
 
 

Delft University of Technology

From Grotthuss Transfer to Conductivity: Machine Learning Molecular Dynamics of
Aqueous KOH

Lagerweij, V.J.; Bougueroua, Sana; Habibi, P.; Dey, P.; Gaigeot, Marie Pierre; Moultos, O.; Vlugt, T.J.H.

DOI
10.1021/acs.jpcb.5c03199
Publication date
2025
Document Version
Final published version
Published in
The Journal of Physical Chemistry Part B  (Biophysical Chemistry, Biomaterials, Liquids, and Soft Matter)

Citation (APA)
Lagerweij, V. J., Bougueroua, S., Habibi, P., Dey, P., Gaigeot, M. P., Moultos, O., & Vlugt, T. J. H. (2025).
From Grotthuss Transfer to Conductivity: Machine Learning Molecular Dynamics of Aqueous KOH. The
Journal of Physical Chemistry Part B (Biophysical Chemistry, Biomaterials, Liquids, and Soft Matter),
129(24), 6093-6099. https://doi.org/10.1021/acs.jpcb.5c03199
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1021/acs.jpcb.5c03199
https://doi.org/10.1021/acs.jpcb.5c03199


From Grotthuss Transfer to Conductivity: Machine Learning
Molecular Dynamics of Aqueous KOH
V. Jelle Lagerweij, Sana Bougueroua, Parsa Habibi, Poulumi Dey, Marie-Pierre Gaigeot,
Othonas A. Moultos, and Thijs J. H. Vlugt*

Cite This: J. Phys. Chem. B 2025, 129, 6093−6099 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Accurate conductivity predictions of KOH(aq) are
crucial for electrolysis applications. OH− is transferred in water by the
Grotthuss transfer mechanism, thereby increasing its mobility compared
to that of other ions. Classical and ab initio molecular dynamics struggle
to capture this enhanced mobility due to limitations in computational
costs or in capturing chemical reactions. Most studies to date have
provided only qualitative descriptions of the structure during Grotthuss
transfer, without quantitative results for the transfer rate and the
resulting transport properties. Here, machine learning molecular
dynamics is used to investigate 50,000 transfer events. Analysis
confirmed earlier works that Grotthuss transfer requires a reduction in
accepted and a slight increase in donated hydrogen bonds to the
hydroxide, indicating that hydrogen-bond rearrangements are rate-limiting. The computed self-diffusion coefficients and electrical
conductivities are consistent with experiments for a wide temperature range, outperforming classical interatomic force fields and
earlier AIMD simulations.

■ INTRODUCTION
Aqueous potassium hydroxide (KOH(aq)) has a remarkably
high electrical conductivity compared to other aqueous salts.1,2

This is ideal for applications in which minimizing conductive
losses in electrolytes is crucial. Key applications are alkaline
water electrolysis,3−5 electrochemical CO2 reduction,6,7

capacitors,8−10 and batteries.11 The high electrical conductivity
of aqueous hydroxide mixtures (OH−) stems from the
Grotthuss transfer mechanism (i.e., proton transfer, proton
hopping).12,13 This mechanism is a molecular identity switch
of OH− ions with water (see Figure 1), which enhances the

mobility of OH−, resulting in higher self-diffusivities and
electrical conductivities.12,13 Although the Grotthuss transfer
has been investigated qualitatively with ab initio molecular
dynamics (AIMD),13−21 there is limited understanding of its
quantitative effects on self-diffusion and electrical conductivity
of OH−. This is due to the computational costs of AIMD,
limiting this method to small system sizes and short simulation
time scales.
Here, we study the multiscale effect of the Grotthuss transfer

in KOH(aq) with a machine learning force field (MLFF)
trained on ab initio data, thereby overcoming the time and
length scale limitations of AIMD. In addition to light water,
simulations with heavier hydrogen isotopes provide insights
into isotope effects on the transfer mechanism. For the first
time, simulated electrical conductivities match experimental
values within 5% accuracy. Classical MD simulations are also
performed to indicate the relevance of capturing the Grotthuss
transfer. AIMD and machine learning molecular dynamics
(MLMD) simulations are compared to ensure that the MLFF
is fitted accurately. The graph theory postprocessing tool
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Figure 1. Schematic description of Grotthuss transfer, where the OH−

takes a hydrogen of a H2O molecule. Before the transfer event, oxygen
1 (O1) and the center hydrogen (H) are part of the H2O molecule.
After the reaction, O1 becomes part of the OH− molecule, and H is
now chemically bonded to O2. As this reaction is an identity switch,
no change in concentration occurs.
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GaTewAY22−28 was used to compare the hydrogen bonding of
OH− in reactive and nonreactive configurations. Statistical
analysis of more than 50,000 Grotthuss events revealed that
the OH− loses a hydrogen bond just before a transfer event.
The hydration of OH− is similar to that of water during
Grotthuss events. Both the reaction energy barrier and the
time between Grotthuss transfer events determined here are in
agreement with the experimental results29,30 of hydrogen-
bonding rearrangements. This confirms that the loss of the
hydrogen bond of OH− is the rate-limiting step of Grotthuss
transfer at low concentrations.31

Previous simulation studies provided molecular insights into
Grotthuss transfer. AIMD simulations performed by Tucker-
man et al.14−18 and later by Agmon et al.19,20 revealed how the
Grotthuss transfer of OH− differs from the corresponding
process for H3O+ in aqueous solutions. These studies explain
qualitatively why H3O+ diffuses faster than OH−, while a few
self-diffusion coefficients of OH− (DOH−) are reported, as well.
Nevertheless, the reported DOH− had high statistical
uncertainty due to short simulation times (≈10 ps). Long
(400 ps) AIMD simulations of OH− have been reported by
Muñoz-Santiburcio.21 Still, these simulations remain too short
for the mean squared displacements of individual ions to reach
the square of half the box size.21 This check is necessary to
determine whether the simulation time is sufficient for self-
diffusion computations.32

Classical force fields (FFs) cannot model chemical reactions,
such as the Grotthuss transfer, and fail to capture DOH−. For
example, the DFF/OH− FF,33 a classical FF that captures other
properties accurately, underestimates the experimental DOH−

by a factor of ca. 2. FFs capable of modeling reactions, such as
ReaxFF34,35 or MOBHY,36 do capture Grotthuss transfer
qualitatively. Parameterizing these FFs involves numerous
assumptions. This leads to significant differences between
simulated properties and experiments.37 For example, ReaxFF
overestimates the OH− self-diffusion coefficient by a factor of
ca. 2. With ML, two- and three-body interactions relying on
generic interatomic functionals (unlike the fixed forms used in
classical or reactive FFs) can be trained using ab initio results
on specific system snapshots. A properly trained MLFF
provides interatomic forces close to AIMD at only slightly
higher computational costs, comparable to classical FFs.38

Studies using MLFFs have contributed new insights into
diverse systems, including pure water,39−41 electrolytes,42−44

and reactive mixtures.45,46 MLFFs have sparked renewed
interest in Grotthuss transfer, as both the relevant time scales
and the level of accuracy required to study this mechanism
have now become accessible. Simulations of hydronium

transfer47 and of NaOH(aq) by Hellström and Behler et
al.31,48−50 used MLFFs to investigate the concentration
dependence of Grotthuss transfer, the role of nuclear quantum
effects (NQEs),47,49 as well as the role that Grotthuss transfer
and NQEs play in water self-ionization.51

■ COMPUTATIONAL DETAILS
VASP 6.4.342,52−58 was used for all ab initio and ML
simulations. Periodic boundary conditions were set in all
directions. The Nose−́Hoover thermostat59,60 (lattice mass of
5), the Verlet time integration scheme61 (time step of 0.5 fs),
and the RPBE-D362−65 density functional were applied. NQEs
were not considered here as we aim to show that simple on-
the-fly machine learning simulations capture the electrical
conductivity accurately. Including NQEs would increase
complexity and computational costs. RPBE-D3 without
NQEs has shown excellent performance in predicting water
structures66 and dynamics,21 as well as hydroxide diffusion.21,49

Including NQEs with this density functional overestimates
hydroxide diffusion.49 This may be due to error cancellation,
but it significantly simplifies the simulation approach. The
DFT simulations involved a single k-point, 550 eV energy
cutoff, 0.3 eV Gaussian smearing width, and a 0.01 meV
convergence limit for the self-consistency cycles. Training of
the MLFF was conducted at the experimental density at 72
°C.2 The system consisted of 110 H2O molecules and 12 KOH
molecules. The initial configuration was created using fftool
(V1.2.1)67 and PACKMOL (V20.3.1).68 Four on-the-fly ML
simulations with an NPT temperature ramp from −20 to 72 °C
were used to select training snapshots to retrain a final fast
MLFF using the SVD solver in VASP. The hyperparameters of
the MLFF were optimized, with two- and three-body cutoffs of
13 and 4 Å, respectively. The numbers of basis functions of
two- and three-body interactions of the VASP MLFF were 12
and 8, respectively.
The MLMD production simulations were performed at a

lower concentration than the training (ca. 0.5 mol of KOH per
kg of H2O). The simulation box contained 110 H2O molecules
and 1 KOH molecule. MLMD simulations of the three
hydrogen isotopes, H, D, and T, were performed using the
same box sizes, FF, and other simulation settings. NVT
simulations were conducted at experimental densities of KOH
(aq)2 in the range of 15−65 °C at 10 °C intervals, using the
Nose−́Hoover thermostat. Diffusion coefficients are not
affected by this thermostat for the simulated system
sizes.21,32 The periodic boundary conditions and time step
size remained consistent with the training phase. Six
independent simulations were performed for each state point

Figure 2. (a) Parity between forces predicted by DFT versus the MLFF. (b) and (c) Radial distribution function of K+ and the oxygen of the OH−

(O*) with the oxygen of water molecules (Ow), respectively. The continuous blue lines indicate the g(r) of MLMD, the blue circles indicate
AIMD, and the dashed blue lines indicate classical MD. The radius depending on the hydration number is the red line, where the diamond
indicates the hydration number at the minimum of g(r).
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to obtain statistical uncertainties, which are reported as twice
the standard error of the mean. The simulations consisted of a
20 ps equilibration followed by a 1000 ps production run.
AIMD production runs used the same ab initio settings as the
training phase, with simulation boxes identical to those in the
MLMD simulations. These were only performed at 15 °C and
consisted of 3.5 ps equilibration and 3.5 ps production runs;
120 AIMD simulations were performed to accurately sample
the radial distribution functions of the ions and the
intramolecular shape of the water molecules. Classical MD
simulations were performed using LAMMPS (Mar2018)69,70

with the OCTP plugin71 at the same thermodynamic state
points as the MLMD simulations. The coupling time of the
Nose−́Hoover thermostat59,60 was 100 fs, and the simulation
box contained 1100 H2O and 10 KOH molecules. The TIP4P/
2005 water72 and DFF/OH−33 FFs were used. The six
simulations per state point consisted of over 1 ns of
equilibration and 25 ns of production each. See the Supporting
Information for detailed simulation settings.

■ RESULTS AND DISCUSSION
The accuracy of the MLFF was assessed by comparing the
forces and radial distribution functions of MLMD with AIMD.
The total force on each atom was computed for random
equilibrated configurations with both methods; see Figure 2a.
The test configurations were at the same concentration as

those of the production runs (0.5 mol of KOH per kg of H2O).
This is significantly below that of the training data (6 mol of
KOH per kg of H2O). The accuracy of the MLFF in predicting
intramolecular forces is assessed by comparing the water angle
and bond length from MLMD and AIMD simulations. At 15
°C, MLMD simulations yield rOH = 0.97(1)Å and an angle of
θHOH = 104.8(5)°. AIMD simulations predict rOH = 0.98(1)Å
and θHOH = 104.9(5)°. The intermolecular RDFs of K+ and
OH−, illustrated in Figure 2b,c, indicate that AIMD and
MLMD result in the same ion hydration. The hydration
numbers of OH− are 5.57(9) and 5.34(9) for MLMD and
AIMD, respectively, matching the experimentally determined
value 5.5(5)73 and the simulation result 5.8.15 The hydration
numbers of K+ are 7.47(4) and 7.9(1) for MLMD and AIMD,
respectively, which is close to the value 7.1(4) computed by
Ikeda et al.74 Overall, the correlation between atomic forces
and the transfer of structural properties from AIMD to MLMD
validate the MLFF.
The 1 ns MLMD simulation times made in-depth statistical

analysis of the Grotthuss transfer events possible, as more than
6500 transfer events per state point were captured. Tuckerman
et al.17 already observed that there are two relevant hydration
modes to the Grotthuss transfer of OH−. Our simulations also
revealed two hydration modes: (1) a reactive hydration mode,
where the proton can be passed between a H2O and OH−, and
(2) a nonreactive hydration mode, where the hydrogen-

Figure 3. (a) Time correlation functions C(Δt) from which the OH− lifetimes τ are computed using the stable state picture.75,76 The orange curve
shows simulation results at 15 °C, and the dashed blue line is fitted to A exp(−Δtτ1−1) + (1 − A) exp(−Δtτ2−1). The gray lines below the orange
curve indicate the other temperatures (25−65 °C), and the light-brown lines above the orange curve are simulation results with heavy water at 15
°C, with mH = 2, 3 u. (b) Bar chart of the average number of hydrogen bonds in the reactive configuration (50 fs before and after Grotthuss
transfer) and the nonreactive hydration mode. The total average hydrogen-bond number (nHB) is indicated, as well. We separated the results in
donated (red bars) and accepted (green bars) hydrogen bonds. (c) and (d) Typical GaTewAY22−28 graphs of the hydrogen-bonding network in the
nonreactive and reactive hydration modes, respectively. The color indicates the molecule type: K+ is blue, OH− is yellow, and H2O is red. The red
arrows between the molecules indicate the direction of the hydrogen bonds (from donor to acceptor). The blue dashed lines indicate the ionic
interactions between K+ and the water.

Table 1. Effective OH− Lifetimes τ Computed with the Stable Point Picture Approach,75,76 Reaction Energy Barrier Ebarr, and
Pre-Exponential Component A of the Arrhenius Equation for All Simulated Hydrogen Isotopesa

T (°C) 15 25 35 45 55 65
H2O + KOH τ (ps) 5.3(1) 4.1(1) 3.8(2) 3.4(1) 3.3(1) 2.89(1)

Ebarr (kJ mol−1) 9.4(9)
A (ps−1) 10(3)

D2O + KOD τ (ps) 5.5(1) 4.8(3) 4.6(5) 4.0(1) 3.48(4) 3.3(1)
Ebarr (kJ mol−1) 9.3(3)
A (ps−1) 9(1)

T2O + KOT τ (ps) 6.25(6) 5.3(1) 4.3(6) 4.31(3) 3.8(5) 3.5(1)
Ebarr (kJ mol−1) 9.7(5)
A (ps−1) 9(2)

aThe values in the parentheses are twice the standard deviation of the mean in the least-significant digits.
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bonding network is restructured. In a reactive configuration,
the proton bounces back and forth quickly between the same
two oxygen atoms multiple times. This does not add
significantly to the transport of OH−, as the oxygen atoms
involved do not travel far in this time span. Charge transport is
effective only when the Grotthuss transfer occurs with a new
H2O molecule, for which a restructured hydrogen-bonding
network is necessary. This also indicates two separate time
scales: (1) the time scale of the reactive mode, of 0.01−0.1 ps,
and (2) a long time scale during the nonreactive mode, of 0.5−
10 ps. To determine the effective lifetimes of OH−, the stable
point picture approach is used.75,76 We sampled the probability
of a stable OH− turning into stable water18,49 within a time
interval Δt using the Lionanalysis software.49 Using stable
states for the start and end points of the reaction analysis
excludes the proton bouncing back and forth in an unstable
state from the statistics, so only effective transfer events are
sampled. The resulting correlations, shown in Figure 3a, are
fitted to a exp(−Δtτ1−1) + (1 − a) exp(−Δtτ2−1), from which
the lifetime is determined with τ = aτ1 + (1 − a)τ2. Table 1
reports τ values for the simulation temperatures and hydrogen
isotopes. The reaction energy barrier (Ebarr) and pre-
exponential factor (A), determined from the Arrhenius
temperature dependence of τ, are reported as well. Isotopes
have approximately the same electron distribution and thus
share the same interatomic potential, although the dynamics
differ due to the change in atomic mass. This leads to no
significant changes in Ebarr and a reduction of A, which can be
observed from Table 1. Changes in Ebarr may be expected if
NQEs were concidered49,77 since such techniques capture the
differences between nuclei. The effective hydroxide lifetimes
and the reaction energy barrier computed from the light water
simulations are slightly larger than found in other studies,29,30

which might indicate that effective Grotthuss transfer is
connected to long hydrogen-bond lifetimes.78

The local environment of OH− was investigated using the
total number of hydrogen bonds. The hydrogen bonding of the
reactive and nonreactive modes is compared in Figure 3b. We
separated the MLMD trajectories in three categories: (1) all
time steps in the 50 fs window before a Grotthuss transfer
event; (2) the time steps in the same window after a transfer
event; and (3) all time steps not included in (1) or (2).
Categories (1) and (2) are in the reactive mode, and category
(3) is in the nonreactive mode. To avoid double-counting of
configurations, the interval is split evenly between (1) and (2)
if two consecutive reactions occurred within 100 fs. On
average, 4.37(2) hydrogen bonds were connected to the OH−

in the nonreactive mode. An example of a nonreactive
hydrogen-bonding network is visualized in Figure 3c,
illustrating the OH− accepting five hydrogen bonds. OH− in
the nonreactive mode accepts many more hydrogen bonds
than water, which generally forms 3−4 hydrogen bonds. There
were significantly fewer hydrogen bonds in the reactive mode:
3.80(3) before and 3.80(4) after Grotthuss transfer events.
This is illustrated in Figure 3d, with the OH− donating one and
accepting three hydrogen bonds. The reduction in hydrogen
bonding when the OH− transitions from the nonreactive to the
reactive mode suggests that Grotthuss transfer can occur only
if OH− is hydrated in a manner that also accommodates a
H2O. The hydrogen bonds are categorized into accepted and
donated bonds for a more detailed analysis (Figure 3b). This
reveals a significant reduction in accepted hydrogen bonds and
a slight increase in donated hydrogen bonds. These findings
are consistent with those reported by Tuckerman et al.,17

although our results indicate a smaller increase in donated
hydrogen bonds.
The self-diffusion coefficients of the K+ (DK+) and OH− were

computed and compared with classical MD simulations.33

Minor differences in DK+ were observed between MLMD and
classical MD simulations, as shown in Figure 4a. The
significant differences for DOH− (Figure 4b) highlight the
effectiveness of MLFF in capturing the Grotthuss transfer. The
electrical conductivity of the overall mixture, shown in Figure
4c, was calculated with the Nernst−Einstein equation.
Although the Nernst−Einstein equation does not include
ion−ion correlations, it can be corrected for its known finite-
size effects.80,81 Such corrections are not yet available for direct
computations of electrical conductivity using Green−Kubo or
Einstein−Helfand equations. Finite-size effects are more
significant than ion−ion correlations at the simulated system
sizes and concentrations. Direct calculations of electrical
conductivities without finite-size corrections are reported in
the Supporting Information. The MLMD results fit exper-
imental data in Gilliam et al.,2 while the classical MD
simulations underestimate the electrical conductivity signifi-
cantly. Our results show closer agreement with experiments
compared to previous MLMD simulations investigating the
concentration-dependent electrical conductivity in NaOH-
(aq).50 The difference likely arises from our MLFF being
optimized for a single concentration, whereas optimizing
across multiple concentrations can improve transferability,
introduces added complexity, and may compromise accuracy.

Figure 4. (a) and (b) Self-diffusion coefficients of K+ and OH−, respectively. (c) Electrical conductivities of the KOH(aq) mixture. In all subfigures,
the closed blue circles are the MLMD results of light water, the open blue circles are the MLMD results of heavy water (mH = 2 u), and the orange
squares are the classical MD data points. The green diamond (b) is the AIMD result by Muñoz-Santiburcio. The red diamond and curve (c)
represent experimental results of electrical conductivities79 and an experimental fit curve,2 respectively.
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■ CONCLUSIONS
This study investigated changes in OH− hydration during
Grotthuss transfer, the self-diffusion coefficients of the ions,
and the electrical conductivity. We rigorously trained and
tested our MLFF, which resulted in excellent structure
properties compared with the AIMD simulations. The results
quantitatively confirm the transfer mechanism at low
concentrations, introduced by Tuckerman et al.14−18 and
found as well by Hellström and Behler et al.31,48,49 The
computed electrical conductivity, which is of special relevance
for this mixture, matches experiments within 5% for the first
time. The MLMD techniques provide a method to investigate
potential additives, such as cheotropic salts, that destabilize the
hydrogen-bonding structure of OH−. This would lead to an
increased Grotthuss transfer and higher electrical conductivity.
Investigating the intricate effects of such additives on
Grotthuss transfer would require a more detailed approach,
for example, meta-GGA or hybrid density functionals
combined with path integral methods to account for NQEs.
These density functionals and simulation techniques have even
higher computational costs. In parallel, graph theory analysis
tools such as GaTewAY could analyze the hydrogen-bond
network beyond the first hydration shell, which may offer
insights into how longer-range structural organization
influences Grotthuss transfer. This makes MLFFs especially
relevant as these enable the use of such high-accuracy methods
at fractions of the computational costs. This enables
investigating the tuning of chemical properties by molecular
modifications, which is possible only when simulations are
both highly accurate and computationally feasible.
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