vehicle is currently traveling. This is an issue because standard GPS has an accuracy error 
which is worse than the lane width, making lane-level positioning impossible. High accuracy 
GPS systems are available but have significant disadvantages. Differential GPS relies for 
example on a (non-existent) dense network of beacons to allow for precise positioning, and 
dual-frequency GPS receivers are prohibitively expensive. Recently, advances in single-
frequency precise point positioning (SF-PPP) algorithms have been proposed that mitigate 
many of the issues, allow for both a quick time to get a location fix, and use low-cost hardware 
(Knoop, De Bakker, Tiberius, & Van Arem, 2017). It allows for fast lane-level positioning even 
in situations where there may be no clear view of the full sky (de Bakker & Tiberius, 2017). 
 
Second, traffic states need to be predicted in advance based on a lane-level. Traffic data in the 
Netherlands comes from loop detectors. These provide information on traffic counts at specific 
points along the road. Going from this data to a prediction of traffic state is another research 
area in the project (Subraveti, Knoop, & Van Arem, 2018, 2020; Yao et al., 2017), based on 
methods developed earlier (Schakel & Van Arem, 2014). 
 
Finally, any lane-specific direction or advice will have to be followed by a driver, who has their 
own goals and probably wants to get to a destination as fast as possible. The lane-specific advice 
given will not necessarily be in the benefit of this driver. An optimal usage of available lanes 
will mean some drivers will be asked to move to a slower lane than they might prefer to drive 
on. This will be in the benefit of the traffic flow on the road segment as a whole, not necessarily 
in the benefit of the individual, and so getting drivers to follow these requests could prove to be 
difficult. This is the main research goal of this thesis as will be outlined in the next chapter. 
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Chapter 2. 
 
Research Overview 

Abstract 
Lane-specific control is proposed as a solution to congestion, as described in the previous 
chapter. In order for lanes-specific control to work, the cooperation from the human driver in 
control of the vehicle is required. To elicit this cooperation, we can try using persuasive 
approached to persuade the driver to follow directions from the lane-specific control system. 
This chapter introduces the problem statement of the thesis, which centers around getting a 
driver to follow an advice that is in the benefit of all drivers, but not necessarily themselves. 
For the road segment as a whole to experience less congestion, some individual drivers will 
need to make small sacrifices such as staying in a slower lane. This thesis is about how to 
communicate with the driver in such a way that compliance to such a lane-specific advice is 
maximized. 
The contributions of this thesis -both scientific and practical- are outlined in this chapter, 
followed by a reading ouline for the rest of the dissertation.  
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2.1 Problem Statement and State of the Art 
As discussed in the previous chapter congestion can arise even though enough capacity remains 
on a road segment. In denser traffic the right lane remains underutilised as more drivers choose 
to drive on the left-most lane, creating a situation where although road capacity remains on the 
other lanes, the left-most lane might already be near or at capacity and become unstable. Minor 
events like braking actions or lane changes can create a breakdown in the traffic flow which 
then spreads across lanes, leading to the onset of congestion. 
 
A potential solution is lane-specific control: by redistributing traffic more efficiently across the 
available lanes, the available road area can be better utilised and congestion could be avoided. 
Precise and affordable GPS solutions (SF-PPP) are available that enable lane-specific control 
on a technical level through lane-specific advices presented to drivers. 
 
The challenge that needs to be solved is getting drivers to follow directions or an advice that 
may not be in their immediate benefit. Although advices ultimately aim to reduce congestion 
and thus are in the collective benefit of all drivers on a road segment, an advice may require a 
single driver to move temporarily to a slower lane. This might be an undesirable action from 
their point of view. 
 
To convince drivers of the benefits of following lane specific advice, this thesis will develop a 
persuasive lane-specific advice system with the aim of reducing congestion. What is needed is 
a way to maximise the persuasive effectiveness of the system, while ensuring the safety of road 
users. The latter is of particular importance, since advices will need to be given in nearly 
congested traffic conditions, when driver workload is likely to be high. This section will 
describe the problem statement and go into the state of the art of both persuasive technology as 
well as requirements to predict driver workload. 

2.1.1 Problem Statement: Winning the Congestion Game 
An unbalanced distribution, an upcoming on-ramp or lane drop, or an incident upstream may 
require a redistribution of traffic to ensure continued flow and avoid congestion. Because the 
lane-specific advice system focuses on optimising the traffic flow of a road segment, the 
generated advices will be in the collective benefit of drivers on the specific stretch of the road 
in terms of minimising the total travel time. This means the advices might not be in the benefit 
of individual drivers receiving the advice (e.g. ‘stay behind this slow truck for now’), creating 
a potential problem of drivers not wanting to follow these messages (Risto & Martens, 2012).  
 
The problem is compounded by where congestion forms relative to the driver that causes it: if 
a driver brakes or changes lane and causes a shockwave that eventually leads to congestion, the 
traffic queue forms behind them. No delay is experienced by the driver and they will not be 
affected personally, and so most drivers are not even aware of the negative consequences of 
their behaviour. In a lane specific advice scenario, any given driver will only benefit from the 
behaviour of others ahead of them, and in turn their behaviour only affects traffic behind them. 
This is a key characteristic of the problem, and can be seen as a variant of the prisoner’s 
dilemma (Axelrod, 1980).  
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Figure 2.1 - Visualisation of the dilemma that a driver faces when following an advice: any other driver 
ahead (for example driver A.) disregarding an advice can cause congestion, effectively making the 
behaviour of drivers behind (for example driver B. ) irrelevant. 

 
The prisoner’s dilemma is an example of a cooperative game between two players. The setting 
is that both have participated in a crime and are being questioned in separate rooms. There are 
two moves are possible: cooperate with the other player by not telling the interrogator anything, 
or defecting by confessing both of your involvement in the crime to the interrogator, effectively 
betraying the other player in exchange for a reduction in punishment. The important part is the 
possible cooperation without knowledge of the other player’s actions: both players will gain 
something if both choose to cooperate. If both players defect nothing will be gained. However, 
if one of the players defects while the other does not, then the defecting player will gain more 
(a reduction in sentence) than if both players had cooperated. This means it is in the benefit of 
the individual player to defect if they want to maximise their gains, but there is the risk that if 
others do the same, nothing will be gained. 
 
Putting the lane-specific control scenario in terms of the prisoner’s dilemma: any driver can 
choose to cooperate (follow an advice) or defect (not follow an advice). Cooperating is in the 
collective benefit of all drivers on a road segment: if most drivers follow their advices, 
congestion can be avoided. It may also require a small sacrifice as some drivers are required to 
move to or stay in a slower lane. Defecting means choosing to take individual gains, such as 
staying on a faster lane, at the cost of the collective goal of avoiding congestion. As congestion 
can form behind a defecting driver, for any driver to choose to cooperate, this implies a certain 
level of trust that those drivers ahead will also follow their advice. After all, why would any 
driver invest effort in following an advice and move to a slower lane, if it may be for nothing 
because another driver ahead defects and causes congestion anyway?  Figure 2.1 displays a 
scenario where driver A defects, causing a shockwave that leads to congestion upstream and 
resulting in driver B getting stuck in traffic. 
 
This type of blind choice is key to the prisoner’s dilemma. Humans can employ various 
strategies to cope with the uncertainties in the dilemma. Research into human cooperative 
strategies in these situations has generally found ‘tit for tat’ reciprocity (‘I will help you, if you 
also help me’) to be the predominant strategy (Trivers, 1971). In this strategy potential 
freeloaders (i.e. those never following an advice and always defecting) will be punished: as 
people learn about the freeloader, less and less will choose to cooperate. Interestingly, humans 
are willing to enact this form of punishment even at cost to themselves (Milinski & Rockenbach, 
2008; Sigmund, 2007). In traffic the other person is anonymous, anyone can be a freeloader or 
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a co-operator. Care needs to be taken that congestion is not perceived as the failure to follow 
advices by other drivers, otherwise each time congestion is encountered, such a willingness to 
enact punishment may lead to less and less drivers following advices in a negative feedback 
loop (i.e. ‘nobody ever seems to follow their advices so why should I?’). Somehow, enough 
drivers need to be persuaded to follow advices so that congestion levels are meaningfully 
affected, and drivers can observe that other drivers follow the given advices, and that it indeed 
reduces congestion. 

2.1.2 Persuading the Driver to Cooperate 
Persuading drivers to follow advices requires influencing their behaviour. This can be done 
using persuasive technology (B.J. Fogg, 2003; Oinas-kukkonen, 2010). Persuasive methods can 
broadly be divided into: Gamification, Behavioural Economics, and Captology.  
 
Gamification is a relatively new method. Video games create an environment that motivates 
players to perform specific behaviours in order to reach a goal. Gamification is about lifting 
those game design elements and applying them outside of video games, in the hopes of creating 
persuasive situations outside of games that successfully influence behaviour. Examples of often 
used design elements are leader boards, achievements and challenges (Hamari, Koivisto, & 
Pakkanen, 2014; Hamari, Koivisto, & Sarsa, 2014). 
 
Behavioural economics seeks to ‘understand behaviour by incorporating insights from 
behavioural sciences into economics’ (Avineri et al., 2010). It turns out that humans are not 
rational when it comes to behaviour and decision making. Rather than rationality, we use a 
range of heuristics and display biases that act as shortcuts (Kahneman, 2003). Although this 
allows complex behaviour without processing all the details of each encountered situation, it is 
not universally the best approach and has been shown to lead to reasoning errors in many cases 
(Ayton & Fischer, 2004; Bornstein & Emler, 2000; Gino, Moore, & Bazerman, 2011; 
Kahneman, 2013; Samuelson & Zeckhauser, 1988). For example, framing something in terms 
of a loss instead of a gain works because the emotions attached to a loss typically weigh stronger 
in decision making compared to a gain (Avineri, 2011). The choice set offered also has an 
influence (Lee, Kiesler, & Forlizzi, 2011): pairing a choice with a less attractive alternative will 
increase the perceived value of the primary choice. Some evidence suggests these reasoning 
methods may be hardwired into the brain (Martino, Kumaran, Seymour, & Dolan, 2006). 
 
Captology (acronym: computers as persuasive technology) was introduced by Fogg (B.J. Fogg, 
1998), and centres around using technology to change behaviour (B.J. Fogg, 2003; Bj J Fogg, 
2009). The Fogg Behavioural Model (FBM) (B.J. Fogg, 2009) is prominent in the field of 
persuasion. It postulates that in order for a persuasive intervention to be successful, three factors 
need to converge: the person needs to be able to perform the behaviour (‘ability’), be motivated 
to perform the behaviour (‘motivation’), and finally a trigger should be present to elicit the 
behaviour. Targeting simple behaviours has a higher likelihood of success (Bj J Fogg, 2009). 
A thorough overview of persuasive methods and the way these are applied in this dissertation 
is given in chapter 3, which deals with my conceptual model and the theoretical foundations of 
the research. 

2.1.3 Being Fair About It: Persuasive Ethics 
Persuasive technology refers to technology that is designed to influence or change behaviour. 
More importantly, for persuasive technology to be considered persuasive it should be free of 
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coercion, deception, and manipulation (B.J. Fogg, 2003; Oinas-kukkonen, 2010; Smids, 2012). 
Smids (Smids, 2012) argues that the degree to which a persuasive technology leaves room for 
voluntary behaviour is an important consideration when deciding whether it is persuasive, 
coercive, or manipulative. An example he gives is that of the ‘fasten your seatbelt’ warning 
systems present in most modern cars. While the driver is still free not to fasten his seatbelt, the 
loud, persistent and highly irritating noise invariably leads to the driver fastening their seatbelt 
to stop the noise, regardless of behavioural intent. This is closer to coercion rather than 
persuasion: the threat of the persistent noise essentially forces the driver to perform a certain 
behaviour or else. This makes the example of the seat belt warning coercive rather than 
persuasive, as the alternative of not complying to the system’s goal is so undesirable that there 
is really no free choice. In the end whether this is undesirable and something to be avoided is 
application-specific. There is no question that seatbelts save lives, and by forcing people to 
wear them every time, save even more lives. 
 
Berdichevsky & Neuenschwander (1999) describe an ‘ethics of persuasive technology’. In the 
work they define principles of ethical persuasive design. The principles call for transparency in 
the persuasive attempt, strict privacy regulations for user data, and ethical considerations. For 
example, would the persuasion also be considered ethical if performed by a person rather than 
a machine? In that context, the fasten your seatbelt warning clearly becomes problematic: 
having a co-driver screaming repeatedly until the driver fastens their seatbelt would be 
considered rather unacceptable.  
 
The persuasive lane-specific advice system that is being studied aims to be persuasive in nature, 
not coercive or manipulative. This means that the goal of the advice should always be clear to 
drivers: reducing congestion. Any metrics communicated relating to the effects of driver 
behaviour, such as travel time saved or lost, need to be truthful. At all times the driver should 
be free to follow or not follow advice, and have control to switch the system off, should they 
so desire. 

2.1.4 When to Bother the Driver? Driver Workload Prediction 
The proposed lane-specific advices will be given under specific circumstances. Advices will 
not be necessary when little traffic is on the road, as sufficient room will be available on all 
lanes and traffic flow will not be affected. Once traffic becomes dense the lane distribution of 
vehicles changes and the risk for shockwaves and congestion increases. It is under these dense 
traffic conditions that an advice needs to be provided to the driver. Dense traffic conditions also 
increase the workload of the driver (de Waard, 1996). This offers a particular challenge, since 
there is the potential of raising driver workload and thereby creating unsafe situations. It needs 
to be determined when it is possible to communicate with the driver, and when it is better not 
to. 
 
The human capacity for information processing is limited and driving imposes certain demands 
that partly fill this capacity. This demand is quantified as driver workload (de Waard, 1996), 
which can be defined as “the level of attentional resources required to meet both objective and 
subjective performance criteria” (Stanton, Hedge, Brookhuis, Salas, & Hendrick, 2004). The 
workload arises from an interplay between the demands placed on the driver by the driving 
task, the complexity of the driving environment in, and the driver’s capacity to meet those 
demands (Fuller, 2005). Workload has been measured in both driving simulators and in real 
driving situations, usually using physiological measures and self-reported measurements. 
Although possible, it is not straightforward (Brookhuis & de Waard, 2010). Research to date 
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has produced mixed results, with different studies pointing to different variables as important 
for measuring driver workload (Matthews, Reinerman-Jones, Barber, & Abich, 2014; Mehler, 
Reimer, & Coughlin, 2012; Mehler, Reimer, & Wang, 2011). Among measures collected, heart 
rate is consistently measures and shown to be related to workload (Mehler et al., 2012; Reimer 
& Mehler, 2011; Wiberg, Nilsson, Lindén, Svanberg, & Poom, 2015). Recently, supervised 
learning approaches (i.e. machine learning) have provided indications that workload prediction 
is possible (Ferreira et al., 2014; Haapalainen, Kim, Forlizzi, & Dey, 2010; Liang, Reyes, & 
Lee, 2007; Rusnock, Borghetti, & McQuaid, 2015).  
 
To determine when it is safe to communicate with a driver, their workload needs to be predicted. 
Chapter 4 describes the development of a workload-predictor that can predict workload on a 
non-binary scale. Because accurate heart rate (variability) analysis software was lacking in the 
open source domain for PPG recordings, chapters 5 and 6 detail the development and validation 
of a heart rate analysis toolkit performed within the context of the research. 

2.2 Research Objectives and Research Questions 
The effectiveness of the lane-specific advice system to prevent or reduce congestion depends 
on the number of drivers following its advices. The objective of this research is to identify ways 
of persuading drivers to follow given directions or advices, effectively and safely. This led to 
the following main research question: 
 
How can we persuade a driver to follow a lane-specific advice without enforcing behaviour? 

 
Fundamental to persuading drivers to follow an advice is the transfer of information. We need 
to inform drivers of the reason for the advice, the goal of the advice, and possibly the results of 
their behaviour. This led us to subdivide the main research question into three sub-questions 
related to communication between the persuasive lane-specific advice system and the driver: 
 

Sub-question 1: 
How to communicate with the driver? Fundamental requirements for a persuasive system to 

be effective and safe. 
 

Sub-question 2: 
When to communicate with the driver? Timing messages to low workload periods is safer and 

more likely to persuade. 
 

Sub-question 3: 
What to communicate with the driver? Design of a persuasive HMI system. 

 
These three sub-questions will be answered in sequence in this dissertation. The next section 
will give an overview of the dissertation outline used to answer these questions. 
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2.3 Contributions 

2.3.1 Scientific Contributions 
A conceptual model to describe the use of persuasicve technology in driving contexts. The 
conceptual model consists of three interacting layers that describe effects of persuasive 
technology on drivers’ decisions and behaviour in driving contexts, based on existing literature. 
The model describes driver persuasion from a system level, information transfer level, and 
driver level, and can be used to guide persuasive in-car system design and research efforts. The 
model is applied to this thesis’ problem of giving drivers lane-specific advice to illustrate how 
it can be used. 
 
Driver workload prediction using off-the-shelf and non-intrusive sensing. This thesis presents 
a generic machine learning based approach to predict driver workload in real-time. The 
literature on workload prediction is divided at best with mixed results. By exploring data-driven 
approaches together with different workload-inducing circumstances, it is shown that workload 
prediction is possible for individual and group-based models, but that for predicting the 
workload of to the model unknown drivers, only extremes in workload could be predicted well.  
 
Development and validation of an open-source, noise-resistant heart rate analysis toolkit. The 
development of HeartPy, a toolkit aimed at analysing noisy photoplethysmogram (PPG) and 
electrocardiogram (ECG) data, is presented in this thesis. PPG data can be obtained 
nonintrusively at the wrist, earlobe, finger, or even to some extent contactless through video 
cameras, meaning the data can be collected unintrusively in scientific studies. This, combined 
with the increasing availability of low-cost sensors, enables research groups to conduct studies 
including heart rate data at very low cost. However, low-cost sensors often introduce extra noise 
in the signal, which complicates analysis. HeartPy was developed to handle the (sometimes 
noisy) PPG data collected in both the lab and real-world scenarios, and is available for use open 
source by researchers.  
 
Development and evaluation of a persuasive in-car system. Finally, this thesis develops and 
presents a persuasive in-car advice system. The conceptual model informs the focus of further 
research into driver workload, as well as how to implement persuasive messages and 
information transfer to the driver. Through an end-user driven process the system characteristics 
such as location of the message, preferred modality of the message, and preferred way of 
presenting the information to drivers are confirmed and refined. This is applied to a system 
design and experimentally evaluated in a driving simulator. By contrasting a gamified version, 
a socially cooperative version, and a control version, possible ways of effectively applying 
persuasion are identified. 

2.3.2 Practical Contributions 
A conceptual model to describe the use of persuasicve technology in driving contexts. For car 
manufacturers and in-car system designers, the developed conceptual framework provides 
insight into how design choices can affect driver behaviour and safety. Applying this framework 
early in the design process of a (persuasive) in-car advice system can lead to better system 
effectiveness and safety.  
 
  



16 Your Car Knows Best 

 

Driver workload prediction using off-the-shelf and non-intrusive sensing 
The presented research on driver workload prediction shows mainly that individualized and 
group-based models work well for workload prediction in driving settings, but that generalizing 
to unknown drivers was only successful for extremes in workload. This provides a good 
direction for practical application of data-driven workload prediction, depending on the 
application and what range needs to be predicted.  
 
Development and validation of an open-source, noise-resistant heart rate analysis toolkit. 
HeartPy is an algorithm developed to handle noisy, real-world PPG and ECG data collected by 
both medical-grade and low cost off-the-shelf sensors. HeartPy’s focus on accuracy makes and 
open source availability makes it suitable for use in both rapid prototyping as well as real-world 
projects requiring accurate heart rate analysis on the fly. 
 
Development and evaluation of a persuasive in-car system 
For policy makers, the study into driver persuasion using gamification or cooperation show 
ways of nudging drivers to change their behaviour for the betterment of everyone on the road 
system, even if the individual behaviours are not directly beneficial to the drivers themselves. 
The study showed that both using gamified and cooperative approaches lead to significantly 
higher rates of message compliance than simply asking a driver to do something. These 
approaches can potentially help to reduce not just congestion, but can help nudge drivers away 
from dangerous behaviours such as speeding or red light negation as well. 

2.4 Dissertation Outline 
The dissertation will discuss how to approach driver persuasion. It is divided into three main 
areas of contributions: how to communicate with the driver, when to communicate with the 
driver, and what to communicate to the driver. 
 
Chapter 3 discusses the theoretical foundations of the research. It details my theoretical 
framework for safe driver persuasion. The framework seeks to embed the persuasive lane-
specific advice system into literature on safety, (driver) behaviour, and persuasion. This section 
is about how to communicate with the driver, and will be based on the work: 
 
van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2019). A conceptual model for persuasive 
in-vehicle technology to influence tactical level driver behaviour. Transportation Research Part 
F: Traffic Psychology and Behaviour, 60, 202–216. https://doi.org/10.1016/j.trf.2018.10.004 
 
Chapters 4-6 discuss when to communicate to the driver. A workload estimator is developed 
that could be used to determine when the driver workload is at safe levels. An ideal moment of 
low workload could then be chosen to communicate with the driver safely, without risk of 
overloading them. Chapter 4 describes the development of this online workload estimator. 
 
Chapter 5 describes the development of an open-sourced heart rate analysis toolbox capable of 
analysing noiy PPG data from low-cost sensors. Chapter 6 details the analysis and validation 
of the developed toolbox. These chapters are based on the following works: 
 
van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2019). Analysing Noisy Driver 
Physiology Real-Time Using Off-the-Shelf Sensors: Heart Rate Analysis Software from the 
Taking the Fast Lane Project. Journal of Open Research Software, 7(1). 
https://doi.org/10.5334/jors.241 

https://doi.org/10.1016/j.trf.2018.10.004
https://doi.org/10.5334/jors.241
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van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2019). HeartPy: A novel heart rate 
algorithm for the analysis of noisy signals. Transportation Research Part F: Traffic Psychology 
and Behaviour, 66, 368–378. https://doi.org/10.1016/j.trf.2019.09.015 
 
van Gent, P., Melman, T., Farah, H., van Nes, N., & van Arem, B. (2018). Multi-Level Driver 
Workload Prediction Using Machine Learning and Off-The-Shelf Sensors. Transportation 
Research Record: Journal of the Transportation Research Board. 
https://doi.org/10.1177/0361198118790372 
 
Chapter 7 discusses what to communicate to the driver. Based on two questionnaire studies, a 
persuasive Human-Machine Interface (HMI), an avatar to encourage drivers, and a web-portal 
where drivers can view and monitor their performance are developed. Persuasive messages are 
then designed and evaluate the HMI in a driving simulator study. This section will be based on: 
 
Van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2020). The Persuasive Automobile: 
Design and Evaluation of a Persuasive Lane-Specific Advice Human Machine Interface. 
Manuscript submitted for review. 
 
Finally, in chapter 8 the main findings are summarized (8.1), followed by a discussion regarding 
the reasons for several methodological choices made in this thesis and their consequences (8.2), 
the main findings are then put in context in both science (8.3) and practice (8.4). The dissertation 
ends with recommendations for future research (8.5). 

2.5 Conclusion 
In conclusion, the main problem underlying this thesis is that congestion can arise on roads 
despite that the capacity of the road has not yet been reached. The emergence of this shockwave 
congestion is driven through inefficient lane usage. Lane-specific advices, where drivers are 
encouraged to change to or stay in a lane, can be employed to reduce the occurrence of 
shockwave congestion. The goal of this thesis is to contribute to the development of methods 
that can help reduce congestion through lane-specific advices given to individual drivers. 
 
  

https://doi.org/10.1016/j.trf.2019.09.015
https://doi.org/10.1177/0361198118790372
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Chapter 3. 
 
A Conceptual Model for Persuasive In-Vehicle 
Technology to Influence Tactical Level Driver 
Behaviour 

Abstract 
Persuasive in-vehicle systems aim to intuitively influence the attitudes and/or behaviour of a 
driver without forcing them. The challenge of using these systems in a driving setting is to 
maximise the persuasive effect without infringing upon the driver’s safety. 
This chapter proposes a conceptual model for driver persuasion targeting the tactical driving 
level (i.e. the driver manoeuvring level, such has lane-changing and car-following behaviour). 
The main focus of the conceptual model is to describe how to safely persuade a driver to change 
their behaviour, and how persuasive systems may affect driver behaviour. 
This chapter explores available driver behaviour models along with persuasive models and aims 
to integrate these into a framework for safe driver persuasion. The developed model is applied 
to a case study of a lane-specific advice system that aims to reduce travel time delay and traffic 
congestion, by advising some drivers to change lanes in order to achieve a better distribution of 
traffic over the motorway lanes. 
 
 
This chapter is based on an edited version of the following paper: 
van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2019). A conceptual model for persuasive 
in-vehicle technology to influence tactical level driver behaviour. Transportation Research 
Part F: Traffic Psychology and Behaviour, 60, 202–216. 
https://doi.org/10.1016/j.trf.2018.10.004  
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3.1 Introduction 

3.1.1 The Problem and Scope 
The way drivers interact with their vehicles is changing (Damiani, Deregibus, & Andreone, 
2009; Ulrich et al., 2013). Modern vehicles are more and more equipped with advanced driver 
assistance systems (ADAS) that can assist the driver, as well as in-vehicle information systems 
(IVIS) that provide the driver with traffic information or driving advice. Increases in 
IVIS/ADAS in-vehicle systems mean that the driving environment becomes more information 
rich, and more systems compete for the driver’s attention.  
 
One field of development within IVIS is that of persuasive systems. Persuasive systems employ 
techniques or incentives to change drivers’ voluntary attitudes or behaviours (Fogg, 2010). The 
implementation of such persuasive systems in the driving environment can for example help 
reduce speeding and improve driver engagement during monotonous driving (Steinberger, 
Proppe, Schroeter, & Alt, 2016). Persuasive systems have also been used to encourage drivers 
to adopt a more eco-friendly driving style (Ecker, Holzer, Broy, & Butz, 2011), or a safer 
driving style (Shi, Lee, Kurczak, & Lee, 2012).  
 
While persuasive systems can positively influence driver behaviour and increase safety, they 
might also introduce new risks (van Nes & Duivenvoorden, 2017). For example, the use of 
these systems can lead to indirect behavioural adaptations (unwanted and unplanned side-
effects) (Martens & Jenssen, 2012), such as the anti-lock braking system (ABS) which when 
implemented led drivers to maintain shorter headways (Sagberg, Fosser, & Sætermo, 1997). 
Additionally, increasing the number of in-vehicle systems can negatively influence traffic 
safety by overloading or distracting the driver at inappropriate times (Reyes & Lee, 2004; Mark 
S. Young, Brookhuis, Wickens, & Hancock, 2015).  
 
To our knowledge, a conceptual model tying driver persuasion to safety and behavioural 
outcomes has not been developed yet. In this study, we aim to fill this research gap by 
developing a conceptual model that describes the effects of in-vehicle persuasive systems on 
driver behaviour, with the goal of effectively and safely persuading the driver. We will focus 
specifically on IVIS systems aiming at persuading drivers to change their behaviour at the 
tactical level. Examples of such systems include lane-specific advice to improve traffic flow 
(Malte Risto & Martens, 2013; Schakel & Van Arem, 2014), and systems that encourage eco-
driving with the goal of reducing pollution (Ecker et al., 2011). 

3.1.2 Context of the Developed Framework 
The framework was developed in the context of a lane-specific advice system. The goal of this 
system is to reduce travel time delay and congestion by encouraging a better distribution of the 
vehicles over the available motorway lanes. This means advising drivers on which lane to take, 
depending on external factors. For instance, an unbalanced distribution, an upcoming on-ramp 
or lane drop, or an incident upstream may require a redistribution of traffic to ensure continued 
flow and avoid congestion. Because the system focuses on optimising traffic flow of a road 
segment, the generated advices will be in the collective benefit of drivers on the specific stretch 
of the road in terms of minimising the total travel time. This means the advices might not be in 
the benefit of individual drivers receiving the advice (e.g. ‘stay behind this slow truck for now’), 
creating a potential problem of drivers not complying with these messages (Malte Risto & 
Martens, 2012). We incorporated persuasive strategies into the framework to engage drivers 
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with the system and to also stimulate adherence to lane-specific advices, especially when they 
are not in the driver’s own benefit. The goal of the applied persuasive techniques, is to make 
the advices attractive enough and convince drivers to follow them. Various ways of 
accomplishing this are discussed in section 3. 
 
We apply the model to the design of our lane-specific advice system, as described in section 6 
of this paper. The developed model can be applied in a broader sense, for example to 
cooperative driving systems that require drivers to behave in a certain way (Lütteken, 
Zimmermann, & Bengler, 2016; M Risto, 2014), eco-driving systems (Ecker et al., 2011; 
Magana & Organero, 2011), or systems stimulating safer driving styles (Rodríguez et al., 2014; 
Steinberger et al., 2016).  
 
The proposed model is essentially a system-centric model, where a traffic system decides upon 
for example an ideal traffic distribution, or on which set of driving styles are ‘safe’, and 
subsequently stimulates the driver to conform to these types of behaviours. This is in line with 
persuasive technology, which aims to stimulate certain attitudinal or behavioural patterns over 
others (Fogg, 1998). 

3.1.3 Why Target Driver Behaviour at the Tactical Level? 
Driver behaviour is often divided into three levels: the strategic, tactical and control level 
(Evans & Michon, 1985). The strategic level considers high-level choices related to driver’s 
route choice behaviour, which is generally constant over longer periods of time. At the tactical 
level, drivers decide upon and perform manoeuvres (e.g. change lane, take exit, overtake car) 
considering the observable and anticipated part of the road network to reach their strategic 
goals. At the control level, the driver performs actions to operate the vehicle (e.g. change gears, 
press accelerator pedal, turn on blinker). 
 
Our conceptual model will focus on safely persuading driver behaviour at the tactical level. 
From a persuasive perspective, targeting short-term behavioural responses (e.g. adjusting 
speed, changing lane) increases the effectiveness of the persuasion (see for example Fogg, 
2009a; 2009b, Oinas-Kukkonen, 2013, section 3.2, 4.2). From a safety perspective, it is 
important to manage the demands placed on the driver. According to the Task-Capability 
Interface model (TCI) by Fuller (Fuller, 2005), driving demands that exceed driver capability 
might lead to risky situations such as loss of control or a collision. Persuasive effectiveness and 
safety need to be balanced: targeting tactical level behaviours such as changing lane, especially 
in demanding traffic conditions, does carry risk and requires careful implementation of in-car 
interfaces to not become distracting or affect driving adversely. Managing task demands is 
crucial and a key element in ensuring driver safety when applying persuasive approaches, or 
when communicating information to the driver. 
 
In order to keep task demands low, a persuasive system should focus on short term behavioural 
responses that are low effort. These low-effort behaviours can be identified through the 
behaviour taxonomy of Rasmussen (Rasmussen, 1983). The taxonomy divides driver behaviour 
into three levels: skill-based, rule-based, and knowledge-based. Skill-based behaviour is highly 
automatic and can be performed without much attentional demands. Tasks at the control level 
fall into this category, and for experienced drivers likely some highly automated behaviours at 
the tactical level as well in non-complex traffic conditions (e.g. lane changing, overtaking, 
merging). In rule-based behaviour, a response or a set of responses is selected based on earlier 
learned rules. Knowledge-based behaviour is applied in mostly unknown situations when novel 
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behavioural responses are needed. Required attentional demands and effort increase from skill-
based to rule-based to knowledge-based behaviour. Since behaviour at the tactical level 
(mostly) consists of skill-based and rule-based behaviours, changing these types of behaviours 
carries the least risk of imposing high demands on the driver (Birrel, Young, Staton, & Jennings, 
2017). Aside from the targeted behaviours, the context and complexity of the driving 
environment may influence the difficulty of the tactical level manoeuvres as well. An example 
of a low effort behavioural response is requesting a driver to reduce speed in response to 
downstream traffic disturbance (skill-based, control level). On the other hand, asking a driver 
to take a different route along a busy unknown road is likely to place higher demands on the 
driver, since the execution of a task at the strategic level (knowledge-based behaviour) also 
involves the tactical (rule-based), and operational level (skill-based) (Alexander & Lunenfeld, 
1986).  
 
We hypothesise that a trade-off exists between persuasive effectiveness and the described task 
complexity. As task complexity increases, persuasive effectiveness should decrease in theory, 
based on the work of Rasmussen (1983) and Fogg (2009b, section 3.1), and on research showing 
how a lower perceived ability to perform a target behaviour can lower the intention to perform 
the behaviour, as well as the likelihood of that behaviour (Elliott, Thomson, Robertson, 
Stephenson, & Wicks, 2013). The decision which behaviours to select depends on the driver 
workload, as under- or overloading the driver can create dangerous situations (M S Young, 
Brookhuis, Wickens, & Hancock, 2014). In combination with for example a driver monitoring 
system (Aghaei et al., 2016; van Gent, Melman, Farah, van Nes, & van Arem, 2018b), it 
becomes possible to monitor a driver’s state and make inferences about which advices a driver 
likely can or cannot safely handle. If at any point during the generation of the advice or the 
execution of the behaviour driver workload exceeds safe levels, the system might decide not to 
display the advice, retract it, or recommend termination of the execution of the advice. 
 
We first conduct a critical overview of available behavioural models and select the model most 
applicable to driver behaviour. We then describe driver behaviour at the tactical level and 
present the general requirements for an in-vehicle persuasive system. Following this, in section 
4, we investigate the different persuasive approaches used in the literature and discuss how 
these approaches fit into the driving environment. Finally, in section 5 we describe the proposed 
conceptual model and its relation to the current literature. As an example, we apply the 
conceptual model to the design of a persuasive lane-specific advice system currently in 
development. 

3.2 Describing Behaviour at the Tactical Level 
In order to develop our persuasive conceptual model, a behavioural model capable of describing 
the effects of persuasion on driver behaviour at the tactical level is needed. We have searched 
the literature for behavioural models that have been used in connection with behavioural 
change. The search engines used were Google Scholar, Scopus and Web of Science, with the 
keywords: “behaviour* model AND behaviour* change OR persuasi*”. We limited the results 
to papers of 2005 and newer. Backward snowballing was performed to find the original papers 
proposing the models. This led to the Social Learning Theory (SLT) (Bandura, 1971), Self-
Determination Theory (SDT) (Deci & Ryan, 1985), the Trans-Theoretical Model (Norcross, 
Krebs, & Prochaska, 2011), and the Theory of Planned Behaviour (TPB) (Ajzen, 1991). For 
each model, we reviewed their applicability to the driving task, ability to explain the relatively 
short-term changes in behavioural patterns resulting from persuasion at the tactical level, longer 
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term attitudes towards the use of the system, as well as the ability to accommodate the effects 
of persuasive efforts. 

3.2.1 Overview of Behavioural Models 
The Social Learning Theory (SLT), also known as Social Cognitive Theory, suggests that 
human behaviour emerges from a constant interaction between environmental, behavioural and 
cognitive influences (Bandura, 1971; Fluegge, 2016). It incorporates elements of operant 
conditioning to explain how behaviours are learned through social interactions with others 
(Watkins, 2016). SLT has been applied to a wide range of fields, including how unwanted 
behaviours may arise (criminal, drug misuse, smoking, traffic violations) and ways to induce a 
positive change (Hoeben & Weerman, 2016; Lochbuehler, Schuck, Otten, Ringlever, & 
Hiemstra, 2016; Watkins, 2016; Zaso et al., 2016), how public perception is formed and 
influenced (Fluegge, 2016) and students’ tendencies to procrastinate (Gadong & Chavez, 2016). 
The model is directed at describing how learning experiences are shaped by cognitive and social 
factors.  
 
The Self-Determination Theory (SDT) is often cited for its use of intrinsic and extrinsic 
motivation to explain behaviour (Deci & Ryan, 1985), but actually postulates three basic 
psychological needs that drive behaviour: autonomy (being in control of one’s decisions and 
behaviour), competence (feeling able to attain behavioural outcomes) and relatedness (feeling 
understood and respected by others) (Ridgway, Hickson, & Lind, 2016). This model has mostly 
been applied to behavioural change towards healthier behaviours in the health domain 
(Friederichs, Bolman, Oenema, Verboon, & Lechner, 2016; Lekes, Houlfort, Milyavskaya, 
Hope, & Koestner, 2016; Niven & Markland, 2015; Sebire et al., 2016; Staunton, Gellert, 
Knittle, & Sniehotta, 2015), to medical training (Hoffman, 2014), and to volunteering 
behaviours (Wu, Li, & Khoo, 2015). The SDT describes behavioural motivation at the macro 
level (Niven & Markland, 2015). 
 
The Trans Theoretical Model (TTM) describes behaviour as consisting of five stages: pre-
contemplation (not thinking about changing behaviour), contemplation (thinking about 
changing behaviour), preparation (making preparations for changing behaviour), action 
(changing behaviour) and maintenance (keeping changed behavioural patterns intact) (Norcross 
et al., 2011). The model originated as a fusion of models from several fields of therapy. Like 
the SDT, the TTM is a macro model of behaviour, describing high level behavioural processes 
(see for example Brick, Velicer, Redding, Rossi, & Prochaska, 2016; Kushnir, Godinho, 
Hodgins, Hendershot, & Cunningham, 2015; Prochaska et al., 1994; Yusufov et al., 2016).  
 
The Theory of Planned Behaviour (TPB), based on the Theory of Reasoned Action (Fishbein 
& Ajzen, 1975), posits that behaviour is directly predicted by ‘behavioural intention’ and 
‘perceived behavioural control’ (the perceived volitional control over the behaviour). 
‘Behavioural intention’ is predicted by ‘attitude towards behaviour’, ‘social norms regarding 
the behaviour’ as well as ‘perceived behavioural control’. The model is displayed in Figure 3.1. 
In the traffic domain, the TPB has been used to predict traffic violations (Castanier, Deroche, 
& Woodman, 2013), speeding behaviour (Elliott, Armitage, & Baughan, 2005), evaluating 
engagement in distracting secondary tasks (Chen, Donmez, Hoekstra-atwood, & Marulanda, 
2016), and aggressive driving (Efrat & Shoham, 2013). It has also been used successfully in 
experiments with the goal of behavioural change (Chorlton & Conner, 2012). It describes how 
situational constraints and long-term attitudes can influence behaviour. 
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3.2.2 Representing Persuasive Effects on Tactical Driver Behaviour 
We have selected the TPB as a behavioural basis for the conceptual model. This is because this 
theory can explain both short-term behaviour at the tactical level in the driving setting, as well 
as the long-term social and attitudinal factors acting on behavioural patterns, which might be 
relevant when explaining variables like continued system usage. The other reviewed models 
were either geared more towards changing long-term behavioural patterns (SLT, SDT), 
describing behaviour at a macro level (SDT, TTM), or describing (changing) behaviour in 
clinical settings (SDT, TTM). The TPB also plays a central role in models of technology 
acceptance and trust, such as the 
Technology Acceptance Model (TAM) 
(F. D. . Davis et al., 1989; F. D. Davis, 
1986) and the UTAUT (Venkatesh, 
Morris, Davis, & Davis, 2003; 
Vlassenroot, Brookhuis, Marchau, & 
Witlox, 2010), which adds usefulness 
in the context of persuasive systems 
that need to be trusted and accepted 
before they can have an effect. In this 
study, we will utilise the TPB (Figure 
3.1) as a behavioural basis for the 
conceptual model. 
 
In more detail, the TPB posits that behaviour is directly predicted by two factors: ‘Behavioural 
Intention’ (BI) and ‘Perceived Behavioural Control’ (PBC). PBC reflects the degree to which 
the individual perceives to have volitional control over its own behaviour. In other words, 
whether the individual believes they are able to successfully perform the target behaviour. PBC 
directly influences behaviour as well as the intention to perform a behaviour. In some studies, 
PBC has been split into self-efficacy (perceived ability to perform target behaviour) and 
perceived controllability (perceptions about whether the person has control over the behaviour 
or outcomes), with only the self-efficacy component being related to changes in the intent to 
perform a behaviour and the actual behaviour (Elliott et al., 2013). This indicates that PBC is 
more closely related to ‘ability’ from the Fogg Behaviour Model (FBM, see 3.1), rather than to 
a locus-of-control type of evaluation. BI is predicted by ‘Attitude Towards Behaviour’, 
‘Subjective Norms’ regarding the behaviour and PBC. The attitude towards the behaviour 
represents how the behaviour is appraised not only in terms of the act, but also in relation to the 
possible outcomes of displaying the behaviour, such as potential rewards, or the averting of 
negative consequences. ‘Subjective norms’ refers to how displaying the behaviour is evaluated 
by the social network around the individual, and how displaying the behaviour might affect 
social relationships. 

3.3 Influencing Behaviour at the Tactical Level 
We searched the literature for persuasive methods that were used or have the potential to be 
used in the traffic domain. The search engines used were Google Scholar, Scopus and Web of 
Science, with the keywords: “driver persuasion AND system OR ivis OR adas”, “persuasi* 
AND traffic OR in-car”, “persuasive systems OR persuasive technology”, “persuasive 
methods”. We limited the results to experimental papers of 2010 and newer. For methodological 
papers proposing persuasive methods, no time frame was used. Forward and backward 
snowballing was performed. This resulted in the persuasive categories of Gamification, 
Behavioural Economics and Captology. These different methods often overlap to some degree 

Figure 3.1: The Theory of Planned Behaviour. 
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in the persuasive elements used. In this section, we discuss these persuasive methods and 
motivate our choice for the models we adopt for developing the conceptual model. 

3.3.1 Persuasive Methods 
The persuasive methods we reviewed can broadly be divided into Gamification, Behavioural 
Economics and Captology, although these fields show some overlap in the persuasive elements 
used or approaches taken. 
 
Gamification is a term that has emerged relatively recently. Video games create an environment 
in which the player is highly motivated to perform certain behaviours to achieve game-related 
goals (finishing a level, getting a high score). Gamification takes the elements that elicit this 
motivational behaviour and applies them to other situations (Deterding, Dixon, Khaled, & 
Nacke, 2011). The most often and successfully applied game design elements are leader boards, 
achievements and challenges (Hamari, Koivisto, & Sarsa, 2014). Gamification may work 
through raising the driver’s implicit motivation, by inducing group-effects such as in-group/out-
group bias – simply assigning people to a group, induces positive feelings to other group 
members (Baron & Dunham, 2015) and a motivation to help achieve group goals (Musicant, 
Lotan, & Grimberg, 2015) –, as well as through a ‘fear of missing out’ effect (Przybylski, 
Murayama, DeHaan, & Gladwell, 2013). For example, Musicant et al. (2015) found that, when 
offering financial incentives and inducing a common group goal of collecting as many safe 
driving miles as possible, motivation to use a driving safety app on a smartphone was high over 
a period of more than a hundred days, as indicated by app usage and the active recruitment of 
friends as users. App usage dropped significantly once the group goal was achieved, indicating 
that any persuasive system should be cautious with formulating group goals and financial 
incentives. A quite extensive review of previous studies found that generally the effects of 
gamification are positive, although this is moderated by the context in which gamification is 
used as well as the users that are targeted (Hamari, Koivisto, & Sarsa, 2014). Gamification 
effectiveness might also be reduced over time due to a novelty-like-effect (Farzan et al., 2008a), 
although motivation can remain high when using group-based goals as long as these goals 
remain active (Musicant et al., 2015). Examples of gamification applied to the transportation 
domain include EcoChallenge (Ecker et al., 2011): a reward and competition-based system to 
persuade drivers to engage in a more eco-friendly behaviour, I-GEAR (McCall & Koenig, 
2012): a system to change driver behaviour by providing small financial and non-financial 
rewards, and ‘Driving Miss Daisy’ (Shi et al., 2012): a gamified solution to help drivers improve 
their driving skills by providing a virtual passenger that occasionally comments on driving 
styles. 
 
Behavioural economics has been defined as the ‘body of work seeking to understand behaviour 
by incorporating insights from behavioural sciences into economics’ (Avineri et al., 2010). 
Rather than being rational thinkers, people use a range of heuristics and display biases that often 
work well, but can lead to reasoning errors in certain situations (Kahneman, 2003). An overview 
can be found for instance in the work of Kahneman (Kahneman, 2013) or Cialdini (Cialdini, 
2006). Persuasive elements from Behavioural Economics applied to the transportation domain 
can be found in for example the design of travel information systems (Avineri, 2011), 
approaches to promoting safe driving behaviours (Millar & Millar, 2000), and methods 
analysing travel behaviour (Metcalfe & Dolan, 2012).  
 
Captology (acronym: computers as persuasive technology) was introduced by Fogg (1998). It 
is a field of study which uses computers to influence behaviour in various ways (Fogg, 2010). 
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The Fogg Behavioural Model (FBM) (Fogg, 2009a) is prominent in the field of persuasion. It 
postulates that in order for a persuasive intervention to be successful, three factors need to 
converge: the person needs to be able to perform the behaviour (‘ability’), be motivated to 
perform the behaviour (‘motivation’), and finally a trigger should be present to elicit the 
behaviour. Targeting simple behaviours has a higher likelihood of success (Fogg, 2009b). In 
the context of driver persuasion: making sure ‘ability’ is high means requesting short, simple 
to perform behaviours such as a speed change, an overtaking manoeuvre, a lane change, or a 
merging manoeuvre, as well as timing persuasive attempts to moments when driver workload 
is not high and when traffic conditions allow for the requested behaviour (e.g. don’t request a 
lane change when the neighbouring lane is crowded). ‘Motivation’ can be raised by using 
persuasive techniques (see also 3.2). The FBM has been applied to the traffic setting, for 
instance it has been applied in a persuasive intervention that successfully reduced texting 
behaviour while driving (Miranda et al., 2013). 

3.3.2 Integrating Persuasive Methods 
The Persuasive Systems Design model (PSD) (Oinas-Kukkonen & Harjumaa, 2008) presents a 
systematic framework for designing and evaluating persuasive systems. It brings concepts from 
Gamification, Behavioural Economics and Captology together. The PSD states that a system 
can be made persuasive by providing the user with support in distinct categories: primary task 
support, dialogue support, system credibility support and social support.  
 
Primary task support shows many of the principles put forth by the FBM and Behavioural 
Economics. The focus is on supporting the user by making the behavioural tasks more 
manageable, personal and transparent. Making the tasks more manageable by reducing complex 
behaviour to a series of steps and then leading the user through them is especially important 
when considering in-vehicle systems. Apart from increasing the system’s persuasive power, 
this approach reduces task demands placed on the driver, which in turn increases system safety 
(Fuller, 2005; Wickens, 2002). An example of primary task support can be a lane change system 
that guides the driver through the steps of finding a gap, matching speed and merging. There is 
a growing similarity between primary task support and ADAS, such as lane-change assist 
systems (Habenicht, Winner, Bone, Sasse, & Korzenietz, 2011), as ADAS become more 
capable. In primary task support, one way of increasing persuasiveness is reducing complex 
behaviour to a series of steps and guiding the user through them, which is similar to what for 
example lane-change assistance systems do (Habenicht et al., 2011). 
 
Dialogue support is aimed at keeping users moving towards their goals. This support level 
contains elements from Gamification, Behavioural Economics and the FBM. Offering praise 
and rewards can increase motivation, which is an important factor for persuasion in the FBM 
(Fogg, 2009a). If applicable, providing reminders for target behaviour or suggesting certain 
behavioural responses may be a way to increase behavioural effects by facilitating the creation 
of habits. Habits are a main factor in making persuasive effects last over time (Lally & Gardner, 
2013). Further important factors in dialogue support are similarity and liking (Fogg, 2010), 
which can increase trust and intentions to comply to system requests. 
 
System credibility support is mainly important from the perspective of trust and acceptance. It 
is about showing the driver that the system makes correct decisions and recommendations. Trust 
and acceptance are major factors in whether a persuasive system’s suggestions or advices will 
be considered by the driver (Malte Risto & Martens, 2013; Vlassenroot et al., 2010). Factors at 
this support level relate to the accuracy of the information presented, its transparency, and how 
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users will evaluate it. This in turn is important for forming and maintaining trust in the system 
(Lee & Moray, 1992; Martens & Jenssen, 2012). The need for trust in a persuasive system is 
underscored by the work of Risto (Malte Risto & Martens, 2013), who reported that, in their 
study, drivers constantly tried to verify the accuracy of system requests before following them, 
and refused to follow messages they interpreted as incorrect. Apart from validity of the advices, 
acceptance can also be influenced by what modality is used (Donmez, Boyle, Lee, & Mcgehee, 
2006). 
 
Social support aims at persuading users by increasing motivation using social factors. This level 
has parallels with Gamification. It includes factors to incentivise behavioural change by 
allowing performance comparison with other users, facilitating cooperation and/or competition, 
creating transparency in behaviour-result relationships of other users and even applying forms 
of normative social pressure (see for example Lütteken, Zimmermann, & Bengler, 2016). Social 
factors vary in importance and effects on different age groups (McEachan, Conner, Taylor, & 
Lawton, 2011), which is important for instance when targeting specific demographic groups. 
 
To summarise, Gamification has been shown to be effective in motivating people to change 
their behaviour. However, some studies report that its effectiveness might reduce over time 
(Farzan et al., 2008a, 2008b). Behavioural Economics as a field has many applicable concepts 
that can persuade drivers effectively, and the FBM presents a view of how driver motivation 
and ability need to converge in the presence of a trigger for persuasive influence to be effective. 
The PSD model unifies these persuasive methods using the described four support groupings. 
These provide persuasive elements that can be used depending on the type of system and the 
context in which it is intended to be applied. For example, in a cooperative system, which is 
social by nature, the ‘social support level’ provides ways to add persuasive elements to the 
social aspects present in the system (see Lütteken et al., 2016). More generally: system 
credibility can assist persuasion in most systems by increasing trust in the validity of the 
messages over time, which has been shown to be a large factor in whether a driver responds to 
the advice or not (Abe & Richardson, 2006; Malte Risto & Martens, 2013), or even a factor in 
determining system usage over time (Martens & Jenssen, 2012). 

3.4 Considerations for Safe Driver Persuasion 
The driving task is complex, requires constant attention from the driver (de Waard, 1996) and 
presents frequent distractions. Stutts  and Gish (2003) report that drivers engaged in distracting 
activities for 16.10% of the time the car was moving (31.42% if in-car conversations were 
included). Poorly designed or implemented persuasive in-vehicle systems may increase this 
percentage by providing more distractions to a driver (Hibberd, Jamson, & Carsten, 2010), 
potentially increasing driver workload (Horberry, Anderson, Regan, Triggs, & Brown, 2006), 
inducing behavioural adaptation (Martens & Jenssen, 2012), or otherwise creating unsafe 
situations. Safety, therefore, is an important characteristic of a persuasive in-vehicle system. An 
effective but unsafe system is not likely to be used long term, either through consumer choice 
or through changing legislation. In this section, we discuss how improving safety can also 
increase persuasive effectiveness in the short and long run. 

3.4.1 Safety, Driver Demand, and Unsafe Situations 
A persuasive system needs to communicate with the driver. At the very least this means 
transmitting information to the driver, and in more complex cases it may require interaction. 
One way of limiting negative effects of this communication on driving performance, based on 
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the TCI (Fuller, 2005), is by ensuring that the demands placed on the driver do not create 
dangerous high workload situations. Although this is a broad statement, it can be assessed using 
for example environmental variables that may affect the driver, such as the proximity of other 
vehicles, traffic conditions and weather conditions, and driver variables such as driving demand 
and driver workload as well. 
 
Driver workload results from the interplay between the demands placed on the driver by the 
driving task, the complexity of the environment, and the driver’s capacity to meet those 
demands (de Waard, 1996). It is an important factor in terms of safety, since under- or overload 
can influence a driver’s performance and create hazardous situations (Mark S. Young et al., 
2015). In section 1.2 we have discussed how targeting the tactical level for persuasive attempts 
will likely limit the impact on driver demand (compared to targeting the strategic level), and by 
extension, on driver workload. Despite this, a poorly designed persuasive system targeting 
tactical-level behaviours can still result in high driving demand and/or workload. The Multiple 
Resource Theory (MRT) by Wickens (Wickens, 2002) can help understand why, even when a 
persuasive in-vehicle system targets simple-to-change behavioural tasks, high driver demand 
or workload may still result.  
 
In the MRT, interference from a secondary task is most likely when it accesses the same 
resources as the primary task. Since driving is mainly a visual task, transmitting information to 
the driver through a visual channel may cause interference. For instance, diverting the eyes 
from the road for extended time has serious consequences for driving performance and lane-
keeping ability (Peng, Boyle, & Hallmark, 2013). Heads-Up-Displays do not require the driver 
to take his eyes off the road and can be a better alternative (Liu & Wen, 2004), but do not 
mitigate all negative effects, and can introduce some new potential problems related to sharing 
visual resources (Wickens, 2002) and to characteristics of the human visual system, such as 
involuntary accommodation responses from the eye that cause the driver to temporarily lose 
optical focus of the road scene, even though both the HUD and the road scene are in the same 
field of view (Edgar, 2007). Competing resource types are not the only factor in the MRT that 
can lead to reduced task performance: if the demands of one or both tasks are higher than what 
the driver can handle, two tasks that use very different resources are still likely to cause dual-
task interference and degrade driving performance. In terms of a persuasive in-car system, 
minimising the effect on workload therefore means choosing the correct modality to transmit 
information to the driver, keeping the cognitive demands of the interaction low to prevent 
interference with the main driving task, and timing the messages to periods when the driver can 
accommodate them. If the cognitive demands of the main task (driving) are already high, per 
the MRT a simple secondary task may create dual-task interference even when using a different 
modality from the main task, degrading the performance on the main task and thereby 
potentially compromising driver safety. Adaptive interfaces (Birrel et al., 2017; Park & Kim, 
2015) try to counter this by changing either the complexity of messages presented, the modality 
used to convey the message to the driver, or by suppressing messages in conditions where safety 
or workload may be dangerously affected, safety can be improved. 
 
Unsafe situations can still arise from persuasive in-vehicle systems even when changes induced 
in driver demand and workload are minimal. A system that distracts the driver at the wrong 
moment may create a potentially dangerous situation (K. Young & Regan, 2007), highlighting 
the importance of timing the communication with the driver. Unsafe situations may also arise 
from the way drivers accommodate the functions of in-vehicle devices into their driving habits, 
giving rise to behavioural adaptation effects (Martens & Jenssen, 2012; Smiley, 2000). As an 
example of an unintended behavioural effect, in response to having Anti-Lock Braking (ABS) 
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and Airbag systems installed, headways decreased and seatbelt usage reduced (Sagberg et al., 
1997). Overreliance on a system is another potential problem, and research has shown that the 
degree of reliance by human operators doesn’t always match the system capabilities 
(Parasuraman & Riley, 1997). For example, with a lane-change advice system: if a driver places 
too much trust in the lane change advice system, a lane change may be initiated when the system 
gives an advice, without the driver checking whether it is actually safe to change lane. 

3.4.2 Persuasive Attempts and Acceptance 
A persuasive in-vehicle system needs to be able to consistently persuade the driver. According 
to the Fogg Behaviour Model (FBM) (Fogg, 2009a), persuasive interventions timed to periods 
when both motivation and ability are high, have a higher chance of resulting in changed 
behavioural outcomes. In terms of an in-vehicle system, an advice that is given to a driver when 
there is a high motivation to follow it, will have a higher probability to be complied to. 
Similarly, an advice given at a time when the driver ability is high, i.e. when the driver perceives 
they can follow the advice, will be more likely to result in the target behaviour. This again 
underscores the importance of targeting behaviours that require less effort to change, such as 
tactical level driver behaviour: not only it is safer, persuasive effectiveness is also likely to 
increase when doing so (Fogg, 2009a). In the traffic context, the FBM’s ‘ability’ to follow a 
persuasive advice can be impacted by multiple factors and conditions, such as weather 
conditions, traffic conditions, secondary tasks or driver states (de Waard, Kruizinga, & 
Brookhuis, 2008). One such driver state is driver workload, which needs to be considered for 
the effectiveness of persuasion as well as for safety. When driver workload is high, presenting 
an advice and/or requesting an action from the driver may increase the difficulty of the driving 
task further, in turn reducing the likelihood that the driver complies to the persuasive request 
because the requested behaviour is seen as difficult or impossible given the circumstances. In 
other words, high workload is likely counterproductive when trying to persuade the driver. 
 
In addition to persuading a driver effectively, a persuasive system needs to be, and keep on 
being, used. To a large degree, this usage will depend on the acceptance of a system 
(Vlassenroot et al., 2010). Without taking steps to ensure acceptance, there is the risk that a 
persuasive in-vehicle system falls into disuse or works counterproductively (Martens & 
Jenssen, 2012). This is especially damaging if the system relies on a user base to function, as 
for example with cooperative (lane change) systems (Lütteken et al., 2016). To describe the 
acceptance of new technology several models have been developed, such as the Unified Theory 
of Acceptance and Use of Technology (UTAUT) (Venkatesh et al., 2003) and the Technology 
Acceptance Model (TAM) (F. D. Davis, 1986). 

3.4.3 Technical Feasibility and In-Car Persuasion 
As discussed, persuading the driver safely assumes that an in-car system has awareness of the 
driver ability and the driving context, so that messages can be transmitted at the right time (i.e. 
the driver has available capacity). Various technological building blocks exist that facilitate 
this, as briefly outlined in the following paragraphs. 
 
Driver workload is mentioned as an important factor both for safety and persuasive 
effectiveness. Using various approaches, on-line driver workload predictors have been 
proposed and tested based on physiological characteristics and driver performance measures 
(Kim, Chun, & Dey, 2015; Solovey, Zec, Garcia Perez, Reimer, & Mehler, 2014; van Gent, 
Melman, et al., 2018b). These predictors often take at least heart rate into account. We recently 
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developed a toolkit that allows for online analysis of (noisy) heart rate data collected in in-car 
settings (van Gent, Farah, van Nes, & van Arem, 2018). This allows the reliable collection of 
this type of input for the workload predictors. 
 
Capturing driver ability can be done through surrogate measures, for example by combining 
the workload prediction with traffic conditions. Camera-based systems exist that can detect and 
label other road users accurately (Ashraf, Wu, Iandola, Moskewicz, & Keutzer, 2016). This 
opens up the possibility to automatically consider aspects like traffic density and position of 
nearby vehicles into account. In this case, advising a lane change when driver workload is 
predicted to not be high and when a sufficiently large gap is detected on an adjacent lane, 
provides a way to select safe situations where ‘driver ability’ is estimated to be high as well. 
 
The motivation to follow an advice is difficult to capture. The role of the persuasive system is 
to raise the motivation of the driver to follow an advice, by using one or several of the discussed 
persuasive techniques. It is conceivable that the system monitors the results of different 
persuasive attempts made and optimises the methods used to each driver individually based on 
performance statistics, but more research would be required to determine the optimal 
performance statistics. 

3.4.4 Persuasion in Time 
Any persuasive attempt will need time to be successful: the persuasive message needs to be 
generated, transmitted to the driver, interpreted by the driver, and finally followed if the driver 
decides to. Whether messages are time critical or not depends on the implementation. For 
example, a persuasive eco-driving application as described in (Ecker et al., 2011; McCall & 
Koenig, 2012) is not time critical. However, in the context of the lane-specific advice system 
described in this paper, a correct advice depends on current traffic conditions, and therefore is 
time critical. Traffic conditions are dynamic, meaning that if persuasion takes too long in this 
case, the advice might be obsolete. Advices incongruent with the surroundings are not only a 
problem for the functioning of the system, but also harm drivers’ trust in the system (Malte 
Risto & Martens, 2013). In our research we aim to generate advices with a time validity of 
approximately two minutes. Within these two minutes, the lane change system will determine, 
based on the current and predicted traffic distribution, the optimal distribution to work towards. 
The main challenge from a traffic modelling point of view is to predict the risk of unstable 
traffic congestions far enough ahead (i.e. 2 minutes) to allow the driver enough time to follow 
any advices. 

3.5 The Conceptual Model for Driver Persuasion at the Tactical Level 
In this section, we present the proposed conceptual model for driver persuasion at the tactical 
level using in-vehicle systems. The model is meant to help guide the development of persuasive 
in-car systems by integrating persuasive methods as well as behavioural models. It has three 
levels: The System Level, the Information Transfer Level and the Driver Level. The System 
Level is where the persuasive strategy is formed and safety checks are performed. It 
incorporates the defined safety criteria (4.1, 4.2) and the four support levels from the Persuasive 
Systems Design model discussed earlier (3.2). The Information Transfer Level is where 
communication with the driver takes place. It incorporates elements from Wickens’ MRT and 
Fuller’s TCI Model. The Driver Level describes the behavioural effects of the persuasive 
attempt. It incorporates the TPB (2.2), along with considerations regarding effects on driver 
workload, indirect behavioural effects and driver safety (4.1, 4.2). Design of factors at the 
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system and information transfer level should take human factors described in the driver level 
into account, and reflect the desired outcomes of the system-driver interaction (safety, 
persuasive effectiveness). The following sub-sections detail these levels and how they are built 
up from the existing models and theories in the literature. 
 
In the conceptual model three types of relationships are indicated. Solid lines indicated 
relationships that have been empirically validated and are known from meta-analyses. We have 
added the reported correlation coefficients and R2 statistics of these relationships to the model. 
The two types of dashed lines indicate relationships that are established in the literature, and 
hypothesised relationships. The basis for the hypotheses relationships is discussed in the 
corresponding sections (5.1-5.3). 
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Figure 3.2: Proposed conceptual model for influencing tactical driver behaviour. Solid arrows indicate 
relationships known from the literature, dashed arrows indicate hypothesised relationships. Statistical 
properties are given where available from meta analyses in the format (correlation coefficient, R2). 
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3.5.1 Planning Driver Persuasion: The System Level 
The System Level represents the back-end of the persuasive in-vehicle system. It is built up 
from the PSD model (3.2) and the considerations of driver safety and the persuasiveness (4).  
 
Safety is central to the persuasive system design and operation. This is explicitly reflected in 
the model, where the first evaluation made is whether it is safe to initiate an information transfer 
to the driver. An existing type of driver monitoring system could perform this role effectively 
(Aghaei et al., 2016; van Gent et al., in press). Ideally, the persuasive system should (either 
directly or indirectly) take driver workload into account, should not create unsafe traffic 
situations, and should aim not to distract the driver at the wrong time. For example, a lane-
change system designed to assist the driver in dense traffic, needs to take into account not only 
the surrounding traffic but also the driver state, when deciding on whether to continue or abort 
a lane-change manoeuvre (Habenicht et al., 2011). In situations where safety criteria are not 
met, they must be re-evaluated until they are met, represented in the model by the conditional 
loop. Ways to automatically evaluate these safety criteria exist, such as in systems that monitor 
on-coming traffic (Curry et al., 2010), label nearby road users (Ashraf et al., 2016), detect 
weather conditions (Green, 2004), and systems that attempt to estimate driver state (Ferreira et 
al., 2014; Liang, Reyes, & Lee, 2007; van Gent, Melman, et al., 2018b). 
 
Once it is determined that interacting with the driver does not pose a safety risk, tactical driver 
advice may be given to persuade the driver. The PSD described in this paper combines 
persuasive techniques into four support levels. These four levels of support are included as 
possible routes to persuasion (see also Oinas-kukkonen & Harjumaa, 2009; Oinas-Kukkonen 
& Harjumaa, 2008, 3.2). A recent meta-analysis study by Hamari et al. (2014) report that from 
95 empirical studies looking at persuasive techniques applied to diverse fields, the majority 
report positive (52 studies) or partially positive (36 studies) results. Many of the included papers 
utilise the PSD framework. This indicates the viability of using persuasive methods to achieve 
behavioural change effectively. 

3.5.2 Interacting with the Driver: The Information Transfer Level 
The information transfer level comprises the communication between the persuasive system 
and the driver. Usually this communication takes place through a type of interface (visual, 
auditory, tactile or multimodal). The information transfer level and its effects on behaviour 
(driver level, 5.3) are built up from the TPB, MRT, TCI and FBM discussed in the previous 
sections. The information transfer itself is operationalised as having ‘content’ (‘what’ is in the 
message?), ‘modality’ (‘how’ is the message transmitted to the driver?) and ‘timing’ (‘when’ is 
the message transmitted?) as factors. The modality used to convey the message could be 
dependent on the type of information being transmitted (Donmez, Boyle, Lee, & City, 2006), 
and can influence the acceptance of the advices as well (Donmez, Boyle, Lee, & Mcgehee, 
2006). In the conceptual model, the information transfer influences driver workload, driver 
safety and the behavioural determinants of the TPB (attitude, social norms and perceived 
behavioural control). This impact on the behavioural determinants is the goal of the conceptual 
model: in order to affect behavioural change, the system needs to influence these motivations 
(Elliott et al., 2013). Here we discuss these effects in terms of the impact on safety and the 
impact on persuasive potential. 
 
From a safety perspective, the model shows an effect of the information transfer on ‘workload’ 
and ‘perceived behavioural control’ based on the TPB and MRT. According to the MRT, dual-
task interference is likely when two concurrent tasks use the same modality, or when the 
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cognitive load from one or both tasks is high. Dual-task interference reduces performance on 
the main (driving) task and increases demands placed on the driver, which in turn can raise 
workload. As demands and workload rise, we hypothesised that the perceived behavioural 
control of the driver lowers. As we discussed in section 2.2 PBC reflects self-efficacy 
(judgement of being able to perform the target behaviour), not perceived level of control over 
the behaviour (Elliott et al., 2013). This means that the higher the (perceived) driver workload, 
the lower the driver’s appraisal of being able to comply with persuasive messages will be. This 
appraisal of ability is important in the persuasive context: if a driver lacks the confidence to 
follow up on a persuasive advice, the persuasive attempt will likely not succeed. In addition, 
this could lead to a degradation of driver performance, or even undesirable situations such as a 
loss of control or a collision (TCI, 4.1, 5.3). A direct link to driver safety is also included, which 
includes for example situations where the information transfer leads to eyes-off-road situations 
(Dozza, 2013; Peng et al., 2013) or to distraction at a critical moment. 
 
From the persuasion perspective, the FBM (Fogg, 2009a) specifies that motivation and ability 
need to be high at the moment of a behavioural trigger, in order for persuasion to have a high 
chance of being successful. The goal of the persuasive techniques used (‘content’) is to raise 
motivation to perform a behaviour, for instance by using social support to increase motivation 
to comply to a message. Making sure ‘ability’ is high, essentially means timing the information 
transfer to situations where the driver’s PBC is high (Elliott et al., 2013, see also section 5.3). 
In a driving setting, the PBC term implicitly includes an environmental component (e.g. give a 
lane change request only when there is sufficient room on the adjacent lane), and a driver 
component (a high workload will result in lower PBC). Both components are important for 
persuasion and safety. For example, if a lane-specific advice system requests a lane-change 
when a driver does not feel capable of performing the requested manoeuvre, it is unlikely the 
persuasion will have an effect. Alternatively, if an already overloaded driver complies with the 
requested behaviour, unsafe or outright dangerous situations can result. 

3.5.3 Human Factors: The Driver Level 
The driver level provides a basis to describe expected behavioural effects of the persuasion. In 
this section, we describe how the TPB fits into the model, how workload relates to both safety 
and persuasion, its dependence on driver characteristics and factors on the information transfer 
level, possible behavioural effects and the importance of outcome feedback. 
 
As argued in the previous section, both motivation and ability need to be high in order for 
persuasive systems to actually persuade (Fogg, 2009a). In the conceptual model, motivation is 
captured by the TPB terms ‘attitude towards behaviour’ and ‘social norms’. The attitude and 
social norms influence driver behaviour through the ‘behavioural intent’ (BI) (Ajzen, 1991; 
Armitage & Conner, 2001; McEachan et al., 2011). The ability to follow persuasive advices is 
captured through ‘perceived behavioural control’ (PBC) and its interaction with workload. PBC 
affects the intent to perform a behaviour as well as the behaviour directly (Armitage & Conner, 
2001; McEachan et al., 2011), and additionally we hypothesize that it acts as a modulator of 
workload on behaviour. As discussed previously, this hypothesis is based on earlier work 
showing that PBC relates to the perceived ability a person has to perform a given behaviour, 
rather than a locus of control-like evaluation of whether the behaviour lies within the control of 
the individual (Elliott et al., 2013). This means that with a high PBC the driver feels competent 
and able to perform a requested behaviour, whereas a low PBC will negatively influence the 
likelihood of a persuasion from resulting in the desired behaviour (Armitage & Conner, 2001; 
McEachan et al., 2011).  
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Apart from the information transfer (5.2), driver workload is also affected by ‘driver 
characteristics’. This component is a broad term meant to capture the heterogeneity of the 
drivers and how this relates especially to driver workload and driver safety. For example, driver 
ability is not static and varies between and within individuals over time (Mark S. Young et al., 
2015), which may cause workload experienced by two different drivers  in a comparable 
situation to be very different. ‘Driver characteristics’ also includes differences in inherent driver 
safety. For example, some age groups display more risky behaviour (Carter, Bingham, 
Zakrajsek, Shope, & Sayer, 2014), there may be sex differences or geographical differences in 
driver behaviour and capability (Twisk & Stacey, 2007; Vlakveld, 2011), or individual 
differences in driver aggression (Hennessy & Wiesenthal, 2001). These characteristics may 
result in some classes of drivers being exposed to higher risk while driving, especially in 
combination with in-car systems.  
 
‘Indirect behavioural effects’ (Martens & Jenssen, 2012) were discussed in 4.2. These refer to 
changes in driver behaviour or intentions to perform behaviours that are not intended by the 
designers of the (persuasive) system. An often-cited example of indirect behavioural effects is 
that of the anti-lock braking system (ABS), which helps reduce stopping distances of the cars 
in which it is installed. Positive effects were offset by behavioural effects: adaptation was 
reported from drivers choosing to driver faster on wet surfaces (Smiley, 2000) or with shorter 
headway and varying seatbelt usage (Sagberg et al., 1997). When developing and implementing 
a persuasive in-car system it is imperative to include these possible indirect behavioural effects 
in experiments to evaluate it. 
 
The last undiscussed term in the model is feedback about behavioural outcomes. This feedback, 
including information on the behaviour-result relationships in other drivers, is expected to 
influence the driver’s attitude towards future behaviours in a feedback loop (see also Lütteken 
et al., 2016). For instance, if a driver observes that complying to an in-vehicle system has 
resulted in shorter travel times on previous occasions or with other drivers, this might bias the 
driver to comply more with the system’s advices in the future. This ties into the “system 
credibility support” level of the PSD (Oinas-Kukkonen & Harjumaa, 2008). It is also in line 
with an earlier study into compliance to tactical driving advice (Malte Risto & Martens, 2013), 
where drivers were observed attempting to evaluate the validity of tactical advice in the context 
of what they observed on the road and the history of the system’s accuracy. 

3.6 Application to a Lane-Specific Advice System 
In this last section, we present a case study based on a lane-specific advice system, in which we 
apply the developed model to the system and discuss how this helps structure system design for 
safety and persuasion.  
 
The goal of the system is to reduce travel time delay and congestion by encouraging a better 
distribution of the vehicles over the available motorway lanes. This means advising drivers on 
what lane to take, depending on external factors. For instance, an unbalanced distribution, an 
upcoming on-ramp or lane drop, or an incident upstream may require a redistribution of traffic 
to ensure continued flow and avoid congestion. The system’s advices will be in the collective 
benefit of drivers on a specific stretch of road (minimised total travel time), but will sometimes 
not be in the benefit of individual drivers receiving the advice (e.g. stay behind this slow truck 
for now), creating a potential problem (Malte Risto & Martens, 2012). The challenge is to 
persuade drivers to follow the advices that are in the benefit of the collective rather than the 
individual. We aim to apply the persuasive techniques to engage drivers with the system and to 
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also stimulate adherence to lane-specific advices, especially when they are not in the 
individual’s benefit. By applying the various persuasive techniques described in the paper, 
driver motivation and the attractiveness of the advices are hypothesised to increase. We will 
verify this experimentally. The designed system will consist of an in-vehicle part and a back-
end that predicts traffic states and approximates the optimal lane use situation. 
 
The developed conceptual model described in this paper helped to direct our research in several 
ways. At the ‘System Level’, a safety filter is required. Early in the design phase, this redirected 
the process from focusing mostly on the effectiveness of the persuasive design, to an approach 
that considered potential effects on safety and on the driver as well. As a result, we are 
developing an affordable driver monitoring system to estimate driver state (Gent, Farah, Nes, 
& Arem, 2017; van Gent, Melman, Farah, van Nes, & van Arem, 2018a). In combination with 
environmental sensing systems built into the vehicle, this provides a safety filter that will 
suppress messages to drivers that are estimated not to respond (safely) to the persuasion. The 
result of this message filtering, we argue, is two-fold (see 4.2, 5.2, 5.3): apart from increasing 
the safety of the system, it works to increase persuasive effectiveness and facilitate long-term 
usage of the system as well. 
 
Persuasive strategies are outlined in the four support levels from the PSD model (Oinas-
Kukkonen & Harjumaa, 2008, see also 4.2). These support levels offer persuasive strategy 
elements from which a selection can be made. We selected strategies mainly from primary task 
support and dialogue support, with some elements from the other two support levels. The 
system will support the driver by breaking down a requested lane-change into smaller steps, 
and guiding the driver through them (primary task support: ‘reduction’ and ‘tunnelling’). This 
will increase persuasive power and make the task less demanding, benefitting both safety and 
persuasion (Fuller, 2005; Wickens, 2002, see also 4.1). Second, the system will provide the user 
with transparent information regarding obtained benefits in terms of travel time saved in 
relation to the performed behaviour through either an app or a web-portal (primary task support: 
‘self-monitoring’). Providing a means of ‘self-monitoring’ of on-going benefits increases 
immediate persuasive effects, but also works to increase ‘trustworthiness’ and ‘verifiability’ of 
the system (credibility support). As discussed in 3.1 the effectiveness of persuasive methods 
might decrease over time. In one study, especially the presence of clear (group) goals was found 
to keep system usage high (Musicant et al., 2015). In the case of our lane-specific advice system, 
the group goal is to reduce congestion on the road that the user is driving on, which is a relevant 
goal along the whole drive. Whether the use of group-based incentives can be implemented will 
be evaluated at a later stage of the system design. 
 
At the information transfer level, an advice is communicated to the driver, the effects of which 
are described at the driver level (5.3). As described in 5.2, in the model the information transfer 
between system and driver is operationalised as having content, modality and timing. The 
model shows how these factors mediate safety and persuasive effectiveness through workload 
and perceived behavioural control (see also 4.2, 5.2). This means that, in further development 
of our lane-specific advice system, our research will focus on how driver workload and 
perceived behavioural control are influenced by content, modality and timing decisions with 
our lane-specific advice system. Additionally, it simplifies the scope of our research: in order 
to estimate the effects on the behavioural outcome, we only need to investigate how the three 
information transfer factors influence the ‘attitude towards behaviour’, the perceived ‘social 
norms’ and the PBC. How these three factors in turn influence BI and Behaviour is known from 
several exhaustive meta analyses (Armitage & Conner, 2001; McEachan et al., 2011; Notani, 
1998). To assist in estimating how our persuasive system influences these factors, it is useful 
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to point out that guidelines have been formulated on how to operationalise these constructs 
(Ajzen, 2010; French & Hankins, 2003).  
 
In this section, we have applied the model to the design of our persuasive lane-specific advice 
system, and have discussed how this helped shift the focus of our research away from one 
emphasizing persuasion, to one that includes the driver’s behaviour and traffic safety as well. 
We have shown how this shift will benefit not just traffic safety but the persuasive effectiveness 
of the system as well. 

3.7 Conclusion 
In this paper, we have proposed a conceptual model to help guide the design of persuasive in-
vehicle systems with the aim of influencing driver behaviour at the tactical level. The model 
was designed with safety and persuasion as core elements, and explains how a persuasive in-
vehicle system is expected to affect driver behaviour, workload, and safety. The model contains 
four ‘support levels’ from the PSD from Oinas-Kukkonen (2009), that can be used as guidelines 
for implementing specific persuasive elements in persuasive in-vehicle systems. Similarities 
exist between ADAS and for example the primary task support level from the PSD, and 
similarities will likely increase as ADAS become more complex. This provides an interesting 
possibility for the integration of persuasive driver methods using existing systems. 
 
The proposed model is split into three levels explaining the different elements of the 
information chain: the system level where the persuasive strategy is formed after a safety check, 
the information transfer level where communication with the driver takes place, and the driver 
level where the act of presenting advice impacts driver behaviour, workload and safety in 
several ways. The focus while designing the model was on safely attaining effective driver 
persuasion. As a behavioural basis, the Theory of Planned Behaviour was selected. The 
persuasive elements come from the PSD model. We have discussed how the PSD is built from 
elements in Gamification, Behavioural Economics and Captology. We have also included 
elements from Wickens’ MRT Model and Fuller’s TCI that help explain why the timing and 
modality of the information transfer are key factors in both safety and persuasive effectiveness. 
Finally, we have applied the model to a persuasive system which aims to reduce travel time 
delay and congestion by encouraging a better distribution of the cars over the available 
motorway lanes, to illustrate how the application of the model guided our research efforts and 
helped shape a safe and effective design. 
 
Future work will focus on evaluating the best set of persuasive techniques for driver persuasion, 
as well as the most promising delivery method (‘content’, ‘modality’ and ‘timing’) to ensure 
persuasive effectiveness as well as safety and low distraction caused by the advice. 
 
Other opportunities for research still exist within the model apart from our planned future work. 
For example, the building blocks of the described ‘safety filter’ exist as discussed in the paper, 
but a unified application that takes the driver into account as well is still lacking.  
 
Several relationships are unique to each specific implementation of an in-car persuasive system 
and can only be evaluated in that specific context. For example, the indirect effects on behaviour 
will be different for different systems, and as such will need to be determined every time a new 
persuasive system is developed and tested.  
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Persuading drivers is a complex task, especially since the driving environment requires extra 
considerations in terms of safety, and because the demands the environment places on drivers 
are highly dynamic. In the near future persuasion might become easier to accomplish once 
vehicle automation becomes more prevalent: as drivers get used to sharing the driving task with 
their vehicle, it is likely they develop a stronger sense of trust, which may favour complying 
with generated advices. The presented work and model in this paper aim to assist those working 
on driver persuasion by providing a theoretical framework within which persuasive systems can 
be developed. 
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Chapter 4. 
 
Multi-Level Driver Workload Prediction Using 
Machine Learning and Off-The-Shelf Sensors 

Abstract 
This chapter presents a multi-level driver workload prediction model that can work with low-
cost off-the-shelf sensor equipment. Driver workload was chosen as an important factor in 
timing messages to the driver, as described in the system level and information transfer level of 
the conceptual model in the previous chapter (3). The presented approach relies on measures 
that can be obtained unobtrusively in the driving environment, thus minimizing effects on the 
experimental interventions. To develop the prediction models two driving simulator studies 
were performed, one used regular driving conditions to induce workload, and one induces 
workload artificially induced with a demanding lane-keeping task. Individual and group-based 
models were trained and evaluated on both datasets. For the group-based models the 
generalizing capability was assessed using a leave-one-out cross validation. Results show that 
multi-level workload prediction on both the individual and group level can work well, achieving 
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high correct rates and accuracy scores. Generalizing to unknown individuals proved difficult 
using the realistic driving conditions, however generalization proved possible in the more 
demanding lane-keeping task. Reasons for this discrepancy along with future research 
directions are discussed in this chapter. 
 
This chapter is based on an edited version of the following paper: 
van Gent, P., Melman, T., Farah, H., van Nes, N., & van Arem, B. (2018). Multi-Level Driver 
Workload Prediction Using Machine Learning and Off-The-Shelf Sensors. Transportation 
Research Record: Journal of the Transportation Research Board. 
https://doi.org/10.1177/0361198118790372 

4.1 Introduction 
Research into driver workload has been conducted for at least three decades (Aasman, Mulder, 
& Mulder, 1987; de Waard, 1996). Recently, research efforts have shifted to using powerful 
Machine Learning (ML) methods, giving promising results (Jarvis, Putze, Heger, & Schultz, 
2011; Solovey, Zec, Garcia Perez, Reimer, & Mehler, 2014).  ML methods have been used for 
other driver-related classification problems, such as driver distraction (Liang, Reyes, & Lee, 
2007), driver interruptibility (Kim, Chun, & Dey, 2015) or driver identification (Moreira-matias 
& Farah, 2017). The present study aims to fill the gaps in the existing research on predicting 
driver workload using ML methods in several ways, as will be explained in the next paragraphs. 
 
First, ML studies into predicting driver workload often focus on a binary classification problem 
(high workload vs. low workload). A more fine-grained prediction of workload may be 
desirable to enable adaptive interfaces for in-vehicle advice systems (IVIS), systems that may 
simplify their content (Birrel, Young, Stanton, & Jennings, 2017), or driver assistance systems 
that may incrementally increase their level of support based on the level of driver workload. 
The experiments described in this paper attempt to predict workload on 7- and 10-point 
workload scales. 
 
Second, studies to date often use intrusive sensors or measure variables (i.e. 
electroencephalogram, EEG) that are not practical in the driving environment (see for example 
(Jarvis et al., 2011; Solovey et al., 2014)). Additionally, it is unknown how well results obtained 
by the high-grade intrusive sensors used in experiments translate to low-cost sensors. This work 
uses low-cost sensors that can be integrated into the real-world driving environment, and uses 
measures that can be obtained non-intrusively. This is important, since especially low-cost 
sensors are likely to be integrated into the driving environment in real-world applications. 
 
Lastly, the models generated in most studies are not generally publicly available for use by the 
research community. The models developed in this study will be made available for scientific 
use after publication of results (https://github.com/paulvangentcom). 

4.1.1 Research Objectives 
The previous section outlined the main research gaps and ways to add to the present literature. 
This led to the formulation of three criteria for predicting driver workload in the present work: 
The main goal is to develop a workload algorithm that (A) has usable accuracy when predicting 
multiple workload levels, while generalising among individuals, (B) uses data that can be 
measured with available low-cost sensors that can be integrated into the driving environment, 
and (C) is implementable on embedded hardware (for example in a smart steering wheel). 

https://github.com/paulvangentcom
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The first criterion (A), predicting workload at a higher resolution than the binary low/high found 
in previous literature while generalising among individuals, is addressed in the experimental 
design and data analysis presented in subsequent sections. 
 
The second criterion (B) entails using sensor inputs from readily available, low-cost sensors 
that are easy to implement in the driving environment. By using low-cost sensors, which are 
likely to present more noise in the signal compared to high-end sensors, results will give a better 
reflection of real-world performance compared to studies using high-end sensors. Apart from 
having been used successfully in other workload prediction studies, selected variables should 
be measurable non-intrusively in the driving environment. This led to the selection of heart rate, 
skin response, blink rate and several performance measures (for an overview of the selection 
process, see (van Gent, Farah, van Nes, & van Arem, 2017)). This criterion ensures any results 
are directly applicable to in-car settings at a low cost, and that results obtained are likely to 
translate well to real-world applications.  
 
Criterion C, ensuring the model is implementable on an embedded system, means it must be 
efficient both in memory use as well as computational requirements. Two machine learning 
algorithms were selected that can satisfy this criterion: ‘Random Forest’ and ‘Support Vector 
Machine’ algorithms. Random Forests (Breiman, 2001) are computationally efficient (Sventnik 
et al., 2003) but can have a large memory footprint. Solutions have been proposed that allow 
embedded implementations while maintaining performance (Mishina, Murata, Yamauchi, 
Yamashita, & Fujiyoshi, 2015), making it a suitable algorithm to use. Support Vector Machines 
(Cortes & Vapnik, 1995) implementations can suffer from computational complexity, as well 
as high memory footprint for more complex models. Methods have been proposed, however, 
that achieve remarkable efficiency increases without sacrificing performance (Bajaj, Chiu, & 
Allebach, 2014; Theocharides & Member, 2016), making SVM’s also a suitable candidate 
algorithm.  
 
Two experiments were conducted to evaluate the feasibility of the previously defined criteria. 
First, a simulator experiment was performed, where workload was induced using realistic 
driving situations. Results of this experiment were explored futher using a dataset obtained from 
another driving simulator experiment that induced workload with a demanding lane-keeping 
task. Finally, results of both experiments are discussed and future steps are outlined. 

4.2 Estimating Workload in a Realistic Driving Scenario Study 
To assess the feasibility of predicting driver workload in realistic driving settings, a simulator 
study was performed. The main goal was to evaluate the prediction of multi-level driver 
workload in realistic driving conditions. 

4.2.1 Methods 

4.2.1.1 Equipment 
The study was performed in a fixed-base, medium-fidelity driving simulator. A dashboard 
mockup with three 4K-displays (resolution 4096*2160 px) provided roughly 180-degree vision. 
Actuators consisted of a Fanatec steering wheel and pedals, and a custom blinker control. The 
simulation ran in Unity3D. The simulated vehicle had an automatic gearbox and a top speed of 
165 km/h. Figure 4.1(A) illustrates the set-up. 
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Physiological data were recorded at 100Hz, using low-cost sensors powered by an Atmel 
ATMega328p embedded processor board. Heart rate was recorded using a 
photoplethysmographic (PPG) method (Jae Baek et al., 2009) at the left index finger. Skin 
response was recorded at the middle and ring finger of the same hand (see figure 4.1(B)). 
Additionally, blink data were recorded using a GoPro HERO+ camera on the dashboard, 
running at 1080p@30Hz. Simulator data were logged at 50Hz. 

 

Figure 4.1 - Figure showing the simulator set-up (A), physiological sensors (B), the merging between a 
platoon of trucks in dense fog (C) and the accident site at the end of the ‘high workload’ scenario (D). 
Examples of the raw signal data are shown (E), the concepts of window size and overlap factor (F), an 
example of the facial landmark detection and the resulting process of analysing the blink rate signal (G). 
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4.2.1.2 Simulator Scenarios 
Two scenarios were created in Unity3D, one scenario with situations likely to induce high 
workload (‘high’ workload’ scenario) and one with situations that are not likely to induce high 
workload (‘low workload’ scenario). Road geometry was based on a part of the Cooperative-
ITS (C-ITS) corridor in the Netherlands: the A67, a two-lane highway between Eindhoven and 
Venlo with speed limit of 130km/h. Three weather conditions were designed for each scenario: 
clear weather, and two levels of fog with visibility of approx. 150 meters (‘light fog’) and below 
25 meters (‘heavy fog’). This gave a total of six scenarios. 
 
To accurately design the road geometry, CAD drawings of the road segements were secured 
from the open data program of the Dutch government (https://data.overheid.nl). Using 
Autodesk 3DS Max, the data in the CAD files were converted to 3D models and textured. The 
surrounding terrain was generated using height map data obtained from the Microsoft Bing 
Maps API (https://www.bingmapsportal.com/). Canals and wooded areas were extracted 
automatically from satellite imagery, and adjusted by hand where necessary. The location, 
shape, and content of traffic signs was inferred from Google Streetview, designed in 3DS Max 
and manually placed at the corresponding locations in the scenario. 
 
The ‘high workload’ scenario was 15.9 km in length, and ran between Eindhoven and Someren. 
Participants would encounter several workload-inducing ‘events’ spread out across the 
scenario. After accelerating across an on-ramp, the first event was encountered: particpants had 
to merge into a dense platoon of trucks (4-5 meters headway, Figure 4.1(C)), a manoeuvre 
shown to increase workload on the driver (de Waard, Kruizinga, & Brookhuis, 2008). The 
second event was encountered two kilometres downstream and consisted of a segment of slow 
moving traffic on the right lane, designed to nudge the participants to drive in the left lane. 
While passing the slow-moving traffic, an ambulance approached from behind exhibiting 
auditory and visual signals, travelling at the legally allowed max speed of 170km/h in the 
Netherlands (max. 40km/h difference with other traffic). This placed the participant in the 
demanding situation of quickly having to find a gap in the much slower moving lane to the right 
and perform a merging manoeuvre. The third event was a game of ’20 questions’ (Kun, 
Shyrokov, & Heeman, 2013), intended to simulate an engaging (phone) conversation. By asking 
at most 20 polar (yes/no) questions, participants had to guess which animal, object or person 
the experimenter had in mind. The final event came near the end of the scenario. The right lane 
was closed off due to an accident, with slow moving (< 15 km/h) traffic on the left lane (Figure 
4.1 (D)). The 20 questions game was played until the accident site was reached. If participants 
finished early, the game was restarted with a different subject. After this, participants took the 
next exit and stopped the car. 
 
The ‘low workload’ scenario consisted of self-paced driving in light traffic for 20.5km. The 
simulated road was a replica of the A67 road between Someren and Venlo. There were no 
events. Participants drove until reaching a designated exit, where they stopped the car. 

4.2.1.3 Experimental Procedure 
Approval for the study was obtained from the ethics committee at Delft University of 
Technology. Participants drove the six scenarios spread out over three separate days, each day 
driving one randomly assigned ‘high workload’ and one ‘low workload’ scenario. This 
approach was taken because physiological measures can vary from day to day, as well as to 
avoid a fatigue effect from occurring when asking participants to drive six 10-15-minute 
scenarios consecutively.  
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In the ‘high workload’ scenario, participants were asked to rate their experienced mental effort 
and task difficulty on a 7-point scale after each event, leading to six workload data points per 
run. In the ‘low workload’ scenario, the questions were asked at fixed positions in the scenario, 
leading to four workload data points per run. The exact questions were ‘How much mental 
effort did the driving task take in the last few moments, on a scale of 1-7?’ and ‘How difficult 
was the driving task in the last few moments, on a scale of 1-7?’. Scale labels ranged from very 
low/easy, to very high/difficult, and were explained to participants before the experiment 
started. Note that we did not use a standardised workload scale such as the NASA TLX or 
RSME, since we wanted to keep interaction time with and demands on the driver to a minimum. 
 
Participants that registered for the experiment received a copy of the informed consent. It was 
signed and brought to the first session. After being seated in the simulator, a relaxation period 
of three minutes was given to the participants. This was to allow the physiological measures of 
each participant to return to its baseline. Sensors were attached, after which the signal quality 
was checked. A physiological baseline was recorded first. After the baseline, it was briefly 
explained to the participant that there would follow a drive on a segment of the A67 highway. 
Participants were instructed to drive at their own pace, but not exceed the speed limit as 
indicated on road-side signs. If a participant was unfamiliar with ’20 questions’, a test round 
was played to familiarise them with the game. 

4.2.2 Data Analysis 
Participants were asked to rate their mental effort and driving task difficulty on a 7-point scale. 
Since querying the driver might influence workload, the ‘high workload’ scenario was 
constructed in such a way that at least one minute of driving was between each two events, to 
allow signals to return to baseline. The data recorded between two events were not used in the 
analysis. In the case of the ‘low workload’ scenario, one minute of data following each question 
were excluded from the analysis. 

4.2.2.1 Preprocessing of Physiological Data 
An algorithm was developed to extract the most commonly used features from the measured 
heart rate signal (van Gent, 2016, 2017), using a sliding window approach (see Figure 4.1F). 
The output measures are divided into time-domain (Reimer et al., 2013) and frequency-domain 
measures (Montano et al., 2009). In the time-domain, the measures included are BPM (beats 
per minute), IBI (inter-beat interval), MAD (median absolute deviation of intervals between 
heart beats), SDNN (standard deviation of intervals between heart beats), RMSSD (root mean 
square of successive differences between neighbouring heart beat intervals), SDSD (standard 
deviation of successive differences between neighbouring heart beat intervals), and the pNN50 
and pNN20 (proportion of differences between successive heart beats greater than 50ms and 
20ms, resp.) In the frequency domain, included measures are LF (the low frequency band: 0,04-
0,15Hz), which is related to short-term blood pressure variation, and HF (the high frequency 
band: 0,16-0,5Hz), which reflects breathing rate, and the LF/HF ratio, a measure of 
sympathetic-parasympathetic balance (Billman, 2011; Montano et al., 2009). 
 
Skin response consists of a tonic and phasic component (Lim et al., 1997). Tonic represents the 
long-term, slow variation in the signal, indicative of general psycho-physiological arousal 
(Seitz, Daun, Zimmermann, & Lienkamp, 2012). Phasic reflects relatively quick responses to 
discrete external stimuli, occurring generally between 1-3 seconds after stimulus onset (Seitz et 
al., 2012). Power in the frequency spectrum of skin reponse between 0.03Hz-0.5Hz has been 
linked to short term workload changes (Shimomura et al., 2008). The mean, max-min 
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difference, MAD (median absolute difference), and 0.03-0.5Hz frequency spectrum were 
extracted from the GSR signal, using the same window approach as for heart rate. Frequency 
spectra were extracted using a trapezoidal integration of the area under corresponding frequency 
bands in the power spectrum. 
Blink data were detected offline from recorded video data. An algorithm was developed to 
extract blink number, blink duration and inter-blink-interval. It functioned by detecting 68 
‘facial landmarks’ (Köstinger, Wohlhart, Roth, & Bischof, 2011), then calculating eyelid 
distance for each frame. Blinks were detected in the resulting signal by finding large slopes, 
then finding the lowest point of reversal. The process is displayed visually in Figure 4.1 (G). 

4.2.2.2 Driver Performance Data 
Performance measures reflect how the control the driver exerts over the vehicle varies across 
conditions. We included steering wheel angle, steering wheel reversals, speed, variation in 
lateral and longitudinal position, and headway and time to collision when available (for more 
information, see (van Gent et al., 2017)). 

4.2.2.3 Generating Machine Learning Sets 
Machine learning sets were generated from the raw data and labelled based on self-report data, 
by varying window size and overlap factor. Window size refers to how much data is used for 
the calculation of features, overlap factor refers to how much data any window Wi shares with 
the previous window Wi-1. Both concepts are visualised in Figure 4.1 (F). Window sizes of 5, 
10 and 30 seconds, and overlap factors of 0% and 50% were used, leading to a total of 6 sets. 

4.2.2.4 Model Development and Evaluation 
Two different machine learning algorithms were used: A Random Forest Regressor (RFR), and 
a Support Vector Machines Regressor (SVR). The RFR creates an ensemble (forest) of 
regression trees in which each tree is trained on a random subset of the features. They have been 
used in for example (Miyaji, Danno, Kawanaka, & Oguri, 2008). Support Vector Machines 
function by mapping the data to a higher dimensional space, and solving an optimization 
problem to identify a set of hyperplanes that separate the training data into classes. They have 
been used in for example (Liang et al., 2007; Moreira-matias & Farah, 2017). With the SVR, 
the Polynomial kernel (SVR(poly)), and the Radial Basis Function kernel (SVR(rbf)) were 
evaluated. Algorithms that were used are taken from the SciKit-Learn repository (Pedregosa et 
al., 2012). 
 
The resulting models were evaluated using several metrics. Model error was evaluated using 
mean absolute error (AEµ) and median absolute error (AEµ1/2), both measures of the accuracy 
of the predictions. The coefficient of determination (R2) was also computed as a goodness-of-
fit measure. Performance for class-based predictions was also evaluated, expressed as correct 
rate. 

4.2.3 Results 

4.2.3.1 Participants 
19 participants took part in the experiment. Data from one participant were excluded because 
of a failure to understand some tasks due to a language barrier. This left 18 participants, of 
which 12 were males and 6 were females. The average age was 34.56 years (SD 10.09). Of the 
18 participants, 12 owned a car and reported using it three to four times a week on average, and 
travelling between 2500 and 15000km annually. All participants held a valid driver’s license. 
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No simulator sickness severe enough to terminate a driving session was reported. Reported 
mental effort and perceived difficulty correlated with weather conditions and with scenario type 
independently and in line with expectations, although no interaction effect was present (van 
Gent et al., 2017). 

4.2.3.2 Individual Models 
The training and testing sets for the individual models were generated by dividing the dataset 
of each driver into training and testing sets with an 80%/20% split ratio, respectively. This split 
ratio was chosen to ensure sufficient training data, since individual datasets were relatively 
small.  
 
The results indicated that the models functioned well, with the RFR outperforming the SVR. 
For all individual models with a window size of 5s and overlap of 0%, the AEµ was 0.343, the 
AEµ1/2 was 0.129, R2 was 0.679, Correct Rate (CR) was 76.30% when predicting discrete 
classes, and 93.80% when miss-by-one errors were allowed (CR+/-1). This indicated that on 
average, predictions were off by 0.343, and that half the predictions had an error less than 0.129, 
from a total scale of 7 classes. See Table 4.1 for an overview of all results. Model performance 
increased with a larger overlap factor. This was expected, since a larger overlap creates a larger 
training set to fit the model to, and because a larger overlap factor indicates more shared 
variance between adjacent samples. Interestingly, an inverse relationship between window size 
and model performance was observed, contrary to what has been reported previously (Solovey 
et al., 2014). Miss-by-one errors indicate predictions that are ‘almost correct’, and still contain 
enough information about the true workload states. For example, if workload is predicted as ‘6’ 
while the true value is ‘7’, the information in the prediction is still useful: in either case 
workload is on the high end. 
 

  

Table 4.1 Performance Metrics RFR models. 
 
Window Size 5 sec  10 sec   30 sec 
Overlap Factor 0% 50%   0% 50%   0% 50% 
Individual Model           
AEµ 0.343 0.219   0.431 0.280   0.613 0.492 
AEµ1/2 0.129 0.565   0.296 0.109   0.490 0.291 
R2 0.679 0.8716   0.590 0.794   0.071 0.306 
CR 76.30% 85.21%   67.88% 80.77%   49.68% 60.82% 
CR +/- 1 93.80% 97.61%   92.93% 96.13%   85.81% 89.55% 
Group Model           
AEµ 0.605 0.455   0744 0.553   0.898 0.801 
AEµ1/2 0.406 0.250   0.565 0.344   0.628 0.652 
R2 0.661 0.774   0.564 0.709   0.372 0.504 
CR 57.40% 69.57%   46.12% 62.48%   40.47% 43.82% 
CR +/- 1 90.60% 93.81%   87.02% 91.42%   80.60% 84.56% 
Generalising 
Model 

          

AEµ 1.522 1.536   1.457 1.519   1.375 1.424 
AEµ1/2 1.163 1.201   1.199 1.253   1.174 1.230 
R2 -0.538 -0.623   -0.460 -0.602   -0.299 -0.396 
CR 20.07% 20.05%   19.81% 20.21%   20.21% 20.47% 
CR +/- 1 55.18% 55.19%   55.46% 54.94%   57.21% 55.89% 
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4.2.3.3 Group Models 
The second step was to estimate the model performance within the entire group. The dataset 
containing data from all drivers was split into training- and testing sets with a 60%/40% split 
ratio. Since the size of the group dataset is much larger compared to individual dataset, a more 
stringent split ratio could be chosen while maintaining a sufficiently large training set.  
 
Results indicated group models performed well. The AEµ for the model with window size 5s 
and 0% overlap was 0.605, the AEµ1/2 0.406, R2 0.661, CR 57.40%, and CR+/-1 90.60%. 
 

4.2.3.4 Generalising Group Models 
The last step was to assess how models would perform in a realistic setting, e.g. a setting where 
workload from an unknown driver is predicted based on data from a pool of other drivers. To 
achieve this, data were sampled using a k-fold approach, with k = Nparticipants. For every ki, 
the training set consisted of all data except the held out participant ki. Workload for participant 
ki was then predicted and model performance evaluated. This method simulated how the trained 
models would perform when predicting data from previously unseen individuals. This obtained 
performance measure reflects real-world settings, where it is impractical for models to be 
trained on all possible drivers and generalising power is thus preferable. 
 
Results showed that models did not perform well when generalizing to unknown drivers. The 
AEµ for all individual models with window size 5s and 0% overlap was 1.522, AEµ1/2 was 
1.163, R2 was -0.538, CR 20.07%, and CR+/-1 55.18%. The strongly negative coefficient of 
determination suggests unsatisfactory performance (the mean of the data is a better predictor 
than the trained model). The relatively low (though above chance level, not satisfactory) 
absolute error rates given R2 are explained by a class imbalance in the dataset, where two 
classes (workload level 1 and 2) dominate. To assess whether this was a possible cause for the 
poor performance of the models, data were resampled using SMOTE (Synthetic Minority Over-
Sampling Technique) (Chawla, Bowyer, Hall, & Kegelmeyer, 2002). This had little discernible 
effect on the model performance, and it was concluded that low performance was not due to the 
class imbalance in the dataset. It was also observed that R2 increases slightly with increasing 
window size, in accordance with earlier studies (Solovey et al., 2014) and contrary to the 
individual and group models in the present study. 

4.2.4 Conclusion 
The results of this study showed that predicting self-reported workload in a simulated realistic 
environment was possible at the individual and group level, but proved difficult when 
generalising to unknown drivers. Several causes can be identified. The simulated scenarios 
might not have induced sufficient workload to be measurable with performance or physiological 
measures. Indeed, most participants indicated that driving in the simulator felt very different 
from actual driving, and was not that difficult at all. Since a self-report measure was used, which 
is a subjective measure, it is possible that different participants had biased response tendencies. 
Lastly, it might also be the case that different physiological response patterns to workload exist, 
in which case the sample size of 18 could have been too small to account for all occurring 
patterns. 
 
This raises the question whether workload prediction is at all possible on non-binary scales, 
while generalising across drivers. To further explore this possibility, a dataset from a study with 
a lane-keeping task was obtained. This study and the results are discussed in the next section. 
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4.3 Estimating Workload in a Forced-Pace Simulator Study 
A dataset was re-used from a previously executed study by Melman et al. (Melman, Abbink, 
van Paassen, de Boer, & Winter, 2018) to further assess multi-level workload prediction in 
drivers. The study featured a challenging lane-keeping task, which had the potential to induce 
higher workload than the previous study. The same physiological and performance 
measurements were used in as in the previously described simulator study. 

4.3.1 Method 

4.3.1.1 Equipment 
The study was performed in a fixed-base driving simulator at the faculty of Aerospace 
Engineering, Delft University of Technology. The simulator consisted of a mockup dashboard 
with three LCD projectors (BenQ W1080ST 1080p) that provided roughly 180-degree vision. 
The simulated vehicle had an automatic gearbox and a top speed of 210 km/h. 
 
Physiological data were logged using a biosignalsPlux wireless hub at 1000Hz. Heart rate was 
recorded using three pre-gelled Ag/AgCl electrodes at the heart’s v3-node. Skin response was 
measured using the same pre-gelled electrodes, placed inside the palm and on the wrist of both 
hands. Simulator data were logged at 100Hz. 

4.3.1.2 Scenarios 
The scenarios used to induce workload in drivers each consisted of a 25km long, single-lane 
road. The road was divided into four 6km sections of different lane width (3.6m, 2.8m, 2.4m, 
2.0m). Each section had seven curves, five with an inner radius of 750m and two with a 500m 
radius. Transitions between sections of different width always took place in a 750m radius 
curve, and were preceded by a road sign indicating a narrowing road. The four sections were 
identical, with the exception that the curves of segments 2 and 4 four were mirrored with respect 
to section 1 and 3. 
 
Cones were placed 8m apart on the road markings on both sides of the road. The main task was 
to hit as few cones as possible. A cone hit was indicated to the participant visually by a red dot 
on the side of the car where the cone was hit, and by a loud auditory beep. Extra difficulty in 
lane-keeping was induced by a perturbation added to the vehicle’s lateral motion. This 
perturbation was an unpredictable multi-sine signal with five frequencies between 0.067Hz and 
0.25Hz, with a maximum summed amplitude of 1,000N. Without the perturbation, lane keeping 
(especially on straight segments) was not considered challenging enough. The width of the 
simulated vehicle was 1.8m. 
 
Three runs were driven with the aim of inducing different levels of workload: a self-paced run 
and two forced-pace runs of 90km/h and 130km/h. In the self-paced run, participants had full 
longitudinal control over the car and could drive at their own pace. In the forced-pace 
conditions, however, the car’s speed was automated and kept constant at 90km/h and 130km/h. 
This would push participants into curves at high speeds, with the goal of raising their workload 
significantly. The three runs were presented to the participants in randomised order. 

4.3.1.3 Procedure 
Participants read and signed an informed consent form, informing them of the purpose and 
procedure of the study. Participants were instructed that the main task was to minimise the total 
number of cone hits. Furthermore, participants were informed that during the experiment, a 
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beep would sound every 20 seconds. At the sounding of this beep, participants were asked to 
verbally answer the question “From 0 to 10, how much effort does the current driving task take 
you?”, with 0 being ‘no effort’, 5 being ‘moderate effort’ and 10 being ‘a lot of effort’. 
 
Before the experiment started, participants were familiarised with the simulator and the 
procedure by driving two 3.7km trial runs. The first trial run was self-paced, the second was 
forced-pace with speed at 110km/h. After the trial run, any question the participant had was 
answered. The electrodes were attached, and a one-minute baseline was recorded. 

4.3.2 Analysis 
Participants rated their mental effort on a scale of 0-10, every 20 seconds. This rating was 
annotated by the experimenter and added to the dataset. What data were logged, data 
preprocessing, ML set generation, model development and evaluation are identical to what has 
been described in the previous study. 

4.3.3 Results 

4.3.3.1 Participants 
In total twenty-four participants took part in the experiment (17 male, 7 female). The average 
age was 24.6 years (SD 2.4). Participants reported driving multiple times a week (11 
participants), at least once a month (7 participants) or less than one month (6 participants). All 
participants held a valid driving license. Reported mental effort was sensitive to the lane width 
variations, although regarding speed only to 130 km/h forced-pace condition (Melman et al., 
2018). 
 

Table 4.2 Performance Metrics RFR Models. 
 
Window Size 5 sec  10 sec   30 sec 
Overlap Factor 0% 50%   0% 50%   0% 50% 
 Individual Model           
AEµ 1.046 0.823   1.213 0.853   1.127 0.870 
AEµ1/2 0.662 0.511   0.833 0.518   0.959 0.694 
R2 0.635 0.763   0.600 0.675   0.561 0.735 
CR 40.74% 50.31%   33.93% 45.83%   20.83% 40.28% 
CR +/- 1  77.31% 84.34%   70.83% 81.94%   65.83% 81.48% 
 Group Model           
AEµ 0.904 0.730   0.984 0.808   1.084 0.876 
AEµ1/2 0.638 0.482   0.722 0.546   0.792 0.663 
R2 0.774 0.830   0.740 0.802   0.718 0.811 
CR 41.61% 51.30%   35.12% 46.44%   34.22% 37.87% 
CR +/- 1 82.30% 88.18%   80.32% 85.88%   73.21% 82.41% 
 Generalising 
Model 

          

AEµ 1.878 1.988   1.988 1.989   1.809 1.717 
AEµ1/2 1.831 1.844   1.718 1.741   1.680 1.568 
R2 0.118 0.079   0.196 0.177   0.411 0.433 
CR 14.09% 13.45%   12.62% 13.44%   15.72% 15.21% 
CR +/- 1 41.92% 40.70%   44.15% 42.29%   47.16% 46.32% 
           



60 Your Car Knows Best 

 

4.3.3.2  Individual Models 
As in the previous study, training and testing sets for the individual models were generated by 
dividing the dataset into two stratified sets. More data per participant were collected than in the 
previous experiment, so data were split with the more stringent 60%/40% split ratio.  
 
Results were similar to the previous study, and indicated that the models performed well, with 
RFR outperforming SVR. An inverse relationship between model performance and overlap 
factor was observed, as well as increasing performance with increasing overlap factors, both as 
in the previous experiment. For all individual models with a window size of 5s and overlap of 
0%, the AEµ was 1.046, the AEµ1/2 0.662, R2 0.635, CR 40.74%, and CR+/-1 77.31%. The 
relatively larger absolute errors, compared to individual models in the previous study, might 
have resulted from the wider workload scale, the different nature of the driving task, or the more 
frequent reporting of mental workload. More information is displayed in Table 4.2. 

4.3.3.3 Group Models 
To evaluate performance at the group level, data were split with a 60%/40% split ratio. Results 
indicated group models attained high performance. For the model with window size 5s and 0% 
overlap, the AEµ was 0.904, the AEµ1/2 0.638, R2 0.774, CR 41.61%, and CR+/-1 82.30%. 
Table 4.2 displays the full results. Performance increased with larger overlap factors, and again 
an (weak) inverse relationship between performance and window size was observed. 

4.3.3.4 Generalising Group Models 
Model performance when generalising to unknown individuals was then assessed, which did 
not perform well in the first simulator experiment. Data sampling methods were identical to the 
previous study. 
 
Results indicated models performed moderately well. For the best performing model with 
window size 30s and 50% overlap, the AEµ was 1.717, the AEµ1/2 1.568, R2 0.433, CR 
15.21%, CR+/-1 46.32%. Although model absolute error is relatively large, the coefficient of 
determination indicated a moderate relationship between model and data. Figure 4.2 below 
displays the predicted and true values for the first four participants. Individual model 
performance varied, with workload being predicted well for some participants, while for others 
showed a correct trend but with a constant offset error. These offset errors inflated the absolute 
error rates and deflated the predictive accuracy despite good model performance. Generally, a 
decreased performance with increased overlap factor was observed (except for the largest 
window size of 30s), as well as increased performance with increased window size. The effect 
is similar to results for the model generalisation step in the previous study, but more 
pronounced. The effect also corresponds with what has been reported before (Solovey et al., 
2014). 
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4.3.4 Conclusion 
The results of this study show similarities with the previous study for individual and group-
based models. Additionally, this second experiment shows that, when predicting multi-level 
workload (11 classes), generalising performance was satisfactory, although still with room for 
improvement. 
 
This study seems to indicate that indeed non-binary workload prediction that generalises to 
unknown individuals is possible using ML methods. Although models generalising between 
individuals showed variations in performance based on which individual’s workload was being 
predicted, including constant offset errors in several participants, overall performance was 
promising. 

Figure 4.2 – The top four windows (A-D) show plots from the first four participants indicate that the 
models performed well, with the relatively large absolute errors likely resulting from individual scaling 
problems in the predictions. These offset errors are indicated in (D): the general trend is predicted well but 
there is a constant offset error. The last two windows (E-F) show box plots, further exploring the 
generalising models from both studies. 
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4.4 Overall Conclusion and Discussion 
The present study tried to model driver workload using machine learning techniques that can 
run on embedded systems, with data collected from low-cost-sensors. Results have shown that 
individual models and within-group models functioned well in both a realistic driving setting 
as well as an artificial lane-keeping task setting. When generalising to unknown drivers, only 
the lane-keeping study produced usable results. As displayed in Figure 4.2 (E-F), in the first 
study the generalised model learns to predict values around the mean to optimize accuracy, in 
the second study the model learns to predict based on the reported workload. 
 
Since the data gathered in the study are time-series human physiological and performance data, 
it likely exhibits strong autocorrelation from one sample to the next. This might be a potential 
explanator for the higher performance in the individual and group models in both studies. Since 
with random sampling, shared variance between samples from the training set and the 
prediction set might bias the classifier towards a higher accuracy. To better assess performance, 
training cases were included where the models had to generalize to unknown individuals. These 
give a more accurate indication of performance, since with this approach there is no shared 
variance between training set (all participants minus participant k) and the testing set 
(participant k). As such, only the generalizing training case offers a reliable index of 
performance. This is an important distinction, since it shows that although using machine 
learning to predict driver workload can lead to promising results, care must be taken when 
interpreting the results. Without care in selecting the sampling techniques used, model 
performance might be inflated. 
 
Possible reasons for the discrepancy in generalizing performance between both studies could 
include that the workload induced in the realistic settings was too low to be reflected in the 
physiological or performance signals, that workload induced by artificial tasks is more easily 
measurable than that induced by more realistic tasks, or that different physiological response 
patterns to workload might exist and that the sample in the first study was either too small or 
contained too much individual variation.  
 
Possible limitations of the present study are that we employed a self-report measure as ground 
truth of the experienced mental workload of the drivers. We did not employ standardised 
workload scales such as NASA TLX, to keep interaction time and demand with the driver to a 
minimum. However, this may have contributed to lower model performance through participant 
response tendencies, and leaves some doubt as to what degree the data captures workload. In 
addition to this, we did not look at compensatory behaviour drivers might employ to manage 
their workload, such as reducing speed in complex or demanding situations.  
 
Future directions are planned. These include feature space normalisation of the dataset to 
attempt to reduce the offset errors observed in some individuals, as well as exploring additional 
feature extraction methods. After this, on-road testing is planned to explore model performance 
in real-world driving settings. Lastly, development of an embedded variant of the model is 
planned. 
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Chapter 5. 
 
Analysing Noisy Driver Physiology Real-Time Using 
Off-the-Shelf Sensors: Heart Rate Analysis Software 

Abstract 
For the prediction of driver workload as described in the previous chapter (4), robust heart rate 
analysis algorithms were required capable of handling noisy PPG data collected ‘in the wild’. 
This chapter describes the development and functioning of HeartPy: a heart rate analysis 
tookling designed to handle noise photoplethysmogram (PPG) data from low-cost sensors. 
Most openly available algorithms are designed to handle electrocardiogram (ECG) data, which 
has different signal properties and morphology, creating a problem when trying to analyse PPG 
data. These ECG-based algorithms typically do not function well on PPG data, especially not 
on the more noisy PPG data collected in experimental settings using low-cost devices. To solve 
this issue, HeartPy was developed to be a noise-resistant algorithm tailored to PPG data. It has 
been implemented in Python and is available on both GitHub and through Python’s package 
manager (PIP). C-based versions are available for Arduino and other embedded systems as well. 
This provides researchers with both pc-based and wearable implementations to be used in 
human factors experiments. 
 
 
This chapter is based on an edited version of the following paper: 
van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2019). Analysing Noisy Driver 
Physiology Real-Time Using Off-the-Shelf Sensors: Heart Rate Analysis Software from the 
Taking the Fast Lane Project. Journal of Open Research Software, 7(1). 
https://doi.org/10.5334/jors.241 
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5.1 Introduction 
In the field of transportation research one of the main goals is to get to a point where zero traffic 
fatalities occur (Belin, Tillgren, & Vedung, 2012). The rise of smart in-car systems makes 
reaching this goal possible. For example, systems exist that automatically take over safety 
critical tasks of drivers when needed, such as autonomous emergency braking systems. When 
a driver fails to spot a hazard on the road in front of the vehicle, these systems intervene to avert 
a collision. However, these are reactions to outside events, whereas another improvement to 
traffic safety can be made by changing the way drivers and their cars interact. Human error, 
attentional failures, or driver states that are incongruent with the driving task (fatigue, overload) 
are a major cause of traffic accidents (Kaplan, Guvensan, Yavuz, & Karalurt, 2015). Sensing 
when a driver is underloaded, overloaded, distracted or tired can improve safety by enabling 
dynamic adjustments in the way in-car systems interact with the driver. For example, by timing 
when navigational or other in-vehicle information systems relay information to the driver, or 
by adapting the content of their messages to match the current driver state, safety can be 
improved (van Gent, Farah, van Nes, & van Arem, 2018a). 
 
Human factors research into driver states is an active field. To estimate driver states, 
physiological measures are often taken together with performance measures (Brookhuis & de 
Waard, 2010). Heart rate data is collected in many studies, as it is sensitive to changes in 
workload (Aasman, Mulder, & Mulder, 1987; Bruce Mehler, Reimer, Coughlin, & Dusek, 
2010; Stuiver et al., 2012) and general driver state (Danisman, Bilasco, Djeraba, & Ihaddadene, 
2010). However, capturing and analysing heart rate in the -often noisy- conditions of either a 
simulator or an on-road setting can be difficult or costly (Brookhuis & de Waard, 2010). The 
recent advances in wearable technology and open hardware platforms, such as the Arduino3 
and Raspberry Pi4, create new possibilities for collecting and analysing physiological data at 
low cost, given that validated algorithms exist to analyse and process it. In this paper we 
describe the development of such an algorithm named HeartPy, which we validated as described 
in (van Gent, Farah, van Nes, & van Arem, 2018b). 

5.1.1 Overview of Project Context 
Within the ‘Taking the Fast Lane’ project5, we are working towards lane-specific advice 
generation. One possible application is the reduction of congestion by using driver advices to 
distribute traffic across the available lanes more efficiently. This means advising drivers on 
where to drive. When interacting with a driver, the timing of messages to the driver is crucial 
not only for safety but also for the effectiveness of the advices (van Gent, Farah, et al., 2018a). 
Advising on those moments that workload is low and the driver can accommodate the advice, 
gives a higher chance of the driver following the advice. However, this means the driver state 
needs to be known. For this reason, a driver state monitoring system is being developed.  
 
To facilitate the on-line capture and analysis of physiological data, a noise-resistant heart rate 
collection and analysis toolkit was developed. We created an easy to use, open source analysis 
toolkit that could handle the collection and analysis of data from available low-cost 
photoplethysmogram (PPG) sensors, as we could not find an openly available, robust analysis 

 
3 See http://www.arduino.cc 
4 See http://www.raspberrypi.org 
5 See http://tfl.tudelft.nl/ 

http://www.arduino.cc/
http://www.raspberrypi.org/
http://tfl.tudelft.nl/
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toolkit for this. In this paper we present its development. The toolkit has been used in two 
simulator studies that modelled driver workload (van Gent, Farah, van Nes, & van Arem, 2017; 
van Gent, Melman, Farah, van Nes, & van Arem, 2018), as well as in a study looking at the 
cognitive effects of monitoring automated driving in different conditions (Stapel, Mullakkal-
Babu, & Happee, 2017, 2018). 

5.1.2 Similar Software 
Similar heart rate analysis software exists. These can be divided into commercial and open 
source variants. 
 
Psychlab and Biopac both offer lab-based solutions including both hardware and software for 
psychophysiological and medical research. Both offer validated devices and algorithms that 
have been widely cited. These are, however, not openly available and come at substantial cost. 
 
Kubios offers both a paid software version for HRV analysis, as well as a free version. The free 
version lacks peak detection functionality and instead requires pre-detected RR-intervals from 
which to calculate HRV measures. 
 
Physionet (Goldberger et al., 2000) is a large open medical database of Electrocardiogram 
(ECG) recordings. They also implement WFDB, a software package to retrieve data from their 
online database and perform waveform analysis. Python bindings are available. WFDB is 
feature rich, however uses a custom data format and can be technical to implement. It also 
doesn’t handle PPG data well. 
 
HRVAS is a heart rate analysis package for Matlab. It offers many features and is openly 
available. It, however, still requires Matlab or an older version of its runtime to run, which is 
not always available. It suffers from the same setback of not handling PPG data well. 
 
The presently discussed heart rate analysis toolkit aims to add to the current body of available 
software by providing a toolkit for both desktop written in Python, and for (embedded) open 
hardware platforms written in C. The toolkit focuses on Photoplethysmogram (PPG) recordings 
but handles ECG data as well. 

5.2 Implementation and Architecture 
HeartPy has been developed to be sensor-independent, with the use of embedded systems with 
low computational resources in mind. We have tried to create a fast method of extracting heart 
beats, that is resistant to types of noise frequently occurring when recording ECG or PPG in 
field-based studies with low-cost sensors. A Python version is available for PC-based research, 
as well as limited implementations for several popular Arduino and ARM-based boards that 
assist in data collection, pre-processing and offer methods of real-time analysis. 

5.2.1 Measuring the Heart Rate Signal 
Two often used ways of measuring the heart rate are the electrocardiogram (ECG) and the 
Photoplethysmogram (PPG). The ECG measures the electrical activations that lead to the 
contraction of the heart muscle, using electrodes attached to the body, usually at the chest. The 
PPG uses a small optical sensor in conjunction with a light source to measure the discoloration 
of the skin as blood perfuses through it after each heartbeat.  
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Most notable in the ECG is the QRS-complex (Figure 5.1a, I-III), which represents the electrical 
activation that leads to the ventricles contracting, expelling blood from the heart muscle. The 
R-peak is the point of largest amplitude in the signal. When extracting heart beats, these peaks 
are marked in the ECG. Advantages of the ECG are that it provides a good signal/noise ratio, 
and the R-peak that is of interest generally has a large amplitude compared to the surrounding 
data points (Figure 5.1c). The main disadvantage is that the measurement of the ECG is invasive 
in terms of human factors studies6. It requires the attachment of wired electrodes to the chest of 
the participant, which can interfere with experimental tasks such as driving. This can be 
undesirable because it can influence participant behaviour, or create potentially dangerous 
situations for example when driving. 

 
6   Note that the definition of ‘invasive’ in human factors studies refers to intrusion into the person’s 
privacy, personal space or thoughts. It differs from the medical definition, where ‘invasive’ indicates 
that a foreign object intrudes into the body. 

Figure 5.1 – a. and b. display the ECG and PPG waveform morphology, respectively. The ECG is 
divided into distinct waves (a, I-V), of which the R-wave (a, II) is used for heart beat extraction. With 
the PPG wave, the systolic peak (b, I) is used. The plot in c. shows the relationship between ECG and 
PPG signals. 
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The PPG measures the discoloration of the skin as blood perfuses through the capillaries and 
arteries after each heartbeat. The signal consists of the systolic peak (Figure 5.1-b, I), dicrotic 
notch (II), and the diastolic peak (III). When extracting heart beats, the systolic peaks (I) are 
used. PPG sensors offer a less invasive way of measuring heart rate data, which is one of their 
main advantages. Usually the sensors are placed at the fingertip, earlobe, or on the wrist using 
a bracelet. Contactless camera-based systems have recently been demonstrated (Bousefsaf, 
Maaoui, & Pruski, 2014; Lewandowska, Ruminsky, Kocejko, & Nowak, 2011; Sun, Hu, 
Azorin-Peris, Kalawsky, & Greenwald, 2012). These offer non-intrusive ways of acquiring the 
PPG signal. PPG signals have the disadvantages of showing more noise, large amplitude 
variations, and the morphology of the peaks displays broader variation (Figure 5.2b, c). This 
complicates analysis of the signal, especially when using software designed for ECG, which 
the available open source tools generally are. The toolkit described in this paper aims to provide 
an efficient means of analysing noisy PPG signals. 

5.2.2 Heart Rate and Heart Rate Variability Measures 
Analysis of the heart signal is split into heart rate (HR) and heart rate variability (HRV) 
measures. The heart rate is a simple measure of the heart period, expressed in the beats per 
minute and the inter-beat interval. Heart rate variability measures describe how the heart rate 
signal varies over time, and can be divided into time-domain measures and frequency-domain 
measures (B Mehler, Reimer, & Wang, 2011; Montano et al., 2009).  
 

Figure 5.2 – The ECG signal (a.) shows a strong QRS complex together with little amplitude variation. 
The PPG signal measured simultaneously while the patient is at rest in a hospital bed (b.) shows some 
amplitude variation but relatively stable morphology. When measuring PPG in a driving simulator using 
low-cost sensors (c.), strong amplitude and waveform morphology variation is visible. 
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When extracting heart beats from a signal, a marker is chosen that can reliably be detected at 
the same position on all heartbeat complexes in the signal. In the ECG the R-peak is often taken 
(Figure 5.1a-II), in the PPG signal the maximum of the Systolic wave is usually marked (Figure 
5.1b-I). Common measures expressing the HR found in the literature are the beats per minute 
(BPM) and the mean inter-beat interval (IBI). HRV is expressed in the median absolute 
deviation of intervals between heart beats (MAD), the standard deviation of intervals between 
heart beats (SDNN), the root mean square of successive differences between neighbouring heart 
beat intervals (RMSSD), the standard deviation of successive differences between neighbouring 
heart beat intervals (SDSD), and the proportion of differences between successive heart beats 
greater than 50ms and 20ms (pNN50, pNN20, resp.). HRV can also be expressed in the 
frequency domain, where two frequency bands are usually included: low frequency (LF, 0,04-
0,15Hz), which is related to short-term blood pressure variation (Bernardi et al., 1994), and 
high frequency (HF, 0,16-0,5Hz), which is a reflection of breathing rate (Montano et al., 2009). 

5.2.3 Analysis Overview 
This section describes the architecture of the algorithm and gives an overview of how the heart 
rate signal is processed and analysed. 

5.2.3.1 Pre-Processing 
The pre-processing options available are peak enhancement, FIR filtering, and outlier detection. 
The peak enhancement function attempts to normalise the amplitude, then increases R-peak 
amplitude relative to the rest of the signal. A Butterworth filter implementation is available to 
remove high frequency noise. Outlier detection on the raw signal is implemented based on a 
modified Hampel Filter (Davies & Gather, 1993) with a window of half the sampling rate. By 
default, only the peak enhancement is performed. Details are discussed in the repository’s 
documentation (van Gent, 2018a). 

5.2.3.2 Peak Detection 
The peak detection phase attempts to accommodate amplitude variation and morphology 
changes of the PPG complexes by using an adaptive peak detection threshold (Figure 5.3, III), 
followed by outlier detection and rejection. To identify heartbeats, a moving average is 
calculated using a window of 0.75 seconds on both sides of each data point. The first and last 
0.75 seconds of the signal are populated with the signal’s mean, no moving average is generated 
for these sections. Regions of interest (ROI) are marked between two points of intersection 
where the signal amplitude is larger than the moving average (Figure 5.3, I-II), which is a 
standard way of detecting peaks. R-peaks are marked at the maximum of each ROI. 
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A special case arises when the signal clips, which can happen for example when a sensor has 
constraints on the range of the signal it can measure, or when digitising an analog signal. The 
algorithm has clipping detection for R-peaks and will attempt to reconstruct the waveform by 
spline interpolation whenever an R-peak displays clipping. To interpolate, 100ms of data before 
clipping onset and 100ms of data after clipping end is used. An example of the process is shown 
in Figure 5.3-IV. 
 
During the peak detection phase, the amplitude of the calculated threshold is adjusted stepwise. 
To find the best fit, the standard deviation between successive differences (SDSD, see also 2.2) 
is minimised. The instantaneous heart rate (BPM) is computed and evaluated in tandem with 
the SDSD. This represents a fast method of approximating the optimal peak detection threshold 
by exploiting the relative regularity of the heart rate signal. As shown in Figure 5.4, missing 
one R-peak (III.) already leads to a substantial increase in SDSD compared to the optimal fit 
(II.). Marking incorrect R-peaks also leads to an increase in SDSD (I.). The lowest SDSD value 
that is not zero, in combination with a likely BPM value, is selected as the best fit. The BPM 
must lie within a predetermined range (default: 40 <= BPM <= 180, range settable by user). 
 

Figure 5.3 - Figure showing the process of peak extraction. A moving average is used as an intersection 
threshold (II). Candidate peaks are marked at the maximum between intersections (III). The moving 
average is adjusted stepwise to compensate for varying PPG waveform morphology (I). IV. shows the 
detection of the onset and end of clipping, and the result after interpolating the clipping segment. 
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5.2.3.3 Error Detection 
Due to the variable PPG waveform morphology, it is possible that after the initial peak fitting 
phase incorrectly marked R-peaks remain. Motion artefacts may be another cause of detection 
error. A correction is performed by thresholding the sequence of RR-intervals. R-peaks are 
considered low confidence if the interval created between two adjacent R-peaks deviates by 
more than 30% of the mean RR-interval of the analysed segment (Figure 5.5). The threshold is 
adaptive based on the current segment with a minimum value of 300ms. We’ve found this to 
be a good approximation for incorrect detections. If any peaks are considered incorrect 
detections, the array of RR-values is recomputed to only contain intervals between two high 
confidence R-peaks. 

Figure 5.4 - Image showing how the dynamic threshold is fitted using SDSD. The last image (III.) 
shows that even missing a single beat will lead to a large increase in SDSD compared to the optimal 
fitting. BPM is also taken into account when fitting. 

Figure 5.5 - The plotted RR-intervals with thresholds (I.), and the resulting rejected peaks (II.). 
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An optional error detection pass is available. Using the method, the signal is segmented into n-
peak sections and each segment evaluated. Segments are marked low quality if more than a 
predetermined percentage of peaks are marked low confidence (default n=10, rejection 
percentage=30%). We found that this pattern of short segments displaying multiple rejected 
peaks, are often indicative of periods of poor signal/noise ratio or signal loss, such as displayed 
in Figure 5.6. By eliminating these short periods from the analysis, the output measures remain 
reliable because only RR-intervals resulting from analysable segments are used in their 
calculation. 
 
The heart rate analysis package was implemented in both Python and embedded C. The 
following two sections describe both implementations as well as their requirements, 
dependencies and availability. 

5.2.4 Python Implementation 
Python is a flexible programming language that is well suited for scientific use (Oliphant, 2007). 
During development the reliance on external dependencies was minimised. The package uses 
the following external packages: 
 

• Numpy is used to handle the data, numerical computations, and the Fast Fourier 
Transform. For these purposes Numpy is much faster than the standard Python 
interpreter. 

• Scipy is used for various filtering and interpolation tasks. 
• Matplotlib is included to plot the results of the analysis if requested by the user. 

 
The implementation of the functions had readability as the main aim. Pep-8 conventions were 
followed in code styling and function design. A quickstart and background information can be 
found in the documentation (van Gent, 2018b) and the code together with detailed Jupyter 
tutorial notebooks can be found on the GitHub (van Gent, 2017). 

5.2.5 Embedded Implementation 
Several C implementations have been developed to facilitate data collection and analysis in lab-
based and field-based studies that utilise wearable technology. Hardware interrupt timers are 

Figure 5.6 – Plot from PPG dataset with low-confidence sections marked. These are ignored in the 
computation of output measures. 
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used to ensure a precise sampling rate is maintained. Most implementations contain a double 
switching buffer to collect the sensor data. As one of the buffers fills up, logging switches to 
the secondary buffer and the content of the first buffer is processed and stored. This ensures 
logging without interruption. 
 
The repository contains Arduino IDE sketches for several popular boards. Wiring diagrams, 
and suggested PCB (printed circuit board) design files for various (wearable) applications are 
in development. The implementations available are briefly discussed below. 

5.2.5.1 Data Logger 
A data logging application is available. Users can set the desired sampling rate they wish to log. 
Adaptive input scaling is available (on by default), which attempts to normalise amplitude over 
time. This is especially useful when measuring at locations where the PPG signal is weaker 
(wrist, neck), or when measuring it on participants, with reduced perfusion, such as those with 
advanced age or a history of smoking. 

5.2.5.2 Peak Finder 
The peak finder implementation analyses the incoming signal real-time for peaks and returns 
both the peak position and RR-interval created between the current and the previous detected 
peak. Error detection based on the last 20 RR-intervals, as well as based on various settable 
parameters is available. See the documentation for more details (van Gent, 2018b). 

5.2.5.3 Time Series Analysis 
The time series analysis implementation is similar to the peak finder implementation, except 
that it calculates and outputs the time-series measurements of both heart rate and heart rate 
variability. It tracks detected peaks in time to computer RR-intervals and ignores intervals when 
there is a missing or rejected peak in between. 

5.2.5.4 Full Implementation 
The full implementation contains the HR and HRV online analysis. All the HR and HRV 
measures mentioned under 5.2.2 are derived from the signal and stored to an on-board SD card, 
together with the original signal. Since a full signal period is first collected, several pre-
processing steps can be taken to improve signal quality prior to analysis. This makes the full 
implementation the most noise-resistant of the available versions. The memory and processing 
requirements, however, are also higher than of the other versions. This makes it less suited for 
long-term wearable solutions required in naturalistic studies, but very suited for environments 
where power is available (in-car, driving simulator, lab-based studies, bicycle with power bank) 
or situations of shorter measurement periods. 

5.3 Quality Control 

5.3.1 General Quality Control 
The code development was centred around ease-of-use and reusability of functions and 
methods. Coding best practices were followed (Wilson et al., 2014). Throughout the 
development process, cyclomatic complexity (cc) was frequently calculated for all functions 
using the python Radon package and the Lizard7 package. Refactoring was applied for functions 

 
7 See https://github.com/terryyin/lizard 

https://github.com/terryyin/lizard
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that had a cc of over 10 8, to ensure maintainability and readability of the code. Git was used 
for version control (Loeliger & McCullough, 2012) throughout the project. 
 
Means for automatic source code validation and automated testing have been implemented. In 
the Python implementation, examples are available in the docstrings that double as doctests. 
Automated continuous integration (CI) testing is implemented through the Travis-CI platform. 
Code coverage, build status and supported Python versions are displayed as badges on the 
GitHub repository. 
 
Several end-to-end examples are included in Jupyter notebooks on the repository, detailing how 
to handle various types of signals with HeartPy. Available examples deal with both good and 
poor quality PPG and ECG signals from various sources (sensors, electrodes, smartwatch, smart 
ring). The examples are designed to familiarise new users with the functionality of the package 
and to highlight possible use cases. 
 
A tutorial series is available (van Gent, 2016), detailing the basics behind the Python 
implementation of the algorithm. Users seeking deeper understanding in the mechanics behind 
the algorithm can follow these. 

5.3.2 Validation 
HeartPy was validated on a dataset collected by PPG sensor from a previous experiment (van 
Gent, Melman, et al., 2018). Heart beats in the dataset were manually annotated to serve as a 
ground truth. The validation was performed on the set and compared to two popular available 
open source algorithms. Error rates showed superior performance of HeartPy on the noisy PPG 
data in the test set. The full validation is described in (van Gent, Farah, et al., 2018b). 

5.4 Availability 

5.4.1 Operating System 
HeartPy has been tested to run on Python 2.7, 3.4, 3.5, 3.6 and 3.7 and above. All updates are 
automatically built using Travis-CI and tested. Results are dynamically displayed on the 
repository as badges. 
 
Several Arduino IDE sketch files have been provided as well for different boards. These have 
been tested on their respective boards, and developed in the Arduino IDE version 1.8.5. They 
are designed to enable researchers low-cost ways of collecting heart rate data as well. 

5.4.2 Additional System Requirements 
The Python implementation’s data handling happens in Numpy, which ensures efficient RAM 
usage and fast execution. The size of the input data will determine memory usage, although the 
requirements are low for most datasets. As an example, we loaded the first data file from the 
first participant in the PPG validation set included on the GitHub (‘pp1_Eind_Som_C.csv’). 
The file represents 10:52 minutes of data sampled at 100Hz. The loaded data takes 261Kb in 
memory. Temporary containers created during analysis and (pre-)processing take up an 
additional 593Kb. This indicates very low resource requirements for most analyses. 

 
8 See http://radon.readthedocs.io/en/latest/api.html#radon.complexity.cc_rank 

http://radon.readthedocs.io/en/latest/api.html#radon.complexity.cc_rank
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Requirements of the embedded hardware conform to RAM and CPU resources available on the 
SOC’s for which the implementation has been designed. More information and absolute values 
are available in the documentation (van Gent, 2018a). 

5.4.3 Dependencies 
HeartPy is dependent on the Numpy, SciPy and Matplotlib packages. The lowest versions 
we’ve tested with HeartPy are Numpy==1.15, Scipy==1.1.0, Matplotlib==2.2.3. These 
versions allow functionality on Python 2.7.  
 
The Arduino implementations depend on standard modules available in the Arduino IDE. The 
versions for Arduino and Teensy boards depends on the SDfat module for communication with 
the SD card for data storage. This module is installed in the Arduino IDE by default. 

5.4.4 List of Contributors 
Jonathan de Bruin has provided valuable advice and suggestions during development and 
testing of HeartPy and will remain active in further development. 

5.4.5 Software Location of Python version 
Name: Zenodo.org 

Persistent identifier: https://zenodo.org/badge/latestdoi/91584229 
Licence: GNU General Public License V3.0 
Publisher: Paul van Gent 
Version published: V1.0.0 
Date published: 31-07-2018 

 
Code repository: GitHub  

Name: Python Heart Rate Analysis Toolkit 
Identifier: https://github.com/paulvangentcom/heartrate_analysis_python 
Licence: GNU General Public License V3.0 
Date published: 31-07-2018 

5.4.6 Software Location of Embedded Version 
Code repository: GitHub  

Name: Arduino Heart Rate Analysis Toolkit 
Identifier: https://github.com/paulvangentcom/heartrate_analysis_Arduino 
Licence: GNU General Public License V3.0 
Date published: 31-07-2018 

5.5 Reuse Potential 
HeartPy can be used researchers, makers, and engineers to create applications that make use of 
(real-time) heart rate data. The toolkit can be used in research settings both in the lab and ‘in 
the wild’. HeartPy handles noise that is typically introduced into heart rate signals when 
recording outside the lab well, and contains many pre-processing options to help clean up poor 
quality signals. The software has been used in the past in for example lab-based simulator 

https://zenodo.org/badge/latestdoi/91584229
https://github.com/paulvangentcom/heartrate_analysis_python
https://github.com/paulvangentcom/heartrate_analysis_Arduino
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contexts (van Gent et al., 2017; van Gent, Melman, et al., 2018), real world driving contexts 
(Stapel et al., 2017, 2018), and as a backend for a pregnancy monitoring tool (Gupta, Kumar, 
& Mago, 2019). 
 
Detailed examples are available on the repository and in the documentation on handling 
different data types that serve to kick-start any new project based on HeartPy. These examples 
are available on the repository as Jupyter notebooks 
(https://github.com/paulvangentcom/heartrate_analysis_python/tree/master/examples). The 
examples cover how to analyse PPG signals from sensors, smartwatches and smart rings (and 
similar devices), as well as ECG signals ranging from good to very poor quality. 
 
HeartPy is designed to easily be integrated into existing projects. All methods are documented 
separately, and most can be used in isolation as well. Throughout the processing pipeline 
everything of interest is stored in a dict{} object, which can be accessed each step of the 
analysis. This facilitates integration with other projects by allowing a fine level of control over 
each step.  
 
We are currently working on incorporating a GUI for use with HeartPy, which will expand the 
reuse potential further towards researchers without coding experience. 

Funding Statement 

Part of the software has been developed within the “Taking the Fast Lane” project, funded by 
NWO TTW , project number 13771. 
 
  

https://github.com/paulvangentcom/heartrate_analysis_python/tree/master/examples
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Chapter 6. 
 
HeartPy: A Novel Heart Rate Algorithm for the 
Analysis of Noisy Signals 

Abstract 
This chapter presents the validation of HeartPy, the development of which was described in the 
previous chapter (5). Heart rate data are often collected in human factors studies, including 
those studies into vehicle automation. Advances in open hardware platforms and off-the-shelf 
photoplethysmogram (PPG) sensors allow for the non-intrusive collection of heart rate data at 
very low cost. However, the PPG signal from these studies is often not trivial to analyse, as the 
PPG signal has different morphology and noise characteristics when compared to the often used 
but more intrusive electrocardiogram (ECG) signals, and the use of low-cost sensors often 
introduces extra noise into the signal. Few validated open source algorithms exist that can 
handle noisy PPG data well, as most available algorithms are designed for ECG data. We 
benchmark the performance on two types of datasets and show that HeartPy performs well.  
 
 
 
 
 
This chapter is based on an edited version of the following paper: 
van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2019). HeartPy: A novel heart rate 
algorithm for the analysis of noisy signals. Transportation Research Part F: Traffic Psychology 
and Behaviour, 66, 368–378. https://doi.org/10.1016/j.trf.2019.09.015 
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6.1 Introduction 
Vehicle automation is rapidly gaining popularity in the agendas of the automotive sector and 
governments. Automation promises to increase traffic flow efficiency (Hoogendoorn, van 
Arem, & Hoogendoorn, 2014) and free up the time of the driver for other activities. However, 
(semi-)autonomous vehicles below SAE level 5 will still need to interact with the driver, for 
example for a transition of control, or in emergency situations when the automation fails. This 
means that the vehicle needs to be aware of the driver’s state (e.g. distraction, fatigue), because 
a transition of control can be dangerous when the driver is not able to take over control of the 
vehicle (Merat, Jamson, Lai, Daly, & Carsten, 2014), because of for example high workload or 
distraction. Additionally, In-Vehicle Information Systems (IVIS) that interact with the driver 
to provide information or advices can also benefit from knowledge about the driver’s state to 
choose the most appropriate interface (Birrel, Young, Stanton, & Jennings, 2017; Park & Kim, 
2015), content and timing of the information (van Gent, Farah, van Nes, & van Arem, 2018a). 
 
Algorithms are being developed that can estimate the driver’s state, whether this is driver 
workload (Solovey, Zec, Garcia Perez, Reimer, & Mehler, 2014; van Gent, Melman, Farah, van 
Nes, & van Arem, 2018), driver distraction (Liang, Reyes, & Lee, 2007) or a driver’s 
interruptibility (S. Kim, Chun, & Dey, 2015). Heart rate is frequently included as an input for 
predicting a driver’s state since it contains information about changes in (driver) workload 
(Mehler et al., 2012; Mehler et al., 2010), stress (Healey & Picard, 2005), and general driver 
state such as drowsiness (Danisman, Bilasco, Djeraba, & Ihaddadene, 2010). In addition to the 
benefits for autonomous syshiring ffefefefetems, many human factors studies focusing on the 
interaction between the driver and (semi-)autonomous vehicles also include heart rate 
measurements (Jamson, Merat, Carsten, & Lai, 2011; Reimer, Mehler, & Coughlin, 2016; 
Reimer, Mehler, Coughlin, Roy, & Dusek, 2011; Stapel, Mullakkal-Babu, & Happee, 2017). 
 
However, capturing heart rate in the often noisy conditions of either a driving simulator or in 
an in-vehicle setting, and subsequently analysing the complex signals either real-time or offline, 
can be difficult or costly (Brookhuis & de Waard, 2010). Low-cost commercial devices are 
available, but these are generally designed for sporting contexts and not specifically for 
scientific research. Furthermore, the proprietary nature of the firmware and software used in 
these devices creates problems with data reliability, reproducibility of results, and integration 
into in-vehicle hardware for the purpose of real-time driver monitoring. This reduces the 
usefulness of these devices for research into (partially) self-driving vehicles and makes it nearly 
impossible to integrate them into actual in-vehicle systems. 
 
One potential solution lies in the recent advances in wearable technology and open hardware 
platforms, such as Arduino9 and Raspberry Pi10. They are open source in both hardware and 
software design, meaning that integration into existing systems is feasible. There is, however, 
a lack of open source available heart rate analysis algorithms that are validated, easy to use and 
able to handle noisy data from low-cost PPG sensors. Implementations of heart rate analysis 
algorithms described in research papers are often not available, poorly documented, or require 
substantial technical expertise to implement properly. 
 

 
9 See http://www.arduino.cc 
10 See http://www.raspberrypi.org 

http://www.arduino.cc/
http://www.raspberrypi.org/
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In a previous study we collected heart rate data with low-cost sensors to develop an affordable 
driver workload estimation approach (van Gent, Farah, van Nes, & van Arem, 2017; van Gent, 
Melman, et al., 2018). Available open source algorithms did not function well on this type of -
often noisy- data and couldn’t easily be integrated into a real-time system. To overcome this 
issue, our aim is to develop a novel algorithm that (i) functions better on this type of noisy data, 
and (ii) provides an easy-to-use analysis method for the collected heart rate data both, offline 
and real-time. We’ve named the developed algorithm HeartPy. For a technical overview of 
HeartPy, its development and its availability, please see (van Gent, Farah, van Nes, & van 
Arem, 2018b). The main aim of this paper is to describe the validation of HeartPy using two 
datasets: a noisy dataset collected in a driving simulator (van Gent et al., 2017), and an openly 
available medical dataset (Jager et al., 2003). 
 
In the rest of this paper, we first describe basic properties of the heart rate signal as they relate 
to data collection and analysis. This is followed by a brief overview of the algorithm’s 
functioning, discussion of our methods, results and concluding remarks. 

6.1.1 Measuring Heart Rate in Naturalistic or Simulated Settings 
There are two major approaches to measuring heart rate, which mainly differ in the 
physiological properties they measure.  
 

Electrocardiogram recordings (ECG) are collected by placing electrodes on the chest near the 
heart. These electrodes measure the electrical activation of the heart during each cardiac cycle. 
The defining feature in the ECG signal is the QRS complex (Figure 6.1a I-III). Advantages of 
the ECG signal are that it directly measures the heart’s electrical activation and that it presents 
a strong QRS complex presence in the resulting signal (Figure 6.1 a). A common source of 
noise in ECG signals are motion artefacts resulting from sensor displacement due to participant 
movement. These tend to fall in the same frequency range as the QRS-complexes, which can 
make it difficult to filter them without deforming the QRS complex (Kirst, Glauner, & 
Ottenbacher, 2011). In traffic related studies, ECG recordings have been used in for example 

Figure 6.1 - The differences in morphology of the ECG wave (a) and PPG wave (b), and the time lag ‘x’ 
between both waves (c). The ECG (a) wave consists of most notably the Q-R-S complex (I-III). The P (IV) 
and T (V) waves are also marked in the plot. The PPG (b) wave consists of the systolic peak (VI), the 
diastolic peak (VIII) and the dichrotic notch (VII). 
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(Brouwer & Dijksterhuis, 2015; Fallahi, Motamedzade, Heidarimoghadam, Soltanian, & 
Miyake, 2016; Farah et al., 2012; Miyaji, Danno, Kawanaka, & Oguri, 2008). The main 
disadvantage is that ECG is not easily measured unintrusively. 
 
Photoplethysmogram (PPG) recordings offer a less invasive method of assessing the cardiac 
cycle. These devices employ an optical sensor to measure the changes in coloration of the skin 
as blood perfuses through the arteries and capillaries with each heartbeat. PPG is typically 
measured at the fingertip or through wrist bracelets. The PPG signal consists of a systolic peak 
(Figure 6.1b-VI), a dicrotic notch (6.1b-VII), and a secondary peak called a diastolic peak (6.1b-
VIII). The secondary peak may be absent in some recordings or of very low amplitude. 
Advantages of the PPG method are that it is low cost, easy to set up, and non-invasive (Elgendi, 
2012; Millasseau et al., 2000). Ways of obtaining the PPG signal contactless through cameras 
have been demonstrated, further reducing intrusiveness (Sun, Hu, Azorin-Peris, Kalawsky, & 
Greenwald, 2012). However, PPG tends to display more amplitude variation over short time-
intervals (Figure 6.1c), more variation in waveform morphology, as well as contain more noise 
from various sources when compared to ECG measurements. This makes analysis more 
difficult. In the traffic domain, PPG sensors have been used by for example (Jarvis, Putze, 
Heger, & Schultz, 2011; van Gent, Melman, et al., 2018; Zhai & Barreto, 2006). 

6.1.2 Analysing Heart Rate Data 
The heart signal is often split into heart rate (HR) and heart rate variability (HRV) measures. 
Heart rate is a simple measure of the heart period, expressed in the beats per minute and the 
inter-beat interval. Heart rate variability measures describe how the heart rate signal varies over 
time, and can be divided into time-domain measures and frequency-domain measures (B 
Mehler, Reimer, & Wang, 2011; Montano et al., 2009). 
 
When extracting heart beats from a signal, a marker is chosen that can reliably be detected at 
the same position on all heartbeat complexes in the signal. In the ECG the R-peak is often taken 
(Fig 1a-II), in the PPG signal the maximum of the Systolic wave is usually marked (Fig 6.1b-
I).  
 
Common measures expressing the HR found in the literature are the beats per minute (BPM) 
and the mean inter-beat interval (IBI). HRV is expressed by the median absolute deviation of 
intervals between heart beats (MAD), the standard deviation of intervals between heart beats 
(SDNN), the root mean square of successive differences between neighbouring heart beat 
intervals (RMSSD), the standard deviation of successive differences between neighbouring 
heart beat intervals (SDSD), and the proportion of differences between successive heart beats 
greater than 50ms and 20ms (pNN50, pNN20, resp.). HRV can also be expressed in the 
frequency domain, where two frequency bands are usually included: low frequency (LF, 0,04-
0,15Hz), which is related to short-term blood pressure variation (Bernardi et al., 1994), and 
high frequency (HF, 0,16-0,5Hz), which is a reflection of breathing rate (Montano et al., 2009). 
 
Despite the different underlying physiological constructs that are measured, a high correlation 
(median 0.97) between peak-peak intervals extracted from ECG and PPG signals has been 
reported (Selvaraj, Jaryal, Santhosh, Deepak, & Anand, 2008). This makes the PPG a valid 
alternative for applications that require non-intrusive heart rate measurements, given that 
validated analysis algorithms exist. 
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6.1.3 Development and Availability of HeartPy 
We developed HeartPy to help analyse noisy heart rate data collected in driving settings (both 
simulated and on-road). The algorithm runs on desktop computers (Python) as well as wearables 
(embedded C) such as Arduino and Teensy boards, both offline and in real-time. The latter 
allows for real-time heart rate analysis in in-car settings as well as other mobile situations, such 
as with cyclists or pedestrians. The algorithm is available as the Python package ‘HeartPy’, 
hosted on GitHub (van Gent, 2017) and is installable through Python’s ‘pip’ package manager 
as well. Documentation is available through the GitHub page. The wearable embedded C 
version is available on GitHub as well (van Gent, 2018), together with documentation linked 
there. 
 
HeartPy was designed to be resistant to typical noise patterns (e.g. motion artefacts, momentary 
signal loss) of participants engaged in other tasks (driving simulator, on-road car experiment, 
bike experiment), to be capable of handling signals from low-cost off-the-shelf sensors, and to 
be user friendly. 

6.1.4 Overview of the HeartPy Algorithm 
HeartPy comes with various pre-processing options to clean up signals, including FIR filtering 
and outlier detection. This section briefly outlines the peak detection methods. Please refer to 
van Gent et al., (2018b) for more information on the software, its availability and its 
functioning. 

 
Peak detection uses an adaptive threshold (Figure 6.2, III) to accommodate for morphology and 
amplitude variation in the PPG waveform, followed by outlier detection and rejection. To 
identify heartbeats, a moving average is calculated using a window of 0.75 seconds on both 

Figure 6.2 – Figure showing the process of peak extraction. A moving average is used as an intersection 
threshold (I). Candidate peaks are marked at the maximum between intersections (II), with optional 
spline interpolation available to improve position accuracy. The moving average is raised stepwise (III). 
IV. shows the detection of the onset and end of clipping, and the result after interpolating the clipping 
segment. 



88 Your Car Knows Best 

 

sides of each data point. Regions of interest (ROI) are computed between two points of 
intersection where the signal amplitude is larger than the moving average (Figure 6.2, I-II), 
which is a standard way of detecting peaks. Two methods of obtaining a peak’s location are 
included. In the first approach, the peak position is simply taken to be the highest point in the 
marked ROI. Although this is a computationally low-cost operation, its accuracy depends on 
the sampling rate used, with a higher sampling rate resulting in more accurate results. In the 
second method a univariate spline is used to upsample and interpolate the ROI, which is then 
solved for its maximum. This requires more computation but is also more accurate, especially 
with lower sampling rates. Both methods are available in HeartPy, by default the fast method 
is used. 
Signal clipping is a special case that hinders the accurate placement of a peak’s position. 
Clipping can occur for various reasons, for example when digitising an analog signal. HeartPy 
detects the onset and end of clipping segments, and will attempt to reconstruct the waveform 
by spline interpolation, as shown in Figure 6.2-IV. 
 
During the peak detection phase, the amplitude of the calculated threshold is adjusted stepwise 
(Figure 6.2-III). The best fit is determined by minimising the standard deviation of peak-peak 
intervals (SDNN, see also 2.2). The instantaneous heart rate (BPM) is computed and evaluated 
in tandem with the SDNN. This represents a fast method of approximating the optimal threshold 
amplitude by using the (relative) regularity of the heart rate signal. As shown in Figure 6.3, 
missing one peak (III.) already leads to a substantial increase in SDNN compared to the optimal 
fit (II.). Marking incorrect peak positions also leads to an increase in SDNN (I.). The lowest 
SDNN value that is not zero, in combination with a reasonable BPM value, is selected. The 
BPM must lie within a predetermined range (default: 40 <= BPM <= 180, range settable by 
user). 
 

Due to the variable PPG waveform morphology, it is possible that after the initial peak fitting 
phase incorrectly marked peaks remain. Motion artefacts may be another cause of detection 
error. A correction is performed by thresholding the sequence of peak-peak intervals. Peaks are 
considered low confidence if the interval created between two adjacent peaks deviates by more 
than 30% of the mean peak-peak interval of the analysed segment (Figure 6.4). The threshold 

Figure 6.3 – Figure showing the effects of missing or additional peaks on the SDNN metric. The last image 
(III.) shows that missing a single beat will already lead to a large increase in SDNN compared to the 
optimal fitting. BPM is also considered when fitting. 
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is adaptive based on the current segment with a minimum value of 300ms. We’ve found this to 
be a good approximation for incorrect detections. If any peaks are considered incorrect 
detections, the array of peak-peak intervals is recomputed to only contain intervals between two 
high confidence peak positions.  

6.2 Methods 
The algorithm was validated using two datasets from two different experiments and research 
domains. The first dataset used was collected with a low-cost PPG sensor in a driving simulator 
experiment (van Gent, Melman, et al., 2018). This dataset contains approximately 20.7 hours 
of PPG recordings. The second dataset is the openly available Long-Term ST Database (Jager 
et al., 2003), containing 86 long ECG recordings of 80 participants, with each recording being 
between 21 and 24 hours. 
 
The PPG dataset was used in its entirety and split into one-minute segments. Because the ECG 
dataset was so large, 1.000 one-minute segments were randomly selected from the database. 
The peak positions in all the segments from both datasets were annotated manually and checked 
a second time to serve as a ground truth. These annotations are also available on the GitHub 
page (van Gent, 2017). For both data sets a one-minute length for the segments was used to 
balance both the number of peaks in each segment with the time needed to manually annotate 
all segments. The algorithm performance was compared to the annotated data on four variables: 
detected peak position, mean of the peak-peak intervals calculated over the analysed segment, 
beats per minute computed by the algorithm (a HR measure), and a common heart rate 
variability (HRV) measure: the standard deviation of successive differences (SDSD). To 
quantify the accuracy of the algorithm’s predictions, we used the Root Mean Squared Error 
(RMSE), defined as: 

Eq.1  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑(𝑦𝑦− ŷ)2

𝑛𝑛
 

 
Where y is the ground truth value, y  ̂is the value predicted by the algorithm, and n the number 
of comparisons. For the accuracy of the absolute peak-positions in time as compared to the 
annotated ground truth, we used the mean of the absolute deviations. 

Figure 6.4 – The plotted peak-peak intervals with thresholds (I.), and the resulting rejected peaks (II.) 
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6.2.1 Error Types 
 

In addition to the performance comparison, the results of the one-minute segments were plotted 
and three types of errors annotated (shown in Figure 6.5): ‘Incorrectly rejected’ – meaning that 
a correct peak has been marked as low confidence (Figure 6.5a). ‘Missed’ – indicating that a 
peak is present but not marked (Figure 6.5b). ‘Incorrectly accepted’ – indicating a peak is 
marked where no peak is considered present by the human annotator (Figure 6.5c). Figure 6.5d, 
e and f show other examples that were classified as ‘incorrectly accepted’: cases where a peak 
was marked at a non-maximum position, or where a diastolic peak was marked instead of a 
systolic peak. The algorithm has been designed to minimise the ‘incorrectly accepted’ error 
type for reasons discussed in the next section.  

6.2.2 Minimising the Correct Error Type 
The algorithm was designed to minimise the ‘incorrectly accepted’ peak error types because 
this error type has the strongest effect on calculated output measures. This section illustrates 
why the choice was made. 
 
Heart rate variability (HRV) measures are not robust against outliers. Marking a peak on an 
anomalous position affects these measures since they express the variation in the intervals 
between peak positions. Marking a peak at an incorrect time position creates a deviation in the 
length of the surrounding intervals which will strongly influence the variance in the sample. 
Note that the heart rate (HR) measures such as IBI and BPM are quite resistant to outliers 
because they use the mean of all peak-to-peak intervals in a given signal segment.  
 
To further explain and show these effects, a bootstrapped simulation was performed. We took 
a manually annotated one-minute segment of PPG heart rate data and artificially introduced two 
types of errors: 
 

1. “Incorrectly rejected” peaks were simulated by dropping a random n% of peaks from 
the signal. Measures were then calculated on intervals between peaks where no missing 
value occurred in between, mimicking the algorithm’s behaviour of only computing 
peak-peak intervals between two accepted peaks. 
 

Figure 6.5 – Figure displaying the possible errors. These are: a.) ‘incorrectly rejected’, b.) ‘missed’, c.) 
‘incorrectly accepted’. Peaks marked on a correct QRS complex but not on its peak maximum, are also 
counted as ‘incorrectly accepted’. This type of error is shown in d.). Other possible mistakes counted as 
‘incorrectly accepted’ are marking a peak at a non-maximum position (e), or incorrectly marking a 
diastolic peak (f). 
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2. “Incorrectly accepted” peaks were simulated by introducing a position error into a 
random n% of all peaks. The error disturbed the peak position randomly by 0.1% - 10%, 
meaning a random positional disturbance of between 1ms and 100ms. For each selected 
peak the disturbance magnitude was randomised. 

 
Simulations were run with values of 5%, 10% and 20% for ‘n’. Each simulation run was 
bootstrapped for 10.000 iterations to reduce the effects of the random selection process. 
 
Results show that the effect of incorrect beat detections (displacement scenario) is significantly 
stronger than the effect of missing values, especially the effect on HRV measures. The effect 
on BPM is negligible in both the missing and displacement simulations, showing the HR 
measures’ resilience to outliers. Effects on HRV measures are substantial. The data are 
displayed in table 6.1 below, and the analysis notebook is available on the Python GitHub (van 
Gent, 2017). 

 
 
The data in the table show that the errors induced are especially large in the case of the 
variability measures. As discussed, this has to do with what the measures are designed to 
express: the variability measures express the variation in the beat-to-beat intervals. Considering 
that for example the RMSSD range tends to lie between roughly 20 – 55 (G. M. Kim & Woo, 
2011) and in our experience rarely exceeds 125, the error of 34.446 introduced by displacing 
20% of peaks is more than large enough to bury any effects of external factors on HRV. Effects 
on BPM (and thus IBI as well) are negligible, however, reflecting their relative insensitivity to 
outliers. 

6.3 Results 

6.3.1 PPG Data 
The PPG dataset represents 20.7 hours of PPG recordings split into 1,240 one-minute segments. 
Due to sensor disconnects, 1.095 (18.25 hours) of the data contained a heart rate signal. The 
signals were recorded at the tip of the finger as participants were driving in a driving simulator. 

Errors introduced in simulated scenarios (n=10.000) 

 Missing n% of peaks Displacing n% of peaks 

 n=5% n=10% n=20% n=5% n=10% n=20% 

BPM 0.001 0.007 0.062 0.000 0.000 0.000 

IBI 0.012 0.067 0.541 0.002 0.004 0.003 

SDNN 0.004 0.042 0.267 2.635 5.172 10.006 

SDSD 0.614 1.210 2.354 9.543 16.365 26.200 

RMSSD 0.773 1.565 3.161 10.774 19.658 34.446 

pNN20 0.006 0.012 0.025 0.043 0.082 0.149 

pNN50 0.005 0.010 0.022 0.064 0.125 0.232 

Table 6.1 –The absolute errors introduced in the simulations. The errors introduced in the HRV measures 
by displaced peaks are particularly evident (marked grey). 
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The sensor placement did not interfere with driving. Participants were instructed to drive as 
they normally would in real life.  
 
The data set was manually annotated by a human, then checked a second time to ensure 
accuracy. To annotate the set a custom tool was developed based on the Python’s ‘pyplot’ 
plotting library. Each of the segments was visualised, and in the tool the annotator could 
manually mark peak locations, correct incorrectly placed peak locations and delete incorrect 
detections. Segments where little to no heart rate signal was present (for example due to the 
sensor detaching from the fingertip) were excluded. This left a total of 1.095 segments for the 
validation phase. A total of 89,837 peaks were detected by the algorithm. Of these, 84,845 
(95.11%) were correctly accepted, and 2,977 (3.34%) were correctly rejected automatically. 
This indicates that for 98.45% of all detections, the algorithm correctly labelled the peak 
locations. 957 (1.07%) peaks were incorrectly rejected. 426 (0.48%) peaks were incorrectly 
accepted. A total of 632 peaks were annotated as missed. Most of the incorrectly accepted peaks 
occur either because a peak location was marked not at but nearby its maximum (Figure 6.5, e) 
which induces a minor error, or because a diastolic (secondary) peak is marked as a peak (Figure 
6.5, f) which induces a larger error. Future updates of the algorithm aim to further reduce these 
error rates. 
 
We compared the performance of our algorithm with an implementation of the Pan-Tompkins 
QRS algorithm (Pan & Tompkins, 1985), as well as with an open source algorithm called 
HRVAS ECGViewer11. The latter was chosen because it is one of the first hits when searching 
for open source heart rate analysis software on Google and it shows high usage statistics. It is 
designed for Matlab, but a standalone version is also available. The Pan Tompkins algorithm is 
a computationally efficient algorithm widely used in ECG analysis. 
 
The comparison results are displayed in Table 6.2. They indicate that our algorithm 
significantly outperforms the other two open source algorithms on PPG data. The peak position 
error is 0.89 (milliseconds), indicates that the mean of the errors between the actual peaks and 
the predicted peaks was low compared to the other two algorithms. The resulting peak-peak 
intervals were also more accurate compared to the other algorithms. This is likely due to less 
missed and less incorrectly accepted beats in our case. 
 
Differences in BPM error are not very large. Since the BPM uses the mean of all peak-peak 
intervals in a segment, it is relatively robust to a few incorrectly placed peak positions. 
However, effects on heart rate variability measures are large. To evaluate HRV performance 
we selected the Standard Deviation of Successive Differences (SDSD), which is one often used 
HRV measure that expresses how the intervals between the heart beats vary over time. It shows 
a large root mean squared error in the other two algorithms. This shows the importance of 
correctly identifying peak positions as well as identifying incorrectly labelled peaks, as 
deviations risk introducing substantial error to the output measures. 
 
 
 
 

 
11 See: https://github.com/jramshur/ECG_Viewer 

https://github.com/jramshur/ECG_Viewer
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All analysis data, code and results are also available on the GitHub page (van Gent, 2017) in 
the form of Jupyter notebooks. These can be opened and viewed directly on GitHub, or 
downloaded and executed using the Python 3.6 Anaconda distribution12. 

6.3.2 ECG Data 
The 1.000 sections selected from the ECG dataset comprise a total of 16.67 hours of heart rate 
data. More information about the dataset is available in the publication of Jager et al. (2003). 
 
The dataset was fully annotated. A total of 73.841 peaks were detected by the algorithm. Of 
these, 73.443 (99.46%) were correctly accepted and 190 (0.26%) were correctly rejected, 
representing a total of 99.72% of peaks correctly treated. 54 (0.07%) of peaks were incorrectly 
rejected, and 154 (0.21%) were incorrectly accepted. A total of 929 peaks were annotated as 
missed, meaning they were not detected by the algorithm. Note that with ECG, which has a 
more stable morphology, performance is significantly improved compared to PPG. 
 
This performance was compared to the same algorithms as described above. The developed 
algorithm again showed superior performance on ECG data, although we were impressed with 
the performance of ECGViewer as well. The peak position error is lower compared to the PPG 
data, reflecting that the ECG waveform is easier to detect and more stable than the PPG 
waveform. The peak finding method we employ does not discriminate between the types of 
waveforms and can handle considerable morphological distortion. 
 
The details are displayed in table 6.3 below. 

 

 
12 See: https://www.anaconda.com/download/ 

Comparison of algorithm performance on PPG dataset (N=1,240) 
 peak location error 

(ms) 
RMSE peak-peak 

intervals 
RMSE BPM RMSE SDSD 

Developed algorithm 0.89 29.64 3.77 167.77 
Pan-Tompkins 7.62 267.67 10.73 1060.77 
HRVAS ECGViewer 4.25 171.32 4.76 364.74 

Comparison of algorithm performance on ECG dataset (N=1,000) 
 RMSE peak location RMSE peak-peak 

intervals 
RMSE BPM RMSE SDSD 

Developed algorithm 0.16 6.38 0.41 221.79 
Pan-Tompkins 6.84 335.25 3.07 371.38 
HRVAS ECGViewer 3.64 97.34 1.88 231.96 

Table 6.2 – Table showing how our algorithm compares to two other popular open source algorithms on 
key metrics. 

Table 6.3 – Table showing how our algorithm compares to two other popular open source algorithms on 
key metrics. 

https://www.anaconda.com/download/
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As with the PPG data, all analysis data, code and results are also available on the GitHub page 
(van Gent, 2017) in the form of Jupyter Notebooks. These can be used in conjunction with the 
manually annotated datasets to validate the performances on both datasets. 
 
It must be noted that the lower performance of the other two algorithms is mainly due to a 
relatively small number of segments. Further analysis showed that for the developed algorithm, 
98.7% of all segments had an error of 25 milliseconds or less in the computed peak-peak 
intervals, with 58.1% showing no error at all. For the Pan-Tompkins implementation the 
majority (67.5%) also showed an error of 25ms of less, with 9.5% showing no error at all. For 
the ECGViewer implementation 77% showed an error of less than 25ms. No segments were 
without error. The reason for this is likely that this implementation uses a template matching 
system for beat detection, which while robust to noise, also creates slight errors in the positions 
of detected peaks because the template rarely matches the heartrate waveform in the measured 
signal perfectly. 
 
Furthermore, the ECGViewer implementation for example failed to detect any peaks in 108 
segments (10.8%), likely due to noise or deviating morphology. One such example is shown in 
the figure 6.6 below. These segments were excluded from the calculation13 of the performance 
measures from Table 6.3, so they do not negatively influence these measures. 

6.3.3 Additional Information Embedded in the Heart Rate Signal: Breathing Patterns 
In addition to heart rate, the developed algorithm extracts breathing patterns from the collected 
heart rate data as well. Heart rate tends to increase during inhalation and decrease again during 
exhalation (Grossman & Taylor, 2007). This creates the possibility of extracting an estimate of 
the breathing rate from heart rate signals.  
 
We’ve included a basic estimation method in the algorithm and validated it on an existing 
dataset (Karlen, Raman, Ansermino, & Dumont, 2013), that includes both PPG and respiratory 
data from patients undergoing surgery. Ground truth breathing rate was calculated from the 
CO2 capnometry signal, which measures the increase in carbon dioxide concentration whenever 
the patient exhales. To extract breathing rate from the PPG signal the peak-peak intervals were 

 
13 Note that HeartPy can handle these edge cases since V1.2.4 

Figure 6.6 - An example of a noisy ECG recording where the ECGViewer implementation fails to detect 
any complexes. These segments were excluded from further analysis. 
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upsampled, and their cycles marked. The following image visualises how the upsampled signal 
relates to the CO2 capnometry signal. 
 

 
As discussed in (Grossman & Taylor, 2007), the relationship between heart rate variability and 
breathing rate is not a linear one and can be impacted by factors such as medication use and 
physical strain. The results of our validation on this dataset reflect this nonlinear relationship. 
The estimates correspond to the breathing rate determined by capnometry but include detection 
errors. See table 6.4 for an overview of the detection errors expressed as the difference in Hertz 
between ground truth and calculated measures. The mean error present in the PPG estimation 
compared to the ground truth estimation of breathing rate, corresponds to a confidence interval 
of roughly 5-10%. This illustrates that the breathing rate extracted from the PPG signal should 
only be taken as an estimation and not an absolute value. Future improvements to the method 
might increase accuracy. The data files and analysis code are available on the GitHub page (van 
Gent, 2017). 

 
 
 

6.4 Discussion and Conclusion 
In this paper we have presented the validation analysis and results of a novel, robust heart rate 
analysis algorithm developed for use in lab settings, as well as in-vehicle and other mobile 
settings. The motivation to develop such an algorithm is that current available open source 
algorithms do not work well on noisy PPG data, are often highly technical or expensive to 
implement, and because low-cost commercial measurement devices offer no suitable solution 
for scientific purposes. The developed algorithm runs both in real-time and offline, on desktop 
computers and wearable (embedded) hardware. This makes it ideal for human factors studies 

 mean median minimum maximum 
Error magnitude 0.028 0.015 0 0.102 

Figure 6.7 - Figure showing how the CO2 capnometry signal (top) relates to the breathing signal extracted 
from the PPG. 

Table 6.4 - Table showing the difference between the ground truth breathing rate and the breathing rate 
estimated from the PPG. 
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seeking to incorporate heart rate analysis in their design, which includes studies into how 
automated vehicles can obtain and maintain an awareness of the driver’s state. 
 
We have evaluated the algorithm’s performance on a manually annotated PPG and an ECG data 
set and compared the performance to two other available algorithms. Results showed superior 
performance on PPG data. This reflects that the lower performance of the two other algorithms 
is specific to the type of data: PPG data collected in the field using low-cost sensors has quite 
different signal and noise properties compared to ECG data, for which many available open 
source algorithms are designed. Despite the higher noise rate, PPG data can be collected using 
less intrusive or even contactless methods, which makes it ideal for real-world driving settings. 
On ECG data the differences between algorithms were less pronounced. 
 
Making automated vehicles smarter means they need to be aware of the driver’s state. Heart 
rate is one physiological marker that allows the estimation of driver state on several levels. By 
offering an openly available and validated toolkit for heart rate analysis, we aim to increase the 
research possibilities into this field, as well as the reliability and reproducibility of results 
obtained.  
 
One limitation of the present validation is that it was performed on 2.095 one-minute segments, 
due to the time-intensive nature of the manual annotation. The annotation was done by hand, 
which means minor errors can exist in the annotations. Although we believe that the reported 
performance is a good reflection of real-world performance due to the two different datasets 
used, a larger validation will add further confidence to the results. Furthermore, the included 
breathing rate estimation should be taken as an estimated value rather than an absolute one, 
since the relationship between heart rate and breathing rate is not linear. Future steps include 
this larger validation, as well as increasing the accuracy and functionality of the algorithm, and 
comparing its performance to commercially available solutions. 
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Chapter 7. 
 
The Persuasive Automobile: Design and Evaluation 
of a Persuasive Lane-Specific Advice Human 
Machine Interface 

Abstract 
Traffic congestion  is a major societal challenge. By advising drivers on the optimal lane to 
drive, traffic flow can be improved and congestion reduced. This chapter presents the 
development of a lane-specific Human Machine Interface (HMI) designed to deliver lane-
specific advices to the driver. It builds on the conceptual model from chapter 3 by determining 
and evaluating both message content and message modality from the information transfer level, 
as well as persuasive techniques as descibed in the system level. The challenge is to persuade 
drivers to follow an advice that is beneficial to the traffic situation, but may not be immediately 
beneficial to the drivers themselves. To solve this challenge a persuasive lane-specific advice 
system was developed and tested. This chapter describes the design process of the persuasive 
system, followed by two questionnaire studies and a simulator study. In the simulator study two 
types of persuasion were tested: gamified and socially cooperative persuasion. Participants 
drove on two separate days, with a web-portal intervention being shown to the treatment groups 
between the two days. Those in the treatment groups followed significantly more advices (117 
and 111) than those in the control group (89). No significant differences were visible between 
competitive and cooperative groups. The differences between groups only emerged on the 
second day, indicating the intervention was the likely cause of the effect. 
 
This chapter is based on an edited version of the following paper: 
Gent, P. Van, Farah, H., Van Nes, N., & Van Arem, B. (2020). The Persuasive Automobile: 
Design and Evaluation of a Persuasive Lane-Specific Advice Human Machine Interface. IEEE 
Open Journal of Intelligent Transportation Systems, 1(January), 93–108. 
https://doi.org/10.1109/ojits.2020.3005528 
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7.1 Introduction 

7.1.1 Background 
The effects of congestion on both the economy and individuals are large. Aside from annoyance 
and time loss, congestion is a source of higher emissions (Zhang, Batterman, & Dion, 2011) 
and negatively impacts safety. The benefits of reducing congestion are obviously large. Driver-
assistance systems that can help reduce congestion and improve flow are for example connected 
cruise control (Schakel, Arem, & Netten, 2010), or a congestion assistant (Van Driel & Van 
Arem, 2010) which, based on simulation experiments, would reduce travel-time delay by 30% 
even at a 10% penetration rate.  
 
Recent technological advancements add to the possibilities by enabling vehicles to detect the 
specific lane they are driving on based on low-cost precise point positioning GPS receivers (V. 
L. Knoop, De Bakker, Tiberius, & Van Arem, 2013; Victor L. Knoop, De Bakker, Tiberius, & 
Van Arem, 2017). This makes traffic control on the individual level possible by advising drivers 
on a specific lane they can take (Schakel & Van Arem, 2014; Yao, Knoop, & van Arem, 2017). 
Such an advice system needs to be safe as well as persuasive, in order for it to be successful 
(van Gent, Farah, van Nes, & van Arem, 2019). The next question then becomes how to make 
such a system persuasive and safe. To determine this, we investigate and describe the 
development of a persuasive lane-specific advice Human Machine Interface (HMI) in this 
paper.  
 
The rest of section 1 introduces the literature background for the study. Section 2 reports the 
methods and results of two questionnaire studies that were performed to determine the type of 
auditory chime used to alert the driver to an advice, the location of the interface, and whether 
to provide context for the advice (reason for advice and feedback on behaviour). In section 3 
we develop the persuasive advices and a web-portal for the simulator study based on the results 
of the questionnaire studies from section 2. Section 4 describes the methods used in the 
simulator study to evaluate the effectiveness of the persuasive lane change advice. Section 5 
describes the results of the simulator study, and in section 6 and 7 the results are discussed, and 
conclusions drawn. 

7.1.2 Objectives 
We are working on an in-car system with the goal of reducing congestion through lane-specific 
advices. This will be achieved by stimulating a better distribution of traffic over the available 
lanes on a multi-lane highway through lane-specific advices. The challenge is to persuade 
drivers to follow non-compulsory advices that are in the benefit of all drivers on a given road 
segment, but not necessarily in the benefit of individual drivers (Risto, 2014). Some drivers 
may, for example, be asked to move to a slower lane in order to maintain a balanced traffic 
system. 
 
The main objective of this study is to find a way to persuade drivers to comply with these 
voluntary lane-specific advice messages, using methods from the field of persuasive technology 
(Fogg, 2003; Oinas-Kukkonen, 2013; van Gent et al., 2019). To achieve this, we develop a 
multimodal (auditory, visual) interface to convey lane-specific requests to the driver. This leads 
to the following sub-goals: to design an auditory and visual signal, to determine whether to 
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provide context for the advice to the driver (reason for advice, feedback on behaviour), and to 
define the safest location for the interface. This paper describes the design process of the 
interface in two iterative steps, and the evaluation of the lane-specific advice HMI’s effects in 
a driving simulator. 

7.1.3 Techniques for Driver Persuasion 
Our aim is to stimulate drivers to follow lane-specific advice messages, without enforcing 
compliance. Gamification has been used to change behaviour in people (Hamari, Koivisto, & 
Sarsa, 2014). Video games are designed to create environments that motivate people to display 
certain behaviours over others, often to win the game. Gamification is about applying those 
game design elements that elicit different behaviour patterns to non-game contexts (Deterding, 
Dixon, Khaled, & Nacke, 2011). Such elements include challenges, leader boards and 
achievements (Hamari et al., 2014). In driving contexts gamification has been used for example 
to encourage eco-driving behaviour (Ecker, Holzer, Broy, & Butz, 2011; Nousias et al., 2019; 
Steinberger, Proppe, Schroeter, & Alt, 2016), and to encourage safer driving behaviour 
(Bahadoor & Hosein, 2016; Shi, Lee, Kurczak, & Lee, 2012). Other ways of achieving 
behavioural change include methods from persuasive technology (Fogg, 2003; Hutchison & 
Mitchell, 2008) and behavioural economics (Avineri, 2011; Cialdini, 2006; Kahneman, 2013).  
 
The different approaches are unified in the Persuasive Systems Design (PSD) model, which 
takes concepts from the different persuasive fields and brings them together into a single model 
(Oinas-Kukkonen & Harjumaa, 2008, 2009). The PSD specifies that a system can be made 
more persuasive by offering support to the user in various categories: primary task support, 
dialogue support, system credibility support and social support (Oinas-Kukkonen & Harjumaa, 
2008; van Gent et al., 2019). 
 
Persuading different people in different situations might require different approaches, and there 
are indications that not every person is equally susceptible to being persuaded, at least from 
studies on health-based persuasive applications (Kaptein, Lacroix, & Saini, 2010) and gaming 
settings (Orji, Mandryk, & Vassileva, 2015; Orji, Vassileva, & Mandryk, 2014). This provides 
a challenge because we need to maximise persuasive potential while not creating a personalised 
solution for every driver, which would needlessly complicate the design. Orji et al. (Orji et al., 
2014) provide a possible solution. The authors investigated persuasive effectiveness on a range 
of ‘gamer personalities’ in 1.108 gamers. The personality types they used were derived from a 
neurobiological study into gamer personalities called BrainHEX (Nacke, Bateman, & Mandryk, 
2011). The personality types found (seeker, survivor, daredevil, mastermind, conqueror, 
socialiser, achiever) had, as expected, stronger relations with gaming and cannot readily be 
translated to the driving environment. However, a set of persuasive techniques were found that 
worked well across all the different personality types. These are competition and comparison, 
which fit in the “social support” component from the PSD model (Oinas-Kukkonen & 
Harjumaa, 2008). Self-monitoring and suggestion, respectively from “dialogue support” and 
“primary task support” in the PSD, were found to be effective across the different personality 
types. Interestingly, praise and rewards did not have a strong effect in this study, contrary to 
what others have reported. This may be in line with what is reported by (Scott, Pereira, & 
Oakley, 2012), where the effectiveness of feedback combined especially with emotionally 
expressive avatars did not always work well, especially when negative emotions on avatars 
were combined with negative text messages. 
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7.1.4 Defining Message Modality 
Aside from persuading a driver, the modality that is used to convey any type of information to 
a driver is of major importance, as humans have limited information processing capacity. 
Dangerous and even life-threatening situations may occur when overloading a driver (de 
Waard, 1996; Fuller, 2005; Young, Brookhuis, Wickens, & Hancock, 2015), or when 
distracting a driver with an advice at the wrong moment (Horberry, Anderson, Regan, Triggs, 
& Brown, 2006; Reyes & Lee, 2004). 
 
Visual interfaces have the advantage of having high information bandwidth and being self-
paced. However, many visual interfaces require the driver to take their eyes off the road. Taking 
eyes off the road has been shown to have serious consequences for lane-keeping ability (Peng, 
Boyle, & Hallmark, 2013), and may cause drivers to miss safety-critical events on the road. 
 
Heads-Up Displays (HUD) have been put forward as a means of reducing the negative aspects 
of visual displays in cars. However, HUDs have some problems as well related to both 
psychological and biological processes. The ‘looked-but-failed-to-see’ problem (Herslund & 
Jørgensen, 2003) is an example. This occurs when an object (like a pedestrian, cyclist, or other 
car) is within the field of view of a driver, but is not perceived. This seems to be a cognitive 
problem rather than a sensory one, where the object is visible on the retina but not consciously 
registered by the driver. HUDs might exacerbate this issue by adding an additional stimulus to 
the driver’s field of view. In other words: even if the driver’s eyes are on the road, that does not 
mean the driver’s attention is on the road. In this regard it is important to keep visually presented 
information brief and easily understood, for example by making stimuli similar to their real-
world counterparts. This reduces cognitive distance (Kim & Dey, 2015), which is defined as 
the ease of transforming digital information to a task at hand (Kim & Dey, 2009). An example 
of an advice with a short cognitive distance is a lane change request that displays the current 
lane configuration, the ego vehicle on its current lane, and an arrow or instruction pointing to 
the lane to which the driver needs to move. This way the driver does not need to expend much 
cognitive processing on understanding the advice, but can instead focus on the requested 
behaviour. 
 
Biological processes might also interfere with driving. For example, the eye has a so-called 
resting focus (or ‘dark focus’), which is the focal distance of the eye when the iris is relaxed. 
Typically, this is between 0.5-2.0 meters. Stimuli placed in this distance can draw a particularly 
dominant accommodation response from the eye (Edgar, 2007). This was originally called the 
Mandelbaum effect and it is especially prevalent when visibility conditions are poor (Owens, 
1979). This might create issues with HUDs in certain weather conditions, which needs to be 
considered when designing an HMI for on-road use, for example by not having the HUD be 
always on, and to be sensitive to contexts by reducing its saliency when visibility conditions 
are poor. 
 
Multimodal interfaces have been proposed to reduce the negative aspects of using a single 
modality, especially in complex environments (Sarter, 2006). From a theoretical perspective 
this works by reducing load on a single modality and allowing drivers to better spread work 
over their available mental resources (Wickens, 2002). Spreading information over multiple 
modalities has been shown to induce lower workloads (Y C Liu, 2001) and better reaction times 
(Ho, Kingdom, & Reed, 2007) in participants. 
 
Based on these benefits for workload and reaction times, in this study we chose to design for a 
multimodal display, where the advice is visually presented and announced by an auditory 
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chime. The chime is used to alert the driver whenever an advice is available, as described by 
for example (Sarter, 2006). This way the driver can focus on the road and only has to look at 
the display whenever an advice is available. 

7.1.5 Making it Personal 
Avatars are representations of a virtual 
character. They are more effective than 
textual information in eliciting a human-like 
interaction between system and driver (Scott 
et al., 2012). Scott et al. showed that adding 
emotional expressions increased persuasive 
effectiveness and trustworthiness of a system. 
Avatars have been used in gamified driving 
contexts such as Driving Miss Daisy (Shi et 
al., 2012), which helps improve driving skills 
by providing a virtual passenger that 
occasionally comments on driving style. To 
facilitate more human communication, we 
developed an avatar based off a freely available clipart from www.clipartroo.com. 
 
The avatar (Figure 7.1) had a happy and an unhappy state depending on how drivers would 
react to advices. We chose a stylized avatar, so it resembled a car rather than a human. The 
choice was based on work by Verberne et al (Verberne, Ham, & Midden, 2012), who showed 
that trust in an in-car system improved if drivers perceived it as sharing their driving goals. By 
styling the avatar like a car that was happy when congestion was avoided, we aimed to visualize 
that the driver’s goal of reaching a destination without congestion was shared by their car. This 
stylizing is unlikely to change participant’s response to the avatar, as Bailenson et al (Bailenson, 
Blascovich, Beall, & Loomis, 2001) for example demonstrated people tend to respond to avatars 
in a natural way as if they are human, even if they are highly stylized and don’t resemble humans 
at all. 

7.1.6 Using a Driving Simulator for HMI Research 
The driving simulator is a powerful tool to investigate human behaviour in a controlled setting 
where traffic and weather conditions can be standardised (Carsten & Jamson, 2011). In the 
context of our study, a simulator offers an environment where our novel HMI design can be 
safely tested without the danger of distracting a participant in real traffic.  
 
Wang et al. (Wang et al., 2010) have shown that medium fidelity driving simulators can be used 
effectively to evaluate in-vehicle information interfaces, which our proposed persuasive HMI 
is, although care must be taken to ensure no confounding variables are introduced (Engen, 
Lervåg, & Moen, 2009). 

7.2 Developing the Persuasive Interface – Two Questionnaire Studies 
Prior to performing our simulator experiment we needed to define several important aspects. 
These include the type of auditory alert used to announce the advice, the location of the advice, 
and whether to provide a reason for the advice or feedback on the performed behaviour. If the 
advice is unclear, the alert not salient enough, or if the system is considered annoying, it is 

Fig. 7.1  Design of the avatar, showing its happy state 
(left) and sad state (right). 

http://www.clipartroo.com/


106 Your Car Knows Best 
 

 

unlikely drivers will follow advices or continue using the system (Risto & Martens, 2013; van 
Gent et al., 2019). Two questionnaire studies were performed. The first questionnaire study is 
described in section 2.1 and 2.2, and investigates whether to precede the advice by an auditory 
chime, and if so, which chime. The second questionnaire is described in section 2.3 and 2.4. It 
uses the chime determined in the first questionnaire, and investigates where the advice should 
be located based on driver preferences (central console, HUD, or near speedometer), and 
whether to provide a reason for the given advice or feedback on driver behaviour. 

7.2.1 Determining the Auditory Alert Chime – Methods 
To determine which auditory chime to use to alert drivers to an available advice, we performed 
a questionnaire study. The aim was to select a chime that sounded friendly (to not irritate the 
driver), could alert the driver, and that was not judged to be distracting. 
 
A range of auditory alert chimes were designed using Apple’s Logic Pro digital audio 
workstation, and the Omnipshere digital synthesizer. The chimes were designed around the C 
Major tonality, which has an open and warm character. 15 chime types were generated in total. 
Where applicable, variations in rhythm and variations in pitch were generated per chime type. 
This gave a total of 53 possible alert sounds. We reduced these possibilities by making a 
subjective pre-selection of seven auditory alerts. 
 
The questionnaire was distributed through Google Forms. In the questionnaire participants were 
informed about the goals of our proposed lane-specific advice HMI, and subsequently presented 
with the seven selected auditory chimes. After each chime they were asked for their impression 
regarding the alert, specifically if it was: informative, intrusive, friendly, distracting, annoying, 
easy to miss, and urgent. Each item was rated on a 7-point scale, ranging from disagree 
completely (-3), to neutral (0), to agree completely (3). Participants were recruited by an advert 
on social media (LinkedIn, Twitter), and through a recruitment e-mail to several departments 
at Delft University of Technology. 

7.2.2 Determining the Auditory Alert Type – Analysis and Results 
20 participants took part in the auditory chime questionnaire. 7 participants were female, 13 
male. All participants were frequent drivers. 14 participants indicated driving at most 1000 km 
per month, and the remaining 6 participants between 1000 and 2000 km per month. This range 
is close to the Dutch national average for private cars of 13.000 km on a yearly basis (CBS, 
2019). 
 
Questionnaire data were analysed using a principal component analysis (PCA), a method that 
transforms a set of observations into uncorrelated variables as described for example in (Wold, 
Esbensen, & Geladi, 1987). This way we can find underlying constructs shared by different 
questions in a questionnaire.  
 
The result of the PCA was visualised in a scree plot, which displayed a distinctive ‘knee’ at a 
two-component solution, which together explained 81.97% of all variance in the data set. The 
factor loadings for the two-component solution are displayed in table 7.1. We removed factor 
loadings smaller than 0.2. 
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The first component loads negatively on intrusiveness, distraction potential, annoyance and 
urgency, while loading positively on friendliness and being easy to miss. It seems to reflect a 
general ‘likeability’ of the chime. The chime being easy to miss is likely inversely related to its 
potential to be intrusive, distracting and annoying. The second component loads strongly 
negative on informativeness and on friendliness, while loading positively on being easy to miss 
and annoyance. This component seems to indicate that the alert is unclear: it is rated low on 
being informative, and high on being easy to miss and annoyance. It seems likely that an unclear 
message during driving would lead to annoyance. 
 
The loadings of each of the seven chimes on the two components are displayed below in table 
7.2. We selected chime #1, which loads strongly on the first component (‘likeability’) and not 
on the second component (‘unclear’). 
 
 
 
 
 
 
 
 
 
 

7.2.3 Determining the Interface and Message Characteristics – Methods 
After choosing the alert chime, we needed to determine the driver preferences regarding the 
implementation details of the lane-specific advice HMI, thus a second questionnaire study was 
performed. The questionnaire consisted of three parts. Most questions were answered on the 
same seven-point scale as the previous questionnaire (-3 – completely disagree, 0 – neutral, 3 
– completely agree). 
 
In the first part of the questionnaire participants were presented with three videos (figure 7.2), 
each showing the same lane-specific advice but in a different location: central console (1), 
heads-up display (2), and on the speedometer (3). After viewing each video, participants 
answered on a 7-point scale whether they noticed the advice quickly, if it was distracting, if 
they were used to looking at the specific location, if they felt they had to take their eyes off the  
road too long, if they felt safe looking at the specific location, if the location was convenient, 
and if they thought they would miss the advice easily at this location. 
 

Label Component 1 Component 2 
Informative - -0.779 

Intrusive -0.423 - 
Friendly 0.377 -0.297 

Distracting -0.341 - 
Annoying -0.507 0.278 

Easy to miss 0.378 0.422 
Urgent -0.395 - 

Chime number Component 
1 

Component 2 
   
1 1.499 0.063 
2 0.224 -0.194 
3 -1.409 -0.060 
4 -1.018 0.192 
5 0.432 0.178 
6 0.903 -0.058 
7 -0.243 -0.017 

Table 7.1 - PCA loadings on first two components. 

Table 7.2 – Loadings of each chime on the two main PCA components. 
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In the second part participants were presented with a full screen video of the same advice (figure 
7.3), but with included audio and haptic feedback. This section served to test responses to the 
selected audio chime from the previous questionnaire, and to test whether to include haptic 
feedback in the steering wheel as well. Since no actual steering wheel would be available while 
filling in the questionnaire, the haptic feedback was displayed on a steering wheel below the 
advice visualisation as shown in figure 7.3 a.) and accompanied by a vibration sound. If 
vibration occurred on a particular side of the steering wheel, the vibration audio was only played 
through the corresponding stereo channel. 
 
The last section of the questionnaire examined the context needed for the advice, specifically 
whether to provide the reason for the advice and feedback on driver behaviour. We know from 
earlier research (Risto & Martens, 2013) that if drivers do not perceive the reason for an advice, 
they are less inclined to follow it. Providing feedback can also support the formation of habits 
which are a main factor in making persuasive effects last over time (Lally & Gardner, 2013).  
Participants were shown an example video of an advice preceded by a message displaying the 
reason for the advice (figure 7.3 b.), and a message after the advice displaying feedback about 
their behaviour that consisted of the avatar thanking them or encouraging them to do better next 
time (figure 7.3 c.)). After this, they answered several questions about how it would impact 
their understanding of the advice, their likelihood of following it, and their perceived safety. 
 
 

Fig. 7.2  Screenshot from one of the three videos shown to participants. The video shows regular traffic on 
a typical Dutch highway, with the active advice shown on the central console (1), the HUD (2), and near 
speedometer displays (3). 
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7.2.4 Determining the Interface and Message Characteristics – Analysis and Results 
34 participants filled in the questionnaire. 2 did not complete the questionnaire and were 
excluded from the analysis. That left 32 participants in total. 23 were male, 9 female. 23 
participants owned a car and 9 did not (no statistically significant correlation with gender, r = 
0.227, p = 0.211). 18 indicated driving a maximum of 1.000 km per month, 6 drove 1.000-2.000 
km, 6 drove 2.000-5.000 km, one drove over 5000 km a month and one participant indicated 
they didn’t know their monthly mileage. 
 
Overall, participants had a slight preference for the HUD (15, 46.88%), over the central console 
display (11, 34.38%), and the speedometer display (6, 18.74%). Answers to the questions were 
analysed using a series of repeated measures t-tests. Due to the number of comparisons run on 
the data a Bonferroni correction was applied which put the alpha used at p = 0.0023. A single 
value was significant. This was for the question where participants indicated they were more 
used to looking at their speedometer than a HUD (t = -3.503, p = .001). Since few cars are 
equipped with HUDs while all cars have speedometers, this information was obviously not 
informative or beneficial for choosing a location.  
 
We chose to select the HUD combined with an auditory chime based on both its advantages 
offered as described in the literature (section 1.4), and based on the trend that slightly more 
participants preferred that location. The results indicated that drivers, at least in their self-
reported answers, show little differences in preference, perceived safety, and perceived ease of 
the different locations tested. This runs contrary to earlier research where participants had a 
strong preference for the HUD, likely based on a novelty effect (Yung Ching Liu & Wen, 2004). 
Perhaps now, nearly 15 years later, participants are more used to these systems despite them 
not being widely available in cars yet. 
 
Most drivers (25) indicated they liked having the audio chime available to alert them to 
whenever an advice becomes available, although 16 of the 25 indicated they would like to have 
the option to turn the chime off. We used a 7-point scale that ran from -3 (disagree completely), 
to 0 (neutral), to 3 (agree completely). Results are displayed in table 7.3-a. On average, 

Fig. 7.3  Haptic feedback was shown on the steering wheel a.), and an audio message was played through 
the corresponding stereo channel. Image b.) shows possible reasons for an advice. Image c.) shows the two 
avatar states. 
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participants felt the chime helped them know an advice had become available, was appropriate, 
was not annoying, was not unnecessary, and would not startle them. Participants indicated it 
would not help them keep their eyes on the road, nor would it help them understand the advice. 
The latter was expected, as the chime was designed to alert drivers and did not vary based on 
the type of advice. The fact that participants indicated it would not help them keep their eyes 
on the road might be because the chime would prompt them to look at the interface. This again 
raises the importance of taking the driving context into consideration when choosing to 
communicate to the driver using in-car technology (van Gent et al., 2019). 

 
 
The questionnaire also inquired into whether haptic feedback in the steering wheel would be 
preferred to signal a new advice. Three types of vibrations were presented to the 32 participants 
(left side, right side, both sides). The vibrations were positively evaluated in only 14 cases 
(14.58%). In the 42 cases the vibrations were disliked (43.75%), and in 38 (39.58%) cases the 
vibrations were evaluated positively if there was a way to turn them off. In 2 (2.09%) cases no 
evaluation was recorded. 
 
We also inquired about whether to provide context for the advice, meaning whether to precede 
it with the reason for the advice and conclude it with feedback about the performed behaviour. 
Questions were again answered on a 7-point scale from -3 (disagree completely), to 0 (neutral), 
to 3 (agree completely), and results are shown in table 7.3-b. Participants indicated providing 
the reason prior to the advice helped them understand the advice better. Providing the reason 
before the advice also made it more likely they would follow the advice, did not feel unsafe, 
and was not confusing. On average participants were neutral about the necessity of providing 
the reason and whether it would be distracting. This neutral rating on necessity is remarkable, 
since participants indicated that providing the reason for the advice would help understand the 
advice and would make it more likely an advice will be followed. 
 
Table 3-c displays results regarding providing feedback about the consequences of (not) 
following an advice. Providing the feedback was perceived as safe, and somewhat necessary. 
Participants were neutral about whether the feedback would motivate to follow more advices, 
or whether it would be distracting. The latter is likely because the participants lacked hands-on 
experience with the advices and as such were unsure about the effects of receiving the feedback. 

7.2.5 Interface and Persuasive Message Characteristics – Conclusion 
In this section we described the two questionnaires that were distributed. The goal of the 
questionnaires was to find driver preferences among the modalities used for the advice, its 
location, and how to best present the advice. 

a. The audio chime: Mean (SD)  b. Presenting the reason for the advice: Mean (SD) 
tells me when an advice is available 1.625 (1.516)  helps me understand the advice 1.500 (1.455) 
is appropriate 1.063 (1.600)  makes it more likely I will follow the advice 1.667 (1.655) 
is annoying -0.969 (1.741)  is unsafe -1.167 (1.485) 
helps me understand the message -0.438 (1.519)  is necessary 0.200 (1.759) 
is unnecessary -1.313 (1.570)  is confusing -1.100 (1.620) 
helps me keep my eyes on the road -0.594 (1.599)  is distracting -0.167 (1.593) 
might startle me -0.781 (1.653)    
   c. Giving me feedback about the results of my behaviour:  
   motivates me to follow the next advice -0.333 (2.055) 
   is unsafe -0.867 (1.688) 
   is unnecessary 0.567 (1.909) 
   is distracting 0.033 (1.906) 

Table 7.3 – Summary of results of the second questionnaire. 
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Results showed that participants preferred having an audio-visual multimodal interface where 
the advice was preceded by an auditory chime, and the advice displayed through a HUD. 
Adding haptic feedback was generally disliked, especially when the option to turn the vibrations 
off would be unavailable, we therefore chose to avoid using haptic feedback in our simulator 
study. Providing context will help participants understand when an advice is available and make 
it more likely that the advice will be followed. Participants were more divided on whether to 
provide feedback on their behaviour. We chose to include both in our simulator study to observe 
the effects. 
 
The next section describes the development of the persuasive lane-specific advice HMI. 

7.3 Developing Persuasive Advice Based on Driver Preferences 

7.3.1 Lane-Specific Advice 
Based on the results from the questionnaire studies, we developed persuasive advices that were 
preceded by the reason for the advice, and followed by feedback on the driver behaviour. Three 
types of advices were developed, two persuasive variants and one control. Advices for all 
conditions followed the same basic design of a diagram of the road with the ego vehicle 
displayed on the current lane as displayed in figure 7.4. The reasons for the advice were based 
on standard signage in use on Dutch motorways, so as to be quickly recognisable by 
participants. The reasons used in the experiment were congestion, and a lane-drop where the 
right lane would drop off. This type of lane-drop may occur when an incident has happened on 
the right lane, when there are road works, or where the rush-hour lane terminates. 

 
We split the gamified group into two conditions to be able to incorporate both competition and 
comparison from the study by Orji et al (Orji et al., 2014) as discussed in 1-C. Among the 
persuasive advices were a competitive type and a cooperative type. Variations for the 
competitive and cooperative group are displayed in Figure 7.5. In the competitive group the 
number of points to be earned is clearly displayed below an advice, and in the cooperative group 
the percentage of other drivers following their advice is displayed. Participants were informed 
that the number of drivers following their advice included those adhering to ‘stick to your lane’ 
advices. 

Fig. 7.4  Overview of the interfaces used in the simulator study. The figure shows possible advice reasons 
(left), lane-specific advices (middle), and feedback to the driver (right). 
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7.3.2 Going Online: A Web-Portal Intervention 
To limit effects on workload while driving, we chose to keep the advices simple and add a web-
portal for both intervention groups. In this web-portal, drivers could at their own pace review 
their performance parameters. These included a page with information on their latest trips, as 
well as a page with the progress made to the next achievement. Aside from an insight into their 
performance, the web-portal gave participants an extended interaction with the avatar, whose 
emotion and comments changed depending on how well the participants had performed during 
their first driving session. The avatar’s two emotional states are shown in Figure 7.1 and the 
full range of responses are shown in Table 7.4. The web-portal is shown in Fig 7.6. 

 
The web-portal had a competitive and a cooperative variant. In both versions the avatar gave 
feedback to the driver depending on what part of the interface the participants clicked. Both 
versions also showed the participant’s name, score, latest trip summary and next achievement. 
The information on the latest trip was dependent on the performance of the participants in their 
first driving session. The points required to unlock the next achievement were also based on 
performance during the drive, but scaled so that it was always attainable by following more 
advices on the second day than on the first, or an equal number of advices if all were followed 
the first day.  
 
The competitive version had a leader board showing the participant’s relative position to others. 
Like the upcoming achievement, the position on the leader board was also fixed for all 
participants. First place was always attainable by following more advices on the second day 
than on the first, or an equal number if all advices were followed the first day. The cooperative 
version of the web-portal showed the number of other drivers on the road that followed their 
advice while the participants were driving, including ‘stick to your lane’ advices. 

Advices followed Home page Latest trip page 
0 out of 4 

(sad avatar) 
Too bad [Name], can you do better next time? You followed 0 out of 4 advices. That’s too bad, can 

you try following more next time? 
1, 2, 3 out of 4 
(happy avatar) 

[Name] you are doing good! Can you do better 
next time? 

You followed [1, 2, 3] out of 4 advices. That’s cool! 
Can you try following more next time? 

4 out of 4 
(happy avatar) 

[Name] you are doing great! Can you keep it up? You followed 4 out of 4 advices. Wow! Can you do 
that again next time? 

Fig. 7.5  Example of the three types of advices given in the simulator, in case of requiring the driver to 
stick to their lane. The competitive variant displayed the amount of points the driver could earn, the 
cooperative version displayed how many other drivers on the same road segment were following their 
advice. 

Table 7.4 Table showing conditions and avatar comments. 
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7.4 Simulator Experiment 
This section discusses the equipment used in the experiment, the scenarios developed and the 
procedure that was followed while collecting the data. In the simulator study we chose to use a 
persuasive approach that combines the mentioned techniques from the PSD that were found to 
work well across different personalities (Oinas-Kukkonen & Harjumaa, 2008; Orji et al., 2014; 
van Gent et al., 2019). To include the competition and comparison elements we decided to split 
the experiment into three groups: a competitive group where drivers could earn points and 
compete through a leader board, a cooperative group where drivers had real-time insight into 
how many other drivers followed their advices, and a control group. To incorporate the self-
monitoring and suggestion without distracting the drivers we chose to implement a web-portal 
where drivers could review their performance (see figure 7.4, section 3.2). Praise and rewards 
were implemented using an avatar (see figure 7.2, figure 7.1, section 1.5), which we hoped 
would be instrumental in forming habits, which are a main factor in making persuasive effects 
last over time (Lally & Gardner, 2013). In this context it is a form of “dialogue support” and 
“primary task support” from the PSD (Oinas-Kukkonen & Harjumaa, 2008) and our theoretical 
framework (van Gent et al., 2019). 

7.4.1 Equipment 
A medium-fidelity driving simulator was used to perform the experiment. It consisted of three 
4K (resolution 4096 * 2160 pixels) displays mounted on top of a dashboard mock-up. It 
provided participants with roughly 180-degree vision of their virtual surroundings. Fanatec 

Fig. 7.6  The web-portal that was developed. Part a.) was variable. More information on the rank of the 
driver (i.e. ‘top 5%’ as shown in b.)) was only shown in the gamified condition. Part c.) shows an example 
of the cooperative portal as it looked when viewed on a phone. 
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steering wheel and pedals were used along with custom key-based ignition and blinker controls 
were used. The simulation was run on the Unity3D game engine on a Windows 10 desktop pc. 
 
Car kinematics were logged in Unity3D on the simulator pc. Participant responses and video 
recordings were logged on a Windows 10 laptop computer situated behind the participant out 
of their view, as not to be distracting. 

7.4.2 Scenarios 
We developed a congestion scenario and a lane-drop scenario. In the congested scenario, 
participants encountered a traffic jam after driving for several minutes. In the lane-drop 
scenario, participants encountered a lane-drop after the same amount of time had passed. We 
varied whether the reason for the advices was visible to the participants. In two scenarios the 
reason for the advice was visible (‘congruent’ scenarios), and in two others the reason for the 
advice was not visible (‘incongruent’ scenarios). For example, in a congruent lane-drop 
scenario participants encountered signage indicating an upcoming lane-drop together with a 
lane-specific advice, whereas in the incongruent version the signage and lane-drop were not 
encountered but the advice was given nonetheless. The same was true for the congested 
scenario; in the congruent version the overhead matrix signs indicated a reduced speed limit 
and a congested section was encountered, whereas in the incongruent version the traffic jam 
was too far ahead to be visible and no signage was active, but the advice was given.  This gave 
a total of four scenarios. The type of advice was either non-persuasive (control group), 
competitive (competitive group), or cooperative (coop group) in nature. 
 
Advices were developed as described in section 3.1. During the drive the advice was projected 
on a Heads-Up Display (HUD) in the centre of the car window. The choice for a HUD was 
made based on the questionnaire research and relevant literature, as described in section 1.5. 
and 2.4. The HUD was made semi-translucent, so it would not occlude any vital information 
from participants. In the competitive variant, the number of points to be earned was displayed 
below the advice, in the cooperative variant this was the percentage of other drivers currently 
following their advice. 
 
Each scenario started on a highway-side parking lot. Participants had to start the vehicle, 
navigate off the parking area and merge onto the highway. After approximately two minutes 
participants were given an advice on the car’s HUD. This advice was preceded by an alert that 
specified the reason for the advice (figure 7.4, left). The advice (figure 7.4, middle) was active 
for approximately 1.5 minutes and was lane-sensitive, meaning that the advice (change left, 
change right, stick to lane) updated real-time based on the lane participants were driving. After 
the advice period ended, feedback (figure 7.4, right) was displayed based on whether 
participants followed the advice. Traffic was programmed to drive defensively and give way to 
participants whenever they turned on their blinker or started a lane change. This was done to 
eliminate the situations where participants could not change lane due to other traffic as much 
as possible, so that we could observe the effects of the advices. It is also in line with our design 
goals of only generating an advice when the driver has the opportunity to follow it and when it 
is safe to do so (van Gent et al., 2019). 
 
In the congestion scenario, participants were advised to either change to the middle lane of the 
three-lane highway, or stick to the middle lane if they were already driving there. In the 
congruent scenario the matrix signs above the highway were switched on and displayed a 
dynamic speed limit of 80 km/h. Congestion was visible in the distance when the advice was 
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given, and participants approached slow moving (15-20km/h) traffic while the advice was 
active. In the incongruent scenario, traffic was driving with a regular speed limit of 130km/h, 
the dynamic speed limit signs were off, and no congestion was encountered by participants. 
 
In the lane-drop scenario, participants were advised to move to the leftmost lane in anticipation 
of the righter most lane dropping off. In the congruent scenario, signs announcing the lane-drop 
were posted at 1 km, 300 meters, at the start of the weaving section, and near the end of the 
weaving section, as specified by Dutch traffic regulations. In the incongruent scenario no 
signage was visible and no lane-drop was encountered by participants. 

7.4.3 Competitive and Cooperative Interventions 
Advices in the competitive version of the scenarios displayed the amount of points that 
participants could earn by following it. In the cooperative scenario the percentage of drivers 
currently following their advice was displayed alongside the advice. In the control group no 
extra information was displayed. See figure 7.5 for a visualisation of all three variations. 
 
Participants were recruited to drive on two separate days, and in between both days those in the 
competitive and cooperative groups received a link to the web-portal. The two versions of the 
web-portal that showed the same general information but emphasized different aspects. The 
competitive version accentuated the amount of points earned, and participants could view their 
position relative to other participants through a leader board. Unbeknownst to the participants 
the web-portal placed every participant as second. The point-gap between them and the first 
position could in all cases be closed by following more advices on the second day. The 
cooperative version of the web-portal emphasized how many of the other drivers on the road 
followed advices. These data were fabricated and showed an upward trend of more drivers 
following advices recently. 
 
For both groups the portal showed the travel time saved, advices followed, and their next 
achievement. The avatar communicated their performance and encouraged them to either keep 
up good performance when all advices were followed the first day, or encouraged participants 
to follow more advices the second day if they did not follow all advices during the first day. 
The avatar also communicated relevant details about their performance when they clicked the 
different parts of the site. Both web-portal versions are displayed in figure 7.6. 

7.4.4 Procedure 
A pilot study was performed to test the equipment, scenarios and experimental procedure. The 
hardware functioned properly, and participants had no trouble performing the tasks. 
 
Approval for the experiment was obtained from the TU Delft ethics committee. Participants 
could apply for the experiment through e-mail, after which they received a copy of the informed 
consent and were allowed to ask any questions. During the first session participants were seated 
in the simulator and had a second opportunity to ask questions about the informed consent or 
procedure, and signed the document when all questions were answered. A familiarization 
scenario was first started. This scenario had no traffic and no advices so that participants could 
drive at their own pace and get used to the simulator. Once participants indicated they felt 
comfortable driving the car, the experiment started. 
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Prior to starting the experiment, participants received a written instruction. The document asked 
participants to drive as they would in everyday life and emphasized there was no desired 
behaviour. Rather, participants were made aware of the fact that, just as with a real-life in-car 
system, it is unknown what the accuracy of the given advice is. In the competitive group, 
participants were told they could earn points by following the advice and that the potential 
rewards would be displayed with the advice message. Those in the cooperative group were 
instructed that the system was a cooperative system that only worked when most of the people 
on the road followed the advices, and that the number of computer-controlled cars that ‘chose’ 
to follow their advice would be displayed real-time on the advice as well. 
 
Participants were randomly assigned to control, competitive or cooperative groups and drove 
the four scenarios in a randomized order. At the end of the session participants filled in the van 
der Laan scale (van der Laan, Heino, & de Waard, 1997), a short questionnaire that measures 
perceived usefulness and satisfaction with advanced in-car systems.  
 
Those in the competitive or cooperative group received an e-mail with a link to the web-portal 
after the first day, where they could view their performance in a personalised version of the 
portal. On the second day participants drove the same scenarios as the first day, again in a 
randomized order. At the end of the second day the van der Laan scale was filled in again. 
 
During the familiarization drive and between scenarios, participants were asked for signs of 
discomfort and/or simulator sickness, and asked to indicate it the moment they experienced any 
discomfort. 

7.5 Results 

7.5.1 Participant Demographics 
A total of 55 participants took part in the experiment. One participant dropped out due to 
simulator sickness. 24 (44.4%) of participants were female, 30 (55.6%) male, with an average 
age of 36.19 years (SD: 10.75). The participants were assigned randomly to conditions (control, 
competitive, cooperative) with 18 participants per condition.  
 
All participants held a valid driver’s license and drove regularly. 30 (55.6%) of participants 
drove at most 1,000 km per month, 14 (25.9%) between 1,000 and 2,000 km, 8 (14.8%) between 
2,000 and 5,000 km, and 1 participant (1.85%) over 5000 km per month. One participant 
(1.85%) didn’t know how many kilometres they drove every month. 
 
28 participants (51.85%) indicated they regularly used a navigation device in while driving, 21 
(38.89%) sometimes, and 5 (9.25%) rarely to never used a navigation device while driving. 
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7.5.2 Persuasive Effectiveness of Interventions 
First, we analysed the total advices followed by each group. Levene’s test for equality of 
variances indicated the assumption of equality of variances was violated, so instead of a T-test 
we used the Mann-Whitney U Rank Test, which does not assume equality of variances. With 
each result we give the test statistic ‘U’ and significance level ‘p’. Out of 144 advices, 
participants in the control group followed 89 (61.81%) advices, in the competitive group 117 
(79.17%) advices, and in the cooperative group 111 (77.08%) of advices. The difference 
between control and competitive groups was statistically significant (U = 8352, p < .001), as 
well as between the control and cooperative group (U = 8784, p = .002). The difference between 
competitive and cooperative groups was not statistically significant (U = 9936, p = .193). This 
indicates that both interventions were more effective than the control group, but there were no 
clear differences between them in effectiveness. 
 
Second, we analysed the effects of the intervention given between both driving days. We used 
a Wilcoxon-Pratt Signed-Rank test, suitable for dependent (non-normal within-participant) 
data, to test the number of followed advices on the first and second day. With each result we 
give the test statistic ‘Z’ and significance level ‘p’. The control group followed 44 advices on 
the first day and 45 advices on the second day, a difference that was not statistically significant 
(Z = 720, p = .841). Participants in the competitive group followed 53 advices on the first day 
and 64 on the second day, which was statistically significant (Z = 252, p = .012). Those in the 
cooperative group followed 50 advices on the first day and 61 on the second day, which was 
also statistically significant (Z = 252, p = .012). This indicated that after exposure to the web-
interface, participants followed significantly more advices, and that the difference was not 
attributable to repeated exposure to the advices as the control group showed no significant 
difference. Results are visualised in Figure 7.7 a.). 
 
Lastly, we analysed the differences between groups on the same days. Again, the assumption 
of equal variances was violated, so a Mann-Whitney U Test was used. With each result we give 
the test statistic ‘U’ and significance level ‘p’. Each group was given a total of 72 advices per 
day, on both days. On the first day, participants in the control group followed 44, those in the 
competitive group 53, and those in the cooperative group 50 advices. The difference between 

Figure 7.7 – a.) shows comparisons within groups between driving day 1 and 2. The right-hand plot b.) 
shows comparisons between days. Significant differences are marked with *. 
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control and competitive and control and cooperative groups was not significant (U = 2268, p = 
.056, U = 2376, p = 0.148, respectively), and the difference between competitive and 
cooperative was not statistically significant either (U = 2484, p = .291). On the second day, 
those in the control group followed 50, those in the competitive group 64, and those in the 
cooperative group 61 advices. The differences between control and competitive and between 
control and cooperative were statistically significant (U = 1908, p < .001, U = 2016, p = .001, 
respectively), but the results between cooperative and competitive were not (U = 2484, p = 
.232). This indicates the effectiveness of the intervention: the first day no significant differences 
between the groups were observable, but on the second day differences emerged, with those in 
the competitive and cooperative groups following significantly more advices than those in the 
control group. Results are visualised in figure 7.7 b.). 
 
Surprisingly, we found no statistically significant relation between whether or not the reason 
for the advices was visible (congruent vs incongruent) to the driver (t = .377, p = .706), which 
runs contrary to what has been observed before (Risto & Martens, 2013). It is possible this 
discrepancy results from participants driving in a simulator rather than in the real world. 
 
Using a t-test (test statistic ‘t’, significance level ‘p’), no statistically significant difference was 
found between advices followed and the lane-drop or the congestion advices on the first day (t 
= 1.963, p = .052), the second day (t = .364, p = .717), or both days combined (t = 1.634, p = 
.103). Furthermore, no statistically significant correlation was found between advices followed 
and gender (r = -0.150, p = 0.279), age (r = -0.072, p = 0.603), or average kilometres travelled 
per month (r = 0.139, p = 0.312). 

7.5.3 Types of Advices and Behaviour 
Participants were free to drive as they normally would. This meant that the types of advices 
given (change lane, stick to lane) were determined dynamically based on participant driving 
behaviour. Because this might skew results, we analysed the link between the types of advices 
given and the behaviour of participants as well. 
 
In total 427 advices were given to participants during the experiment. 87 (20.37%) advices 
required drivers to stay in their lane, 229 (53.63%) advices required drivers to move one lane 
left or right, and 111 (26.00%) advices required drivers to move two lanes. No significant 
correlation existed between the choice to follow or not follow an advice and the number of lanes 
the driver had to change (r = 0.004, p = 0.941). The same held for within-group correlations for 
all groups: control (r = -0.034, p = 0.690), competitive (r = -0.060, p = 0.478), and cooperative 
(r = 0.160, p = 0.056). This ran contrary to our expectations. We expected stick-to-your-lane 
advices to be complied to more often, as these require less effort from the driver to follow 
compared to advices requiring a lane change. 

7.5.4 Perceived Usefulness and Driver Satisfaction 
The van der Laan scale (van der Laan et al., 1997) was used to assess both the perceived 
usefulness of, and the participants’ satisfactions with, the lane-specific advice HMI. Both the 
perceived usefulness and the satisfaction scales range from -2 (low usefulness, low satisfaction), 
0 (neutral usefulness, neutral satisfaction), to 2 (high usefulness, high satisfaction). The 
assumption of normality was not violated so the data was analysed using the appropriate t-tests 
depending on whether dependent or independent data were being analysed. Analysis follows 
the same pattern as in the previous section. 
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First, we analysed the differences between the groups. Perceived usefulness for the control 
group was 0.589, for the competitive group 1.072, and 1.006 for the cooperative group. The 
differences were statistically significant between control and competitive groups (t = -3.531, p 
= .001), and between control and cooperative groups (t = -3.277, p = .002), but not between 
competitive and cooperative groups (t = 0.427, p = .672). Satisfaction was 0.472 for the control 
group, 1.014 for the competitive group, and 0.931 for the cooperative group. The differences 
were statistically significant between control and competitive (t = -2.949, p = .006), and 
between control and cooperative (t = -2.692, p = .011), but not between competitive and 
cooperative groups (t = 0.477, p = .637). This indicates that in general, the competitive and 
cooperative advices were evaluated as more useful, and participants were more satisfied with 
them compared to the control group. We note that participants only had two short driving 
sessions to receive advices and become familiar with them. It is likely that satisfaction and 
perceived usefulness will increase or decrease over time as participants get more experienced 
with the advices and their effects. 
 

 Both days 
 control competitive cooperative 
Usefulness 0.589 1.072 1.006 
Satisfaction 0.472 1.014 0.931 

 
 Day 1 Day 2 
 control competitive cooperative control competitive cooperative 
Usefulness 0.578 1.033 0.900 0.600 1.111 1.111 
Satisfaction 0.486 0.931 0.847 0.458 1.097 1.014 

 
 
Second, we analysed the effects between driving days in the same groups. Data were analysed 
using a paired-samples t-test. Within the control group the perceived usefulness on day 1 was 
0.578 and 0.600 on day 2, which was not statistically significant (t = 0.163, p = .872). 
Satisfaction was 0.486 on day 1 and 0.458 on day 2, which was not statistically significant (t = 
0.243, p = .811). Within the competitive group the perceived usefulness was 1.033 on day 1 
and 1.111 on day 2, which was not statistically significant (t = -0.999, p = .331). Satisfaction 
was 0.931 on day 1 and 1.097 on day 2, which was not statistically significant (t = -1.531, p = 
.144). In the cooperative group the perceived usefulness on day 1 was 0.900 and 1.111 on day 
2, which was not statistically significant (t = -1.769, p = .095). Satisfaction was 0.847 on day 1 
and 1.014 on day 2, a difference that was not statistically significant (t = -1.531, p = 0.144). 
This indicates no effects of the web portal on either perceived usefulness of, or satisfaction with 
the HMI, as there is no difference after receiving the intervention, and no significant increase 
between both driving days. Drivers did not need the web-portal to see the usefulness of the HMI 
or evaluate it as satisfying to use. 
 
Lastly, we analysed the group differences on the same days. On the first day, perceived 
usefulness differed significantly between control (0.577) and competitive (1.033) groups (t = -
2.888, p = .007) and between control and cooperative (0.900) groups (t = -2.240, p = .03), but 
not between competitive and cooperative groups (t = 0.777, p = .442). Satisfaction differed 
significantly between control (0.486) and competitive (0.931) groups (t = -2.031, p = .050), and 
between control and cooperative (0.847) groups (t = -2.097, p = .044), but not between 
competitive and cooperative groups (t = 0.436, p = .665). On the second day the same patterns 

Table 7.5 - The usefulness and satisfaction scores of the lane-specific advices, both the total as well as split 
by day. 
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were present, with perceived usefulness differing between control (0.600) and competitive 
(1.111) groups (t = -3.239, p = .003), and between control and cooperative (1.111) groups (t = 
-3.053, p = .004), but not between competitive and cooperative groups (t = 0, p = 1.000). 
Satisfaction differed between control (0.458) and competitive (1.097) groups (t = -3.571, p = 
.001), and between control and cooperative (1.014) groups (t = -2.753, p = .009), but not 
between competitive and cooperative groups (t = 0.435, p = .666). The differences between the 
groups remained stable over time, confirming that the web-portal intervention did not seem to 
contribute significantly to overall usefulness of satisfaction scores. 

7.6 Conclusion 
In this paper we outlined the development of persuasive advices for a lane-specific advice HMI, 
with the goal of reducing congestion. 
 
During the driving experiment participants drove the same scenarios on two different days. 
Those in the competitive group could earn points by following advices, those in the cooperative 
group could see how many others were following an active advice, and those in the control 
group only received an advice. Those in the competitive and cooperative groups viewed a web-
portal in between both sessions where they could review their performance and were 
encouraged by an avatar. Results showed that, on a group level, the competitive and cooperative 
groups followed significantly more advices in total. Secondly, after exposure to the persuasive 
web-portal, those in the competitive and cooperative groups followed significantly more 
advices on the second day than on the first, which indicates the intervention’s effectiveness. 
Finally, the differences between groups only emerged on the second day, meaning there was no 
significant behavioural difference between the groups prior to the intervention, but there was a 
significant difference after the intervention. This indicates the effectiveness of the persuasive 
intervention over the control group, but shows no clear distinction between the competitive or 
the cooperative approach to say which is more effective. 
 
Based on the van der Laan scale, perceived usefulness and satisfaction were higher for both 
persuasive groups compared to the control group, but not between them. Over time there were 
no significant within-group changes between both driving days, although there was a slight 
upward trend in perceived usefulness for all groups, as well as for satisfaction in both treatment 
groups but not the control group. Differences between groups were also stable over time, with 
the cooperative and competitive HMI’s being perceived as more useful. We interpret this as 
meaning the web-portal interface had no significant effect on overall perceived usefulness or 
satisfaction, but that both persuasive interventions were perceived as more useful and satisfying 
in use. 

7.7 Discussion 
Persuading drivers to follow a message that may not be in their personal benefit is a complex 
issue. The significant effects on driver willingness to follow advices are important in light of 
newly developed lane-specific (cooperative) advice systems. These systems only work to 
improve flow if drivers follow the advices generated, however drivers may be unwilling to do 
so until they see that doing so will benefit them (Risto & Martens, 2013, 2014). This creates a 
catch-22 situation where deployment of such a system may fail because for it to work drivers 
need to follow the advices, but drivers will not follow the advices until they see the that system 
works. Using persuasive advices in such a system creates an added incentive for drivers to 
follow the advices, which may boost the amount of advices followed, subsequently leading to 



121 Chapter 7 – The Persuasive Automobile: Design and Evaluation of a Persuasive Lane-Specific Advice Human 
Machine Interface 

 

drivers observing benefits from the system which further reinforces willingness to follow lane-
specific advices. This way the persuasive aspects are employed mainly in the early phases when 
rolling out a lane-specific or cooperative system. This overcomes a major limitation of such 
persuasive interventions, which is that persuasive effectiveness may reduce over time (Farzan 
et al., 2008a, 2008b), by stimulating the formation of habits. This is a key factor in making 
persuasive effects last over time (Lally & Gardner, 2013). 
 
Based on what we discussed in this paper, when implementing persuasive in-car advice systems 
we recommend spreading information over multiple modalities to reduce impact on driver 
workload (Y C Liu, 2001), to keep the eyes-off-road time to a minimum (Peng et al., 2013), 
and to manage driver workload by timing messages to appropriate moments (van Gent et al., 
2019). Using an avatar that shared driving goals with the driver, and a web-portal that gave 
insight into participant performance had a positive effect on driver willingness to comply with 
persuasive messages. While in this paper we describe the choices for and development of a 
visual advice combined with an auditory alert, an avatar and a web-portal, the approach taken 
for such systems is dependent on the required behaviours and the type of advice given. 
 
When implementing a lane-specific advice system such as the one described in this paper, the 
accuracy of the given advices is of paramount importance. If the information is inaccurate, trust 
in the system erodes over time (Fox & Boehm-Davis, 1998) and participants might stop 
following advices altogether. This also includes situations where a driver may not be able to 
judge whether the information is trustworthy or not (Risto & Martens, 2013). Any such system, 
therefore, must ensure its advices are correct, and that information about the reason for the 
advice is visible to the driver. 

7.7.1 Limitations 
The present work consists of two questionnaires and a simulator study. Although all possible 
care was taken to make the generated videos and simulator scenarios as realistic as possible, 
differences between simulator and real-world driving do exist. Our study shows significant 
effects of gamification on driver persuasion to follow advices. However, in real-world driving 
other factors like time-pressure, driver mood, weather conditions or the behaviour of other 
drivers might influence driver willingness to follow an advice, among other factors. When using 
a driving simulator in research, its validity is usually relative rather than absolute (Carsten & 
Jamson, 2011), meaning that behavioural effects found translate to the real world, but that effect 
magnitudes might differ. Wang et al. (Wang et al., 2010) performed an evaluation on using 
medium fidelity simulators to test in-car interfaces, and found that the effects of in-car 
interfaces can be effectively investigated using medium fidelity driving simulators. 
 
The two questionnaires were based on 20 and 34 respondents, and the simulator study on 54. 
Self-selection bias may be present, since we put out adverts for all study steps and participants 
were free to apply themselves. Although the sample size is adequate for the analyses performed, 
as is often the case a larger sample size will make the results more generalizable. This is 
especially since, although the sample is diverse, it still consists mainly of Caucasian Europeans. 
Results may differ among ethnicities. 
 
Lastly, since we developed the interface for a specific goal during the design phase, it is 
conceivable that different persuasive goals, or different environments in which the persuasive 
intervention is applied, will lead to different HMI requirements. This means that for different 
application domains, the HMI discussed in this paper needs to be validated. 
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7.7.2 Next Steps and Recommendations 
Following the mentioned limitation of potential differences between simulated and real-world 
driving, as a next step we recommend an on-road trial to evaluate the persuasive HMI in real-
world driving conditions. Ideally such a study would take place in a naturalistic driving setting 
over a longer period. This will give insight into how persuasive advice following might change 
over time. 
 
A second recommendation relates to our theoretical model on driver persuasion (van Gent et 
al., 2019). To improve safety and effectiveness of the advices we suggested to time them to a 
moment where the driver’ workload is low. This can be achieved by integrating the persuasive 
HMI with for example a workload estimator (van Gent, Melman, Farah, van Nes, & van Arem, 
2018) to make the interface adaptive (Birrel, Young, Stanton, & Jennings, 2017). 
Third, the motivations for following an advice as offered are different between the gamified 
condition, where participants could earn points, and the cooperative condition, where 
participants mainly had a social motivation to follow advices. We know from research that 
different personalities are sensitive to different types of persuasion (Kaptein, Markopoulos, 
Ruyter, & Aarts, 2009). Investigating this in the context of persuasive in-car advice is an 
interesting avenue for future research. 
 
Lastly, in the present study only two advice contexts were tested: congestion ahead, lane-drop 
ahead. More reasons for giving an advice exist, such as road works, an accident, or adverse 
weather conditions. Although we found no statistically significant differences in numbers of 
advices followed between the congestion and lane-drop scenarios, it may still be that drivers 
show different compliance rates to different advice contexts. This should be examined in a 
future study. 
 
Regarding recommendations for applying persuasive systems to in-car settings in practice, 
based on what we discussed in the paper and on the results, we recommend that: 

• An app or web-portal is combined with the in-car HMI, to reduce information clutter 
on the in-car HMI, and for the drivers to review their progress at their own pace. 

• An avatar is used to encourage drivers. The avatar should share the driver’s goals. 
• Auditory or haptic feedback have the option to be turned off. 
• The visual HMI is only on when it needs to be. 
• If an HMI is used, it is best to reduce salience (e.g. increase transparency or reduce 

brightness) or not use the HMI at all during conditions of poor visibility, such as fog, 
heavy rain, or darkness. This is to prevent dangerous situations related to the 
Mandelbaum effect. 
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Chapter 8. 
 
Findings, Discussion, and Conclusions 

This dissertation investigated how to persuade drivers to follow lane-specific advices in dense 
traffic situations, for the purpose of optimizing the traffic distribution on the different lanes of 
a motorway. This final chapter overviews the main findings first (8.1). This is followed by a 
discussion of the main findings (8.2), the methodological choices made (8.3), recommendations 
for future research (8.4), and recommendations for practice (8.5). 

8.1 Main Findings 
This section summarises the main findings and contributions made to science and practice by 
the research embedded in this thesis. 

8.1.1 A Conceptual Model for Persuasive In-Vehicle Technology to Influence Tactical 
Level Driver Behaviour 

 
The conceptual model was developed to persuade drivers to change their tactical driving 
behaviour. Targeting short-term behavioural responses, such as those at the tactical level, has 
been shown to lead to more effective persuasion compared to persuading someone to change 
longer term behavioural patterns. 
 
The behavioural component in the conceptual model is based on the theory of planned 
behaviour. This model was chosen to represent driver behaviour after a review of existing 
models for behaviour, based on its capacity to explain both short-term behavioural responses 
and the longer-term effects related to social and attitudinal factors. Especially the term 
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perceived behavioural control was of importance, since it represents the control an individual 
perceives to have over their behaviour and is thus strongly related to persuasive effectiveness 
and safety: if a driver has no confidence in their capacity to follow an advice, they will not do 
so. 
 
The conceptual model describes the interaction between the driver and the persuasive system 
by defining aspects of the information transfer between them. It is divided into three layers: the 
system level, the information transfer level, and the driver level. At the system level the 
persuasive strategy is planned, and it is decided whether it is executed based on the evaluation 
of the safety criteria such as driver workload, distraction, and potential unsafe situations. These 
safety criteria should act as a decision filter on whether to continue or not. The interaction 
between the driver and the persuasive advice system is captured in the information transfer 
level, where the content, modality and timing of the information transfer is of importance. The 
driver level describes driver behaviour based on the theory of planned behaviour and extends 
this theory with effects from workload, indirect behavioural effects, driver characteristics, and 
driver safety. 

8.1.2 Multi-Level Driver Workload Prediction Using Machine Learning and Off-the-
Shelf Sensors 

Communicating with the driver can cause unsafe situations if the state of the driver is unknown. 
The risk can be reduced by estimating the driver state in real-time and timing the 
communication to moments where the driver still has spare capacity to perceive, process and if 
necessary, act upon given advices or information. 
 
The studies captured heart rate, skin response, blink rate from each participant together with 
kinematic vehicle data from the simulated car. Data were pre-processed to extract useful 
features such as heart rate variability measures, which were used to train a support vector 
machine regressor and a random forest regressor. Workload data was collected using a self-
report scale. Based on the collected data a workload prediction model was developed and shown 
to perform well with individual or group-based models, but was less suited to generalizing to 
unknown drivers. 

8.1.3 Analysing Noisy Driver Phsyiology Real-Time Using Off-the-Shelf Sensors: Heart 
Rate Analysis Software 

During the development of the workload prediction model we developed an open source heart 
rate analysis algorithm. Especially heart rate variability (HRV) analysis requires robust and 
accurate peak detections because HRV measures are sensitive to outliers, and existing software 
performed unsatisfactorily. The problem is compounded by the need to capture heart rate data 
while participants are driving, which increases the noisiness of the signal due to sensor 
movements, skin deformations, and muscle activity. Noisy signals in turn make the analysis 
more difficult. For that purpose, an analysis algorithm was developed and implemented in both 
Python and embedded C. 
 
The software was developed with low cost off-the-shelf sensors in mind, which can introduce 
extra noise. This choice was made to allow researchers, regardless of budgetary constraints, to 
collect and analyse heart rate data using this toolbox. The development of this toolbox was split 
into three parts: pre-processing tools, peak detection, and heart rate analysis. 
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The implemented pre-processing tools in the toolbox help to prepare the collected signals for 
analysis. Several finite impulse response (FIR) filters are available to reduce specific frequency 
bands from the signal. This is useful for example to remove the characteristic 50 or 60 Hz 
‘power mains hum’ (the frequency of AC power often leaks into the data through interference). 
Peak enhancement tools for ECG and baseline wander removal tools have been developed as 
well, along with some further improvements such as colour-blind support and nonlinear 
analysis tools 14. 

8.1.4 HeartPy: A Novel Heart Rate Algorithm for the Analysis of Noisy Signals 
The algorithm was implemented in Python under the name HeartPy and is freely available 
through GitHub and the Python Package Index (pip). Several implementations have also been 
developed for (wearable) embedded environments such as the Arduino platform, Teensy 
platform, and most 8-bit RISC (Reduced Instruction Set Computer) and ARM (Advanced RISC 
Machine) chipsets. These implementations allow for basic signal collection, basic peak finding, 
and full analysis similar to what HeartPy does but within the constraints of the more limited 
RISC architecture. Together with the Python package this enables researchers to use low-cost 
heart rate collection and analysis methods in their research. 
 
The performance of HeartPy was quantified and compared to two other available methods of 
heart rate analysis (pan-tompkins (Pan & Tompkins, 1985), ECGViewer (Ramshur, 2010) and 
the results showed that Heartpy performs equally well or better on both PPG and ECG datasets. 
A method of extracting breathing rate from the PPG signal was validated a publicly available 
dataset as well and shown it can be used as a good approximation of actual breathing rate. 

8.1.5 The Persuasive Automobile: Design and Evaluation of a Persuasive Lane-Specific 
Advice Human Machine Interface 

 
To design the HMI an iterative approach was used with two sequential questionnaire studies. 
These served to determine optimal advice location, modalities through which to transmit the 
information, and the information flow of the advice. An avatar was designed to give limited 
feedback to a driver after completing an advice.  
 
The persuasive HMI was tested in two driving simulator scenarios: a congestion scenario and a 
lane-drop scenario. Advices were either baseline, gamified, or cooperative in nature. More 
advices were followed in the gamified (79.17%) and cooperative groups (77.08%) compared to 
the baseline (61.81%). Between sessions the treatment groups were exposured to a web-portal 
that displayed their progress. After this in the second day, the treatment groups showed a 
significant increase in the number of advices followed compared to the first day. On day 2 those 
in the control group followed: 45 advices (+2.3%), those in the gamified: 64 (+20.8%), and 
those in the cooperative group: 61 (+15.1%) advices. Significant differences in advice following 
behaviour did not exist between the groups on the first day, but only emerged on the second 
day. This indicates the web-portal is an effective intervention, as it shows that the groups 
behaved similarly on the first day, but not on the second day. No significant difference was 
observed between the two treatment groups, meaning that the cooperative and competitive 
persuasion were equally effective. 
 

 
14 These are not mentioned in chapter 4 but are available on the GitHub repository mentioned. 
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Perceived usefulness and satisfaction showed higher perceived usefulness and satisfaction with 
the persuasive HMI for both treatment groups compared to the control group, but again no 
significant difference between the treatment groups. No significant changes regarding 
perceived usefulness and satisfaction occurred between both driving days and differences 
between groups were also stable over time. This indicates that there seems to be no effect of 
the web-portal on perceived usefulness or satisfaction, but that the persuasive interventions 
were perceived to be more useful and satisfying to use than the control version. 

8.2 Discussion of Main Findings 
The main research question for this thesis, as posed in chapter 2, was: How can we persuade a 
driver to follow a lane-specific advice without enforcing behaviour? 
 
This question was divided into three sub-questions, being: 
 

1. How to communicate with the driver? Fundamental requirements for a persuasive 
system to be effective and safe. 

2. When to communicate with the driver? Timing messages to low workload periods is 
safer and more likely to persuade. 

3. What to communicate with the driver? Design of a persuasive HMI system. 
 
This section discusses how the research presented in this thesis helps answer the sub-questions 
and the main research question. 

8.2.1 How To Communicate With the Driver? 
The context for this thesis was a lane-specific advice system that would allow for reduced 
congestion by advising drivers to spread out over the available road space. The first question 
posed was how to get a message across to the driver. This implies knowing what communication 
strategy to follow, what modality to use to deliver the information, and what external factors to 
take into account as well. 
 
Chapter 3 developed a conceptual model for driver persuasion targeting tactical level 
behaviours. Managing demands on the driver is crucial from a safety perspective, as demands 
exceeding driver capability can lead to loss-of-control or collision situation. In the theoretical 
model, the tactical level was selected because it contains mostly skill-based and rule-based 
behaviours from Rasmussen’s taxonomy, behaviours which are less demanding on the driver 
than the more complex knowledge-based behaviours. On top of selecting the tactical level as 
less likely to increase workload by much, communications with the driver should be timed to 
periods when the driver has spare capacity (e.g. low workload) as well. The communication 
strategy is thus: target tactical level driver behaviours and wait for a period of low workload 
before communictating with the driver. Alternatively, when dealing with time-critical messages 
such as lane-specific advice, rather than waiting for a period of low workload for one driver, it 
is of course equally possible to select drivers with the lowest workload from a larger pool of 
drivers as well. 
 
Chapter 7 described a combination of questionnaires and a simulator study. Based on the 
information bandwidth and speed of information uptake, the visual modality was selected as a 
primary information carrier of communications to the driver. This would  lead to the lowest 
increase in workload and was most preferred by drivers. In the questionnaires, drivers preferred 
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the Heads-Up Display (HUD) over a central console- or speedometer-based display, and 
preferred that messages be announced by an auditory chime. The HUD in combination with the 
chime would allow them to keep their eyes on the road. Drivers indicated they would at all 
times like control to turn the chime off. Haptic feedback in the steering wheel was not a suitable 
replacement for the chime, as it was seen as distracting and annoying by drivers. 
 
In conclusion, the research presented in this thesis shows that communicating lane-specific 
advice to a driver is best done by: 

- requesting a tactical level behaviour from the driver. 
- targeting communications to periods of low driver workload. 
- using the visual modality. 
- having messages announced by an auditory chime, which the driver can turn off if 

desired. 

8.2.2 When To Communicate With the Driver? 
Based on the theoretical model described in chapter 3, the best moment to initiate 
communication with a driver is when their workload is low and their perceived behavioural 
control is high. This ensures driver safety because requiring low workload prior to 
communicating with the driver means the chance that the driver will become overloaded is 
small. Targeting low workload periods also increases the success of any persuasive attempt 
because both perceived behavioural control and ability to perform the requested behaviour are 
high in such a situation. 
 
Measuring driver workload is a complex topic, and results from the field as to what 
physiological signals can be used to measure it have been diverse and sometimes contradictory. 
We hypothesized that one reason for the discrepancies is the frequent use of heart rate variability 
(HRV) as a workload proxy. HRV as a set of metrics is highly sensitive to outliers in the 
annotation of individual heart beats from the heart rate signal, which is usually done through 
automated software. Especially for low-cost PPG sensors, accurate analysis software was not 
available open source. This prompted the development of HeartPy as an accurate heart rate 
analysis toolkit capable of handling these types of noisy PPG signals. Chapters 5 and 6 describe 
the development and validation of HeartPy, and showed good performance on diverse datasets.  
 
HeartPy was used to analyse heart rate signals from two driving simulator studies, which 
showed that in normal driving conditions workload of a driver can be determined using ML 
methods. The main constraint was that the models could not robustly generalise to unknown 
drivers in regular driving conditions, likely because workload was never very high. Group-
based or individualised models could predict workload well. To test this assumption a second 
study was performed that induced high workload in drivers with a difficult forced-pace lane 
keeping task. In this study, models were much more capable of generalising to unknown drivers, 
although performance was still not excellent. A larger and more diverse dataset, along with 
more powerful ML models, will likely improve on this performance gap. 
 
Together, these chapters show not just that workload measurement in drivers is possible by 
using group-based or individualised models, but also provide the tools to automatically annotate 
and analyse noisy PPG and ECG heart rate signals collected in the field and with low-cost 
devices. 
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8.2.3 What To Communicate With the Driver? 
The last subquestion was what content should be communicated to the driver to ensure a high 
adherence to lane-specific advices. 
 
Persuading drivers to follow messages that are in the collective benefit, but may not be in their 
personal benefit, is tricky. Based on the development of the theoretical model, various 
persuasive techniques were identified fom the Persuasive Systems Design (PSD) model that 
can help make a message more enticing and likely to be followed. In this thesis gamification 
and socially cooperative approaches were chosen, as they each incorporate different persuasive 
elements as outlined in the Persuasive Systems Design (PSD) model, as well as influence the 
‘social norms’ component from the Theory of Planned Behaviour (TPB).  
 
When implementing persuasive in-car advice systems it is recommended to spread information 
over multiple modalities to reduce impact on driver workload (for example use an auditory alert 
chime to announce a visual message), to keep the eyes-off-road time to a minimum, and to 
manage driver workload by timing messages to appropriate moments. Using an avatar that 
shared driving goals with the driver coupled with a web-portal that gave insight into their own 
performance, had a positive effect on driver willingness to comply and actual compliance with 
persuasive messages. A simulator study confirmed that both the gamified and cooperative 
advices, combined with the avatar and web-portal, increased the advices followed significantly 
compared to only giving drivers an advice. Drivers indicated that presenting the reason for the 
advice prior the actual advice would lead to a higher compliance to the advices, but that 
feedback on the results of their behaviour might have a detrimental effect. 

8.2.4 Tying It Into the Main Research Question 
 
The main research question was How can we persuade a driver to follow a lane-specific advice 
without enforcing behaviour?  
 
The conceptual model outlined in this thesis can help designers of such systems decide on which 
strategy to employ and how to approach a driver. Of especial interest is workload; when 
persuading a driver it is important to time advices to periods when drivers can accommodate 
the advices safely, as well as are capable of following up on them. In terms used in this thesis, 
this means timing messages to periods of low workload, high perceived behavioural control, 
and high motivation. To determine driver workload on-line, this thesis outlined a ML-based 
approach that performed well. The tools for analysing heart rate real-time developed and 
discussed in this thesis should enable researchers and practitioners to get started quickly.  
 
Both gamification and socially cooperative approaches worked significantly better to persuade 
drivers to follow advices than simply providing an advice. The application of a web-portal 
where drivers could follow their progress between driving sessions helped to increase 
motivation and persuasive power. When deciding on either approach for an in-car advice 
system, important considerations are which approach is more suited to the use case and how 
long the system is envisaged to run. Gamified solutions tend to perform well for shorter 
durations, as once users reach their goals it is easy to lose motivation. Playing the game is only 
fun for so long. 
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8.3 Methodological Limitations 
This section discusses the methodological decisions that were made, and the advantages and 
drawbacks this brings with it including the research limitations. 

8.3.1 The Nature of Driving Simulator Studies 
The method of experimentation employed throughout the research is the use of a fixed-base 
driving simulator. The advantage of a driving simulator is that it offers the experimenter full 
control of the environment and eliminates changes in factors that otherwise are difficult to 
control in reality, for example varying weather conditions, transient traffic events, and variation 
in time of day lighting conditions. Using a driving simulator also enables safety-critical 
research, since little to no risk is posed to the participants and virtual crashes are harmless. 
Simulator studies are logistically easier and thus can also be employed on a larger scale and 
offer the possibility for larger sample sizes. 
 
The main drawback of a driving simulator experiment is that the participants are not exposed 
to a real driving environment. A driving simulator has relative validity rather than absolute 
validity (Carsten & Jamson, 2011), meaning that the behavioural patterns observed will likely 
transfer to real world conditions, but their magnitude may differ. Despite remarkable advances 
in computer graphics and the open sourcing of several rendering engines such as Unity3D and 
the Unreal Engine, the participant will remain aware that they are not driving a real car. Aside 
from the graphics not being completely photorealistic, participants often remarked it felt 
different to drive a car in the simulator when compared to a real car. This is because in a fixed-
base driving simulator motion cues are missing (Kaptein, Theeuwes, & van der Horst, 1996). 
Whereas in a real driving environment accelerating and decelerating both laterally (steering) 
and longitudinally (accelerating/braking) will create forces acting on the body that act as motion 
cues and aid in vehicle control. Such motion cues are missing when driving in a fixed-base 
driving simulator. Moving base simulators exist that can create these motion cues, but these 
suffer from realism issues as well, and are prohibitively expensive to acquire and run. Although 
only two participants in the three driving simulator studies suffered from this, the possibility 
for simulator sickness is another potential risk that can lead to drop-out of participants. 
 
Despite the previous limitations, a driving simulator was used in the studies because of ethical 
concerns regarding safety. One part of the research focused on inducing various levels of 
workload in drivers including high workload, which for obvious reasons has the potential to 
endanger the safety of someone driving in real traffic. The second part of my research 
determined how to persuade drivers using an in-car HMI. While this study could have been 
performed in real traffic, it was chosen to use a driving simulator because it allowed testing a 
larger sample size and give more advices in total. This would give a clearer view of any possible 
effects of the persuasive intervention as compared to real traffic, where varying traffic and 
weather conditions might confound any effects present. However, the usage of a driving 
simulator may also have affected the behavioural responses of participants as was discussed in 
chapter 7. 

8.3.2 Measuring Workload of Individual Drivers is Possible, Generalising if Less 
Straightforward 

 
The workload models developed in this thesis could predict workload well and generalize to 
unknown individuals relatively well in the lane-keeping task (high workload scenario) but not 
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in the simulated regular driving conditions. In regular driving conditions, individual and group-
level models worked well, but generalizing to unknown drivers did not give good results. The 
reason for this may be as simple as that workload induced in the regular simulated driving 
conditions was not high enough to create distinct patterns that generalize across individuals. In 
other words, it might be that physiological responses to extreme levels of workload are similar 
across individuals, but responses to small variations differ between individuals.  
 
However, a possible reason for this discrepancy is that workload cannot be captured as a 
singular concept. Indeed, the capacity to control a car relies not only on the mental workload of 
the driver, but it is likely also influenced by other states such as fatigue, momentary physical 
distraction, mental distraction, boredom, transient secondary tasks such as controlling 
infotainment of navigation systems, and the general driving context. These states might all 
interact with the driving task to influence workload levels, yet can still be distinct enough from 
workload that they may not be captured in one aggregate measure. 
 
An added difficulty with predicting an aggregate measure like workload in practice is that more 
factors are involved in real world driving compared to the lab. This means that the variance of 
the data used to predict workload will be larger. Models built in lab settings might have a hard 
time accurately generalizing to the more noisy real-world conditions. Those built on real-world 
driving sets may suffer from not being able to fit all variance, or from the collected dataset not 
being exhaustive enough. Future research can take this into account by ensuring data used to 
build models is representative not just of the research question being answered, but also of the 
practical environments in which any predictive inference will be run. 

8.3.3 On Using Machine Learning Methods 
Machine learning (ML) methods were used to fit models and predict workload. The main 
disadvantage often associated with ML approaches is their black box nature: something is 
learned, the prediction is verified, but not much is known about exactly what the model learns. 
Recently, the calls for transparent and easily interpretable ML models have intensified (Adadi 
& Berrada, 2018; Samek, Wiegand, & Müller, 2017) and work on ‘explanatory artificial 
intelligence’ (XAI) has expanded. These efforts are necessary, especially amidst recent reports 
of, for example, medical deep learning models not generalizing well between different brands 
of the same devices (Zech et al., 2018). 
 
This issue of generalizability is one that was also raised in the workload study and is one that 
is in my opinion insufficiently discussed in applied ML literature. ML approaches (of which 
especially in Deep Learning (DL)) can achieve very high accuracy but at the same time function 
only within the precise parameters of the training data provided. If data at runtime varies from 
what is used at training time, the predictions are at risk of losing their validity. This problem 
was minimized by by collecting data on four separate days, with the goal of collecting a varied 
data set. 
 
The strength of ML methods is their capacity to fit vast amounts of data to desired output 
mappings or learn a range of behaviours without a priori ideas of relations present in the data 
set. As research moves into the area of big data, it becomes more difficult for traditional 
statistical modelling to result in comprehensive models. Simply put, the human mind is too 
limited to understand and map all relations in a complicated modern data set (Breiman, 2001). 
The main advantage of ML methods is that they can. This is the main reason to employ this 
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method in the workload prediction study, and also because the work on workload prediction 
using more traditional methods has so far resulted in mixed results. 

8.4 Recommendations for Scientific Research 
The conclusions of the work in this dissertation are subject to certain limitations. These are 
related to the methods of data collection, analysis, sample of participants used, and the 
experimental designs chosen. Future research can address some of the shortcomings and build 
on the conclusions presented. 

8.4.1 On-Road Trials of Persuasive HMI 
I developed a persuasive HMI and tested its effectiveness in a simulator study. As mentioned, 
the main advantage of a driving simulator is full control over the scenarios, but the main 
drawback is that it differs from real driving. This that the results from a driving simulator have 
relative validity, rather than absolute validity.  
 
It was found that the persuasive variants, which included cooperative and competitive elements, 
an avatar, and a web-portal, were more effective than the control condition which only included 
the advices and the avatar. An open question remains how well these results will generalize to 
real-world driving conditions. Since a decent sample size of 54 participants was obtained, that 
collectively received 432 advices, no radically different results are expected in real-world 
driving settings. However, differences in effect size can be expected. In normal driving 
conditions other factors potentially confound persuasive effects, such as being in a hurry, 
emotional state, fatigue, as well as general driving styles which may not have manifested in the 
driving simulator. On-road tests are required to further validate the potential of the proposed 
persuasive approach. 
 
Another recommendation relates to the types of advices given. A congestion warning and a 
lane-drop warning were tested. Other reasons for advices are possible, such as changing weather 
conditions, road works, or accidents. While no difference was found in the number of advices 
followed between the two tested contexts, it may be that different situations show different 
compliance patterns. A future study can examine this in more detail. 
 
A final point relates to the long-term effectiveness of persuasive technology. As drivers become 
familiar with the system and its features, they may become less sensitive to certain persuasive 
aspects such as competition or rewards. Further research is required to quantify long-term 
effectiveness of persuasive technology, not only within driving context but outside of it as well. 

8.4.2 Predict More Than Workload 
The chapter on driver workload discussed two studies. Data was collected in typical driving 
conditions, and artificial lane keeping conditions, both in the driving simulator. The latter was 
a much more demanding driving task and induced higher workload levels. 
 
In both studies predicting workload with individual models (trained on individual level data) 
and group-based models (trained on group level data) worked well. This indicates there is 
enough variance in the data that is tied to driver workload, and the models had sufficient 
capacity to capture this. However, trying to generalise the results to unknown drivers proved 
challenging in especially in the realistic driving conditions. In the generalization case only the 



138 Your Car Knows Best 

 

forced-pace study (higher levels of workload) provided useful results, but with an important 
caveat: it was observed that in most cases, the correct workload pattern was predicted over time, 
but a significant offset error was present. 
 
I hypothesize the reason for this is that workload cannot be viewed as a singular construct. 
While workload may arise from the difference between the cognitive resources required to 
control the vehicle and the cognitive resources that the driver has available, the ability to control 
the vehicle is dependent on many factors beyond this. Transient distractions like operating a 
navigation or infotainment device may take both the eyes and mind of the driver off the road 
and thus create a window for dangerous situations to arise. Similarly, talking to a passenger or 
being involved in a call, even if hands-free, can decrease a driver’s capacity to deal with safety-
critical situations that may arise. Driver emotional states like anger from a recent conversation, 
or bodily states like fatigue, can hamper vehicle control and likely modulate a driver’s workload 
response to external events. This is important in the context of using driver state prediction 
models to time communication between in-vehicle systems and the driver. The difficulty in 
generalizing the predictions to unknown drivers in real-world driving conditions, may have 
been because workload was predicted as an aggregate measure, rather than through its possible 
subcomponents. 
 
Another source for the poor generalising performance of the models could be that self-reported 
workload measures were used as ground truth input for the models. It was chosen to do so 
because from a persuasive perspective, self-reported (perceived) workload is what you want to 
predict: when deciding whether to follow a persuasive advice or not, it matters how a driver 
perceives their own workload level, not what it really is. However, because this relatively 
indirect workload metric was chosen as ground truth, a disconnect may exist between the 
perceived workload and the actual workload, and subsequently the physiological responses of 
the driver to the workload levels. Future research can work to quantify the relation between 
self-reported mental load measures and actual task loads put on a driver. 
 
I recommend future studies work towards classifying and predicting sub-components important 
to workload, such as transient distractions, eyes-off-road moments, fatigue, boredom, the 
driving context, or other factors that can influence a driver’s capacity to adequately control the 
vehicle. These studies can build upon existing attempts to predict these sub-components, and 
work towards unifying them into a fast classifier that can be deployed in in-car settings. 
Additionally, when planning to use self-reported measures, the relationship between self-
reported workload and actual task loads needs to be examined further. 

8.4.3 Validity of Machine Learning Models: Generalisability, Robustness, and Available 
Data Sets 

It was observed in many applied ML papers in the transportation domain and 
psychophysiological domain, that insufficient attention was given to how the trained models 
will be applied in practice and what performance to expect under variable settings. Segmenting 
a dataset into train/validation/test sets is a robust way of reducing overfitting and of estimating 
some generalization performance of models. A problem with relying on this approach is that all 
three segmented sets are not independent of each other: they tend to still come from the same 
underlying distribution. Factors like camera type used, lighting or weather conditions (with 
visual data), to the type of sensors used for most data, will have an effect. For example a recent 
critical overview found that for chest x-ray pneumonia detection, deep learning networks failed 
to generalize well between different something innocuous like different brands of x-ray devices 
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(Zech et al., 2018). Such inherent issues are dangerous as these problems are not detected with 
the standard evaluation methods. 
 
I recommend that research focuses on defining not only model performance on 
training/vallidation/test sets, but also critically reflects on issues such as sensitivity of trained 
models to differences between training data and real-world input data. One way to work towards 
this is to open source the data sets and annotations that are generated and used in research 
whenever possible. This increases the available data variance which allows for more robustness 
of the developed models.  

8.5 Recommendations for Practice 
Most of the research presented in this dissertation can be viewed as ‘building blocks’ for the 
development and construction of smarter in-car systems. This section outlines some 
recommendations for using them in practice. 

8.5.1 Persuasive HMI Usage in Practice 
The research presented in this dissertation has led to several recommendations for using 
persuasive HMI in practice. When persuading drivers, context matters. Drivers are not likely to 
follow advices if they cannot understand or observe the reasons for it. Provide the reason for 
why an advice is given, especially when drivers cannot observe for themselves why an advice 
may be given. 
 
Not just when persuading a driver, but when communicating with a driver in any way, workload 
matters. Using a workload monitor as a filter to determine when to communicate to the driver, 
as proposed in this dissertation, is one way to provide safe interaction. However, it was 
discussed that predicting workload as an aggregate measure might not be reliable. Splitting 
workload into relevant subcomponents as discussed in 8.3.2 might be a solution. Often it may 
not be required to predict general workload.  
 
Regarding using persuasive systems to change driver behaviour: it is recommended to not plan 
on using persuasion long-term, especially gamification. Persuasive effects reduce over time as 
people get used to a system and subsequently become bored with (or blind to) its features. 
Competing with other drivers is fun, but for how long? Where persuasion can however be very 
effective, is in the type of system described in this dissertation. For the proposed lane-specific 
system to function many drivers need to follow its advices from the start. To stimulate 
compliance to advices in early stages it was proposed to use persuasive methods. Once drivers 
observe the benefits a system gives, it no longer matters if persuasive effectiveness drops off. 
Drivers will have an incentive to keep following advices simply because it benefits them. 

8.5.2 Initiate Communication with Drivers Only at Appropriate (Safe) Moments 
As in-car technology moves towards more information and assistive systems the information 
density in the car increases. From the point of view of the driver, who is also performing the 
already taxing task of vehicular control and navigation, an increase in information density can 
create a more demanding and thus less safe and less comfortable driving experience. 
 
Aside from the information content that is being transmitted to the driver, its timing is most 
important. Distracting a driver at the wrong time can be dangerous in addition to having the 
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potential of leading to irritation with the driver. Communicating with a driver requires 
knowledge of both the environment, as factors like traffic density or the distance to the car in 
front may increase risks dynamically, as well as knowledge of the driver state, as difficult 
driving conditions, preoccupation with a conversation, or distraction caused by operating in-car 
infotainment may also pose extra risk factors. 

8.5.3 Workload Prediction in Practice 
While the goal in practice can often be to predict workload, in many cases another often easier 
to measure factor is required. For example, finding whether a driver is alert and capable of 
vehicle control may be better detected by measuring eyes-on-road, distraction from in-car 
devices, and vehicle kinematics, rather than an aggregate measure such as workload.  
 
Collecting and analysing representative data sets, for example from naturalistic driving studies, 
can help reduce this issue. When considering workload prediction in practice, it is 
recommended to determine relevant subcomponents as discussed in 8.3.2 and decide on which 
facets are most important for a given feature. The diverse results from scientific work over the 
past decades seems to indicate that general workload cannot be predicted accurately when 
driving, nor is it necessary to predict it in many cases. 
 
Physiological data take a special place in monitoring drivers. They are often collected to predict 
workload or related metrics, and in practice various trade-offs have to be made compared to the 
lab. Whereas in the lab the participant movement can be more restricted, types of sensors used 
more intrusive, and the tasks a driver is asked to perform are more delineated, driving in the 
real world is more dynamic, and a driver might at any time engage in secondary asks as well. 
This dissertation has contributed by developing a robust heart rate analysis algorithm and 
making it available open source. 

8.5.4 Machine Learning Ready for Practice: Speed Versus Accuracy 
One important consideration in developing ML models that are ready for practical usage is the 
consideration of resources required. This problem is especially prominent in Deep Learning, a 
sub-field of Machine Learning that generally deals with much larger model architectures. 
Developing a model that accurately performs a task with good accuracy and performance 
parameters is great, but where will it be deployed? 
 
While it may be tempting to use a standard model architecture like a ResNet50 or an Xception 
network and keep working with that, even despite their relatively low requirements relative to 
their performance (Bianco, Cadene, Celona, & Napoletano, 2018), they still require about 5 and 
8 gFLOPs, and require at least 740 and 1003 MB of memory, respectively. A challenge to future 
researchers is to take this one step further and find the minimum requirements for acceptable 
model performance, either by reducing the complexity of existing models, or by working 
towards custom architectures. In practice a given architecture that reaches 98% predictive 
accuracy but requires 300ms inference time may still be less desirable than one reaching 94% 
predictive accuracy that requires an inference time of 50ms. This constraint is especially true 
for embedded environments such as in in-car systems. I encourage researchers to work towards 
optimized network architectures within the scope of their research, to speed up adoption of the 
research in practice. 
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While platforms like Nvidia Jetson and more recently Google’s Edge TPU15 offer impressive 
embedded performance at low power levels (2-7.5 Watts), when for example working on driver 
state prediction as described in 8.4.2 it may be necessary to run multiple models in parallel to 
detect fatigue, distraction, eyes-off-road, phone calls, and other factors related to driver state. 
By ensuring accurate models that also have relatively low computational complexity, practical 
use of these models can be increased. 

8.5.5 Keep an Eye on Where Your Machine Learning Models Will Run 
Some of the ML recommendations for future research also apply to recommendations for 
practice, such as a fair quantification of generalizing power of the models used. Realizing what 
the distribution of real-world data is and how this compares to the more limited data sets used 
to train the networks can help in improving model robustness. Aside from collecting a more 
representative set, data augmentation techniques can help close the gap between training data 
and real-world data. 
 
Another potential problem comes from so-called adversarial attacks. ML (and especially DL) 
networks are specialists capable of only performing within the boundaries of what they have 
learned. Adversarial attacks aim to make small changes to model inputs to confuse classification 
and prediction networks. Oftentimes these changes are imperceptible to humans. For example, 
by adding a small amount of noise to images, classifiers can give false predictions with very 
high confidence. In some areas this is potentially life threatening. Healthcare is vulnerable 
(Finlayson, Chung, Kohane, & Beam, 2018) with patient lives being at stake. Transportation is 
not immune either. By giving examples never encountered by a road signage classifier, such as 
company logos or slightly manipulated traffic signs, a study showed that road signs were 
reliably misclassified with very high confidence (Sitawarin, Bhagoji, Mosenia, Chiang, & 
Mittal, 2018). Even simple misses, such as classifying a 30 km/h area as an 80 km/h one, can 
be disastrous in semi or fully autonomous cars. This underlines the importance of redundancy 
and time investment in ways of making the models more robust (Madry, Makelov, Schmidt, 
Tsipras, & Vladu, 2018; Prakash, Moran, Garber, Dilillo, & Storer, 2018). 
 
  

 
15 Available through Coral.ai 
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