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We address the interaction between two quantum systems (A and B) that is mediated by their common linear
environment. If the environment is out of equilibrium, the resulting interaction violates Onsager relations and
cannot be described by a Hamiltonian. In simple terms, the action of system A on system B does not necessarily
produce a back action. We derive general quantum equations describing the situation, and we analyze in detail
their classical correspondence. Changing the properties of the environment, one can easily change and engineer
the resulting interaction. It is tempting to use this for quantum manipulation of the systems. However, the
resulting quantum gate is not always unitary and may induce a loss of quantum coherence. For a relevant
example, we consider systems A and B to be spins of arbitrary values and arrange the interaction to realize
an analog of the two-qubit CNOT gate. The direction of spin A controls the rotation of spin B while spin A is
not rotated experiencing no back action from spin B. We solve the quantum dynamics equations and analyze
the purity of the resulting density matrix. The resulting purity essentially depends on the initial states of the
systems. We attempt to find a universal characteristic of the purity, optimizing it for the worst choice of initial
states. For both spins sA = sB = 1/2, the optimized purity is bounded by 1/2 irrespective of the details of the
gate. We also study in detail the semiclassical limit of large spins. In this case, the optimized purity is bounded
by (1 + π/2)−1 ≈ 0.39. This is much better than the typical purity of a large spin state ∼s−1. We conclude that
although the quantum manipulation without back action inevitably causes decoherence of the quantum states,
the actual purity of the resulting state can be optimized and made relatively high.

DOI: 10.1103/PhysRevB.100.045416

I. INTRODUCTION

The ability to control open quantum systems is important
in the context of information processing, which includes
information processing with spins [1–3] and spin quantum
computation [4–8]. In general, the environment is harmful to
quantum systems as it leads to dissipation and the loss of
quantum coherence. On the other hand, coupling the system
to an environment is essential in the quantum manipulation
itself [9–15].

Coupling quantum systems together can be achieved in
many ways, depending on the experimental platform [16–21].
The environment can mediate the interaction between the
subsystems as described by linear-response theory [22]. If
the environment is in thermal equilibrium, the environment-
mediated interaction between two systems A and B is gov-
erned by the Onsager symmetries [23,24]: in simple terms,
the action that system A has on system B is equivalent to the
action of system B on system A. Such a dissipative interaction
was studied in Refs. [25,27,28].

Here we examine the more general case in which the
environment is out of thermal equilibrium and the Onsager
symmetries do not hold. In particular, this makes possible the
situation in which subsystem A influences the dynamics of
system B and the reciprocal interaction does not occur. We
call this “interaction without back action.” By solving the
equations of the dynamics of spins in an environment, we
show that interaction without back action inevitably leads to
noise and decoherence of the subsystems. We also investigate
if this interaction can realize the controlled-NOT (CNOT gate)

that is central to quantum information processing [29–31]. We
find that this is possible if the number of levels involved is
large (large spin quantum number). In contrast, for two-level
systems (spin s = 1/2) the coherence is almost entirely lost.
The CNOT operation is defined for a pair of s = 1/2 spins.
Let us note that it can be naturally generalized to the case of
bigger spins, sA and sB. During the operation, 〈̂SA〉 remains
unchanged while 〈̂SB〉 is rotated about a certain axis by an
angle ±π/2, the sign being dependent on the direction of
〈̂SA〉. Such a generalization naturally arises if one applies the
CNOT operation to multiple copies of the pair of s = 1/2 spins
with the same initial state in each pair. This is a usual approach
in error correction schemes [4].

The paper is organized as follows: In the second section,
we discuss the classical dynamics of two systems in the pres-
ence of a nonreciprocal interaction between the systems. In
the third section, we address the dynamics of classical spins.
In the fourth section, we derive the equations of dynamics of
open quantum systems. In the fifth section, we compare the
quantum evolution of observables with the classical limit. In
the sixth section, we compute the time evolution of spin states
in a simple model where dephasing is taken into account and
we study the feasibility of the CNOT operation for spin-1/2
and for large spins. The final section is dedicated to the
conclusion.

II. GENERAL CLASSICAL DYNAMICS

Before addressing the environment-mediated interaction at
the quantum level, let us consider it at the classical level.
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The description of interaction at this level is very simple
and compact. The environment can be regarded as a piece
of electronics that functionally consists of a set of controls
that exert forces on the system variables, a set of meters
that measures the variables and provides feedback setting the
control forces corresponding to the measurement results. We
will assume an instant and linear feedback. In this case, the
environment and the mediated interaction is completely char-
acterized by a matrix of linear susceptibilities aAB, aAB being
the proportionality coefficient between the force conjugated to
the variable A and the value of the variable B. In principle, the
environment can always be engineered to provide any desired
aAB.

The symmetry properties of this matrix are important. If
aAB = aBA, the resulting dynamics is Hamiltonian, and there
is a conserving energy characteristic to the dynamics. The
symmetry is equivalent to Newton’s third law: every action
produces an equal and opposite reaction.

If the environment is in thermodynamic equilibrium, the
symmetry property as well as the energy conservation are
guaranteed by the Onsager symmetry principle [23]. An active
environment is not in equilibrium; for instance, the piece of
electronics realizing aAB may be connected to the battery, and
it should lead to aAB �= aBA. In this paper, we concentrate on
the cases when the Onsager relation is violated.

To illustrate the importance of Onsager symmetry, let us
consider the classical dynamics of two identical oscillators
with coordinates qA,B that are weakly coupled via the envi-
ronment

mq̈A + mω2qA + aAB qB = 0, (1a)

mq̈B + mω2qB + aBA qA = 0. (1b)

ω being the oscillator frequency, aAB,BA � mω2. These linear
dynamics are easy to analyze.

If aAB aBA > 0, there are two close oscillating frequencies
ω ± (2mω)−1√aAB aBA. The absence of Onsager symmetry
is only manifested in nonsymmetric eigenvectors of the cor-
responding oscillating modes. If aAB aBA < 0, the oscillators
become unstable, and there is an exponentially growing os-
cillation with amplitude ∝ exp (t (2mω)−1√− aAB aBA). Ap-
parently, the energy is supplied by the environment. Another
interesting case is aBA = 0. In this case, the motion of the
oscillator B is not affected by the coupling. The oscillator
A experiences the oscillations of B as an external resonance
force, so its oscillation amplitude increases linearly with time.
One can say that the oscillator A provides an unobtrusive and
very efficient detection and amplification of B.

This example illustrates the importance of the Onsager
symmetry violation at the classical level: it may drastically
change the dynamics, but it does not have to do this always.

Let us consider the most general classical equations of
motion in the linear-response regime. Let us have a set of
classical variables Oα (they may be distributed between two
coupled systems). Their evolution is governed by the equation

Ȯα = {Oα, H}pb + aβγ {Oα, Oβ}pbOγ . (2)

The first term includes the Hamiltonian contribution to the
system dynamics, and {· · · }pb stands for Poisson brackets,

{ f , g}pb = ∂ f

∂qγ

∂g

∂ pγ

− ∂ f

∂ pγ

∂g

∂qγ

, (3)

qγ , pγ being the canonical coordinates of the system. This
is the most general linear feedback equation that will be
compared in Sec. IV with quantum equations in order to
establish classical/quantum correspondence. The system of
equations (2) is closed if the Poisson brackets of Oα can be
expressed in terms of the elements of the set of constants. This
is obviously the case when Oα are canonical variables. The
Poisson brackets in this case are {qj, qk}pb = 0, {p j, pk}pb =
0, {q j, pk}pb = δ jk ( j, k = A, B), and the interaction terms are
expressed as follows:

q̇ j = ap j qk qk + ap j pk pk, (4a)

ṗ j = − aq j qk qk − aq j pk pk . (4b)

The dynamics given by Eqs. (1a) and (1b) previously
discussed is a particular case of Eqs. (4a) and (4b).

While the quantum version of these oscillator equations
is worth exploring, its relation to quantum information pro-
cessing is not direct since the resulting equations are linear.
Another example of a variable set where Poisson brackets
are closed is provided by classical spins. Since the resulting
equations are not linear and there is a direct and straightfor-
ward analogy between the spins and (collections of) qubits,
we concentrate on this case.

III. CLASSICAL SPINS

Let us define two classical spins through angular momenta
expressed in terms of canonical variables S j = q j × p j ( j =
A, B). The Poisson brackets read{

Sa
i , Sb

j

}
pb = εabcδi jS

c
i , (5)

with εabc the Levi-Civita antisymmetric tensor and δ jk the
Kronecker symbol. The susceptibility matrix aab

AB relates the
“magnetic field” acting on spin A to the spin components of
spin B. The resulting equations of motion read

Ṡa
A = εabc abd

AB Sd
BSc

A, (6a)

Ṡa
B = εabc abd

BA Sd
ASc

B. (6b)

These equations conserve the moduli of both spins,
|SA,B|2 = const. If Onsager symmetry holds, the quantity
Sa

A aab
AB Sb

B is conserved as well, and the equations have stable
stationary solutions. This is not generally the case if Onsager
symmetry is violated.

Let us concentrate on a simple extreme case in which
adb

BA = 0 and abd
AB �= 0. In this case, the spin B remains constant

in time. It creates a constant magnetic field for the spin A that
precesses around this magnetic field.

This behavior is reminiscent of that of the CNOT gate,
which is of fundamental importance in quantum information
processing [4]. This is a two-qubit operation that does not
modify the spin of the first (control) qubit. The spin of the
second qubit does not change if the first spin is “up” and flips
its direction if the first qubit is “down”
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Let us note that we can realize a classical analog of the
CNOT gate by means of the environment-mediated interaction.
We assume that we can switch the interaction on and off.
We arrange the interaction such that the only nonvanishing
element of the susceptibility matrix is azz

AB ≡ h̄ν. We switch
on the interaction for a time interval �t such that the spin A is
rotated by ±π/2 about the z-axis provided the spin B is in the
±z direction, �t = π/2ν. We switch off the interaction and
apply a “magnetic field” to the spin A to rotate it by π/2.

Thereby we achieve the controlled-NOT gate functionality.
It is worth noting that big spins A, B can be seen as collections
of aligned qubit spins. The operation is performed on all
qubits of the collection and they remain aligned at each stage
of the operation.

IV. OPEN-SYSTEM QUANTUM DYNAMICS

In this section, we derive the Bloch-Master equations that
describe the dynamics of our system. Our derivation mainly
follows the standard lines; see, e.g., Ref. [25] and references
therein. However, we need to account for the fact that the
environment is not in thermal equilibrium. We also group the
terms differently to facilitate the comparison with the classical
equations (2).

The ensemble system + bath is described by a density
matrix ρ whose time evolution is given by the von Neumann
equation

ρ̇(t ) = − i

h̄
[H, ρ(t )] = − i

h̄
[Hρ(t ) − ρ(t )H]. (7)

The Hamiltonian of the system and the bath reads

H = Hs + Hb + Hc. (8)

It includes the Hamiltonian of the subsystem Hs, the Hamilto-
nian of the bath Hb, and the Hamiltonian Hc that describes the
coupling between the two. The latter is written as

Hc = − Ôα Qα, (9)

where Ôα are the operators of the subsystem, Qα are the
operators of the bath, and there is summation over the repeated
index. The density matrix of the subsystem is obtained by
taking the trace over the bath variables of the full density
matrix:

ρs(t ) = trb{ρ(t )}. (10)

Let us define

ρ̃(t ) = eitHb/h̄ρ(t )e−itHb/h̄. (11)

Assuming Hb to be time-independent, we can check that ρ̃(t )
satisfies the equation

˙̃ρ(t ) = − i

h̄
[Hs(t ), ρ̃(t )] − i

h̄
[H̃c(t ), ρ̃(t )], (12)

where the transformed Hamiltonian H̃c reads

H̃c(t ) = eitHb/h̄Hce−itHb/h̄

= − Ôα eitHb/h̄Qαe−itHb/h̄

= − Ôα Q̃α (t ).

Integrating Eq. (12) leads to

ρ̃(t ) = ρ̃(0) − i

h̄

∫ t

0
dt ′[Hs(t

′) + H̃c(t ′), ρ̃(t ′)], (13)

and inserting this into the second term of Eq. (12) gives

˙̃ρ(t ) = − i

h̄
[Hs(t ), ρ̃(t )] − i

h̄
[H̃c(t ), ρ̃(0)]

− 1

h̄2

∫ t

0
dt ′ [H̃c(t ), [Hs(t

′) + H̃c(t ′), ρ̃(t ′)]]. (14)

At this stage we let ρ̃(t ) → ρ̃b(t ) ⊗ ρs(t ). Taking the trace
over the bath variables yields

ρ̇s(t ) = − i

h̄
[Hs(t ), ρs(t )]

− 1

h̄2

∫ t

0
dt ′ trb{Q̃α (t )Q̃β (t ′)ρ̃b(t ′)} Ôα Ôβ ρs(t

′)

+ 1

h̄2

∫ t

0
dt ′ trb{Q̃β (t )ρ̃b(t ′)Q̃α (t ′)} Ôβ ρs(t

′) Ôα

+ 1

h̄2

∫ t

0
dt ′ trb{Q̃β (t ′)ρ̃b(t ′)Q̃α (t )} Ôβ ρs(t

′) Ôα

− 1

h̄2

∫ t

0
dt ′ trb{ρ̃b(t ′)Q̃α (t ′)Q̃β (t )}ρs(t

′) Ôα Ôβ .

Let 〈·〉b = trb{ρ̃b(t )·}. The bath operators vanish on average:
〈Q̃α (t )〉b = 0, and the correlators 〈Q̃α (t )Q̃β (t ′)〉b decay fast
for t − t ′ > tb, tb being the timescale of the correlations of
the bath variables. We also assume t � tb, the elements of the
density matrix are essentially constant over the timescale tb,
and the correlators are uniform in time. Therefore, we let

∫ t

0
dt ′〈Q̃α (t )Q̃β (t ′)〉b Ôα Ôβ ρs(t

′)

→
∫ 0

−∞
dt ′〈Q̃α (0)Q̃β (t ′)〉b Ôα Ôβ ρs(t ), etc.

Hence the separation of timescales justifies the Born-Markov
approximation. By defining

N−
αβ =

∫ 0

−∞
dt 〈Q̃α (0)Q̃β (t )〉b (15)

and

N+
αβ =

∫ 0

−∞
dt 〈Q̃α (t )Q̃β (0)〉b, (16)

we arrive at the differential equation that describes the time
evolution of the subsystem density matrix:

ρ̇s(t ) = − i

h̄
[Hs(t ), ρs(t )]

− 1

h̄2 N−
αβ Ôα Ôβ ρs(t ) − 1

h̄2 N+
αβ ρs(t ) Ôα Ôβ

+ 1

h̄2 (N−
αβ + N+

αβ ) Ôβ ρs(t ) Ôα . (17)
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Let us introduce the (symmetrized) noises and the suscep-
tibilities

Nαβ = N−
αβ + N+

βα, (18a)

Nαβ = 1

2
(Nαβ + Nβα ), (18b)

aαβ = − i

h̄
(N−

αβ − N+
βα ). (18c)

Those representations were already presented in the litera-
ture; see, for instance, Ref. [26]. Then we write Eq. (17) in the
form of the standard Bloch master equations:

ρ̇s(t ) = − i

h̄
[H ′

s (t ), ρs(t )]

−Cαβ

2h̄2 ({Ôα Ôβ, ρs(t )} − 2 Ôβ ρs(t ) Ôα ), (19)

where {a, b} = ab + ba and

H ′
s (t ) = Hs(t ) − i

2h̄
(N−

αβ − N+
αβ ) Ôα Ôβ, (20)

Cαβ = N−
αβ + N+

αβ = Nαβ + ih̄

2
(aαβ − aβα ). (21)

The matrix C is positive-Hermitian. It includes a symmetric
part that consists of the noises Nαβ and an antisymmetric
part that includes the elements of the susceptibility matrix. To
reveal its physical content, we rewrite Eq. (19) as

ρ̇s(t ) = − i

h̄
[H ′′

s (t ), ρs(t )]

− Nαβ

2h̄2 [ Ôα, [Ôβ, ρs(t )]]

− i

2h̄
aαβ[Ôα, {Ôβ, ρs(t )}], (22)

with

H ′′
s (t ) = Hs(t ) − i

4h̄
(Nαβ − Nβα ) Ôα Ôβ . (23)

In the following sections, we concentrate on spins. The
spin operators Ŝ

a
j (a = x, y, z) are defined by the commutation

relations [
Ŝ

a
j , Ŝ

b
k

] = ih̄εabcδ jk Ŝ
c
j . (24)

Then Eq. (22) becomes

ρ̇s(t ) = − i

h̄
[H ′′

s (t ), ρs(t )] − N
ab
jk

2h̄2

[
Ŝ

a
j ,

[
Ŝ

b
k, ρs(t )

]]

− i

2h̄
aab

jk

[
Ŝ

a
j ,

{
Ŝ

b
k, ρs(t )

}]
(25)

with

H ′′
s = Hs − i

4h̄

(
Nab

jk − Nba
k j

)
Ŝ

a
j Ŝ

b
k . (26)

In Sec. VI we will solve the equations for a pair of spins in the
simple case in which only dephasing is taken into account.

V. COMPARISON BETWEEN CLASSICAL
AND QUANTUM DYNAMICS

To give a quasiclassical interpretation of the equations
derived in the preceding section, let us compute the time

evolution of the expectation value of the operator Ôα . Using
the cyclic property of the trace, we obtain from Eq. (22)

〈 ˙̂Oα〉 = − i

h̄
〈[Ôα, H ′′

s (t )]〉 − Nβγ

2h̄2 〈[[Ôα, Ôβ], Ôγ ]〉

− i

2h̄
aβγ 〈{[Ôα, Ôβ], Ôγ }〉, (27)

with 〈·〉 = trs{ρs(t )·}.
The connection between quantum and classical dynamics

is generally obtained by employing the correspondence be-
tween the commutators and the Poisson brackets:

− i

h̄
[Ôα, Ôβ] ↔ {Oα, Oβ}pb. (28)

In the classical case in addition the noise matrix is symmetric:
Nαβ = Nβα . With those prescriptions the time evolution of the
classical variables Oα reads

Ȯα = {Oα, Hs}pb + Nβγ

2
{{Oα, Oβ}pb, Oγ }pb

+ aβγ {Oα, Oβ}pbOγ . (29)

The first and third lines are consistent with Eq. (2) and there
is an additional noise term given by the second line.

We would like to consider two special cases: canonical
operators and spins. On the one hand, the phase-space dy-
namics is obtained from the commutation relations of the
canonical operators [q̂a

j , q̂b
k] = 0, [ p̂a

j, p̂b
k] = 0 and [q̂a

j , p̂b
k] =

ih̄δ jkδab = −[ p̂a
j, q̂b

k]. The corresponding equations of motion
are 〈

˙̂qa
j

〉 = apa
j q

b
k

〈
q̂b

k

〉 + apa
j pb

k

〈
p̂b

k

〉
, (30)

〈
˙̂pa

j

〉 = − aqa
j q

b
k

〈
q̂b

k

〉 − aqa
j pb

k

〈
p̂b

k

〉
. (31)

They are the quantum counterparts to the classical equations
(4a) and (4b).

For spins, on the other hand, using the commutation rela-
tions (24) in Eq. (27) leads to

〈 ˙̂Sa
j

〉 = − i

h̄

〈[
Ŝ

a
j , Hs(t )

]〉 + Nba
j j

〈
Ŝ

b
j

〉 − Nbb
j j

〈
Ŝ

a
j

〉

+ 1

2
εabc abd

jk

〈{
Ŝ

d
k , Ŝ

c
j

}〉
. (32)

The term k = j can be taken out of the summation, leading to
〈 ˙̂Sa

j

〉 = − i

h̄

〈[
Ŝ

a
j , Hs(t )

]〉 + 1

2
Nba

j j

〈
Ŝ

b
j

〉 − 1

2
Nbb

j j

〈
Ŝ

a
j

〉

+ 1

2
εabc abd

j j

〈{
Ŝ

d
j , Ŝ

c
j

}〉 + ∑
k �= j

εabc abd
jk

〈
Ŝ

d
k Ŝ

c
j

〉
. (33)

This corresponds to Eq. (9) of Ref. [32].
Spin-1/2 operators in particular satisfy the anticommuta-

tion relations {Ŝd
j , Ŝ

c
j} = h̄2δcd/2. In that case the term in the

third line is the number h̄2εabc abc
j j /4. It accounts for the effect

of spin pumping [32]. The last term of the above equation is
the quantum counterpart to Eqs. (6a) and (6b).

In Eq. (33), the noises Nba
j j lead to relaxation and dephasing

of the spins. This is an important feature since in quantum
physics the asymmetry of the susceptibility matrix leads to
finite noise as required by the positivity of the matrix C in
Eq. (19). The noise is expected to reduce the purity of the

045416-4



INTERACTION WITHOUT BACK ACTION IN THE … PHYSICAL REVIEW B 100, 045416 (2019)

quantum state. In the next section, we compute the purity of
the spin quantum states and we find its maximal achievable
value in the process of interaction without back action.

VI. DECOHERENCE DURING THE CNOT OPERATION:
EVALUATION OF PURITY

In this section, we specify a simple model of the
environment-induced interaction, describe the CNOT opera-
tion, and evaluate decoherence induced in the course of the
operation. The noises (18a) and susceptibilities (18c) are

Nab
jk = N jk δazδbz, (34a)

aab
jk = a jk δazδbz. (34b)

We consider the two quantum objects (spins) j = A, B.
For realizing the CNOT operation, we would like spin A to

control the rotation of spin B while spin A remains immobile.
This is fulfilled when aAB = 0 and aBA �= 0. If spin A is
oriented parallel to the ẑ axis, then the classical equations of
motion for spin B are

Ṡx
B = − aBA Sz

ASy
B, (35a)

Ṡy
B = aBA Sz

ASx
B, (35b)

Ṡz
B = 0. (35c)

Depending on the orientation of spin A (parallel or antipar-
allel to ẑ), spin B rotates with angular frequency ± aBA sAẑ,
where sa, . . . , so it rotates by an angle ±π/2 over the time

tπ/2 = π

2 aBA sA
. (36)

We would like to evaluate how the quantum states are
affected by the noise after time (36). A simple measure of the
effect of the noise is given by the purity of the quantum state,

γ (t ) = tr{ρs(t )2}. (37)

To compute the purity, we need to evaluate the density
matrix at the final time. The time dependence of the density
matrix is obtained from Eq. (25):

ρ̇s(t ) = −NAA

2h̄2

[
Ŝ

z
A,

[
Ŝ

z
A, ρs(t )

]]

− NAB

2h̄2

([
Ŝ

z
A,

[
Ŝ

z
B, ρs(t )

]] + [
Ŝ

z
B,

[
Ŝ

z
A, ρs(t )

]])

−NBB

2h̄2

[
Ŝ

z
B,

[
Ŝ

z
B, ρs(t )

]]

− i

2h̄
aBA

[
Ŝ

z
B,

{
Ŝ

z
A, ρs(t )

}]
. (38)

We choose as a basis the products of the eigenstates of Ŝ
z
A and

Ŝ
z
B: |sA, mA〉|sB, mB〉 with

Ŝ
z
j |s j, mj〉 = h̄m j |s j, mj〉,

mj = −s j,−s j + 1, . . . , s j,

j = A, B. (39)

In this basis, we obtain

ρ̇mn(t ) = −Amnρmn(t ), (40)
with m = (mA, mB) and

Amn = 1

2
NAA(mA − nA)2 + 1

2
NBB(mB − nB)2

+ NAB(mA − nA)(mB − nB)

+ ih̄

2
aBA(mB − nB)(mA + nA). (41)

These equations show that the noises lead to the decay of
the nondiagonal elements of the density matrix, which is a
property of dephasing. The solution to Eq. (40) is

ρmn(t ) = ρmn(0) exp(−tAmn). (42)

The initial state is taken as the product of the density matrices
of pure spin states:

ρmn(0) = ρmAnA (0)ρmBnB (0)

= ψmAψ
∗
nA

ψmBψ
∗
nB

, (43)

and we assume the spin-coherent states [33]:

ψmj = (
C

2s j

s j+mj
p

s j+mj

j (1 − p j )
s j−mj

)1/2
ei(s j−mj )φ j . (44)

Here Cn
k = n!/k!(n − k)! are the binomial coefficients and

p j = (1 + cos θ j )/2. These correspond to the states with max-
imal single-spin projection s j along the direction (θ j, φ j ), θ j

and φ j being the angles that parametrize the sphere [33]. In
particular, the continuous limit is achieved when s j → ∞.
Applying the central limit theorem to the binomial distribution
leads to

ψmj → 1

(2πs jq j )1/4
e
− 1

4s j q j
(mj+s j−2s j p j )2

ei(s j−mj )φ j

ass j → ∞, (45)

with q j = 2p j (1 − p j ) = (sin θ j )2/2.
The purity Eq. (37) is evaluated as

γ (t ) =
sA∑

mA,nA=−sA

sB∑
mB,nB=−sB

|ψmA |2|ψnA |2|ψmB |2|ψnB |2 exp(−t (NAA(mA − nA)2 + 2 NAB(mA − nA)(mB − nB) + NBB(mB − nB)2)),

In the large spin regime sA = sB = s � 1 it is obtained from the Gaussian integrals:

γs�1(t ) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dv dw dx dy exp(−π (v2 + w2 + x2 + y2)

− 2πst (qA NAA(v − w)2 + 2
√

qAqB NAB(v − w)(x − y) + qB NBB(x − y)2))

= 1√
1 + 4st (qA NAA +qB NBB) + 16s2t2qAqB

(
NAA NBB − N

2
AB

) . (46)
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For sA = sB = 1/2 the purity is

γ1/2(t ) = (1 − qA)(1 − qB) + qAqB cosh(2 NAB t )e− NAA t−NBB t + qA(1 − qB)e− NAA t + qB(1 − qA)e− NBB t . (47)

The goal of the next section is to compute the optimal purities.

VII. PURITY OPTIMIZATION

The purity satisfies γ � 1, the inequality being saturated in
the absence of decoherence. In general, the purity cannot be
maximized to unity because the condition of positivity of the
matrix C in Eq. (19) implies that the noises cannot all vanish
simultaneously when the interaction between the subsystems
is nonreciprocal. For the setup under consideration, this trans-
lates to the quantum noise inequality [34]

NAA NBB � N
2
AB + 1

4 a2
BA . (48)

In this section, we optimize the purity for the exemplary CNOT

gate for which the time of operation t is given by Eq. (36).
The optimization procedure is as follows. For a given set
of noises NAA, NBB, NAB, we find the worst initial state that
gives minimum purity after the CNOT operation. This purity
depends on the noises, and we maximize it over the noise
settings subject to the constraint Eq. (48). This gives us a
lower bound for purity that can be achieved by the ideal
design. This measure is universal and does not depend on the
design details.

Let us start with the case s � 1. In Eq. (46), all the coeffi-
cients in front of qA, qB, and qAqB are positive. This implies
that the initial state that yields the worst purity corresponds
to maximum qA = qB = 1/2, or θA = θB = π/2. This purity
reads

γ min
s�1 =

(
1 + π

aBA
(NAA + NBB)

+ π2

a2
BA

(
NAA NBB − N

2
AB

))−1/2

. (49)

FIG. 1. The purities of the CNOT operation corresponding to
three optimal designs in dependence of the initial state. The ro-
tating spin is initially perpendicular to the z-axis (θB = π/2); θA

is the angle between the z-axis and the control spin. Parameters
for curve (a) sA = sB = s � 1, NAA = NBB = aBA /2; (b) sA = sB =
1/2, NAA � aBA � NBB; (c) sA = sB = 1/2, NBB � aBA � NAA.

It reaches optimum for the choice of the noises Nopt
AA = Nopt

BB =
aBA /2 and N

opt
AB = 0, and it equals

γ
opt
s�1 = 1

1 + π/2
≈ 0.39. (50)

As discussed, this is the bound for the worst initial state. For
the same design, the purity for other initial states characterized
by qA, qB is better (Fig. 1):

γ
opt
s�1 = 1√

1 + π (qA + qB) + π2qAqB

. (51)

The optimization for the case sA = sB = 1/2 is more in-
volved, and it is presented in Appendix. The same optimal
purity

γ
opt
1/2 = 1/2 (52)

is achieved for two alternative designs. For both designs, the
initial state giving the worst purity is the same as for the
previous case. Its optimum is achieved for NAA � aBA � NBB

or for NBB � aBA � NAA. Although these designs might seem
challenging to realize, the purity in this case does not depend
much on the precise values of the noises, γ1/2 > 0.36 if the
noises satisfy NAA NBB = a2

BA /4 the limit of the constraint
(48), γ1/2 > 1/4 for any noise setting.

For these two designs, we obtain the dependence of the
purity on the initial state:

γ
opt
1/2 = 1

2 [1 + cos(θA)2] for NBB � aBA � NAA, (53a)

= 1
2 [1 + cos(θB)2] for NAA � aBA � NBB . (53b)

In Fig. 1 we plot the purities for optimal designs for θB = π/2
versus θA.

VIII. CONCLUSION

We have studied the interaction between two quantum sys-
tems A and B that is mediated by their common linear environ-
ment. When the environment is out of thermal equilibrium, the
interaction in general violates the Onsager symmetries, and
the action of system A on system B may not produce a back
action. We have derived the corresponding quantum equations
and obtained their classical limit. In the quantum domain,
interaction between the systems without back action necessar-
ily involves minimal noise on the systems. As an application
of the formalism, we analyzed the quantum manipulation of
spin-coherent states of arbitrary spin quantum number and the
realization of an analog of the CNOT gate. As a measure of
the decoherence induced by the noise, we evaluated the purity
of the quantum states after a time of interaction between the
spins that corresponds to the time of operation of the CNOT

gate. The final purity depends on the initial states of the spins,
and we optimized the purity for all initial states. In the worst
case of the initial state, the optimal purity is 1/2 for spin 1/2
and ≈ 0.39 for large spins. Thus even though the decoherence
is important for two-level systems, it can be made relatively
small for systems of large spins. Similar considerations can
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be applied to more complex quantum gates and systems. The
nonsymmetric Onsager interaction can be used to perform
quantum operations. However, it always brings decoherence.
The minimal decoherence depends on the initial state. The
worst minimal decoherence may become of the order 1
for simple two-level systems. However, the decoherence per
quantum degree of freedom can be significantly reduced by
employing larger quantum systems as we have illustrated with
the example of large spins.
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APPENDIX: PURITY OPTIMIZATION FOR s = 1/2

Here we derive the optimal purity for s = 1/2. Equation
(47) is of the form

γ1/2(t ) = 1 − aqA − bqB + cqAqB, (A1)

with

a = 1 − exp(−t NAA), (A2a)

b = 1 − exp(−t NBB), (A2b)

c = 1 + cosh(2t NAB) exp(−t NAA −t NBB)

− exp(−tNAA) − exp(−t NBB). (A2c)

Equation (A1) defines hyperbolas in the plane (qA, qB)
whose center is at (qA, qB) = (b/c, a/c). Based on this ob-
servation, it is straightforward to find the minima of the purity
(A1) in the domain qA, qB ∈ [0, 1/2], depending on the pa-
rameters a, b, and c. We summarize the expressions of the
minimal purities and their locations in the following table:

γ min
1/2 (t ) Conditions (qA, qB )

1 − a
2 − b

2 + c
4 a � c

2 , b � c
2 ( 1

2 , 1
2 )

1 − a
2 b � c

2 , a � b ( 1
2 , 0)

1 − b
2 a � c

2 , b � a (0, 1
2 )

FIG. 2. Purity Eq. (A5) as a function of a, Eq. (A2), and for t =
tπ/2.

Then we maximize the purity with respect to the noises
at time tπ/2. We have done this numerically using the
SCIPY.OPTIMIZE package [35] and we found that the optimal
purity is obtained when either NAA → 0 and NBB → ∞ or
NAA → ∞ and NBB → 0, and it is equal to 1/2.

To see this, we let NAB = 0. This gives c = ab and it corre-
sponds to the conditions a � c

2 and b � c
2 . Then the minimal

purity is obtained for qA = qB = 1/2 and it is equal to

γ min
1/2 (t ) =

(
1 − a

2

)(
1 − b

2

)
. (A3)

The noises that maximize the purity (A3) saturate the quantum
noise inequality (48). At time tπ/2 (36) they are related by

ln(1 − a) ln(1 − b) = π2

4
. (A4)

With this we express b as a function of a, insert the expression
into Eq. (A3), and we obtain

γ min
1/2 (a) = 1

2

(
1 − a

2

)[
1 + exp

(
π2

4 ln(1 − a)

)]
. (A5)

We plot Eq. (A5) in Fig. 2. The maxima of Eq. (A5) are ob-
tained for a = 0 and 1, that is, when the noise NAA either van-
ishes or diverges, and the optimal value of the purity is 1/2.
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